

รูปที่ 2.14 พื้นที่เก็บเกี่ยวพืชต้นกำเนิดชีวมวลที่พิจารณาในบริเวณภาคใต้

2.5 สัดส่วนชีวมวลและค่าความร้อน

สัดส่วนชีวมวลของผลผลิตจากการเกษตรนั้นจะมีค่าคงที่โดยประมาณ กรมพัฒนาพลังงาน ทดแทนและอนุรักษ์พลังงานได้ประเมินสัดส่วนชีวมวลต่อผลผลิต และค่าความร้อนของชีวมวล ดัง ตารางที่ 2.1 ซึ่งสัดส่วนและค่าความร้อนดังตารางจะประยุกต์ใช้ในการศึกษานี้

ตารางที่ 2.1 สัคส่วนชีวมวลและค่าความร้อน

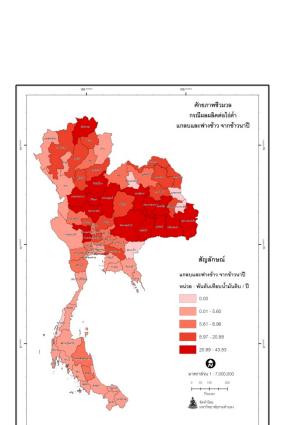
ผลผลิตการเกษตรหรือ พืชต้นกำเนิดชีวมวล	ชีวมวล	สัดส่วนชีวมวลต่อ	ค่าความร้อน
		ผลผลิต	(MJ/kg)
อ้อย อ้อย	ชานอ้อย	0.291	14.40
	ส่วนยอดและใบ	0.302	17.39
ข้าว	แกลบ	0.230	14.27
	ฟาง (ส่วนบน)	0.447	10.24
ข้าวโพดเลี้ยงสัตว์	ซังข้าวโพค	0.273	18.04
มันสำปะหลัง	ลำต้น	0.088	18.42
ปาล์มน้ำมัน	ทะลายปาล์มเปล่า	0.428	17.86
	เส้นใยปาล์ม	0.147	17.62
	กะลาปาล์ม	0.049	18.46
	ก้าน	2.604	9.83
	ทะลายตัวผู้	0.233	16.33
ถั่วลิสง	เปลือก	0.323	12.66
ฝ้าย	ลำต้น	3.232	14.49
ถั่วเหลือง	ลำต้น ใบ และเปลือก	2.663	19.44

ที่มา: กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน 2546

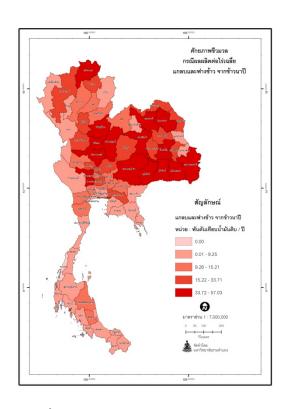
2.6 ศักยภาพชีวมวลของประเทศไทย

ผลการประเมินศักยภาพชีวมวลของประเทศไทยตามประเภทของพืชต้นกำเนิด โดยใช้สมการ (2.1) และสมมติฐานที่กล่าวข้างต้น สรุปได้ดังนี้

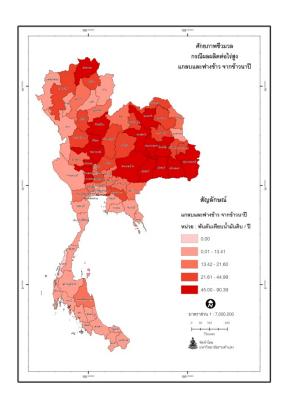
ศักยภาพแกลบ และฟางข้าวนาปี


พื้นที่เกือบทุกภูมิภาคของประเทศไทยมี ศักยภาพแกลบ และฟางข้าวนาปี ยกเว้นใน บริเวณภาคใต้ซึ่งมีอุปทานต่ำกว่าภาคอื่น เนื่องจากมีพื้นที่เพาะปลูกข้าวนาปีน้อยกว่า ภูมิภาคอื่นของประเทศ

ศักยภาพแกลบและฟางข้าวนาปีใน ภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 830 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 1,795 ktoe/ปี

