of abundant O; along the combustor height, from the air distributor up to ap elevation
where the recirculating ring was placed, indicates vigorous combustion of particulate
solids and gases (CO & volatiles) within this region. In addition, the feed-point may
represent the first opportunity for burning volatile-rich matter, leading to continued O,
consumption at that site. The increase in O; concentrations above the recirculating
ring is believed to be due to tertiary air (the secondary air in the old version has now
been changed to tertiary air in the revised version, as suggested by Reviewer #1)
injected below the ring being induced into the upward stream of the combustion

gases. The above brief explanation will be included in the revised manuscript.
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Fig. 5b. The O; concentration profiles inside the combustor.

2. “Puoint 3.2 Combustion efficiency and heat-rate intensity. One of the characteristics
of fluidized bed combustion technology is the use of lower excess air levels to obtain

good combustion efficiency, so I do not understand why there are tests with excess air
of 174%."

Reviewer #2 is comrect. The use of high levels of excess air, which is directly related
to superficial gas velocity, will adversely affect the combustion process, i.e., leading
to degraded combustion efficieney due to insufficient combustion time for gases and
solids, However, because we wanted to investigate the effects of fluidizing air

{primary air) velocity on combustion performance in the present combustor, the



velocity was varied from experiment to experiment i.e., starting from 0.5' up to 1.4
m/s, which corresponded 1o excess air of 83-174% (Table 2). The summary results in
Table 3 show that if we want to operate at a fluidizing velocity of 1.4 m/s (run no. 5)
while simultaneously preferring excess air <174%, the secondary air and tertiary air
velocities must be reduced. This can be done provided the bed temperature is not
>1200°C, or the combustor will be damaged. However, this was limited by the
experiment with a lower fluidizing velocity i.e., 0.5 and 0.8 m/s (rug nos. I and 2;
Table 3), in which the bed temperature had already touched the upper limit (around
1150-1170°C). Because the secondary and tertiary air velocities must be fixed when
the fluidizing velocity varies, using excess air <174% at a fluidizing velocity of 1.4
m/s was not possible. In addition, combustion efficiency, even operating with excess
air of 174% and a corresponding velocity of 1.4 m/s, could achieve a combustion
efficiency of ~95%. This illustrated the contribution of the sclid ring, named the
‘recirculating ring’ placed inside the combustor, and the vortex flow generated by the
tertiary air (secondary air in the original version) to increasing the burning time for
solids and gases. ‘

3. “The excess air relates to higher fluidization velocity rather than terminal velogity,
so these tests have very lower residence time. ”

This comment is consequent on the above comment. Please see the above response.

3. “Point 3.2 and 3.3 should be rewritten.”

Sections 3.2 and 3.3 have now been revised.

4. “Point 3.4: Taking into account the temperature used during the tests, analysis of
the NO, from air N; oxidation should be considered,”

For biomass combustion at temperatures <1300°C, NO, formation is typically through
the fuel-NO, mechanism rather than the thermal formation of NO, from nitrogen in
the combustion air [Prog in Energ and Combust Sci 26 (2000) 1-27; Prog in Energ
and Combust Sci 29 (2003) 89-1 1’3; Fuel 85 (2005) 705-716).

6. “Table2. What is the meaning of A/F?”

A/F means air-fuel ratio. This is clarified in Table 2 of the revised version.
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Combustion characteristics of rice-husk and preliminary investigation of rice-
husk/coal co-combustion performance in a short-combustion-chamber fluidized-

bed combuster (SFBC)

T. Madhiyanon *°, P. Sathitruangsak *, S. Soponronparit ®

* Department of Mechanical Engineering, Mahanakorn University of Technology,
Bangkok 10530, Thailand
® School of Energy, Environment and Materials, King Monghut’s University of

