- [4] N. Kato, S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, M. Nomura, Silk protein, inhibits lipid peroxidation and tyrosinase activity, Bioscience Biotechnology Biochemistry 62(1) (1998) 145-147.
- [5] Y.-Q. Zhang, Applications of natural silk protein sericin in biomaterials. Biotechnology Advances 20(2) (2002) 91-1.
- [6] S. Rigoni-Stern, L. Szpyrkowicz, F. Zilio-Grandi, Treatment of silk and Lycra printing wastewaters with the objective of water reuse, Water Science and Technology 33(8) (1996) 95-104.
- [7] AOAC, Official Method of Analysis of AOAC International. 17th ed. Association of Official Analytical Chemists, Gaithersburg, Md., 2000.
- [8] APHA-AWWA-WEF., Standard methods for the examination of water and wastewater, 20th ed. American Public. Health Association, Washington, Dc, NY., 1995.
- [9] K. Hemachantom, Silk Technology I, Department of Industrial Promotion, Bangkok, Thailand, pp. 36-37, 1996.
- [10] K.-J. Park, H.-H. Jin, C.-K. Hyun, Antigenotoxicity of peptides produced from silk fibroin, Process Biochemistry 38 (2002) 411-418.
- [11] H.G. Kristinsson, B.A. Rasco, Fish protein hydrolysates: production, biochemical and functional properties, Critical Reviews in Food Science and Nutrition 40(1) (2000) 43-81.

Table 1 Composition of degumming solutions before and after filtration

	Degummi	Degumming solution
	Before filtration	After filtration
Moisture (%)	98.94	97.57
Ash (%)	0.12	0.11
Total Nitrogen (%)	0.11	0.01
Protein (Nx6.25) (%)	0.69	0.06
рН	9.24	7.20
COD (mg/L)	8,870	260
BOD ₅ (mg/L)	4,840	158
Total solid (%)	1.06	0.01

Table 2 Amino acid composition in degumming solution compared with reference

sericin

Amino acid	% gram	% gram amino acid in 100 gram protein	ram protein
	Sericin	Degumming	Hot water-soluble
	raw material ^{1/}	solution ^{2/}	Sericin ^{3/}
Aspartic acid	15.74	14.95	17.97
Serine	31.99	38.81	28.00
Glutamic acid	6.28	3.93	6.25
Glycine	14.20	14.45	16.29
Histidine	1.49	Not detected	1.32
Arginine	4.29	3.27	3.52
Threonine	7.73	7.79	7.78
Alanine	4.85	5.13	5.20
Pro line ·	0.71	0.47	Not detected
Cystine	0.20	Not detected	0.69
Tyrosine	3.01	2.44	2.87-
Valine	3.30	3.33	3.77
Methionine	Not detected	Not detected	Not detected
Lysine	4.17	3.12	3.72
Isoleucine	0.72	0.77	0.79
Leucine	0.96	1.18	1.21
Phenylalanine	0.37	0.34	0.64
II, II from laboratory analysis	analysis		

"from laboratory analysis

³/from Zhang et al. (2004)

Table 3 Chemical composition of recovered sericin powder

Composition	Tray-	Freeze-	After	Sericin	Commercial
	drying	drying	filtration	hydrolysate	SERICIN-P1/
Moisture (%)	4.73	4.83	5.19	4.96	12.00
Nitrogen (%)	12.18	12.28	14.75	14.89	13.00
Protein (Nx6.25) (%)	76.10	76.73	92.19	93.06	81.25
Ash (%)	36.89	21.68	5.84	5.42	3.00
pН	9.60	9.27	7.85	7.74	Not determined
Water solubility (%)	96.28	97.58	97.62	100.0	Not determined
Yield (%)	0.93	1.04	95.0	91.3	Not determined
commercially hydrolysis of sericin	olysis of seri	cin			4

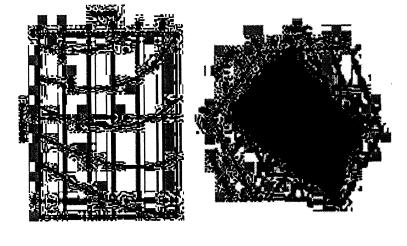
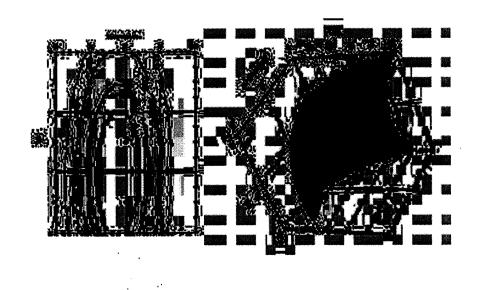