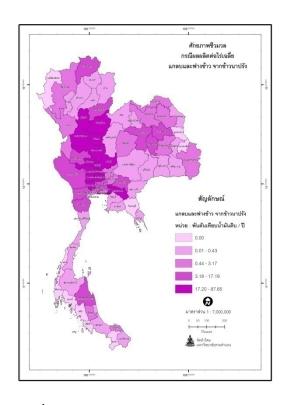

- กรณีผลผลิตต่อไร่ - เฉลี่ย 1,314 ktoe/ปี

รูปที่ 2.16 ศักยภาพแกลบและฟางข้าวนาปี กรณีผลผลิตต่อไร่ – ต่ำ

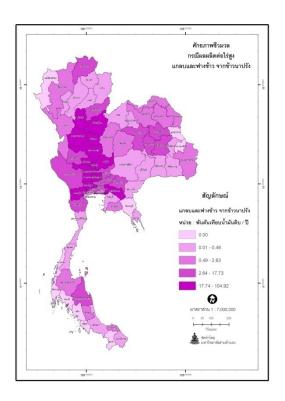
รูปที่ 2.15 ศักยภาพแกลบและฟางข้าวนาปี กรณีผลผลิตต่อไร่ – เฉลี่ย

รูปที่ 2.17 ศักยภาพแกลบและฟางข้าวนาปี กรณีผลผลิตต่อไร่ – สูง

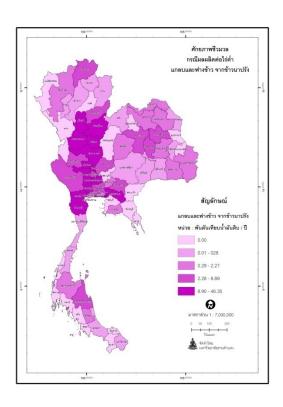
ศักยภาพแกลบ และฟางข้าวนาปรัง


พื้นที่ของประเทศไทยที่มีศักยภาพแกลบ และฟางข้าวนาปรังจะอยู่ในบริเวณที่มีการ ชลประทาน บริเวณภาคกลางและภาคเหนือ ตอนล่างมีศักยภาพสูงกว่าบริเวณอื่น ศักยภาพ โดยรวมของประเทศใกล้เคียงกับกรณีข้าวนาปี

ศักยภาพแกลบและฟางข้าวนาปรังใน ภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 391 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 755 ktoe/ปี

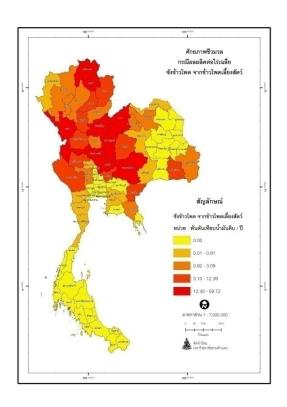

- กรณีผลผลิตต่อไร่ - เฉลี่ย 614 ktoe/ปี

รูปที่ 2.18 ศักยภาพแกลบและฟางข้าวนาปรัง กรณีผลผลิตต่อไร่ – เฉลี่ย

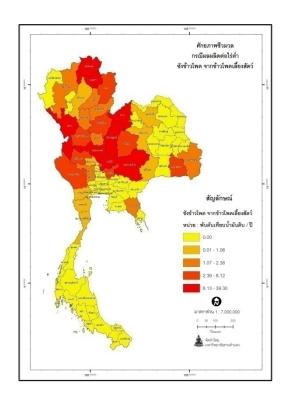
รูปที่ 2.20 ศักยภาพแกลบและฟางข้าวนาปรัง กรณีผลผลิตต่อไร่ – สูง

รูปที่ 2.19 ศักยภาพแกลบและฟางข้าวนาปรัง กรณีผลผลิตต่อไร่ – ต่ำ

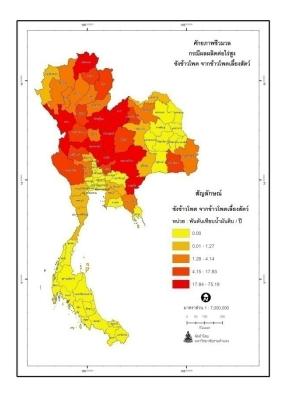
ศักยภาพซังข้าวโพด


พื้นที่ตอนบนของประเทศไทยมีศักยภาพ ชีวมวลจากซังข้าวโพดไม่สูงนัก แต่ในภากใต้ ไม่มีอุปทานซังข้าวโพดเนื่องจากในพื้นที่ ดังกล่าวไม่มีการเพาะปลูกข้าวโพด

ศักยภาพซังข้าวโพดในภาพรวมของ ประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 207 ktoe/ปี