Technology Thonburi, Bangkok 10140, Thailand

Abstract
¢

A short-combustion-chamber fluidized-bed combustor (SFBC), of 250 kWy, capacity,
was developed and tested for combustion characteristics of rice-husk, i.e. combustion
efficiency (£;), heat rate intensity (f.), temperature distribution, and gaseous pollutant
emissions. The effects of fluidizing velocity, excess air, and combustor loading were
analyzed. The results indicated the system could operate without any secondary solid
as bed material, with efficient fuel and combustor utilization, indicated by high £, and
I, respectively. Solid recirculation within the bed, created by a solid recirculating ring
and an air voriex, played an important role in efficient combustion, even in a
relatively short combustion chamber. A maximum E; of 99.8% and a maximum f; of

1.54 MWum™ were realized. lngreasing fleidizing velocity and excess air caused

* Corresponding author. Tel.: +66(0)-2988-3666 Ext. 241; fax: +66(0)-2988-3655 Ext. 241.
E-mail address: thanid_m@yahoo.com; thanid@mut.ac.th {T. Madhiyanon).
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'
decreases in E.. CO and NO, emissions increased with increased excess air, and were
in the range 50-550 ppm and 230-350 ppm, respectively. Finally, preliminary tests of
rice-husk co-fired with coal were conducted for 70 and 80% (energy) rice-husk

fractions. The results showed satisfactory E, and /., while NO, appeared to increase.

Keywords: Co-combustion; Coal; Fluidized bed; Rice husk; Vortex

1. Intreduction

Biomass is a potential CO;-neutral, clean and sustainable energy resource. In
recent years, burning biofuels to produce steam and power has been of great interest
as an alternative to burning fossil fuels. In Thailand, the main agricultural residues
with biofuel potential are rice-husk and straw. The annual rice-husk output, a
byproduct (20 wt.% of paddy) of the milling process, is about 4.4 million tonnes with
an annual cnergy equivalent of 6.6x10° GJ. Among a varety of combustion
technologies, fluidized-bed combustion has proven suitable for burning alternative
solid fuels, due to its efficiency in converting fuclsv 1o clean energy, fuel flexibility,
and clean operation [1-4]. However, many researchers [1, 5-6] experienced difficulties
in fluidizing the rice-husk biomass, because of its non-granular, cylindrical shape and
low bulk. They strongly suggested that, to generate satisfactory fluidization, rice-husk
must be mixed with an inert bed material, such as sand. The mam features of a
fluidized-bed combustor (FBC) are high combustion efficiency and grate heat release
rate. A combustion efficiency > 95% has frequently been reported [1, 4, 7-8]. A feed-
rate intensity of rice-husk of 395-510 kg h”) m® was reported in an overview of rice-

husk combustion in FBC [1], while 130 kg b m™ was derived from others [8-9).
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Recently, Madhiyanon e al. [10] developed a novel combustor namedfi cyclonic
fluidized-bed combustor {y-FBC) that integrated swirling and fluidized-bed
combustion. A combustion efficiency of 98% was easily obtained and 2 maximum
heat release rate (heat rate per combustor cross-sectional-area) of up to 0.80 1\/I‘err.1'2
can be achieved.

The high moisture and alkali content of biomass ash (including forest and
agricultural residues, industrial waste, and municipal solid waste (MSW)), makes it
difficuit to fire alone; therefore, co-combustion with coal is preferable and becoming
more attractive, particularly in FBC, for different purposes: power gereration {11-13],
recovering energy fnom industrial waste [14-15], and disposal of MSW [16-17]. Apart
from reducing CO,, biomass co-combustion has beer well-proven to reduce emissions
of NO, and 50, from coal combustion [12-17].

This paper describes the resuits of an experimental study with a sh‘on‘.-
combustion-chamber fluidized-bed combustor (SFBC) developed by current authors,
thermal capacity 250 kWy,, using rice-husk as the primary fuel. This work aimed to
clarify combustion -characteristics—combustion efficiency, heat rate intensity,
temperature distribution, and gaseous pollutant emissions—based on successful
approaches to high combustion efficiency and significantly reduced combustion
freeboard height 10]. A key design concept for the SFBC was the creation of gas/solid
recirculation within the bed, i.e., using a combination of a solid ring acting as a solid
barrier and a centrifugal force field acting as an air curtain, and stirring blades to
eliminate the problem of loose agglomeration (conglomeration), and consequently not
necessitating any inert material ngixed into the bed, as stressed in previous studies [1,
5-6]. Although rice-husk is recognized in this study as the primary fuel, since coal is

the most abundant fossil-fuel energy source available, it must play an important role
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' -
as an energy resource for many decades to come. Therefore, the final part of this

paper is devoted to investigating the potential results of co-firing rice-husk and coal.
2. Experiment Setup
2.1 The short-combustion-chamber fluidized-bed combustor(SFBC)