Figure 1 Influence of enzyme concentration and reaction time on the hydrolysis level as shown by Response Surface Curve

Response Surface Curve Influence of pH and temperature on the hydrolysis level as shown by

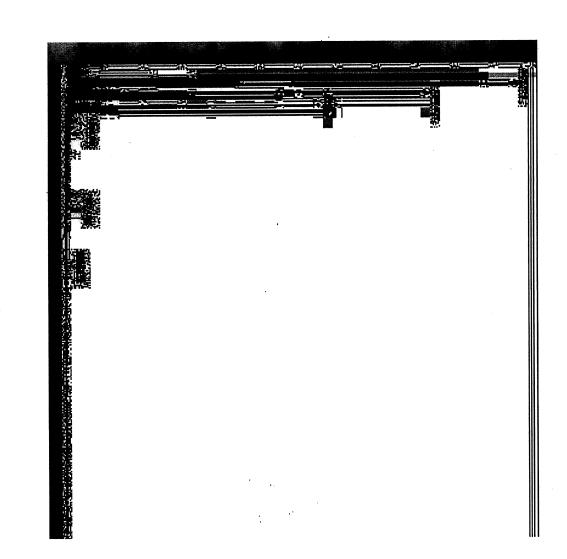


Figure 3 Mass spectrum of sericin powder

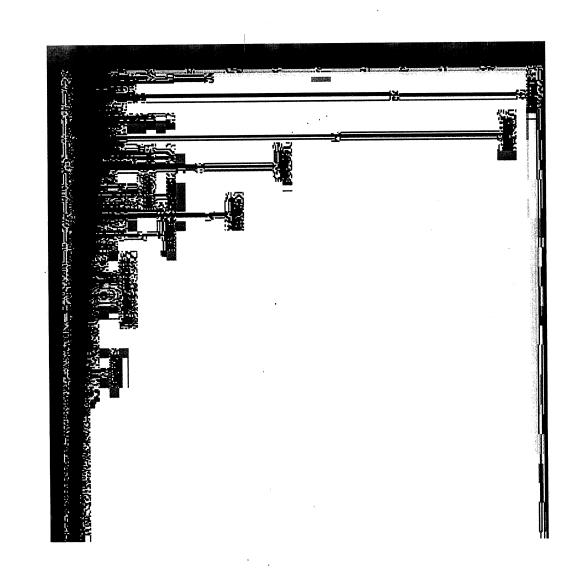


Figure 4 Mass spectrum of sericin hydrolysate

My Yanoo

Make Y! your home page

Welcome, p_vaithanomsat Sign Out

Web Search

Search:

AHOO! MAIL

YAHOO! TV

Check Mail Compose

Mail

Addresses

Calendar

Notepad

Search Mail

Search the Web

Printable

Mail Upgrades - Options

Vonage: 1 Free Month & Router

Folders

Draft Inbox

Sent

Trash Bulk

My Folders tikkey

Search Shortcuts My Photos

My Attachments

Yahoo! Autos Find Your Next Car

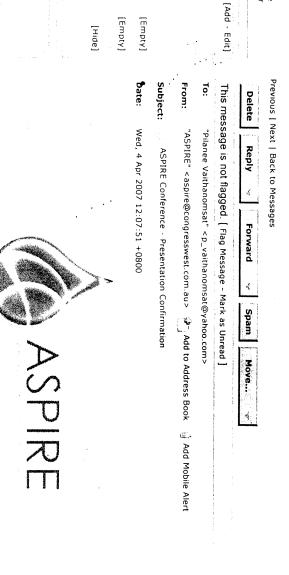
Yahoo! Tech Tech made easy

Watch Christina perform live!