- กรณีผลผลิตต่อไร่ – สูง 452 ktoe/ปี

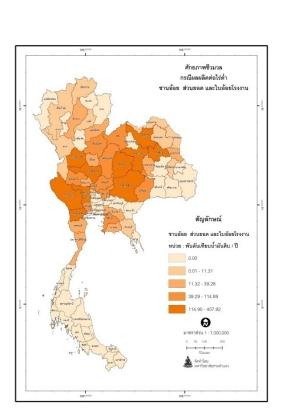

- กรณีผลผลิตต่อไร่ - เฉลี่ย 341 ktoe/ปี

รูปที่ 2.21 ศักยภาพซังข้าวโพคจากข้าวโพค เลี้ยงสัตว์ กรณีผลผลิตต่อไร่ – เฉลี่ย

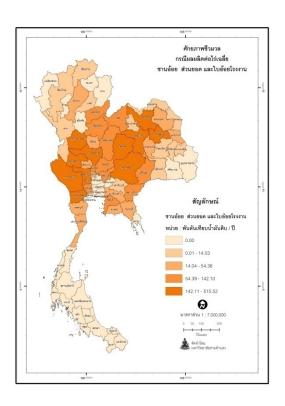
รูปที่ 2.22 ศักยภาพซังข้าวโพคจากข้าวโพค เลี้ยงสัตว์ กรณีผลผลิตต่อไร่ – ต่ำ

รูปที่ 2.23 ศักยภาพซังข้าวโพดจากข้าวโพด เลี้ยงสัตว์ กรณีผลผลิตต่อไร่ – สูง

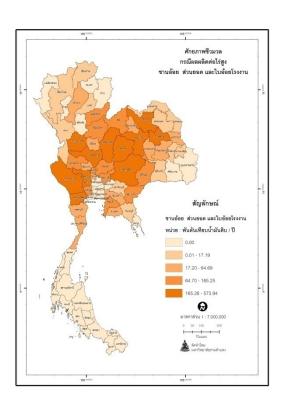
ศักยภาพวัสดุเหลือทิ้งจากอ้อยโรงงาน


พื้นที่บริเวณภาคเหนือตอนล่าง ภาคกลาง และภาคตะวันออกเฉียงเหนือของประเทศไทย มีศักยภาพชีวมวลจากวัสดุเหลือทิ้งจากอ้อย โรงงาน แต่ในภาคใต้ไม่มีพื้นที่เพาะปลูกอ้อย โรงงานจึงไม่มีอุปทานชีวมวลประเภทดังกล่าว

ศักยภาพวัสดุเหลือทิ้งจากอ้อยโรงงานใน ภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 3,466 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 5,842 ktoe/ปี

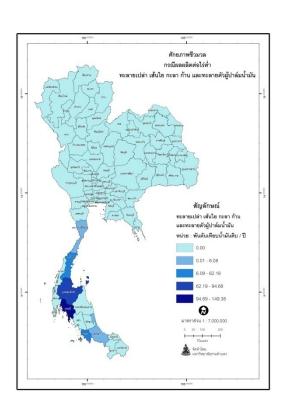

- กรณีผลผลิตต่อไร่ - เฉลี่ย 4,908 ktoe/ปี

รูปที่ 2.25 ศักยภาพวัสดุเหลือทิ้งจากอ้อย โรงงาน กรณีผลผลิตต่อไร่ – ต่ำ

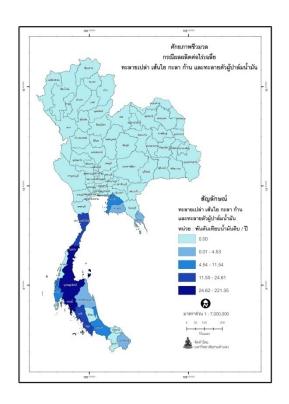
รูปที่ 2.24 ศักยภาพวัสคุเหลือทิ้งจากอ้อย โรงงาน กรณีผลผลิตต่อไร่ – เฉลี่ย

รูปที่ 2.26 ศักยภาพวัสดุเหลือทิ้งจากอ้อย โรงงาน กรณีผลผลิตต่อไร่ – สูง

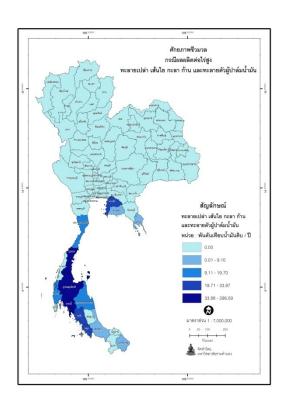
์ ศักยภาพวัสดุเหลือทิ้งจากปาล์มน้ำมัน


พื้นที่เพาะปลูกปาล์มน้ำมันของประเทศอยู่ ในบริเวณภาคใต้ และบางส่วนของภาคกลาง ศักยภาพชีวมวลจากวัสคุเหลือทิ้งของปาล์ม น้ำมันจึงมีอยู่เฉพาะในบริเวณดังกล่าว ใน ภูมิภาคอื่นของประเทศจึงไม่มีอุปทานชีวมวล จากปาล์มน้ำมัน