Fig. ] shows a schematic diagram of a short-combustion-chamber fluidized-bed
combustor (SFBC) with a design output capacity of 250 kWy,. The SFBC comprises
two main parts (Fig. 2): (1) a cylindrical combustor with 0.5 m i.d., 0.97 m in height,
and (2) a conical base with 0.30 m i.d. truncated-apex cone 0.60 m in height designed
to contain a bed of ashes and coarse particles. The combustor was made of steel, the
inside of which was lined with fire bricks (0.125 m thk.) and refractory, and the m:ter
surface was insulated with ceramic fiber. A cylindrical part had a circular ring named
2 ‘recirculating ring” made of refractory with 0.30 m opening diameter located 1.13 m
above an air distributor. The recirculating ring divided the combustor into a main
(fluidized bed) and minor combustion chambers, and is used to trap entrained
particulates in combustion gases impinging upon its bottom side, as a consequence of
solid-gas recirculation inside the fluidized bed [10]. The gaseous combustion products
coming out the FBC contained the entrained materials--ash, unburned carbon-
containing solids—and flew upward into an exhaust pipe at the horizontal center top of
the combustor. The exhaust pipe connected to two high-efficiency cyclones in
parallel »

Rice-husk was fed into the FBC via a screw conveyor equipped with a variable-

speed drive to regulate the fuel feed rate, and a hopper. For co-firing tests, rice-husk
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was premixed with coal before loading into a hopper. The primary air (ﬂul';iiz:ing air)
was supplied by a 2.2 kW blower and was injected upward through a wind box
mounted on the bottom side of an air distributor (Fig. 2} to generate fluidization. To
prevent flame penetrating the fuel feed system, secondary air was injected at the outlet
of the screw conveyor. Tertiary air was provided by a 2.2 kW blower and diverted to
above and below the recirculating ring, hereafter called upper and lower tertiary air.
The lower tertiary air was introduced via four air nozzles arranged in the same
horizontal plane, such that they were equally-spaced (90° on the circumferential wall)
at an elevation of 1.03 m (4.12 R, R= inside radius); the arrangement of these nozzles
is shown in Fig. 3a. The air discharging from the nozzles formed a tangent circle of
0.2 m diameter within the confines of the nozzles. The centrifugal force field
generated by this vortex was expected to capture the entrained solids ascending with
the combustion gases and return them to the fluidized bed [10, 18-19]. Upper tertiary
air was introduced tangentially through the two opposing air nozzles (Fig. ‘3b)
positioned just above (1.16 m (4.64R)} the recirculating ring. Injecting this air was
designed to sweep any particulate materials that may fall on the upper side of the ring
towards the fluidized bed below.

To prevent loose particles formed by rice-husk char agglomeration, rather than
particles chemically bonding due to ash melt, air-cooled stainless-steel stirring blades
were installed centrally inside the conical base, and operated continuously at 6 rpm
[10]. Finally, for the co-firing tests, coal was mixed thoroughly with rice-husk to the
desired ratio before loading into the feeding system.

»

2.2 Measurement
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The desired fuel feed rate was regulated by a variable-speed drive. gir velocity
was adjusted manually and measured by bot wire anemometer (accuracy = 3%). The
temperature profiles inside the combustor were monitored using a data logger with an
accuracy of + 1°C and type-K thermocouples at 0.6, 0.93, 1.33, and 1.58 m above the
air distributor. In the same cross-sectional plane, temperatures were measured radially
outward from the combustor center, approximately 2 cm apart. The thermocouples
were left for a while to allow the temperature to stabilize before recording, and then
manually shified radially to the next position. The flue gas temperature at the exhaust
pipe was also measured, Gas concentrations were monitored using a multigas analyzer
(Testo 350XL). The measuring principle was based on electrochemical cells for CO,
04, NO, and NO,. CO, is derived from O, concentration based on a built-in algorithm
in the mstrument. A Leco C-H-N-S analyzer was used to analyze unburned carbon
content. Combustion and fluidization behaviors during test runs were observed closely

‘
via the ports on the combustor’s outer surface.