Listen to Radio On Yahoo' Music

4 April 2007

Fef: 299


Kasetsart University BANGKOK 10900 Researcher Dr. Pilanee Vaithanomsat

Dear Dr. Vaithanomsat

01 November 2007 Selection of paper for poster presentation at the ASPIRE conference, 28 October

of low quality. We have selected oral presentations on the criteria of how the paper would be not include your paper in the oral publication list. This decision does not indicate that your paper received nearly 500 abstracts. We had only a limited space for the oral presentations, so we co received by the participants. There was a great response to the call for papers for the upcoming ASPIRE conference.

presentation at the conference. One of the authors of the paper is expected to register and pre the poster at the conference. For your paper to be included in the poster program you have to register before **Friday 27 July 2007**. This is also the deadline for early-bird registration. All th registered presenters will be informed about the details of poster presentation in September. We have great pleasure to advise you that your paper has been provisionally selected for poste

2nd IWA - ASPIRE

Asia-Pacific Regional Group Conference & Exhibition Water and Sanitation in the Asia-Pacific Region: Opportunities, Challenges Perth Convention & Exhibition Centre, Australia 28 October -1 November 2007 and Technology

Abstract Details	
	TOTAL STOLIMATING WASTE WATER
Title:	SERICIN RECOVERY FROM SILK DEGUMMING WASIE WATER
Paner Status:	Accepted
pe:	Poster Presentation
	Pilanee Vaithanomsat

If you are withdrawing your poster presentation, you must advise in writing to the Conference Secretariat.

There will be vacancies in the oral presentation sessions and the registered poster papers will have an opportunity to be included in the oral sessions as the vacancy arises.

You must submit your full paper by email to asplire@congresswest.com.au, (subject line to read 'Full Paper'), in the IWA attached, before **Friday 17 August 2007**. Please also ensure your paper is submitted in .pdf format. We will review a paper for publication in: 'Water, Science and Technology', 'Water, Science and Technology - Water Supply' or 'Water Prance' and Technology', 'Water, Science and Technology'. and Technology'.

Looking forward to hearing from you.

Murdoch University Dr Kuruvilla Mathew
2nd IWA-ASPIRE International Advisory Committee
Environmental Technology Centre

2nd IWA - ASPIRE Conference Secretariat

Congress West T: 08 9389 6906 F: 08 9389 1234

E: aspire@congresswest.com.au

Files Attachments Ø, Delete Reply WST_MANUSCRIPT_INSTRUCTIONS.PDF (151k) Forward Spam Move... Scan and Save to Computer - Save to Yahoo! Briefcase * Attachment scanning provided by: Save Message Text | Full Hi Antivi

Compose

Previous | Next | Back to Messages

Search Mail

Search the Web

Check Mail

Copyright © 1994-2007 Yahoo! Inc. All rights reserved. Terms of Service - Copyright/IP Policy - Guidelines - Ad Feedback NOTICE: We collect personal information on this site To learn more about how we use your information, see our Privacy Policy

76 [1d=2592]70085#_5378_160\$_158934

Values comits

4/12/200

Sericin recovery from silk degumming waste water

P. Vaithanomsat*, W. Apiwattanapiwat* and V. Kitpreechavanich**

*Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Bangkok, 10900, Thailand.

(E-mail: oplv@ku.ac.th; p_vaithanomsat@yahoo.com)

**Department of Microbiology, Faculty of Science, Kasetsart University, 50 Chatuchak, Bangkok, 10900 Thailand.

Abstract

This study was conducted to the recovery of sericin protein produced during silk degumming process. Sericin waste solution from conventional degumming process in Thailand contained high BOD (4,840 mg/L), COD (8,870 mg/L) and nitrogen content (0.11%). This indicated protein hydrolyzed to obtain sericin hydrolysate (average molecular weight 1,046-2,795 daltons) which is recover valuable sericin protein, membrane filtration and enzymatic hydrolysis of recovered sericin contamination and highly cost for wastewater treatment. To reduce the treatment costs as well as to mostly suitable for further cosmetics application were recovered after membrane filtration process. The recovered sericin was further enzymatically 260 mg/L) as well as that an amount of sericin protein with molecular weight 2,427-9,863 daltons were studied. The results showed the quality improvement of wastewater (BOD, 158 mg/L; COD,

Key words

sericin recovery, silk degumming wastewater

INTRODUCTION

(Chang-Kee et al., 2002; Kato et al., 1998). As a result, they can be applied in many fields such as cosmetics, biomaterials and textile (Zhang, 2002). of biological activities such as antioxidation, tyrosinase activity inhibition and anticancer activity 2004). This peptide and hydrolysate of sericin have excellent moisture absorption property and a lot Zhang et al., 2004). When subjecting to alkaline degumming process, sericin is degraded into with its molecular weight distributed between 10,000 and 300,000 dalton (Fabian et al., produces 22 kg of sericin. Sericin is globular protein representing as a tube outside the silk fibroin synthetic soap solution is used at 95 °C for 1 hour. It is expected that one hundred kg of silk degumming process which is used for elimination external sericin prior to dyeing; generally avoided therefore resulting in large Silk manufacturing is one of the industrial sectors where intensive water consumption cannot be peptide or hydrolyzed sericin with molecular weight less than 20,000 dalton (Zhang et al., volume of wastewater. One of these released from

