

รายงานการวิจัยฉบับสมบูรณ์

โครงการ: การออกแบบสารยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1 ด้วยคอมพิวเตอร์: การ วิเคราะห์คอนฟอร์เมชันทางโครงสร้างและการศึกษาโมเลคิวลาร์ด๊อกกิ้งของกลุ่มสารอนุ พันธุ์อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบชนิดกลายพันธุ์

Computer-aided inhibitor design of HIV-1 RT inhibitors: Structural conformational analysis and molecular docking study of efavirenz derivatives, active against mutant type HIV-1 RT

โดย ผศ.ดร. พรพรรณ พึ่งโพธิ์ และคณะ

พฤษภาคม 2550

สัญญาเลขที่ MRG4880001

รายงานการวิจัยฉบับสมบูรณ์

โครงการ: การออกแบบสารยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1 ด้วยคอมพิวเตอร์: การ วิเคราะห์คอนฟอร์เมชันทางโครงสร้างและการศึกษาโมเลคิวลาร์ด๊อกกิ้งของกลุ่มสารอนุ พันธุ์อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบชนิดกลายพันธุ์

Computer-aided inhibitor design of HIV-1 RT inhibitors: Structural conformational analysis and molecular docking study of efavirenz derivatives, active against mutant type HIV-1 RT

คณะผู้วิจัย	สังกัด
ผศ.ดร. พรพรรณ พึ่งโพธิ์	ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี
รศ.ดร.สุภา หารหนองบัว	ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

1.

2.

สนับสนุนโดย

สำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานผลการวิจัยเป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

Project Code: MRG4880001

Project Title: Computer-aided inhibitor design of HIV-1 RT inhibitors: Structural conformational analysis and molecular docking study of efavirenz derivatives, active against mutant type HIV-1 RT

Investigator: Asst.Dr.Pornpan Pungpo, Department of Chemistry, Faculty of Science,

Ubonratchathani

E-mail Address : pornpan ubu@yahoo.com

Project Period: 1 June 2005 – 31 May 2007

Conformational analysis, molecular docking and 3D-QSAR analyses were performed for efavirenz derivatives against WT and K103N. In the conformational analysis, the 3D PES of efavirenz derivatives based on DFT calculations could be informative for better understanding the sidechain flexibility and preferable conformation of these derivatives. Consecutively, molecular docking approach using Autodock 3.05 program reveals a good ability to reproduce the X-ray bound conformation with rmsd less than 0.6 Å for both WT and K103N enzymes. The predicted binding orientations of efavirenz derivatives give additional information to probe the inhibitor-enzyme interactions. Based on the molecular docking alignment of conformations, the high predictive 3D-QSAR models were produced by using CoMFA and CoMSIA approaches. The CoMFA and CoMSIA models reveal the importance of steric and electrostatic interactions through contour maps. Moreover, the CoMSIA models also enhance the understanding of electron donor and acceptor requirements for ligands in HIV-1 RT binding pockets. The integrated results obtained from structure-based and ligand-based design approaches lead to better understanding of the structural requirements for the higher activity of HIV-1 RT inhibitors in the class of efavirenz compounds. Accordingly, the obtained information can be a gainful guideline to design and predict novel and highly potent compounds against WT and K103N HIV-1 RT.

Keywords: HIV-1 RT inhibitors, Efavirenz, Conformational analysis, molecular docking, CoMFA, CoMSIA

บทคัดย่อ

รหัสโครงการ : MRG4880001

ชื่อโครงการ: การออกแบบสารยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1 ด้วยคอมพิวเตอร์: การ วิเคราะห์คอนฟอร์เมชันทางโครงสร้างและการศึกษาโมเลคิวลาร์ด๊อกกิ้งของ กลุ่มสารอนุพันธุ์อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพในการยับยั้งเอนไซม์การถ่าย แบบชนิดกลายพันธุ์

ชื่อนักวิจัย และสถาบัน : ผศ.ดร. พรพรรณ พึ่งโพธิ์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี ต.ศรีไค อ.วารินชำราบ จ.อุบลราชธานี 34190

E-mail Address : pornpan ubu@yahoo.com

ระยะเวลาโครงการ : 1 มิถุนายน 2548 ถึงวันที่ 31 พฤษภาคม 2550

การศึกษานี้ได้ทำการวิเคราะห์คอนฟอร์เมชันด้วยการคำนวณทางเคมีควอนตัม คำนวณโมเลคูลาร์ด็อกกิ้ง และการศึกษาความสัมพันธ์ระหว่างโครงสร้างและค่ากัมมันตภาพใน เชิงสามมิติของสารอนุพันธ์อีฟาวิเร็นซ์ที่ออกฤทธิ์สูงในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) จากการศึกษาพบว่าแผนภาพพลังงานศักย์ใน เชิงสามมิติของการวิเคราะห์คอนฟอร์เมชันด้วยการคำนวณทางเคมีควอนตัมทำให้เข้าใจถึง คอนฟอร์เมชันที่เป็นไปได้ของสารอนุพันธ์อีฟาวิเร็นซ์ นอกจากนี้การคำนวณโมเลคูลาร์ด็อกกิ้ง ด้วยโปรแกรม Autodock 3.05 สามารถอธิบายถึงอันตรกิริยาที่สำคัญของสารอนุพันธ์ อีฟาวิเร็นซ์ในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 และจากการศึกษาความสัมพันธ์ระหว่าง โครงสร้างและค่ากัมมันตภาพในเชิงสามมิติของสารอนุพันธ์อีฟาวิเร็นซ์ในการยับยั้งเอนไซม์การ ถ่ายแบบเอชไอวี-1 ด้วยระเบียบวิธีการวิเคราะห์เชิงเปรียบเทียบสนามของโมเลกุล (CoMFA) และวิธีวิเคราะห์เปรียบเทียบดัชนีความเหมือนเชิงโมเลกุล (CoMSIA) พบว่าแบบจำลองที่ได้ จากทั้งสองวิธีสามารถทำนายกัมมันตภาพในการยับยั้งที่สอดคล้องกับค่าที่ได้จากการทดลอง และสามารถชี้ให้เห็นถึงความต้องการทางโครงสร้างเพื่อให้ตัวยับยั้งมีกัมมันตภาพในการยับยั้ง ้ สูงขึ้นของตัวยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิมและชนิดกลายพันธุ์ใด้ ข้อมูลที่ ได้จากการคำนวณทางเคมีควอนตัมและการจำลองแบบโมเลกุลสามารถนำมาใช้ในการออกแบบ โมเลกุลของตัวยับยั้งในกลุ่มของสารอนุพันธ์อีฟาวิเร็นซ์ให้มีประสิทธิภาพสูงในการยับยั้ง เอนไซม์การถ่ายแบบเอชไอวี-1 ได้ ซึ่งนับว่าเป็นประโยชน์อย่างยิ่งต่อการพัฒนาตัวยับยั้งเพื่อ ใช้เป็นยาต้านโรคเอดส์ต่อไป

คำหลัก: HIV-1 RT inhibitors, Efavirenz, Conformational analysis, molecular docking, CoMFA, CoMSIA

กิตติกรรมประกาศ

โครงการวิจัยนี้สามารถดำเนินการได้ด้วยดีด้วยความเอื้อเฟื้อและช่วยเหลือจาก หน่วยงานต่าง ๆและผู้ร่วมงานหลายท่านผู้วิจัยรู้สึกชาบซึ้งและขอขอบคุณสำนักงาน คณะกรรมการ การอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัยสำนักงานกองทุน สนับสนุนการวิจัยที่ให้การสนับสนุน ทุนวิจัยภายใต้โครงการพัฒนาศักยภาพในการทำงานวิจัย ของอาจารย์รุ่นใหม่ ปี 2548 (MRG4880001) และขอขอบคุณ รศ.ดร.สุภา หารหนองบัว ภาควิชาเคมี คณะวิทยาศาสตร์ ม.เกษตรศาสตร์ นักวิจัยพี่เลี้ยงที่ให้การสนับสนุนความร่วมมือ ทางวิชาการการวิจัยคำปรึกษาและคำแนะนำภายใต้โครงการนี้ตลอดมาเป็นอย่างดี

ขอขอบคุณ Prof. Dr. Peter Wolschann มหาวิทยาลัยเวียนนา ประเทศออสเตรีย ที่ได้ ให้คำปรึกษาและสนับสนุนด้านต่างๆสำหรับการวิจัยโครงการนี้ตลอดมา

ขอขอบคุณ ภาควิชาเคมี คณะวิทยาศาสตร์ ม.อุบลราชธานี ที่ได้ให้การสนับสนุนใน ด้านอุปกรณ์ การคำนวณทางคอมพิวเตอร์ ภาควิชาเคมี คณะวิทยาศาสตร์ ม.เกษตรศาสตร์ ห้องคอมพิวเตอร์สมรรถภาพสูง สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (HPCC-NECTEC) ศูนย์คอมพิวเตอร์ มหาวิทยาลัยเวียนนา ที่ได้เอื้อเฟื้อการคำนวณบนเครื่องคลัสเตอร์ คอมพิวเตอร์และการใช้โปรแกรม SYBYL

สารบัญ

เรื่อง	หน้า
Abstract	ก
บทคัดย่อ	ข
กิตติกรรมประกาศ	ନ
สารบัญ	ગ
บทที่ 1 บทนำ	1
บทที่ 2 ทบทวนเอกสารและงานวิจัยที่เกี่ยวข้อง	5
บทที่ 3 ระเบียบวิธีวิจัย	14
บทที่ 4 ผลการศึกษา	19
บทที่ 5 สรุปและวิจารณ์	32
บทที่ 6 เอกสารอ้างอิง	34
ภาคผนวก	39

บทที่ 1 บทนำ

1. ความสำคัญและที่มาของหัวข้อการวิจัย

ในปัจจุบันการแพร่ระบาดของโรคเอดส์ (Acquired immunodeficiency syndrome, AIDS) เป็นหนึ่งในปัญหาที่สำคัญอย่างยิ่งของสาธารณสุขทั่วโลกรวมทั้งในประเทศไทย เนื่องจากยังไม่มียาชนิดใดที่สามารถใช้ในการรักษาโรคเอดส์ให้หายขาดได้ โรคเอดส์เกิดจาก การติดเชื้อไวรัสเอชไอวี (Human immunodeficiency virus, HIV) ในวงจรชีวิตของไวรัส HIV มี เอนไซม์หลายชนิดที่สำคัญในการดำรงชีวิต เอนไซม์การถ่ายแบบเอชไอวี-1 (HIV-1 Reverse Transcriptase, HIV-1 RT) เป็นหนึ่งในเอนไซม์สำคัญที่ช่วยในการจำลองแบบ (replication) ใน ขั้นตอนการรวม viral RNA genome เข้าไปใน proviral DNA จึงทำให้เอนไซม์ชนิดนี้เป็น เป้าหมายสำคัญในการใช้ ยารักษาเพื่อต้านโรคเอดส์ การรักษาในปัจจุบันสามารถยับยั้งการ เจริญเติบโตของเชื้อไวรัสชนิดนี้ได้โดยใช้สารยับยั้งในกลุ่ม 2', 3' dideoxynucleoside เช่น 3'azido-2',3'-dideoxy thymidine (AZT) ในผู้ป่วยที่เป็นโรคเอดส์และผู้ที่ติดเชื้อเอดส์ อย่างไรก็ ตามพบว่าตัวยาชนิดนี้สามารถยับยั้งการเจริญเติบโตของเชื้อเอดส์ได้ในระดับหนึ่ง เนื่องจากใน ปัจจุบันพบว่าไวรัสเอชไอวี-1 เริ่มมีฤทธิต้านทาน (resistance) ต่อยา AZT อีกทั้งยังมี ผลข้างเคียงต่อผู้ป่วย ดังนั้นนักวิทยาศาสตร์ได้คิดค้นสังเคราะห์ยาจำนวนมากมายหลายชนิดที่มี กลไกการออกฤทธิ์ที่แตกต่างจาก AZT พบว่าสารประกอบในกลุ่ม nonnucleoside reverse transcriptase inhibitors (NNRTIs) เช่น 1-[(2-Hydroxyethoxy)-methyl]-6-(phenylthio)thymine (HEPT), tetrahydroimidazo [4,5,1-jk]benzodiazepine-2(1H)-thione (TIBO หรือ ที่โบ) และ dipyridodiazepinone หรือ nevirapine ซึ่งเรียกว่า สารยับยั้งเอนไซม์ การถ่ายแบบเอชไอวี-1 กลุ่มแรก (the first generation NNRTIs) เป็นกลุ่มที่น่าสนใจมาก เนื่องจากมีกัมมันตภาพ (activity) ที่ยับยั้งจำเพาะ (specific) ต่อ HIV-1 RT โดยไม่มีผลยับยั้งต่อ HIV-2 หรือ HIV ชนิดอื่น โดยเฉพาะอย่างยิ่งมีกัมมันตภาพยับยั้งได้ที่ความเข้มข้นต่ำจึงไม่ทำให้ เกิดผลข้างเคียงต่อผู้ป่วย มีกลไกในการจับกับเอนไซม์ที่ตำแหน่ง allosteric selectivity ค่อนข้างสูงโดยจะไม่มีผลต่อ DNA polymerase ของเซลล์ปกติจึงมีความเป็นพิษ ค่อนข้างต่ำ ดังนั้นสารในกลุ่ม NNRTI จึงเป็นสารที่ถูกนำมาใช้ในการรักษาผู้ป่วยร่วมกับ AZT สารยับยั้ง nevirapine เป็นสาร ตัวแรกในกลุ่ม NNRTI ที่ได้รับการรับรองให้นำมาใช้ในการ รักษาผู้ป่วยโรคเอดส์ โดยใช้ในการรักษาผู้ป่วยร่วมกับ ยา AZT อย่างไรก็ตามประสิทธิภาพ ของการใช้ยาในกลุ่มนี้กลับลดลงมากเนื่องจากปัญหาการต้านทานยาของไวรัส (drug resistance) ที่เกิดขึ้นอย่างรวดเร็วหลังจากการได้รับการรักษาด้วยยาในกลุ่ม NNRTI ไประยะ หนึ่ง ทำให้ไวรัสเกิดการกลายพันธุ์ (mutation)อย่างรวดเร็วหลังจากได้รับการรักษาด้วยยาใน กลุ่ม NNRTI ไประยะหนึ่ง การกลายพันธุ์เป็นผลเนื่องจากเกิดการเปลี่ยนแปลงของกรดอะมิโนที่ อยู่ล้อมรอบ binding pocket ซึ่งส่งผลอย่างมากต่อการแสดงกัมมันตภาพของยา โดยเฉพาะ

อย่างยิ่งการกลายพันธุ์ของกรดอะมิโนบริเวณโพรงจับที่ตำแหน่ง Tyr181 Tyr 188 และ Lys103 ทำให้ประสิทธิภาพของยาชนิดนี้ลดลงอย่างรวดเร็ว จึงได้มีความพยายามในการพัฒนาตัว ยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 กลุ่มที่สองขึ้นมาใหม่ (the second generation NNRTIs) โดยสารยับยั้งในกลุ่มนี้มีโครงสร้างที่มีความยืดหยุ่น (resilience) ต่อเอนไซม์การถ่ายแบบชนิด กลายพันธุ์ (Y181C, Y188C และ K103N) ได้มากกว่าสารยับยั้งในกลุ่มแรก จึงทำให้ตัวยับยั้ง ในกลุ่มนี้แสดงกัมมันภาพในการยับยั้งสูงต่อเอนไซม์ การถ่ายแบบทั้งชนิดดั้งเดิมและ ชนิดกลายพันธุ์ เช่น สารอนุพันธุ์ในกลุ่มของ efavirenz กลุ่ม carboxanilides และ กลุ่ม quinoxaline โดยเฉพาะอย่างยิ่งสารประกอบในกลุ่ม efavirenz เป็นสารยับยั้งที่ถูกนำมาใช้ใน การรักษาผู้ป่วยโรคเอดส์โดยสารยับยั้งในกลุ่มนี้แสดงกัมมันตภาพสูงทั้งเอนไซม์ชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N) การรักษาในปัจจุบันได้พยายามแก้ปัญหาการตำนทานยา ของไวรัสที่เกิดขึ้นอย่างรวดเร็วโดยการใช้ยาที่มีประสิทธิภาพสูงหลายกลุ่มร่วมกันในการรักษา (The highly active anti-retroviral therapy, HAART) เพื่อที่จะหลีกเลี่ยงปัญหาการตำนทานยา ของยากลุ่มนี้เมื่อมีการใช้ยาชนิดเดียว (monotherapy) ในการรักษาโรคเอดส์

Efavirenz เป็นสารยับยั้งในกลุ่ม second generation NNRTI ที่ได้รับการรับรองให้ นำมาใช้ในการรักษาผู้ป่วยโรคเอดส์ใช้ในการรักษาผู้ป่วยโรคเอดส์ ในปัจจุบัน มีชื่อทางการค้าว่า SUSTIVA สารในกลุ่มนี้มีประสิทธิภาพสูงในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิด ดั้งเดิม (WT) และชนิดกลายพันธุ์ (Y181C, Y188C และ K103N) จากข้อมูลทางโครงสร้างผลึก ระหว่างตัวยับยั้งกับเอนไซม์โดยวิธี X-ray crystallography ทำให้เข้าใจมากขึ้นถึงผลที่ได้ชี้แนะ กลไกการยับยั้งที่น่าจะเป็นไปได้และพบว่าโครงสร้างผลึกการจับกันระหว่างสารยับยั้ง efavirenz และเอนไซม์การถ่ายแบบ เอชไอวี-1 คล้ายกับตัวยับยั้ง NNRTI ในกลุ่ม first generation NNRTIs เช่น HEPT TIBO และ nevirapine อย่างไรก็ตามปัญหาการต้านทานยาของเอนไซม์ การถ่ายแบบก็ยังคงอยู่ อีกทั้งกลไกในการยับยั้งของสารยับยั้งและกลไกในการต้านทานยาของ เอนไซม์ HIV-1 RT ยังไม่เป็นที่ทราบแน่ชัดและยังเป็นปัญหาที่ยังต้องการคำอธิบาย ดังนั้น ขบวนการศึกษาและพัฒนาเพื่อหายาตัวใหม่ที่มีกัมมันตภาพในการต้านทานการดื้อยาของ เอนไซม์จึงจำเป็นต้องมีการดำเนินต่อไป จากการสืบคันข้อมูลของงานวิจัยที่ผ่านมาพบว่า งานวิจัยในกลุ่มของ สุภา หารหนองบัวและคณะ ได้ทำการศึกษาการออกแบบโมเลกุลโดยการ คำนวณบนพื้นฐานของเคมีควอนตัมของสารยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ในกลุ่มของ first generation NNRTIs คือ HEPT TIBO และ nevirapine ผลจากการศึกษาทำให้ได้ข้อมูล ทางโครงสร้างของตัวยับยั้งในกลุ่ม NNRTI ที่มีความสำคัญในการที่จะอธิบายความจำเพาะของ ้ตัวยับยั้งเอนไซม์ในกลุ่มนี้ได้เป็นอย่างดี และสามารถเสนอโครงสร้างของตัวยับยั้งใหม่ที่มี ประสิทธิภาพสูงได้ สำหรับสารยับยั้ง efavirenz ยังไม่มีการศึกษาวิจัยสมบัติทางโครงสร้าง ของโมเลกุลตัวยับยั้งของสารกลุ่มนี้ในด้านโครงสร้างทางอิเล็กตรอนมาก่อน ทำให้ผู้วิจัยมีความ สนใจที่จะศึกษาสมบัติทางโครงสร้างของตัวยับยั้ง HIV-1 RT ในกลุ่มสารอนุพันธุ์ efavirenz โดย อาศัยระเบียบวิธี Computer-Aided Molecular Design บนพื้นฐานของเคมีควอนตัม (Quantum

chemistry) และ การจำลองแบบ (Molecular Modeling) โดยในเบื้องต้นผู้วิจัยได้ทำการศึกษา ทางด้าน Ligand based drug design คือได้หาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพ ในการยับยั้ง (Quantitative Structure-Activity Relationships, QSAR) ของสารในกลุ่ม efavirenz โดยใช้ระเบียบวิธี 2D-และ 3D-QSAR และหาโครงสร้างสำคัญของสารยับยั้งในการ ยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N) ผล จากการศึกษาสามารถชี้ให้เห็นถึงชี้ให้เห็นถึงความสำคัญของอันตรกิริยาสเตอริก อิเล็กโตรสแตร ติคและไฮโดรโฟบิก รวมถึงอิทธิพลของการเกิดพันธะไฮโดรเจนของโมเลกุลที่มีต่อการออกทาง ฤทธิ์ทางชีวภาพ ซึ่งทำให้ได้ข้อมูลพื้นฐานที่เป็นประโยชน์ในการออกแบบสารยับยั้งตัวใหม่ที่มี ประสิทธิภาพสูงในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิด กลายพันธุ์ (K103N)

สำหรับงานวิจัยในโครงการนี้จะดำเนินการต่อเนื่องจากงานที่ได้ทำไปแล้วโดยมี เป้าหมายหลักในการศึกษาการคำนวณโครงสร้างคอนฟอร์เมชันของตัวยับยั้ง efavirenz และ ศึกษา อันตรกิริยาระหว่างสารยับยั้งในกลุ่มอนุพันธ์ efavirenz และเอนไซม์การถ่าย แบบเอชไอวี -1 ด้วยวิธี molecular docking ซึ่งนับว่าเป็นการศึกษาทางด้าน Structure-based drug design โดยคาดหวังว่าเมื่อนำเอาผลที่ได้จากการวิเคราะห์ด้วยระเบียบวิธีดังกล่าวนี้ และ ผลที่ได้จากการศึกษาทางด้าน Ligand based drug design ที่ได้ดำเนินการศึกษามาแล้วมา พิจารณาร่วมกัน ข้อมูลสำคัญที่เป็นพื้นฐานช่วยเพิ่มความเข้าใจในการเกิดอันตรกิริยาระหว่างตัว ยับยั้งและเอนไซม์ (inhibitor-enzyme interaction) ตลอดจนอธิบายกลไกที่เกิดการต้านทานของ เอนไซม์ที่เป็นปัญหาสำคัญอย่างหนึ่งที่พบของตัวยับยั้ง และจะเป็นแนวทางในการออกแบบ โครงสร้าง (molecular design) ของสารยับยั้งชนิดใหม่ที่มีให้มีศักยภาพสูงขึ้นในการยับยั้ง เอนไซม์การถ่ายแบบ เอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)

รูปที่ 1 โครงสร้างของตัวยับยั้ง Efavirenz

2. วัตถุประสงค์

- 1. เพื่อศึกษาโครงสร้างคอนฟอร์เมชันของสารยับยั้ง efavirenz และสร้างแผนภาพ พลังงานศักย์ของโมเลกุลเพื่ออธิบายสมบัติทางโครงสร้างที่สัมพันธ์กับกัมมันตภาพในการยับยั้ง เอนไซม์การถ่ายแบบเอชไอวี-1
- 2. ศึกษาอันตรกิริยาระหว่างสารยับยั้งในกลุ่มอนุพันธ์ efavirenz และโพรงการจับ (binding pocket) ของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N) โดยการคำนวณโมเลคูลาร์ด็อกกิ้ง (molecular docking calculation)
- 3. สร้างความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการยับยั้งของสารอนุพันธุ์ใน กลุ่ม efavirenz โดยใช้ระเบียบวิธี 3D-QSAR และหาโครงสร้างสำคัญของสารยับยั้งในการยับยั้ง เอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)
- 4. ออกแบบสารประกอบในกลุ่มอนุพันธุ์ efavirenz ที่มีศักยภาพสูงในการยับยั้งเอนไซม์การ ถ่ายแบบ เอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)

3. ขอบเขตของการวิจัย

งานวิจัยนี้เป็นงานทางด้าน computer-aided molecular design โดยทำการศึกษาคอนฟอร์เม ชันและการออกแบบโครงสร้างของสารอนุพันธ์ efavirenz เพื่อใช้ยับยั้งเอนไซม์ HIV-1 RT โดยใน การศึกษาคอนฟอร์เมชันสารอนุพันธ์ efavirenz จะใช้ระเบียบวิธีการคำนวณทางเคมีควอนตัม และ สร้างแผนภาพพลังงานศักย์ของโมเลกุลเพื่ออธิบายสมบัติทางโครงสร้างที่สัมพันธ์กับกัมมันตภาพ ในการยับยั้งเอนไซม์ HIV-1 RT สำหรับวิธีการออกแบบโครงสร้างของสารยับยั้งที่ใช้ในงานวิจัยนี้ มี 2 วิธีคือ วิธี structure based drug design ซึ่งใช้วิธีการคำนวณ molecular docking และ ligand-based drug design โดยใช้ระเบียบวิธี 3D-QSAR คือ วิธีวิเคราะห์เชิงเปรียบเทียบสนามโมเลกุล (Comparative Molecular Field Analysis, CoMFA) และวิธี การวิเคราะห์เชิงเปรียบเทียบดัชนี ความเหมือนเชิงโมเลกุล (Comparative Similarity Index Analysis, CoMSIA)

บทที่ 2 ทบทวนเอกสารและงานวิจัยที่เกี่ยวข้อง

ปี 1995 Kroeger และคณะ ได้ใช้ระเบียบวิธีการคำนวณทางเคมีควอนตัม โดยใช้ระเบียบวิธี AM1, HF/3-21G*, HF/6-31G* และวิธีการคำนวณ molecular docking ในการศึกษาการเกิดอันตร กิริยาของสารยับยั้งเอนไซม์ HIV-1 RT ทั้งสามชนิด ได้แก่ 2-cyclopropyl-4-methyl-5,11-dihydro-5H-dipyrido[3,2-b :2',3'-e][1,4] diazepin-6-one (nevirapine), alpha-anilino-2, 6-dibromophenylacetamide (alpha-APA), และ 8-chloro-tetrahydro-imidazo(4,5,1-jk)(1,4)-benzodiazepin-2(1H)-thi one (TIBO) ใน binding pocket ของเอนไซม์ HIV-1 RT จากการศึกษา พบว่า binding mode ของสารยับยั้ง nevirapine, alpha-APA และ TIBO ใน binding pocket ของ เอนไซม์ HIV-1 RT มีลักษณะที่คล้ายคลึงกัน โดยสารยับยั้งทั้งสามจะเกิดอันตรกิริยาแบบ π-Stacking กับวงอะโรมาติกของ binding pocket

ปี 1995 Young และคณะ ได้ทำการสังเคราะห์และตรวจวัดประสิทธิภาพในการยับยั้ง เอนไซม์ HIV-1 RT ของสารประกอบ 1,4-dihydro-2H-3,1-benzoxazin-2-ones (DMP-266) จาก การศึกษาพบว่า DMP-266 สามารถยับยั้งเอนไซม์ชนิคดั้งเดิม โดยให้ค่า IC_{95} เท่ากับ 1.5 nM แต่ ประสิทธิภาพในการยับยั้งของ DMP-266 จะลดลงอย่างมากเมื่อเอนไซม์เกิดการกลายพันธุ์ โดยเฉพาะอย่างยิ่งในการกลายพันธุ์ที่มีการเปลี่ยนแปลงของกรดอะมิโนใน binding pocket มากกว่า หนึ่งตำแหน่ง

ปี 1996 Hopkins และคณะ ได้ทำการศึกษาเปรียบเทียบโครงสร้างผลึกของเอนไซม์ HIV-1 RT ที่จับกับ MKC-442, TNK-651 และ HEPT ซึ่งเป็นสารยับยั้งในกลุ่ม NNRTI และทำการเปรียบเทียบ binding mode ของสารยับยั้งทั้งสามชนิดใน binding pocket ของเอนไซม์ HIV-1 RT พบว่าการเกิด อัน- ตรกิริยาของสารยับยั้ง HEPT กับ Tyr181 ใน binding pocket ของเอนไซม์ HIV-1 RT เป็นส่วน สำคัญในการเพิ่มศักยภาพในการยับยั้งเอนไซม์ HIV-1 RT ของ HEPT ให้คีขึ้น

ปี 1997 Font และคณะ ได้ศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการ ยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ quinoline โดยใช้ระเบียบวิธี QSAR และการคำนวณโดย ระเบียบวิธี AM1 semiempirical จากการศึกษาพบว่าถ้าการ์บอนตำแหน่งที่ 6 ของวง quinoline ถูก แทนที่ด้วยหมู่ electron-withdrawing จะทำให้ลดระดับชั้นพลังงาน LUMO ของสารประกอบ ซึ่ง เป็นส่วนสำคัญในการเกิดอันตรกิริยาแบบ charge transfer ระหว่างวงอะโรมาติกของ quinoline และ เอนไซม์ HIV-1 RT

ปี 1998 Vig และคณะ ได้ทำการสังเคราะห์และออกแบบสารอนุพันธ์ phenethylthiazolyl thiourea (PETT) เพื่อเป็นสารยับยั้งในกลุ่ม NNRTI ที่มีศักยภาพสูงในการยับยั้งเอนไซม์ HIV-1 RT

โดยวิธีที่ใช้ศึกษาคือ วิธีการคำนวณ molecular docking ซึ่งศึกษาอันตรกิริยาระหว่างสารยับยั้ง PETT และ binding pocket ของเอนไซม์ HIV-1 RT และจากการศึกษาพบว่าสารอนุพันธ์ PETT ที่ ได้ออกแบบขึ้นมาใหม่สามารถยับยั้งเอนไซม์ HIV-1 RT ได้ดีกว่า AZT หรือ trovirdine โดยให้ค่า IC_{50} น้อยกว่า 1 nM และค่า selectivity indices มากกว่า 100,000

ปี 1998 Sudbeck และคณะ ได้ใช้วิธี structure-based drug design ในการศึกษาสารยับยั้ง เอนไซม์ HIV-1 RT ในกลุ่มของ NNRT ที่มีศักยภาพสูงในการยับยั้งซึ่งได้แก่ สารอนุพันธ์ของ dihydroalkoxybenzyloxopyrimidine (DABO) และได้ทำการตรวจสอบประสิทธิภาพในการยับยั้ง เอนไซม์ HIV-1 RT ของสารยับยั้งในกลุ่มนี้ด้วย จากการศึกษาพบว่า 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one สามารถยับยั้งเอนไซม์ HIV-1 RT ได้ ในระดับความเข้มข้นนาโนโมลาร์ แต่ไม่สามารถวัดผลข้างเคียงได้ที่ความเข้มข้นนี้

ปี 1998 Hsiou และคณะ ทำการศึกษาโครงสร้างผลึกของ S-4-isopropoxycarbonyl-6-methoxy-3-(methylthiomethyl)-3, 4-dihydroqui noxalin-2(1H)-thione (HBY 097) ที่จับกับเอนไซม์ HIV-1 RT ทั้งชนิดดั้งเดิมและชนิดกลายพันธ์ จากการศึกษาพบว่า HBY 097 ซึ่งเป็นสารยับยั้งใน กลุ่ม NNRT มีความจำเพาะเจาะจงต่อเอนไซม์ HIV-1 RT ชนิดกลายพันธ์ และมี binding mode ที่ แตกต่างไปจากสารยับยั้งในกลุ่ม NNRT ซึ่งปกติ binding mode ของสารยับยั้งในกลุ่ม NNRT มี ลักษณะ butterfly-like shape นอกจากนี้ binding mode ของ HBY 097 ในเอนไซม์ HIV-1 RT ทั้ง ชนิดดั้งเดิมและชนิดกลายพันธ์นั้นไม่แตกต่างกัน จากการศึกษาทางโครงสร้างผลึกของ HBY 097 ชี้ให้เห็นว่าสารยับยั้งที่มีความยืดหยุ่น สามารถยับยั้งเอนไซม์ HIV-1 RT ชนิดกลายพันธ์ได้ดี

ปี 1999 Barreca และคณะ ได้ศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการ ยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ TIBO โดยวิธี CoMFA และใช้การคำนวณ flexible docking เพื่อยืนยัน binding mode ของ TIBO ใน binding pocket ของเอนไซม์ HIV-1 RT และจาก การศึกษาโดยวิธี CoMFA ให้ความสัมพันธ์ระหว่างค่า binding energies และความสามารถในการ ยับยั้ง (inhibitory potency) ที่ดี ดังนั้นแบบจำลองที่ได้สามารถทำนายกัมมันตภาพในการยับยั้ง เอนไซม์ HIV-1 RT ได้ดี โดยมีค่า r² เท่ากับ 0.90

ปี 1999 Lawtrakul และคณะ ได้ทำการศึกษาคอนฟอร์เมชันของสารยับยั้งเอนไซม์ HIV-1 RT ในกลุ่มของสาร 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) โดยคำนวณด้วย ระเบียบวิธี semiempirical (AM1, PM3 และ MNDO), ab initio (HF/6-31G**) และ DFT (B3LYP/6-31G**) ศึกษาอันตรกิริยาของสารยับยั้ง HEPT และเอนไซม์ HIV-1 RT ด้วยวิธีการ คำนวณ molecular docking จากการศึกษาพบว่ามีสองคอนฟอร์เมชันที่มีพลังงานค่ำสุด โดยคอน ฟอร์เมชันที่หนึ่งมี α dihedral angle อยู่ระหว่าง 65-76° และคอนฟอร์เมชันที่สองมี α dihedral angle อยู่ระหว่าง 244-250° นอกจากนี้พบว่ามีพันธะไฮโดรเจนระหว่างหมู่ hydroxyl ของ HEPT และ

กรดอะมิโน K103 ซึ่งจากการศึกษาทางโครงสร้างผลึกไม่พบอันตรกิริยานี้ ทั้งนี้เนื่องจากในการ simulation ไม่มีโมเลกุลของน้ำเข้ามาเกี่ยวข้อง

ปี 1999 Hannongbua และคณะ ใช้วิธี CoMFA ในการศึกษาความสัมพันธ์ระหว่าง โครงสร้างและกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ TIBO พบว่า แบบจำลองที่ได้มีความน่าเชื่อถือทางสถิติและสามารถทำนายกัมมันตภาพในการยับยั้งได้ ซึ่งให้ค่า \mathbf{r}_{cv}^2 เท่ากับ 0.771 โดยตัวอธิบายเชิงโครงสร้างที่สำคัญคือ สมบัติเชิงอิเล็กตรอนและสมบัติเชิง โมเลกุล นอกจากนี้ยังชี้ให้เห็นถึงความแตกต่างของโครงสร้างที่สำคัญในการยับยั้งเอนไซม์ HIV-1 RT ของสารยับยั้ง แต่อย่างไรก็ตามแบบจำลองนี้ ไม่สามารถอธิบายอิทธิพลที่มีผลต่อ hydrophobic ได้ เพราะมีความสัมพันธ์ระหว่าง \mathbf{C}_2 และ log P สูง

ปี 1999 Patel และคณะ สังเคราะห์และตรวจวัดประสิทธิภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ efavirenz พบว่าสารอนุพันธ์ efavirenz ที่มีหมู่แทนที่ 5,6-difluoro (4f) สามารถยับยั้งเอนไซม์ HIV-1 RT ได้ทั้งชนิดดั้งเดิมและชนิดกลายพันธุ์ นอกจากนี้ยังจะใช้เป็น ต้นแบบในการสังเคราะห์สารยับยั้งในกลุ่ม second generation NNRTI ต่อไป

ปี 1999 Patel และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ efavirenz โดยตำแหน่งที่ 5 และ 6 ในวง benzoxazinones ถูกแทนที่ด้วย fluoro (5a-d) และ nitro (5e-h) ตามลำดับ จากการทดลองพบว่าสารอนุพันธ์ efavirenz ที่สังเคราะห์ขึ้นมา ใหม่นี้มีกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ที่ดีกว่า efavirenz ที่เป็นสารต้นแบบ

ปี 2000 Corbett และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ efavirenz ได้แก่ DPC 082, DPC 083, DPC 961 และ DPC 963 จากการศึกษา พบว่าสารเหล่านี้มีฤทธิ์ในการยับยั้งเอนไซม์ HIV-1 RT ชนิดดั้งเดิมได้ในระดับความเข้มข้นนาโน โมลาร์ โดยมีค่า IC(90) เท่ากับ 2.0, 2.1, 2.0 และ 1.3 nM ตามลำดับ นอกจากนี้ยังสามารถยับยั้ง เอนไซม์ HIV-1 RT ชนิดกลายพันธุ์ที่มีการเปลี่ยนแปลงของกรดอะมิโนตำแหน่งเดียวหรือหลาย ตำแหน่งได้

ปี 2000 Patel และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารประกอบในกลุ่ม 3,3-disubstituted quinoxalinones ซึ่งเป็นสารอนุพันธ์ของ efavirenz จากการศึกษาพบว่าสารประกอบ N-allyl (6b and 6f), N-cyclopropylmethyl (6a, 6g, 6h, and 6k) และ N-carboalkoxy (6m-6y) มีกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ได้ดีกว่า efavirenz และ GW420867X

ปี 2000 Pungpo และ Hannongbua ใช้วิธี CoMFA ในการศึกษาความสัมพันธ์ระหว่าง โครงสร้างและกัมมันตภาพในการยับยั้งของสารอนุพันธ์ dipyridodiazepinone (nevirapine) เพื่อใช้ เป็นสารยับยั้งเอนไซม์ HIV-1 RT ทั้งชนิดคั้งเดิมและชนิดกลายพันธุ์ ผลที่ได้พบว่าแบบจำลองที่ได้ จากการคำนวณด้วยวิธี CoMFA มีค่าความสามารถในการทำนาย (predictive ability) ที่มีต่อเอนไซม์ ชนิดคั้งเดิมและชนิดกลายพันธุ์เท่ากับ 0.624 และ 0.726 ตามลำดับ จาก CoMFA contour maps แสดงให้เห็นว่า steric และ electrostatic interactions ที่เกี่ยวข้องกับการยับยั้งเอนไซม์ชนิดคั้งเดิมมี ค่าเท่ากับ 58.5% และ 41.5% ตามลำดับ ในขณะที่เอนไซม์ชนิดกลายพันธุ์ให้ค่าว่า steric และ electrostatic interactions ไม่แตกต่างกัน

ปี 2000 Ren และคณะ [10] ได้ทำการศึกษาสมบัติทางโครงสร้างผลึกของ efavirenz และ nevirapine ที่จับกับเอนไซม์ HIV-1 RT ชนิดดั้งเดิมและชนิดกลายพันธ์ (K103N) efavirenz เป็นสาร ยับยั้งเอนไซม์ HIV-1 RT ในกลุ่ม second-generation NNRT จากการศึกษาพบว่า efavirenz สามารถ ยับยั้งและมีความยืดหยุ่น (resilience) ต่อเอนไซม์ HIV-1 RT ชนิดกลายพันธ์ (K103N) ได้ดีกว่าสาร ยับยั้งในกลุ่ม first-generation NNRT เช่น nevirapine

ปี 2001 Markwalder และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ efavirenz จากการศึกษาพบว่าสารอนุพันธ์ efavirenz ที่สังเคราะห์ขึ้นมา ใหม่มีประสิทธิภาพต่ำในการยับยั้งเอนไซม์ HIV-1 RT เมื่อเปรียบเทียบกับสาร efavirenz ต้นแบบ

ปี 2001 Cocuzza และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารอนุพันธ์ efavirenz โดยในการสังเคราะห์จะแบ่งสารอนุพันธ์ออกเป็นสองกลุ่ม โดย กลุ่มแรกทำการแทนที่หมู่ cyclopropane ด้วย heterocyclic ที่มีขนาดเล็ก ส่วนอีกกลุ่มแทนที่ acetylenic side chain ด้วยหมู่ alkyloxy จากการศึกษาพบว่าสารอนุพันธ์ของ efavirenz ทั้งสองกลุ่ม ออกฤทธิ์เท่ากัน ในการยับยั้งเอนไซม์ HIV-1 RT ชนิดดั้งเดิมและชนิดกลายพันธ์ (K103N)

ปี 2001 Cocuzza คณะสังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารประกอบในกลุ่มของ 4,1-benzoxazepinone ซึ่งเป็นสารอนุพันธ์ของ efavirenz พบว่า cis-3-alkyl benzoxazepinones มีความสามารถในการยับยั้งเอนไซม์ HIV-1 RT มากกว่าโครงสร้างที่เป็น trans isomers นอกจากนี้สารในกลุ่ม 4,1-benzoxazepinone ยังสามารถยับยั้งเอนไซม์ HIV-1 RT ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) ได้