2.3 Experimental procedure

The SFBC can be started easily without any additional fuel, such as liquefied
petroleurn gas (LPG). Rice-husks were pre-loaded manually into the combustor
through an access door until a bed-height of 20-30 cm above the air distributor plate
was reached, and then ignited. When pre-loaded rice-husk was being combusted, the
access door was closed and simultaneously rice-husks from the feed hopper were
gradually conveyed via a screvp feeder into the combustor. Combustion continued
until the bed temperature reached about 450°C; thereafier, the feed was increased to

the desired feed rate. No external bed material was used to promote fluidized-bed
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149 combustion; instead, ash derived from the rice-husk itself during continued
150  combustion, in which the main element is silicom (= 90% as $i0,), can behave as an
151 inventory bed material that contributes to favorable turbulent gas-solid mixing. The
152 duration of each test un was about 6 h, of which 1.5 h was used to achieve steady
153 state. Steady state was determined as steady exit temperature and steady ash rate,
154  measured by collecting and weighing the ash at the cyclone outlet. After steady state
155  was reached, gas concentrations were monitored every 2 min for a 2.5 h-period and
156 averaged over the measurernent period. The unburned carbon in the ash collected
157 from the cyclone outlet every 20 min was analyzed and used to determine combustion
158  efficiency. On average, the deviation between the maximum and average unburned

159  carbon content was 14.5%.

160

161 2.4 Fuel analysis .
162

163 Rice-husk and bituminous coal were used as fuel in the experiments.

164  Proximate and ultimate apalyses of both fuels are shown in Table 1. Coal particle
165  sizes ranged between 5-10 mm.

166

167 3 Resuits and Discussion

168

169 The combustion tests using rice-busk fuel comprised 9 experiments, of which
170 5 were conducted using varied fluidization velocities and fixed rice-husk feed rates,
171  and another 4 with partial load canditions using fixed total air and varied feed rates.

172 The operating conditions and results of the experiment are summarized in Tables 2
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and 3, respectively. Three more experiments were performed primarily to investigate

the potential for co-firing rice-husk and bituminous-coal in the SFBC.

3.1, Combustion behavior

The axial temperature profiles within the combustor with varied amounts of
excess air are shown in Fig4; they indicate that maximum temperature occurs at a
position below the recirculating ring (~0.6 m from the distributor), and decays in the
upstream fiue gas direction. The temperature profiles showed that combustion mainly
took place below the recirculating ring and at between 0.6 m/ 2.4R and (.93 n/ 3.7R.
Decreasing temperatures at locations above the recirculating ring (1.33 m/ 5.3R) were
an adverse effect of injecting the upper tertiary air, leading to an unintended mixture
with flue gases ascending into the combustor exit. .

Fig. 5(a) shows typical radial temperature profiles within the combustor, with
general uniformity in the region between 0.60 m/2 4R and 0.93 m/ 5.3 R. The regions
below the recirculating ring were in a near-isothermal bed state, indicating that
fluidized-bed combustion characterized combustion in these regions, despite the lack
of a secondary solid bed material, as previcusly suggested [1, 5-7]. This corresponds
with visual observations through wall-opening ports, i.e., that particulates were
fluidized and entrained into the chamber above the conical bed by fluidizing air,
apparently corresponding to a uniform flame throughout the entire bed, and the whole
bed brightened vigorously. Similar results were experienced in the cyclonic FBC
recently developed by Madbiyauon et al. [10]). Two further experiments were
performed showing the O, concentration profiles inside the combustor, to clarify the

characteristics of fluidized-bed combustion commonly maintained in the bed. These
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profiles are shown in Fig. 5(b). The vertical O, concentration profile is chifracterized
by sharp decay at the base of the unit and gradual increase in the upper part due to
secondary and tertiary air penetration, indicating the progress of overall combustion.
Evidence of the continued consumption of abundant O, along the combustor height,
from the air distributor up to an clevation where the recirculating ring was placed,
indicates vigorous combustion of particulate solids and gases (CO and volatiles)
within this region. In addition, the feed-point may represent the first opportunity for
burning volatile-rich matter, leading to continued O, consumption at that site.

