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segments out hands from the rest of the body by using skin color. However, since 

detecting humans in a cluttered video sequence is itself a very difficult problem, and the 

human body could easily be partially occluded in the scene, we try to bypass the human 

detection problem in our work by finding hands directly, without any attempt to find the 

entire human body first. 

Most of the modern hand tracking systems fall into one of two main categories. 

The first approach uses skin color information to segment hands from the background 

and then tracks segmented hands between frames using a tracking algorithm. The face 

and hand tracking system for sign language recognition proposed by Soontranon et al. 

(2004) first segments the image into skin and non-skin regions using an elliptical model 

for skin pixels in CbCr space. Then face detection is used to locate the face skin blob 

ideally leaving only the skin blobs of hands. The system constructs a template for each 

hand then in subsequent frames, finds the region best matching that template using a 

minimum mean-squared error cost function. A similar approach is used by Wachs et al. 

(2005) to detect and track hands for human-robot interaction. The system proposed by 

Varona et al. (2004) also takes this approach but their system is extended to track hands 

and faces in 3D for a virtual reality application. The hand tracker of Shamaie and 

Sutherland (2005) does not use skin color information so it works on monochrome 

video sequences. Hands are extracted from the background using a blob analysis 

algorithm then tracked using a dynamic model from control theory. Unfortunately, these 

approaches relying on tracking are not suitable when the goal is to extract hands from 

single images. 

However, in a second approach, a detection window is scanned over the image 

and each of the scanned image patches are classified as hand or non-hand. In contrast to 
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the first approach, this approach can be used to detect hands in static images. Barreto et 

al. (2004) applied improved version of Viola and Jones (2001) face detector by Lienhart 

and Maydt (2002), to detect hands for a human-robot interaction application. Their hand 

detection system works quite well at various scales and with different backgrounds 

under various illumination conditions. The hand tracking system proposed by Ong and 

Bowden (2004) uses a similar approach, but they construct a tree-structured classifier, 

instead of a linear cascade, not only to detect hands but also to classify hand posture. 

Both of these systems require high-resolution imagery. The hand detector by Caglar and 

Lobo (2006) also detects hands in high resolution static images, in this case making use 

of the geometric properties of the hand without the use of skin color or motion 

information. Their proposed system is robust to the size and the orientation of hands 

with the limitation that one or more fingers must be visible.  

The goal of our proposed system is to detect and track multiple hands in 

arbitrary postures in relatively low-resolution video sequences. Our approach uses 

grayscale appearance information to reject most of the non-hand image regions very 

rapidly and then uses the shape of skin color regions to reject most of the remaining 

non-hand image patches. We conducted a thorough evaluation on our proposed system 

and found that its detection rate was 86.8% and that its false positive rate was 1.19 false 

detections per image on average.  The system’s speed and accuracy will enable many 

useful applications that are based on hand detection and tracking.  
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Materials and Methods 

Hand Detector 

 A block diagram of our hand detection system is shown in Figure 1. A scan 

window is scanned over the input image at different scales and each of the resulting 

image patches is fed into a classifier cascade which rapidly determines whether the 

image patch is a hand. Our classifier cascade eliminates more than 95% of the non-hand 

regions in a given image.  However, due to the large number of candidate regions in one 

image, to be practical, the false positive rate must be further reduced.  To serve this 

need, we add a postprocessor to the system in order to further reduce false positive 

detections.  The postprocessor takes advantage of a priori knowledge of hand’s color 

and geometry. Skin detection, feature extraction, and Mahalanobis classification are the 

essential building blocks of our postprocessor. 

 

Scanning Window 

 When an image is presented to our hand detection system (Figure 1), a detection 

window is scanned over the image at multiple scales, and each resulting image patch is 

passed to the boosted classifier cascade.  The scanning process is to begin with a 

2424 ×  detection at the image’s original scale.  After every possible image patch at that 

scale has run through the classifier cascade, the image is scaled down by 90% and the 

process is repeated until a minimum image size (maximum detection window size) is 

reached. 
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Boosted Classifier Cascade 

 Viola and Jones (2001, 2004) originally proposed the cascade of boosted 

classifiers as a real-time general object detector and applied it to face detection.  They 

showed that the system could robustly detect faces in static images independent of the 

background. The system runs in real-time since the feature detector is limited to a class 

of Haar-like filters that can be computed in constant time with the help of integral 

images, regardless of the spatial extent of the filters. The speed of the system is 

increased even further by arranging the classifiers in a cascaded fashion, so that the 

early stages reject most of the image patches unlikely to contain the object of interest. 

The cascade therefore only spends significant compute time on the image patches most 

likely to contain the object of interest. 

 Each stage in the cascade is constructed from a set of simple Haar-like filters 

using Freund and Shapire’s (1997) AdaBoost algorithm. AdaBoost builds a strong 

nonlinear classifier from multiple weak threshold classifiers, in this case each using a 

Haar-like filter, a threshold, and a weight, all of which are selected by AdaBoost to 

minimize the weighted error for the whole stage over the training set, while maintaining 

the desired detection rate. Viola and Jones (2001, 2004) used the four types of Haar-like 

filters shown in Figure 2 (a). The filters can take on arbitrary positions and sizes within 

an 2424 ×  image patch. The output of each filter is simply the difference between the 

average pixel value within the clear rectangular regions and the shaded rectangular 

regions. 

 Recently, Lienhart and Maydt (2002) modified Viola and Jones (2001, 2004) 

detector.  Their system adds additional rotated Haar-like filter types, as shown in Figure 

2 (b). On a particular test set, they found that their modified system gave 10% fewer 
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false positives than the original system for certain detection rates. The empirical 

analysis of detection cascade of boosted classifier by Lienhart et al. (2002) compared 

Discrete AdaBoost (the algorithm used by Viola and Jones [2001]), Real AdaBoost, and 

Gentle AdaBoost and found that classifiers trained with Gentle AdaBoost performed the 

best. 

We apply Lienhart and colleagues’ methods, as implemented in the OpenCV, 

Open Computer Vision Library (2006), to the hand detection problem, using all the 

filter types in Figure 2 (b), 2424 ×  image patches, and the Gentle AdaBoost learning 

algorithm. 

 Since boosting algorithms are supervised learning algorithms, a large number of 

labeled positive and negative examples must be input to the training process. Besides 

the examples, some learning parameters must be specified. The most important 

parameter is the desired true positive and false positive rate for each stage of the 

cascade. We train one stage at a time until that stage achieves the specified true positive 

and false positive rates.  Then a new stage is begun, and the process continues until 

some stopping criterion is reached. Only the positive examples that are correctly 

classified by the previous stages and the negative examples that are incorrectly 

classified by the previous stages are used to train each new stage. 

 

Skin Detector 

 There are many approaches to segmenting regions with similar color and texture 

from other regions. To extract skin color blobs from images, color information is the 

obvious choice. The skin detector for our system need not be extremely robust but it 

should be fast.  
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The Bayesian maximum likelihood classifier based on color histograms, as 

presented by Zarit et al. (1999), meets all of these needs. Based on their results and our 

own follow-up study, we selected the HS (hue and saturation) color model. Histograms 

used in the skin detector have two dimensions, namely hue and saturation.  Each axis of 

the plane is quantized into 16 bins, so that each histogram will have 256162 =  bins. We 

selected 16-bin quantization based on comparison experiments with different bins 

counts of 8, 16, 32, and 64.  We found that 16 bins along each axis gave the best 

performance. The reasons for excluding the intensity component from the histogram are 

to eliminate the effect of non-uniform illumination and to save computational cost. We 

construct histograms for skin and non-skin pixels from a large training set. The 

histogram counts are used to construct a discrete class-conditional likelihood for a 

Bayesian maximum likelihood classifier which we then use to determine whether a 

given pixel is most likely skin or not skin. 

Each image patch which is classified as a hand by the cascade is scaled to a 

standard size 2424 ×  pixels and then fed to the skin detector, which produces a binary 

image, in which the value 1 represents a putative skin pixel and the value 0 represents a 

non-skin pixel. 

 

Features Extractor and Mahalanobis Classifier 

 The shape and relative size of the skin blob within the detection window give 

useful information for discriminating image patches containing hand from those not 

containing hand. We extract four simple features from the binary skin image that are 

surprisingly useful for accurate classification: 

1. The area of the largest connected component of skin pixels. 
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2. The length of the perimeter of the largest connected component of skin pixels. 

3. The eccentricity of the largest connected component of skin pixels. 

4. The number of pixels on the boundary of the largest connected component of 

skin pixels that intersect the detection window boundary. 

The area feature is simply the number of pixels in the largest connected skin 

component; it is normalized by the total number of skin pixels ( 5762424 =× ) in the 

image patch. It is very obvious that the given image patch is unlikely to contain a hand 

if the area feature is very large or very small. The perimeter feature is the total number 

of pixels on the perimeter of the largest connected skin component; it is normalized in 

the same way as the area feature. The eccentricity feature is the eccentricity of the 

ellipse having the same second moments as the largest connected skin component, i.e., 

the ratio of the distance between the foci of the ellipse and its major axis length. The 

eccentricity is between 0 and 1, with 0 indicating a circle and 1 indicating a line 

segment. This feature helps to discriminate face skin regions, which tend to be quite 

round, from true hand skin regions, which tend to be more eccentric. Finally, the 

boundary feature helps to discriminate between arm skin regions, which tend to 

intersect the boundary of the detection window in two places, from true hand skin 

regions, which only intersect the detection window at the wrist. The boundary feature 

provides information about how wrist-like the boundary is. 