ปี 2001 Hannongbua และคณะ ศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพใน การยับยั้งของสารอนุพันธ์ HEPT โดยใช้วิธี CoMFA พบว่าแบบจำลองที่ได้จากการคำนวณด้วยวิธี CoMFA มีความสามารถในการทำนายสูง โดยมีค่า \mathbf{r}^2_{cv} เท่า 0.858 และจาก contour maps แสดงให้ เห็นว่า steric และ electrostatic interactions มีความสำคัญในการเกิดอันตรกิริยาของ HEPT กับ เอนไซม์ HIV-1 RT โดย steric interactions จะเกิดระหว่างโมเลกุลของ HEPT กับวงอะโรมาติกของ กรดอะมิโน Tyr181 ซึ่งถ้าคาร์บอนตำแหน่งที่ 5 ของ HEPT มีหมู่แทนที่ขนาดปานกลางจะช่วยให้ ประสิทธิภาพในการยับยั้งเอนไซม์ดีขึ้น

ปี 2001 Hannongbua และคณะ ศึกษาคอนฟอร์เมชันของ (+)-(S)-4,5,6,7-tetrahydro-8-chloro-5-methyl-6-(3-methyl-2-butenyl)-imidazo[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione (8-chloro-TIBO) ด้วยระเบียบวิธี ab initio และ DFT ทำการเปลี่ยนแปลงค่า dihedral angles ของ side

chain 2 มุม แล้วหา potential energy surface เพื่ออธิบายคอนฟอร์เมชันของ heterocyclic ring จากนั้นพิจารณาคอนฟอร์เมชันที่มีพลังงานต่ำสุดที่ได้จากการคำนวณเปรียบเทียบกับ โครงสร้างที่ ได้จาก X-ray crystallo-graphy พบว่ามีความสอดคล้องกัน โดยส่วนที่มีการเบี่ยงเบนเกิดจากอันตร กิริยากับ binding pocket ของเอนไซม์

ปี 2001 Hannongbua และคณะ ได้ศึกษาคอนฟอร์เมชันของ nevirapine บนพื้นฐานการ คำนวณเคมีควอนตัม ได้แก่ระเบียบวิธี semi-empirical (MNDO, AMI และ PM3) ab initio (HF/3-21G และ HF/6-31G**) และระเบียบวิธี DFT (B3LYP/6-31G**) จากการศึกษาพบว่าคอนฟอร์เมชันที่เสถียรที่สุดของ nevirapine ที่คำนวณได้จากวิธีเหล่านี้ เหมือนกับของ nevirapine ที่จับกับ เอนไซม์ HIV-1 RT ที่ได้จากการทดลอง นอกจากนี้ยังคำนวณ H-NMR and C-NMR spectra ของ โครงสร้างที่เสถียรของ nevirapine ด้วยวิธี DFT (B3LYP/6-31G**) พบว่าผลที่ได้จากการคำนวณ สอดคล้องกับผลที่ได้จากการทดลอง

ปี 2001 Cobett และคณะ สังเคราะห์และตรวจวัดกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารประกอบ 3,3a-dihydropyrano[4,3,2-de]quinazolin-2(1H)-ones และ 2a,5-dihydro-2H-thieno[4,3,2-de]quinazo-line-4(3H)-thione ซึ่งเป็นสารอนุพันธ์ของ efavirenz จากการศึกษาพบว่า สารประกอบที่สังเคราะห์ได้ในการทดลองนี้ สามารถยับยั้งเอนไซม์ HIV-1 RT ได้ทั้งชนิดดั้งเดิม และชนิดกลายพันธุ์ (K103N และ K103N/L100I)

ปี 2003 Chen และคณะ ได้เปรียบเทียบการศึกษาสมบัติทางด้านโครงสร้างของ HEPT และ TIBO ที่คำนวณโดยวิธี 3D-QSAR และวิธีการคำนวณ molecular docking โดยวิธี molecular docking ใช้ศึกษาอันตรกิริยาระหว่างสารยับยั้ง HEPT และ TIBO กับ binding pocket ของเอนไซม์ HIV-1 RT และจากการศึกษาพบว่า HEPT และ TIBO เกิดอันตรกิริยากับ binding pocket ของเอนไซม์ HIV-1 RT ในลักษณะที่เหมือนกัน โดยจะสร้างพันธะไฮโดรเจนกับกรดอะมิโน Lys101 และเกิดอันตรกิริยาแบบ hydrophobic กับกรดอะมิโน Tyr181, Tyr188 และ Tyr318 ของเอนไซม์ HIV-1 RT สำหรับการคำนวณ 3D-QSAR ด้วยวิธี CoMFA และ CoMSIA พบว่าได้แบบจำลองที่ดี ในการทำนายกัมมันตภาพของ HEPT และ TIBO ในการยับยั้งเอนไซม์ HIV-1 RT โดยมีค่า r² เท่ากับ 0.940 และ 0.920 ตามลำดับ นอกจากนี้ยังทำให้เข้าใจถึงอันตรกิริยาของสารยับยั้งและ เอนไซม์ได้ดีขึ้น และเป็นแนวทางในการออกแบบโครงสร้างของสารยับยั้งชนิดใหม่ที่มี ความสามารถในการยับยั้งสูง

ปี 2003 Saenoon และคณะศึกษาคอนฟอร์เมชันของ (+)-(s)-4,5,6,7-tetrahydro-9-chloro-5-methyl-6-(3-methyl-2-butenyl)imidazol[4,5,1-jk][1,4]benzodiazepin-2(1H)-thione (9-Cl TIBO) โดยวิธี HF/6-31G** และ B3LYP/6-31G** จากการศึกษาพบว่ามี 8 คอนฟอร์เมชันที่เสถียร โดยแต่ ละคอนฟอร์เมชันมีค่า energy barriers ต่ำกว่า 15 kJ/mol นอกจากนี้การคำนวณ ¹H NMR และ ¹³C

NMR spectra ของคอนฟอร์เมชันที่มีพลังงานต่ำสุด ด้วยวิธี B3LYP/6-311++G** ให้ผลที่ สอดคล้องกับผลการทดลอง

ปี 2003 Pungpo และคณะ ใช้วิธี hologram quantitative structure-activity relationships (HQSAR) ในการศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการยับยั้งของสาร TIBO, HEPT และ dipyridodiazepinone จากการศึกษาพบว่าแบบจำลองที่ได้จากการคำนวณ สามารถใช้ทำนายกัมมันตภาพของสารยับยั้งได้ โดยมีค่า \mathbf{r}_{cv}^2 อยู่ในช่วง 0.62-0.84 และยังชี้ให้เห็นว่า อันตรกิริยาที่สำคัญของสารยับยั้งทั้งสามที่มีต่อเอนไซม์มีลักษณะที่คล้ายคลึงกัน

ปี 2004 Medina-Franco และคณะ นำเอาการวางตัว (alignment) ของสารอนุพันธ์ pyridinone ใน binding pocket ของเอนไซม์ HIV-1 RT ที่คำนวณได้จากวิธีการคำนวณ molecular docking ไปศึกษาด้วยวิธี CoMFA และ CoMSIA จากการศึกษาด้วยวิธี CoMFA และ CoMSIA ได้ แบบจำลองที่ให้ความสัมพันธ์ที่ดีระหว่าง binding free energies กับค่ากัมมันตภาพในการยับยั้งที่ ได้จากการทดลอง โดยมีค่า r² เท่ากับ 0.720 และ 0.750 ตามลำดับ และยังสามารถชี้แนะการ ออกแบบโมเลกุลของสารอนุพันธ์ pyridinone ที่มีความสามารถในการยับยั้งสูงได้ นอกจากนี้การ คำนวณด้วยวิธี molecular docking ยังช่วยให้เข้าใจถึงชนิดของอันตรกิริยาที่เกิดขึ้นระหว่างสาร ยับยั้งและ binding pocket ของเอนไซม์ HIV-1 RT และยังสามารถอธิบายการยับยั้งเอนไซม์กลาย พันธ์ชนิด Tyr181 และ Tyr188 ของสารอนุพันธ์ pyridinone ได้อีกด้วย

ปี 2004 Ragno และคณะ พยายามปรับปรุงกัมมันตภาพในการยับยั้งและ selectivity ของ thio-DABOs (S-DABOs), DATNOs และ difluoro-thio-DABOs (F(2)-S-DABOs) ซึ่งเป็นสาร อนุพันธ์ของ dihydro-alkoxy-benzyl-oxopyrimidines (DABOs) ดังนั้นจึงทำการสังเคราะห์สาร อนุพันธ์ DABOs ชนิดใหม่ขึ้นมา นอกจากนี้ยังศึกษาทางด้านชีวภาพและ molecular modeling โดย วิธี molecular docking ในการสังเคราะห์นี้ทำได้โดยแทนที่อะตอม sulfur ของ F(2)-S-DABOs ด้วย หม่อะมิโน โดยจะใช้สาร (5-alkyl-2-cyclopentylamino-6-[1-(2,6-difluorophenyl)alkyl]-3,4dihydropyrimidin-4(3H)-ones (F(2)-NH-DABOs) เป็นสารต้นแบบ สำหรับวิธี molecular docking จะใช้ reference model ที่ได้จากการศึกษาโครงสร้างผลึกของ MKC-442 ที่จับกับเอนไซม์ HIV-RT จากการศึกษาพบว่า binding mode ของ F(2)-NH-DABO คล้ายคลึงกับ binding mode ของ F(2)-S-DABOs แต่แตกต่างกันตรงตำแหน่ง NH ที่คาร์บอนตำแหน่งที่ 2 ซึ่งเป็นตำแหน่งใหม่ที่ใช้ในการ จับกับเอนไซม์ และพบว่า F(2)-NH-DABOs มีความสามารถในการยับยั้งสูงกว่า MKC-442 ที่ 2-cyclopentylamino-6-[1-(2,6-difluorophenyl)ethyl]-3,4-dihydro-5-methyl น่าสนใจอีกอย่างคือ pyrimidin-4(3H)-one สามารถยับยั้งเอนไซม์ HIV-1 RT กลายพันธ์ชนิด Y181C ได้ที่ระดับความ เข้มข้น submicromolar และการออกฤทธิ์คล้ายกับ efavirenz โดยตำแหน่ง pyrimidine C-2 NH group เกิด hydrogen bond กับ Lys101

ปี 2004 Zhou และ Madura นำคอนฟอร์เมชันและการ alignment จากวิธีคำนวณ molecular docking มาใช้ในการศึกษา CoMFA และ CoMSIA ของสารอนุพันธ์ TIBO จากการศึกษาพบว่า แบบจำลองที่ได้มีความสามารถในการทำนายกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ได้ดี โดยให้ค่า r² เท่ากับ 0.972 และ 0.944 ตามลำดับ และแสดงให้เห็นว่า steric และ electrostatic properties ที่ทำนายได้จาก CoMFA contours สอดคล้องกับ binding structure ที่ได้จากการคำนวณ โดย molecular docking ซึ่งชี้แนะให้เห็นว่าการนำวิธี ligand-based และ receptor-based modeling มาใช้ร่วมกันทำให้ได้แบบจำลองที่ดี

ปี 2004 Medina-Franco และคณะ ใช้วิธีการคำนวณ molecular docking เพื่อศึกษาอันตร กิริยาของสารอนุพันธ์ pyridinone ใน binding pockets ของเอนไซม์ HIV-1 RT ที่จับอยู่กับ nevirapine, 1051U91, 9-Cl-TIBO, Cl-a-APA, efavirenz, UC-781, และ S-1153 ผลจากการทดลอง พบว่าสารอนุพันธ์ pyridinone ใน binding pockets ทั้งหมดมี binding mode แบบ butterfly like shape นอกจากนี้ยังให้ข้อมูลที่มีประโยชน์ในการออกแบบสารอนุพันธ์ pyridinone ในลักษณะที่ เป็น hybrid pyridinone molecules เพื่อใช้เป็นสารยับยั้งเอนไซม์ชนิดใหม่ที่มีศักยภาพสูงได้

ปี 2004 Kalyan และคณะ ศึกษาสารยับยั้ง TMC125-R165335 (etravirine) เพื่อใช้เป็นสาร ยับยั้งเอนไซม์ HIV-1 RT ในกลุ่ม NNRTI ด้วยวิธี molecular docking และพบว่าสาร etravirine เมื่อ อยู่ภายใน binding pocket ของเอนไซม์ HIV-1 RT สามารถเปลี่ยนตำแหน่งและหมุนโครงสร้าง (jiggling) ได้ นอกจากนี้ยังเกิด torsional flexibility (wiggling) ทำให้ etravirine มีหลายคอนฟอร์เม ชัน จึงสามารถยับยั้งเอนไซม์ชนิดดั้งเดิมและชนิดกลายพันธ์ได้ดี

ปี 2005 Rodriguez-Barrios และคณะ ได้ศึกษาการยับยั้งเอนไซม์ HIV-1 RT กลายพันธุ์ ชนิด Lys103Asn ของสารยับยั้งในกลุ่ม NNRT เช่น nevirapine, efavirenz, และ etravirine โดยวิธี molecular dynamics simulations และวิธีการคำนวณ molecular docking จากการศึกษาที่ผ่านมาของ Rodriguez-Barrios พบว่าการจับของสารยับยั้งในกลุ่ม NNRT กับเอนไซม์ HIV-1 RT ชนิดกลาย พันธุ์ลดลง เนื่องจากเอนไซม์ HIV-1 RT เกิดพันธะไฮโดรเจนระหว่าง side chains ของ Asn103 และ Tyr188 ซึ่งการเกิดพันธะนี้จะไม่พบในเอนไซม์ HIV-1 RT ชนิดดั้งเดิม ดังนั้นในงานวิจัยนี้จึง ศึกษาคอนฟอร์เมชันของเอนไซม์ HIV-1 RT ทั้งที่จับและไม่จับกับสารยับยั้ง จากการศึกษาพบว่า ผลของการเกิดพันธะไฮโดรเจนระหว่าง side chains ของ Asn103 และ Tyr188 มีผลต่อสารยับยั้งแต่ ละชนิดในกลุ่ม NNRTI แตกต่างกัน เช่น การเกิดพันธะไฮโดรเจนนี้จะมีผลน้อยมากต่อกัมมันตภาพ การยับยั้งของสาร etravirine แต่จะมีผลอย่างมากต่อสารยับยั้ง efavirenz และ nevirapine

ปี 2005 Mei และคณะ ได้ศึกษาการจับของสารยับยั้ง efavirenz กับเอนไซม์ HIV-1 RT ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N และ Y181C) ด้วยระเบียบวิธี molecular fractionation with conjugate caps (MFCC) และพลังงานที่ใช้ในการจับ (binding energy) ระหว่าง efavirenz กับ เอนไซม์ HIV-1 RT คำนวณด้วยระเบียบวิธี *ab initio* ได้แก่ HF/3-21G, B3LYP/6-31G* and

MP2/6-31G* จากการศึกษาพบว่า efavirenz จับกับเอนไซม์ HIV-1 RT ชนิดดั้งเดิมด้วยอันตรกิริยา แบบ strong electrostatic กับกรดอะมิโน Lys101 และการเกิดอันตรกิริยาแบบนี้จะเป็นแรงแบบ อ่อนในเอนไซม์กลายพันธุ์ชนิด K103N ทำให้กัมมันตภาพการยับยั้งของ efavirenz ลดลงเล็กน้อย ส่วนการจับกับเอนไซม์กลายพันธุ์ชนิด Y181C จะลดลงเช่นกัน แต่จะเกิดเนื่องจากเกิด steric ระหว่าง efavirenz และกรดอะมิโน Glu698 ซึ่งถ้าเพิ่มอันตรกิริยาของ efavirenz กับกรดอะมิโน Hid235 และลด steric กับ Glu698 จะให้ค่า binding energy ดีขึ้นประมาณ 4 kcal/mol

ปี 2005 Chen และคณะ ศึกษา binding mode ของ 3',4'-di-O-(S)-camphanoyl-(+)-ciskhellactone (DCK) analogs ที่จับกับเอนไซม์ HIV-1 RT โดยวิธีการคำนวณ molecular docking และ molecular dynamics simulation ผลจากการศึกษาพบว่า DCK เกิดพันธะไฮโดรเจนกับ NH ของกรดอะมิโน Lys101 ของเอนไซม์ HIV-1 RT และมีพฤติกรรมเหมือนสารยับยั้งเอนไซม์ HIV-1 RT ชนิดอื่น นอกจากนี้ยังพบว่าการกลายพันธุ์ของเอนไซม์ที่พบบ่อยสำหรับสารยับยั้ง DCK คือ การกลายพันธุ์ชนิด K103N และใช้ SVM model ในการออกแบบสารยับยั้งตัวใหม่และทำนายค่ากัม มันตภาพในการยับยั้งสำหรับสารในกลุ่ม DCK ซึ่งพบว่าสารยับยั้งที่ออกแบบมาใหม่สามารถยับยั้ง เอนไซม์ HIV-1 RT ได้ โดยมีค่า EC₅₀ ต่ำกว่า 1.95 μM

ปี 2005 Heeres และคณะ ได้ออกแบบสารยับยั้งชนิดใหม่ สังเคราะห์และใช้วิธี molecular docking ในศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ของสารในกลุ่ม pyrazinones จากการศึกษาพบว่าตำแหน่งที่ 4 ของ aniline ring เป็นตำแหน่งที่มี ความสำคัญต่อกัมมันตภาพของ pyrazinones โดยเมื่อตำแหน่งนี้ถูกแทนที่ด้วยหมู่ methyl จะทำให้ มีกัมมันตภาพดีขึ้น แต่เมื่อหมู่แทนที่เป็นอะตอมของฟลูออรีน หรือหมู่ CF_3 จะทำให้กัมมันตภาพใน การยับยั้งลดลง นอกจากนี้ยังพบว่ามีอันตรกิริยาแบบ electrostatic เกิดขึ้นระหว่างสารยับยั้งกับ กรดอะมิโน H235 ที่ช่วยทำให้กัมมันตภาพในการยับยั้งดีขึ้น

ปี 2005 Ragno และคณะ ใช้วิธีการ docking และ GRID/GOLPE 3-D QSAR ในการศึกษา สมบัติทางโครงสร้างและกัมมันตภาพของสารยับยั้งในกลุ่ม indolyl aryl sulfones (IASs) ซึ่งเป็น สารที่มีฤทธิ์สูงในการยับยั้งเอนไซม์ HIV-1 RT ทั้งชนิคดั้งเดิมและชนิดกลายพันธุ์ (Y181C, K103N-Y181C, K103R-V179D-P225H) การวางตัวที่ได้จากวิธี docking นำไปใช้ในวิธี 3-D QSAR การศึกษาพบว่าแบบจำลองที่ได้จาก 3-D QSAR มีความสามารถในการทำนายที่ดีโดยมีค่า r² และค่า q² อยู่ในช่วง 0.79-0.93 และ 0.59-0.84 ตามลำดับ และยังพบว่ามีพันธะไฮโดรเจนที่ NH ของ 2-car-boxamide ซึ่งเป็นประโยชน์ในการยับยั้งเอนไซม์ HIV-1 RT

ปี 2005 Weinzinger และคณะ ใช้วิธีการคำนวณ molecular docking ศึกษาอันตรกิริยาของ สารยับยั้ง efavirenz และสารอนุพันธ์ ที่มีต่อเอนไซม์ HIV-1 RT จากนั้นนำ geometry ของสารยับยั้ง ทั้งหมดที่ได้ไปศึกษา molecular dynamics simulation และคำนวณค่า binding energy จากการศึกษา พบว่าค่า binding energy ที่คำนวณได้สอดคล้องกับการทดลอง โดยมีค่า r² เท่ากับ 0.865 และผลจาก การทำ molecular dynamics simulation พบว่า efavirenz และสารอนุพันธ์ จับกับเอนไซม์ HIV-1 RT โดยเกิดพันธะไฮโดรเจนระหว่าง NH ของ efavirenz และออกซิเจนอะตอมของกรดอะมิโน Lys 101 ที่ระยะประมาณ 1.88 A° นอกจากนี้ยังเกิด electrostatic interaction กับกรดอะมิโน Lys 101 และ His 235

ปี 2005 Martino และคณะ ได้ทำการสังเคราะห์และทดสอบกัมมันตภาพในการยับยั้ง เอนไซม์ HIV-1 RT ของสารยับยั้ง 1-[2-(Diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles (DAMNIs) ซึ่งเป็นสารยับยั้งชนิดใหม่ในกลุ่ม NNRTI และสามารถออกฤทธิ์ยับยั้งเอนไซม์ได้ที่ ระดับความเข้มข้น submicromolar จากการทดลองพบว่าเมื่อแทนที่ phenyl ring ของ 1-[2-(diphenylmethoxy)ethyl]-2-methyl-5-nitroimidazole ด้วย heterocyclic rings เช่น 2-thienyl or 3-pyridinyl จะทำให้เพิ่มกัมมันตภาพของ DAMNIs และจากการคำนวณ molecular docking พบว่า โครงสร้างที่เป็น enantiomer ของ DAMNIs ไม่มีผลต่อการจับกับเอนไซม์ นอกจากนี้ยังพบว่าสาร ยับยั้งที่เป็นสารอนุพันธ์ของ DAMNIs มีฤทธิ์ในการยับยั้งเอนไซม์ HIV-1 RT กลายพันธุ์ชนิด K103N ได้ดีกว่า efavirenz

ปี 2005 Ranise และคณะ ทำการสังเคราะห์สารยับยั้ง thiocarbamates (TCs) เพื่อเป็นสาร ยับยั้งชนิดใหม่ในกลุ่ม NNRTI พร้อมทั้งทำการศึกษาทางด้าน structure-based ligand design โดย วิธี molecular docking จากการศึกษาพบว่า TCs ที่มีหมู่แทนที่ตำแหน่ง para จะสามารถยับยั้ง เอนไซม์ HIV-1 RT ชนิดดั้งเดิมได้ที่ระดับความเข้ม nanomolar (EC $_{50}$ อยู่ในช่วง 0.04-0.01 μ M) เมื่อมีหมู่ methyl ที่การ์บอนตำแหน่งที่ 4 ของ phthalimide และมี nitro group ที่ตำแหน่ง para ของ N-Ph ring จะทำให้ TCs มีฤทธิ์ในการยับยั้งสูงสุด (EC $_{50}$ = 0.01 μ M) นอกจากนี้ยังค่า selectivity indexes ที่ดีและไม่มีผลข้างเคียง สารอนุพันธ์บางตัวของ TCs สามารถยับยั้งเอนไซม์ HIV-1 RT กลายพันธุ์ชนิด Y181C แต่ไม่สามารถยับยั้งเอนไซม์กลายพันธุ์ชนิด K103R และ K103N + Y181C จาก docking model ให้การทำนายกัมมันตภาพที่สอดคล้องกับการทดลอง

ปี 2006 Saparpakorn และคณะ ได้ใช้วิธีการคำนวณ molecular docking ในการออกแบบ โมเลกุลของสารอนุพันธ์ nevirapine ที่มีศักยภาพสูงต่อการยับยั้งเอนไซม์ HIV-1 RT ชนิคกลาย พันธุ์ (K103N และ Y181C) โดยใช้โปรแกรม GOLD และ SILVER พบว่าการ dock สารยับยั้งเข้า ไปใน binding pocket ของเอนไซม์ด้วยโปรแกรม GOLD ให้ค่า GoldScore สูงกว่าที่คำนวณจาก โปรแกรม SILVER และพบว่าสารอนุพันธ์ nevirapine เกิดพันธะไฮโครเจน กับกรดอะมิโน N103 หรือ C181 และมีการนำเอาวิธี quantum chemical calculations (QCCs) มาใช้ในการคำนวณค่า interaction energies ซึ่งพบวิธี QCCs สามารถนำมาใช้ควบคู่กับวิธีการคำนวณ molecular docking ได้

บทที่ 3 ระเบียบวิธีวิจัย

1. อุปกรณ์ที่ใช้ในการทำวิจัย

- 1.1 เครื่องคอมพิวเตอร์ PCs (Pentium IV) 2.8 MHz
- 1.2 เครื่องคอมพิวเตอร์ High performance (SGI)
- 1.3 เครื่องพิมพ์ (Laser Printer)
- 1.4 เครื่องพิมพ์ (Color Printer)
- 1.5 โปรแกรมการคำนวณทางเคมีควอนตัม (Gaussian 98)
- 1.6 โปรแกรมการคำนวณทางโมเลคิวลาร์โมเดลลิง (Alchemy 2000, Hyperchem 6.0 และ Weblabviewer 3.0, ChemDraw, Sybyl, Autodock, GOLD)
- 1.7 โปรแกรมการคำนวณทางสถิติ (SPSS for Windows 10.0)
- 1.8 โปรแกรมส่งข้อมูล (WS-FTP)

2. ข้อมูลโครงสร้างและค่ากัมมันตภาพของตัวยับยั้งในกลุ่ม Efavirenz ในการยับยั้ง เอนไซม์การถ่ายแบบ HIV-1

2.1 ข้อมูลกัมมันตภาพของตัวยับยั้งในกลุ่ม Efavirenz ในการยับยั้งเอนไซม์ การถ่ายแบบ HIV-1

รวบรวมข้อมูลทางโครงสร้างและค่ากัมมันตภาพของสารในกลุ่ม efavirenz จำนวน 56 สารประกอบ โดยมีการรายงานค่าแสดงกัมมันตภาพในการยับยั้งของเอนไซม์เอชไอวี–1 (inhibitory activity) แตกต่างกัน 2 ชนิด คือ ชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)โดยสารทุกตัวนั้นมีการทดสอบค่ากัมมันตภาพในการยับยั้งเอนไซม์ชนิดดั้งเดิม จึงเลือก สารประกอบจำนวน 56 ตัวที่มีค่ากัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบทั้ง 2 ชนิดเป็น กลุ่มข้อมูลที่ใช้ในการศึกษานี้เพื่อเปรียบเทียบความแตกต่างของโครงสร้างสำคัญในการยับยั้ง เอนไซม์ (ดังตารางที่ 1) ค่าตัวแปรตาม (dependent variable) คือค่า log (1/C) โดย C คือค่า ความเข้มข้นยังผล (effective concentration) ในการป้องกันเซลล์ชนิด MT-4 ต่อ cytopathic effect ของเอนไซม์ถ่ายแบบเอชไอวี1 ได้ 90% (90% inhibitory concentration, IC₉₀)

2.2 การสร้างและคำนวณโครงสร้างของโมเลกุลตัวยับยั้ง

โครงสร้างเริ่มต้นของ efavirenz ได้จากข้อมูลทาง x-ray crystallography ของ WT HIV-1 RT/ efavirenz complex (FK9) จากนั้นสารอนุพันธ์ของefavirenz จำนวน 56 โมเลกุล ถูกสร้างโดยใช้โปรแกรมโมเลคิวลาร์โมเดลลิ่ง ALCHEMY2000 ซึ่งโครงสร้างทั้งหมดนี้จะทำการ คำนวณปรับโครงสร้างที่เสถียรที่สุด (full geometrical optimization) โดยวิธีแอบอินิชิโอ (HF/3-21G)

2.3 การคำนวณโครงสร้างคอนฟอร์เมชัน

- 2.3.1 รวบรวมข้อมูลด้านโครงสร้างผลึก (X-ray crystallography) จากการ ทดลองของการจับกันระหว่างสารยับยั้ง efavirenz และเอนไซม์การถ่ายแบบเอชไอวี-1 (HIV-1 RT/ efavirenz complex)ทั้งชนิดดั้งเดิมและชนิดที่มีการกลายพันธ์
- 2.3.2 ในการวิเคราะห์คอนฟอร์เมชันบนพื้นฐานทางเคมีควอนตัมของ สารยับยั้ง efavirenz โครงสร้างเริ่มต้นนำมาจากข้อมูลทางโครงสร้างผลึกของ HIV-1 RT/efavirenz complex ทั้งชนิดดั้งเดิมและชนิดที่มีการกลายพันธ์ และนำมาคำนวณโดย วิธีทางโมเลคิวลาร์ออร์บิทัลคือ เซมิอิมพิริคัล (AM1 และ PM3) แอบ อินิซิโอ (HF/3-21G และ HF/6-31G**) และวิธีทฤษฎีเดนซิตี ฟังชันแนล (B3LYP/6-311++G**)โดยโปรแกรม GAUSSIAN เพื่อเปรียบเทียบโครงสร้างที่เสถียรที่สุดของแต่ละวิธีและทำการเปรียบเทียบ ข้อมูลที่ได้กับข้อมูลการทดลองทาง โครงสร้างผลึก
- 2.3.3 จากโครงสร้างเริ่มต้นของ efavirenz ที่ได้จากข้อ 9.1.1 จะพิจารณาการ ปรับเปลี่ยนมุมพันธะของ มุมไดฮีดรอล (dihedral angle) ที่อยู่ในระบบ heterocyclic ring กับ side chain ในส่วนที่เป็นหมู่ CF₃ และ cyclopropyl โดยจะทำการเลือก dihedral angle ที่มี flexibility มากที่สุด คือ มุม α (O6-C14-C17-C19) และ มุม β (C21-O6-C14-C15) (ภาพที่ 2) ครั้งละ 30 องศาแล้วคำนวณแบบ partial optimization โดยระเบียบวิธีเซมิอิมพิริคัล (AM1และ PM3) และวิธี แอบอินิซิโอ (HF/3-21G) เพื่อสร้างแผนภาพ rotational potential ข้อมูลที่ได้จาก การคำนวณดังกล่าวจะนำไปสู่การอธิบายโครงสร้างของสาร efavirenz ที่เหมาะที่สุดและอันตร กิริยาระหว่างตัวยับยั้งกับโครงสร้างของเอนไซม์ใช้ในการศึกษาความสัมพันธ์ระหว่างโครงสร้าง และกัมมันตภาพของสารยับยั้งต่อไป

รูปที่ 2 โครงสร้างของ $^{^{29}}$ H $^{'}$ $_{\text{H}}^{^{28}}$ efavirenz และมุมไดฮ็ดรอล α และ β ที่ ใช้ในการแผนภาพพลังงานศักย์

2.4 การศึกษา Molecular Docking

นำโครงสร้างที่เสถียรของสารยับยั้งในกลุ่มสารอนุพันธ์ efavirenz ที่ได้จากการ คำนวณข้อ 2.2 มาศึกษาอันตรกิริยาระหว่างสารยับยั้งและโพรงการจับ (binding pocket) ของ เอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)ด้วยวิธี molecular docking โดยใช้โปรแกรม Autodock 3.0 ในการหาตำแหน่งการจัดวางตัวของสาร ยับยั้งในโครงสร้างของเอนไซม์ที่มีพลังงานต่ำ และได้ค่าพลังงานในการจับ (binding energy) ระหว่างสารยับยั้งและโพรงการจับ (binding pocket) ของเอนไซม์

2.5 การศึกษาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพในการ ยับยั้งแบบสามมิติ

ทำการศึกษาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพในการยับยั้งแบบ 3D-QSAR ในโครงสร้างนี้จะใช้วิธีการวิเคราะห์เชิงเปรียบเทียบสนามของโมเลกุล (Comparative Molecular Fields Analysis, CoMFA) และวิธีวิเคราะห์เปรียบเทียบดัชนีความเหมือนเชิงโมเลกุล (Comparative Similarity Index Analysis, CoMSIA) ซึ่งเป็นวิธีด้าน Computer-Aided Molecular Design

2.6 การออกแบบโครงสร้างสารตัวใหม่ที่มีประสิทธิภาพสูง

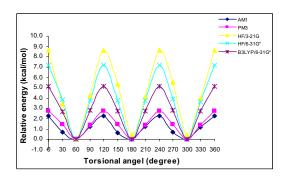
ทำการออกแบบโครงสร้างสารตัวใหม่ที่มีประสิทธิภาพสูง โดยนำเอาข้อมูลที่ได้ จากการวิเคราะห์ด้วยวิธี molecular docking ซึ่งเป็นงานทางด้าน structure-based drug design พิจารณาร่วมกับข้อมูลที่ได้จากการศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในการยับยั้ง (QSAR) ซึ่งเป็นงานทางด้าน ligand based drug design ที่ได้ดำเนินการมาแล้วเพื่อใช้เป็นพื้นฐานสำคัญที่ช่วยในการออกแบบปรับเปลี่ยนโครงสร้างตัวยับยั้งการถ่าย แบบเอชไอวี –1 ในกลุ่ม efavirenz ให้มีศักยภาพสูงขึ้นในการยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธุ์ (K103N)

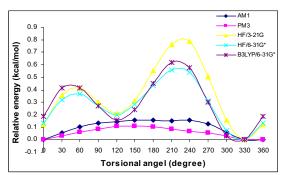
2.7 สรุปผล

<u>ตารางที่ 1</u> โครงสร้างของสารประกอบในกลุ่ม Efavirenz ที่เป็นกลุ่มของ Training set และ กัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบ HIV-1 ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N)

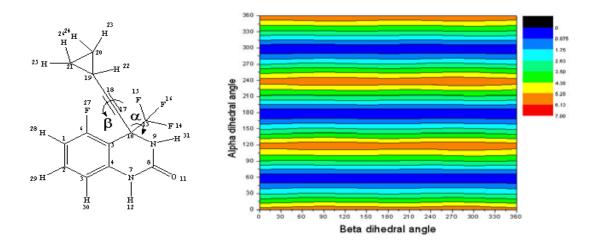
$$\begin{array}{c|c}
R & CF_3 \\
X & II \\
N & O
\end{array}$$

Cpds No.	X R	z -	log	log(1/C)		
	Λ	A K	L	WT	K103N	
01	6-C1	CC-cyclopropyl	О	8.77	7.19	
02	6-C1	CC-2-pyridyl	O	8.27	5.96	
03	6-C1	CC-3-pyridyl	O	8.40	6.94	
04	6-C1	CC-2-furanyl	O	8.42	6.82	
05	6-C1	CC-3-furanyl	O	8.42	6.49	
06	5,6-diF	CC-3-pyridyl	O	8.65	7.23	
07	6-F	CC-3-furanyl	O	8.60	6.43	
08	6-F	CC-3-pyridyl	O	8.59	6.48	
09	5,6-diF	CC-3-furanyl	O	8.49	6.55	
10	5,6-diF	CC-2-thienyl	O	8.65	6.81	
11	5,6-diF	CC-3-thienyl	O	8.63	6.86	
12	6-C1	OCH ₂ CH ₂ CH ₂ CH ₃	O	7.99	6	
13	6-C1	OCH ₂ CH ₂ CH(CH ₃) ₂	O	8.00	6.54	
14	6-C1	OCH ₂ CHCH(CH ₃)cis	O	8.36	6.63	
15	6-C1	OCH ₂ CHCH(CH ₃)tran	O	8.25	6.39	
16	6-C1	OCH ₂ CHC(CH ₃) ₃	O	8.57	7.08	
17	6-C1	OCH ₂ CCCH ₃	O	8.50	6.51	
18	6-C1	OCH ₂ CHCCl ₂	O	8.02	6.62	
19	6-F	OCH ₂ CHC(CH ₃) ₂	O	8.53	6.97	
20	6-F	OCH ₂ CHCH(CH ₃)tran	O	8.05	5.94	
21	5,6-diF	OCH ₂ CHC(CH ₃) ₂	O	8.81	7.19	
22	5,6-diF	OCH ₂ CHCH ₂	O	8.19	5.79	
23	5,6-diF	OCH ₂ CHCCl ₂	O	8.20	6.74	
24	5,6-diF	CC-ethyl	NH	8.82	7.85	
25	5-F	CC-cyclopropyl	NH	8.85	7.05	

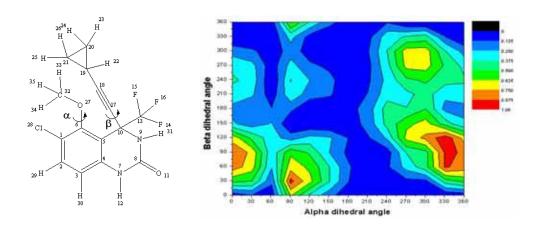

26 5-Cl,6-F CC-isopropyl NH 8.52 7.82 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-eyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.30 6.32 35 6-F CC-2-pyridyl NH 8.34 7.4 35 6-F CC-2-pyridyl NH 8.32 7.74 36 5-F,6-Cl CC-cyclopropyl NH 8.44 7.14 38 6-Cl CC-cyclopropyl NH 8.42 7.25		T 7	_	_	log	g(1/C)
27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-gypridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 35 6-F CC-2-pyridyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55	Cpds No.	X	R	Z -	WT	K103N
28 5,6-dif CC-cyclopropyl NH 8.68 7.89 29 5,6-dif CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-dif CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.43 6.32 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.42 7.25 40 6-MeO CC-jhenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.18 6.49 <	26	5-Cl,6-F	CC-isopropyl	NH	8.52	7.82
29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 41 5,6-diF CC-phenyl NH 8.18 6.49 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.15 6.6	27	5-C1	CC-cyclopropyl	NH	8.60	7.2
30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-cyclopropyl NH 8.47 6.8 44 6-Cl CC-2-pyridyl NH 8.48 7.59 45 6-Cl CC-cyclopropyl NH 8.48 7.59 46 6-F CC-isopropyl NH 8.49 6.55 5-MeO,6-Cl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-cyclopropyl NH 8.52 7.66 49 6-MeO CC-phenyl NH 8.10 7.74 48 6-Cl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-cyclopropyl NH 8.10 7.74 49 6-MeO CC-2-pyridyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.10 6.95 5-MeO,6-Cl CC-cyclopropyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55	28	5,6-diF	CC-cyclopropyl	NH	8.68	7.89
31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.42 7.25 40 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.18 6.49 42 6-F CC-phenyl NH 8.47 6.8 43 6-Cl CC-ethyl NH 8.15 6.6 45	29	5,6-diF	CC-isopropyl	NH	8.68	7.85
32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-eyclopropyl NH 8.57 7.74 34 6-MeO CC-eyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-eyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-eyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-phenyl NH 8.15 6.6 46 </td <td>30</td> <td>6-F</td> <td>CC-cyclopropyl</td> <td>NH</td> <td>8.70</td> <td>7.32</td>	30	6-F	CC-cyclopropyl	NH	8.70	7.32
33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 41 5,6-diF CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-phenyl NH 8.15 6.6 45 6-Cl CC-phenyl NH 8.15 7.57 <t< td=""><td>31</td><td>5,6-diF</td><td>CC-2-pyridyl</td><td>NH</td><td>8.70</td><td>6.96</td></t<>	31	5,6-diF	CC-2-pyridyl	NH	8.70	6.96
34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-2-pyridyl NH 8.48 7.59 45 6-Cl CC-cyclopropyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.59 7.57 48 6-Cl CC-cyclopropyl NH 8.50 7.66 49 6-MeO CC-2-pyridyl NH 8.50 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-cyclopropyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-cyclopropyl NH 8.44 7.55	32	6-F	CC-ethyl	NH	8.60	7.15
35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-thenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.50 7.57 48 6-Cl CC-isopropyl NH 8.50 7.57 49 6-MeO CC-2-pyridyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-cyclopropyl NH 8.44 7.55	33	5-Cl,6-F	CC-cyclopropyl	NH	8.57	7.74
36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-2-pyridyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.59 7.57 48 6-Cl CC-isopropyl NH 8.50 7.74 48 6-Cl CC-cyclopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-cyclopropyl NH 8.44 7.12	34	6-MeO	CC-cyclopropyl	NH	8.54	7.4
37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.10 7.74 48 6-Cl CC-cyclopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 52 <td>35</td> <td>6-F</td> <td>CC-2-pyridyl</td> <td>NH</td> <td>8.30</td> <td>6.32</td>	35	6-F	CC-2-pyridyl	NH	8.30	6.32
38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.50 7.66 48 6-Cl CC-cyclopropyl NH 8.50 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 51 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-cyclopropyl NH 8.44 7.12	36	5-F,6-Cl	CC-cyclopropyl	NH	8.32	7.74
39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.15 6.6 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-eyclopropyl NH 8.52 7.66 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-eyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12	37	5-Cl,6-F	CC-2-pyridyl	NH	8.64	7.14
40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.15 6.6 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.50 7.54 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 51 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.15 6.86 54 6-Cl CC-cyclopropyl NH 8.15 6.86 55 6-Cl CC-cyclopropyl NH 8.44 7.55 56 6-Cl CHCO-cyclopropyl NH 8.44 7.55	38	6-Cl	CC-cyclopropyl	NH	8.57	7.66
41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.15 6.6 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-eyclopropyl NH 8.10 7.44 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-phenyl NH 8.44 7.12	39	6-MeO	CC-isopropyl	NH	8.42	7.25
42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-phenyl NH 8.44 7.34	40	6-MeO	CC-phenyl	NH	8.49	6.55
43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-phenyl NH 8.49 7.34	41	5,6-diF	CC-phenyl	NH	8.21	6.72
44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	42	6-F	CC-phenyl	NH	8.18	6.49
45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.49 7.34	43	6-Cl	CC-2-pyridyl	NH	8.47	6.8
46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	44	6-C1	CC-ethyl	NH	8.48	7.59
47 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	45	6-C1	CC-phenyl	NH	8.15	6.6
48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	46	6-F	CC-isopropyl	NH	8.59	7.57
49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	47	5,6-diCl	CC-cyclopropyl	NH	8.10	7.74
50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	48	6-C1	CC-isopropyl	NH	8.52	7.66
51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	49	6-MeO	CC-2-pyridyl	NH	8.09	6.47
52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	50	5-MeO,6-Cl	CC-cyclopropyl	NH	8.46	8.12
53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	51	5-MeO,6-Cl	CC-phenyl	NH	8.10	6.95
54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	52	5-MeO,6-Cl	CC-3-pyridyl	NH	8.15	6.86
55 6-Cl CHCO-phenyl NH 8.09 7.34	53	5-OH,6-Cl	CC-cyclopropyl	NH	8.44	7.55
• •	54	6-C1	CHCO-cyclopropyl	NH	8.44	7.12
56 6-Cl CHCO-3-pyridyl NH 8.34 7.12	55	6-C1	CHCO-phenyl	NH	8.09	7.34
	56	6-C1	CHCO-3-pyridyl	NH	8.34	7.12