A deeper understanding of the combustion mechanisms of rice-husk can be
explained according to thermogravimetrics (TG) and the first derivative of TG (rate of
weight-change, DTG) curves, which represent the combustion characteristics of the
fuel, as shown io Fig. 6; these results concur with previous reports [20]. 1t is clear that
the devolatilization of rice-husk started at around 180-350°C, volatile and r;har
combustion took place at around 350-500°C, and at around 500°C, no further changes
in weight were observed, implying that devolatilization and combustion of biomass
with high volatile matter content, such ag rice-husk, occurred instantaneously with

feeding into the combustor and exposure to high combustor temperatures (>1000°C).
3.2 Combustion efficiency and heat rate intensity

Combustion efficiency (E.) and heat rate intensity (/) for firing rice-husk alone
were investigated via two test groups, for which the operating conditions and results
are presented in Tables 2 and 3, ;esﬁectively. E. is defined by Eq. 1 [10], whereas I

viewed as the cross-sectional-area energy utilized can be expressed by Eq. 2.



222

223
224

225

226
227
228
229
230
2.31
232
233
234
235
236
237
238
239
240
241
242
243
244

245

10/18

E =[(E —Ey— Eg} B ]x100% )

where E; is the heating value of the fuel, £y is the energy loss as unbumed carbon in
the ash, and Egis the energy loss as carbon monoxide in the flue gas.

I= [, x E, x (E,/100))/ 4 @

where m, is the rice-husk mass flow rate and A4 is the combustor cross-sectional area.

Change in fluidizing velocity or change in fuel feed-rate can result in excess
air. All tests under varied conditions ailowed excess air of between 8§3-380%,
corresponding to a fluidizing velocity variance of 0.5-1.4 m/s and rice-busk feed rates
of 33-73 keg/h. Note that no experiment using less < 80% excess air was conducted
because no external load (such as steam) was provided to absorb part of the heat
released during combustion, leading to a limitation of the combustion air, with a
consequent bed temperature not > 1200°C. As Table 3 shows, E; of 95.6-99.8% were
achieved in the current FBC, comparable with other FBCs (refs. [4, 7] with E® of
97.0-98.9%, and ref. [8] with E. of 95.6-96.1%). The present combustor can achicve
heat rate intensity in the range 1,34-1.54 MWym™, corresponding to normal operation
at feed rates of 66-73 kgh™, which is comparable with bubbling FBC for rice-husk
firing, at 0.65-2.10 MWym [4, 8-9]; however, it is not competitive with CFBC, at
3.95 MWym™2 {7].

The Changes in E. and combustion losses with excess air for rice-husk
combustion are shown in Fig.7. No bottom ash was drained out during combustion,
but all rice-husk ash was elutriated from the combustor exit; this means carbon loss
derived from fly ash. Combustion losses are a combination of energy losses due to CO
in flug gases and unburmed carb;n in fly ash. As the figure shows, E; decreased as

excess air increased. The use of high fluidizing velocity (1.4 m/s) caused the
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distortion of the E, profile at an excess air of 174%. E, was quite low (96.;‘%) when
combustion air was introduced at 380% excess air, which led to a relatively low bed
temperature of 800°C. Combustion losses due to unburned carbon vanied between 0.2-
4.2% of energy input, and for CO, 0.02-1.1%.