No matter how good those four features are, they will not be efficiently utilized for 

classification without a suitable classifier. We prefer classifiers that are simple with few 

parameters to tune. We find that a simple classifier based on Mahalanobis distance is a 

reasonable choice. Each image patch can be represented by a feature vector consisting 
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of the area, perimeter, eccentricity, and boundary features. To classify a given feature 

vector x  as a true hand or not a hand, we calculate the Mahalanobis distance 

)()()( 1 μμ −Σ−= − xxxd T  

between the feature vector x  and the mean feature vector �, then we classify x  as a 

hand if ( )xd  is less than some threshold θ . Here the mean hand feature vector μ , the 

covariance matrix Σ , and the distance threshold θ  are estimated from the training set.  

 Once classification for each possible detection windows is done, the positively 

detected hands are fed to the final module, the grouping, filtering, and averaging 

module. Further reduction of false positives is done there. 

 

 

Grouping, Filtering, and Averaging Module 

 Our Mahalanobis classifier produces a few very sparsely distributed false 

positives and densely distributed true detections around the actual targets. Since it 

produces several true detections around each of the actual detections, grouping and 

averaging is necessary to ensure only one detection for each target. A group which 

contains less than some number of detections can be disposed of on the assumption it is 

a false positive. We use the existing implementation of this technique in the OpenCV. 

The positively detected hands output from this module could then be forwarded to 

another component in an integrated application, for example a gesture recognition 

module. But, in this article we simply evaluate the performance and efficiency of the 

proposed algorithm on a series of video sequences. We now describe our experiments in 

detail. 
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Data Acquisition 

 For the purpose of training, testing and evaluation of the proposed hand 

detection system, we captured 12 video sequences in a moderately cluttered laboratory 

environment. Four people volunteered to be models, and we captured three video 

sequences for each person. In the first sequence, each model walked away from the 

camera then came back to the starting position, in a direction parallel to the camera 

angle.  In the second sequence, each model walked back and forth across the field of 

view in a direction perpendicular to the camera angle, at three different distances from 

the camera.  In the last sequence, each model walked diagonally across the field of 

view, starting from a position to the right or left of the camera then returned to the start 

position, and repeated the procedure beginning from the other side of the camera. 

 We captured the video sequences at 15 frames per second with an inexpensive 

IEEE1394 Web camera at a resolution of 480640×  pixels. Each sequence lasted 

approximately 30 seconds. After video capture, all visible hands not smaller than the 

standard size of 2424 ×  pixels in every image of all 12 sequences were manually 

located. A total of 2246 hand locations were obtained. Our criteria for locating the 

selection window on the hand was that the hand should be roughly at the center of the 

window while taking up about 50% of the pixel area of the selection window. Some 

examples are shown in Figure 3.  

Of the 12 video sequences, 11 were used to train the system and the remaining 

sequence was reserved for testing and evaluating the complete hand detection system. 

To train the boosted classifier cascade, we used 2000 hands as positive examples, and 

negative examples were automatically extracted from a set of background images. As 

background images, we used four randomly selected images from the video sequences 
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that did not contain any human. We created an additional set of background images 

using six randomly selected images containing humans.  From each image, we cut out 

two large regions that did not containing hands but did contain other body parts such as 

faces and arms. From the test image sequence, we selected 99 images, each of 

containing at least one hand not smaller than 2424 ×  pixels. These 99 images contained 

a total of 106 proper hands. All of our test evaluation calculations are based on those 

106 proper hands. 

We also prepared a holdout set by randomly selecting 100 images from the 11 

training video sequences. This holdout set was used to monitor system performance as 

well as to tune system parameters. 

 

Boosted Classifier Training 

 To train the classifier cascade, we used Lienhart and colleagues’ approach, 

implemented in OpenCV. We used the previously-described 2000 manually located 

hands from the eleven training video sequences as positive examples and the 16 

previously-described background images.  

The important parameters of the training process are the minimum hit rate (true 

positive rate) and maximum false alarm rate (false positive rate).  Every stage in the 

cascade must satisfy these criteria on the training set.  We used 100% for the hit rate and 

60% for the false alarm rate. This means when adding a new stage to the classifier, the 

training system keeps adding additional weak classifiers to that stage until it correctly 

classifies all of the positive training examples with at most a 60% false alarm rate. 

Lienhart and colleagues’ training system extracts the desired number of negative 

examples, 4000 for our experiment, by scanning a window with different scales over the 
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background images. After training one stage of the classifier, the negative examples 

which are correctly classified are disposed of and the system extracts a sufficient 

number of new negative examples. We use the Gentle AdaBoost variant of AdaBoost 

and the full Haar-like feature set of Lienhart and Maydt (2002). 

The performance of the cascade is tested on the holdout set every time a new 

stage is constructed and added to the cascade. The results of the training process will be 

discussed in more detail in the Results and Discussion section. 

 

Skin Detector Training 

 To train our skin detector, we selected 10 images containing one or more 

humans from a set of independent video sequences captured under various lighting 

conditions at several different locations. Skin pixels on those images were manually 

marked and the resulting 70,475 skin and 1,203,094 non-skin pixels were fed to the skin 

detector training process. The training process computes the hue (H) and saturation (S) 

for each pixel and quantizes each value into one of 16 bins. From the quantized values 

of skin pixels, one 2D histogram is constructed, and another is constructed from the 

quantized values of the non-skin pixels. Both histograms are constructed by simply 

counting the number of pixels which belong to same bin, and they are normalized by the 

total number of pixels used to construct the histogram.  

 

Mahalanobis Classifier Training 

 The purpose of the Mahalanobis classifier is to eliminate the false detections 

made by the boosted classifier cascade while still maintaining a high detection rate. As 

the detection window is scanned over every image in the training set, the boosted 
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classifier outputs both true positive and false positive image patches. We found 78,658 

true positives on our training set then randomly selected 6,000 true positives for 

computing the mean feature vector μ  and covariance matrix Σ  for the Mahalanobis 

classifier. 

After we obtain μ  and Σ  for the Mahalanobis classifier, we need to find the 

optimum threshold. To do so, we scanned a detection window over every image in the 

holdout set and separated the detected image patches into false positives and true 

positives using the known hand locations for the holdout set. We extracted the 

Mahalanobis classifier’s four features from each detected image patches and calculated 

the Mahalanobis distance between the feature vector of each image patch and the mean 

feature vector �. As the class for each image patch is known, we plotted the ROC curve 

as shown in Figure 4.  At this point, a detection rate of less than 100% is acceptable 

because the classifier cascade typically produces multiple true detections around each 

hand. Examining the ROC curve, we found that a Mahalanobis distance of 2.9 is a 

reasonable threshold since this threshold gives a very low false positive rate (6%) while 

giving an acceptable true positive rate (60%) on the image patches output by the 

classifier cascade.  

  

Parameter Tuning for the System 

 Once all the required building blocks for hand detection are in place, we need to 

specify one last parameter, i.e., the minimum number of nearby positive image patches 

required for the Group, Filter, and Average block.  In practice, this parameter must be 

tuned to achieve a good detection rate. To tune this parameter, we assembled all of the 

building blocks into a complete system then tested it on the holdout set with various 
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values for neither parameter. We found that a minimum of 4 neighboring patches 

produced the optimal result: 81.8% of the hands in the holdout set were detected and the 

false positive rate was also relatively low, an average of 1.55 false positives per image. 

 

Testing the Complete System 

 We tested the complete hand detection system on the test set that was never used 

in any part of the training process. As previously described we used 99 images 

containing 106 hands in known locations. The detailed results of the test are discussed 

in the next section. 

 

Results and Discussion 

 During the training process, we monitored the performance of the cascade and 

found that 12 stages of strong classifiers gave the optimum performance.  The 12-stage 

classifier had a 97.5% detection rate on the holdout set, while having a reasonably low 

false positive rate of about 0.3% on the holdout set. A false positive rate of 0.3% may 

seem quite low but in fact this means we had an average of 1,000 false positive 

detections per image because one image contains more than 300,000 possible image 

patches. Clearly, these results indicate that a post processor is necessary to further 

eliminate false positives if the system is to be useable in practical applications.  

When we tested our system on the test set, we found that the boosted classifier 

cascade frequently detected incorrect body parts such as arms, as shown in the left half 

of Figure 5 (b). However, the skin detection images shown in the right halves of Figures 

5 (a) and 5 (b) show that the Mahalanobis classifier’s boundary feature can distinguish 

between these cases. We found that most of the remaining false positives contained 
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either too few skin pixels or sparsely distributed skin pixels.  These cases are easily 

eliminated by the Mahalanobis classifier’s area feature since it operates on the largest 

connected skin component. 