recover sericin protein as well as to improve the wastewater quality of degumming waste for further therefore could be recovered and applied for various purposes. The aim of this work was thus to indicated that the high nitrogen content in such wastewater could be sericin-derived products which and highly costs for treatment (Rigoni-Stern et al., 1996; Fabiani et al., 1996). Likewise, it also High concentration of BOD, COD and nitrogen in degumming waste solution makes it complicated applications

METHODS

The degumming waste solution

Degunming waste solution from *Bombyx mori* silk processing was obtained from silk manufacturer in Thailand. The contents of total nitrogen, protein, moisture and ash of the sample were measured analyzed using closed reflux method 5220C and 5210A, respectively, according to APHA-AWWAsumming 100 laser shots for each sample. COD and BOD5 of degumming waste solution were protein standard (Bruker p/n 206195). The spectra were acquired in mass range 1000-100000 amu (337nm). This instrument was operated in linear mode with delay extraction and calibrated with Analysis Method (1993). Mass spectra were acquired by Bruker Daltonics model reflex IV N2 laser according to AOAC 2000. Total amino acid was analyzed according to AccQ. Tag Amino Acid

Protein recovery

A part of degumming waste solution was directly dried using freeze-drying (Labconco Corporation: 77535-01, USA) and tray-drying (Memmert: UM 500, USA). Another part was passed through commercial sericin. protein, amino acids, moisture and ash according to the previous section and compared with the mentioned methods were ground into fine powder and then analyzed for contents of total nitrogen, protein. After that, the recovered sericin was freeze-dried. Every product derived from the abovein the 20,000-80,000 dalton range, Millipore Co., USA) in order to obtain the concentrated sericin ultra-filtration (Amicon model 8400, Amicon Inc., USA) with membrane (molecular weight cut-off

Enzymatic hydrolysis of recovered sericin protein

 $(p \le 0.05)$ and $R^2 \ge 0.75$ were selected for contour plot and the most optimum hydrolysis condition was used for monitoring degree of hydrolysis (%DH). The conditions with 95% confidential level enzyme concentrations (0.1, 0.5, 1.0% (w/w, mg-enzyme/mg-substrate)). The pH-stat technique temperatures (50, 55, 60 °C), 4 different reaction times (60, 90, 120, 150 min) and 3 different performed using the Response Surface Methodology (RSM). Following the above-mentioned production process for enzymatic hydrolysis but using 3 different pH (7.5, 8.5, 9.5), 3 different Then the hydrolysate was freeze-dried and analyzed for properties according to the previous section. The hydrolysis parameters, including pH, temperature, reaction time and enzyme concentration, were optimized using Completely Randomize Design (CRD). Data analysis was hydrolysate. The pH change during the reaction was controlled by the addition of 0.1 M NaOH. Novozymes A/S, Denmark) hydrolysis for a period of time to obtain-short-chain peptides or sericin was chosen. sericin protein from previous section was subjected to enzymatically (Alcalase 2.4 L FG,

RESULTS AND DISCUSSION

The degumming waste solution

compared in Table 2. It was shown that the majority of amino acids in degumming waste solution were serine, aspartic acid and glycine as 38.81%, 14.95% and 14.45%, respectively, which was similar to those in sericin raw material; serine 31.99%, aspartic acid 15.74% and glycine 14.20%; tray-drying were only 1.04% and 0.93%, respectively (Table 3). Total amino acids in sericin raw consistent with total solid content as 1.06%. Also sericin yields obtained after freeze-drying and 98.94% whereas the protein and ash contents were 0.69% and 0.12%, respectively. These were The composition of sericin waste solution was shown in Table 1. It demonstrated high moisture as and hot water-soluble sericin; serine 28.00%, aspartic acid 17.97% and glycine 16.29% (Zhang et fibroin; serine 2004). In contrast, different amino acids profile was found when compared with those in roin; serine 13.22%, aspartic acid 0.76% and glycine 41.25% (Hemachantorn, 1996). degumming waste solution, hot-water soluble sericin and fibroin raw material were

results due to high nitrogen residues and therefore treatment is needed for this kind of waste water Furthermore, analysis of degumming waste solution indicated high BOD and COD, 4,840 mg/L and 887 mg/L, respectively. Rigoni-Stern et al. (1996) and Fabiani et al. (1996) also reported similar