<u>บทที่ 4</u> ผลการศึกษา

การคำนวณเชิงโมเลกุลของคอนฟอร์เมชันของตัวยับยั้งเอนไซม์การถ่ายแบบ เอช ไอ วี –1 ของ สาร Efavirenz


จากการคำนวณโครงสร้างที่เสถียรที่สุดของตัวยับยั้งการถ่ายแบบ HIV-1 ในกลุ่มของ efavirenz โดยวิธีทางเคมีควอนตัมโดยระเบียบวิธีเซมิอิมพิริคัล (semiempirical molecular orbital calculations) และ แอบ อินิซิโอ (ab-initio molecular orbital calculations) เพื่อ เปรียบเทียบผลที่ได้กับโครงสร้างของ efavirenz ที่ได้จากการทดลอง โดยมุ่งหวังที่จะหาวิธีการ คำนวณที่ได้ผลการปรับโครงสร้างที่ดีที่สุดและใช้การคำนวณที่เหมาะสมที่สุด เพื่อที่จะนำเอา โครงสร้างที่เสถียรที่สุดนั้นไปศึกษาในขั้นตอนต่อไป โดยเฉพาะอย่างยิ่งการศึกษาความสัมพันธ์ ระหว่างโครงสร้างของสารอนุพันธ์ในกลุ่ม efavirenz กับกัมมันตภาพในการยับยั้งเอนไซม์การ ถ่ายแบบ HIV-1 และการออกแบบโมเลกุลตัวยับยั้งใหม่

ในการทำการศึกษาคอนฟอร์เมชันของสารอนุพันธ์อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพสูง ที่สุดในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1ชนิดคั้งเคิมและชนิดกลายพันธุ์ (K103N) โดยอาศัย ระเบียบวิธีการคำนวณบนพื้นฐานทางเคมีควอนตัม ได้แก่ ระเบียบวิธี AM1, PM3, HF/3-21G, HF/6-31G* และ B3LYP/6-31G* ในการสร้างแผนภาพพลังงานศักย์ในเชิงสองมิติและสามมิติ ผล จากการศึกษาพบว่าแผนภาพพลังงานศักย์ที่ได้จากการคำนวณด้วยระเบียบวิธีการคำนวณขั้นสูง สามารถทำให้เข้าใจถึงคอนฟอร์เมชันที่เป็นไปได้ของสารยับยั้งอีฟาวิเร็นซ์ และ สารอนุพันธ์ อีฟาวิเร็นซ์ และ ซี้ให้เห็นว่าโมเลกุลของสารยับยั้งอีฟาวิเร็นซ์และสารอนุพันธ์มีความยืดหยุ่น ในโมเลกุลสูงซึ่งจะแสดงบทบาทสำคัญในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดคั้งเดิม และชนิดกลายพันธุ์

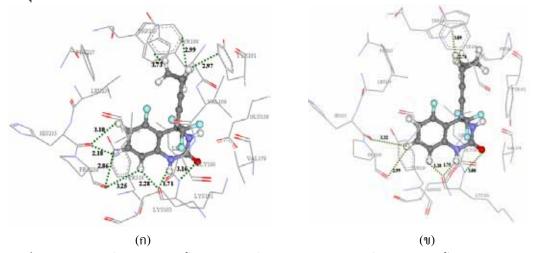


ร**ูปที่ 3** แผนภาพพลังงานศักย์ของการหมุนของมุมแอลฟา (ก) และมุมเบต้า (ข) ของโมเลกุล อีฟาเวียเรนซ์

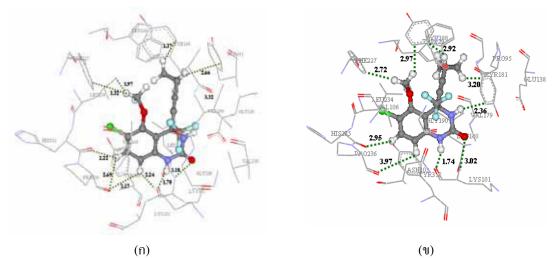
ร**ูปที่ 4** แผนภาพพลังงานศักย์ของการหมุนของมุมแอลฟาและมุมเบตัาของสารอนุพันธ์ อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพสูงที่สุดในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1ชนิดดั้งเดิม

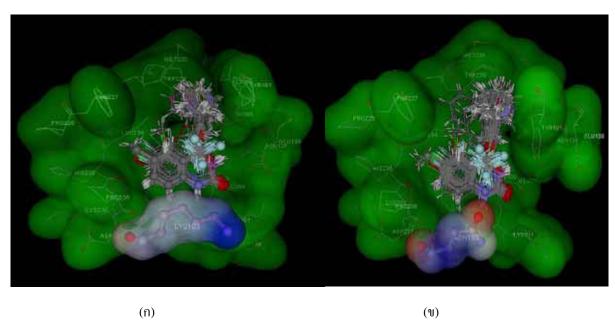


ร**ูปที่ 5** แผนภาพพลังงานศักย์ของการหมุนของมุมแอลฟาและมุมเบต้าของสารอนุพันธ์ อีฟาวิเร็นซ์ที่แสดงกัมมันตภาพสูงที่สุดในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1ชนิดกลาย พันธุ์ (K103N)


2. การศึกษา Molecular Docking

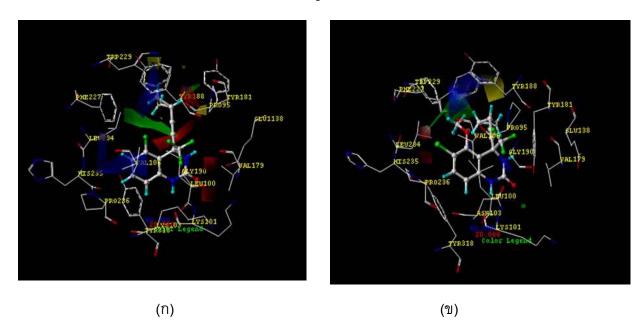
ได้นำโครงสร้างที่ทำการปรับเสถียรของสารยับยั้งอีฟาวิเร็นซ์ และสารอนุพันธ์อีฟาวิเร็นซ์ มาศึกษาอันตรกิริยาระหว่างสารอนุพันธ์อีฟาวิเร็นซ์ และโพรงการจับของเอนไซม์ HIV-1 RT ทั้ง ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) โดยการคำนวณโมเลคูลาร์ดีอกกิ้ง จากการศึกษาพบว่าการ คำนวณโมเลคูลาร์ดีอกกิ้งมีความสามารถในการทำนายตำแหน่งการจัดวางตัวของสารยับยั้งอีฟา-วิเร็นซ์ในโพรงการจับของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิมและชนิดกลายพันธุ์ได้ สอดคล้องกับผลที่ได้จากการศึกษาโครงสร้างผลึกทางเอ็กซ์เรย์โดยให้ค่า RMSD น้อยกว่า


1.0 อังสตรอม ดังนั้นการคำนวณโมเลกูลาร์ด็อกกิ้งจึงมีความเหมาะสมที่จะนำไปใช้ในการทำนาย ตำแหน่ง และการจัดวางตัวของสารอนุพันธ์อีฟาวิเร็นซ์ในโพรงการจับของเอนไซม์การถ่ายแบบ เอชไอวี-1 ที่ยังไม่มีการศึกษาข้อมูลทางโครงสร้างผลึกทางเอ็กซ์เรย์มาก่อน และผลที่ได้จากการ คำนวณโมเลกูลาร์ด็อกกิ้งนี้สามารถอธิบายถึงอันตรกิริยาที่สำคัญของสารยับยั้งอีฟาวิเร็นซ์ และสาร อนุพันธ์อีฟาวิเร็นซ์ในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) ได้ นอกจากนี้ความสัมพันธ์ระหว่างอันตรกิริยาที่ได้จากการคำนวณโมเลคูลาร์ด็อกกิ้ง และค่ากัมมันตภาพในการยับยั้งที่ได้จากการทดลองสามารถทำให้เข้าใจถึงอันตรกิริยาที่สำคัญของ ตัวยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1


ร**ูปที่ 6** การซ้อนทับคอนฟอร์เมชั่นของสารยับยั้งอีฟาวิเร็นซ์ที่ได้จากการด๊อกกิ้งและคอนฟอร์เมชั่นที่ได้จาก โครงสร้างผลึก X-ray ในโพรงการจับของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (ก) และชนิดกลาย พันธุ์ (K103N) (ข)

ร**ูปที่ 7** คอนฟอร์เมชั่นของสารยับยั้งอีฟาวิเร็นซ์ที่แสดงกัมมันตภาพสูงที่สุดในการยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1ชนิดดั้งเดิมในโพรงการจับของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (ก) และชนิด กลายพันธุ์ (K103N) (ข) ที่ได้จากการด๊อกกิ้ง

ร**ูปที่ 8** คอนฟอร์เมชั่นของสารยับยั้งอีฟาวิเร็นซ์ที่แสดงกัมมันตภาพสูงที่สุดในการยับยั้งเอนไซม์การถ่ายแบบ เอชไอวี-1ชนิดกลายพันธุ์ (K103N) ในโพรงการจับของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (ก) และชนิดกลายพันธุ์ (K103N) (ข) ที่ได้จากการด๊อกกิ้ง

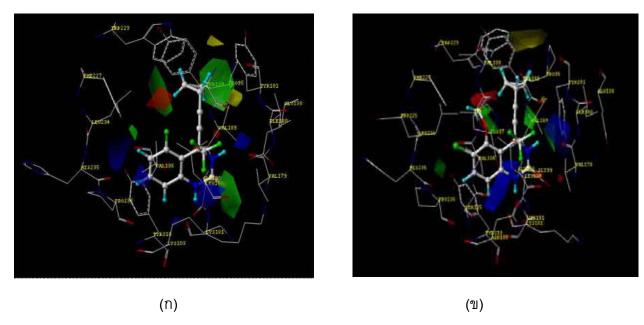

3. การศึกษาความสัมพันธ์ระหว่างโครงสร้างและกัมมันตภาพในเชิงสามมิติ

(Three- dimensional quantitative structure activity relationship, 3D-QSAR)

3.1 วิธีการวิเคราะห์เชิงเปรียบเทียบสนามของโมเลกุล

(Comparative Molecular Fields Analysis, CoMFA)

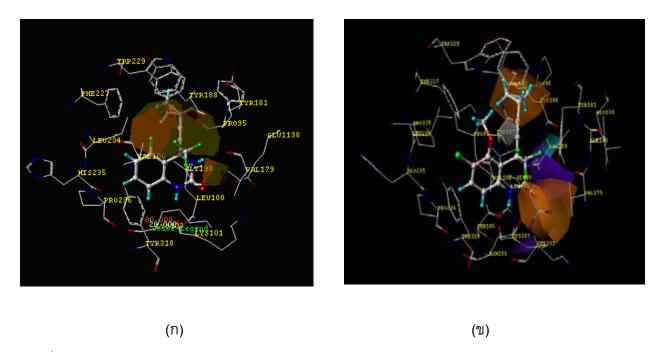
สำหรับผลการศึกษาคอมฟานั้นจะแสดงอันตรกิริยาของตัวยับยั้งที่มีผลต่อเอนไซม์การ ถ่ายแบบ 2 แบบคือ อันตรกิริยาสเตอริก และอันตรกิริยาอิเลกโตรสแตติก โดยจากแบบจำลอง คอมฟาที่ดีที่สุดจะนำเอาค่าสัมประสิทธิ์ของตัวอธิบายในสมการแสดงเป็นภาพคอนทัวร์ positive coefficient contour map หมายถึงควรเพิ่มอันตรกิริยาในโครงสร้างโมเลกุลเพื่อเพิ่ม ความสามารถในการยับยั้ง และ negative coefficient contour map หมายถึง ควรลดอันตร กิริยาในโครงสร้างโมเลกุลเพื่อเพิ่มความสามารถในการยับยั้ง ในการศึกษานี้การเสนออันตร กิริยาของโครงสร้างโมเลกุล โครงสร้างในโมเลกุลนั้นจะแสดงดังรายละเอียดต่อไปนี้ Green coefficient contour map แสดงถึงการเพิ่มอันตรกิริยาแบบสเตอริกในโมเลกุลจะช่วยเพิ่ม ความสามารถในการยับยั้ง Yellow coefficient contour map แสดงถึงการลดอันตรกิริยา แบบสเตอริกในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง Red coefficient contour map แสดงถึงการเพิ่มการกระจายอิเล็กตรอนในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง Blue แสดงถึงการลดการกระจายอิเล็กตรอนโมเลกุลจะช่วยเพิ่ม coefficient contour map ความสามารถในการยับยั้ง ในการพิจารณาแผนภาพคอนทัวร์คอมฟา (รูปที่ 10) ได้นำเอา โครงสร้างของเอนไซม์การถ่ายแบบเอชไอวี-1 บริเวณโพรงการจับที่เกิดการยับยั้งมาพิจารณา เพื่อเป็นส่วนช่วยเพิ่มความเข้าใจในการเกิดอันตรกิริยาและการออกแบบโมเลกุลของตัวยับยั้ง เอนไซม์ของตัวยับยั้ง เอชไอวี-1 ที่มีกัมมันตภาพสูงต่อไป



ภาพที่ 10 แผนภาพคอนทัวร์ที่ได้จากการศึกษาโดยระเบียบวิชี CoMFA ระหว่างตัวยับยั้ง efavirenz กับ เอนไซม์การถ่ายแบบชนิดดั้งเดิม (WT) (ก) และชนิดกลายพันธุ์ (K103N) (ข)

3.2 วิธีวิเคราะห์เปรียบเทียบดัชนีความเหมือนเชิงโมเลกุล

(Comparative Similarity Index Analysis, CoMSIA)


ผลการศึกษาคอมเซียนั้นจะแสดงอันตรกิริยาของตัวยับยั้งที่มีผลต่อเอนไซม์การถ่าย แบบ 5 ชนิดคือ อันตรกิริยาสเตอริก อันตรกิริยาอิเล็กโตรสแตติก อันตรกิริยาไฮโดรโฟบิก อันตรกิริยาการให้โปรตอนและอันตรกิริยาการรับโปรตอน ในทำนองเดียวกับการศึกษาคอมฟา สามารถที่จะนำเอาค่าสัมประสิทธิ์ของตัวอธิบายในสมการแสดงเป็นภาพ คอนทัวร์ หมายถึงควรเพิ่มอันตรกิริยาในโครงสร้างโมเลกุลเพื่อเพิ่ม coefficient contour map ความสามารถในการยับยั้ง และ negative coefficient contour map หมายถึง ควรลดอันตร กิริยาในโครงสร้างโมเลกุลเพื่อเพิ่มความสามารถในการยับยั้ง ในการศึกษานี้การเสนอ อันตรกิริยาของโครงสร้างโมเลกุล โครงสร้างในโมเลกุลนั้นจะแสดงดังรายละเอียดต่อไปนี้ Green coefficient contour map แสดงถึงการเพิ่มอันตรกิริยาแบบสเตอริกในโมเลกุลจะช่วย เพิ่มความสามารถในการยับยั้ง Yellow coefficient contour map แสดงถึงการลดอันตรกิริยา แบบสเตอริกในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง Red coefficient contour map แสดงถึงการเพิ่มการกระจายอิเล็กตรอนในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง Blue แสดงถึงการลดการกระจายอิเล็กตรอนโมเลกุลจะช่วยเพิ่ม coefficient contour map ความสามารถในการยับยั้ง Magenta coefficient contour map แสดงถึงการเพิ่มความเป็น ไฮโดรโฟบิกในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง White coefficient contour map แสดงถึงการลดความเป็นไฮโดรโฟบิกในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง coefficient contour map แสดงถึงการเพิ่มความสามารถในการให้โปรตอนในโมเลกุลจะช่วย เพิ่มความสามารถในการยับยั้ง Purple coefficient contour map แสดงถึงการลดความสามารถ ในการให้โปรตอนในโมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง Orange coefficient contour แสดงถึงการเพิ่มความสามารถในการรับโปรตอนในโมเลกุลจะช่วยเพิ่มความสามารถใน การยับยั้ง White coefficient contour map แสดงถึงการลดความสามารถในการรับโปรตอนใน โมเลกุลจะช่วยเพิ่มความสามารถในการยับยั้ง แผนภาพคอนทัวร์คอมเซียของสนาม สเตอริก อิเล็กโตรสแตติก ไฮโดรโฟบิก การให้โปรตอน และการรับโปรตอนในการยับยั้งเอนไซม์การถ่าย แบบชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) ได้นำเอาโครงสร้างของเอนไซม์การถ่ายแบบเอช ไอวี-1 บริเวณโพรงการจับที่เกิดการยับยั้งมาพิจารณาเพื่อเป็นส่วนช่วยเพิ่มความเข้าใจในการ เกิดอันตรกิริยาและการออกแบบโมเลกุลของตัวยับยั้งเอนไซม์ของตัวยับยั้ง เอชไอวี-1 ที่มีกัม มันตภาพสูงต่อไป (แสดงดังรูป 11-13)

ภาพที่ 11 แผนภาพคอนทัวร์สเตอริกและ อิเล็กโตรสแตติก ที่ได้จากการศึกษาโดยระเบียบวิธี CoMSIA ระหว่างตัว ยับยั้ง efavirenz กับเอนไซม์การถ่ายแบบชนิดดั้งเดิม (WT) (ก) และชนิดกลายพันธุ์ (K103N) (ข)

ภาพที่ 12 แผนภาพคอนทัวร์ไฮโดรโฟบิก ที่ได้จากการศึกษาโดยระเบียบวิธี CoMSIA ระหว่างตัวยับยั้ง efavirenz กับ เอนไซม์การถ่ายแบบชนิดดั้งเดิม (WT) (ก) และชนิดกลายพันธุ์ (K103N) (ข)

ภาพที่ 13 แผนภาพคอนทัวร์สนามการให้โปรตอนและการรับโปรตอนที่ได้จากการศึกษาโดยระเบียบวิธี CoMSIA ระหว่างตัวยับยั้ง efavirenz กับเอนไซม์การถ่ายแบบชนิดดั้งเดิม (WT) (ก) และชนิดกลายพันธุ์ (K103N) (ข)

เมื่อพิจารณาแผนภาพคอนทัวร์ที่ได้จาการศึกษาทาง QSAR ทุกวิธีร่วมกับโพรงไฮโดร โฟบิกซึ่งเป็นบริเวณที่เกิดอันตรกิริยาระหว่างตัวยับยั้งกับเอนไซม์พบว่าข้อมูลที่ได้จากทุก แบบจำลองชี้ให้เห็นอย่างเด่นชัดถึงความแตกต่างของโครงสร้างที่สำคัญของตัวยั้บยั้งที่ใช้ในการ ยับยั้งเอนไซม์การถ่ายแบบที่แตกต่างกัน นอกจากนั้นแล้วผลการวิเคราะห์ที่ได้จากทุกวิธี สอดคล้องกันทั้งยังสอดคล้องกับข้อมูลจากการทดลองด้านการจับกันระหว่างสารยับยั้งและ เอนไซม์ ทำให้สามารถอธิบายความสำคัญของอันตรกิริยาแบบสเตอริกและไฮโดรโฟบิคใน โครงสร้างตัวยับยั้งกับโพรงไฮโดรโฟบิก ของเอนไซม์ซึ่งประกอบด้วย amino acid residues โดยเฉพาะอย่างยิ่ง ที่ตำแหน่ง Lysine 103 ได้เป็นอย่างดี และเมื่อ amino acid ในตำแหน่ง ดังกล่าวเกิดการกลายพันธุ์จาก Lysine เป็น Asparagine จึงทำให้อันตรกิริยาในส่วนของ steric electrostatic hydrophobic H-donor และ H-acceptor ระหว่าง ตัวยับยั้งกับเอนไซม์ในบริเวณ นี้เปลี่ยนไป และอาจทำให้ตัวยับยั้งไม่สามารถแสดงกัมมันตภาพที่ดีได้ ซึ่งผลการศึกษานี้ นับเป็นการพื้นฐานสำคัญที่สามารถอธิบายอันตรกิริยาที่แตกต่างกันของตัวยับยั้งที่มีต่อเอนไซม์ การถ่ายแบบเอชไอวี-1 ที่ไม่มีการกลายพันธุ์ (WT) และมีการกลายพันธุ์ (K103N) ได้โดย การศึกษาทางโมเลคิวลาร์โมเดลลิ่ง ซึ่งเป็นประโยชน์ในการออกแบบสารยับยั้งในกลุ่มอนุพันธ์ efavirenz ที่คาดว่ามีกัมมันตภาพสูงขึ้นในการยับยั้งต่อเอนไซม์การถ่ายแบบเอชไอวี-1 ที่มีการ กลายพันธุ์ (K103N) ต่อไป

เมื่อพิจารณาผลที่ได้จากการศึกษาทาง structure-based drug design โดยใช้ molecular docking ประกอบกับผลที่ได้จากการศึกษาทาง ligand-based drug design โดยใช้ วิธี CoMFA และ CoMSIA ทำให้ได้โครงสร้างที่สำคัญของตัวยับยั้งในกลุ่มสารอนุพันธ์ อีฟาเวียเรนซ์ ในการยับยั้งเอนไซม์การถ่ายแบบเอชอวี-1 ชนิดดั้งเดิมและชนิดการกลายพันธุ์ (K103N) สรุปได้ดังตารางที่ 2

ตารางที่ 2 โครงสร้างที่สำคัญของตัวยับยั้งในกลุ่มสารอนุพันธ์อีฟาเวียเรนซ์ ในการปรับเปลี่ยน หมู่แทนที่ในตำแหน่งต่างๆในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมและชนิดการ กลายพันธุ์ (K103N)

$$X \xrightarrow{G} X \xrightarrow{G}$$

หมู่แทนที่	การยับยั้งเอนไซม์การถ่ายแบบ เอชอวี-1 ชนิดดั้งเดิม	การยับยั้งเอนไซม์การถ่ายแบบ เอชอวี-1 ชนิดการกลายพันธุ์ (K103N)
C5	hydrophobic group	steric, hydrophilic group
C6	-The positive charge group - H-donor group - Hydrogen bond interaction	-The negative charge group - Van der waal interaction
R	The bulky group, electron rich, hydrophobic group	-The bulky group but not too large size -electron acceptor group
Z	- H-acceptor group - electron rich group	-H-donor group - H-π interaction

ซึ่งผลที่ได้จากการวิเคราะห์นี้สามารถใช้เป็นข้อมูลพื้นฐานสำคัญการใช้ในชี้แนะการ ปรับเปลี่ยนโครงสร้างของสารตัวใหม่ในกลุ่ม efavirenz ที่มีประสิทธิภาพสูงในการยับยั้งเอนไซม์ การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) ได้ต่อไป

4. การออกแบบโมเลกุลของตัวยับยั้งเอนไซม์การถ่ายแบบ HIV-1 ในกลุ่มสารอนุพันธ์ อีฟาเวียเรนซ์

แบบจำลองที่ได้จากการศึกษาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพด้วยวิธี COMFA และ COMSIA มีความน่าเชื่อถือในทางสถิติ และมีประสิทธิภาพในการทำนายสูง จึง นับว่าเป็นแบบจำลองที่สามารถอธิบายความสัมพันธ์ระหว่างตัวอธิบายโครงสร้างกับ กัมมันตภาพได้เป็นอย่างดี แผนภาพคอนทัวร์ที่ได้จากแบบจำลองจากวิธี COMFA ชี้ให้เห็นถึง ความสำคัญของอันตรกิริยาสเตอริก และอิเล็กโตรสแตติกของโมเลกุลที่มีต่อกัมมันตภาพ และ ผลจากแบบจำลองวิธี COMSIA ให้ข้อมูลที่เพิ่มความเข้าใจในความต้องการทางสนามสเตอริก สนามอิเล็กโตรสแตติก สนามไฮโดรโฟบิก รวมทั้งความสามารถในการให้และรับโปรตอนของ สารประกอบที่ใช้ในการจับกับเอนไซม์การถ่ายแบบเอชไอวี-1

เมื่อพิจารณาแผนภาพคอนทัวร์ที่ได้จากการศึกษาทุกวิธีร่วมกับ Hydrophobic pocket ซึ่งเป็นบริเวณที่เกิดอันตรกิริยาระหว่างการยับยั้งเอนไซม์พบว่าเป็นข้อมูลทางโครงสร้างที่สำคัญ ที่ช่วยในการชี้แนะในการออกแบบโมเลกุลตัวยับยั้งในกลุ่มอนุพันธ์อีฟาเวียเรนซ์ตัวใหม่ที่มี กัมมันตภาพสูงในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1โดยเฉพาะชนิดกลายพันธุ์ (K103N)

ในการออกแบบโมเลกุลชนิดใหม่นั้น เริ่มจากทำการพิจารณาปรับเปลี่ยนหมู่แทนที่ ดำแหน่ง X R และ Z ของสารประกอบอีฟาเวียเรนซ์ที่ 46 จากตารางที่ 1 (สารที่มีค่ากัมมันตาภาพในการยับยั้งเอนไซม์การถ่ายแบบชนิดดั้งเดิมสูงที่สุด) โดยอาศัยหลักการโครงสร้าง คล้ายคลึง (Bioisosterism) ทำให้สามารถออกแบบโครงสร้างได้หลายแบบ ได้โครงสร้างสาร ยับยั้งตัวใหม่ในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมจำนวน 33 โครงสร้าง และ ชนิดกลายพันธุ์จำนวน 41 โครงสร้าง ดังแสดงในตารางที่ 3 และตารางที่ 4 ตามลำดับ และพบว่า สารอนุพันธ์อีฟาวิเร็นซ์ WT-D27 – WT-D33 ให้ค่ากัมมันตภาพ (Log (I/C)) ที่ได้จากคำนวณสูงสุด ในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมดังแสดงในตารางที่ 3 และสารอนุพันธ์ อีฟาวิเร็นซ์ MT-D02, MT-D04, MT-D05, MT-D09 – MT-D11, MT-D13, MT-D17, MT-D21, MT-D31, MT-D32, MT-D34 – MT-D39 และ MT-D41 แสดงค่ากัมมันตภาพที่ได้จากคำนวณ สูงสุดในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิดกลายพันธุ์ ดังแสดงในตารางที่ 4

<u>ตารางที่ 3</u> โครงสร้างและค่ากัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิคคั้งเคิม ที่ได้จากการคำนวณของสารอนุพันธ์อีฟาวิเร็นซ์ที่ได้ออกแบบขึ้นมาใหม่

สารอนุพันธ์	***		-	Log (1/C)	
อีฟาวิเร็นซ์	X	R	Z	CoMFA	CoMSIA
WT-D01	5-F	CC-cyclopropyl-R ₁ -CH ₃	NH	8.71	8.57
WT-D02	5-F	CC-cyclopropyl-R ₂ -CH ₃	NH	8.91	8.69
WT-D03	5-F	CC-cyclopropyl-R ₃ -CH ₃	NH	8.44	8.63
WT-D04	5-F	CC-cyclopropyl-R ₄ -CH ₃	NH	8.63	8.74
WT-D05	5-F	CC-cyclopropyl-R ₂ -CH ₂ CH ₃	NH	8.75	8.67
WT-D06	5-F	CC-cyclopropyl-R ₂ -CH ₂ OH	NH	8.86	8.62
WT-D07	5-F	CC-cyclopropyl-R ₂ -CH ₂ CN	NH	8.81	8.67
WT-D08	5-F	CC-cyclopropyl-R ₁ -OH	NH	8.78	8.81
WT-D09	5-F	CC-cyclopropyl-R ₂ -OH	NH	8.84	8.66
WT-D10	5-F	CC-cyclopropyl-R ₃ -OH	NH	8.72	8.92
WT-D11	5-F	CC-cyclopropyl-R ₄ -OH	NH	8.74	8.77
WT-D12	5-F	CC-cyclopropyl-R ₂ -CH ₂ OCH ₃	NH	8.87	8.54
WT-D13	5-F	CC-cyclopropyl-R ₂ -Cl	NH	8.92	8.73
WT-D14	5-F	CC-cyclopropyl-R ₂ -F	NH	8.86	8.74
WT-D15	5-F	CC-cyclopropyl-R ₂ -CN	NH	8.91	8.68
WT-D16	5-OH	CC-cyclopropyl	NH	8.86	8.58
WT-D17	5-CN	CC-cyclopropyl	NH	8.75	8.54
WT-D18	5-CH ₃	CC-cyclopropyl	NH	8.69	8.62
WT-D19	5-OCH ₂ F	CC-cyclopropyl	NH	8.81	8.66
WT-D20	5-OCHF ₂	CC-cyclopropyl	NH	8.81	8.64
WT-D21	5-OCF ₃	CC-cyclopropyl	NH	8.81	8.63
WT-D22	5-OCH ₃	CC-cyclopropyl	NH	8.82	8.58
WT-D23	5-CH ₃	CC-cyclopropyl	NH	8.74	8.64
WT-D24	5-OH	CC-cyclopropyl-R ₂ -CH ₃	NH	8.91	8.59
WT-D25	5-OCH ₂ F	CC-cyclopropyl-R ₂ -CH ₃	NH	8.86	8.58
WT-D26	5-OH	CC-cyclopropyl-R2-Cl	NH	8.92	8.62
WT-D27	5-F	CC-cyclopropyl-R ₂ -CH ₃	O	9.09	8.87

WT-D28	5-F	CC-cyclopropyl-R ₂ -Cl	0	9.10	8.91
WT-D29	5-F	CC-cyclopropyl-R ₂ -CN	O	9.08	8.86
WT-D30	5-F	CC-cyclopropyl	O	9.04	8.86
WT-D31	5-OH	CC-cyclopropyl-R ₂ -CH ₃	O	9.09	8.77
WT-D32	5-OH	CC-cyclopropyl-R ₂ -Cl	O	9.10	8.80
WT-D33	5-OH	CC-cyclopropyl	O	9.04	8.76

<u>ตารางที่ 4</u> โครงสร้างและค่ากัมมันตภาพในการยับยั้งเอนใชม์การถ่ายแบบเอชไอวี-1 ชนิด กลายพันธุ์ (K103N) ที่ได้จากการคำนวณของสารอนุพันธ์อีฟาวิเร็นซ์ที่ได้ออกแบบขึ้นมาใหม่

สารอนุพันธ์	¥7	n	Z	Log (1/C)	
อีฟาวิเร็นซ์	X	R	L	CoMFA	CoMSIA
MT-D01	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ -CH ₃	NH	8.19	8.06
MT-D02	5-OMe, 6-Cl	CC-cyclopropyl-R ₄ -CH ₃	NH	8.29	8.04
MT-D03	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ -CH ₂ CH ₃	NH	8.18	8.08
MT-D04	5-OMe, 6-Cl	CC-cyclopropyl-R ₄ - CH ₂ CH ₃	NH	8.25	8.04
MT-D05	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ ,R ₄ -CH ₃	NH	8.28	8.02
MT-D06	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ -OCH ₃	NH	8.17	7.81
MT-D07	5-OMe, 6-Cl	CC-cyclopropyl-R ₄ -OCH ₃	NH	8.14	7.98
MT-D08	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ -Cl	NH	8.19	8.06
MT-D09	5-OMe, 6-Cl	CC-cyclopropyl-R ₄ -Cl	NH	8.29	8.02
MT-D10	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ ,R ₄ -CH ₃ , Cl	NH	8.29	8.11
MT-D11	5-OMe, 6-Cl	CC-cyclopropyl-R ₄ -CN	NH	8.29	8.00
MT-D12	5-OMe, 6-Cl	CC-cyclopropyl-R ₂ -CN	NH	8.19	7.96
MT-D13	5-OCH₂F , 6-Cl	CC-cyclopropyl	NH	8.28	8.01
MT-D14	5-OCHF ₂ , 6-Cl	CC-cyclopropyl	NH	8.19	8.08
MT-D15	5-OCF ₃ , 6-Cl	CC-cyclopropyl	NH	8.19	8.08
MT-D16	5-CH ₂ CN, 6-Cl	CC-cyclopropyl	NH	8.09	7.09
MT-D17	5-CH ₂ CH ₃ , 6-Cl	CC-cyclopropyl	NH	8.28	8.07
MT-D18	5-CH ₂ CH ₂ F, 6-Cl	CC-cyclopropyl	NH	8.18	8.04
MT-D19	5-CH ₂ CHF ₂ , 6-Cl	CC-cyclopropyl	NH	8.17	8.11

MT-D20	5-CH ₂ CF ₃ , 6-Cl	CC-cyclopropyl	NH	8.16	8.18
MT-D21	5-CH ₃ , 6-Cl	CC-cyclopropyl	NH	8.28	7.90
MT-D22	5-CH ₂ F, 6-Cl	CC-cyclopropyl	NH	8.05	7.86
MT-D23	5-CHF ₂ , 6-Cl	CC-cyclopropyl	NH	8.05	7.88
MT-D24	5-CF ₃ , 6-CH ₂ F	CC-cyclopropyl	NH	8.05	7.95
MT-D25	5-OMe, 6-CN	CC-cyclopropyl	NH	8.20	7.92
MT-D26	5-OMe, 6-CH ₃	CC-cyclopropyl	NH	8.09	7.95
MT-D27	5-OMe, 6-CH ₂ F	CC-cyclopropyl	NH	8.09	7.87
MT-D28	5-OMe, 6-CHF ₂	CC-cyclopropyl	NH	8.09	7.90
MT-D29	5-OMe, 6-CF ₃	CC-cyclopropyl	NH	8.09	8.06
MT-D30	5-OMe, 6-OH	CC-cyclopropyl	NH	8.06	7.78
MT-D31	5-OCH₂F, 6-CN	CC-cyclopropyl-R ₄ -CH ₃	NH	8.27	8.02
MT-D32	5-CH ₂ CH ₃ , 6-CN	CC-cyclopropyl-R ₄ -CH ₃	NH	8.29	8.07
MT-D33	5-CH ₃ , 6-CN	CC-cyclopropyl-R ₄ -CH ₃	NH	8.09	7.91
MT-D34	5-OCH ₂ F, 6-Cl	CC-cyclopropyl-R ₄ -CH ₃	NH	8.28	8.07
MT-D35	5-CH ₂ CH ₃ , 6-Cl	CC-cyclopropyl-R ₄ -CH ₃	NH	8.30	8.13
MT-D36	5-CH ₃ , 6-Cl	CC-cyclopropyl-R ₄ -CH ₃	NH	8.33	7.97
MT-D37	5-OMe, 6-CN	CC-cyclopropyl-R ₄ -CH ₃	NH	8.28	7.99
MT-D38	5-OCH₂F, 6-CN	CC-cyclopropyl-R ₄ -Cl	NH	8.28	7.99
MT-D39	5-CH ₂ CH ₃ , 6-CN	CC-cyclopropyl-R ₄ -Cl	NH	8.30	8.05
MT-D40	5-CH ₃ , 6-CN	CC-cyclopropyl-R ₄ -Cl	NH	8.10	7.85
MT-D41	5-OMe, 6-CN	CC-cyclopropyl-R ₄ -Cl	NH	8.29	7.89

บทที่ 5 สรุปและวิจารณ์

ได้ทำการศึกษาด้าน computer-aided molecular design โดยใช้การคำนวนเคมีควอนตัมใน การศึกษาคอนฟอร์เมชันของสารอนุพันธ์ efavirenz และสร้างแผนภาพพลังงานศักย์ของโมเลกุล เพื่ออธิบายสมบัติทางโครงสร้างที่สัมพันธ์กับกัมมันตภาพในการยับยั้งเอนไซม์ HIV-1 RT ผลที่ได้ ทำให้ เข้าใจถึงคอนฟอร์เมชันที่เป็นไปได้ และช่วงของความยืดหย่นทางโครงสร้าง ของ สาร อนุพันธ์อีฟาวิเร็นซ์ที่สัมพันธ์กับกัมมันตภาพของสารอนุพันธ์ได้เป็นอย่างดี และได้ใช้วิธีการ ออกแบบโครงสร้างของสารอนุพันธ์อีฟาวิเร็นซ์ 2 วิธี คือวิธี structure based drug design ซึ่งใช้ วิธีการคำนวณ molecular docking ในการศึกษาอันตรกิริยาระหว่างสารยับยั้งและโพรงการจับ (binding pocket) ของเอนไซม์การถ่ายแบบเอชไอวี-1 ทั้งชนิดดั้งเดิม (WT) และชนิดกลายพันธ์ (K103N) และ ligand-based drug design โดยใช้ระเบียบวิธี 3D-QSAR คือ วิธีวิเคราะห์เชิง เปรียบเทียบสนามโมเลกุล และ วิธีการวิเคราะห์เชิงเปรียบเทียบดัชนีความเหมือนเชิงโมเลกุลใน การอธิบายความสัมพันธ์ระหว่างตัวอธิบายโครงสร้างคือสนามสเตอริก สนามอิเล็กโตร สแตติก สนามไฮโดรโฟบิกและความสามารถในการให้และรับโปรตอนของสารประกอบที่ใช้ในการจับกับ เอนไซม์การถ่ายแบบเอชไอวี-1 และค่ากัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 ได้เป็นอย่างดี เมื่อวิเคราะห์ผลการศึกษาที่ได้จากทุกวิธีร่วมกับ Hydrophobic pocket ซึ่งเป็น บริเวณที่เกิดอันตรกิริยาระหว่างการยับยั้งเอนไซม์พบว่า ข้อมูลที่ได้จากแบบจำลองชี้ให้เห็น อย่างชัดเจนถึงความแตกต่างของโครงสร้างที่สำคัญของการยับยั้งที่ใช้ในการถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N) นอกจากนั้นแล้วผลการวิเคราะห์ที่ได้จากทุกวิธี และสอดคล้องกับข้อมูลจากการทดลองด้านการจับกันระหว่างสารยับยั้งและ สอดคล้องกัน ข้อมูลที่ได้เป็นพื้นฐานทำให้เกิดความเข้าใจและสามารถอธิบายอันตรกิริยาสำคัญ ระหว่างตัวยับยั้งและเอนไซม์ รวมทั้งเป็นข้อมูลทางโครงสร้างที่สำคัญที่ใช้ในการออกแบบ โมเลกุลตัวยับยั้งในกลุ่มอนุพันธ์อีฟาเวียเรนซ์ตัวใหม่ที่มีกัมมันตภาพสูงขึ้นในการยับยั้งเอนไซม์ การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมและชนิดกลายพันธุ์ (K103N)

ประโยชน์ที่ได้รับจากงานวิจัย

1. ผลการวิจัยนับเป็นข้อมูลพื้นฐานที่สำคัญที่ช่วยในการศึกษากลไกการออกฤทธิ์ของ สารยับยั้งเอนไซม์การถ่ายแบบเอชไอวี-1 และสามารถอธิบายอันตรกิริยาสำคัญระหว่างสาร ยับยั้งในกลุ่มอนุพันธ์อีฟาเวียเรนซ์และเอนไซม์การถ่ายแบบเอชไอวี-1 ชนิดดั้งเดิมและชนิด กลายพันธุ์ (K103N) ซึ่งการศึกษาและการทดลองในห้องปฏิบัติการในระดับโมเลกุลเป็นไปได้ ยาก

- 2. ผลการวิจัยจะเป็นแนวทางที่สำคัญในการออกแบบโครงสร้างของสารยับยั้งเอนไซม์ การถ่ายแบบเอชไอวี-1 ชนิดใหม่ที่มีประสิทธิภาพในการยับยั้งเอนไซม์ที่มีการกลายพันธุ์ ซึ่ง นับว่าจะเป็นประโยชน์ต่อการพัฒนาสารยับยั้งเพื่อใช้เป็นยาต่อไป
 - 3. เป็นการนำความรู้ทางเคมีคอมพิวเตอร์ไปประยุกต์ใช้ในทางเภสัชเคมี
 - 4.เป็นการพัฒนางานวิจัยขั้นพื้นฐานและนำไปสู่การวิจัยประยุกต์ได้ในอนาคต
 - 5. มีผลงานผยแพร่ในการประชุมวิชาการระดับชาติและระดับนานาชาติ
 - 6. มีผลงานวิจัยตีพิมพ์และเผยแพร่ในวารสารระดับนานาชาติ

ศักยภาพในการพัฒนาไปสู่ภาคอุตสาหกรรม

งานวิจัยด้านการจำลองแบบโมเลกุลโดยวิธีเคมีคอมพิวเตอร์นับเป็นส่วนสำคัญที่จะช่วย ลดขั้นตอนประหยัดเวลาและค่าใช้จ่ายในการสังเคราะห์สารในกระบวนการพัฒนายาใน ภาคอุตสาหกรรม ได้เป็นอย่างมาก ผลจากการศึกษาวิจัยนี้จะนำไปสู่การสังเคราะห์สารโมเลกุล ใหม่ที่ได้ออกแบบโครงสร้างไว้แล้ว และจากนั้นนำไปทดสอบฤทธิ์ในการยับยั้งเอนไซม์การถ่าย แบบเอชไอวี–1 และพัฒนาเป็นตัวยาในลำดับต่อไป การร่วมมือกันทางภาครัฐบาลจากกลุ่ม นักวิจัยศักยภาพสูงที่มีในประเทศไทยจากหลายสาขาที่เกี่ยวข้องทั้งทางด้าน เคมี ฟิสิกส์ ชีวเคมี เภสัชเคมี การแพทย์ และวิทยาการคอมพิวเตอร์ เป็นต้น โดยเน้นทำวิจัยใน กลุ่มเป้าหมายเดียวกัน รวมถึงการได้รับการสนับสนุนจากภาคอุตสาหกรรม จะทำให้ความ เป็นไปได้ในการพัฒนายารักษาโรคเอดส์เกิดขึ้นในประเทศไทยได้

บทที่ 6

เอกสารอ้างอิง

เอกสารอ้างอิง

- Barreca, M.L. aA. Carotti, bA. Carrieri, bA. Chimirri, A.M. Monforte, C.M. Pellegrini and aA. Rao. "Comparative Molecular Field Analysis (CoMFA) and Docking Studies of Non-nucleoside HIV-1 RT Inhibitors (NNIs)" Bioorganic & Medicinal Chemistry. 7: 2283-2292; 1999.
- Chen, H.F. B.T. Fan, C.Y. Zhao, L. Xie, C.H. Zhao, T. Zhou, K.H. Lee, G. Allaway. "Computational Studies and Drug Design for HIV-1 Reverse Transcriptase Inhibitors of 3',4'-di-O-(S)-Camphanoyl-(+)-cis-Khellactone (DCK) Analogs." Journal of Computer-Aided Molcelar Design. 19(4): 243-58; 2005.
- Chen, H.F., X.J. Yao, Q. Li, S.G. Yuan, A. Panaye, J.P. Doucet and B. Fan. "Comparative Study of Nonnucleoside Inhibitors with HIV-1 Reverse Transcriptase Based on 3D-QSAR and Docking." SAR and QSAR in Environmental Research. 14(5-6): 455-474; 2003.
- Cocuzza, A.J., D.R. Chidester, B.C. Cordova, S. Jeffrey, R.L. Parsons, L.T. Bacheler, S. Erickson-Viitanen, G.L. Trainor, S.S. Ko. "Synthesis and Evaluation of Efavirenz (Sustiva) Analogues as HIV-1 Reverse Transcriptase Inhibitors: Replacement of the Cyclopropylacetylene Side Chain." Bioorganic & Medicinal Chemistry Letters. 11(9): 1177-9; 2001.
- Corbett, J.W., S.S. Ko, J.D. Rodgers, L.A. Gearhart, N.A. Magnus, L.T. Bacheler, S. Diamond, S. Jeffrey, R.M. Klabe, B.C. Cordova, S. Garber, K. Logue, G.L. Trainor, P.S. Anderson and S.K. Erickson-Viitanen. "Inhibition of Clinically Relevant Mutant Variants of HIV-1 by Quinazolinone non-Nucleoside Reverse Transcriptase Inhibitors." Journal of Medicinal Chemistry.43(10): 2019-30; 2000.
- Corbett, J.W., S. Pan, J.A. Markwalder, B.C. Cordova, R.M. Klabe, S. Garber, J.D. Rodgers and S.K. Erickson-Viitanen. "3,3a-Dihydropyrano[4,3,2-de]quinazolin-2(1H)-ones are Potent

 Non-Nucleoside Reverse Transcriptase Inhibitors" Bioorganic & Medicinal Chemistry Letters. 11: 211-214; 2001.