 Our final hand detector detects 92 hands (86.8%) of the 106 hands in the test set, 

with an acceptable false positive rate of 1.19 false detections per image on average. A 

detection rate of 86.8% will enable many applications based on hand detection, such as 

human action recognition systems for security. Images (a) and (b) in Figure 6 illustrate 

example detections by our complete system, and all detected hands in the test set are 

shown in Figure 7. In the example, all hands were detected in both images, and only one 

false detection occurred in each image. The false detection of the desktop computer in 

the middle of the image is present in almost every image because the computer’s color 

and texture are in fact similar to that of a hand. This kind of false positive detection on a 

stationary object will be eliminated if we add motion information between two 

consecutive frames in the video sequence.  

 

Conclusion 

From the literature, we know that hand detectors incorporating AdaBoost and 

Haar-like features perform quite well in applications like sign-language recognition, in 

which images are relatively high resolution with less cluttered background and 

constrained hand gesture. These approaches suffer from high false positive rates and 

low detection rates when applied to detect less constrained hands in low resolution and 

cluttered images. However we find that these limitations can be overcome with the help 

of a simple but efficient post processing system – in our experiments, the prototype 

hand detection system achieved excellent performance on its test set. One important 
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limitation of this work is that both the training and testing image sequences were 

captured in the same environment. This means that the performance of our current 

system is likely background dependent; if so, the reported performance is optimistic. 

However, the current results are encouraging, and in future work we plan to explore 

integrating our system with gesture recognition and human action recognition systems. 

 

Acknowledgement 

 We thank the member of the Image and Vision Computing Laboratory at the 

Sirindhorn International Institute of Technology for the participation in our data 

collection efforts. This research was partially supported by Thailand Research Fund 

grant MRG4780209 to Matthew N. Dailey. 

 

References 

Barreto, J., Menezes, P. and Dias, J. 2004. Human-robot interaction based on haar-like 

features and eigenfaces. Proceedings of the 2004 IEEE Conference on Robotics and 

Automation, 2004,1888-1893. 

 

Caglar, M.B. and Lobo, N. 2006. Open hand detection in a cluttered single image using 

finger primitives. Proceeding of the 2006 Computer Vision and Pattern Recognition 

Workshop, June 17-22, 2006. 

 

Freund Y. and Shapire, R.E. 1997. A decision-theoretic generalization of online 

learning and an application to boosting. Journal of Computer and System Sciences 

5(1):119-139. 



 18 

 

Intel Corporation. Open Computer Vision Library (software). 2006. Open source 

software available at http://sourceforge.net/projects/opencv/. 

 

Lienhart, R. and Maydt, J. 2002. An extended set of Haarlike features for rapid object 

detection. Proceedings of the IEEE International Conference on Image Processing, 

2002, 900-903. 

 

Lienhart, R., Kuranov, A. and Pisarevsky, V. 2002. Empirical analysis of detection 

cascades of boosted classifiers for rapid object detection. Technical report, 

Microprocessor Research Lab, Intel Labs. 

 

Ong, E. and Bowden, R. 2004. A boosted classifier tree for hand shape detection. 

Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture 

Recognition, 2004, 889-894. 

 

Shamaie, A. and Sutherland, A. 2005. Hand tracking in bimanual movements. Image 

and Vision Computing 23(13):1131-1149. 

 

Soontranon, N., Aramvith, S. and Chalidabhongse, T.H. 2004. Face and hands 

localization and tracking for sign language recognition. International Symposium on 

Communications and Information Technologies, 2004, 1246-1251.  

 



 19 

Varona, J., Buades, J.M. and Perales, F.J. 2005. Hands and face tracking for VR 

applications, Computers & Graphics 29(2):179-187. 

 

Viola P.A. and Jones, M.J. 2004. Robust real-time face detection. International Journal 

of Computer Vision 57(2):137-154. 

 

Viola P.A. and Jones, M.J. 2001. Rapid object detection using a boosted cascade of 

simple features. IEEE Conference on Computer Vision and Pattern Recognition, 2001, 

511-518. 

 

Wachs, J., Stern, H., Edan, Y., et al. 2005. A real-time hand gesture system based on 

evolutionary search. Genetic and Evolutionary Computation Conference, 2005. 

 

Wren, C.R., Azarbayejani, A., Darrell, T. and Pentland, A. 1997. Pfinder: Real-time 

tracking of the human body. IEEE Transactions on Pattern Analysis and Machine 

Intelligence 19(7): 780-785.  

 

Zarit, B.D., Super, B.J. and Quek, F.K.H. 1999. Comparison of five color models in 

skin pixel classification. International Workshop on Recognition, Analysis and Tracking 

of Faces and Gestures in Real-Time Systems, 1999, 58–63. 

 

   



 

Figure 1, Hand detection system architecture. 

 

 

 

(a) 

 

(b) 

Figure 2, Haar-like features used to construct weak classifies in the boosted classifier 

cascade. (a) Features used by Viola and Jones. (b) Features used by Lienhart and 

colleagues. 

 



 

Figure 3, Example training images Scaled to 24x24. 

 

 

Figure 4, ROC cure between true positive and false positive for different threshold on 

Mahalanobis distance. True positive and false positive rate are calculated based on 

number of true detection and false detection input to the Mahalanobis Classifier. 

 



 

(a) Properly detected hand. 

 

(b) Non-hand body part detected as hand. 

Figure 5, Original (left) image patches detected as hand by boosted hand classifier and 

binary images patches (right) after skin detection. 

 

 

(a) 



 

(b) 

Figure 6, Example detection results of our proposed hand detection system. 

 

 

Figure 7, Hands detected by our complete hand detector system. All detections are 

scaled down to standard size 24x24 pixels for easy visualization. 
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Abstract. The geographic information system industry would benefit
from flexible automated systems capable of extracting linear structures
from satellite imagery. Quadratic snakes allow global interactions be-
tween points along a contour, and are well suited to segmentation of lin-
ear structures such as roads. However, a single quadratic snake is unable
to extract disconnected road networks and enclosed regions. We propose
to use a family of cooperating snakes, which are able to split, merge, and
disappear as necessary. We also propose a preprocessing method based
on oriented filtering, thresholding, Canny edge detection, and Gradient
Vector Flow (GVF) energy. We evaluate the performance of the method
in terms of precision and recall in comparison to ground truth data. The
family of cooperating snakes consistently outperforms a single snake in a
variety of road extraction tasks, and our method for obtaining the GVF
is more suitable for road extraction tasks than standard methods.

1 Introduction

The geographic information system industry would benefit from flexible auto-
mated systems capable of extracting linear structures and regions of interest
from satellite imagery. In particular, automated road extraction would boost the
productivity of technicians enormously. This is because road networks are among
the most important landmarks for mapping, and manual marking and extraction
of road networks is an extremely slow and laborious process. Despite years of
research and significant progress in the computer vision and image processing
communities (see, for example, [1, 2] and Fortier et al.’s survey [3]), the methods
available thus far have still not attained the speed and accuracy necessary for
practical application in GIS tools.

Among the most promising techniques for extraction of complex objects like
roads are active contours or snakes, originally introduced by Kass et al. [4]. Since
the seminal work of Kass and colleagues, techniques based on active contours
have been applied to many object extraction tasks [5] including road extraction
[6].

Rochery et al. have recently proposed higher-order active contours, in partic-
ular quadratic snakes, which hold a great deal of promise for extraction of linear



structures like roads [7]. The idea is to use a quadratic formulation of the con-
tour’s geometric energy to encourage anti-parallel tangents on opposite sides of
a road and parallel tangents along the same side of a road. These priors increase
the final contour’s robustness to partial occlusions and decrease the likelihood
of false detections in regions not shaped like roads.

In this paper, we propose two heuristic modifications to Rochery et al.’s
quadratic snakes, to address limitations of a single quadratic snake and to
accelerate convergence to a solution. First, we introduce the use of a family
of quadratic snakes that are able to split, merge, and disappear as necessary.
Second, we introduce an improved formulation of the image energy combining
Rochery et al.’s oriented filtering technique [7] with thresholding, Canny edge
detection, and Xu and Prince’s Gradient Vector Flow (GVF) [8]. The modified
GVF field created using the proposed method is very effective at encouraging the
quadratic snake to snap to the boundaries of linear structures. We demonstrate
the effectiveness of the family of snakes and the modified GVF field in a series
of experiments with real satellite images, and we provide precision and recall
measurements in comparison with ground truth data. The results are an encour-
aging step towards the ultimate goal of robust, fully automated road extraction
from satellite imagery.

As a last contribution, we have developed a complete GUI environment for
satellite image manipulation and quadratic snake evolution, based on the Matlab
platform. The system is freely available as open source software [9].

2 Experimental Methods

2.1 Quadratic snake model

Here we provide a brief overview of the quadratic snake proposed by Rochery et
al. [7]. An active contour or snake is parametrically defined as

γ(p) =
[
x(p) y(p)

]T
, (1)

where p is the curvilinear abscissa of the contour and the vector
[
x(p) y(p)

]T

defines the Cartesian coordinates of the point γ(p). We assume the image domain
Ω to be a bounded subset of R

2.
The energy functional for Rochery et al.’s quadratic snake is given by

Es(γ) = Eg(γ) + λEi(γ), (2)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the contour
γ. λ is a free parameter determining the relative importance of the two terms.