Mostly, combustion was even within a short distance, i.e., 0.66-0.93 m from
the air distributor, as previously described (Figs. 4, 5(b)), and E.>98% were generally
achievable. The highly effective combustion was presumably due to the efficient
recirculation of particulate materials, by utilizing (1) a recirculating ring having a
central circular opening, which confined large particles within the fluidized-bed
combustion chamber until their sizes diminished [10], and (2} a vortex generated by
the lower tertiary air. This vortex captured large and coarse particulates entrained in
the gases by centrifuging them back into the fluidized bed for refluidization [10, 18-

19].
3.3 Effect of fluidizing velocity and partial load operation

The dependence of E; on fhudizing air velocity is shown in Fig. 8. A
maximum E; of 99.8% could be accomplished at a fluidizing velocity of 0.6 m/s,
When the velocity was increased further, £, gradually deceased until, with a velocity
exceeding 0.9 m/s, values dropped sharply, reaching a minimum of 95.6% at a
fluidizing velocity of 1.4 m/s. The consistency of decrease in E, with increased
unburned carbon (wt.%) caught ip the cyclones, and decrease in bed temperature, can
be seen in Fig. 8. Similar resuljg were also found in the literature {1, 4, 7, 10].

Inefficient combustion with increasing fluidizing velocity can be explained through
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too-short resident ime for complete burning of combustibles, i.e., char pagﬁcles and
gaseous-combustion products.

In this study, varous rice-busk loadings were investigated to determine
combustor performance under partial-load operation (Table 2). First, the SFBC is
designed to burn about 66 kg/h of rice-husk to generate a thermal capacity (defined as
fuel energy times £} of about 250 kW, with E, of about 95% or more. A maximum
rice-husk feed-rate of 73 kg/h with thermal capacity of 300 kWy and E. of 99.4%,
however, is possible (Table 3). Furthermore, without any change in combustion air
amounts; a relatively lower combustor loading than design can be accomplished with
a minimum rice-husk feed-rate of 33 kg/h, yielding a thermal capacity of 130 kWy
and E; of 96.3%. Thus, the cwrrent combustor has a turmn-down ratio (ratio of
combustor’s maximum output to minimum input) of 2.3:1, or even higher. As the
results, E, increased as combustor loading increased. This was attributed to bed

'Y
temperature decrease.

3.4 Flue gas emissions

Fig. 9 shows the dependence of CO and NO, emissions, as well as bed
temperature (at 1.2m), for rice-husk burning on amounts of excess air. A peer review
of data included in the figure is shown in Table 3. Following the CO-concentrations
{based on 6% O,), higher excess air, resulting in lowered bed temperatures, led to the
production of higher CO. A moderate increase, from 50 to 550 ppm, can be seen when
bed temperature decreased fromgl200 to 1050°C, indicating the strong influence of
bed temperature on CO emissions. This was also observed in a bubbling fluidized bed

studied by Armesto ef al. [4]. A steep increase to 2200 ppm was detected when bed
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temperature dropped to 800°C, due to diminishing combustor loading, i.e., '1:‘:(‘0111 73 to
33 kg rice-husk/h. This is consistent with the observations of Kuprianov er al. {8],
with high CO emissions in a conical FBC operating under low bed temperatures of
around 800°C (2235 ppm at 6% O, measured at 2.75 m level and using 100% excess
air). With similar combustion conditions, Madhiyanon et a/ [10] found a trend
towards similar CQ amounts in rice-husk burning in a novel cyclonic FBC.

For biomass combustion at teraperatures <1300°C, NO;, formation is typically
through the fuel-NO, mechanism rather than the thermal formation of NO, from
pitrogen in the combustion air [20-22]. In the current work, NO, emissions were in
the range 230-350 ppm (at 6% O2), depending on combustion conditions. It can be
seen in Fig. 9 that NO, increased dramatically with increasing excess air, from 80 to
170%, corresponding to 8.8 to 12.9% O, measured in the exit flue gas. This was due
to enlargement of the fuel-NO, reaction by increased concentration of oxygen‘. A
consequence of increasing the amount of air, causing significantly increased NOy, can
be noted in ref. [4], where raising excess oxygen from 5 to 10% resulted in a steep
increase in NO,, from 80 to 350 ppm (at 6% O;). However, providing more
combustion air, fuel-NO, formation will be counteracted by lower bed temperature,
with no further increase in NQ, emission (Fig. 9) when excess air >170%. The NO,
emissions of the present ¥FBC (230-350 ppm in 6% O, flue gas) were comparable to
the bubbling FBCs for firing rice-husk (240-350 ppm in refs. [8-9] and 80-330 ppm in

ref. [4]) but higher than a CFB combustor (150-220 ppm in ref. [7]).