- Font, M., A. Monge, I. Ruiz and B. Heras. "Structure-activity Relationships in Quinoline Reissert Derivatives with HIV-1 Reverse Transcriptase Inhibitory Activity." Drug Des Discov. 14(4): 259-72; 1997.
- Hannongbua, S., K. Nivesanond, L. Lawtrakul, P. Pungpo and P. Wolschann. "3D-Quantitative Structure-Activity Relationships of HEPT Derivatives as HIV-1 Reverse Transcriptase Inhibitors, Based on Ab Initio Calculations." Journal of Chemical Information and Computer Sciences. 41(3): 848-855; 2001.
- Hannongbua, S., P. Pungpo, J. Limtrakul and P. Wolschann. "Quantitative Structure-activity Relationships and Comparative Molecular Field Analysis of TIBO Derivatised HIV-1 Reverse Transcriptase Inhibitors." Journal of Computer-Aided Molcelar Design. 13(6): 563-577; 1999.
- Hannongbua, S., S. Prasithichokekul and P. Pungpo. "Conformational Analysis of Nevirapine, a Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor, Based on Quantum Mechanical Calculations." Journal of Computer-Aided Molcelar Design. 15(11): 997-1004; 2001.
- Hannongbua, S., V. Saen-oon, P. Pungpo and P. Wolschann. "Molecular Calculations on the Conformation of the HIV-1 Reverse Transcriptase Inhibitor (+)-(S)-4,5,6,7-Tetrahydro-8-Chloro-5-Methyl-6-(3-Methyl-2-Butenyl)-Imidazo[4,5,1-jk][1,4]
 Benzodiazepine-2(1H)-Thione (8-Chloro-TIBO)." Monatshefte Chemie. 132(10): 1157-1169; 2001.
- Heeres, J., R.J. Marc, L. Koymans, F.D. Daeyaert, M. Vinkers, A. Van, J.A. Koen, E. Arnold, K. Das, A. Kilonda, G.J. Hoornaert, F. Compernolle, M. Cegla, R.A. Azzam, K. Andries, M. Bethune, H. Azijn, R. Pauwels, P.J. Lewi, P.A.J. Janssen. "Design, Synthesis, and SAR of a Novel Pyrazinone Series with Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitory Activity." Journal of Medicinal Chemistry. 48(6): 1910-1918; 2005.
- Hopkins, A.L., J. Ren, R.M. Esnouf, B.E. Willcox, E.Y. Jones, C. Ross, T. Miyasaka, T. Walker, H. Tanaka, D.K. Stammers and D.I. Stuart. "Complexes of HIV-1 Reverse Transcriptase with Inhibitors of the HEPT Series Reveal Conformational Changes Relevant to the Design of Potent Non-Nucleoside Inhibitors." Journal of Medicinal Chemistry. 39(8): 1589-1600; 1996.
- Hsiou, Y. K. Das, J. Ding, A.D. Clark, Jr., J.P. Kleim, M. Rosner, I. Winkler, G. Riess, S.H. Hughes and E. Arnold. "Structures of Tyr188Leu Mutant and Wild-type HIV-1 Reverse Transcriptase Complexed with the Non-Nucleoside Inhibitor HBY 097:

- Inhibitor Flexibility is a Useful Design Feature for Reducing Drug Resistance." Journal of Molecular Biology. 284(2): 313-23; 1998.
- Kalyan, D., C.D. Arthur, L.J. Paul, J. Heeres, R.J. Marc, L. Koymans, V.H. Maarten, D. Frederik, L.W. Donald, K.J. Michael, C. Bart, K.W. Robert, H.Y. Chih, Y. Hong, L.A. Mark, A. Koen, P. Rudi, B. Marie-Pierre, B.L. Paul, C. Patrick, H.H. Stephen, J.A.J. Paul and E. Arnold. "Roles of Conformational and Positional Adaptability in Structure-based Design of TMC125-R165335 (Etravirine) and Related Non-Nucleoside Reverse Transcriptase Inhibitors that are Highly Potent and Effective Against Wild-type and Drug-Resistant HIV-1 Variants." Journal of Medicinal Chemistry. 47(10): 2550-60; 2004.
- Kroeger, S., C.A. Rouzer, L.A. Taneyhill, N.A. Smith, S.H. Hughes, P.L. Boyer, P.A. Janssen, H. Moereels, L. Koymans, E. Arnold and et al. "Molecular Modeling Studies of HIV-1 Reverse Transcriptase Nonnucleoside Inhibitors: Total Energy of Complexation as a Predictor of Drug Placement and Activity." The Protein Society. 4(10): 2203-22; 1995.
- Lawtrakul, L., S. Hannongbua, A. Beyer And P. Wolschann. "Conformational Study of the HIV-1 Reverse Transcriptase Inhibitor 1-[(2-Hydroxyethoxy)Methyl]-6-(Phenylthio)Thymine (HEPT)." Biol Chem. 380(2): 265-7; 1999.
- Markwalder, J.A., D.D. Christ, A. Mutlib, B.C. Cordova, R.M. Klabe, S.P. Seitz. "Synthesis and Biological Activities of Potential Metabolites of the non-Nucleoside Reverse Transcriptase Inhibitor Efavirenz." Bioorganic & Medicinal Chemistry Letters. 11(5): 619-22; 2001.
- Martino, G.D., G.L. Regina, A.D. Pasquali, R. Ragno, A. Bergamini, C. Ciaprini, A. Sinistro, G. Maga, E. Crespan, M. Artico and R. Silvestri. "Novel 1-[2-(diarylmethoxy)Ethyl]-2-Methyl-5-Nitroimidazoles as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. A Structure-activity Relationship Investigation." Journal of Medicinal Chemistry. 48: 4378-4388; 2005.
- Medina-Franco, J.L., S. Rodriguez-Morales, C.J. Gordiano, A.H. Campos, J.J. Barberob and R. Castilloa. "Flexible Docking of Pyridinone Derivatives into the Non-Nucleoside Inhibitor Binding Site of HIV-1 Reverse Transcriptase." Bioorganic & Medicinal Chemistry Letters. 12(23): 6085-95; 2004.
- Medina-Franco, J.L., S. Rodriguez-Morales, C. Juarez-Gordiano, A. Hernandez-Campos and R. Castillo. "Docking-based CoMFA and CoMSIA Studies of Non-Nucleoside

- Reverse Transcriptase Inhibitors of the Pyridinone Derivative Type." Journal of Computer-Aided Molcelar Design. 18(5): 345-360; 2004.
- Mei,Y. X. He, Y. Xiang, W. Zhang and J.Z. Zhang. "Quantum Study of Mutational Effect in Binding of Efavirenz to HIV-1 RT." Proteins. 59(3): 489-95; 2005.
- Patel, M., R.J. McHugh, Jr., B.C. Cordova, R.M. Klabe, S. Erickson-Viitanen and G.L. Trainor. And J.D. Rodgers. "Synthesis and Evaluation of Quinoxalinones as HIV-1 Reverse Transcriptase Inhibitors." Bioorganic & Medicinal Chemistry Letters. 10(15): 1729-31; 2000.
- Patel, M., R.J. McHugh, Jr., S.S Ko, B.C. Cordova, R.M. Klabe, S. Erickson-Viitanen and G.L. Trainor. "Synthesis and evaluation of benzoxazinones as HIV-1 reverse transcriptase inhibitors. Analogs of Efavirenz (SUSTIVA)." Bioorganic & Medicinal Chemistry Letters. 9(22): 3221-4; 1999.
- Patel, M., S.S Ko, R.J. McHugh, Jr., J.A. Markwalder, A.S. Srivastava, B.C. Cordova, R.M. Klabe, S. Erickson-Viitanen, G.L. Trainor and S.P. Seitz. "Synthesis and Evaluation of Analogs of Efavirenz (SUSTIVA) as HIV-1 Reverse Transcriptase Inhibitors." Bioorganic & Medicinal Chemistry Letters. 9(19): 2805-10; 1999.
- Pungpo, P. and S. Hannongbua. "Three-Dimensional Quantitative Structure-activity Relationships Study on HIV-1 Reverse Transcriptase Inhibitors in the Class of Dipyridodiazepinone Derivatives, using Comparative Molecular Field Analysis." J Mol Graphics & Modelling. 18(6): 581-590; 2000.
- Pungpo, P., S. Hannongbua and P. Wolschann. "Hologram Quantitative Structure-activity Relationships Investigations of Non-Nucleoside Reverse Transcriptase Inhibitors." Curr Med Chem. 10(17): 1661-77; 2003.
- Ragno, R., A. Mai, G. Sbardella, M. Artico, S. Massa, C. Musiu, M. Mura, F. Marturana, A. Cadeddu and P.L. Colla. "Computer-aided Design, Synthesis, and Anti-HIV-1 Activity in Vitro of 2-Alkylamino-6-[1-(2,6-Difluorophenyl)Alkyl]-3,4-Dihydro-5-Alkylpyrimidin-4(3H)-Ones as Novel Potent Non-Nucleoside Reverse Transcriptase Inhibitors, also Active Against the Y181C Variant." Journal of Medicinal Chemistry. 47(4): 928-34; 2004.
- Ragno, R., M. Artico, G.D. Martino, G.L. Regina, A. Coluccia, A.D. Pasquali and R. Silvestri. "Docking and 3-D QSAR Studies on Indolyl Aryl Sulfones. Binding Mode Exploration at the HIV-1 Reverse Transcriptase Non-Nucleoside Binding Site and Design of Highly Active N-(2-Hydroxyethyl)carboxamide and N-(2-

- Hydroxyethyl)carbohydrazide Derivatives." Journal of Medicinal Chemistry. 48: 213-223; 2005.
- Ranise, A., A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M.L. Colla, G. Sanna, M. Murreddu, G. Collu, B. Busonera, M.E. Marongiu, A. Pani, P.L. Colla and R. Loddo. "Structure-Based Design, Parallel Synthesis, Structure-Activity Relationship, and Molecular Modeling Studies of Thiocarbamates, New Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor Isosteres of Phenethylthiazolylthiourea Derivatives." Journal of Medicinal Chemistry. 48(11): 3858-3873; 2005.
- Ren, J., J. Milton, K.L. Weaver, S.A. Short, D.I. Stuart and D.K. Stammers. "Structural Basis for the Resilience of Efavirenz (DMP-266) to Drug Resistance Mutations in HIV-1 Reverse Transcriptase." Structure. 8(10): 1089-94; 2000.
- Saenoon, S., S. Hannongbua and P. Wolschann. "Structural Flexibility of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor: 9-Cl TIBO as Explained by Potential Energy Surface and 13C and 1H NMR Calculations, Based on ab initio and Density Functional Study." Journal of Chemical Information and Computer Sciences. 43(5): 1412-1422; 2003.
- Saparpakorn, P., S. Hannongbua and D. Rognan. "Design of Nevirapine Derivatives Insensitive to the K103N and Y181C HIV-1 Reverse Transcriptase Mutantsdagger" SAR and QSAR in Environmental Research. 17(2): 183-94; 2006.
- Sudbeck, E.A., C. Mao, R. Vig, T.K. Venkatachalam, L. Tuel-Ahlgren and F.M. Uckun. "Structure-based Design of Novel Dihydroalkoxybenzyloxopyrimidine (DABO) Derivatives as Potent Non-Nucleoside Inhibitors of HIV Reverse Transcriptase." Book of Abstracts, 216th ACS National Meeting, Boston. 1998.
- Vig, R., C. Mao, T.K. Venkatachalam, L. Tuel-Ahlgren, E.A. Sudbeck. and F.M. Uckun. "Rational Design and Synthesis of Phenethyl-5-Bromopyridyl Thiourea Derivatives as Potent Non-Nucleoside Inhibitors of HIV Reserve Transcriptase." Bioorganic & Medicinal Chemistry. 6(10): 1789-97; 1998.

ภาคผนวก

ผลงานวิจัย

1. ผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ

- 1. **P.Pungpo**, A. Punkvang, P.Saparpakorn and S. Hannongbua, Understanding the interaction and the structure–activity correlation of HIV-1 RT inhibitors of efavirenz derivatives and WT and K103N HIV-1 RT using molecular docking, 3D-QSAR approaches and quantum chemical calculations, accepted for publication as a chapter in Drug design perspective trends, Nova publisher, USA.
- 2. Beyer, A., Lawtrakul, L., **Pungpo, P.** and Wolschann, P. Structural Aspects of Non-nucleoside HIV-1 Reverse Transcriptase Inhibition, *Current Computer Aided Drug Design*, 2007, 3,341-352.
- Recent advances in NNRTI design : Computer aided molecular design approaches, submitted for publication.
- 4. Insight into the binding Interactions and structural resilience of efavirenz derivatives in WT and K103N HIV-1 RT, based on the molecular docking calculations and conformational Analysis , manuscript preparation.
- 2. ผลงานวิชาการอื่น ๆ (เช่น Proceeding ตำรา ฯลฯ)
 การเสนอผลงานวิจัยในการประชุมวิชาการระดับนานาชาติ
- 1. **Pungpo**, **P.**, Pankwang, O., Saparpakorn, P., Wolschann, P. and Hannongbua, S. Theoretical investigations on potent HIV-1 reverse transcriptase inhibitors of efavirenz analogues by using conformational analysis, molecular docking and 3D-QSAR studies, the XIIth International Congress of Quantum Chemistry (XII-ICQC2006), 21-26 May, 2006, Kyoto, Japan.
- 2. **Pungpo P.,** Saparpakorn, P., Wolschann, P. and Hannongbua, S., Computer-aided inhibitor design of highly potent HIV-1 RT inhibitors: 3D QSAR studies and molecular

docking studies of efavirenz derivatives, 3rd International Symposium Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, 29 October-1 November 2005, Shanghai, China.

- 3. **Pornpan Pungpo**, Oradee Pankwang, Patchreenart Saparpakorn and Supa Hannongbua, Understanding the interaction and the structure–activity correlation of efavirenz derivatives and WT and K103N HIV-1 RT by molecular docking and 3D-QSAR approaches, *Proceedings of The 8th International Meeting "Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases*, 2006.
- Pornpan Pungpo, Auradee Punkvang, Patchreenart Saparpakorn and Supa Hannongbua. Molecular Docking Calculation and Conformational Analysis of HIV-1 RT Inhibitors of Efavirenz Derivatives. German-Thai Symposium on Nanoscience and Nanotechnology. 26-28 September 2007, chonburi, Thailand.
- 5. **Pornpan Pungpo**, Auradee Punkvang, Patchreenart Saparpakorn and Supa Hannongbua. Insights into the structural requirements of efavirenz derivatives as highly potential anti-HIV-1 agents based on molecular docking, 3D-QSAR studies and quantum chemical calculations. *German-Thai Symposium on Nanoscience and Nanotechnology*. 26-28 September 2007, chonburi, Thailand.

การไปเสนอผลงานวิจัยในการประชุมวิชาการระดับชาติ

- Pungpo P., Saparpakorn, P., Wolschann, P. and Hannongbua, S., Inhibitory models of efavirenz derivatives active against K103N HIV-1 RT by molecular docking and 3D QSAR analyses, The 10th Annual National Symposium on Computational Science and Engineering (ANSCSE10), 22-24 March, 2006, ChaingMai University, ChaingMai, Thailand.
- 2. Pornpan Pungpo, Auradee Punkvang, Patchreenart Saparpakorn and Supa Hannongbua. A Combined Approach of Docking and 3D QSAR Studies of Efavirenz Derivatives as Highly Potent HIV-1 RT Inhibitors. The 11th Annual National Symposium on Computational Science and Engineering. 28-30 March, 2007, Phuket, Thailand.
- 3. **Pornpan Pungpo**, Oradee Pankwang, Patchreenart Saparpakorn and Supa Hannongbua, IDENTIFICATION OF BINDING AND INTERATCTION FOR HIV-1

RT INHIBITORS IN THE CLASS OF EFAVIRENZ DERIVATIVES IN THE BINDING POCKET OF WT AND K103N HIV-1 RT BY USING MOLECULAR DOCKING STUDIES, Proceedings of The first annual symposium of Protein Research Society of THAILAND "Challenges in Protein Research in Thailand", 2006.

- 4. Auradee Punkvang, Patchreenart Saparpakorn, Supa Hannongbua and **Pornpan Pungpo**. Conformational Analysis of HIV-1 Reverse Trancriptase Inhibitor (S)-6-Chloro–4-(Cyclopropylethenyl)-1,4–Dihydro-4-(Trifluoromethyl)-2H-3,1-Benzoxazin-2-One (Efavirenz) and Its Derivtives, by Using Quantum Chemical Calculations. *The* 32nd Congress on Science and Technology of Thailand, October, 10-12, 2006, Bangkok, Thailand.
- 5. Auradee Punkvang, Patchareenart Saparpakorn, Songwut Suramitr, Supa Hannongbua and Pornpan Pungpo Molecular modeling and computer-aided molecular design of highly potent HIV-1 Reverse Trancriptase Inhibitors in the class of efavirenz derivatives. The 33rd Congress on Science and Technology of Thailand, October, 18-20, 2007, Nakornsrithumrat, Thailand

Understanding the interaction and the structure-activity correlation of HIV-1 RT inhibitors of efavirenz derivatives and WT and K103N HIV-1 RT using molecular docking, 3D-QSAR approaches and quantum chemical calculations

Pornpan Pungpo^{1*}, Auradee Punkvang¹, Patchreenart Saparpakorn² and

Supa Hannongbua²

¹Faculty of Science, Ubonratchathani University, Ubonratchathani, Thailand, 34190

²Faculty of Science, Kasetsart University, Bangkok, Thailand, 10900

Molecular docking and 3D-QSAR analyses were performed to understand the interaction between a series of efavirenz derivatives with WT and K103N HIV-1 RT. To model the potential binding modes of efavirenz derivatives in the binding pocket of WT and K103N HIV-1 RT, molecular docking approaches by using GOLD and Autodock 3.05 programs were performed. The results show that the docking results obtained from both methods reveal a good ability to reproduce the X-ray bound conformation with rmsd less than 1.0 Å for both WT and mutant enzymes. The docking calculations of all efavirenz derivatives in the data set were, consecutively, performed to elucidate their orientations in the binding pockets. The results derived from docking analysis give additional information and further probes the inhibitor-enzyme interactions. The correlation of the results obtained from docking models and the inhibitory activities validate each other and lead to better understanding of the

structural requirements for the activity. Therefore, these results are informative to improve the development of more efficient HIV-1 RT inhibitors, especially, active against mutant enzyme. Based on the molecular alignment of conformations obtained from molecular docking procedures, the high predictive 3D-QSAR models were produced by using CoMFA and CoMSIA approaches. The CoMFA models reveal the importance of steric and electrostatic interactions through contour maps. The resulting CoMSIA models enhance the understanding of steric, electrostatic, hydrophobic, electron donor and acceptor requirements for ligands binding to the K103N HIV-1 Moreover, quantum chemical calculations were carried out to analyze the RT. interaction energies of the selected inhibitors with the individual amino acids in the binding pocket. The obtained results show the important interactions of inhibitors with the enzyme at the residue level. Consequently, the results obtained from structure-based, ligand-based design approaches and quantum chemical calculations can be integrated to identify the structural requirements of HIV-1 RT inhibitors in the class of efavirenz compounds. The principle derived from the present study provides a gainful guideline to design and predict new and more potent compounds active against WT and K103N HIV-1 RT.

INTRODUCTION

Human immunodeficiency virus type-1 (HIV-1) is the primary etiological agent of the Acquired Immune Deficiency Syndrome (AIDS). HIV-1 reverse transcriptase (RT) plays an essential role for virus replication from single-stranded RNA viral genome into a double-stranded proviral DNA. As RT is virus specific and acting before viral integration into the host chromosome, it is an attractive target for several antiviral

therapeutic agents used for current anti-HIV therapy. Over the past decade, numerous HIV-1 RT inhibitors have been developed and classified into two major classes [1,2]. The nucleoside RT inhibitors (NRTI) such as AZT, ddC and ddI have been widely used to treat AIDS patients. NRTI are attractive drug candidates in that their binding site is unique to HIV-1 RT. Thus these derivatives are high cellular toxicity and several side effects result from the disruption of normal DNA polymerase activity. The other class of HIV-1 RT inhibitors is the non-nucleosides RT inhibitors (NNRTI). NNRTI are highly specific for HIV-1 RT by binding an allosteric site in a noncompetitive manner with respect to the substrate and displacing the polymerase active site catalytic residues [3]. The NNRTI have been classified into first and second generation NNRTI. The first generation NNRTI such as HEPT, TIBO and dipyridodiazepinone or nevirapine [4] are much less toxic than the NRTI. However, a serious problem with the NNRTI is the emergence of drug-resistant variants of HIV-1, both in cell culture and in patients, leading to the decreased therapeutic efficacy of NNRTI [5,6]. The primary cause of this viral resistance to NNRTI is the mutation of the enzyme, which changes the shape of the pocket, where most of the reported NNRTI are bound [7]. A Common features among these are mutations of Y181C, Y188C and K103N which confer some degree of resistance to all of the NNRTI [8,9]. In clinical trials and therapeutic use of NNRTI, the most commonly observed mutation within RT is K103N [10]. Therefore, the second generation NNRTI such as efavirenz, carboxanilides, and quinoxalines is identified and discovered for high binding affinity in both the absence and presence of specific mutations. The second generation NNRTI have a more favorable resistance profile, showing small losses of activity against many common drug-resistance mutation.

Efavirenz, (-)-6-chloro-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2*H*-3,1-benzoxazin-2-one, is one of 20 anti-HIV drugs approved for clinical use [11]. Although HIV-1 infection is generally well controlled by efavirenz-containing regimens, one of the difficulties encountered clinically during antiviral therapy has been the emergence of resistance mutant viral forms. 90% of patients who have rebounded after efavirenz-inclusive HAART possess the K103N mutation [12]. Like other NNRTI, the K103N mutation is the most frequent mutation observed within RT resulting from the therapeutic interventions involving NNRTI [13-15]. Since the current available drug could not cover enough to completely eradicate HIV within the AIDS patients, to provide the optimum chemical benefit, the inhibitor-enzyme interactions and the structure–activity correlation of efavirenz derivatives and the WT and K103N HIV-1 RT are necessary to identify.

There is considerable interest in SAR investigations of efavirenz derivatives [16-24]. Moreover, the X-ray crystallographic structures of efavirenz in complex with both wild-type and K103N HIV-1 RT were determined leading to an understanding of some structural factors that confer resilience to drug-resistance mutation [25-26]. Molecular modeling and computer-aided molecular design approaches have been applied to develop informative models for rational drug design. A review about the structural information and drug–enzyme interaction of the NNRTI based on computational chemistry approaches has been recently reported [27]. Moreover, the activity prediction of efavirenz analogues with the K103N RT was examined by MC/ELR calculations identifying controlling factors for binding with K103N mutant [28]. The effect of the K103N mutation of HIV-1 RT on the activity of efavirenz analogues was studied via MC/FEP calculations. The relative fold resistance energies

indicate that efavirenz binds to K103N RT in a manner similar to the wild-type enzyme. The improved performance of the quinazolinones against the mutant enzyme is attributed to formation of a more optimal hydrogen-bonding network with bridging water molecules between the ligands and E138 [29]. A series of targeted MD simulations were studied on the effect that the common K103N mutation in HIV-1 reverse transcriptase has on the binding of NNRTI, including efavirenz [30]. The obtained results suggest that resilience to the insidious effects of the irksome K103N mutation can be attained by designing ligands that are able to disrupt the N103 -Y188 interaction. Molecular mechanics PBSA ligand binding energy and interaction of efavirenz derivatives with HIV-1 RT were studied based on molecular docking and MD simulations [31]. The results indicate that the tight association of the ligand to the HIV-1 RT binding pocket was based on hydrogen bonding between efavirenz's N1 and the oxygen of backbone of K101. Moreover, electrostatic interaction was mainly contributed by two amino acid residues in the binding site; K101 and H235. The hypothetical 3D pharmacophore model for NNRTI was developed by using a combined ligand- and structure-based molecular modeling approach [32]. The obtained information leads to the design and synthesis a new potential class of NNRTI.

As the X-ray crystallographic data of HIV-1 RT complexed with NNRTI are available, it is possible to apply structure-based drug design techniques using molecular docking calculations to predict the potential binding mode of ligand in a receptor binding site and also yield important information for other ligands binding to the same target [27,33-41]. The docking analysis provides additional structural information and further probes the interactions of inhibitors and the HIV-1 RT

binding site. Three dimensional quantitative structure-activity relationship (3D-QSAR) method by using comparative molecular field analysis (CoMFA) [42] and comparative molecular similarity indices analysis (CoMSIA) [43] are highly active areas of research in drug design. A number of QSAR studies were reported to identify important structural features responsible for the inhibition by NNRTI [27,37,38, 44-49]. As the molecular alignment is a crucial step to a successful 3D-QSAR model by CoMFA and CoMSIA, the alignment scheme generated from the docking study shows a promising molecular alignment producing reliable QSAR models for the NNRTI [38, 50-52].

Recently, quantum chemical calculations were successfully used to calculate the interaction energies and the binding energies of the NNRTI, such as TIBO and nevirapine derivatives, in the HIV-1 RT binding pocket. These results reveal the effects of surrounding amino acid residues to the NNRTI [53, 54]. Based on the B3LYP/6-31G(d,p) and ONIOM2 methods, particular interaction between efavirenz and the HIV-1 RT binding site was investigated. The stability of this complex system indicates that hydrogen bond interactions play an important role in the bound efavirenz/HIV-1 RT complex [55]. The calculated interaction energies using MP2/6-31G(d,p) level of theory could confirm the new designed nevirapine derivatives having the hydrogen bond interaction either N103 or C181 amino acid residues [36]. The results are in agreement with the previous study reported that density functional method can not handle for the H- π interaction calculation, whereas MP2 method of calculations has taken into account the H- π interaction [54].

In the present study, structure-based drug design approaches using molecular docking calculations were performed to explore the potential binding mode of

efavirenze derivatives in the WT and K103N binding pockets and to elucidate the inhibitor-enzyme interaction of the inhibitors in the corresponding binding sites. Then, the binding conformations obtained from docking calculations were subjected to 3D-QSAR studies by using CoMFA and CoMSIA approaches to determine the different structural requirements for the WT and K103N inhibition activities. Additionally, quantum chemical calculations were carried out to calculate the interaction energies of selected inhibitors with the individual amino acid residues in the binding pockets.

METHODS OF CALCULATION

Biological data

The chemical structures of various efavirenz derivatives and their inhibitory activities against both wild type (WT RT) and mutant type (K103N) are reported [19, 20, 22]. All presented biological data are from the same laboratory and were estimated under the same experimental conditions. The potency has been defined as log (1/C), where C is the ability of efavirenz derivatives to inhibit wild-type and K103N RF strain of HIV-1 (IC₉₀) [56]. In the present analysis, 56 efavirenz derivatives were separated into two groups; 49 compounds served as the training set and 7 compounds serve as the test set, sampling from structurally diverse molecules possessing various range of logarithm unit of activities, reported in Table 1.

Molecular modeling

As the availability of enzyme-inhibitor complexes (pdb codes 1fk9 and 1fko for the efavirenz/WT HIV-1 RT complex and the efavirenz/K103N HIV-1 RT complex, respectively), the starting geometries of efavirenz structures are obtained from the crystallographic structures [25]. All efavirenz derivatives were constructed and modified by ALCHEMY 2000 program [57]. Then, full geometry optimization, based on *ab-initio* molecular orbital method at the HF/3-21G level of theory, of all structures was carried out. The calculations were performed by the GAUSSIAN 03 program [58]. Partial atomic charges required for the calculations of the electrostatic interactions were then derived.

Docking Study

To investigate the potential binding modes of efavirenz derivatives, all derivatives were docked to WT (pdb code 1fk9) and K103N (pdb code 1fko) HIV-1 RT by using docking programs. Two docking programs, GOLD [59] and Autodock 3.05 [60], were applied to determine the ability of these programs for reproducing the efavirenz's X-ray orientation in its binding pocket for the efavirenz/RT complexes of WT and K103N mutation. GOLD (Genetic Optimization for Ligand Docking) is a docking method using a genetic algorithm (GA) for docking flexible ligands into protein binding sites. In this study, GA parameters were set to 7-8 times speed-up setting. The number of chromosome in each population and the number of operation were set to 100 and 10,000, respectively. Docked conformation which is the highest GoldScore was selected. Autodock 3.05 keeps the macromolecule rigid, while allows torsional flexibility for the ligand. Docking ligand to macromolecule was carried out

using Lamarckian Genetic Algorithm (LGA), with an initial population of 50 randomly placed individuals. Fifty independent docking runs were carried out for each ligand. Docked conformation represented the lowest final docked energy was selected. The root-mean-square deviation (rmsd) of the top-scored pose from the X-ray pose was used to determine the validation of the docking methods.

Molecular Alignment and CoMFA and CoMSIA set up

The alignment rule, i.e., the positioning of the molecular structure within a fixed lattice, is the key to successfully set up CoMFA and CoMSIA models. For these reasons, in the present study, the molecular alignments derived from the molecular docking procedures were used to construct CoMFA and CoMSIA models.

To obtain CoMFA and CoMSIA descriptors fields, a three dimensional cubic lattice, with 2 Å grid spacing, was generated automatically around these molecules and it was ensured that the grid extended the molecular dimensions by 4.0 Å in all directions, performed by Sybyl 7.0 [61]. CoMFA descriptors were computed using a sp³ carbon atom with +1 charge (default probe atom in Sybyl), served as the probe atom to generate steric (Lennard–Jones 6-12 potential) field energies and electrostatic (Coulombic potential) fields. The probe atom was placed at each lattice point and their steric and electrostatic interactions with each atom in the molecule were all calculated with CoMFA standard scaling and then compiled in a CoMFA QSAR table. The energy cutoff values of 30 kcal/mol were selected for both electrostatic and steric fields.

CoMSIA similarity index descriptors were derived with the same lattice box as used for the CoMFA calculations, with a grid spacing of 2 Å using a common C probe atom of 1 Å radius, as well as a charge. CoMSIA similarity indices $(A_{F.K})$ for a molecule j with atoms i at a grid point are calculated according to the following equation;

$$A_{F,k}^{q}(j) = \sum_{i=1}^{n} w_{probe,k} w_{ik} e^{-c\alpha r_{iq}^{2}}$$

Five physicochemical properties k (steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor) were evaluated using the probe atom. A Gaussian-type distance was used between the grid point q and atom i of the molecule. The default value of 0.3 was used as the attenuation factor (∞). In CoMSIA, the steric indices are related to the third power of the atomic radii, the electrostatic descriptors are derived from atomic partial charges, the hydrophobic fields are derived from atom-based parameters [62]. and the hydrogen donor and acceptor indices are obtained by the rule-based method derived from the experimental values [63].

The CoMFA and CoMSIA descriptors were used as independent variables and log (1/C) values were used as dependent variables to derive the 3D QSAR model. Partial least square technique (PLS) was employed to derive a linear relationship and cross-validation was performed using the leave-one-out method with a 2.0 kcal/mol column filter to minimize the influence of the noisy columns. The analyses were carried out with a maximum of six components, and subsequently, using the number of component (noc) at which the difference in the r_{cv}^2 value to the next one was less

than 0.05 [64]. Consequently, a non cross-validated analysis was performed using the optimal number of components previously identified and was then employed to analyze the results.

Predictive ability

 Q^2 or r^2_{cv} values were used to evaluate the overall predictive ability of the model. r^2_{cv} is calculated according to the following equation;

$$r^2_{cv} = (SSY - PRESS)/SSY$$

where SSY represents the variance of the biological activities of molecule around the mean value and PRESS is the prediction error sum of squares derived from the leave-one-out method. The uncertainty of the prediction is defined as;

$$S_{PRESS} = [PRESS/(n-k-1)]^{1/2}$$

where k is the number of variables in the model and n is the number of compounds used in the study.

Interaction Energy Calculations

For clearly elucidate the interaction of efavirenz derivatives in the binding pocket, the individual interaction between some derivatives and the surrounding amino acid in the WT and K103N binding pocket are investigated by using quantum chemical calculations. In this study, X-ray structure of efavirenz, docked conformation of efavirenz (compound 01), compounds which have the highest and less activity against WT RT (compounds 25 and 12), and compounds which have the highest and the less activity against K103N RT (compounds 50 and 22) are selected to

calculate their interaction energies formed with the surrounding amino acids in the WT and K103N binding pocket. The geometries of the 14 amino acids surrounding within 6 Å from efavirenz are taken from the protein structures, which are starting geometries for docking. Each amino acid is terminated with hydrogen atoms. Compound with each amino acid are then performed single point calculation at B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory by using Gaussian03 program. The interaction energy (INT) of the compound with each amino acid is defined as follows:

INT =
$$E_{\text{(compound + each amino acid)}} - [E_{\text{(compound)}} + E_{\text{(each amino acid)}}]$$

Where $E_{(compound + each\ amino\ acid)}$ is the energy of the complex structure between compound and each amino acid. $E_{(compound)}$ and $E_{(each\ amino\ acid)}$ are the energies of compound and each amino acid, respectively.

RESULTS AND DISCUSSION

Docking analysis

Validation of the docking method

Two docking methods, GOLD and Autodock, were applied to dock the efavirenz compound back into the WT and K103N HIV-1 RT binding pockets. The rmsd values of the docked posed from the X-ray pose of efavirenz obtained from GOLD method are 0.94 Å and 1.0 Å for WT and K103N RT binding pocket, respectively. Based on Autodock results, the rmsd values are 0.35 Å and 0.53 Å for WT and K103N RT binding pocket, respectively, reported in Table 2. The results show that both methods reveal a good ability to reproduce the X-ray bound conformation with rmsd less than

1.0 Å for both WT and mutant enzymes. The binding mode of the docked efavirenz shows a very similar interaction with the X-ray crystallographic structure, depicted in Figure 1. Therefore, GOLD and Autodock programs with the used parameters could be extended to search and evaluate the binding conformations of efavirenz derivatives in the corresponding binding pockets.

Docking analysis of efavirenz derivatives in the binding pocket.