The geometric energy functional is defined as

Eg(γ) = L(γ) + αA(γ)− β

2

∫∫
tγ(p) · tγ(p′) Ψ (‖γ(p)− γ(p′)‖) dp dp′, (3)

where L(γ) is the length of γ in the Euclidean metric over Ω, A(γ) is the area
enclosed by γ, tγ(p) is the unit-length tangent to γ at point p, and Ψ(z), given the



distance z between two points on the contour, is used to weight the interaction
between those two points (see below). α and β are constants weighting the
relative importance of each term. Clearly, for positive β, Eg(γ) is minimized by
contours with short length and parallel tangents. If α is positive, contours with
small enclosed area are favored; if it is negative, contours with large enclosed
area are favored.

The interation function Ψ(z) is a smooth function expressing the radius of
the region in which parallel tangents should be encouraged and anti-parallel tan-
gents should be discouraged. Ψ(z) incorporates two constants: d, the expected
road width, and ε, the expected variability in road width. During snake evolu-
tion, weighting by Ψ(z) in Equation 3 discourages two points with anti-parallel
tangents (the opposite sides of a putative road) from coming closer than distance
d from each other.

The image energy functional Ei(γ) is defined as

Ei(γ) =
∫

nγ(p) · ∇I(γ(p)) dp

−
∫∫

tγ(p) · tγ(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp dp′,

(4)

where I : Ω → [0, 255] is the image and ∇I(γ(p)) denotes the 2D gradient of
I evaluated at γ(p). The first linear term favors anti-parallel normal and gra-
dient vectors, encouraging counterclockwise snakes to shrink around or clock-
wise snakes to expand to enclose dark regions surrounded by light roads.5 The
quadratic term favors nearby point pairs with two different configurations, one
with parallel tangents and parallel gradients and the other with anti-parallel
tangents and anti-parallel gradients.

After solving the Euler-Lagrange equations for minimizing the energy func-
tional Es(γ) (Equation 2), Rochery et al. obtain the update equation

nγ(p) · ∂Es

∂γ
(p) = −κγ(p)− α− λ‖∇I(γ(p))‖2 + G(γ(p))

+ β

∫
r (γ(p),γ(p′)) · nγ(p′) Ψ ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ

∫
r (γ(p),γ(p′)) · nγ(p′) (∇I(γ(p)) · ∇I(γ(p′))) Ψ ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ

∫
∇I(γ(p′)) · (∇∇I(γ(p))× nγ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp′, (5)

where κγ(p) is the curvature of γ at γ(p) and G(γ(p)) is the “specific energy,”
evaluated at point γ(p) (Section 2.2). r (γ(p), γ(p′)) = γ(p)−γ(p′)

‖γ(p)−γ(p′)‖ is the unit

5 For dark roads in light background, we negate all the terms involving image, includ-
ing G(γ(p)) in Equation 5. In the rest of the paper, we assume light roads on a dark
background.



vector pointing from γ(p) towards γ(p′). ∇∇I(γ(p)) is the Hessian of I evaluated
at γ(p).

α, β, and λ are free parameters that need to be determined experimentally.
d and ε are specified a priori according to the desired road width. Following
Rochery et al., we normally initialize our quadratic snakes with a rounded rect-
angle covering the entire image.

2.2 Oriented filtering

We use Rochery’s oriented filtering method [10] to enhance linear edges in our
satellite imagery. The input image is first convolved with oriented derivative-
of-Gaussian filters at various orientations. Then the minimum (most negative)
filter response over the orientations is run through a ramp function equal to 1 for
low filter values and -1 for high filter values. The thresholds are user-specified.
An example is shown in Fig. 1(b).

2.3 GVF energy

Rather than using the oriented filtering specific image energy G(x) from Section
2.2 for snake evolution directly, we propose to combine the oriented filtering
approach with Xu and Prince’s Gradient Vector Flow (GVF) method [8]. The
GVF is a vector field V GVF(x) =

[
u(x) v(x)

]T minimizing the energy functional

E(V GVF) =
∫

Ω

μ(u2
x(x) + u2

y(x) + v2
x(x) + v2

y(x))

+ ‖∇Ĩ(x)‖2 ‖V (x)−∇Ĩ(x)‖2 dx,

(6)

where ux = ∂u
∂x , uy = ∂u

∂y , vx = ∂v
∂x , vy = ∂v

∂y , and Ĩ is a preprocessed version of
image I, typically an edge image of some kind. The first term inside the integral
encourages a smooth vector field whereas the second term encourages fidelity to
∇Ĩ. μ is a free parameter controlling the relative importance of the two terms.

Xu and Prince [8] experimented with several different methods for obtaining
∇Ĩ. We propose to perform Canny edge detection on G (the result of oriented
filtering and thresholding, introduced in Section 2.2) to obtain a binary image
Ĩ for GVF, then to use the resulting GVF V GVF as an additional image energy
for quadratic snake evolution. The binary Canny image is ideal because it only
includes information about road-like edges that have survived sharpening by
oriented filters. The GVF field is ideal because during quadratic snake evolution,
it points toward road-like edges, pushing the snake in the right direction from
a long distance away. This speeds evolution and makes it easier to find suitable
parameters to obtain fast convergence. Fig. 1 compares our method to alternative
GVF formulations based on oriented filtering or Canny edge detection alone.



Fig. 1. Comparison of GVF methods. (a) Input image. (b) G(x) obtained from oriented
filtering on I(x). (c) Image obtained from G(x) using threshold 0. (d) Canny edge
detection on (c), used as Ĩ for GVF. (e-f) Zoomed views of GVFs in region delineated
in (d). (e) Result of using the magnitude of the gradient ∇(Gσ ∗ I) to obtain Ĩ. (f)
Result of using Canny edge detection alone to obtain Ĩ. (g) GVF energy obtained
using our proposed edge image. This field pushes most consistently toward the true
road boundaries.

2.4 Family of quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple dis-
connected networks in an image. We address this limitation by introducing a
family of cooperating snakes that are able to split, merge, and disappear as
necessary.

In our formulation, due to the curvature term κγ(p) and the area constant α
in Equation 5, specifying the points on γ in a counterclockwise direction creates
a shrinking snake and specifying the points on γ in a clockwise direction creates
a growing snake.

An enclosed region (loop or a grid cell) can be extracted effectively by ini-
tializing two snakes, one shrinking snake covering the whole road network and
another growing snake inside the enclosed region.

On the one hand, our method is heuristic and dependent on somewhat in-
telligent user initialization, but it is much simpler than level set methods for
the same problem [7], and, assuming a constant number of splits and merges
per iteration, it does not increase the asymptotic complexity of the quadradic
snake’s evolution.

Splitting a snake We split a snake into two snakes whenever two of its arms
are squeezed too close together, i.e. when the distance between two snake points
is less than dsplit and those two points are at least k snake points from each other



in both directions of traversal around the contour. dsplit should be less than 2η,
where η is the maximum step size.

Merging two snakes Two snakes are merged when they have high curvature
points within a distance dmerge of each other, the two snakes’ order of traversal
(clockwise or counterclockwise) is the same, and the tangents at the two high
curvature points are nearly antiparallel. High curvature points are those with
κγ(p) > 0.6κmax

γ where κmax
γ is the maximum curvature for any point on γ. High

curvature points are taken to ensure merging only occurs if two snakes have the
semi-circular tip of their arms facing each other. Filtering out the low curvature
points necessitates computing angle between the tangents at two points only for
the high curvature points.

When these conditions are fulfilled, the two snakes are merged by deleting the
high curvature points and joining the snakes into a single snake while preserving
the direction of traversal for the combined snake.

Deleting a snake A snake γ is deleted if it has low compactness ( 4πA(γ)
L(γ)2 ) and

a perimeter less than Ldelete.

2.5 Experimental design

We analyze extraction results on different types of road networks using the single
quadratic snake proposed by Rochery et al. [7] and the proposed family of coop-
erating snakes. The default convergence criterion is when the minimum Es(γ)
has not improved for some number of iterations.

Experiments have been performed to analyze the extraction of tree-structured
road networks and those with loops, grids and disconnected networks.

We then analyze the effectiveness of GVF energy obtained from the proposed
edge image in Experiment 4. For all the experiments, we digitize the images
manually to obtain the ground truth data necessary to compute precision and
recall.

3 Results

We have obtained several parameters emperically. For splitting a snake, dsplit

should be less than d. k to be chosen depending on how far the two splitting
points should be to ensure that the snakes formed after splitting have at least k
points.

In order to ensure that merging of snakes takes place only among the arms
with the semi-circular tips facing each other, the tangents at the high curvature
points are checked for antiparallel threshold of 130π/180..

The compactness should be greater than 0.2 to ensure that linear structured
contours are not deleted.