3.5 Co-combustion tests »
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This section is devoted to a preliminary study of co-firing rice-busk with
bituminous coal, where the primary fuel was rice-husk. Coal and rice-husk were
blended on an energy basis, with 2 proportions of coal introduced in co-combustion
tests, i.c., 20 and 30% (energy basis). Results obtained for excess air of 150-220%
showed that the E, for fuel blends was less than for rice-busk alone. The greater
difficulty of burning large and dense coal particles, as well as the slower combustion
of coal than rice-husk, indicated by the DTG curves in Fig. 6, necessitated longer
residence time for coal combustion; these factors together were responsible for lower
E; values. 80, emissions were not measured because the gas analyzer did not
incorporate a SO, chemical cell unit. NO, emissions followed an increasing trend with
percentage coal, particularly for 30% coal share, due to more nitrogen in the fuel with
coal added. However, changes in the amounts of CO were minor, because bituminous
coal also contains a high proportion of volatiles (Table 1). Emissions during the co-

combustion tests were 60-160 ppm for CO and 300-350 ppm for NO,.

4. Conclusions

A SFBC of 250 kW, design capacity was developed by adapting techniques
from recent work by the present authors, and successfully obtained high combustion
efficiency (E.) and high heat rate intensity (1), without the use of a secondary solid to
promote fluidization,

A pear-isothermal condition, reflected by the radial temperature profiles and
consumption of abundant oxyges (indicated by axial O, concentration profiles),
characterized the fluidized-bed combustion feature of this combustor. Axial

temperature and O, concentration profiles showed that combustion took place mainly
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in the lower combustor, below the recirculating ring. Results for £, and I, of 95.6-
99.8% and 1.3-1.5 MWym™>, respectively, were achieved, which were comparable
with bubbling FBC for rice-husk firing, however, not competitive with CFBC. A
combined recirculating ring and vortex air curtain should play an important role in
efficient combustion, even within a confined space.

Increasing excess air, either by increasing fluidizing air velocity or decreasing
combustor loading, cansed decreases in £, due to insufficient residence times and bed
temperature decreases. The present FBC can operate in partial-load conditions, with
an achievable turn-down ratio of 2.3:1. Regarding gas emissions, increases in excess
air resulted in increased CO and NO; levels. CO increases resulted from temperature
drops, whereas NO, increases were probably due to greater fuel-N reactions with
enriched oxygen. Generally, when rice-husk was fired at a normal loading (66 kg/h),
CO and NO, ranges were 50-550 ppm and 230-350 ppm, respectively. The ﬁ‘na.l
section of this work was a preliminary study of rice-husk co-fired with bituminous
coal. Burning rice-husk/coal mixtures of 80/20 and 70/30 (% energy) yielded
satisfactory E, and I, values. Bituminous blends had higher NO; emissions attributed

to the fuel mixture having a higher nitrogen content.
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Table 1

Analyses of rice husk and bituminous coal (as received) f
Proximate analysis Ultmate analysis
(1. %) (Wt. %)
Rice husk Bituminous Rice husk Bituminous
Fixed carbon 20.1 38.92 C 38.0 57.15
Volatile matter 55.6 32.20 H 4.55 329
Moisture 10.3 24.69 O 324 14.18
Ash 14.0 4.19 N 0.69 1.20
S 0.06 1.28
Moisture 10.3 17.49
Ash 14.0 541
Rice husk Bituminous
HHY (MI/kg) 14.98 24.5