ศักยภาพวัสดุเหลือทิ้งจากปาล์มน้ำมันใน ภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 328 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 819 ktoe/ปี

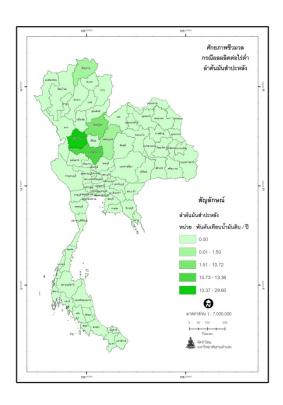

- กรณีผลผลิตต่อไร่ – เฉลี่ย 594 ktoe/ปี

รูปที่ 2.28 ศักยภาพวัสดุเหลือทิ้งจากปาล์ม น้ำมัน กรณีผลผลิตต่อไร่ – ต่ำ

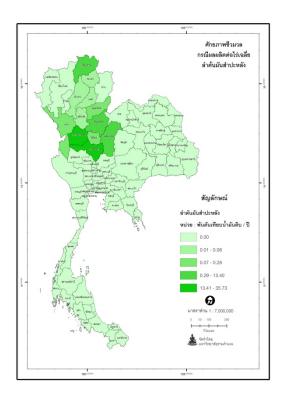
รูปที่ 2.27 ศักยภาพวัสดุเหลือทิ้งจากปาล์ม น้ำมัน กรณีผลผลิตต่อไร่ – เฉลี่ย

รูปที่ 2.29 ศักยภาพวัสดุเหลือทิ้งจากปาล์ม น้ำมัน กรณีผลผลิตต่อไร่ – สูง

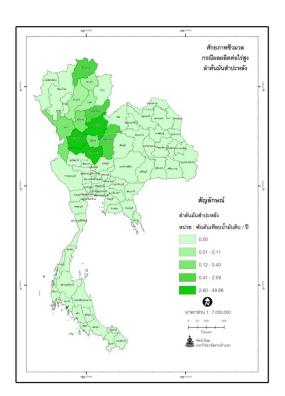
ศักยภาพวัสดุเหลือทิ้งจากมันสำปะหลัง


พื้นที่บริเวณภาคเหนือของประเทศไทยมี สักยภาพชีวมวลจากวัสดุเหลือทิ้งซึ่งประเมิน เฉพาะส่วนลำต้นมันสำปะหลัง แต่ในภูมิภาค อื่นของประเทศไม่มีพื้นที่เพาะปลูกมัน สำปะหลัง จึงไม่มีอุปทานชีวมวลประเภท ดังกล่าว

ศักยภาพวัสดุเหลือทิ้งส่วนลำต้นมัน สำปะหลังในภาพรวมของประเทศ สรุปได้ดังนี้

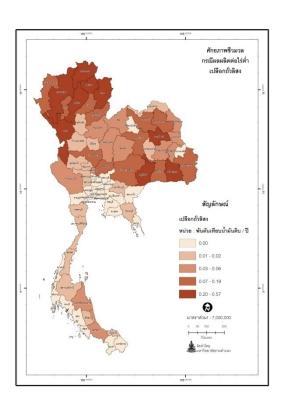

- กรณีผลผลิตต่อไร่ - ต่ำ 56 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 97 ktoe/ปี

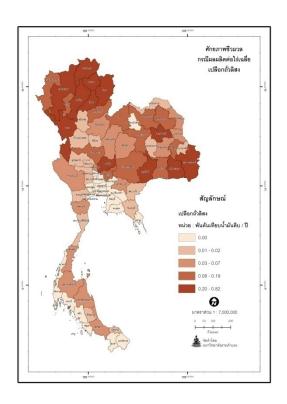

- กรณีผลผลิตต่อไร่ - เฉลี่ย 70 ktoe/ปี

รูปที่ 2.31 ศักยภาพวัสดุเหลือทิ้งส่วนลำต้น มันสำปะหลัง กรณีผลผลิตต่อไร่ – ต่ำ

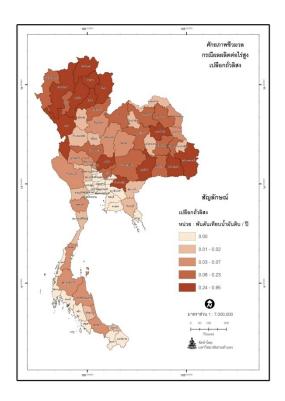
รูปที่ 2.30 ศักยภาพวัสดุเหลือทิ้งส่วนลำต้น มันสำปะหลัง กรณีผลผลิตต่อไร่ – เฉลี่ย