Fig. 2. Evolution of quadratic snake on roads with tree structure.Each column displays
an image with initial contour in red and the extracted road network below it.

3.1 Experiment 1: Simple (tree-structured) road networks

A single quadratic snake is well suited for tree-structured road networks as the
snake will not need to change its topology during evolution (Figure 2). A fam-
ily of snakes enable faster and better road extraction as non-road regions are
eliminated using splitting and deletion of snakes.

3.2 Experiment 2: Road networks with single loop and multiple
disconnected networks

The family of quadratic snakes are able to extract disconnected networks with
high accuracy (Figure 3) but are not able to extract enclosed regions automati-
cally as the snakes are not able to develop holes inside it in the form of growing
snakes.

3.3 Experiment 3: Complex road networks

A road network is considered complex if it has multiple disconnected networks
and enclosed regions and large number of branches. With the appropriate user
initialization (Figure 4), the snakes are able to extract the road networks with
high accuracy and in less time.



Fig. 3. Evolution of quadratic snake on roads with loops and disconnected networks.
Each column displays an image with initial contour in red and the extracted road
network below it.

3.4 Experiment 4: GVF energy to enable faster evolution

The Gradient Vector Flow Field [8] boosts the evolution process as we can see
from the number of iterations required for each evolution in Experiment 4 with
and without the use of GVF energy. From the evolution in the fifth column, we
see that the snake was able to extract the network with greater detail. Also, from
the evolution in the last column, we see that it is necessary for the quadratic
image energy to enable robust extraction and thus the GVF weight and λ need
to be balanced appropriately.

4 Discussion and Conclusion

In Experiment 1, we found that the our modified quadratic snake is able to move
into concavities to extract entire tree-structured road networks with very high
accuracy. Experiment 2 showed that the family of quadratic snakes is effective
at handling changes in topology during evolution, enabling better extraction of
road networks. Currently, loops cannot be extracted automatically.

We demonstrated the difficulty in extracting complex road networks with
multiple loops and grids in Experiment 3. However, user initialization of a family
of contours enable extraction of multiple closed regions and help the snake to
avoid road-like regions. The level set framework could be used to handle change
in topology enabling effective extraction of enclosed regions. Rochery et al. [10]
evolved the contour using the level set methods introduced by Osher and Sethian.



Fig. 4. Evolution of quadratic snake on roads with enclosed regions. Each column
displays an image with initial contour in green and the extracted road network below
it.

However, our method is faster, conceptually simpler, and a direct extension of
Kass et al.’s computational approach.

In Experiment 4, we found that faster and robust extraction is achieved using
oriented filtering and GVF energy along with image energy of the quadratic
snakes. Our proposed edge image obtained from oriented filtering is effective for
computing GVF energy to enhance the process of extraction. We also found that
our method for obtaining the GVF outperforms standard methods.

Finally, we have developed a complete GUI environment for satellite image
manipulation and quadratic snake evolution, based on the Matlab platform. The
system is freely available as open source software [9].

Future work will focus on possibilities to automate the extraction of enclosed
regions. Digital elevation models could be integrated with image energy for in-
creased accuracy.
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linéiques dans des images de télédétection. PhD thesis, Université de Nice, Sophia
Antipolis — UFR Sciences (2005)



Multiple Quadratic Snakes for Road

Extraction �

Matthew N. Dailey a,∗, Stanislav Makhanov b, and

Ramesh Marikhu a

aComputer Science and Information Management

Asian Institute of Technology

P.O. Box 4, Klong Luang, Pathumthani 12120 Thailand

bSirindhorn International Institute of Technology

Thammasat University

131 M. 5, Tiwanont Road, Bangkadi, A. Muang, Pathumthani 12000 Thailand

Abstract

We propose a family of quadratic cooperating snakes, which are able to split,

merge, and disappear as necessary, for segmentation of roads in satellite imagery.

We combine the multiple snake framework with a preprocessing method based on

oriented filtering, Canny edge detection, and Gradient Vector Flow (GVF). We eval-

uate the performance of the method in terms of precision and recall in comparison

to ground truth data. The family of cooperating snakes consistently outperforms a

single snake in a variety of road extraction tasks.
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1 Introduction

The geographic information system industry would benefit from flexible auto-

mated systems capable of extracting linear structures and regions of interest

from remote sensing imagery. In particular, automated road extraction would

boost the productivity of technicians enormously. This is because road net-

works are among the most important landmarks for mapping, and manual

marking and extraction of road networks is an extremely slow and laborious

process.

1.1 Related work

Towards the ultimate goal of fully automated road extraction, there has been

a great deal of progress in the computer vision and image processing commu-

nities on partially automating the process. For example, Geman and Jedynak

[1] proposed statistical modeling of the responses of simple nonlinear oriented

ridge filters to track a given road from a seed point and direction. The method

is extremely accurate, even on extremely difficult imagery.

In fully automatic road extraction, we are required to detect all of the roads of

a particular range of widths in a given region of an input image. The typical

approach to solving this problem combines a local neighborhood analysis step

that generates feature points or calculates local likelihoods, followed by im-
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position of global constraints to link possible road points and eliminate false

positives by minimizing a global cost function. Typical global cost minimiza-

tion techniques include dynamic programming [2,3], active contours or snakes

[4], and Markov random fields [5,6].

After 30 years of research on road extraction in the computer vision and

image processing communities (see [7] for a review), there is still no system

attaining the speed, robustness, and level of automation necessary for practical

application on arbitrary imagery. There are very good methods for tracking

single roads (e.g. [1]), but it is very difficult to reliably extract complete road

networks in the presence of variability in shape, radiometry, connectivity, and

geometry.

Among the most promising techniques for extraction of complex objects like

roads are active contours or snakes, originally introduced by Kass et al. [8].

Since the seminal work of Kass and colleagues, techniques based on active

contours have been applied to many object extraction tasks [9].

Despite their popularity, the classical parametric snake model and its varia-

tions have several major drawbacks. Chief among them is the lack of topo-

logical flexibility. When there are several objects in the image to capture, the

model requires multiple snakes which have to be manually initialized to be

close to the contour of each object. The initialization can be done, at best,

semi-automatically, which is often time-consuming and prone to misplacement.

The number of snakes is usually fixed; they cannot merge, split, or disappear.

Besides this topological inflexibility, individual snakes can intersect themselves

and separate snakes can collide with each other. This is due to the inability of

traditional snakes to repel parts of other snakes and repair self intersections
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and loops. Remedying these problems requires geometric constraints to ensure

that multiple snakes do not intersect, and these geometric constraints are dif-

ficult to implement. The problem is further exacerbated when nested snakes

are initialized inside one another.

To deal with these topological issues, Wong et al. [10] introduced an adjustable

“blow force” to detect convex and concave shapes and to avoid self intersec-

tions. Ivins and Porrill [11] introduced a “repulsion force” discouraging con-

tours from intersecting themselves. However, neither of these techniques deal

with multiple snakes or topology changes. Samadani [12] was perhaps the first

to break an active contour into several pieces, using heuristic techniques based

on “energy of deformation.” Durkovich et al. [13] presented a heuristic rule

to split a snake into several contours whenever two parts of a snake approach

each other.

Ngoi and Jia [14] applied a positive/negative contour scheme to prevent self

looping and to allow a splitting into multiple contours. A “positive” active con-

tour is initialized as a point inside the object then expelled towards the object’s

boundary by negative charges enclosed by the contour. This outward defor-

mation is constrained by positive charges outside the boundary. After each

iteration, the contour points are subjected to a check for self-intersections. A

self-intersection is detected if the minimum distance between two non-adjacent

control points is less than three pixels. When a self-intersection is detected,

a positive contour can either split into two positive contours (in the case of

detection of another adjacent object) or a positive and a negative contour (in

the case of detection of an internal region of the object).

In order to determine which part of a contour should be split to form two
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contours, Choi et al. [15] classify the segments of a snake into “contour” and

“non-contour” segments, calculating the surrounding image forces along a seg-

ment. If the surrounding image forces of a point are smaller than a threshold,

it is deemed a non-contour point; otherwise, it is deemed a contour point.

A sequence of contour points or non-contour points forms a contour or non-

contour segment. Critical points are defined as the end points of a contour

segment adjacent to non-contour segments. The method decides when to split

or merge contours by evaluating the distance between the critical points.

Delingnette and Montagnat [16] proposed a new topology operator for auto-

matically creating or merging active contours.

Evaluating these existing approaches for merging and splitting snakes, Ji and

Yan [17] write that

these approaches are high in computational cost since they require checking

the potential self looping/connectivity change at every iteration . . . Also,

these approaches suggest that the moving speed of all snake points should

be equivalent, therefore being unable to deal with more complex objects

(e.g. long tube-like shapes) due to the nature of their test criteria (e.g. one

based on the minimum distance between two non adjacent control points

(p. 149)).