To evaluate the binding orientation of efavirenz derivatives in the WT and K103N HIV-1 RT binding pocket, 56 efavirenz compounds, shown in Table 1, were docked into the binding pocket using GOLD and Autodock methods. The docked orientations of all efavirenz derivatives are laid to be similarly butterfly like shape as the efavirenz compound in the corresponding binding pocket, as shown in Figure 2. It shows that the common ring structures of all derivatives were well superimposed each other. To elucidate the potential binding mode of compounds in the binding pocket relating to their inhibitory activities, the docked results of highest and less active compounds against both WT and K103 N HIV-1 RT were considered. Comparing with the X-ray pose orientation of efavirenz, the docked conformations of compounds 25 and 12, the highest and less active compounds against WT HIV-1 RT, respectively, are depicted in Figure 3. The docked conformations of compound 25 produced from both docking methods show similar orientation in the WT binding pocket. The conformations could form the hydrophobic interaction between the cyclopropyl group and the hydrophobic pocket of Y181, Y188 and W229, whereas the bulky alkoxy group of compound 12 may lead to conflict with these amino acids. The hydrogen bond between 6-H position of the benzoxazin-2-one ring with carbonyl group of backbone H235 could be possibly formed, instead of the Van der waals interaction of 6-Cl in efavirenz. Moreover, there is possibility for the Van der waals interaction between 5-F of the ring and V106. This may explain why compounds 25 and 12 shows higher potency and less potency against WT HIV-1 RT comparing with efavirenz compound, respectively. Figure 4 shows the docked conformation of compound 25 in the K103N HIV-1 RT. The conformation reveals that the intermolecular hydrogen bond of hydrogen atom with H235 was eliminated. Moreover, the hydrophobic interaction between the cyclopropyl group with the Y181, Y188 and W229 was lost. This information obtained from docking conformations is in agreement with the experimental results that compound 25, showing the highest potency for WT HIV-1 RT inhibition, has diminished activity against K103N HIV-1 RT.

The docked conformations of compounds 50 and 22, the highest and less active compounds against K103N HIV-1 RT, were further analyzed. The docked conformations obtained from GOLD and Autodock methods comparing with the X-ray pose orientation of efavirenz are shown in Figure 5. Numerous favorable interactions found for compound 50 are described as follows. The Van der waals interaction could be formed between methoxy group substituted at C5 position of the benzoxazin-2-one ring and the sidechain of L234, F227 and Y188. There are additional Van der waals interaction between 6-Cl and the sidechain of L234, V106. The hydrophobic interaction between the cyclopropyl group with the aromatic sidechain of Y188 and W229 could be formed. It is interesting to note that the hydrogen atom attached to the nitrogen atom on the Z substituent could increase hydrogen-pi $(H-\pi)$ interaction with the aromatic sidechain of Y181, whereas

compound 22 and efavirenz could not be found these interactions. Moreover, compound 22 with smaller substituents made the loss of the hydrophobic interactions with the aromatic ring of W229. These results may explain why compound 50 shows the highest activity and compound 22 has less inhibitory activity against K103N HIV-1 RT. It is interesting to note that, for compound 50, the docked conformation in the WT binding reveals the possibility of the hydrogen bond formation. The Van der waals interactions could be also found. Although the H- π interaction was eliminated in the pocket, the cyclopropyl group could match more to the hydrophobic pocket of Y188, W229 and Y181 in the WT binding pocket as show in Figure 6. This may be the reason that compound 50 shows excellent inhibition against both WT and K103N HIV-1 RT.

Molecular docking approaches successfully prove as powerful tools to determine the potential binding mode and to elucidate inhibitor-enzyme interactions of efavirenz compound and its derivatives in the HIV-1 RT binding pocket. The important interactions of efavirenez derivative active against the WT and K103N HIV-1 RT can be drawn as follows. With respect to the WT HIV-1 inhibition, the hydrogen bond between the polar atom (H and oxygen carbonyl) on benzoxazin-2-one ring with the main sidechains of H235, K101 and P236 are favorable to enhance the inhibitory activity. In particular, the additional hydrogen bond at 6-substituent position seems to be important to active against HIV-1 RT. Another important interaction of WT HIV-1 RT inhibitors is the hydrophobic interaction between the R substituent attached to C4 on benzoxazin-2-one ring with the side chains of Y181, T188 and W229. It should be noted that regarding the K103N HIV-1 RT, the hydrogen-π interaction of the NH group on Z position with the aromatic side chain of

Tyr181, the Van der waals interactions on 5,6-substituent position with surrounding amino acid residues (F227, V106, L234 and Y188) and the hydrophobic interactions of the R group on benzoxazin-2-one ring with the aromatic side chain of W229 and Y188 serve as significant interactions for the particular inhibition.

The docked conformations of efavirenz derivatives derived from GOLD and Autodock methods reveal very similar orientations in the WT and K103N RT binding pockets. However, based on lower rmsd of the docked pose from the X-ray pose of efavirenz, the docked conformations derived from Autodock method has been selected for further study on 3D-QSAR analysis and interaction energy estimation using quantum chemical calculations.

QSAR Analysis

The conformation with the lowest final docked energy was selected for the structural alignment in 3D-QSAR analyses. CoMFA and CoMSIA studies were applied to determine relationships between structural properties and HIV-1 inhibitions, based on the docked conformations.

CoMFA models

Two different types of biological activities were considered, WT and K103N HIV-1 RT inhibitory activities. The models obtained from the analyses include steric and electrostatic field contributions. The statistical parameters of CoMFA models of compounds are summarized in Table 3. Regarding WT HIV-1 RT inhibition, the best predictive ability QSAR model with r_{cv}^2 of 0.662, s-press = 0.145 and noc = 3, is obtained. The steric and electrostatic contributions of this model are 63.8 % and 36.2 %, respectively. Other statistical results of the best CoMFA model are the

conventional r^2 ($r^2 = 0.936$) and the standard error of estimation (0.066). F is 83.441 and the probability (P) of obtaining this value of F if r^2 is actually zero (probability of $r^2 = 0$) is lower than 0.001. The plot between predicted and experimental WT HIV-1 RT inhibitory affinities of the non-cross-validated analysis of the model is presented in Figure 7a.

For further analysis, the CoMFA results with respect to K103N HIV-1 RT inhibition were investigated. The high predictive model with r^2_{cv} of 0.755, s-press = 0.302 and noc = 6, is produced, shown in Table 3. The model has 51.2 % contribution from the steric field and 48.8 % contribution from electrostatic field, showing approximately equal contributions for explanation of the K103N inhibitory activities. The statistical parameters obtained are that the conventional r^2 is 0.944, the standard error of estimation is 0.144, F is equal to 107.318 and the probability (P) of obtaining this value of F if r^2 is actually zero (probability of r^2 = 0) is lower than 0.001. The plot between predicted and experimental K103N HIV-1 RT inhibitory affinities of the non-cross-validated analysis of the model is presented in Figure 7b.

Prediction for compounds in the test set

As the obtained CoMFA models, listed in Table 3, show reasonable predictive power for WT and K103N RT inhibition, both models were used to predict the inhibitory activities of 7 efavirenz derivatives in the test set. The comparison of predicted and observed biological activities of these compounds is listed in Table 5 and plotted in Figures 7a and 7b, respectively. Based on the residual value, the inspection of the data reveals the usefulness of the models for the prediction of the activities of the efavirenz compounds which are not included in the training set.

CoMSIA analysis

The results of CoMSIA studies were presented in Table 4. CoMSIA analysis was performed using five different property fields (steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields). In the present study, the propose of using five different descriptors is not to increase the significance and the predictive ability of the 3D QSAR models but to partition the various properties into the spatial location where they play a decisive role in determining biological activity. Comparing with the obtained CoMFA model, the best CoMSIA model corresponding to the WT HIV-1 RT inhibition reveals improved predictive ability than CoMFA model with a high predictive model (r^2_{cv} of 0.708, s-press = 0.142 and noc = 6). The other statistical results are that the conventional r^2 value is 0.894, the standard error of estimation is 0.085 and F is equal to 50.844. The corresponding field contributions of these five descriptor variables are 12.2, 19.5, 24.1, 16.8 and 27.3, respectively. The experimental and calculated affinities derived from the CoMSIA model for the WT inhibitory affinity is plotted in Figure 8a.

According to the K103N HIV-1 RT inhibition, the best CoMSIA model with the combination of all fields yielded high predictive ability with r^2_{cv} of 0.773, s-press = 0.286, noc = 3, the conventional r^2 = 0.938, the standard error of estimation = 0.155 and F = 93.344. The steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor field contributions of the model are 13.4, 22.3, 20.5, 26.5 and 17.3, respectively. The experimental and calculated affinities derived from the CoMSIA model for the K103N inhibitory affinity is plotted in Figure 8b.

Prediction for compounds in the test set

In order to evaluate the predictive ability of the resulting CoMSIA models, the same 7 efavirenz derivative tested set as used in CoMFA study was employed to predict the inhibitory activities. The comparison of predicted and observed biological activities of these compounds for WT and K103N inhibition, is reported in Table 6 and plotted in Figures 8a and 8b, respectively. The good correlation shows the validation of the obtained CoMSIA models for efavirenz derivatives excluded from the training set.

Graphical interpretation of Fields

CoMFA Contributions

The 3D–QSAR contour maps obtained from CoMFA results for all efavirenz derivatives illustrate clearly the steric and electrostatic contributions for ligand binding. To better understand the field interactions between the enzyme and inhibitors, the amino acid residues surrounding efavirenz compound in the binding pocket were merged into the contour mapsu. Sterically unfavorable regions are depicted in yellow, whereas favorable regions are in green. Electrostatic positive favorable regions correspond to the blue areas and the negative favorable regions correspond to the red areas.

The steric and electrostatic field contributions to WT HIV-1 RT inhibition is shown in Figure 9a. Compound 25, the most potent compound active against WT HIV-1 RT of the series, is used as a reference structure. There is a prominent blue

contour located between the C6 and C7 positions on the benzoxazin-2-one ring. It reveals that incorporation of electropositive group at this position would be preferable for the activity. This suggestion is supported by experimental data that, as clearly examples, compound 25 having hydrogen atom attached to the C6 position produces higher potency compared to compounds with halogen groups attached to the similar position (compounds 28, 30, 33, 34, 36, 38, 47, 50 and 53). Particularly, compound 25 shows the highest potency for the WT inhibition in the data set. There are large green contours corresponding to the location of the R substituent attached to the C4 position on the benzoxazin-2-one ring. However, the tolerated steric requirements of this region are highlighted by yellow contours presented around that region, especially a yellow one overlapping with the Tyr188 residue. It is indicated that an additional bulky group at this site would be favorable for the affinity, but the size and the dimension of the substituents should not be too large. This means that steric occupancy with too bulky groups of the sidechain leads to a steric conflict resulting in diminished favorable interactions with the aromatic ring of Y188. These suggestions agree well with the trend observed experimentally, reported in Table 1, that the cyclopropyl acetylene group is the optimum sidechain for this position. Compound 1 with the cyclopropyl acetylene group attached at the C4 substituent shows higher potency. Compounds 2-5 and 12-18, occupying the C4 site with too large substituents, result in significantly reduced potency against WT RT. A large blue electrostatic contour area close to the cyclopropyl group of the R position suggests that electropositive groups are predicted to increase activity in those areas. This suggestion agrees with the experimental data that compounds containing small heterocyclic rings having more electron rich properties, such as pyridyl, furanyl or thienyl groups (compounds 2-9), have diminished affinities against WT RT, compared to compound 1.

The contributions of steric and electrostatic fields to K103N RT inhibition is shown in Figure 9b. The most potent compound active against K103N HIV-1 RT of the series, compound 50, is put in the contour as a reference structure. Interestingly, the large blue contour located close to the C6 position on the phenyl ring is completely absent, compared to the WT inhibition. There are two red contours presented in the vicinity of the substituent attached to C6 position instead. A sterically favored green area is located in the region of the C5 substituent attached to the phenyl ring. It can be summarized that, in contrast to the WT inhibition, compounds having a bulky group attached to the C5 position and the preference of electronegative groups at the C6 position are more favorable for the K103N inhibition. This is in agreement with the experimental observation that compounds having sterically 5,6-halogen substituents (compounds 28, 33 and 36) confer higher potency against the K103N mutant compared to 5-halogen analogues (compounds 25 and 27). Compounds 50,51 and 53, occupying the C5 position with bulkier groups such as methoxy or hydroxyl group and the C6 position with chlorine atom, yield higher potency compared to compounds 38 and 45, respectively. In particular, compound 50 shows the highest activity against K103N HIV-1 RT in the data set. This could be the reason why compound 25, the highest active compound against WT HIV-1 RT, shows a significantly reduced potency against K103N RT. A blue contour close to Z substituent of the benzoxazin-2-one ring suggests that a group with low electron density would play a favorable role in activity. This suggestion is consistent with the experimental data that the replacement of an oxygen atom with the NH group at this

position always yields much more potent derivatives active against K103N RT, as exemplified by compounds 1, 2 compared to compounds 38 and 43, respectively. At the region close to the R position, a large green contour is still presented for the K103N RT inhibition and the yellow one overlapping with Y188 is also located close to approximately similar region. The structural requirements for this region could be explained in similar manner as those for WT RT inhibition. The structural requirements obtained from the CoMFA models for WT and K103N HIV-1 RT inhibition show high correspondence to molecular docking results previously described and QSAR studies reported [37,38].

CoMSIA Contributions

Additional to the steric and electrostatic fields used in CoMFA study, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields contributing to binding affinities can be derived from the CoMSIA models. To better understand the field interactions between the enzyme and inhibitors, the amino acid residues surrounding the efavirenz compound in the binding pocket were merged into the contour maps. In the present study, since the CoMSIA steric and electrostatic contours (not shown) are similarly placed as those of the CoMFA models, only hydrophobic, hydrogen bond donor and hydrogen bond acceptor field contributions were discussed further. The magenta and white regions highlight areas where hydrophilic and hydrophobic properties are preferable, respectively. The cyan contours indicate region where hydrogen bond donor groups increase activity, whereas purple contours indicate region where hydrogen bond donor groups decrease activity. Hydrogen bond

acceptors are favored in areas indicated by orange contours, whereas white contours are areas where hydrogen bond acceptors are disfavored.

The contribution of hydrophobic fields to the WT inhibition is shown in Figure 10a. A predominant feature of the hydrophobic contour plot is the presence of a large pink contour corresponding to the locations of the groups attached to C5 and C6 positions. It reflects that introducing hydrophobic substituents at the positions would enhance the biological activity. As demonstrated, halogen groups attached to C5 or C6 positions on the benzoxazin-2-one ring (compounds 25-33, 36 and 38) yield increasing binding affinities. On the other hand, methoxy or hydroxyl groups attached to C5 or C6 positions (compounds 34, 39-40, 49-53) would not be preferable for binding affinities. Moreover, the favorable hydrophobic region is located close to the vicinity of the R substituent, attached to the C4 position. As examples, more hydrophilic derivatives with alkoxy groups substituted at C4 (compounds 12-18) are less active for WT inhibition compared with compound 1. In contrast to WT inhibition, the contour map of hydrophobic properties highlights different areas for the K103N inhibition, as shown in Figure 10b. A white contour is presented near the substituent attached to C5 position. With the combination of the steric contour map obtained from CoMFA models, it suggests that the favorable hydrophilic together with steric substituents at the position could enhance the K103N RT inhibitory activity. This indicates that the bulky group with low hydrophobicity would be favorable to the biological activity, as demonstrated by compound 50, the highest active compound against K103N HIV-1 RT. A pink contour in the vicinity of the R4 substituent shows the importance of the hydrophobic component with an optimum steric bulk of the sidechain at the R4 position. This suggestion agrees well with the

experimental report that the optimum sidechain for this position is the acetylene cyclopropyl group.

Figures 11a and 11b show the contributions of the hydrogen donor fields for the WT and K103N inhibition, respectively. For WT inhibition, two cyan contours located at the NH group of the benzoxazin-2-one ring and presented in the vicinity of Z substituent represents that placement of hydrogen-bond donors at the positions is beneficial for the receptor binding. This could be attributed to the hydrogen bond interaction between the main chain carbonyl oxygen of K101 and the amide NH of efavirenz compound [25]. For the K103N inhibition shown in Figure 11b, the cyan contour located at the NH group of the benzoxazin-2-one ring is completely absent, while a cyan contour close to the Z substituent is presented. The minor cyan contour corresponds to the hydrogen donor substituent preferable at this position. This could be the reason that compounds having NH group as the Z substituent are more preferable for the K103N inhibitory activity than that of O atom. The contribution is consistent with the docking study and the electrostatic contribution derived from the CoMFA model.

The hydrogen bond acceptor field contribution for the WT and K103N inhibition are shown in Figures 12a and 12b, respectively. According to WT inhibition, a prominent orange contour is presented in the region of R substituent attached to the C4 site suggesting the preference of hydrogen bond acceptors at the position. It is in agreement with the observation that compounds containing acetylenic sidechain as the R substituent possessing hydrogen acceptor property, generally enhance the inhibitory activities. Compounds having alkoxy groups rather than

acetylenic sidechain at the R substituent show moderate to less binding affinities. An orange contour close to the carbonyl oxygen of the benzoxazin-2-one ring reveals that acceptor functions of the ligand directing to the location would be preferable for the binding affinity. This suggestion is in consistent with the obtained docking results described previously. Similar to the contribution obtained from the WT inhibition, a large orange contour corresponding to the location of the R group substituted to the C4 position shown in Figure 12b, suggests that hydrogen bond acceptors at the position could be beneficial for K103N binding affinity. Based on the obtained CoMSIA results, it could be confirmed that not only steric and electrostatic interactions contribute to the WT and K103N inhibitory activities, hydrophobic, hydrogen donor and acceptor fields are important to explain the variance of the data.

As the availability of the crystal structure of efavirenz complexed with HIV-1 RT [25,26], there are numerous contacts involving a series of hydrophobic contacts; the aromatic sidechains of Y181, Y188, W229 and F227 in the binding pocket with the bound inhibitor. The hydrogen bond between the benzoxain-2-one NH and the mainchain carbonyl oxygen of K101 is formed. There is also a Van der Waals contact between the γ-C of the sidechain of K103 and the nitrogen of benzoxain-2-one ring of efavirenz. An analysis of the structure of efavirenz complexed with the K103N RT reveals that the substitution of a charged and linear lysine for the uncharged and branched asparagine at the position 103 resulting in a drastic change in the chemical environment in the proximity of the mutation and a significant conformational rearrangement within the drug binding pocket compared with the wild type complex. Mainly, there are two consequences for the binding of NNRTI: changed hydrophobic and electrostatic properties of the binding pocket. It is evident that favorable

hydrophobic interactions of the amino acid in the binding pocket with the bound inhibitors and the hydrogen bond interaction are eliminated. Accordingly, the inhibitory affinities of some inhibitors are drastically reduced. Based on the obtained results, it could be suggested the methoxy group attached to the C5 position could be possible to generate favorable interactions compensating the hydrophobic interactions lost. The presence of NH group as the Z substituent in the benzoxazin-2-one ring possibly contributes to form the H-π interaction with the phenyl ring sidechain of Y181. The interactions should compensate the loss of significant interactions between the bound inhibitor and surrounding amino acid residues in the binding pocket. These results show high consistency to the obtained docking and CoMFA and CoMSIA models in the present study, highlighting the structural difference required for WT and K103N inhibitions of efavirenz derivatives.

Interaction Energy Calculations

Interaction energy of X-ray structure and docked efavirenz in the WT and K103N binding pockets

The interaction energies between efavirenz from the X-ray structure and each amino acid surrounding in the WT and K103N RT binding pockets are shown in Table 7. In the WT binding pocket, the interaction energies of efavirenz are -16.1 to 1.0 kcal/mol at the B3LYP/6-31G(d) level of theory. In case of interaction energies at the MP2/6-31G(d) levels of theory, all attractive interaction energies are obtained (-18.6 to -0.9 kcal/mol). Interaction energies from both levels of calculation shows in the same trend and the major attractive interaction is the interaction with K101 (-16.1 and -18.6 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory,

respectively. From the complex structure, amino and carbonyl groups of benzoxazin-2-one ring of efavirenz compound could form two H-bonding with carbonyl group (1.98 Å) and amino group (3.17 Å) of backbone K101, respectively. The interaction energies at the MP2/6-31G(d) levels of theory also reveal the important interaction of efavirenz to the WT binding pocket with L100, K103, Y181, Y188, H325, and P236.

For the K103N binding pocket, the interaction energies of efavirenz are -10.1 to 1.2 kcal/mol and -12.1 to -0.9 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. Although K101 is the major attractive interaction of efavirenz in K103N binding pocket, the results clearly show the loss of attractive interaction with K101 about 5.0-6.5 kcal/mol, as compared with the WT binding pocket. Their interaction energies in the K103N binding pocket with K101 are -10.0 and -12.1 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. Because of the effect of amide group at N103, the efavirenz position has slightly changed from the position in WT binding pocket and caused the longer H-bonding with carbonyl group of backbone K101. Amino and carbonyl groups of benzoxazin-2-one ring of efavirenz formed two H-bonding with carbonyl group (2.75 Å) and amino group (2.93 Å) of backbone K101, respectively. As compared to the interaction with K103 in the WT binding pocket, the interaction energies to N103 are decreased about 0.4 and 2.1 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. These may cause from the loss of H-bonding between sidechain K103 between the WT binding pocket and efavirenz. For the interaction with other amino acids in the K103N binding pocket, the interaction energies are about ± 1 kcal/mol in both levels of theory as compared with those in the WT binding pocket.

In order to investigate the interaction energies of the docked conformation of other efavirenz derivatives, the interaction energies of docked efavirenz (compound.1) in WT and K103N binding pockets are firstly studied in comparison to those of X-ray structure. The interaction energies of compound 1 with the WT and K103N binding pockets are shown in Table 8 and Table 9, respectively. For the WT binding pocket, the interaction energies of compound 1 are -17.1 to 0.9 kcal/mol and -19.9 to -0.9 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. Except K103, the interaction energies of compound 1 with other amino acids from both levels of theory are similar to those of X-ray structure with ± 1.5 kcal/mol. The interaction energies between compound 1 and K103 are more attractive than X-ray structure and K103 which the different of interaction energies are 3.6 and 2.9 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. This more attractive interaction is caused from the stronger attractive interaction formed between fluoro atom of trifluoro group in efavirenz and γ-C of sidechain K103. The distances are 3.81 Å and 3.51 Å in X-ray structure and compound 1, respectively. Because this substituted group (trifluoro group) does not vary in this study, more attractive interaction with K103 may occur to other efavirenz derivatives with the same trend. According to this explanation, compound 1 can be used to compare the interaction with other efavirenz derivatives. In case of compound 1 in the K103N binding pocket, the interaction energies are -7.3 to 4.6 kcal/mol and -10.3 to -1.3 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. The interaction energy differences between X-ray and compound 1 are ±1.7 kcal/mol, except L100 and K101. Because of a little movement of compound no. 1 to form more attractive interaction with Y181, attractive interaction with L100

and K101 are lost about 1.8 and 2.7 kcal/mol at MP2/6-31G(d), respectively. More attractive interaction with Y181 could occur with other efavirenz derivatives in the same manner. Therefore, to determine the interaction energies of other docked efavirenz derivatives, compound 1, which is the docked conformation of efavirenz, is used to compare in the further step.

Interaction energy of compounds 25 and 12 in WT binding pocket

The individual interaction is also observed with the compounds 25 and 12, the highest and less WT activity, respectively. Their interaction energies compared with compound 1 are shown in Table 8. The interaction energies of compound 25 in WT binding pocket are -17.2 to 0.4 kcal/mol and -20.0 to -0.4 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. As compared with compound 1, the results confirm the docking results that slightly more attractive interaction to compound 25 could be formed to L100, K101, Y188, G190, and H235 with ±1.0 kcal/mol from both levels of theory. K103 and V106 are formed more attractive interactions within 2.0 kcal/mol. More attractive interaction with V106 is formed with the 5-F of the ring and this cause a slight shift of the fluoromethyl group to come closer to K103. For the less WT activity compound, interaction energies of compound 12 are -15.3 to 3.6 kcal/mol and -18.0 to -0.8 kcal/mol the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. The decreased attractive interaction, as compared with compound 1, is found between compound 12 and most amino acids. Because of the bulky group attached at R position, steric interaction occurs with L100, K101, and Y181. The individual interaction results

support and agree well with the experimental results that compounds 25 and 12 show higher and lower potency than compound 1, respectively.

Interaction energy of compound 50 and 22 in K103N binding pocket

In the case of the K103N RT binding pocket, compounds 50 and 22, the highest and less potency against K103N RT, respectively, are selected to study. Their interaction energies are shown in Table 9. The interaction action energies of compound 50 in K103N binding pocket are -14.8 to 0.8 kcal/mol and -17.3 to -1.1 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. From both levels of theory, more attractive interaction has significantly formed to L100, K101, Y181, and Y188. The attached substituted groups in compound 50 cause more fit of its conformation in K103N binding pocket than compound 1. Stronger attractive interaction is also formed with L100 and K101. The nitrogen atom on the Z substituent of compound 50 make the attractive interaction increased. The $H-\pi$ interaction to the aromatic sidechain of Y181 could be formed. The methoxy group attached at C5-position of phenyl ring has fitted with the hydrophobic pocket consisting of V106, Y188, and L234. Most of other amino acids in the binding pocket also slightly form more attractive interaction with compound 50. For the less active compound against the K103N RT, the interaction energies of compound 22 are -6.9 to 2.8 kcal/mol and -9.8 to -0.7 kcal/mol at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory, respectively. From their docked conformation, it can be seen that the substituting group at R-position has caused the steric effect with the pocket around R-position. From the interaction energies, this substituting group at R-position of compound 22 has caused the less attractive interaction with P95, Y188, W229, and

L234. The individual interaction results are in agreement with the experimental results that compounds 50 and 22 shows highest and less potency against the K103N RT, respectively.

Based on the calculated results, more attractive interaction are found by using the MP2/6-31G(d) level of theory, as compare with B3LYP/6-31G(d) level of theory. The obtained interaction energies agree well as compared with the results previously reported [36,54]. Therefore, to ensure that H- π interaction is included in the calculation, MP2 method should be appropriated applied in the study. The interaction energies could be helpful for understanding the individual interaction between ligand and the binding pocket and suggesting for the guideline of the new more potent inhibitor design.

CONCLUSION

The molecular docking calculations and 3D-QSAR analyses were successfully combined to investigate the interaction and the relationship between structural requirements of efavirenz derivatives for WT and K103N HIV-1 RT. The potential binding orientation of the inhibitors in the binding pockets could be identified, by using docking studies. The docking results provide additional insight into essential inhibitor-enzyme interactions for different types of wild type and mutant type of HIV-1 RT. Based on the docking conformations, the reliable and predictive CoMFA and CoMSIA models of efavirenz derivatives for the WT and K103N RT inhibition were derived. The QSAR models are successfully used to discriminate between the structural requirements for WT and K103N inhibitory activities. Moreover, the interaction energy trend calculated from quantum chemical calculations of the

inhibitors and individual amino acid residues in the binding pockets is informative to highlight particular ligand-receptor interaction in molecular level. The results derived from all approaches validate each other and agree well with the ligand-receptor complex interaction derived from the X-ray crystallographic data. Evidently, in the present study, molecular modeling with the combination of structure-based and ligand-based drug design approaches integrated with quantum chemical calculations has been proven as attractive and efficient tools for better understanding of the key structural element for enhancing the interaction between efavirenz compounds and the WT and K103N RT. Consequently, the obtained results enable to provide beneficial guidelines to design novel compounds with higher anti-HIV-1 RT activities against WT and K103N RT.

ACKNOWLEDGEMENTS

The authors thank Prof. Dr. Peter Wolschann for helpful discussion and continuously supports and Dr. Songwut Suramitr for his kind assistance and suggestion in computational details. The research grants provided by the Thailand Research Fund (MRG4880001 and BRG4780007) are gratefully acknowledged. We thank LCAC, the postgraduate on education and research in petroleum and petrochemical technology, the high performance computing centers of Kasetsart University, the National Electronics and Computer Technology (HPCC/NECTEC) and the computer center of the University of Vienna for providing computational resources.

REFERENCES

- 1. Arnold, E; Das, K; Yadav, PNS; Hsiou, Y; Boyer, PL; Hughes, SH. Targeting HIV Reverse Transcriptase for Anti-AIDS Drug Design. *Drug. Des. Disc.* 1996, 13, 29-47.
- 2. De Clercq, E. The Role of Nonnucleoside Reverse Transcriptase Inhibitors (NNRTI) in the Therapy of HIV-1 Infection. *Anti. Viral Res.* 1998, 38, 153-179.
- 3. Evans, DB; Brawn, K; Deibel, MR; Tarpley, WG; Sharma SK. A Recombinant Ribonuclease H Domain of HIV-1 Reverse Transcriptase that is Enzymatically Active. *J. Biol. Chem.* 1991, 266, 20583-20585.
- 4. Young, SD. Non-nucleoside Inhibitors of HIV-1 reverse Transcriptase. *Perspect. Drug Desc. Des.* 1993, 1, 181-192.
- 5. Richman, D; Shih, CK; Lowy, I; Rose, J; Prodanovich, P; Goff, S; Griffin, J. Human Immunodeficiency Virus Type 1 Mutants Resistant to Nonnucleoside Inhibitors of Reverse Transcriptase Arise in Tissue Culture. *Proc. Natl. Acad. Sci. U.S.A.* 1991, 88, 11241–11245.
- 6. Balzarini, J; Karlsson, A; Sardana, VV; Emini, EA; Camarasa, MJ; De Clercq, E. Human Immunodeficiency Virus 1 (HIV-1)-Specific Reverse Transcriptase (RT) Inhibitors may Suppress the Replication of Specific Drug-Resistant (E138K) RT HIV-1 Mutants or Select for Highly Resistant (Y181C–.C181I) RT HIV-1 Mutants. *Proc. Natl. Acad. Sci. U.S.A.* 1994, 91, 6599–6603.

7. De Clercq, E. Non-nucleoside Reverse Transcriptase Inhibitors (NNRTI) for the Treatment of Human Immunodeficiency Virus Type 1 (HIV-1) Infections: Strategies to

Overcome Drug Resistance Development. Med. Res. Rev. 1996, 16, 125–157.

- 8. Ren, J; Esnouf, R; Garman, E; Somers, D; Ross, C; Kirby, I.; Keeling, J; Darby, G; Jones, Y; Stuart, D; Stammers, D. High Resolution Structures of HIV-1 RT from Four RT-Inhibitor Complexes. *Nat. Struct. Biol.* 1995, 2, 293–302
- 9. Ding, J; Das, K; Moereels, H; Koymans, L; Andries, K; Janssen, PA; Hughes, SH; Arnold, E. Structure of HIV-1 RT/TIBO R 86183 Complex Reveals Similarity in the Binding of Diverse Nonnucleoside Inhibitors. *Nat. Struct. Biol.* 1995, 2, 407–415.
- 10. Schinazi, RF; Larder, BA; Mellors, J. Mutations in Retroviral Genes Associated with Drug Resistance. *International Antiviral News*. 1997, *5*, 129–135.
- 11. Young, SD; et al., Emini, EA. L-743, 726 (DMP-266): A Novel, Highly Potent nonnucleoside Inhibitor of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase. *Antimicrob. Agents Chemother*. 1995, 39, 2602–2605.
- 12. Bacheler, L; Wieslow, O; Snyder, S; Hanna, G; D'Aquila, R. The SUSTIVA Resistance Study Team. *Abstract, presented at the 12th World AIDS Conference, Geneva, Switzerland.* 1998.
- 13. Bacherler, L; Jeffrey, S; Hanna, G; D'Aquila, R; Wallace, L; Logue, K; Cordova, B; Hertogs, K; Larder, B; Buckery, R; Baker, D; Gallagher, K; Scarnati, H; Tritch, R; Rizzo, C. Genotypic Correlate of Phenotypic Resistance to Efavirenz in Virus Isolates

from Patients Failing Nonnucleoside Reverse Transcriptase Inhibitor Therapy. *J. Virol.* 2001, 75, 4999-5008.

14. Miller, V; Sturmer, M; Staszewski, S; Groschel, B; Hertogs, K; de Bethune, MP; Pauwels, R; Harrigan, PR; Bloor, S; Kemp, SD; Larder, BA. The M184V Mutation in HIV-1 Reverse Transcriptase (RT) Conferring Lamivudine Resistance does not Result in Broad Cross-resistance to Nucleoside Analogue RT Inhibitors. *AIDS*. 1998, 12, 705-712.

15. Torti, C; Pozniak, A; Nelson, M; Hertogs, K; Gazzard, BG. Distribution of K103N and/or Y181C HIV-1 Mutations by Exposure to Zidovudine and Non-nucleoside Reverse Transcriptase Inhibitors. *Antimicrob. Chemother*. 2001, 48, 113-116.

16. Patel, M; Ko, SS; McHugh, RJ; Markwalder, JA; Srivastana, AS; Cordova, BC; Klabe, RM; Erickson-Viitanen, S; Trainor, GL; Seitz, SP. Synthesis and Evaluation of Analogs Efavirenz (SUSTIVATM) as HIV-1 Reverse Transcriptase Inhibitors. *Bioorg. Med. Chem. Lett.* 1999, 9, 2805-2810.

17. Patel, M; McHugh, RJ; Jr.; Cordova, BC; Klabe, RM; Erickson-Viitanen, S; Trainor, GL; Ko, SS. Synthesis and Evaluation of Benzoxazinones as HIV-1 Reverse Transcriptase Inhibitors. Analogs of Efavirenz (SUSTIVATM). *Bioorg. Med. Chem. Lett.* 1999, 9, 3221-3224.

18. Patel, M; McHugh, RJ; Jr; Cordova, BC; Klabe, RM; Erickson-Viitanen, S; Trainor, GL; Rodgers, JD. Synthesis and Evaluation of Quinoxalinones as HIV-1 Reverse Transcriptase Inhibitors. *Bioorg. Med. Chem. Lett.* 2000, 10, 1729-1731.

- 19. Corbett, JW; Ko, SS; Rodgers, JD; Gearhart, LA; Magnus, NA; Bacheler, LT; Diamond, S; Jeffrey, S; Klabe, RM; Cordova, BC; Garber, S; Logue, K; Trainor, GL; Anderson, PS; Erickson-Viitanen, SK. Inhibition of Clinically Relevant Mutant Variants of HIV-1 by Quinazolinone Non-Nucleoside Reverse Transcriptase Inhibitors. *J. Med. Chem.* 2000, 43, 2019-2030.
- 20. Corbett, JW; Pan, S; Markwalder, JA; Cordova, BC; Klabe, RM; Garber, S; Rodgers, JD; Erickson-Viitanen, SK. 3,3a-Dihydropyrano[4,3,2,-de]quinazolin-2(1*H*)-ones are Potent Non-nucleoside Reverse Transcriptase Inhibitors. *Bioorg. Med. Chem. Lett.* 2001, 11, 211-214.
- 21. Markwalder, JA; Christ Abdul Mutlib, DD; Cordova, BC; Klabe, RM; Seitz, SP. Synthesis and Biological Activities of Potential Metabolites of the Non-nucleoside Reverse Transcriptase Inhibitor Efavirenz. *Bioorg. Med. Chem. Lett.* 2001, 11, 619-622.
- 22. Cocuzza, AJ; Chidester, DR; Cordova, BC; Jeffrey, S; Parsons, RL; Bacheler, LT; Erickson-Viitanen, S; Trainor, GL; Ko, SS. Synthesis and Evaluation of Efavirenz (SustivaTM) Analogues as HIV-1 Reverse Transcriptase Inhibitors: Replacement of the Cyclopropylacetylene Side Chain. *Bioorg. Med. Chem. Lett.* 2001, 11, 1177-1179.
- 23. Cocuzza, AJ; Chidester, DR; Cordova, BC; Klabe, RM; Jeffrey, S; Diamond, S; Weigelt, CA; Ko, SS; Bacheler, LT; Erickson-Viitanen, S; Rodgers, JD. 4,1-Benzoxazepinone Analogues of Efavirenz (SustivaTM) as HIV-1 Reverse Transcriptase Inhibitors. *Bioorg. Med. Chem. Lett.* 2001, 11, 1389-1392.

- 24. Patel, M; McHugh, RJ; Jr.; Cordova, BC; Klabe, RM; Bacheler, LT; Erickson-Viitanen, S; Rodgers, JD. Synthesis and Evaluation of Novel Quinoxalinones as HIV-1 Reverse Transcriptase Inhibitors. *Bioorg. Med. Chem. Lett.* 2001, 11, 1943-1945.
- 25. Ren, J; Milton, J; Weaver, KL; Short, SA; Stuart, DI; Stammers, DK. Structural Basis for the Resilience of Efavirenz (DMP-266) to Drug Resistance Mutations in HIV-1 Reverse transcriptase. *Structure*. 2000, 8, 1089-1094.
- 26. Lindberg, J; Sigurosson, S; Lowgren, S; Andersson, HO; Sahlberg, C; Noreen, R; Fridborg, K; Zhang, H; Unge, T. Structural Basis for Inhibitory Efficacy of Efavirenz (DMP-266), MSC194 and PNU142721 Towards the HIV-1 RT K103N Mutant. *Eur. J. Biochem.* 2002, 269, 1670-1677.
- 27. Hannongbua, S. Structural Information and Drug–Enzyme Interaction of the Non-Nucleoside Reverse Transcriptase Inhibitors Based on Computational Chemistry Approaches. *Top. Heterocycl. Chem.* 2006, 4, 55-84.
- 28. Udier-Blagovic, M; Watkins, EK; Tirado-Rives, J; Jorgensen, WL. Activity Predictions for Efavirenz Analogues with the K103N Mutant of HIV Reverse Transcriptase. *Bioorg. Med. Chem. Lett.* 2003, 13, 3337-3340.
- 29. Udier-Blagovic, M; Tirado-Rives, J; Jorgensen, WL. Structural and Energetic Analyses of the Effects of the K103N Mutation of HIV-1 Reverse Transcriptase on Efavirenz Analogues. *J. Med. Chem.* 2004, 47, 2389-2392.
- 30. Rodriguez-Barrios, F; Balzarini, J; Gago, F. The Molecular Basis of Resilience to the Effect of the Lys103Asn Mutation in Non-nucleoside HIV-1 Reverse

Transcriptase Inhibitors Studied by Targeted Molecular Dynamics Simulations. *J. AM. Chem. Soc.* 2005, 127, 7570-7578.

- 31. Weinzinger, P; Hannongbua, S; Wolschann, P. Related Articles, Links Molecular Mechanics PBSA Ligand Binding Energy and Interaction of Efavirenz Derivatives with HIV-1 Reverse Transcriptase. *J. Enzyme. Inhib. Med.* Chem. 2005, 20, 129-34.
- 32. Barreca, ML; Rao, A; Luca, LD; Zappala, M; Monforte, AM; Maga, G; Pannecouque, C; Balzarini, J; Clercq, ED; Chimirri, A; Monforte, P. Computational Strategies in Discovering Novel-nucleoside Inhibitors of HIV-1 RT. *J. Med. Chem.* 2005, 48, 3433-3437.
- 33. D'Cruz, OJ; Uckun, FM. Novel tight binding PETT, HEPT and DABO-based non-nucleoside inhibitors of HIV-1 reverse transcriptase. *J. Enzyme Inh. and Med. Chem.* 2006, 21, 329-350.
- 34. Xie, Q; Tang, Y; Li, W; Wang, HX; Qiu ZB. Investigation of the Binding Mode of (-)-Meptazinol and Bis-Meptazinol Derivatives on Acetylcholinesterase Using a Molecular Docking Method. *J. Mol. Model.* 2006, 12, 390-397.
- 35. Rawal, RK; Kumar, A; Siddiqi, MI; Katti, SB. Molecular Docking Studies on 4-Thiazolidinones as HIV-1 RT Inhibitors. *J. Mol. Model.* 2007, 13, 155–161.
- 36. Saparpakorn, P; Hannongbua, S; Rognan, D. Design of Nevirapine Derivatives Insensitive to the K103N and Y181C HIV-1 Reverse Transcriptase Mutants. *SAR QSAR Environ Res.* 2006, 17, 183-94.

- 37. Pungpo, P; Saparpakorn, P; Wolschann, P; Hannongbua, S. Computer-Aided Molecular Design of Highly Potent HIV-1 RT Inhibitors: 3D QSAR and Molecular Docking Studies of Efavirenz Derivatives. *SAR and QSAR in Environmental Research*. 2006, 17, 353-370.
- 38. Zhang, ZM; Zheng, LD; Shen, J; Luo, X; Zhu, W; Hualiang, J. Towards Discovering Dual Functional Inhibitors Against Both Wild Type and K103N Mutant HIV-1 Reverse Transcriptases: Molecular Docking and QSAR Studies on 4,1-Benzoxazepinone Analogues. *J. Comp. Aided Mol. Des.* 2006, 20, 281–293.
- 39. D'Cruz, OJ; Uckun, FM. Novel Broad-Spectrum Thiourea Non-Nucleoside Inhibitors for the Prevention of Mucosal HIV Transmission. *Current HIV Research*. 2006, 4, 329-345.
- 40. Ragno, R; Artico, M; De Martino, G; La Regina, G; Coluccia, A; Di Pasquali, A; Silvestri, R. Docking and 3-D QSAR Studies on Indolyl Aryl Sulfones. Binding Mode Exploration at the HIV-1 Reverse Transcriptase Non-Nucleoside Binding Site and Design of Highly Active N-(2-Hydroxyethyl)carboxamide and N-(2-Hydroxyethyl) carbohydrazide Derivatives. *J. Med. Chem.* 2005, 48, 213-223.
- 41. Medina-Franco, JL; Rodriguez-Morales, S; Juarez-Gordiano, C; Hernandez-Campos, Al; Jimenez-Barbero, J; Castillo, R. Flexible Docking of Pyridinone Derivatives into the Non-Nucleoside Inhibitor Binding Site of HIV-1 Reverse Transcriptase. *Bio. Med. Chem.* 2004, 12, 6085-6095.

