รหัสโครงการ: MRG4880027

ชื่อโครงการ : การศึกษาผลของ piperine และ piperic acid ต่อการตอบสนองทางภูมิคุ้มกันและการ

ยับยั้งการเจริญของเซลล์มะเร็งในหลอดทดลอง

ชื่อนักวิจัย: ศิริพร ชื้อชวาลกุล และคณะ, โครงการศูนย์นวัตกรรมเพื่อการวิจัยและพัฒนาเทคโนโลยี

วินิจฉัยทางห้องปฏิบัติการทางการแพทย์ ภาควิชาเวชศาสตร์การธนาคารเลือด

คณะสหเวชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Email Address: siriporn.ch@chula.ac.th

ระยะเวลาโครงการ : 2 ปี

พิเพอรีนเป็นสารอัลคาลอยด์หลัก พบมากในพืชกลุ่มพริกไทย มีฤทธิ์ในการควบคุมการตอบสนองทาง ภูมิคุ้มกันและยับยั้งการเจริญของมะเร็งในหนู การศึกษาวิจัยชิ้นนี้เป็นงานวิจัยแรกที่ได้ทำการทดสอบผลของพิเพอ ์ วีนต่อเซลล์เม็ดเลือดขาวปกติของมนุษย์ (Human PBMCs) ภายหลังการกระตุ้นด้วย PHA และการยับยั้งการ เจริญของเซลล์มะเร็งมนุษย์ชนิดต่างๆ ในหลอดทดลอง จากการศึกษาใน PBMCs พบว่า เมื่อบ่มเซลล์เป็นเวลา 24 ชั่วโมง พิเพอรีนที่ความเข้มข้น 100 µg/ml ส่งผลให้มีเปอร์เซนต์เซลล์ที่มีชีวิตคิดเป็น 92.9 % เมื่อครบ 72 ชั่วโมง พบว่าพิเพอรีนที่ความเข้มข้น 10 และ 100 µg/ml ส่งผลให้มีเปอร์เซนต์เซลล์ที่มีชีวิตลดลงอย่างมีนัยสำคัญทาง สถิติ คิดเป็น 86.8% และ 62.3% ตามลำดับ ทั้งนี้มีแนวโน้มว่า ความเข้มข้นของพิเพอรีนที่สามารถยับยั้งการ เจริญของเซลล์เม็ดเลือดขาวปกติได้ครึ่งหนึ่ง (IC₅₀) นั้น มีค่ามากกว่า 100 µg/ml อย่างไรก็ตามการทดสอบนี้เป็น เพียงการศึกษาวิจัยเบื้องต้น จักต้องทำการศึกษาเพิ่มเติมในส่วนของกลไกการออกฤทธิ์ของพิเพอรีนต่อเซลล์ปกติ ของมนุษย์ เพื่อให้ได้ข้อมูลที่เพียงพอต่อการสรุปผลการวิจัยต่อไป นอกจากนี้การตรวจวัดผลของพิเพอรีนต่อการ ี้ยับยั้งการเจริญของเซลล์มะเร็งมนุษย์ชนิดต่างๆ ด้วย MTS assay พบว่าเซลล์มะเร็งลำไส้ใหญ่ (HT-29) กล่อง เสียง (HEp-2) และปากมดลูก (HeLa) ทนต่อพิเพอรีนได้แม้ในความเข้มข้นที่สูงถึง 200 µg/ml ในขณะที่พิเพอรีน ยับยั้งการเจริญของมะเร็งเม็ดเลือด (H9) ได้เป็นอย่างดี (IC $_{50}=14.7\pm2.1~\mu g/ml$) อีกทั้งยังเป็นพิษต่อเซลล์ด้วย แต่จากการทดสอบใน Jurkat พบว่าพิเพอรีนที่ 20-100 µg/ml ยับยั้งการเจริญของเซลล์ได้ใกล้เคียงกัน โดยยังคงมี เซลล์ที่มีชีวิตคิดเป็น 43.1 ± 2.85% แต่กลับไม่พบว่าพิเพอรีนเป็นพิษต่อ Jurkat ผู้วิจัยได้ทำการตรวจวัดปริมาณดี เอ็นเอ (DNA content) เพื่อบ่งชี้ระยะของเซลล์ในวัฦจักรเซลล์ เมื่อทดสอบที่เวลา 24, 48 และ 72 ชั่วโมง พบว่าพิ เพอรีนที่ 100 µg/ml ซักนำให้มีเซลล์ในระยะ G₀/G₁ เพิ่มขึ้นจาก 46.55%, 43.79% และ 32.47% ในกลุ่มควบคุม เป็น 56.09%, 62.50% และ 63.53% ตามลำดับ การตรวจสอบสัณฐานวิทยาของเซลล์โดยการย้อมด้วย AO/EB พบว่าพิเพอรีนที่ 40 µg/ml ส่งผลให้นิวเคลียสของเซลล์เริ่มหดตัวเป็นก้อนขนาดเล็กที่เวลา 48 ชั่วโมง ซึ่งคิดเป็น 1% Apoptotic cells และเมื่อตรวจสอบ PS บนผิวเซลล์ด้วย Annexin V-FITC เพื่อตรวจวัดด้วยโฟลไซโตมิเตอร์ พบว่า ณ เวลา 3, 6, 9, 12 และ 24 ชั่วโมง พิเพอรีนทุกความเข้มข้นที่ทดสอบไม่ซักนำให้เกิด apoptosis แต่อย่าง ใด จากการทดลองข้างต้นสรุปได้ว่าพิเพอรีนยับยั้งการเจริญของ Jurkat โดยการซักนำให้เกิด cell cycle arrest แต่ ไม่ชักนำให้เกิด apoptosis ทั้งนี้คณะผู้วิจัยจะได้ทำการทดสอบเพิ่มเติมในระดับลึกเพื่อยืนยันการเกิด G₀/G₁ arrest ต่อไป