The authors overcome these limitations with a very complicated but appar-

ently robust merging algorithm which employs polygon analysis as well as

geometrical analysis of intersection points of colliding snakes. The algorithm

involves analysis of many cases and requires verification of many geometric

conditions associated with relative positions of points.
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It should be noted that the heuristic techniques previously described attempt

to prevent self-looping. However, it is possible to make use of self-loops by

splitting useful loops into separate contours and eliminating useless loops. The

“T-snakes” technique proposed by McInerney and Terzopoulos [18] and later

improvements like the “dual T-snakes” technique [19] are based on iterative

re-parameterization of the original contour. They are able to make the use

of self loops, but the approach allows only “rigid” deformations limited by a

superimposed “simplicial grid.”

Rochery et al. have recently proposed a parametric model for higher-order ac-

tive contours, in particular quadratic snakes, for extraction of linear structures

like roads [20]. The idea is to use a quadratic formulation of the contour’s ge-

ometric energy to encourage anti-parallel tangents on opposite sides of a road

and parallel tangents along the same side of a road. These priors increase the

final contour’s robustness to partial occlusions, decrease the likelihood of false

detections in regions not shaped like roads, and help to prevent self-looping,

since different segments of a contour with anti-parallel tangents repel each

other in the absence of image forces.

Finally, to address the topological flexibility problem with traditional active

contours, Caselles et al. [21] and Malladi et al. [22] independently introduced

“geometric active contour models.” These models are based on curve evolution

theory and level set methods [23]. Rochery et al. [20] have also proposed a level

set method for their quadratic snakes. Level set methods for snakes introduce

a higher dimensional hypersurface in which the snake is embedded as the zero

level set of the hyper surface. The geometric approach has two advantages

over traditional parametric representations. First, the curve can automatically

break or merge as the hypersurface evolves. Second, since the hypersurface is
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represented as a mathematical function, it admits straightforward and efficient

numerical adaptation schemes.

However, geometric snake models have several inherent drawbacks compared

to parametric models. First, the level set representation makes it difficult, if

not impossible, to impose arbitrary geometric or topological constraints on the

evolving contour via the higher dimensional hypersurface [18]. Second, they

do not readily admit specification of a user-defined external force. Finally,

the geometric active contour models may generate shapes having inconsistent

topology with respect to the actual object, when applied to noisy images

characterized by large boundary gaps [24]. Rochery et al.’s system [20] requires

extensive optimization to achieve reasonable run times.

Li et al. [25], in reference to the problem of topological adaptation, write “in

light of the . . . inherent weaknesses of geometric active contour models, it is

worthwhile to seek solutions within the parametric model realm.”

1.2 Our approach

The quadratic multiple snake model developed in this paper presents a compro-

mise between geometric snakes’ ability to split and merge easily and paramet-

ric snakes’ flexibility to incorporate arbitrary constraints. We use quadratic

constraints [20] both to avoid self-intersections and loops and as a means to en-

courage capture of thin elongated objects such as roads, rivers, canal systems,

pipes, and vascular systems. We develop efficient split and merge algorithms

employing straightforward conditions on the closeness of non-adjacent contour

points. In the model, separate snakes can repel each other but are still capable
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of approaching an object from opposite sides. The split and merge algorithms

make it possible to extract highly complex networks of roads and other linear

structures. The model thus provides the topological adaptability of geometric

models without sacrificing the simplicity, efficiency, or flexibility of traditional

parametric models.

The ability of our cooperating snakes to split, merge and disappear combined

with their self-repelling feature makes it possible to easily segment several

objects without knowing the number of objects in advance and without ini-

tializing the snake close to the desired contour. As an introductory example,

Figure 1 shows how our snakes can segment a “broken bar” consisting of

two pieces. Figure 1(a) shows an initial configuration in which the snake is

relatively far from the object of interest and defined by only a few points. Fig-

ure 1(b–c) shows two successful iterations of the snake evolution algorithm.

Note that the “peninsula” (highlighted by the window in Figure 1(b)) splits

from the snake then disappears in the next iteration. In fact, the snakes’ ability

to split and disappear also accelerates convergence to a minimum. Figure 1(d)

shows a split at a point with high curvature, and Figure 1(e) shows the final

configuration at convergence.

In addition to the multiple snake model, to accelerate convergence to a so-

lution, we introduce an improved external force combining oriented filtering

with Canny edge detection and Xu and Prince’s Gradient Vector Flow (GVF)

[26]. The modified GVF field created using the proposed method is very ef-

fective at encouraging the quadratic snake to snap to the boundaries of linear

structures.

A second introductory example, illustrated in Figure 2, shows a horseshoe
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(a) (b)

(c) (d)

(e)

Fig. 1. A quadratic snake splitting and converging around two island-like objects.

(a) Initial configuration. (b–c) An arm (highlighted by the square) develops, splits

off, and is deleted. (d) Configuration just before a split. (e) Final configuration.

shape used to verify the ability of the snake to converge into to deep concavities

and to ignore noise. The image is distorted by a grid of curves that would

distract the snake from the object were it not for the GVF force encouraging

the snake to snap to the boundaries of road-like objects. The combination of

oriented filtering, Canny edge detection, and the GVF external force makes

it possible for the snake to ignore the obstructing grid entirely and attach

itself to the object of interest despite the large gradients located far from the

desired boundary.

These simple examples demonstrate that the variational formulation governed

by the quadratic energy functional not only allows the snake to split and merge

without creating loops within one snake or intersections between different
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Fig. 2. A quadratic snake converging into a deep concavity despite the presence of

noise.

snakes, but also makes it simple to incorporate the GVF, allowing the snake

to capture the shape of complex objects with deep, narrow concavities.

In this paper, we demonstrate the effectiveness of the family of snakes and

the modified GVF field in a series of experiments with real satellite images,

and we provide precision and recall measurements in comparison with ground

truth data. The results are an encouraging step towards the ultimate goal of

fully automated road extraction from satellite imagery.

As a last contribution, we have developed a complete GUI environment for

satellite image manipulation and quadratic snake evolution, based on the Mat-
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lab platform. The system is freely available as open source software from

http://www.cs.ait.ac.th/~mdailey/snakes.

2 Method

2.1 Quadratic snake model

This section provides a brief overview of the quadratic snake proposed by

Rochery et al. [20]. An active contour or snake is parametrically defined as

γ(p) =

⎡
⎣
x(p) y(p)

⎤
⎦

T

, (1)

where p is the curvilinear abscissa of the contour and the vector

⎡
⎣
x(p) y(p)

⎤
⎦

T

defines the Cartesian coordinates of the point γ(p).

The energy functional is given by

Es(γ) = Eg(γ) + λEi(γ), (2)

where Eg(γ) is the geometric energy and Ei(γ) is the image energy of the

contour γ. λ is a free parameter determining the relative importance of the

two terms.

To apply the method to road extraction, we define the geometric energy func-

tional to be

Eg(γ) = L(γ) + αA(γ)− β

2

∫∫
t(p) · t(p′) Ψ (‖γ(p)− γ(p′)‖) dp dp′, (3)

where L(γ) is the Euclidean length of γ, A(γ) is the area enclosed by γ, t(p) is

the unit-length tangent to γ at point p, and Ψ(z), given the distance z between
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two points on the contour, is used to weight the interaction between those two

points (see below). α and β are constants weighting the relative importance of

the terms. Clearly, for positive β, Eg(γ) is minimized by contours with short

length and parallel tangents. If α is positive, contours with small enclosed area

are favored; if it is negative, contours with large enclosed area are favored.

The interaction function Ψ(·) is a smooth function expressing the radius of

the region in which parallel tangents should be encouraged and anti-parallel

tangents should be discouraged:

Ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z < d− ε,

0 if z > d + ε,

1
2

(
1− z−d

ε
− 1

π
sin π z−d

ε

)
otherwise.

(4)

In application to road extraction, d is the expected road width and ε expresses

the expected variability in road width. During snake evolution, weighting by

Ψ(z) in Equation 3 discourages two points with anti-parallel tangents (the

opposite sides of a putative road) from coming closer than distance d from

each other.

The image energy functional Ei(γ) is defined as

Ei(γ) =
∫

n(p) · ∇I(γ(p)) dp

−
∫∫

t(p) · t(p′) ∇I(γ(p)) · ∇I(γ(p′)) Ψ(‖γ(p)− γ(p′)‖) dp dp′,
(5)

where I : Ω → [0, 255] is an image and ∇I(γ(p)) is the gradient of I evaluated

at γ(p).

The first (linear) term favors anti-parallel normal and gradient vectors, encour-

aging counterclockwise snakes to shrink around or clockwise snakes to expand
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to enclose dark regions surrounded by light roads. 1 The second (quadratic)

term favors nearby point pairs with two different configurations, one with par-

allel tangents and parallel gradients and the other with anti-parallel tangents

and anti-parallel gradients.