Table 2 f
Experimental conditions for nce-husk combustion
Tertiary air
Ron Primary air Secondary air Upper recirculating  Lower recirculating i:::; h“:k E:‘;r“s ‘:";
Nos. ring ring gy () rato
Velocity Fraction  Velocity Fraction  Veloclty Fraction  Velochly  Fraction
(10/s) ) (m/s) -} (mfs) -} (m/s) )
Effect of primary abr
1 0.5 0.33 16 027 8 0.14 15 026 66 83 8.32
2 0.8 0.44 16 023 8 0.1t 15 022 66 119 9.9
3 6.9 0.46 16 022 8 0.11 15 0.21 66 132 10.56
4 12 0.54 16 0.19 8 0.10 15 0.i8 66 164 12.01
5 1.4 0.57 16 017 4 0.10 15 0.16 66 174 12.47
Partia)-load operational
[ 1.0 047 15.7 022 7.8 0.1t 136 0.20 73 117 .87
7 1.0 0.47 15.7 0.22 78 0.11 13.6 0.20 66 140 10.92
8 10 047 15.7 022 7.8 0.11 13.6 0.20 50 220 14.56
9 1.0 047 15.7 022 7.8 0.1] 13.6 0.20 33 380 21.84
L}



Table 3

Summary of expertrnental results for rice-busk firing for operating conditions in Tgble 2

Bed

Exit

O, and CO;,  emissions at 6% Q;  Unburned

Run EaA Imteusity . Cemb.
carbon in Bt
Nos. Temp®. Temp. Feedrate Heatrate 0O CO, co NO, ash
%) 0 0 (kgmia'Vikgh) (MWW (%) (%) ppm ppm (%) (%)
Effect of Duidizing air
1 83 1172 1087 3364(66) 1.40 e 1t.37 50 232 0.8 %8
2 1i9 1153 933 3364/(66) 1.39 9.38 11.07 157 295 23 99.4
3 132 1106 812 3364(66) 1.3% 12.31 8.07 160 318 29 99.1
4 164 1056 740 33I6/466) 1.37 12.19 885 417 336 6.7 98.0
5 174 1049 807 336/(66) 1.34 12.94 6.62 545 352 11.19 95,6
Partial- load operational
6 117 1136 028 372/(73) 1.54 9.01 1113 100 288 2.2 994
7 140 1120 818 336/(66) 1.38 10.36 9.89 335 300 35 989
8 220 1006 675 255/(50) 1.03 13.79 539 252 337 7.1 97.1
9 380 801 545 168/(33) 0.67 1574 3.9 2176 348 1.9 963
‘measured at 1.2 m
4
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Abstract

The aim of this resesarch is to study the co-firing between rice
husk and bituminous coal in a 250 kW short combustion chamber
fuidized bed combustor. The thermal mixing ratios of rice husk to
bituminous coal of 70:30, 8020, and 100:0 were used for
experiments. The resull showed thal both fuels can be
continuously bumt together with combustion efficiencies In range
98.8 998.5%. However, in case of cofiring for the rathos of 70:30
and 80:20, agglomerated particles appeared on the distribuior
plate, which may be formed due to the tar in the blituminous coal.
The EDS analysis results were also showed that the outer
surface of agglomerated parlcles mainty contained sliicon,
cakium, and ferrous while inner surface, silicon and alurminium
are main elemenis. CO and NOy emissions {based on 6% 0O,) at
the exit vared between 60 110 ppm and 212 350 ppm,
respeciively.
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Abstract

The &m of this research is lo study a co-firing between rce
husk and bituminous coal within a 250 kW short combusion
chamber fluidized-bed combustor, considering the combustor
performances when co-combustion was tested. The mixing ratios
(thermal basls) of rice husk to bltuminous coat of 7¢:30, 80:20
and 100:0 ware used for each experiment. it was shown that all
fuel mixing ratios can be ¢confinuousty fired both fuels, combustion
efficiency were in range §8.8-99.5% and maximum heat intensity
of 0.77 MWIm® was achieved. In order that co-firing of rice husk
and biluminous coal of 70:30 and 8020 were appear
agglomeration of ash particles on distributor plate that may be
occurming from tar in biluminous coal. CO and NOy emission
{based on 6% Q) were in the range 60-110 ppm and 212-350

ppm, respectively.

Keywords: Biluminous coal/Co-firing /Fluldized-bed/Vortex
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