- 42. Cramer, RD; Patterson, DE; Bunce, JD. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of steroids to Carrier Proteins. *J. Am. Chem. Soc.* 1988, 110, 5959-5967.
- 43. Klabe, G; Abraham, U; Mietzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict their Biological Activity. *J. Med. Chem.* 1994, 37, 4130-4146.
- 44. Kubinyi, H. 3D QSAR in Drug Design: Theory, Methods and Applications. ESCOM Science Publishers: Leiden. 1993.
- 45. Hannongbua, S; Nivesanond, K; Lawtrakul, L; Pungpo, P; Wolschann, P. 3D-Quantitative Structure-activity Relationships of HEPT Derivatives as HIV-1 Reverse Transcriptase Inhibitors, Based on Ab Initio Calculations. *J. Chem. Inf. Compul. Sci.* 2001, 41, 848-855.
- 46. Hannongbua, S; Pungpo, P; Wolschann, P. Quantitative Structure-activity Relationships and Comparative Molecular Field Analysis of the HIV-1 Reverse Transcriptase Inhibitor of TIBO Derivatives. *J. Comp. Aided Mol. Des.* 1999, 13, 563-577.
- 47. Pungpo, P; Hannongbua, S. Three-dimensional Quantitative Structure-activity Relationships Study on HIV-1 Reverse Transcriptase Inhibitors in the Class of Dipyridodiazepinone Derivatives, Using Comparative Molecular Field Analysis. *J. Mol. Grap. Mod.* 2000, 18, 581-590.

- 48. Zhang, H; Li, H; Liu, C. CoMFA, CoMSIA and Molecular Hologram QSAR Studies of Novel Neuronal nAChRs Ligands-Open Ring Analogues of 3-Pyridyl Ether. *J. Chem. Inf. Model.* 2005, 45, 440-448.
- 49. Barreca, ML; Carotti, A; Carrieri, A; Chimirri, A; Monforte, AM; Calace, MP; Rao, A. Comparative Molecular Field Analysis (CoMFA) and Docking Studies of Non-Nucleoside HIV-1 RT Inhibitors (NNIs). Bio. Med. Chem. 1999, 7, 2283-2292.
- 50. Chen, HF; Yao, XJ; Li, Q; Yuan, SG; Panaye, A; Doucet, JP; Fan, BT. Comparative Study of Nonnucleoside Inhibitors with HIV-1 Reverse Transcriptase Based on 3D-QSAR and Docking. *J. Comp. Aided Mol. Des.* 2003, 14, 455-474.
- 51. Medina-Franco, JL; Rodriguez-Morales, S; Juarez-Gordiano, C; Hernandez-Campos, A; Castillo, R. Docking-based CoMFA and CoMSIA Studies of Non-Nucleoside Reverse Transcriptase Inhibitors of the Pyridinone Derivative Type. *J. Comp. Aided. Mol. Des.* 2004, 18, 345-360.
- 52. Zhou, Z; Madura, JD. CoMFA 3D-QSAR Analysis of HIV-1 RT Nonnucleoside Inhibitors, TIBO Derivatives Based on Docking Conformation and Alignment. *J. Chem. Inf. Comput. Sci.* 2004, 44, 2167-2178.
- 53. Sea-oon, S; Kuno, M; Hannongbua, S. Binding Energy Analysis for Wild-Type and Y181C Mutant HIV-1 RT/8-Cl TIBO Complex Structures: Quantum Chemical Calculations Based on the ONIOM Method. *Proteins*. 2005, 61, 859-869.
- 54. Kuno, M; Hannongbua, S; Morokuma, K. Theoretical Investigation on Nevirapine and HIV-1 Reverse Transcriptase Binding Site Interaction, Based on ONIOM Method. *Chem. Phys Lett.* 2003, 380, 456-463.

- 55. Nunrium, P; Kuno, M; Saen-oon, S; Hannongbua, S. Particular Interaction between Efavirenz and the HIV-1 Reverse Transcriptase Binding Site as Explained by the ONIOM2 Method. *Chem. Phys. Lett.* 2005, 405, 198-202.
- 56. Bacheler, LT; Paul, M; Jadhav, PK; Otto, M; Miller, J. An Assay for HIV RNA in Infected Cell Lysates and Its Use for the Rapid Evaluation of Antiviral Efficacy. *Antiviral. Chem. Chemother.* 1994, 5, 111-121.
- 57. Alchemy 2000, Tripos Associates Inc. St., Louis. MO. 1998.
- 58. Frisch, MJ; Trucks, GW; Schlegel, HB; Gill, PMW; Jonhson, BG; Robb, MA; Cheeseman, JR; Keith, T; Petersson, GA; Montgomery, JA; Raghavachari, K; Al-Laham, MA; Zakrzewski, VG; Ortiz, JV; Foresman, JB; Peng, CY; Alaya, PY; Chen, W; Wong, WM; Andres, JL; Replogle, ES; Gomperts, R; Martin, RL; Fox, DJ; Binkley, JS; Defrees, DJ; Baker, J; Stewart, JP; Head-Gordon, M; Gonzales, C; Pople, JA. GAUSSIAN 94, Revision B.3, Gaussian, Inc. Pittsburgh PA. **1995**.
- 59. Jones, G; Wilett, P; Glen, RC; Leach, AR; Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J. Mol. Biol.* 1997, 267, 727-748.
- 60. Morris, GM; Goodsell DS; Olson, AJ. The Scripps Research Institute, AutoDock 3.05, 2000.
- 61. SYBYL 7.0, Tripos Associates Inc., 1699 South Hanley Road, Suite 303, St. Louis, Missouri 63144, USA.
- 62. Viswanadhan, VN; Ghose, AK; Revenkar, GR; Robins, R. Atomic and Physichochemical Parameters for Three-dimensional Structure-directed Quantitative

Structure-activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Antibiotics. *J. Chem. Inf. Comput. Sci.* 1989, 29, 163-172.

63. Klabe, G. The Use of Composite Crystal-field Environments in Molecular Recognition and the De Novo Design of Protein Ligands. *J. Mol. Biol.* 1994, 237, 212-235.

64. SYBYL Molecular Modeling Software, Version 6.3, SYBYL Ligand Base Design, Tripos Associates, Inc., St.Louis, Missouri 63144, USA, 1996, 299.

Table 1. Structures of 56 efavirenz derivatives and experimental biological activities against both WT RT and K103N RT

Compound	X	R	Z -	Experimental log(1/C)		
no.	Λ	K	L -	WT	K103N	
01	6-Cl	CC-cyclopropyl	O	8.77	7.19	
02	6-Cl	CC-2-pyridyl	O	8.27	5.96	
03^{a}	6-Cl	CC-3-pyridyl	O	8.40	6.94	
04	6-C1	CC-2-furanyl	O	8.42	6.82	
05	6-C1	CC-3-furanyl	O	8.42	6.49	
06	5,6-diF	CC-3-pyridyl	O	8.65	7.23	
07	6-F	CC-3-furanyl	O	8.60	6.43	
08	6-F	CC-3-pyridyl	O	8.59	6.48	
09	5,6-diF	CC-3-furanyl	O	8.49	6.55	

11 5,6-dif CC-3-thienyl O 8.63 6.86 12 6-Cl OCH ₂ CH ₂ CH ₂ CH ₃ O 7,99 6.00 13 6-Cl OCH ₂ CH ₂ CH ₂ CH ₃ O 8.00 6.54 14 6-Cl OCH ₂ CHC(CH ₃) ₂ O 8.00 6.54 15 6-Cl OCH ₂ CHC(CH ₃) ₃ O 8.57 7.08 15 6-Cl OCH ₂ CHC(CH ₃) ₃ O 8.57 7.08 17 6-Cl OCH ₂ CHC(CH ₃) ₃ O 8.57 7.08 17 6-Cl OCH ₂ CHC(CH ₃) ₃ O 8.57 7.08 18 6-Cl OCH ₂ CHC(CH ₃) ₂ O 8.02 6.62 19 ³ 6-F OCH ₂ CHC(CH ₃) ₂ O 8.53 6.97 20 6-F OCH ₂ CHC(CH ₃) ₂ O 8.53 6.97 21 5,6-dif OCH ₂ CHC(CH ₃) ₂ O 8.81 7.19 22 5,6-dif OCH ₂ CHC(CH ₃) ₂ O 8.19 5.79 23 5,6-dif OCH ₂ CHC(CH ₂) O 8.20 6.74 24 5,6-dif OCH ₂ CHC(CH ₂) O 8.20 6.74 24 5,6-dif CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-dif CC-cyclopropyl NH 8.68 7.89 29 5,6-dif CC-cyclopropyl NH 8.68 7.89 29 5,6-dif CC-cyclopropyl NH 8.68 7.83 30 6-F CC-cyclopropyl NH 8.68 7.85 31 5,6-dif CC-cyclopropyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.60 7.15 34 6-MeO CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.57 7.74 35 6-F CC-cyclopropyl NH 8.57 7.74 36 6-MeO CC-cyclopropyl NH 8.57 7.66 39 6-F CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.57 7.66 40 6-MeO CC-isopropyl NH 8.57 7.66 41 5,6-dif CC-phenyl NH 8.49 6.55 42 6-F CC-phenyl NH 8.49 6.55 43 6-Cl CC-cyclopropyl NH 8.49 6.55 44 6-Cl CC-cyclopropyl NH 8.59 7.57 47 5,6-dif CC-cyclopropyl NH 8.50 6.60 48 6-Cl CC-cyclopropyl NH 8.50 6.60 49 6-MeO CC-cyclopropyl NH 8.50 6.60 50 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.15 51 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.	10	5,6-diF	CC-2-thienyl	O	8.65	6.81
12		•				
13		*				
14 6-Cl OCH2CHCH(CH3)cis O 8.36 6.63 15 6-Cl OCH3CHCH(CH3)tran O 8.25 6.39 16 6-Cl OCH3CHCH(CH3)tran O 8.57 7.08 17 6-Cl OCH3CCCH3 O 8.50 6.51 18 6-Cl OCH2CHCCC12 O 8.02 6.62 193 6-F OCH3CHC(CH3)2 O 8.53 6.97 20 6-F OCH3CHC(CH3)2 O 8.81 7.19 21 5,6-diF OCH3CHC(CH3)2 O 8.81 7.19 224 5,6-diF OCH3CHC(CH3)2 O 8.19 5.79 23 5,6-diF OCH3CHCCC12 O 8.20 6.74 24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.52 7.82 27 5-Cl CC-cyclopropyl NH 8.66 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-cyclopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-cyclopropyl NH 8.70 6.96 33 5-Cl,6-F CC-cyclopropyl NH 8.70 7.32 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-cyclopropyl NH 8.54 7.4 37 5-Cl,6-F CC-cyclopropyl NH 8.54 7.4 38 6-Cl CC-cyclopropyl NH 8.54 7.4 39 6-MeO CC-cyclopropyl NH 8.54 7.4 39 6-MeO CC-cyclopropyl NH 8.54 7.4 37 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 37 6-MeO CC-phenyl NH 8.57 7.66 39 6-MeO CC-phenyl NH 8.57 7.66 40 6-MeO CC-phenyl NH 8.57 7.66 41 5,6-diF CC-cyclopropyl NH 8.57 7.66 42 6-F CC-cyclopropyl NH 8.57 7.66 43 6-F CC-cyclopropyl NH 8.57 7.66 44 6-Cl CC-cyclopropyl NH 8.57 7.66 45 6-Cl CC-cyclopropyl NH 8.57 7.59 46 6-MeO CC-phenyl NH 8.42 7.25 47 5-Cl,6-F CC-cyclopropyl NH 8.57 7.66 48 6-Cl CC-cyclopropyl NH 8.59 7.57 48 6-Cl CC-cyclopropyl NH 8.59 7.57 49 6-MeO CC-phenyl NH 8.47 6.8 40 6-MeO CC-phenyl NH 8.59 7.57 41 5,6-diCl CC-cyclopropyl NH 8.59 7.57 42 6-F CC-cyclopropyl NH 8.59 7.57 48 6-Cl CC-cyclopropyl NH 8.59 7.57 49 6-MeO CC-phenyl NH 8.59 7.57 40 6-MeO CC-phenyl NH 8.59 7.57 41 5,6-diCl CC-cyclopropyl NH 8.44 7.55 50 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.55 50 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.55 50 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.55 51 5-MeO,6-Cl CC-cyclopropyl NH 8.44 7.55 51 5-MeO,6-Cl CC-phenyl NH 8.44 7.55 51 5-MeO,6-Cl CC-phen						
15			(-/-			
16 6-Cl OCH2CHC(CH3)3 O 8.57 7.08 17 6-Cl OCH2CCCH3 O 8.50 6.51 18 6-Cl OCH2CHCCl2 O 8.53 6.62 19* 6-F OCH2CHCH(CH3)tran O 8.53 6.97 20 6-F OCH2CHCH(CH3)tran O 8.05 5.94 21 5,6-diF OCH2CHCH2 O 8.19 5.79 23 5,6-diF OCH2CHCH2 O 8.20 6.74 24 5,6-diF OCT2Cethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.65 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-cyclopropyl NH 8.68 7.89 30 6-F CC-cyclopropyl NH 8.70 7.24			_ \ \ -/			
17						
18 6-Cl OCH2CHCCl2 O 8.02 6.62 19* 6-F OCH2CHCC(CH3)2 O 8.53 6.97 20 6-F OCH2CHC(CH3)2 O 8.05 5.94 21 5,6-diF OCH2CHCC2 O 8.19 5.79 23 5,6-diF OCH2CHCC12 O 8.20 6.74 24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-cyclopropyl NH 8.68 7.89 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.74						
19a 6-F OCH ₂ CHC(CH ₃) ₂ O 8.53 6.97 20						
20 6-F OCH ₂ CHCH(CH ₃)tran O 8.05 5.94 21 5,6-diF OCH ₂ CHC(CH ₃) ₂ O 8.81 7.19 22** 5,6-diF OCH ₂ CHCH ₂ O 8.19 5.79 23 5,6-diF OCH ₂ CHCCl ₂ O 8.20 6.74 24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-cyclopropyl NH 8.68 7.89 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.5 32 6-F CC-cyclopropyl NH 8.57						
21 5,6-diF OCH2CHC(CH3)2 O 8.81 7.19 22a 5,6-diF OCH2CHCCL2 O 8.19 5.79 23 5,6-diF OCH2CHCCL2 O 8.20 6.74 24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-cyclopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2pyridyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.57 7.74 34 6-F CC-cyclopropyl NH 8.57 7.74						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
23 5,6-diF OCH ₂ CHCCl ₂ O 8.20 6.74 24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.60 7.2 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.70 7.32 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.32 7.74 37a 5-F,6-Cl CC-cyclopropyl NH 8.64 7.14		•				
24 5,6-diF CC-ethyl NH 8.82 7.85 25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.52 7.82 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-cyclopropyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.64 7.14		•				
25 5-F CC-cyclopropyl NH 8.85 7.05 26 5-Cl,6-F CC-isopropyl NH 8.52 7.82 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.89 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-2-pyridyl NH 8.64 7.14 38 6-Cl,6-F CC-2-pyridyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25		•				
26 5-Cl,6-F CC-isopropyl NH 8.52 7.82 27 5-Cl CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-etthyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37a 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39a 6-MeO CC-phenyl NH 8.42 7.25 <			•			
27 5-CI CC-cyclopropyl NH 8.60 7.2 28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.54 7.4 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-phenyl NH 8.42 7.25						
28 5,6-diF CC-cyclopropyl NH 8.68 7.89 29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-phenyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.12 6.72 <		*				
29 5,6-diF CC-isopropyl NH 8.68 7.85 30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.64 7.14 38 6-Cl CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.47 7.66 39 a 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 41 5,6-diF CC-phenyl NH 8.18 6.49						
30 6-F CC-cyclopropyl NH 8.70 7.32 31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 41 5,6-diF CC-phenyl NH 8.21 6.72 42 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-cyclopropyl NH 8.47 6.8 44 6-Cl CC-cyclopropyl NH 8.48 7.59 45 6-Cl CC-cthyl NH 8.48 7.59 46 6-F CC-isopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.59 7.57 47 6-MeO CC-2-pyridyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.59 7.57 47 5,6-diCl CC-cyclopropyl NH 8.50 6.67 49 6-MeO CC-2-pyridyl NH 8.50 6.67 50 5-MeO,6-Cl CC-cyclopropyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.15 6.86 51 5-MeO,6-Cl CC-cyclopropyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.55 55 6-Cl CHCO-phenyl NH 8.44 7.55		•	• • • • • • • • • • • • • • • • • • • •			
31 5,6-diF CC-2-pyridyl NH 8.70 6.96 32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-isopropyl NH 8.15 6.6		•				
32 6-F CC-ethyl NH 8.60 7.15 33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.15 6.6 4						
33 5-Cl,6-F CC-cyclopropyl NH 8.57 7.74 34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.21 6.72 42° 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.48 7.59 45 6-Cl CC-ethyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.10 7.74 <td< td=""><td></td><td>*</td><td>- · ·</td><td></td><td></td><td></td></td<>		*	- · ·			
34 6-MeO CC-cyclopropyl NH 8.54 7.4 35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-cyclopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42° 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-ethyl NH 8.47 6.8 44 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.19 7.57 47° <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>			•			
35 6-F CC-2-pyridyl NH 8.30 6.32 36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37° 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39° 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42° 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-ethyl NH 8.47 6.8 44 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.15 7.57 47° 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		•				
36 5-F,6-Cl CC-cyclopropyl NH 8.32 7.74 37a 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39a 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 4						
37a 5-Cl,6-F CC-2-pyridyl NH 8.64 7.14 38 6-Cl CC-cyclopropyl NH 8.57 7.66 39a 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 5						
38 6-Cl CC-cyclopropyl NH 8.57 7.66 39 a 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-gyclopropyl NH 8.10 6.95	37 ^a					
39 a 6-MeO CC-isopropyl NH 8.42 7.25 40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
40 6-MeO CC-phenyl NH 8.49 6.55 41 5,6-diF CC-phenyl NH 8.21 6.72 42 a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-phenyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 <td< td=""><td>39 ^a</td><td>6-MeO</td><td></td><td>NH</td><td>8.42</td><td>7.25</td></td<>	39 ^a	6-MeO		NH	8.42	7.25
41 5,6-diF CC-phenyl NH 8.21 6.72 42 a 6-F CC-phenyl NH 8.18 6.49 43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47 a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 <tr< td=""><td></td><td>6-MeO</td><td></td><td>NH</td><td>8.49</td><td>6.55</td></tr<>		6-MeO		NH	8.49	6.55
43 6-Cl CC-2-pyridyl NH 8.47 6.8 44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47° 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	41	5,6-diF	- ·	NH	8.21	6.72
44 6-Cl CC-ethyl NH 8.48 7.59 45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-phenyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	42 ^a	6-F	CC-phenyl	NH	8.18	6.49
45 6-Cl CC-phenyl NH 8.15 6.6 46 6-F CC-isopropyl NH 8.59 7.57 47a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	43	6-C1	CC-2-pyridyl	NH	8.47	6.8
46 6-F CC-isopropyl NH 8.59 7.57 47a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	44	6-C1	CC-ethyl	NH	8.48	7.59
47 a 5,6-diCl CC-cyclopropyl NH 8.10 7.74 48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	45	6-C1	CC-phenyl	NH	8.15	6.6
48 6-Cl CC-isopropyl NH 8.52 7.66 49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	46	6-F	CC-isopropyl	NH	8.59	7.57
49 6-MeO CC-2-pyridyl NH 8.09 6.47 50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	47 ^a	5,6-diCl	CC-cyclopropyl	NH	8.10	7.74
50 5-MeO,6-Cl CC-cyclopropyl NH 8.46 8.12 51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	48	6-C1	CC-isopropyl	NH	8.52	7.66
51 5-MeO,6-Cl CC-phenyl NH 8.10 6.95 52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	49	6-MeO	CC-2-pyridyl	NH	8.09	6.47
52 5-MeO,6-Cl CC-3-pyridyl NH 8.15 6.86 53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	50	5-MeO,6-Cl	CC-cyclopropyl	NH	8.46	8.12
53 5-OH,6-Cl CC-cyclopropyl NH 8.44 7.55 54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	51	5-MeO,6-Cl	CC-phenyl	NH	8.10	6.95
54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	52	5-MeO,6-Cl	CC-3-pyridyl	NH	8.15	6.86
54 6-Cl CHCO-cyclopropyl NH 8.44 7.12 55 6-Cl CHCO-phenyl NH 8.09 7.34	53	5-OH,6-Cl	CC-cyclopropyl	NH	8.44	7.55
	54	6-Cl	CHCO-cyclopropyl	NH	8.44	7.12
56 6-Cl CHCO-3-pyridyl NH 8.34 7.12		6-Cl		NH	8.09	7.34
	56	6-Cl	CHCO-3-pyridyl	NH	8.34	7.12

Table 2. The rmsd (Å) of the docked pose from the X-ray pose of efavirenz by using GOLD and Autodock methods.

Doolsing mathed	Rmsd (Å)			
Docking method	WT (pdb code 1fk9)	K103N (pdb code 1fko)		
GOLD	0.94	1.00		
Autodock	0.35	0.53		

Table 3. Summary of CoMFA models for the WT and K103 N HIV-1 RT inhibition

Statistical results	WT inhibition	K103 N inhibition
r^2_{cv}	0.662	0.755
noc	3	6
s-press r ²	0.145	0.302
r^2	0.936	0.944
S	0.066	0.144
F	83.441	107.318
Field Contribution		
Steric	63.8	51.2
Electrostatic	36.2	48.8

Table 4. Summary of CoMSIA models for the WT and K103N HIV-1 RT inhibition

Statistical results	WT inhibition	K103 N inhibition
r^2_{cv}	0.708	0.773
noc	6	3
s-press	0.142	0.286
r^2	0.894	0.938
S	0.085	0.155
F	50.844	93.344
Field Contribution		
Steric	12.2	13.4
Electrostatic	19.5	22.3
Hydrophobic	24.1	20.5
Hydrogen donor	16.8	26.5

^a seven compounds comprising of compounds 03,19,22,37,39,42 and 47, used as the test set

Table 5. Predicted log (1/C) WT and K103N HIV-1 RT inhibitory affinities of the tested efavirenz compounds derived from CoMFA models

Compound	WT HIV-1 RT inhibitory affinity			K103N HIV-1 RT inhibitory affinity		
No.	Expt.log(1/C)	Calc.log (1/C) ^a	Residual	Expt.log(1/C)	Calc. $\log (1/C)^b$	Residual
03	8.40	8.50	-0.1	6.94	6.28	0.66
19	8.53	7.99	0.54	6.97	6.46	0.51
22	8.19	8.73	-0.54	5.79	7.42	-1.63
37	8.64	8.43	0.21	7.14	6.76	0.38
39	8.42	8.34	0.08	7.25	7.79	-0.54
42	8.18	8.27	-0.09	6.49	6.51	-0.02
47	8.10	8.63	-0.53	7.74	7.78	-0.04

^a calculated by CoMFA model for the WT inhibition

Table 6. Predicted log (1/C) WT and K103N HIV-1 RT inhibitory affinities of the tested efavirenz compounds derived from CoMSIA models

Compound No.	WT HIV-1 RT inhibitory affinity			K103N HIV-1 RT inhibitory affinity		
110.	Expt.log(1/C)	Calc.log (1/C) ^a	Residual	Expt.log(1/C	Calc. $\log (1/C)^b$	Residual
03	8.40	8.46	-0.06	6.94	6.58	0.36
19	8.53	8.27	0.26	6.97	6.23	0.74
22	8.19	8.58	-0.39	5.79	6.43	-0.64
37	8.64	8.20	0.44	7.14	6.72	0.42
39	8.42	8.54	-0.12	7.25	7.48	-0.23
42	8.18	8.23	-0.05	6.49	6.54	-0.05
47	8.10	8.47	-0.37	7.74	7.81	-0.07

^b calculated by CoMFA model for the K103N inhibition

Table 7. Interaction energies between efavirenz from X-ray structure and each amino acid surrounding in the WT and K103N binding pockets

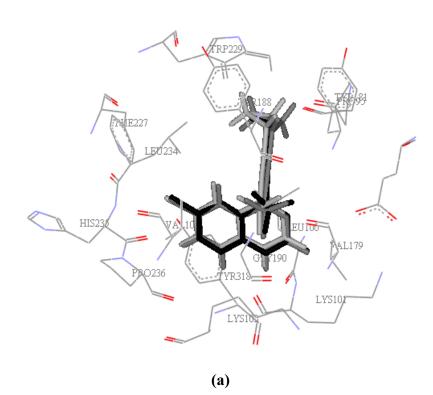
	Interaction energy (kcal/mol)					
Amino acid residue	WT bind	ding pocket	K103N binding pocket			
_	B3LYP/ 6-31G(d)	MP2/6-31G(d)	B3LYP/ 6-31G(d)	MP2/6-31G(d)		
P95	-0.3	-0.9	-0.3	-0.9		
L100	-0.6	-7.6	0.2	-7.7		
K101	-16.1	-18.6	-10.1	-12.1		
K103/N103	-1.8	-5.3	-1.4	-3.2		
V106	1.0	-2.4	-0.1	-3.2		
Y181	-0.6	-3.8	1.2	-4.3		
Y188	-1.0	-5.7	-1.6	-6.6		
G190	-1.0	-1.7	-1.0	-1.9		
F227	0.1	-1.0	0.4	-1.0		
W229	-0.7	-2.5	-1.3	-3.3		
L234	0.2	-1.8	0.0	-2.5		
H235	-1.7	-3.2	-1.9	-3.0		

^a calculated by CoMSIA model for the WT inhibition

^b calculated by CoMSIA model for the K103N inhibition

P236	-0.9	-3.1	-1.1	-2.7
Y318	-0.3	-2.7	-0.2	-3.3

Table 8. Interaction energies between docked conformations (docked efavirenz (compound 01), compounds 25 and 12) and each amino acid surrounding in the WT binding pocket


	Interaction energy (kcal/mol)						
Amino – acid residue –	compo	und 01	compo	und 25	compo	und 12	
	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)	
P95	-0.1	-0.9	-0.1	-0.9	-0.3	-0.8	
L100	0.9	-6.3	0.4	-7.0	3.6	-3.2	
K101	-17.1	-19.9	-17.2	-20.0	-15.3	-18.0	
K103	-5.4	-8.2	-7.3	-10.2	-4.6	-7.7	
V106	0.7	-2.5	-1.7	-4.1	1.2	-2.2	
Y181	-0.1	-4.1	-0.1	-4.0	2.1	-1.9	
Y188	-0.7	-5.2	-1.2	-6.1	1.0	-4.6	
G190	-1.4	-2.1	-1.5	-2.3	-1.3	-2.3	
F227	-0.1	-1.1	0.0	-0.4	-0.2	-1.2	
W229	-1.4	-2.5	-0.4	-2.3	0.3	-2.5	
L234	0.2	-1.8	-0.1	-1.4	0.1	-1.8	

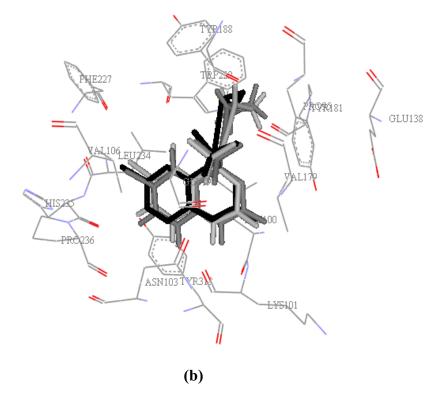
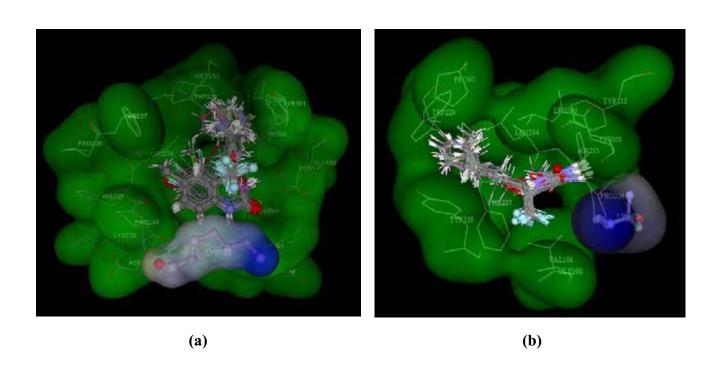
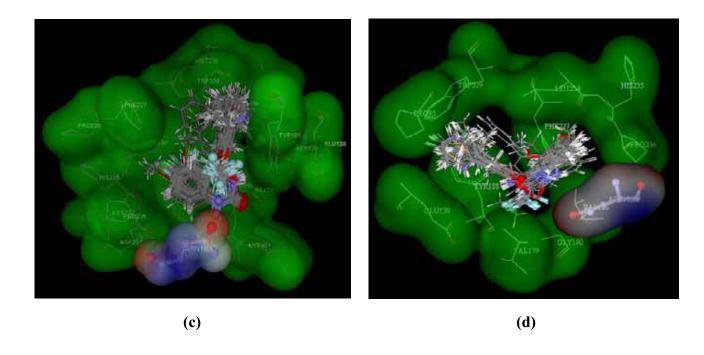
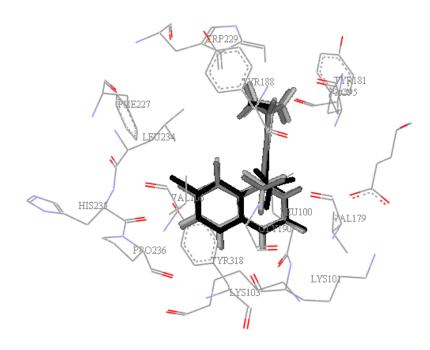
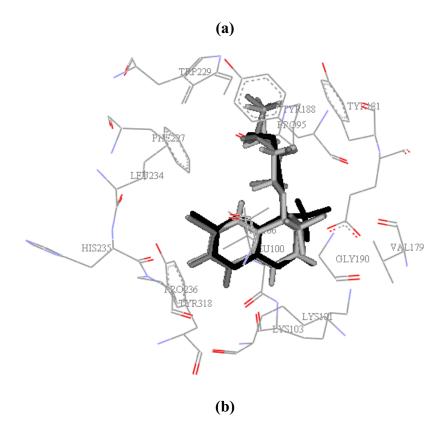

H235	-1.5	-2.9	-2.2	-3.0	-0.4	-2.0
P236	-1.4	-3.6	-0.8	-2.7	-1.2	-3.7
Y318	-0.3	-3.7	0.3	-3.4	0.1	-3.7

Table 9. Interaction energies between docked conformations (docked efavirenz (compound 01), compounds 50 and 22) and each amino acid surrounding in the K103N binding pocket


Amino – acid residue –	Interaction energy (kcal/mol)							
	compo	und 01	compo	und 50	compo	ound 22		
	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)	B3LYP/ 6-31G(d)	MP2/ 6-31G(d)		
P95	-0.3	-1.3	-0.1	-1.1	-0.1	-0.7		
L100	4.6	-5.0	0.8	-7.8	2.8	-5.1		
K101	-7.3	-10.3	-14.8	-17.3	-6.9	-9.8		
N103	0.0	-1.5	0.3	-1.2	-0.1	-2.0		
V106	0.7	-2.0	0.3	-3.1	0.1	-3.0		
Y181	0.4	-5.9	-2.1	-8.9	1.5	-5.0		
Y188	-1.6	-5.1	-1.9	-7.5	-0.5	-4.1		
G190	-1.3	-2.2	-1.5	-2.5	-1.0	-2.0		
F227	-0.3	-1.3	0.7	-1.4	-0.4	-0.9		
W229	-1.0	-3.8	-1.1	-4.0	-0.7	-1.6		
L234	-0.2	-2.0	0.0	-2.9	0.3	-0.4		


H235	-1.5	-2.3	-1.9	-2.9	-1.7	-2.1
P236	-1.4	-2.6	-1.0	-2.5	-1.8	-3.1
Y318	0.3	-3.3	0.2	-3.4	0.0	-3.0




Figure 1. The conformations of docked efavirenz by using GOLD (grey) and Autodock (dark grey) and compared with the orientation of X-ray pose (black); (a) in the WT binding pocket (pdb code 1fk9) and (b) in the K103N binding pocket (pdb code 1fko).

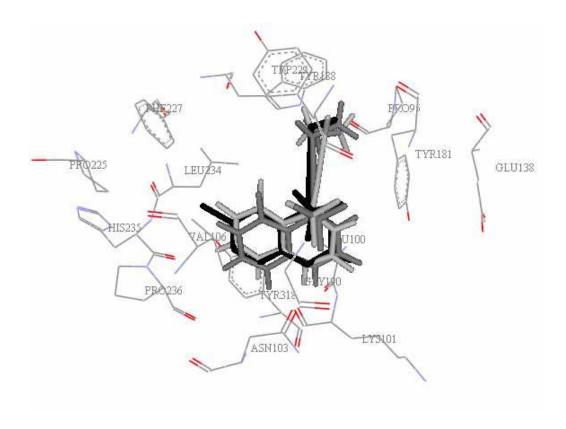
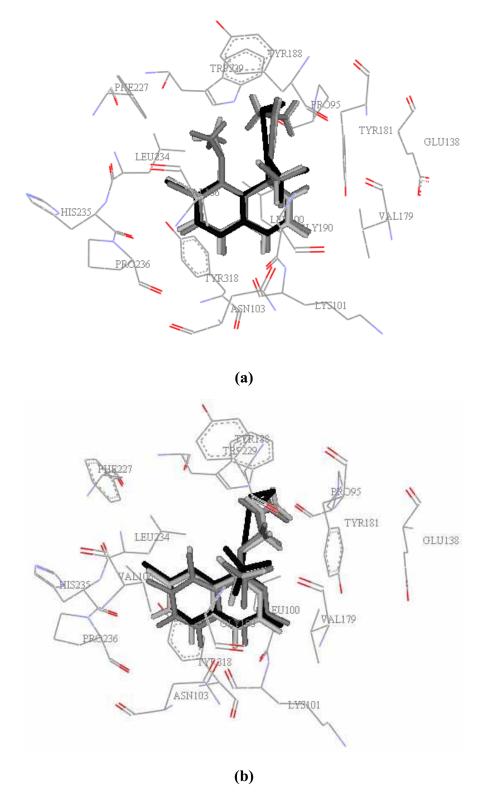
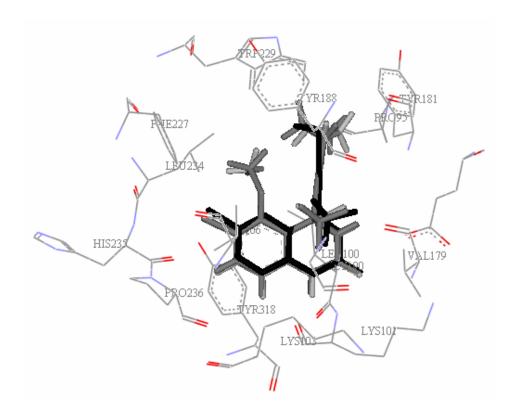
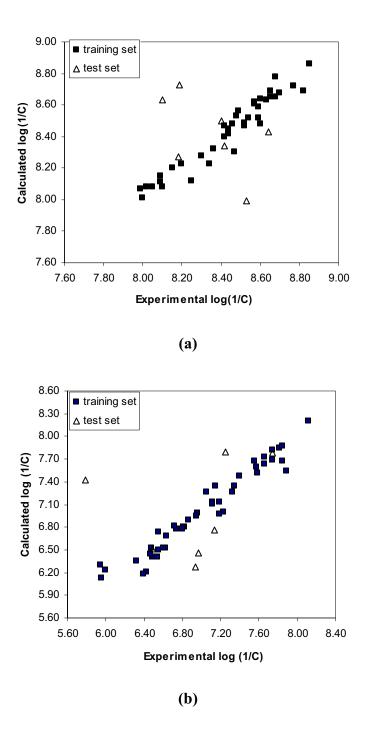


Figure 2. The orientation of docked efavirenz derivatives by using Autodock in the WT binding pocket (a. top view and b. side view) and in the K103N binding pocket (c. top view and d. side view).




Figure 3. The conformations of docked efavirenz derivatives by using GOLD (grey) and Autodock (dark grey) and compared with the orientation of X-ray pose (black) in the WT HIV-1 RT; (a) Compound 25 and (b) Compound 12.


Figure 4. The conformations of docked efavirenz derivative (compound 25) by using GOLD (grey) and Autodock (dark grey) compared with the orientation of X-ray pose (black) in the K103N HIV-1 RT.

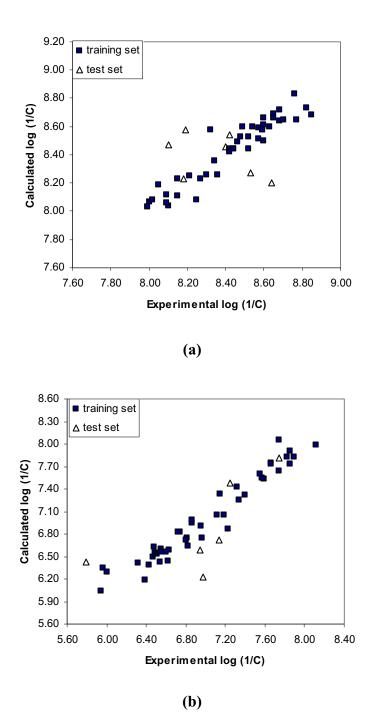

Figure 5. The conformations of docked efavirenz derivatives by using GOLD (grey) and Autodock (dark grey) compared with the orientation of X-ray pose (black) in the K103N HIV-1 RT; (a) Compound 50 (b) Compound 22.

Figure 6. The conformations of docked efavirenz derivative (compound 50) by using GOLD (grey) and Autodock (dark grey) compared with the orientation of X-ray pose (black) in the WT HIV-1 RT.

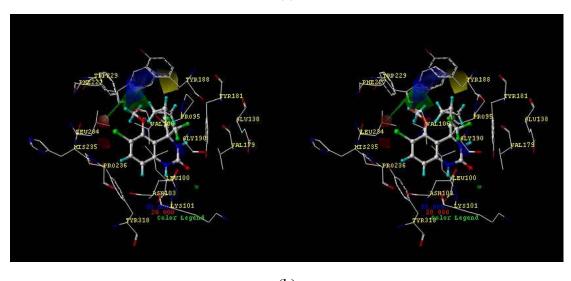
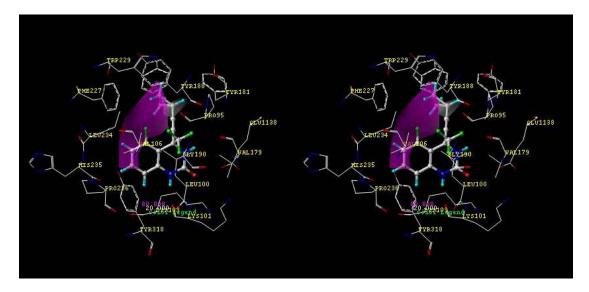
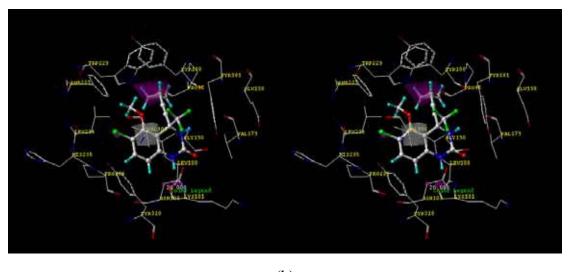

Figure 7. The plots between predicted and experimental inhibitory affinities of the non-cross-validated analysis of the CoMFA model; (a) WT inhibitory affinities and (b) K103N inhibitory affinities.