คำหลัก: พิเพอรีน, มะเร็งเม็ดเลือดขาว, เซลล์เม็ดเลือดขาวปกติของมนุษย์, ฤทธิ์ต้านมะเร็ง, ฤทธิ์ควบคุม การตอบสนองทางภูมิคุ้มกัน Project Code: MRG4780018

Project Title: In vitro studies of Immunomodulatory and antitumor activity of piperine and

piperic acid

Investigators: Siriporn Chuchawankul et al., Innovation Center for Research and Development

in Medical Diagnostic Technology Project, Department of Transfusion Medicine,

Faculty of Allied Health Sciences, Chulalongkorn University

Email Address: siriporn.ch@chula.ac.th

Project Period: 2 years

Piperine, an amide isolated from piper species, was reported to displayed immunomodulatory and anti-tumor activity towards mouse carcinomas. Our study is the first to investigate an in vitro immunomodulatory activity of piperine on human PBMCs after PHA stimulation and anti-tumor activity of piperine on various human tumor cells. Viability of stimulated-PBMCs with 100 µg/ml of piperine remained at 92.9 % after 24 h treatment. After 72 h, viabilities of stimulated-PBMCs with 10 and 100 µg/ml of piperine were significantly decreased to 86.8% and 62.3%, respectively. Piperine seemed to exhibit an IC $_{\!50}$ value of >100 $\mu g/ml$ against stimulated-human PBMCs. However, mechanisms underlying piperine's effect are being performed. In addition, human cancer cells derived from different organs were employed, and their growth affected by piperine was determined by MTS assay. We found that cancer cells derived from colon (HT-29), larynx (HEp-2) and cervic (HeLa) were less sensitive to piperine even at a high concentration tested (200 µg/ml). Interestingly, low concentration of piperine markedly inhibited the proliferation of cancer cells derived from leukocyte, H9 with IC_{50} of 14.7± 2.1 µg/ml. Moreover, piperine from 20-100 µg/ml inhibited Jurkat proliferation with similar degree observed where cell viability remained at 43.1 ± 2.85%. On the contrary, piperine did not show any toxicity towards Jurkat at all. Flow cytometric analysis for DNA content after 24, 48 and 72 h indicated that piperine at 100 µg/ml induced G₀/G₁ arrest. We found that cells in G₀/G₁ population increased from 46.55%, 43.79% and 32.47% to 56.09%, 62.50% and 63.53% compare to control. After 48 h treatment, AO/EB staining revealed condensed nuclei cells with 40 µg/ml of piperine exposure, resulting in 1% apoptotic cells. Additionally, annexin V-FITC staining for PS exposure on Jurkat was determined by flow cytometric analysis. No apoptotic cell was detected after piperine treatments for 3, 6, 9, 12 and 24 h. In conclusion, piperine's anti-tumor effect involved induction of G_0/G_1 arrest but not apoptosis. Nevertheless, further investigation to confirm G_0/G_1 arrest will be performed.

Keywords: piperine, human tumor cells, human peripheral blood mononuclear cells, anti-tumor activity, Immunomodulatory activity