รูปที่ 2.32 ศักยภาพวัสดุเหลือทิ้งส่วนลำต้น มันสำปะหลัง กรณีผลผลิตต่อไร่ – สูง

ศักยภาพเปลือกถั่วลิสง


พื้นที่เกือบทุกภูมิภาคของประเทศไทยมี พื้นที่เพาะปลูกถั่วลิสง แต่ปริมาณชีวมวลจาก วัสดุเหลือทิ้งจากถั่วลิสงเฉพาะส่วนเปลือกถั่ว ลิสงในภาพรวมของทั้งประเทศมีปริมาณไม่ มากนัก

ศักยภาพวัสดุเหลือทิ้งจากถั่วลิสงเฉพาะ ส่วนเปลือกถั่วลิสงในภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ ต่ำ 5 ktoe/ปี
- กรณีผลผลิตต่อไร่ สูง 8 ktoe/ปี
- กรณีผลผลิตต่อไร่ เฉลี่ย 6 ktoe/ปี

รูปที่ 2.34 ศักยภาพวัสดุเหลือทิ้งส่วนเปลือกถั่ว ลิสง กรณีผลผลิตต่อไร่ – ต่ำ

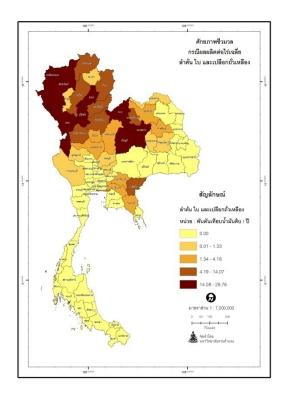
รูปที่ 2.33 ศักยภาพวัสดุเหลือทิ้งส่วนเปลือกถั่ว ลิสง กรณีผลผลิตต่อไร่ – เฉลี่ย

รูปที่ 2.35 ศักยภาพวัสดุเหลือทิ้งส่วนเปลือกถั่ว ลิสง กรณีผลผลิตต่อไร่ – สูง

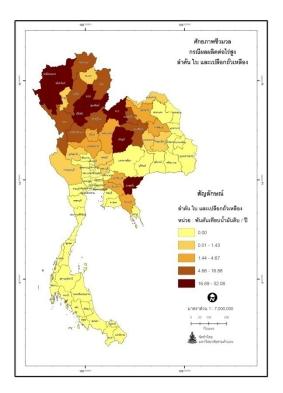
์ สักยภาพวัสดุเหลือทิ้งจากถั่วเหลือง


พื้นที่ปลูกถั่วเหลืองของประเทศไทยอยู่ใน บริเวณภาคเหนือ บางส่วนของพื้นที่ภาคกลาง และภาคตะวันออกเฉียงเหนือ ในบริเวณภาคใต้ ไม่มีพื้นที่เพาะปลูกถั่วเหลือง ศักยภาพวัสดุ เหลือทิ้งจากถั่วเหลืองในภาพรวมของประเทศ มีไม่มากนัก

ศักยภาพวัสคุเหลือทิ้งจากถั่วเหลืองใน ภาพรวมของประเทศ สรุปได้ดังนี้


- กรณีผลผลิตต่อไร่ - ต่ำ 202 ktoe/ปี

- กรณีผลผลิตต่อไร่ - สูง 300 ktoe/ปี


- กรณีผลผลิตต่อไร่ - เฉลี่ย 254 ktoe/ปี

รูปที่ 2.37 ศักยภาพวัสดุเหลือทิ้งจากถั่วเหลือง กรณีผลผลิตต่อไร่ – ต่ำ

รูปที่ 2.36 ศักยภาพวัสดุเหลือทิ้งจากถั่วเหลือง กรณีผลผลิตต่อไร่ – เฉลี่ย

รูปที่ 2.38 ศักยภาพวัสดุเหลือทิ้งจากถั่วเหลือง กรณีผลผลิตต่อไร่ – สูง