Figure 8. The plots between predicted and experimental inhibitory affinities of the non-cross-validated analysis of the CoMSIA model; (a) WT inhibitory affinities and (b) K103N inhibitory affinities.

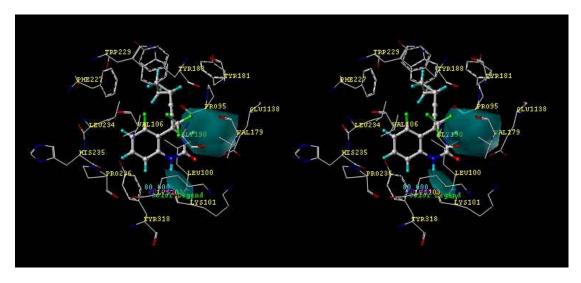


(a)

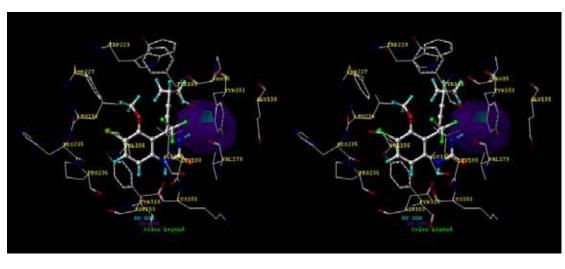


(b)

Figure 9. Stereoview of CoMFA steric and electrostatic STDEV*COEFF contour plots based on WT and K103N HIV-1 RT inhibitions from the analysis of CoMFA models with non-cross-validation, as shown in (a) and (b), respectively. Green contours refer to sterically favored regions; yellow contours indicate disfavored area. Compound 25 and 50 are displayed inside the fields as ball and stick presentation in (a) and (b), respectively.

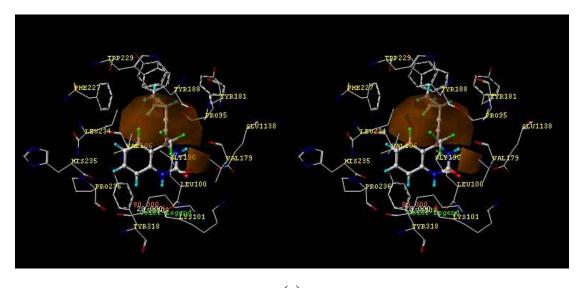


(a)

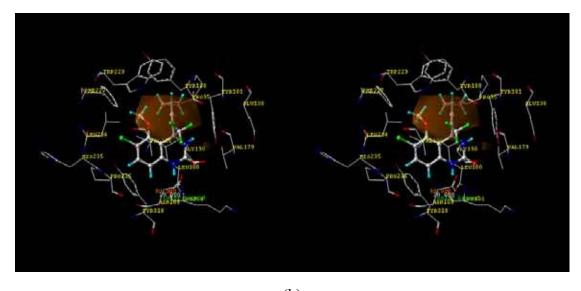


(b)

Figure 10. Stereoview of CoMSIA hydrophobic STDEV*COEFF contour plots based on WT and K103N HIV-1 RT inhibitions from the analysis of CoMSIA models with non-cross-validation, as shown in (a) and (b), respectively. Magenta contours refer to positive hydrophobic favoring areas; white contours indicate hydrophilic favoring areas. Compound 25 and 50 are displayed inside the fields as ball and stick presentation in (a) and (b), respectively.



(a)



(b)

Figure 11. Stereoview of CoMSIA hydrogen donor STDEV*COEFF contour plots based on WT and K103N HIV-1 RT inhibitions from the analysis of CoMSIA models with non-cross-validation, as shown in (a) and (b), respectively. Cyan contours refer to hydrogen donor fields favoring areas; purple contours indicate hydrogen donor fields disfavoring areas. Compound 25 and 50 are displayed inside the fields as ball and stick presentation in (a) and (b), respectively.

(a)

(b)

Figure 12. Stereoview of CoMSIA hydrogen acceptor STDEV*COEFF contour plots based on WT and K103N HIV-1 RT inhibitions from the analysis of CoMSIA models with non-cross-validation, as shown in (a) and (b), respectively. Orange contours refer to hydrogen acceptor fields favoring areas; white contours indicate hydrogen acceptor fields disfavoring areas. Compound 25 and 50 are displayed inside the fields as ball and stick presentation in (a) and (b), respectively.

Structural Aspects of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibition

Anton Beyer*1, Luckhana Lawtrakul2, Pornpan Pungpo3 and Peter Wolschann1

Abstract: HIV-1 Reverse transcriptase (RT) is an essential enzyme for HIV-1 replication and, therefore, it is an important target for the attack of antiviral agents. Although some products are already on the market, there is need to design new drugs, because mutation in drug interacting disease proteins decreases the efficiency of the existing drugs. Non-nucleoside RT inhibitors fill up an allosteric, mainly hydrophobic pocket in a distinct distance from the enzyme's active center. X-ray crystallographic investigations on the enzyme and on enzyme complexes provide information about the structural consequences of the protein-inhibitor interaction. Applying molecular simulations the dynamic behaviour of these biomolecular systems can be obtained in order to get some insight into the molecular flexibilities and into the detailed inhibition mechanism. Amino acids which are important for the inhibition mechanism and the interaction with inhibitor molecules can be identified for further considerations with more accurate molecular calculations. QSAR studies allow the development of proper prediction models, which are used to design new drugs. Combination of molecular docking, energy minimization and MD or MC calculations with various QSAR methods will support screening methods to find new lead compounds.

Keywords: HIV-1 reverse transcriptase, Non-nucleoside reverse transcriptase inhibitor, X-ray structures, quantitative structure-activity analysis, molecular simulation.

1. STRUCTURE OF HIV-1 REVERSETRANSCRIPTASE AND INHIBITOR COMPLEXES

1.1 The Enzymes of HIV-1

The human immunodeficiency virus type 1 (HIV-1) is a retrovirus responsible for the Acquired Immunodeficiency Syndrome (AIDS). The viral genome (GenBank Accession number NC_001802) consists of 9181 base pairs and encodes nine open reading frames. One of these encodes the Pol polyprotein, which is proteolyzed into three enzymatic proteins, reverse transcriptase (RT), protease (PR) and integrase (IN) [1,2]. These enzymes are essential for the replication of the virus and therefore for the whole viral life cycle. After absorption of the virus by the cell, the RT converts the singlestranded viral RNA into double-stranded DNA, which is then integrated into the host chromosome by the IN. The polyprotein expressed from the resulting cellular RNA is cut into the individual proteins by the PR. These viral enzymes are important targets for the treatment of HIV-1 infection. Several products are already on the market [3-7], especially for the inhibition of the two enzymes PR and RT.

1.2. HIV-1 Reverse Transcriptase

HIV-1 RT is a multifunctional enzyme that converts the viral RNA into DNA and has the following functions: RNA-dependent DNA polymerase, DNA-dependent DNA polymerase and ribonuclease H (RNase H). Chain elongation takes place by adding desoxyribonucleotide triphosphates to the 3'OH terminus of the primer sequence. This process is essential for the replication of HIV-1, and the enzyme is therefore an

important target for anti-HIV-1 drugs [8-10]. Three classes of inhibitors exist, acting on HIV-1 RT. Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Nucleotide Reverse Transcriptase Inhibitors (NtRTIs), which interact with the enzyme's active site and are competitive inhibitors. Nonnucleoside inhibitors (NNRTIs) are the third class of RT inhibitors. They act allosterically and are highly specific for HIV-1 RT. NNRTIs are compounds of a surprisingly different chemical constitution, and all bind to the same site of RT, near to, but distinct from the polymerase active center. They inhibit the RT activity by inducing conformational changes at functionally important residues.

A major drawback of NNRTIs is the occurrence of drug resistance by mutation of the RT protein [11-13]. Additionally, such mutations in many cases also lead to a decreased sensitivity to other NNRT inhibitors. This is the reason for the necessity of the development of new and more mutation-independent drugs.

1.3. Structure of HIV-1 Reverse Transcriptase

Extended structural information about HIV-1 RT has been obtained from X-ray crystallography. A large number of structures of free or complexed HIV-1 RT, resolved by X-ray crystallography, have been deposited in the Protein Data Bank (RCSB PDB; http://www.pdb.org) [14]. The following classes of structures are included in the data bank: Free HIV-1 RT without ligand, HIV-1 RT bound to double-stranded oligonucleotide template-primers both in the presence and in the absence of a deoxynucleotide triphosphate substrate and HIV-1 RT complexed with different NNRTIs. Moreover, Structures of HIV-1 RT mutants in free or complexed form are also available. Several HIV related databases are maintained at Los Alamos National Laboratory (www.hiv.lanl.gov.) [15]. NIST (National Institute of Standards and Technology) runs the" HIV Structural

¹Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria

²Department of Common and Graduate Studies, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Thammasat Rangsit, Pathumthani 12121, Thailand

³Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani 34190, Thailand

^{*}Address correspondence to this author at the Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria; Fax: +43-1-4277 52771; Tel: ++43 1 4277 9527; E-mail: Anton.Bever@univie.ac.at

Table 1. Sequences of Two Variants of HIV-1 RT (S1 and S2)

1	PISPIETVPV KLKPGMDGPK VKQWPLTEEK IKALVEICTE MEKEGKISKI GPENPYNTPV	60
1	PISPIETVPV KLKPGMDGPK VKQWPLTEEK IKALVEICTE MEKEGKISKI GPENPYNTPV	60
61	FAIKKKDSTK WRKLVDFREL NKRTQDFWEV QLGIPHPAGL KKKKSVTVLD VGDAYFSVPL	120
61	FAIKKKDSTK WRKLVDFREL NKRTQDFWEV QLGIPHPAGL KKKKSVTVLD VGDAYFSVPL	120
121	DEDFRKYTAF TIPSINNETP GIRYQYNVLP QGWKGSPAIF QSSMTKILEP F ${f R}$ KQNPDIVI	180
121	DEDFRKYTAF TIPSINNETP GIRYQYNVLP QGWKGSPAIF QSSMTKILEP F $\underline{\mathbf{K}}$ KQNPDIVI	180
181	YQYMDDLYVG SDLEIGQHRT KIEELRQHLL RWGLTTPDKK HQKEPPFLWM GYELHPDKWT	240
181	YQYMDDLYVG SDLEIGQHRT KIEELRQHLL RWGLTTPDKK HQKEPPFLWM GYELHPDKWT	240
241	VQPIVLPEKD SWTVNDIQKL VGKLNWASQI YPGIKVRQLC KLLRGTKALT EVIPLTEEAE	300
241	VQPIVLPEKD SWTVNDIQKL VGKLNWASQI YPGIKVRQLC KLLRGTKALT EVIPLTEEAE	300
301	LELAENREIL KEPVHGVYYD PSKDLIAEIQ KQGQGQWTYQ IYQEPFKNLK TGKYARMRGA	360
301	LELAENREIL KEPVHGVYYD PSKDLIAEIQ KQGQGQWTYQ IYQEPFKNLK TGKYARMRGA	360
361	HTNDVKQLTE AVQKITTESI VIWGKTPKFK LPIQKETWET WWTEYWQATW IPEWEFVNTP	420
361	HTNDVKQLTE AVQKITTESI VIWGKTPKFK LPIQKETWET WWTEYWQATW IPEWEFVNTP	420
421	PLVKLWYQLE KEPIVGAETF YVDGAANRET KLGKAGYVTN ${f R}$ GRQKVV ${f T}$ LT ${f D}$ TTNQKTELQ	480
421	PLVKLWYQLE KEPIVGAETF YVDGAANRET KLGKAGYVTN K GRQKVV P LT N TTNQKTELQ	480
481	AIYLALQDSG LEVNIVTDSQ YALGIIQAQP D Q SESELVNQ IIEQLIKKEK VYLAWVPAHK	540
481	AIYLALQDSG LEVNIVTDSQ YALGIIQAQP D K SESELVNQ IIEQLIKKEK VYLAWVPAHK	540
541	GIGGNEQVDK LVSAGIRK <u>V</u> L	560
541	GIGGNEQVDK LVSAGIRK I L	560
	1 61 61 121 121 181 181 241 241 301 361 361 421 481 481 541	1 PISPIETVPV KLKPGMDGPK VKQWPLTEEK IKALVEICTE MEKEGKISKI GPENPYNTPV 61 FAIKKKDSTK WRKLVDFREL NKRTQDFWEV QLGIPHPAGL KKKKSVTVLD VGDAYFSVPL 61 FAIKKKDSTK WRKLVDFREL NKRTQDFWEV QLGIPHPAGL KKKKSVTVLD VGDAYFSVPL 121 DEDFRKYTAF TIPSINNETP GIRYQYNVLP QGWKGSPAIF QSSMTKILEP FRKQNPDIVI 121 DEDFRKYTAF TIPSINNETP GIRYQYNVLP QGWKGSPAIF QSSMTKILEP FKQNPDIVI 181 YQYMDDLYVG SDLEIGQHRT KIEELRQHLL RWGLTTPDKK HQKEPPFLWM GYELHPDKWT 181 YQYMDDLYVG SDLEIGQHRT KIEELRQHLL RWGLTTPDKK HQKEPPFLWM GYELHPDKWT 181 VQPIVLPEKD SWTVNDIQKL VGKLNWASQI YPGIKVRQLC KLLRGTKALT EVIPLTEEAE 180 VQPIVLPEKD SWTVNDIQKL VGKLNWASQI YPGIKVRQLC KLLRGTKALT EVIPLTEEAE 180 LELAENREIL KEPVHGVYYD PSKDLIAEIQ KQGQGQWTYQ IYQEPFKNLK TGKYARMRGA 181 LELAENREIL KEPVHGVYYD PSKDLIAEIQ KQGQGQWTYQ IYQEPFKNLK TGKYARMRGA 182 HTNDVKQLTE AVQKITTESI VIWGKTPKFK LPIQKETWET WWTEYWQATW IPEWEFVNTP 183 HTNDVKQLTE AVQKITTESI VIWGKTPKFK LPIQKETWET WWTEYWQATW IPEWEFVNTP 184 PLVKLWYQLE KEPIVGAETF YVDGAANRET KLGKAGYVTN RGRQKVVTLT DTTNQKTELQ 185 AIYLALQDSG LEVNIVTDSQ YALGIIQAQP DQSESELVNQ IIEQLIKKEK VYLAWVPAHK 186 AIYLALQDSG LEVNIVTDSQ YALGIIQAQP DRSESELVNQ IIEQLIKKEK VYLAWVPAHK 187 GIGGNEQVDK LVSAGIRKYL

Database" which has some additional information not included in PDB (http://xpdb.nist.gov/hivsdb/hivsdb.html) [16].

Two variants of slightly different protein sequences have been used throughout these studies, denoted here as S1 and S2. Both sequences are given in Table $\bf 1$.

In this table the differences between the two variants are shown. There is one difference in the Palm domain, whereas the others are located in the RNase H domain [17, 18].

A summary of all structures currently available in PDB is given in Table $\bf 2$.

Table 2. HIV-1 Reverse Transcriptase X-ray structures in the Protein Data Bank. Resolution (Res) in Å

	PDB Code	Ligand	Res	Year	Ref.	Model	Mutation	
1	1RTI	НЕРТ	3.00	1995	[19]	S1 560	-	
2	1RT1	MKC-422 Emivirine	2.55	1996	[20]	S1 560	-	
3	1RT2	TNK-651	2.55	1996	[20]	S1 560	-	
4	1JLA	TNK-651	2.50	2001	[21]	S1 560	Y181C	
5	1S1V	TNK-651	2.60	2004	[22]	S1 560	L100I	
6	1C1B	GCA-186	2.50	1999	[23]	S1 560	-	
7	1C1C	TNK-6123	2.50	1999	[23]	S1 560	-	
8	IJLQ	739W94	3.00	2001	[24]	S1 560	-	
9	1HNV	8-C1 TIBO (R86183)	3.00	1995	[25]	S2 558	C280S	
10	1UWB	8-Cl TIBO (R86183)	3.20	1996	[26]	S2 558	C280S	Y181C
11	1TVR	9-Cl TIBO (R82913)	3.00	1996	[26]	S2 558	C280S	
12	1REV	9-Cl TIBO (R82913)	2.60	1995	[27]	S1 560	-	

(Table 2)contd

				T	T	1	(Tab	le 2)contd				
	PDB Code	Ligand	Res	Year	Ref.	Model	Mutation					
13	3HVT	Nevirapine (Viramune)	2.90	1994	[28,29]	S2 556	-					
14	1VRT	Nevirapine (Viramune)	2.20	1995	[19]	S1 560	-					
15	1FKP	Nevirapine (Viramune)	2.90	2000	[30]	S1 543	K103N					
16	1JLB	Nevirapine (Viramune)	3.00	2001	[21]	S1 560	Y181C					
17	1JLF	Nevirapine (Viramune)	2.60	2001	[21]	S1 560	Y188C					
18	1LWC	Nevirapine (Viramune)	2.62	2002	[31]	S1 560	M184V					
19	1LW0	Nevirapine (Viramune)	2.80	2002	[31]	S1 560	T215Y					
20	1LWE	Nevirapine (Viramune)	2.81	2002	[31]	S1 560	M41L	T215Y				
21	1LWF	Nevirapine (Viramune)	2.80	2002	[31]	S1 560	M41L	D67N				
	K70R	M184V										
	T215Y											
22	1S1U	Nevirapine (Viramune)	3.00	2004	[21]	S1 560	L100I					
23	1S1X	Nevirapine (Viramune)	2.80	2004	[22]	S1 560	V108I					
24	1RTH	1051U91	2.20	1995	[19]	S1 560	-					
25	1RT3	1051U91	3.00	1998	[32]	S1 555	D67N	K70R				
	T115F	K219Q										
26	1LW2 1051U91	3.00	2002	[31]	S1 560	T215Y						
27	1VRU	2,6-Cl2 a-APA (R90385)	2.40	1995	[19]	S1 560	-					
28	1HPZ	2,6-Cl2 a-APA (R90385)	3.00	2000	[33]	S2 560	K103N	C280S				
29	1HNI	2,6-Br2 a-APA (R95845)	2.80	1995	[34]	S2 558	C280S					
30	1BQM	HBY097	3.10	1998	[35]	S2 556	C280S					
31	1BQN	HBY097	3.30	1998	[35]	S2 558	Y188L	C280S				
	E248Q	E546Q										
32	1HQU	HBY097	2.70	2000	[33]	S2 560	K103N	C280S				
33	1KLM	BHAP U-90152	2.65	1997	[27]	S1 560	-					
34	1RT5	UC-10	2.90	1998	[27]	S1 560	-					
35	1RT6	UC-38	2.80	1998	[27]	S1 560	-					
36	1RT7	UC-84	3.00	1998	[27]	S1 560	-					
37	1RT4	UC-781	2.90	1998	[27]	S1 560	-					
38	1JLG	UC-781	2.60	2001	[21]	S1 560	Y188C					
39	1S1T	UC-781	2.40	2004	[22]	S1 560	L100I					
40	1S1W	UC-781	2.70	2004	[22]	S1 560	V106A					
41	1COT	BM+21.1326	2.70	1999	[37]	S1 560	-					
42	1COU	BM+50.0934	2.52	1999	[37]	S1 560	-					
43	1DTT	PETT-2 (PETT130A94)	3.00	2000	[38]	S1 560	-					
44	1JLC	PETT-2	3.00	2001	[21]	S1 560	Y181C					
45	1DTQ	PETT-1 (PETT131A94)	2.80	2000	[38]	S1 560	-					
46	1EET	MSC204	2.73	2000	[39]	S2 557	E478Q					
47	1IKY	MSC194	3.00	2001	[40]	S2 560	K103N	E478Q				

(Table 2)contd.....

Table	e 2)contd													
	PDB Code	Ligand	Res	Year	Ref.	Model	Mutation							
48	1IKX	PNU142721	2.80	2001	[40]	S2 560	K103N	E478Q						
49	1FK9	DMP-266 (Efavirenz)	2.50	2000	[30]	S1 543	-							
50	1IKW	DMP-266 (Efavirenz)	3.00	2001	[40]	S2 560	E478Q							
51	1FKO	DMP-266 (Efavirenz)	2.90	2000	[30]	S1 543	K103N							
52	1IKV	DMP-266 (Efavirenz)	3.00	2001	[40]	S2 560	K103N	E478Q						
53	1JKH	DMP-266 (Efavirenz)	2.50	2001	[21]	S1 560	Y181C							
54	1EP4	S-1153	2.50	2000	[41]	S1 560	-							
55	1S6P	R100943	2.90	2005	[42]	S2 560	C280S							
56	1S9G	R120394	2.80	2005	[42}	S2 560	C280S							
57	1S9E	R129385	2.60	2005	[42]	S2 560	C280S							
58	1S6Q	R147681	3.00	2005	[42]	S2 560	C280S							
59	2BAN	R157208	2.95	2005	[43]	S2 560	C280S							
60	1SV5	R165335	2.90	2004	[42]	S2 560	C280S	K103N						
61	2B5J	R165481	2.90	2005	[43]	S2 560	C280S							
62	1SUQ	R185545	3.00	2005	[42]	S2 560	C280S							
63	2BE2	R221239	2.43	2005	[43]	S2 560	C280S							
64	1TKT	GW426318	2.60	2004	[44]	S1 560	_							
65	1TKZ	GW429576	2.81	2004	[44]	S1 560	-							
66	1TKX	GW490745	2.85	2004	[44]	S1 560	_							
67	1TL3	GW450557	2.80	2004	[44]	S1 560	_							
68	1TL1	GW451211	2.90	2004	[44]	S1 560	_							
69	1TV6	CP-94	2.80	2004	[45]	S2 560	-							
70	2B6A	THR-50	2.65	2005	[46]	S2 560	C280S							
71	1HAR	-	2.20	1994	[47]	NA 216	N-Term							
72	1HMV	-	3.20	1994	[48]	S2 560	-							
73	1RTJ	_	2.35	1995	[49]	S1 560	_							
74	1DLO	_	2.70	1996	[50]	S2 556	C280S							
75	1HQE	-	2.70	2000	[51]	S2 560	K103N	C280S						
76	1JLE	-	2.80	2001	[21]	S1 560	Y188C							
77	1QE1	-	2.85	1999	[51]	S2 558	C280S	M184I						
78	2HMI	DNA/FAB	2.80	1998	[52,53]	S2 558	C280S							
79	1C9R	DNA/FAB	3.50	1999	[51]	S2 556	C280S	M184I						
80	1J5O	DNA/FAB	3.50	2002	[51]	S2 558	C280S	M184I						
81	1T05	DNA/Fab	3.00	2004	[54]	S2 558	C280S	Q258C						
82	1T03	DNA/Fab	3.10	2004	[54]	S2 558	C280S	Q258C						
83	1N6Q	DNA/Fab	3.00	2002	[55]	S2 558	C280S	Q258C						
84	1N5Y	DNA/Fab	3.10	2002	[55]	S2 558	C280S	Q258C						
85	1RTD	DNA/dNTP	3.20	1998	[56]	S1 553	Q258C	R461K						
	T468P	E478Q												

(Table 2)contd....

	PDB Code	Ligand	Res	Year	Ref.	Model	Mutation	
	Q512E							
86	1HVU	RNA	4.75	1998	[57]	S2 554	-	
87	1HYS	RNA/DNA	3.00	2001	[58]	S2 553	C280S	

HIV-1 RT is a heterodimer and contains two chains with identical amino acid sequences but of different lengths. The first chain (p66), has a molecular weight of 66kDa and consists of 560 amino acids. The second chain (p51) is built up from 440 residues and has a molecular weight of 51kDa. It lacks the RNase H domain at the C-terminus. Both subunits contain a polymerase domain composed of four subdomains, called fingers, palm, thumb and connection. p66 and p51 are expressed by the same gene and their sequences are therefore identical (p51 is processed by proteolytic cleavage of p66). Nevertheless, the polymerase subdomains are arranged in different way, p66 forming a large-active site pocket (with the catalytic triad Asp110, Asp185 and Asp186) and p51 with a closed and therefore inactive structure. The complete structure of HIV-1 RT (p66 and p51) is shown in Fig. 1.

1.4. Structure of the HIV-1 RT NNRTI Binding Site

NRTIs and NtRTIs bind to the active center, whereas the binding pocket for NNRTIs is about 10Å away from the catalytic site. This cavity is located between two β -sheets (β 4, β 7 and β 8 of the fingers domain - amino acids 73-77, 128-134, 141-147, and $\beta 9$, $\beta 10$ and $\beta 11$ – amino acids 178-183, 186-191, 214-217 and 219-222 of the palm domain of p66 by. Additionally, the β5-β6 loop (Pro97, Leu100, Lys101, Lys103), β6 (Ser105, Val106, Val108), the hairpins β9-β10 (Val179, Tyr181, Tyr188, Gly190, Asp192), and \(\beta12-\beta13\) (Glu224, Phe227, Trp229, Leu234, Pro236), and two amino acids β15 (Tyr318, Tyr319) of the thumb domain [18]. Two amino acids from p51 (Thr135,

Glu138) are also involved in the inhibitor. The binding pocket is mainly hydrophobic, with some aromatic amino acids (Tyr181, Tyr188, Phe227, Trp229, Tyr232) but includes a few hydrophilic residues (Lys101, Lys103, Ser105, Asp192, Glu224) and backbone atoms, which are able to form hydrogen bonds. These structural features of the binding site are highly important for the association of inhibitors. The entrance to the cavity is formed by residues Leu100, Lys103, Val179, Ser191 and Glu138 from p51. Examples for the interaction of various inhibitors with amino acids in the NNRTI binding pocket are outlined in Table 3.

The table indicates residues which have distances less than 4Å to the related inhibitor in the X-ray crystal structure. The importance of Leu100, Lys101 (β6 of palm domain), Tyr181, Tyr188 (β9 of palm domain), Trp229 (β12 of palm domain) and Tyr318 (β15 of thumb domain) can be easily deduced. These amino acids are in close contact with almost every inhibitor. Superpositions of four structures of NNRTIs, HEPT, TIBO, nevirapine and efavirenz, attached to the WT HIV-1 RT binding pocket are presented in Fig. 2.

1.5. Structural Requirements for NNRTIs

A butterfly-like shape with two hydrophobic, mostly aromatic wings, was postulated as pharmacophor for NNRTI. However, for second generation inhibitors this molecular shape gets less stringent, but there is still a similarity in shape and charge distribution. Not surprisingly, also hydrogen bonding

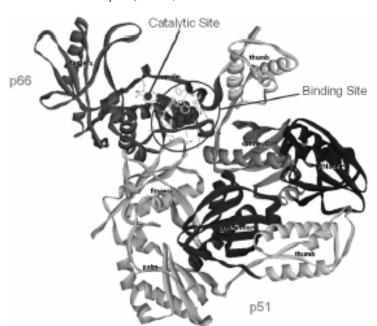


Fig. (1). Structure of HIV-1 RT.

Table 3. Amino acid residues in contact with NNIs within the distance of 4Å

	Ē	Ę	Ę	<u></u>	Ü	ō	3	HU	109/8	ITYR	IREV	TAHE	LYRT	PKP	11.8	1.	FTH	Ę	LVRU	1	4 3		5	20	DH.	3	Ę	RTG	Ē	I RT4	2	6	₫	Ë	¥	5	I EET	ΠΚΥ	ΞKX	PKo	HK 9	PKO	HK	LIKH	1874	280N	2831	7867
Mutebool				ı					ı					2	. 1				1		2			J	2						J				3							7	. 2	. 1				
Pro93										Х	Х			Х			×	×	τ				х								х	х					х	Х	Х							х		х
LeuIDD	×	х	х	х	Х	х	Х	х	Х	×	Х	Х	Х	Х	×	×	×	×	()	€.	х	х	х	х	Х	х	х	х	х	X	х	х	Х	х	Х	х	Х	х	Х	Х	Х	Х	X	X	Х	х	Х	×
LysiDi	×	х	х	х	Х	х	Х	х	Х	×	Х	Х	Х	Х	×	×	×	X	()	€.	х	х	х	х	Х	х	х	х	х	×	х	х	Х	х	Х	х	Х	х	Х	Х	Х	Х	X	X	Х	х	Х	×
Lys102							Х																			х													Х						Х			
Lys100	×	х	х	х	Х	х	Х	Х	Х	Х	Х	Х		Х)	C		х			Х	х	Х	Х	Х	X	х	х	х	х	х	Х	Х	Х	Х	Х	Х	Х	;	Х	Х	Х	Х	: ж
Lys104																										х																						
Ser103			х																																													
V41106	Х	х	х	х	х	Х	Х		Х	Х	Х	Х	Х	Х	×	X	×	X	()	€.				Х	Х	х	Х	Х	Х	×	Х	х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	×	Х	Х		Х	ж
TB/107																						х																										
Val108																																															Х	×
Val179	×	х	х				Х	Х			Х		Х	Х	×	×	Х	X	()	€.	х	х	х	х			Х	Х	Х	×	х	х		х	Х	х	Х	Х	Х	Х	Х	Х	×	Х	Х	Х	Х	×
He13D								Х			Х														х								х															
Tyviäi	ж	х	х	х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	×	×	Х	X	()	€.	х	х	х	х	Х	х	х	х	Х	×	х	х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	×
Tyriaa	×	х	х	х	Х	х	Х	Х	Х	Х	Х	Х	Х					X	()	€.	х	х	х	х	Х	х	х	х			х			х	Х	х	Х	Х	Х	Х	Х	Х	×	Х	Х	х	Х	×
V61139			х				Х									×								х					Х				Х										×					
Gly190		х	х	х	Х	х	Х				Х	Х	Х	Х	×	X)	€.	х	х	х	х	Х		х		х	×	х	х	Х					Х	Х	Х	Х	Х	×	Х	Х	х	Х	×
Glu224																										х																						
Pro223	Х	х	х	х		Х																	х			Х											Х	Х							х			
Pro226																										Х																						
Pbe 227	ж	х	х	х	Х	х		Х	Х		Х	Х	Х	Х	×	×	×	X	ζ				х		Х	х		х	Х	Х	х			х		х	Х	Х	Х	Х	Х	Х	×	Х	Х			×
Leu223																																															Х	
Trp229	ж	х	х	х	Х	х	Х	Х	Х																							х	Х						Х									×
Leu234	ж	х	х									Х			×	Ţ													х	Х				х	Х	х	Х	Х	Х	Х	Х	Х	X	Х	Х	х	Х	×
H:5233	ж							Х		х	Х		Х				Х	-		•		х	х			х						х											×				Х	×
Pro7.36	ж	х	х	х	Х	х					Х	Х					Х	-		•				Х				Х			Х												×					ж
Туузта	ж	х	х	х	Х	х	Х	Х	Х	Х	Х			Х	×	×	×	X	()	€.	х	х	х	х	Х	х	х	х	х	Х	х	х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	X	Х	Х	х	Х	×
Туузір												Х																																				
Asa136*																	×																															
Cini 39,							х									×		×	()	€.	х	Х						х		Х	х		х	х	х	х	х	х						х		х		

^amutation code:

- 1 Tyr181Cys
- 2 Lys103Asn
- 3 Tyr188Cys
- 4 Asp67Asn, Lys70Arg, Thr215Phe, Lys219Gln

plays an important role for the association specificity and affinity of the various inhibitors.

2. MOLECULAR SIMULATIONS OF THE INTERACTION BETWEEN NNRTIS AND HIV-1 RT

X-ray crystal structures of proteins and protein ligand complexes deliver valuable information about the geometries of such aggregates, which can be used for further investigations like structure based drug design. There are some restrictions for this method so far, as the structural information is bound to solid state, and, moreover, no information about the dynamics of the systems can be given - in contrast to another very important method for elucidation of biomolecular geometries, the nuclear magnetic resonance spectroscopy (NMR). Because of the size of the protein no NMR experiments can be performed on RT up to now. Moreover, for in silico screening of large numbers of compounds and for the target based design of new drugs the geometries of enzyme-inhibitor complexes have to be determined. The specific association of drugs to a well-defined binding site at the receptor is controlled by the energetics of the system, the sum of local interactions between the molecular

surface of the ligand and the complementary surface of the receptor. Various methods of molecular docking, using proper force fields provide some possibilities to obtain possible orientations of the ligands in the receptor pocket. Molecular dynamics (MD) and Monte-Carlo simulations (MC) are used to get some insight into the dynamical behaviour of protein-ligand interactions taking into account the surrounding, the solvent shell or even membrane structures. Depending on the quality of the molecular calculations the latter methods need large computer resources. Nevertheless, both methods are nowadays routinely used and are widely applied in newer strategies for calculations of protein-ligand complexes. Particularly, combinations of molecular docking, energy minimization and molecular dynamics simulations are promising tools for drug design investigations.

2.1. Molecular Docking to HIV-1 RT

Many newly synthesized NNRTI candidates were tested by docking to targets obtained form crystal structures. Deng *et al.* [59] visualized hypothetical complex models for a series of alkenyldiarylmethane derivatives using the molecular docking

bamino acid residues of p51

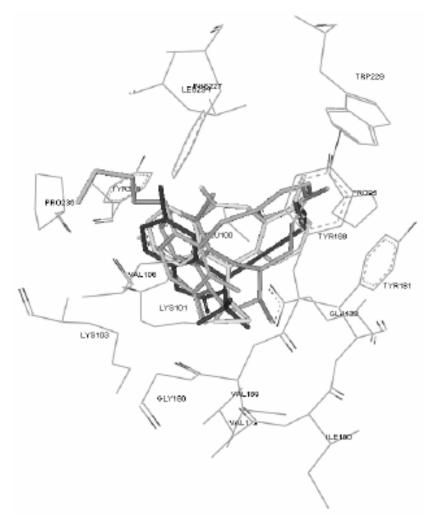


Fig. (2). Superimposition of four X-ray structures of NNRTIS, HEPT (1RTI, shown in gray), TIBO (1HNV, shown in dark gray), nevirapine (1VRT, shown in light gray) and efavirenz (1FK9, shown in black), bound to the WT HIV-1 RT binding pocket.

method GLIDE (Schrödinger Inc.). Other examples of very recent applications of various docking procedures are: Heeres et al. [60], De Martino et al. [61], Heemateenejad et al. [62], Medina-Franco et al. [63], Zhou et al. [64], Sciabola et al. [65], Ranise et al. [66].

Extensive docking studies using AutoDock [67] have been performed by Ragno et al. [68] to test the applicability of this method for reproducing the geometries obtained from X-ray crystallography and, to undertake cross-docking experiments on the wild-type and mutant type enzyme's structures.

Docking studies have been used in combination with other methods. Chen et al. [69] combined molecular docking, MD simulations and Support Vector Machine (SVM) based methods to predict new compounds of the class of 3',4'-di-O-(S)camphanyl-(+)-cis-Khellactone analogs.

QSAR investigations together with docking simulations were applied on indoyl aryl solfunes [70], Barrecca et al. [71] combined flexible docking with QSAR studies. Evidently, data base screening uses also different docking methods. A recent expample is the work of Sangma et al. [72]. A fast and robust computational method for predicting NNRTIs activities by correlating molecular docking energies and biologically activities was proposed by de Jonge [73].

2.2. MD and MC Simulations of HIV-1 RT and of Complexes with NNRTIs

Generally, the applicability of MD simulations increases with the development of more sophisticated methods and related computer power. Free energy calculations and the structural information from MD simulations contribute to the advanced computer-assisted techniques in drug discovery and drug design [74]. However, not too many investigations have been published on RT MD simulations. The reason for this fact is, that HIV-1 RT is a very large system. When hydrogen atoms are added, The 556 and 427 amino acid residues in p66 and p51 subunits of RT alone (1DLO), consists of 16,000 atoms after adding hydrogen atoms to the X-rax crystal structure data. If an eight Å truncated octahedral box with water molecules is added, the system will carry almost 40,000 water molecules. MD of this enzyme requires a huge computer resource with respect to calculation time and mass storage.

A MD simulation of HIV-1 RT indicating subdomain rearrangements was reported by Madrid et al. [75], another simulation showed increasing flexibility upon DNA binding [76].

Gardozo et al. [77] reported a MD simulation of the p66 subunit of RT with nevirapine. Tyrosine 181 showed a remarkable interaction with the inhibitor during this MD simulation. Monte Carlo methods (MC) in combination with a linear response approach [78], adaptive chemical Monte Carlo/molecular dynamics (CMC/MD), and Poisson-Boltzmann/solvent accessibility (PB/SA) [79,80] were used to determine the relative binding free energies to HIV-1 RT of TIBO and efavirenz series with rather encouraging results. Wang et al. [81] proposed that molecular docking combined with MD simulations (500 ps) followed by Molecular Mechanics Poisson-Boltzmann/surface area (MM-PBSA) analysis is an attractive approach for modeling the protein a priori. In this work, the obtained binding mode of efavirenz to HIV-1 RT in aqueous solvent was in reasonable agreement with X-ray crystallographic experiments. The binding and unbinding processes of another NNRTI, α-APA, have been investigated using two nanoseconds molecular dynamics and steered molecular dynamics simulations (SMD). The bound α-APA was pulled out from the binding pocket of HIV-1 RT by employing an artificial harmonic potential on α-APA [82]. Only p66 subunit (without RNase H subdomain) was involved in this simulation with water. The results show that the polar group of α-APA plays key roles in inhibition and binding.

In June 2005, the 2.5 nanoseconds MD simulations of complete solvated HIV-1 RT systems (approximately 142,000 atoms) were handled by Zhou et al. [83] on the Terascale Computing System at the Pittsburgh Supercomputing Center. The flexibility of wild type and mutant RT complexed to nevirapine was studied and the free energy of binding was calculated using Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Nevirapine interacts stronger with wild-type RT than with mutant RT as a consequence of the diminished van der Waals interactions between the inhibitor and the amino acid around the binding pocket. Their simulations point out that the flexibility of RT depends on the volume of the binding pocket occupied by the inhibitor. Weinzinger et al. [80] applied successfully MD analyses to obtain prediction models, correlating the binding energies for efavirenz and a series of its derivatives, benzoxazinones, with experimental inhibitory activities. Moreover, the importance of the hydrogen bonding interaction of this class of inhibitors with Lys101 and electrostatic interactions with Lys101 and His235 was demonstrated. Similar considerations based on MC simulations have been undertaken by Rizzo et al. [84]. The molecular basis of resilience in NNRTI to the effect of a mutation was the topic of a paper of Rodriguez-Barrios et al. [85].

3. STRUCTURE-ACTIVITY RELATIONSHIP STUDIES OF HIV-1 INHIBITORS

The second important concept for the design of new drugs is the use of Quantitative Structure-Activity Relationship analyses (QSAR). From correlations between quantitative biological effects with molecular descriptors prediction models can be created, which are taken furthermore to design new drugs. The general problems for the use of such methods are first of all the accuracy of the biological data, which might be created by different research groups, and the selection and determination of proper molecular descriptors, which should be able to describe the most important molecular features for the particular activity. There are two steps to generate a QSAR model; calculation of molecular descriptors, and statistical generation

of the QSAR model. Therefore, QSAR approaches can be divided into two main types: classical or two dimensional QSAR (2D-QSAR) and three dimensional QSAR analysis (3D-QSAR), classified by the descriptors used. 2D-QSAR descriptors do not utilize 3D information concerning the ligand and their geometries, dependent on the specific conformation and the orientation of the molecules. This approach requires no structural alignment of molecules in the data set. In contrast, the 3D structure and also the structure dependent molecular fields of ligands are strongly involved in descriptor calculations used to derive a 3D-QSAR model. In the case of such conformation dependent descriptors the alignment of the molecules is a challenging task, which could lead in worst case to misguided statements.

Many drugs have been developed in the last years for anti HIV-1 activities on the several viral targets, some of them are already on the market or in clinical proof [6,7]. Virtual screening based on structure based design lead to numerous candidates for new drugs and this process will continue, due to the necessity to overcome increasing drug resistance caused by mutations. QSAR studies concentrate mainly on distinct groups of compounds as the development of a general model is not possible even for identical targets, due to changes of the mechanism of action of different types of inhibitors. An attempt to discriminate between active and non-active compounds against HIV-1 has been done recently [86]. Various inhibition mechanisms on different targets with totally 2720 active and inactive compounds have been included in the study using a probabilistic network. Although the prediction power of the obtained model is good (around 85% of the external prediction series are correct), a quantitative comparison with biological data will be not possible.