After solving the Euler equations for minimizing the energy functional Es(γ)

(Equation 2), ignoring flow in the direction tangent to γ, we can obtain the

update equation

n(p) · δEs

δγ
(p) = −κ(p)− α− λ‖∇I(γ(p))‖2

+ β
∫

r (γ(p), γ(p′)) · n(p′) Ψ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫

r (γ(p), γ(p′)) · n(p′) (∇I(γ(p)) · ∇I(γ(p′))) Ψ′ (‖γ(p)− γ(p′)‖) dp′

+ 2λ
∫
∇I(γ(p′)) · (∇∇I(γ(p))n(p′)) Ψ(‖γ(p)− γ(p′)‖) dp′. (6)

In the equation, κ(p) is the curvature of γ at γ(p).

r (γ(p), γ(p′)) =
γ(p)− γ(p′)
‖γ(p)− γ(p′)‖

is the unit vector pointing from point γ(p) towards γ(p′). ∇∇I(γ(p)) is the

2×2 Hessian of I evaluated at γ(p). α, β, and λ are free parameters that need

to be determined experimentally. d and ε are specified a priori according to

the desired road width.

2.2 GVF external force

The term αA(γ) in Equation 3 leads to the constant term −α in Equation

6. This “balloon force” [9] increases the capture region around objects, but

1 For dark roads on a light background, we simply negate the terms involving the

image. In the rest of the paper, we assume light roads on dark background.
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its effect is uniform throughout the image. This makes it difficult to specify a

value for α that is appropriate in all regions of the image.

Xu and Prince [26,27] have proposed to use, rather than a global balloon force,

a smooth, diffuse gradient field as a local external force with the traditional

linear snake. They find that this technique, Gradient Vector Flow (GVF), im-

proves the traditional snake’s convergence to a minimum energy configuration.

We propose the use of GVF with quadratic road extraction snakes.

2.2.1 GVF

The GVF is a vector field

V GVF(x) =

⎡
⎣
u(x) v(x)

⎤
⎦

T

minimizing the energy functional

E(V GVF) =
∫
Ω
μ(u2

x(x) + u2
y(x) + v2

x(x) + v2
y(x))

+ ‖∇Ĩ(x)‖2 ‖V (x)−∇Ĩ(x)‖2 dx,

(7)

where

ux =
∂u

∂x
, uy =

∂u

∂y
, vx =

∂v

∂x
, vy =

∂v

∂y
,

and Ĩ is a preprocessed version of image I, typically an edge image of some

kind. The first term inside the integral encourages a smooth vector field

whereas the second term encourages fidelity to ∇Ĩ. μ is a free parameter

controlling the relative importance of the two terms.

We obtain Ĩ using oriented filtering and Canny edge detection (see Figure

3). We use elongated Laplacian of Gaussian filters that emphasize road-like

structures, deemphasize non-road-like structures, and, to a certain extent, fill
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Fig. 3. Schematic of procedure to obtain the GVF external force.

in short gaps where a road has low contrast with the background. The resulting

binary Canny image is ideal because it only includes information about road-

like edges that have survived sharpening by the oriented filters. The GVF

field on top of the sharpened edge image is ideal because it points toward the

road-like edges from a long distance, and, during snake evolution, it pushes the

snake in an appropriate direction. This speeds evolution and makes it easier

to find suitable parameters to obtain fast convergence.

2.2.2 Oriented filtering

Using oriented filters for contour detection, contour completion, and restora-

tion of edges corrupted by noise is a recurring idea in image processing and

computer vision (see, e.g., [28–32]). The oriented filters most frequently used

are 2D Gabor filters [33] and directional 2nd-derivative-of-Gaussian filters.

Gabor filters are thought to be good models of the response of simple cells in

primary visual cortex [34]. When paired symmetric (even) and antisymmetric

(odd) oriented filter responses are combined by summing their squares, they

are thought to be good models of the response of complex cells in primary vi-

sual cortex [35]. Perona and Malik [29] advocate these paired “energy filters”

for their ability to detect not only step edges but also ridge edges at specific

scales.

The ability of Gabor filters and 2nd-derivative-of-Gaussian filters to detect

ridge edges makes them ideal for identifying roads in satellite imagery. Our

oriented filtering method is the same as that of Rochery et al. [20]. We use
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the linear response of even 2nd-derivative-of-Gaussian filters tuned to detect

roads at particular scales. We obtain a sharpened image Q defined by

Q(x) = min
θ∈Θ

{(Fθ ∗ I)(x)} , (8)

where ∗ denotes convolution and the kernel Fθ is given by

Fθ = Rθ∇2Nσx,σy . (9)

Nσx,σy is a 2D Gaussian with variance σ2
x in the x direction and σ2

y in the

y direction, Rθ is a matrix rotating Nσx,σy by angle θ, and ∇2 is the 2D

Laplacian. σx is chosen according to the desired length of the filter along the

road contour whereas σy is chosen according to the desired width of the road

to detect. We use angles

Θ = {0, π

8
, ...,

7π

8
}.

If the roads in I are darker than their surroundings, the maximum rather than

the minimum convolution result is used to compute Q(x).

An example of the convolution and minimum response selection procedure is

shown in Figure 4(a–j). The filters respond well to long straight edges in the

image. This has the effect of emphasizing road-like gradients, deemphasizing

non-road-like gradients, and, to a certain extent, filling in short gaps where a

road has low contrast with the background.

2.2.3 Obtaining the GVF field

After oriented filtering, we obtain the Canny edge image Ĩ from the sharpened

image Q. An example is shown in Figure 4(k). This is the input to the GVF re-

laxation procedure [26]. An example of the resulting GVF field V GVF is shown

in Figure 4(l). We precalculate V GVF before snake evolution begins, then dur-
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(a)

(b) (c) (d) (e) (f) (g) (h) (i)

(j) (k)

(l)

Fig. 4. Image processing for obtaining the GVF. (a) Original image. (b–i) Convo-

lution results. (j) Sharpened image Q. (k) Canny edge image Ĩ derived from Q.

(l) GVF V GVF based on Ĩ.
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ing evolution, for each point γ(p) in Equation 6, we project V GVF(γ(p)) onto

n(γ(p)) and add the resulting force directly to the update equation. Clearly,

this encourages the snake to snap to the road edge contours, where ideally

‖V GVF(γ(p))‖ = 0.

2.3 Family of quadratic snakes

A single quadratic snake is unable to extract enclosed regions and multiple

disconnected networks in an image. We address this limitation by introducing

a family of cooperating snakes that are able to split, merge, and disappear as

necessary.

In our formulation, due to the curvature term κ(p) and the area constant α in

Equation 6, specifying the points on γ in a counterclockwise direction creates a

shrinking snake and specifying the points on γ in a clockwise direction creates

a growing snake.

An enclosed region (loop or a grid cell) can be extracted effectively by initial-

izing two snakes, one shrinking snake covering the whole road network and

another growing snake inside the enclosed region.

2.3.1 Splitting a snake

We split a snake into two snakes whenever two of its arms are squeezed too

close together, i.e. when the distance between two snake points is less than

dsplit and those two points are at least k snake points from each other in both

directions of traversal around the contour. dsplit should be less than 2η, where

η is the maximum step size.
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2.3.2 Merging two snakes

The merging algorithm selects points having high curvature and merges two

snakes when 1) two selected points are closer than a prescribed minimal merg-

ing distance dmerge, 2) the traversal direction (clockwise or counterclockwise) of

the two snakes is the same, and 3) the tangents at the two high curvature points

are nearly antiparallel. High curvature points are those with κγ(p) > 0.6κmax
γ ,

where κmax
γ is the maximum curvature for any point on γ. When these condi-

tions are satisfied, the two snakes are combined into a single snake by deleting

the high curvature points and merging at the holes.

Limiting the merge decision to high curvature points ensures that merging

only occurs if two snakes have semi-circular tips of their arms facing each

other. It might seem that merging at low curvature points should also be per-

mitted. However, as already explained, snakes normally repel each other due

to the quadratic term in the internal energy (Equation 3). Consequently, low

curvature segments can approach each other when high-gradient features allow

the external energy to overcome the geometric energy. When this occurs for

low curvature segments, the two snakes are most likely positioned on different

sides of a road and merging should not be allowed. There are several other

(rare) cases when snakes face each other at low curvature parts. However they

should not be merged in those cases either.

Considering only the high curvature points also saves computational costs. In

particular, the merging procedure requires computation of the angle between

tangents only for the selected points. The number of those points usually does

not exceed 10% of the total number of points.

The conditions that the traversal direction of two snakes should be the same
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and that the tangents at the two high curvature points should be antiparallel

reflect the fact that in our system, nested snakes form a tree structure. We ini-

tialize all the snakes at the first level with the same direction of traversal. The

second level has the opposite direction of traversal and so on. When two snakes

from the same level merge, we assign the resulting snake the same direction.

Snakes from two consecutive levels do not merge. Growing and shrinking be-

havior is controlled by the area constant (α) and the weight on the geometric

energy (β).

2.3.3 Deleting a snake

A snake γ is deleted if it has perimeter less than Ldelete.

2.4 Experimental design

We present four experiments aimed at evaluating the effectiveness of the pro-

posed cooperating snake model for road extraction. In Experiment 1, we ex-

plore the ability of the model to extract simple tree-structured road networks

that do not require multiple snakes. Experiment 2 moves to more complex

tree-structured networks with distracting structures. These networks require

contours able to split, merge, and disappear in order to ignore noise. Exper-

iment 3 tests the model’s ability to capture disconnected networks. In Ex-

periment 4, we evaluate the model’s ability to extract networks with cycles

with the help of user initialization. Finally, in Experiment 5, we determine the

effect of the GVF external force on the model’s evolution.

