บทคัดย่อ

งานวิจัยนี้ศึกษากระบวนการถ่ายเทความร้อนในวัสดุพรุนอิ่มตัว ซึ่งแบ่งได้เป็น 2 ส่วนที่เกี่ยวข้อง กัน ส่วนแรกศึกษาการถ่ายเทความร้อนในวัสดุพรุนที่ได้รับความร้อนหรือความเย็นแบบส่วนโดยการ พาความร้อน แบบจำลองทางคณิตศาสตร์ในรูปของชุดสมการถูกพัฒนาขึ้นโดยอาศัยตัวแบบที่มีชื่อ ว่า Brinkmann-extended Darcy ผลเฉลยของชุดของสมการกำกับนี้หาได้จากการใช้ระเบียบวิธี finite difference ภายใต้เงื่อนไขขอบเขตที่เหมาะสม การพาความร้อนที่ในวัสดุพรุนไม่เพียงแต่เกิด จากเกรเดียนท์ของความหนาแน่นที่มีค่าลบในทิศทางแรงโน้มถ่วงของโลก ยังเกิดจากเกรเดียนท์ข องอุณภูมิในแนวระดับอีกด้วย ซึ่งเกรเดียนท์เหล่านี้ก่อให้เกิดแรงลอยตัวที่ทำให้เกิดการไหลของของ ใหลในวัสดุพรุน ส่งผลให้เกิดการถ่ายเทความร้อนโดยวิธีพาความร้อน รุปแบบการใหลเกิดเป็นคู่ ของ vortex ที่เรียงตัวในแนวระดับและหมุนในทิศทางตรงข้ามกัน นอกจากนั้นทิศการหมุนของ vortex ในกรณี ที่วัสดุพรุนได้รับความร้อนจะตรงข้ามกับกรณีที่วัสดุพรุนได้รับความเย็น สูตรการ คำนวณค่า Nusselt number ถูกพัฒนาขึ้นและนำมาช่วยในการวิเคราะห์พฤติกรรมการถ่ายเทความ ร้อนได้อย่างถูกต้อง จากการศึกษาพบว่า สัมประสิทธิ์การถ่ายเทความร้อน Rayleigh number, Darcy number หรือแม้แต่ทิศทางการเคลื่อนตัวของของใหลมีอิทธิพลต่อรูปแบบการใหลและการ ถ่ายเทความร้อน ในส่วนที่สอง เป็นการศึกษากระบวนการให้ความร้อนจากคลื่นไมโครเวฟโดยใช้ ท่อนำคลื่นทรงสี่เหลี่ยม แก่น้ำ และวัสดุพรุนซึ่งใช้ porous packed bed ซึ่งบรรจุด้วยลูกแก้ว และน้ำ จากผลการศึกษาพบว่าคุณสมบัติไดอิเล็คตริกของวัสดุพรุน ตำแหน่งการวางวัสดุ ขนาดของวัสดุ โดยเฉพาะอย่างยิ่ง ความหนา มีผลต่อกลไกลการถ่ายเทความร้อนในวัสดุ

Abstract

This research includes two main relevant parts. In the first part, the transient natural convection flow through a fluid-saturated porous medium in a square enclosure with a partial surface convection was investigated using Brinkmann-extended Darcy model. Physical problem consists of a rectangular cavity filled with porous medium. The cavity is insulated except the top wall that is partially exposed to an outside ambient. The formulation of differential equations is solved numerically under appropriate initial and boundary conditions using the finite difference method. The finite difference equations handling the convection boundary condition of the open top surface are derived. In addition to the negative density gradient in the direction of gravitation, a lateral temperature gradient in the region close to the top wall induces the buoyancy force under an unstable condition. The two-dimensional flow is characterized mainly by the clockwise and anti-clockwise symmetrical vortices driven by the effect of buoyancy. The directions of vortex rotation generated under the heating condition are in the opposite direction as compared to the cooling condition. Unsteady effects of associated parameters were examined. The modified Nusselt number (Nu) is systematically derived. This newly developed form of Nu captures the heat transfer behaviors reasonably accurately. It was found that the heat transfer coefficient, Rayleigh number, Darcy number as well as flow direction strongly influenced characteristics of flow and heat transfer mechanisms. In the second portion, the heating of liquid layer by microwave with rectangular wave guide has been investigated. Two different materials which are water and porous packed bed are examined. The porous bed is filled with uniform glass bead and water. In this work, effects of the dielectric properties, dimension and location of the heated material and microwave power level on the heating mechanism were examined. Based on a model combining the Maxwell and heat transport as well as fluid flow equations, the resulting solutions indicate that the heating kinetic strongly depends on the dielectric properties and geometry of material.