3.1. 2D-QSAR Analyses of HIV-1 RT Inhibition

Numerous classes of structural different classes of compounds have been identified as NNRTIs, which bind to an allosteric, non-substratebinding site of the enzyme. Three NNRTIs have been licensed for clinical use: nevirapine (Viramune), efavirenz (Sustiva, Stocrin) and delavirdine (Rescriptor). Many QSAR studies were performed to identify important structural features responsible for the inhibition. Based on multiple linear regression analysis, Garg et al. [87-91] developed 2D-QSAR models for several classes of compounds, HEPT, TIBO, nevirapine, pyridinone, BHAP, TSAO and α-APA derivatives using physicochemical parameters of the inhibitors calculated by the C-QSAR program. On the basis of the obtained QSAR models, the most of models reported for NNRTIs involve significant hydrophobic terms. However, the absence of any hydrophobic interactions for α-APA derivatives was found. Electrotopological state atom (ETST) indices were used as new molecular descriptors to set up QSAR models of a series of TIBO, HEPT and arylsulfonylbenzonitrile derivatives [92-94]. The predictive and informative models were obtained proposing that the atom or fragmental level descriptors are more useful to interpret drug-receptor interactions in these analogues.

Hannongbua *et al.* [95, 96] successfully set up 2D-QSAR models to NNRTIs in the class of HEPT and TIBO derivatives by using various structural descriptors obtained from quantum chemical calculations. The obtained models indicate the importance of electronic and molecular properties contributing to HIV-1 inhibitory potency. The performance and

applicability of semi-empirical and ab-initio calculations with respect to the OSAR analysis of HEPT analogues were performed. The models derived by AM1 and ab initio HF/3-21G seem to be the most suitable in terms of both statistical significance and predictive ability. Based on structural parameters, the obtained models indicate that molecular polarizability and atomic charges of the hydrogen atom of the thymine group and the amino group nitrogen play an important role for the affinity of HEPT derivatives. However, the QSAR models of nevirapine compounds using similar structural parameters could not be satisfactorily derived for both WT and Tyr181Cys HIV-1 RT inhibitory activities. Probably, the descriptors used are insufficient to explain the variance of the data set. In an attempt to improve the quality of the QSAR model, additional descriptors such as connectivity and topological indices were used and an artificial neural network was applied [97]. The obtained non-linear QSAR models show satisfactory relationships between the molecular descriptors used and the inhibition of WT and mutant HIV-1 RT. In addition to nevirapine derivatives, neural networks were applied to other classes of potent NNRTIs such as HEPT and TIBO analogues [86, 98-104]. The main factors contributing to the binding affinity of the inhibitors have been determined. Hologram QSAR (HQSAR) [HQSAR, Tripos, Inc., (1997), St. Louis, MO], is a 2D-QSAR approach, which describes the molecular structural compositions in terms of substructural fragments and is independent on the alignments of the considered molecules. This method was applied successfully on three different inhibitors in the class of TIBO, HEPT and nevirapine compounds. The results are able to explain the relationship between molecular holograms constructed from counting the molecular fragments and the HIV-1 inhibition potency of that class of substances. HQSAR model provides hints about how molecular fragments may be important descriptors to biological activity. The molecule is color coded to reflect the individual

atomic contributions to activity. The colors at the red end of the spectrum (red, red orange and orange) reflect unfavorable contributions, while colors at the green end (yellow, green, blue and green) reflect favorable contributions. Atoms with intermediate contributions are colored white. As x-ray crystallographic structures of HIV-1 RT complexes with inhibitors are available, the amino acid residues surrounding TIBO, HEPT and dipyridodiazepinone in the binding pocket were merged into inhibitors to get a better understanding the interactions between the inhibitor-enzyme. The HQSAR results can be helpful to indicate the similarity interactions of these three molecular diverse analogues of HIV-1 RT inhibitors, as depicted in Fig. 3. The obtained results indicated that HQSAR method can be a useful tool in providing important structural features of HIV-1 RT inhibitors [105].

Medina –Franco *et al.* [63] developed QSAR models for highly potent NNRTIs of pyridinone derivatives by using the k nearest neighbor (kNN) variable selection approach. The models with high internal and external accuracy were generated. The best models were successfully used to search for the promising new NNRTI leads from the National Cancer institute database.

3.2. 3D-QSAR Analyses of HIV-1 RT Inhibition

3D-QSAR analyses take into account the steric interactions between ligand and protein and, moreover, they include geometry-dependent molecular properties like electrostatic field, or hydrogen bond donor or acceptor abilities. Comparative molecular field analysis (CoMFA) is one of the most powerful 3D-QSAR techniques providing further insight into the relationships between three-dimensional properties of molecules and the biological activity of these compounds and functions of inhibitor [106]. Additional to CoMFA approach, comparative molecular similarity indices analysis (CoMSIA) [107], which takes additionally into account more molecular 3D

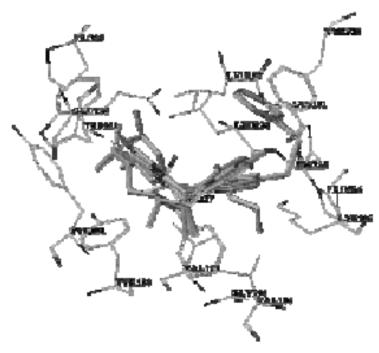
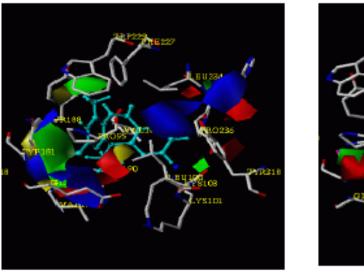



Fig. (3). Superimposition of TIBO, HEPT, nevirapine derivatives, color coded by the best obtained HQSAR model, in the binding pocket of HIV-1 RT. [105]

properties, like hydrogen bond donor and acceptor properties, is most commonly used in drug design process to find the common features that are important for binding of the drugs to the biologically relevant receptor [108]. A review about the application of various 3D-QSAR techniques in the design of anti-HIV drugs has been given by Debnath [109]. The crucial step of using many 3D-QSAR techniques, particularly CoMFA or CoMSIA lies on the alignment rule. To derive reliable models for good predictive power, many attempts have to be performed to search for the best molecular alignment, which generally corresponds to the orientation of the ligand at the receptor site. Based on the atom-by-atom alignment of all molecules on the template molecule, selected from the highest active compounds of each data set, predictive QSAR models were successfully obtained in establishing the relationship between the fields around molecules with their biological activities through contour maps.

CoMFA prediction models of HEPT together with TIBO derivatives were considered by Hannongbua et al. [96, 110, 111], showing the importance of both steric and electrostatic fields for the interaction of these class of inhibitors with the RT. Corresponding to the WT and Tyr181Cys HIV-1 RT inhibitions, CoMFA and CoMSIA models for nevirapine derivatives were derived with satisfactory predictive ability and statistical significance [112, 113]. The contour maps highlight different characteristic for different types of wild-type and mutant type HIV-1 RT, as presented in Figs. 4 and 5. The interpretation of CoMFA and CoMSIA models reinforces each other and shows good accordance with the inhibitor-receptor complex derived from the experimental data. Consequently, the obtained results not only lead to a better understanding of important enzymeligand interaction and also provide helpful information in identifying structural requirements for the design of new and more potent compounds active against HIV-1 RT. A 3D-QSAR

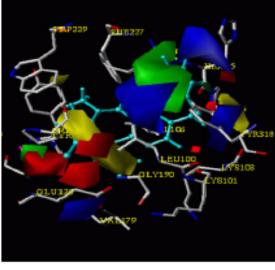
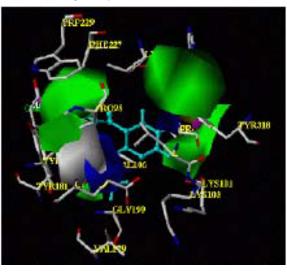



Fig. (4). CoMFA steric and electrostatic STDEV*COEFF contour plots of nevirapine derivatives based on WT and Tyr181Cys HIV-1 RT inhibitions, as shown in (a) and (b), respectively.

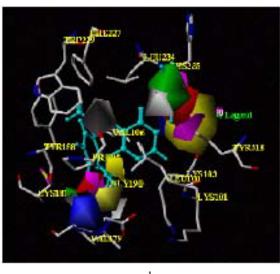


Fig. (5). CoMSIA steric, electrostatic and hydrophobic STDEV*COEFF contour plots of nevirapine derivatives based on WT and Tyr181Cys HIV-1 RT inhibitions, as shown in (a) and (b), respectively.

study based on the program HINT was also given by Gussio et al. [114].

CoMFA and CoMSIA models of efavirenz analogues were successfully developed by Pungpo et al. [115, 116] in order to explain the relationship between structural properties and HIV-

1 inhibition. The information obtained from all models apparently reveals differentiating structural requirements between WT and Lys103Asp HIV-1 RT inhibitory activities of these inhibitors. The obtained results can be integrated to provide a fundamental guideline to design and predict the new

Table 4. QSAR studies on NNRTIs

NNRTIs	QSAR methods	References
НЕРТ	MLR-QSAR	[87, 93, 95]
	NN-QSAR	[86, 98, 99, 100, 101, 102, 103]
	HQSAR	[105]
	CoMFA	[110, 111, 117]
	CoMFA CoMSIA	[119]
	4D-QSAR	[124]
TIBO	MLR-QSAR	[87, 91, 92, 96]
	NN-QSAR	[86, 104]
	HQSAR	[105]
	CoMFA	[71, 96]
	CoMFA CoMSIA	[119, 121]
Nevirapine	MLR-QSAR	[87]
	NN-QSAR	[86, 97]
	HQSAR	[105]
	CoMFA	[112]
	CoMFA CoMSIA	[113]
	3D-QSAR (HINT)	[114]
	4D-QSAR	[123]
Efavirenz	CoMFA CoMSIA	[115, 116]
Pyridinone	MLR-QSAR	[87]
	NN-QSAR	[63, 86]
	CoMFA CoMSIA	[122]
Arylsulfonylbenzonitrile	MLR-QSAR	[94]
	3D-QSAR	[126]
Benzenonitrile	3D-QSAR	[65]
Indolarylsulfone	3D-QSAR	[70]
Phthalimide	CoMFA CoMSIA	[120]
Quinolone	3D-QSAR	[118]
Alpha-APA	MLR-QSAR	[87]
ВНАР	MLR-QSAR	[87]
TSAO	MLR-QSAR	[87, 90]
	NN-QSAR	[86]
3-[N-(phtalimido)-5-ethyl-6-methylpyridin-2(1H)-one	MLR-QSAR	[88]
acyclouridine	MLR-QSAR	[89]

compounds with enhancing HIV-1 RT inhibitory activities active against WT and Lys103Asp HIV-1 RT. Barreca et al. [71] applied CoMFA and molecular docking to a set of TIBO derivatives endowed with reverse transcriptase inhibitory activity. The predictive model was obtained from the combination of steric and electrostatic fields and molecular lipophilicity potential.

Kireev et al. [117] applied a special method, creating 3D descriptors for a statistical analysis to a large dataset of HEPT derivatives. A similar approach was reported by Filipponi et al. [118], who applied a combination between Volsurf and GRID on a set of quinolone derivatives. 2D-descriptors were created from 3D-grid map without superimposition of the molecules.

Chen et al. [119] applied molecular docking, CoMFA and CoMSIA approaches to binding mode investigation of NNRTI in the class of HEPT and TIBO derivatives. Partial and global 3D-QSAR models were built, based on the molecular alignment of conformations obtained from molecular docking procedures. The results demonstrate that the obtained model show better prediction ability compared to 2D-QSAR models. A CoMFA and CoMSIA based investigation on a small number of phthalimides was reported by Samee et al. [120]. 3D-QSAR approaches have been applied to derive prediction models of the NNRTI classes of TIBO, pyridinone and indolylarylsulfones (IASs) derivatives [70,121,122]. With the combination of ligand-(GRIND) and structure-based (GLUE/GRIND) 3D-QSAR approaches, the 3D-OSAR models of (aryl-)bridged 2-aminobenzenonitriles analogues were developed and compared [65]. It can be seen from the study that the GRIND approach allows the deviation of the valid 3D-QSAR models even in the absence of proper X-ray information. A summary of QSAR studies on selected groups of compounds is given in Table 4.

As the detailed information concerning intermolecular interaction in three dimension is still required to encode, several 3D-QSAR approaches have been developed. Ligand 4D-QSAR analysis, developed by Hopfinger et al. [123], based on the grid cell occupancy as descriptors, incorporates conformational and alignment freedom. A series of nevirapine derivatives was selected as training set. The general findings from the applications are that the grid cell occupancy descriptors associated with the constant chemical structure of an analog series can be significant in the 3D-QSAR models and there is a large data reduction. Recently, the 4D-QSAR method coupled with PLS analysis and uninformative variable elimination was applied to investigate the antiviral activity of a series of HEPT compounds [124]. The results show that the method properly indicates the mode of interaction revealed by X-ray studies and is used to generate highly predictive QSAR models. COMBINE analysis [125] were successfully applied to derive the 3D-OSAR models which are able to take into account for the variance in biological activities of highly potent NNRTIs in a class of arylsulfonylbenzonitrile derivatives. The obtained models are fruitfully used to provide chemometrical identification of mutations in HIV-1 RT conferring resistance or enhanced sensitivity to the inhibitors [126].

Evidently, QSAR approaches are widely and successfully applied to derive the key structural features of several classes of HIV-1 RT NNRTIs. The common structural requirements obtained provide an insight into a structure-activity relationship of ligands to their binding sites, leading to valuable guideline in predicting new and more potent

inhibitors. Although, the major limitation of QSAR application is the use within congeneric series of compounds, OSAR methodology has been proven as an attractive and efficient tool in medicinal and pharmaceutical chemistry.

4. PERSPECTIVES

As the combat against HIV is of high importance, many experimental data and also theoretical considerations are available. The complete understanding of the mechanisms of the action of the multifunctional enzyme RT is as important as the cognition of the detailed inhibition mechanism for the development of new drugs. Moreover, the influence of mutations in the drug interacting disease proteins on the inhibition reaction has to be investigated carefully. The structures of RT and of the complexes with inhibitors or DNA obtained from X-ray crystallographic analyses deliver information about the structural changes induced by association of NNRTI to an allosteric binding pocket, and, moreover, structural requirements for new inhibitors can be recognized, particularly with respect to mutations. The increasing number of X-ray structures and the application of various theoretical methods will lead to an easier access to new, maybe more efficient drugs. The rapid determination of sequences of viral proteins from various patients and the subsequent prediction of the structure of mutants of RT could facilitate the application of tailored drugs for a faster more efficient offense against AIDS. Increasing possibilities of computer technology, together with the development of new, and more sophisticated simulation methods will allow to determine the dynamical behavior of biomolecular assemblies, in particular the motions of domains involved in the enzyme's activity and the inhibition reaction. Finally, the combination of various theoretical methods will lead to faster and more accurate algorithms to perform QSAR studies and in silico screening. E.g. weaknesses like the molecular alignment in 3D-QSAR or the ambiguities in docking procedures in virtual screening can be avoided by such combinatorial procedures. All these encouraging options will enable the medicinal chemists to support medicinal research much stronger and more efficient in very next future.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Hannongbua for her encouragement to write this mini-review. Financial support from the Thailand Research Fund (MRG4880001) is gratefully acknowledged, as well as technical assistance of Mrs. E. Liedl and Ms. M. Ziehengraser. Special thanks to Ms. P. Saparpakorn for her excellent assistance in preparing the manuscript.

REFERENCES

- Frankel, A.D.; Young, J.A.T. Ann. Rev. Biochem., 1998, 67, 1-25. [1] [2]
- Coffin, J.M. (Ed.); Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997.
- De Clercq, E. J. Clin. Vir., 2001, 22, 73-89.
- De Clercq, E. Biochim. Biophys. Acta, 2002, 1587, 258-275. [4]
- De Clercq, E. Nature Rev. Drug Discov., 2002, 11, 13-25.
- De Clercq, E. Chem. Biodiver., 2004, 1, 44-64.
- De Clercq, E. J. Med. Chem., 2005, 48, 1297-1313.
- De Clercq, E. Front. Med. Chem., 2004, 1, 543-579.
- Tarrago-Litvak, L.; Andreola, M.L.; Fournier, M.; Nevinsky, G.A.; Parissi, V.; De Soultrait, V.R.; Litvak, S. Curr. Pharm. Des., 2002, 8,

- Campiani, G.; Ramunno, A.; Maga, G.; Nacci, V.; Fattorusso, C.; Catalanotti, B.; Morelli, E.; Novellino, E. Curr. Pharm. Des., 2002, 8, [10]
- De Clercq, E. Antiv. Res., 1998, 153-179.
- Clavel, F.; Hance, A.J. New Engl. J. Med., 2004, 350, 1023-1035. Cao, Z.W.; Han, L.Y.; Zheng, C.J.; Ji, Z.L.; Chen, X.; Lin, H.H.; Chen, Y.Z. Drug Discover., 2005, 10, 521-529. [12] [13]
- Shafer, R.W.; Kantor, R.; Gonzales, M.J. AIDS Rev., 2000, 2, 168-177.
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. *Nucleic Acids Research*, **2000**, *28*, 235-242. [15]
- [16] Leitner, T.; Foley, B.; Hahn, B.; Marx, P.; McCutchan, F.; Mellors, J.; Wolinsky, S.; Korber, B. (Eds) Published by Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 06-0680.
- Vondrasek, J.; Wlodawer, A. Proteins, 2002, 49, 29 31.
- Lawtrakul, L.; Beyer, A.; Hannongbua, S.; Wolschann, P. Monatsh. Chem., 2004, 135, 1033-1046. [18]
- [19] Beyer, A.; Lawtrakul, L.; Hannongbua, S.; Wolschann, P. Monatsh. Chem., 2004, 135, 1047-1059.
- Ren, J.; Esnouf, R.; Garman, E.; Somers, D.; Ross, C.; Kirby, I.; Keeling, J.; Darby, G.; Jones, Y.; Stuart, D.; Stammers, D. Nat. Struct. Biol., **1995**, *2*, 293-302.
- Hopkins, A.L.; Ren, J.; Esnouf, R.M.; Willcox, B.E.; Jones, E.Y.; Ross, T211 C.; Miyasaka, T.; Walker, R.T.; Tanaka, H.; Stammers, D.K.; Stuart, D.I. J. Med. Chem., 1996, 39, 1589-6000.
- Ren, J.; Nichols, C.; Bird, L.; Chamberlain, P.; Weaver, K.; Short, S.; Stuart, D.I.; Stammers, D.K. *J. Mol. Biol.*, **2001**, *312*, 795-805. [22]
- Ren, J.; Nichols, C.; Chamberlain, P.; Weaver, K.; Short, S.; Stammers, [23] D.K. J. Mol. Biol., 2004, 336, 569-578.
- Hopkins, A.L; Ren, J.; Tanaka, H.; Baba, M.; Okamato, M.; Stuart, D. I.; Stammers, D.K. *J. Med. Chem.*, **1999**, *42*, 4500-4505. [24]
- Chan, J.H.; Hong, J.S.; Hunter, R.N.III.; Orr, G.F.; Cowan, J.R.; Sherman, D.B.; Sparks, S.M.; Reitter, B.E.; Andrews, C.W.III.; Hazen, [25] R.J.St.; Clair, M.; Boone, L.R.; Ferris, R.G.; Creech, K.L.; Roberts, G.B.; Short, S.A.; Weaver, K.; Ott, R.J.; Ren, J.; Hopkins, A.; Stuart, D.I.; Stammers, D.K. *J. Med. Chem.*, **2001**, *44*, 1866-1882. Ding, J.; Das, K.; Moereels, H.; Koymans, L.; Andries, K.; Janssen,
- [26] P.A.J.; Hughes, S.H.; Arnold, E. Nat. Struct. Biol., 1995, 2, 407-415.
- Das, K.; Ding, J.; Hsiou, Y.; Clark Jr., A.D.; Moereels, H., Koymans; L.; Andries, K.; Pauwels, R.; Janssen, P.A.J.; Boyer, P.L.; Clark, P.; Smith Jr., R.H.; Kroeger Smith, M.B.; Michejda, C.J.; Hughes, S.H.; Arnold, E. [27] J. Mol. Biol., 1996, 264, 1085-1100.
- [28]
- Stant, D. Structure, 1995, 15, 915-926.
 Smerdon, D.J.; Jaeger, J.; Eang, J.; Kohlstaedt, L.A.; Chirino, A.J.; Friedman, J.M.; rice, P.A.; Steitz, T.A. Proc. Natl. Acad. Sci. USA, 1994, [29] 91, 3911-3915.
- Wang, J.; Smerdon, S.J.; Jaeger, J.; Kohlstaedt, L.A.; Rice, P.A.; Friedman, J.M.; Steitz, T.A. *Proc. Natl. Acad. Sci. USA*, **1994**, *91*, 7242-[30]
- Ren, J.; Milton, J.; Weaver, K.L.; Short, S.A.; Stuart, D.I.; Stammers, [31]
- D.K. Structure, **2000**, *8*, 1089-1094. Chamberlain, P.; Ren, J.; Nichols, C.; Douglas, L.; Lennerstrand, J.; Larder, B.A.; Stuart, D.I.; Stammers, D.K. *J. Virol.*, **2002**, *76*, 10015-[32]
- Hsiou, Y., Ding, J.; Das, K.; Clark Jr., A.D.; Boyer, P. L.; Lewi, P.; Janssen, P.A.J.; Kleim, J.P.; Roesner, M.; Hughes, S.H.; Amold, E. *J. Mol. Biol.*, **2001**, *309*, 437-445. [33]
- Ding, J.; Das, K.; Tantillo, C.; Zhang, W.; Clark, A.D.Jr.; Jessen, S.; Lu, [34] X.; Hsiou, Y.; Jacobo-Molina, A.; Andries, K.; Pauwels, R.; Moereels, H.; Koymans, L.; Janssen, P.A.J.; Smith Jr., R.H.; Kroeger Koepke, M.; Michejda, C.J.; Hughes, S.H.; Arnold, E. Structure, 1995, 3, 365-379.
- Hsiou, Y.; Das, K.; Ding, J.; Clark, A.D. Jr.; Kleim, J.P.; Roesner, M.; Winkler, I.; Riess, G.; Hughes, S.H.; Amold, E. J. Mol. Biol., 1998, [35] 284. 313-323.
- Esnouf, R.M.; Ren, J.; Hopkins, A.L.; Ross, C.K.; Jones, E.Y.; [36] Stammers, D.K.; Stuart, D.I. Proc. Natl. Acad. Sci. USA, 1997, 94, 3984-
- [37] Ren, J.; Esnouf, R.M.; Hopkins, A.L.; Warren, J.; Balzarini, J.; Stuart,
- D.I.; Stammers, D.K. *Biochemistry*, **1998**, *37*, 14394-14403. Ren, J.; Esnouf, R.M.; Hopkins, A.L.; Stuart, D.I.; Stammers, D.K. *J. Med. Chem.*, **1999**, *42*, 3845-3851. T381
- [39] Ren, J.; Diprose, J.; Warren, J.; Esnouf, R.M.; Bird, L.E.; Ikemizu, S.; Slater, M.; Milton, J.; Balzarini, J.; Stuart, D.I.; Stammers, D.K. *J. Biol. Chem.*, **2000**, *275*, 5633-5639.
- Hogberg, M., Sahlberg, C.; Engelhardt, P.; Noreen, R.; Kangasmetsa, J.; Johansson, N.G.; Oberg, B.; Vrang, L.; Zhang, H.; Sahlberg, B.L.; [40] Unge, T.; Lovgren, S.; Fridborg, K.; Backbro, K. J. Med. Chem., 1999, 42 4150-4160
- [41] Lindberg, J.; Sigurosson, S.; Lowgren, S.; Andersson, H.O.; Sahlberg, C.; Noreen, R.; Fridborg, K.; Zhang, H.; Unge, T. Eur. J. Biochem., 2002, 269, 1670-1677.
- Ren, J.; Nichols, C.; Bird, L.E.; Fujiwara, T.; Sugimoto, H.; Stuart, D.I.; Stammers, D.K. *J. Biol. Chem.*, **2000**, *275*, 14316-14320. [42]

- Das, K., Clark, A.D. Jr.; Lewi, P.; Heeres, J.; De Jonge, M.; Koymans, L.; Vinkers, H.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; Ho, C.Y.; Ye, H.; Lichtenstein, M.; Andries, K.; Pauwles, [43] R.; De Bethune, M.P.; Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.; Arnold, E. *J. Med. Chem.*, **2004**, *47*, 2550-2560. Himmel, D.M.; Das, K.; Clark, A.D.Jr.; Hughes, S.H.; Benjahad, A.;
- [44] Oumouch, S.; Guillemont, J.; Coupa, S.; Poncelet, A.; Csoka, I.; Meyer, C.; Andries, K.; Nguyen, C.H.; Grierson, D.S.; Arnold, E. J. Med. Chem., 2005, 48, 7582-7591.
- Hopkins, A.L.; Ren, J.; Milton, J.; Hazen, R.J.; Chan, J.H.; Stuart, D.I.; Stammers, D.K. *J. Med. Chem.*, **2004**, *47*, 5912-5922. [45]
- [46] Pata, J.D.; Stirtan, W.G.; Goldstein, S.W.; Steitz, T.A. Proc. Nat. Acad. Sci. USA, 2004, 101, 10548-10553.
- Morningstar, M.L.; Roth, T.; Smith, M.K.; Zajac, M.; Watson, K.; [47] Buckheit, R.W.; Das, K.; Zhang, W.; Arnold, E.; Michejda, C.J. to be published.
- Unge, T.; Knight, S.; Bhikhabhai, R.; Lovgren, S.; Dauter, Z.; Wilson, K.; Strandberg, B. Structure, 1994, 2, 953-961. Rodgers, D.W.; Gamblin, S.J.; Harris, B.A.; Ray, S.; Culp, J.S.; Hellmig,
- [49] B.; Woolf, D.J.; Debouck, C.; Harrison, S.C. Proc. Natl. Acad. Sci. USA, 1995, 92, 1222-1226.
- [50] Esnouf, R.; Ren, J.; Ross, C.; Jones, Y.; Stammers, D.; Stuart, D. Nat. Struct. Biol., 1995, 2, 303-308. Hsiou, Y.; Ding, J.; Das, K.; Clark Jr., A.D.; Hughes, S.H.; Arnold, E.
- [51] Structure, 1996, 4, 853-860.
- [52] Sarafianos, S.G.; Das, K.; Clark, A.D.Jr.; Ding, J.; Boyer, P.L.; Hughes,
- S.H.; Arnold, E. *Proc. Natl. Acad. Sci. USA*, **1999**, *96*, 10027-10032. Jacobo-Molina, A.; Ding, J.; Nanni, R.G.; Clark, A.D.; Lu, X.; Tantillo, C.; Williams, R.L.; Kamer, G.; Ferris, A.L.; Clark, P.; Hizi, A.; Hughes, [53] S.H.; Arnold, E. *Proc. Natl. Acad. Sci. USA*, **1993**, *90*, 6320-6324. Ding, J.; Das, K.; Hsiou, Y.; Sarafianos, S.G.; Clark, A.D.; Jacobo-
- [54] Molina, A.; Tantillo, C.; Hughes, S.H.; Arnold, E. J. Mol. Biol., 1998, 284, 1095-1111.
- Tuske, S.; Sarafianos, S.G.; Clark Jr., A.D.; Ding, J.; Naeger, L.K.; White, K.L.; Miller, M.D.; Gibbs, C.S.; Boyer, P.L.; Clark, P.; Wang, G.;
- White, R.L., Miller, M.D., Globs, C.S., Boyer, F.L., Clark, F., Wang, G., Gaffney, B.L.; Jones, R.A.; Jerina, D.M.; Hughes, S.H.; Arnold, E. *Nat. Struct. Mol. Biol.*, **2004**, *11*, 469-474.
 Sarafianos, S.G.; Clark Jr., A.D.; Das, K.; Tuske, S.; Birktoft, J.J.; Ilankumaran, I.; Ramesha, A.R.; Sayer, J.M.; Jerina, D.M.; Boyer, P.L.; Hughes, S.H.; Arnold, E. EMBO J., 2002, 21, 6614-6624.
- Huang, H.; Chopra, R.; Verdine, G.L.; Harrison, S.C. Science, 1998, 282, 1669-1675. [57]
- Jaeger, J.; Restle, T.; Steitz, T.A. EMBO J., 1998, 17, 4535-4542
- Sarafianos, S.G.; Das, K.; Tantillo, C.; Clark, A.D. Jr.; Ding, J.; Whitcomb, J.M.; Boyer, P.L.; Hughes, S.H.; Arnold, E. *EMBO J.*, **2001**, [59] 20. 1449-1461.
- [60] Deng, B.L.; Cullen, M.D.; Zhou, Z.G.; Hartmann, T.L.; Buckheit, R.W.; Pannecouque, C.; De Clercq, E.; Fanwick, P.E.; Cushman, M. Bioorg. Med. Chem., 2006, 14, 2366-2374. Heeres, J.; de Jonge, M.R.; Koymans, L.M.H.; Daeyaert, F.F.D.; Vinkers,
- [61] M.; Van Aken, K.J.A.; Arnold, E.; Das, K.; Kilonda, A.; Hoornaert, G.J.; Compernolle, F.; Cegla, M.; Azzam, R.A.; Andries, K.; de Bethune, M.P.; Azijn, H.; Pauwels, R.; Lewi, P.J.; Janssen, P.A.J. J. Med. Chem., 2005, 48, 1910-1918.
- De Martino, G.; La Regina, G.; Di Pasquali, A.; Ragno, R.; Bergamini, [62] A.; Ciaprini, C.; Sinistro, A.; Maga; G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem., 2005, 48, 4378-4388.
- Hemmateenejad, B.; Tabaei, S.M.H.; Namvaran, F. J. Mol. Struct. THEOCHEM, 2005, 732, 39-45. [63]
- Medina-Franco, J.L.; Golbraikh, A.; Oloff, S.; Castillo, R.; Tropsha, A. J. [64] Comput. Aid. Mol. Des., 2005, 19, 229-242.
- Zhou, Zhigang; Madrid, M; Madura, J.D. Proteins: Struct. Funct. Gen.,
- **2002**, 49, 529-542. Sciabola, S.; Carosati, E.; Baroni, M.; Mannhold, R. J. Med. Chem., **2005**, 48, 3756 -3767. [66] Ranise, A.; Spallarossa, A.; Cesarini, S.; Bondavalli, F.; Schenone, S.;
- Bruno, O.; Menozzi, G.; Fossa, P.; Mosti, L.; La Colla, M.; Sanna, G.; Murreddu, M.; Collu, G.; Busonera, B.; Marongiu, M.E.; Pani, A.; La Colla, P.; Loddo, R. J. Med. Chem., 2005, 48, 3858-3873.
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. J. Mol. Recognit., 1996, 9, 1-[68]
- [69] Ragno, R.; Frasca, S.; Manetti, F.; Brizzi, A.; Massa, S. J. Med. Chem., 2005, 48. 200-212. [70] Chen, H.F.; Fan, B.T.; Zhao, C.Y.; Xie, L.; Zhao, C.H.; Zhou, T.; Lee,
- K.H.; Allaway, G. J. Comput. Aid. Mol. Des., 2005, 19, 243-258. [71] Ragno, R.; Artico, M.; De Martino, G.; La Regina, G.; Coluccia, A.; Di
- Pasquali, A.; Silvestri, R. J. Med. Chem., 2005, 48, 213-223. Barreca, M.L.; Carotti, A.; Carrieri, A.; Chimirri, A.; Monforte, A.M.; [72] Calace, M.P.; Rao, A. Bioorg. Med. Chem., 1999, 7, 2283-2292.
- Sangma, C.; Chuakheaw, D.; Jongkon, N.; Saenbandit, K.; Nunrium, P.; Uthayopas, P.; Hannongbua, S. Comb. Chem. High Throughput Screen., 2005, 8, 417- 429.
- De Jonge, M.R.; Koymans, L.M.H.; Vinkers, H.M.; Daeyaert, F.F.D.; [74] Heeres, J.; Lewi, P.J.; Janssen, P.A.J. J. Med. Chem., 2005, 48, 2176-2183.

- Hansson, T.; Oostenbrink, C.; Van Gunsteren, W.F. Curr. Opin. in Struct. Biol., 2002, 12, 190-196.
 Madrid, M.; Lukin, J.A.; Madura, J.D.; Ding, J.; Arnold, E. Proteins: [75]
- [76] Struct. Func. Gen., 2001, 45, 176-182.
- Madrid; M.; Jacobi-Molina, A.; Ding, J.; Arnold, E. Proteins: Struct. Func. Gen., 1999, 35, 332-337. [77]
- [78] Cardozo, M.G.; Tong, L.; Jones, P.J. J. Mol. Graphics, 1993, 11, 272-
- Smith Jr., R.H.; Jorgensen, W.L.; Tirado-Rives, J.; Lamb, M.L.; Janssen, P.A.J.; Michejda, C.J.; Smith, M.B.K. J. Med. Chem., 1998, 41, 5272-[79] 5286.
- [80] Eriksson, M.A.L.; Pitera, J.; Kollman, P.A. J. Med. Chem., 1999, 42, 868-881.
- Weinzinger, P.; Hannongbua, S.; Wolschann, P. J. Enz. Inhib. Med. T811 Chem., 2005, 20, 129-134.
- Wang, J.M.; Morin, P.; Wang, W.; Kollman, P.A. J. Med. Chem., 2001, [82] *123*, 5221-5230.
- Shen, L.L.; Shen, J.H.; Luo, X.M.; Cheng, F.; Xu, Y.C.; Chen, K.X; Arnold, E.; Ding, J.P.; Jiang, H.L. *Biophys. J.*, **2003**, *84*, 3547-3563. Zhou, Z.; Madrid, M.; Evanseck, J.D.; Madura, J.D. *J. Am. Chem. Soc.*, [83]
- [84] **2005**, 127, 17253-17260.
- Rizzo, R.C.; Udier-Blagovic, M.; Wang, De-Ping; Watkins, E.K.; Kroeger Smith, M.B.; Smith, R.H.; Tirado-Rives, J.; Jorgensen, W.L. *J. Med. Chem.*, **2002**, *45*, 2970-2987. [85]
- [86] Rodriguez-Barrios, F.; Balzarini, J.; Gago, F. J. Am. Chem. Soc., 2005, *127*, 7570-7578.
- Vilar, S.; Santana, L.; Uriarte, E. J. Med. Chem., 2006, 49, 1118-1124.
- Garg, R.; Gupta, S.P.; Gao, H.; Babu, M.S.; Debnath, A.K.; Hansch, C. *Chem. Rev.*, **1999**, *99*, 3525-3601. [88]
- Garg, R.; Gupta, S.P. J. Enzyme Inh., 1997, 12, 1-12. [89]
- Garg, R.; Kurup, A.; Gupta, S.P. Quant. Struc.-Act. Relat., 1997, 16, [90] 20- 24.
- Garg, R.; Gupta, S.P. J. Enzyme Inh., 1997, 11, 171-181.
- Gupta, S.P.; Garg, R. J. Enzyme Inh., 1996, 11, 23-32. [92]
- [93] Huuskonen, J. J. Chem. Inf. Mod., 2001, 41, 425-429.
- [94] Gayen, S.; Debnath, B.; Samanta, S.; Jha, T. Bioor. Med. Chem., 2004, 12. 1493-1503.
- Roy, K.; Leonard, J.T. Bioorg. Med. Chem., 2004, 12, 745-754.
- [96] Hannongbua, S.; Lawtrakul, L.; Limtrakul, J. J. Compt. Aided Mol. Des., **1996,** 10, 145-152.
- Hannongbua, S.; Pungpo, P.; Limtrakul, J.; Wolschann, P. J. Comput. Aid. Mol. Des., 1999, 13, 563-577. [97]
- Prasithichokekul, S.; Pungpo, P.; Hannongbua, S.; Ecker, G.; Wolschann, P. Proceedings of the 5th annual national symposium on
- computational science and engineering. Academic, Bangkok, 2001, 351. Jalali-Heravi, M.; Parastar, F., J. Chem. Inf. Comput. Sci., 2000, 40, 147-[99]
- [100] Bazoui, H.; Zahouily, M.; Boulaajai, S.; Sebti, S.; Zakarya, D. SAR and
- QSAR Env. Res., 2002, 13, 567-577.
 Douali, L.; Villemin, D.; Cherqaoui, D. J. Chem. Inf. Mod., 2003, 43, [101] 1200-1207.

- [102]
- Mager, P.P. Curr. Med. Chem., 2003, 10, 1643-1659. Douali, L.; Villemin, D.; Cherqaoui, D. Curr. Pharm. Des., 2003, 9, [103] 1817-1826.
- [104] Chiu, T.L.; So, S.S. J. Chem. Inf. Mod., 2004, 44, 154-160.
- Douali, L.; Villemin, D.; Cherqaoui, D. Int. J. Mol. Sci., 2004, 5, 48-55. Pungpo, P.; Hannongbua, S.; Wolschann, P. Curr. Med. Chem., 2003, [105]
- [106] 10. 1661-1677
- Cramer, R.D.; Patterson, D.E.; Bunce, J.D. J. Am. Chem. Soc., 1988, [107] 110, 5959-5967.
- F1081 Klebe, G.; Abraham, U. J. Comput. Aid. Mol. Des., 1999, 13, 1-10.
- Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem., 1994, 37, 4130-[109]
- Debnath, A.K. Curr. Pharm. Des., 2005, 11, 3091-3110.
- Hannongbua, S.; Lawtrakul, L.; Sotriffer, C.A.; Rode, B.M. Struct.-Act. Relat., 1996, 15, 389-394. [111]
- [112] Hannongbua, S.; Nivesanond, K.; Lawtrakul, L.; Pungpo, P.; Wolschann, P. J. Chem. Inf. Mod., 2001, 41, 848-855. Pungpo, P.; Hannongbua, S. J. Mol. Graph. Mod., 2000, 18, 581-590.
- [113] Pungpo, P.; Wolschann, P.; Hannongbua, S. The proceeding of the [114] International Conference on Bioinformatics 2002, North - South
- Networking, Le Royal Meridien, Bangkok, Thailand. Gussio, R.; Pattabiraman, N.; Zaharevitz, D.W.; Kellogg, G.E.; Toplo, I.A.; Rice, W.G.; Schaeffer, C.A.; Erickson, J.W.; Burt, S.K. *J. Med. Chem.*, **1996**, *39*, 1645-1650. [115]
- [116] Pungpo, P.; Wolschann, P.; Hannongbua, S. The proceeding of the 15th European symposium on quantitative structure-activity
- relationships and molecular modelling, Euro QSAR 2004, Istanbul, TURKEY Pungpo, P.; Saparpakorn, P.; Wolschann, P.; Hannongbua. S. 3rd [117]
- International Symposium Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, 2005, Shanghai, China Kireev, D.B.; Chretien, J.R.; Grierson, D.S.; Monneret, C. J. Med. [118]
- Chem., 1997, 40, 4257-4264.
 Filipponi, E.; Cruciani, G.; Tabarrini, O.; Cecchetti, V.; Fravolini, A. J.
- [119] Comput. Aid. Mol. Des., 2001, 15, 203-217. Chen, H.F.; Yao, X.J.; Li, Q.; Yuan, S.G.; Panaye, A.; Doucet, J.P.; Fan,
- [120] B.T. SAR and OSAR in Environ. Res., 2003, 14, 455-474.
- Γ1211 Samee, W.; Ungwitayatorn, J.; Matayatsuk, C.; Pimthon, J. ScienceAsia, 2004, 30, 81-84.
- Γ1221 Zhou, Z.; Madura, J.D. J. Chem. Inf. Mod., 2004, 44, 2167-2178
- Medina-Franco, J.L.; Rodriguez-Morales, S.; Juarez-Gordiano, C.; Hernandez-Campos, A.; Castillo, R. J. Comput. Aid. Mol. Des., 2004, [123] 18, 345-360.
- [124] Hopfinger, A.J.; Wang, S.; Tokarski, J.S.; Jin, B.Q; Albuquerque, M.; Madhav, P.J.; Duraiswami, C. J. Am. Chem. Soc., 1997, 119, 10509-10524.
- Bak, A.; Polanski, J. Bioorg. Med. Chem., 2006, 14, 273-279.
- [126] Ortiz, A.R.; Pisabarro, M.T.; Gago, F.; Wade, R.C. J. Med. Chem., 1995, 38, 2681-2691.
- [127] Rodríguez-Barrios, F.; Gago, F. J. Am. Chem. Soc., 2004, 126, 2718-