In each experimental condition, we hand-tune the free parameters to achieve
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good results. We terminate contour evolution whenever the energy Es(γ) fails

to decrease for some number of iterations.

As a baseline for comparison, we use the parametric representation of the

single quadratic snake model proposed by Rochery et al. [20]. To evaluate the

results, we hand-digitized ground truth images and used them to calculate

precision (the proportion of detected pixels that are road pixels according to

the ground truth), recall (the proportion of road pixels that are detected), and

F1 (the harmonic mean of precision and recall) for each solution.

3 Results

3.1 Experiment 1: Simple tree-structured networks

We ran a single quadratic snake on the synthetic image shown in Figure 5(a)

and the real image shown in Figure 5(b). Our best extraction results are shown

in Figure 5(c) and Figure 5(d). The precision and recall results are shown in

Table 1. Experiment 1 demonstrates that a single quadratic snake is well suited

to simple tree-structured road networks, when the contour does not need to

change topology during evolution.
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(a) (b)

(c) (d)

Fig. 5. Experiment 1 extraction results. (a) Original synthetic image. (b) Original

real image. (c) Road network extracted from the image of (a). (d) Road network

extracted from the image of (b).

Table 1

Experiment 1 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Synthetic simple tree 5(c) 480 0.937 0.860 0.897

Real simple tree 5(d) 308 0.948 0.850 0.896
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3.2 Experiment 2: Complex tree-structured networks

Beginning with the image shown in Figure 6(a) containing a relatively com-

plex tree-structured road network with distracting road-like structures, we

ran a single quadratic snake and the cooperating multiple snake model. The

best extraction results for the two models are shown in Figure 6(b) and Fig-

ure 6(c), respectively. Table 2 shows the detailed precision and recall results.

The cooperating multiple snake model is better able to handle the distracting

structures mainly because the evolving snake splits to enclose each road-like

structure then the small isolated contours are deleted.
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(a)

(b) (c)

Fig. 6. Experiment 2 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with a single snake. (c) Road network extracted from

the image of (a) with cooperating snakes that can split, merge, and disappear.

Table 2

Experiment 2 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Complex tree, single snake 6(b) 473 0.709 0.907 0.796

Complex tree,

cooperating snakes
6(c) 450 0.801 0.912 0.853
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3.3 Experiment 3: Disconnected networks

Beginning with the image shown in Figure 7(a) containing multiple discon-

nected road networks, we ran a single quadratic snake and the cooperating

multiple snake model. The best extraction results for the two models are

shown in Figure 7(b) and Figure 7(c), respectively. Table 3 shows the ex-

traction performance details. The cooperating multiple snake model is able to

extract the multiple separate road networks, whereas the single snake does its

best to model the network with a single contour.
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(a)

(b) (c)

Fig. 7. Experiment 3 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with a single snake. (c) Road network extracted from

the image of (a) with cooperating snakes that can split, merge, and disappear.

Table 3

Experiment 3 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Disconnected network,

single snake
7(b) 219 0.682 0.867 0.764

Disconnected network,

cooperating snakes
7(c) 163 0.858 0.873 0.865
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3.4 Experiment 4: Networks with cycles

The multiple cooperating snake model cannot extract road networks with

loops in a fully automatic fashion, but in our implementation it is simple for

the user to manually initialize a separate contour inside each loop. We com-

pared the ability of the single snake, the multiple cooperating snake model

with a single initial contour, and the multiple cooperating snake model with

user-defined initialization to extract road networks from the images contain-

ing loops in Figure 8(a–b). Our best results are shown in Figure 8(c–f). The

multiple cooperating snake model obtains excellent results with user-specified

initial conditions.

27



(a) (b)

(c) (d)

(e) (f)

Fig. 8. Experiment 4 extraction results. (a–b) Original images. (c–d) Road networks

extracted from images (a–b) with a single snake. (e) Road network extracted from

image (a) with cooperating multiple snakes. (f) Road networks extracted from image

(b) with cooperating multiple user-defined snakes.
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Table 4

Experiment 4 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Simple loop, single snake 8(c) 182 0.547 0.911 0.684

Complex loop, single

snake
8(d) 519 0.530 0.907 0.669

Simple loop, cooperating

snakes
8(e) 182 0.6344 0.9833 0.771

Complex loop,

user-initialized snakes
8(f) 166 0.768 0.912 0.834
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3.5 Experiment 5: GVF external force

Our GVF external force is based on an edge map acquired through oriented fil-

tering, and Canny edge detection. We precomputed the GVF vector field then

ran the multiple quadratic snake model on the image shown in Figure 9(a),

with and without the GVF force. Our best results for the two experimental

conditions are shown in Figure 9(b) and Figure 9(c). The precision and recall

results are shown in Table 5. The snakes converge faster in the GVF condi-

tion with a slight decrease in precision and recall, although visually the two

extracted road networks are of comparable quality.
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(a)

(b) (c)

Fig. 9. Experiment 5 extraction results. (a) Original image. (b) Road network ex-

tracted from the image of (a) with the multiple snake model and no GVF external

force. (c) Road network extracted from the image of (a) with the multiple snake

model and the GVF external force.

Table 5

Experiment 5 extraction performance.

Condition
Figure

no.

No. of

iterations
Precision Recall F1

Cooperating snakes

without GVF
9(b) 650 0.828 0.938 0.880

Cooperating snakes with

GVF
9(c) 430 0.802 0.909 0.852
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4 Discussion

Experiments 1–5 demonstrate the effectiveness of the proposed multiple coop-

erating snake model on a variety of road networks. In Experiment 1, we found

that a single quadratic snake was sufficient to extract simple tree-structured

road networks in synthetic and real imagery. Experiment 2 demonstrated that

cooperating snakes converge faster and more accurately than a single snake

when the image contains a more complex tree-structured road network with

distracting noise. In Experiment 3, we found that the cooperating snake model

is effective for extracting disconnected road networks, and in Experiment 4, we

found that it is also appropriate for complex networks with cycles, if user-aided

initialization is used. Finally, Experiment 5 demonstrated that incorporating

an external image force derived from oriented filtering, Canny edge detection,

and the GVF provides faster convergence to a minimum-energy configuration.

Our empirical study shows that quadratic snakes avoid self-intersections by

incorporating into the energy functional the constraint that contour segments

with anti-parallel tangents should repel each other. They are nevertheless still

able to enter long and narrow concavities and to approach each other close

enough to extract road networks in satellite images.

Our parametric specification of the family of cooperating snakes is simple and

efficient compared to level set methods. If a family of snakes is represented

by N discrete points, a naive implementation of the evolution requires O(N2)

time per iteration, since Equation 6 must be applied to each of the N points

and it involves an integral over all N points. Likewise, naive implementation of

the split and merge algorithms developed in Section 2.3 consider at most each
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pair of points, so assuming at most a constant number of splits and merges

per iteration, the complexity remains O(N2). However, it is possible to reduce

the runtime to O(N). The contour update and split/merge algorithms only

perform comparisons with other contour points within a fixed local region, so

it is possible to preindex the contour points in the image domain such that at

most a constant number of other points are considered for each point on the

contour.

One limitation of our approach is that we require manual initialization of the

contours to obtain good results when the road network contains loops. The

level set method’s main strength is its ability to handle such loops without

any special treatment. However, our method could be extended to handle this

case, if we added autodetection of “holes” in a converged family of contours

or if we initialized with many small growing snakes inside a shrinking outer

snake, either randomly or in a grid pattern.

A more serious limitation of our approach is the need to determine free param-

eters such as α, β, and λ empirically. In constrained applications such as road

extraction, it should be possible to develop a database of useful parameter

settings for particular image resolutions and road network types. But sensi-

tivity to parameter settings is the Achilles’ heel of all active contour models;

unless this problem is solved, the technique’s applicability to real-world GIS

problems will be limited.
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5 Conclusion

The proposed method is an implementation of multiple active contours in a

variational framework based on a quadratic energy functional. Our model per-

forms better than conventional snakes and single parametric quadratic snakes

on road extraction tasks. The combination of oriented LoG filters, Canny

edge detection, and the GVF provides effective preprocessing of noisy and

distorted images and an appropriate external force for the quadratic snake’s

energy functional. The multiple snake configuration that minimizes the total

energy functional accurately snaps to the boundaries of objects. The energy

functional’s quadratic terms, which encourage parallel tangents and discour-

age anti-parallel tangents, and its sigmoid interaction function, are designed to

extract curvilinear ribbon-like structures such as roads, canals, and pipelines

from digital images. We have shown that the scheme is effective at extracting

road networks from a series of satellite images, but some calibration of the

free parameters is required to achieve good results.

In future research we plan to focus on automatic initialization of contours

to handle networks with cycles and reducing the method’s run time to the

point that it is practical for application in GIS applications. It may also be

possible to develop higher order active contour models for other important

segmentation problems involving extraction of other shapes such as ellipses

and polygons.
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