การศึกษาความสัมพันธ์ระหว่างการแสดงออกของ dxs mRNA และปริมาณเปลาโนทอลที่ สะสมในใบเปล้าน้อยอายุต่าง ๆ

สิทธิถาวร ว., หวังสินทวีกุล จ., ดีเอกนามกูล ว.

¹สาขาเภสัชเคมีและเภสัชเวท คณะเภสัชศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ องครักษ์ ²ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ³ภาควิชาเภสัชเวท คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อ

เอนไซม์ 1-deoxy-D-xylulose-5-phosphate synthase (DXS) มีหน้าที่ควบคุมการสร้าง จากปฏิกิริยาระหว่าง 1-deoxy-D-xylulose-5-phosphate (DXP) pyruvate ซึ่งเป็นขั้นตอนแรกในกระบวนการสร้าง glyceraldehyde-3-phosphate diphosphate (IPP) ซึ่งเป็นสารตั้งต้นของ geranyl diphosphate (GPP) และ geranylgeranyl diphosphate (GGPP) ใน deoxyxylulose phosphate (DXP) pathway ที่เกิดขึ้นในคลอโร-พลาสต์ (chloroplast) การศึกษาระดับการแสดงออกของยีนที่ควบคุมการสร้างเอนไซม์ DXS (dxs gene) ด้วยวิธี competitive polymerase chain reaction พบว่ามีระดับการแสดงออกของยืน สูงสุดในช่วงที่ใบอ่อนเริ่มคลี่และขยายขนาด โดยสังเกตได้ว่าใบยังคงมีขนอ่อนปกคลุมอยู่ และ ระดับการแสดงออกของยีนลดลงอย่างรวดเร็วเมื่อใบเจริญเต็มที่ ไม่มีขนอ่อนปกคลุม ซึ่งในขณะที่ ยีนมีระดับการแสดงออกสูงสุดนั้นพบว่ามีเปลาในทอลสะสมอยู่ในปริมาณสูง ดังนั้น dxs gene จึง เป็นยืนหนึ่งที่ควบคุมกระบวนการชีวสังเคราะห์เปลาในทอล และระดับการแสดงออกของยืนนี้มีผล ต่อระดับเปลาในทอลที่สะสมอยู่ในส่วนต่าง ๆ ของเปล้าน้อย การควบคุมระดับการแสดงออกของ dxs gene จึงเป็นแนวทางหนึ่งในการควบคุมกระบวนการชีวสังเคราะห์เปลาโนทอล

Keywords: 1-deoxy-D-xylulose-5-phosphate synthase, plaunotol, expression profile, *Croton stellatopilosus* Study on mRNA expression pattern of 1-deoxy-D-xylulose 5-phosphate synthase gene (dxs) and plaunotol biosynthesis of *Croton stellatopilosus* Ohba.

Sitthithaworn W, Wungsintaweekul J, De-Eknamkul W.

¹Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakonnayok, Thailand. ²Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Songkhla, Thailand. ³Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

ABSTRACT

Expression profile analysis of genes encoding 1-deoxy-D-xylulose-5-phosphate (DXP) synthase which respectively catalyzed the first committed step and the branching step in the deoxy-D-xylulose phosphate (DXP) pathway for diterpenoid plaunotol biosynthesis in *Croton stellatopilosus* Ohba (Euphorbiaceae) has been performed using a competitive polymerase chain reaction method. Based on mRNA expression pattern it has some level of expression in most examined tissues. The gene transcript is mainly in shoot and in developing photosynthetic tissues including young leaves prior to full expansion where a large quantity of plaunotol has been demonstrated to accumulate. The results suggested that plaunotol was mainly synthesized during leaf development and genes encoding DXP synthase might play a regulatory role in plaunotol biosynthesis in *C. stellatopilosus* at the transcriptional level.

Keywords: 1-deoxy-D-xylulose-5-phosphate synthase, plaunotol, expression profile, *Croton stellatopilosus*