Sericin recovery by drying and filtration

in 100-ml water whereas an equal amount of tray-dried sericin was dissolved in 100-ml water at 96.28%. This could be because the heating process denatured protein during the process as observed compositions except their water solubility. The 10-g freeze-dried sericin was completely solubilized unswervingly make degumming waste solution dried and yielded sericin powders with similar The results in Table 3 showed proximate compositions of sericin powder after freeze- and tray-drying compared to the commercially available sericin. It indicated that both drying methods could in the next experiment. was not water-soluble. Therefore, freeze-drying was selected for drying degumming waste solution by occurring of thin film on the top and after that when tested for water solubility, only this film

degumming solution and reduction of solution volume prior to drying process-were extremely consumption was needed for drying process. This suggested that removal of alkali ions from in silk degumming process. Moreover, Table 3 also showed rather low total solid content as little as 1.06% indicating that almost 99% of the degumming waste solution was water and then high energy 36.89% from freeze- and tray-drying, respectively. High ash contents were from alkali solution used Even though sericin could be easily directly recovered from degumming waste solution by drying, from Table 3 demonstrated very high ash content in sericin products, 21.68% and

indicating the quality improvement of degumming waste. Moreover, the decrease in total nitrogen and protein contents, from 0.11 to 0.01% and from 0.69 to 0.06%, respectively, implied the Table 1 showed the composition of degumming waste after being passed through the ultrafiltration system. It demonstrated the obvious decrease in pH, COD, BOD, and total solid of the solution protein powder contained higher nitrogen content (14.75%) with lower ash content (5.84%) and pH (7.85) when compared with the tray-dried powder (12.18%, 36.89% and 9.60, respectively) and weight 2,427-9,863 daltons, of about 94%. Comparison of recovered sericin as shown in Table 3 indicated better quality, as well as the yield, of sericin obtained after membrane filtration. The recovery of protein from waste solution. The results illustrated that ultrafiltration with membrane from 9.24 to 7.20, 8,870 to 260 mg/L, 4,840 to 158 mg/L and 1.06 to 0.01%, respectively, impurities by membrane filtration could actually improve the quality and yield of sericin freeze-dried powder (12.28%, 21.68% and 9.27, respectively). This indicated that removal of (20,000-30,000 dalton cut-off) of degumming waste allowed the recovery of sericin, with molecular

Enzymatically hydrolysis of recovered sericin

Alcalase, a commercial serine protease from *Bacillus licheniformis*, was used in this study. This enzyme was experimented by Park *et al.* (2002) as the most efficient protease among the industrially-applicable enzymes for silk fiber hydrolysis. DH values from every hydrolysis condition were determined and compared. The highest DH, about 83.78%, was obtained from the reaction measured by degree of hydrolysis depended severely on enzyme concentration (p \leq 0.05). wastes from fish or chicken (Kristinsson and Rasco, 2000). Figure 1 also suggested that the rate of even unnecessary in the case of raw materials containing active endogeneous enzymes such as that addition of enzyme was a decisive factor affecting the hydrolysis rate and it could be small or As the enzyme concentration rised, the hydrolysis level was consistently increased. This indicated most optimum hydrolysis condition as shown in Figures 1 and 2. Figure 1 showed that the rate of

reaction was slightly dependent on reaction time, therefore the shortest duration was chosen according to the lowest energy consumption. These data then allowed us to conclude that the enzyme/mg-substrate) and 60 min, respectively. optimum enzyme concentration and reaction time for sericin hydrolysis was at 1% (w/w, mg-

therefore resulting in best hydrolysis in that range. From the above observations, it was concluded own optimal reaction pH. The enzyme used in this study is efficiently active in pH range of 8.0-9.5, therefore resulting in the activation or inactivation of enzyme activity. Usually, each enzyme has its strongly dependent on pH as it affected the ionization of protopic moiety in the enzyme active site, enzyme activity fell in 55-60 °C according to the instructions. However, the reaction rate was Figure 2 illustrated the influence of pH and temperature on the protein hydrolysis level. The reaction temperature slightly affected the hydrolysis level as the optimal temperature for this that the optimum pH and temperature for sericin hydrolysis was at 9.5 and 60 °C, respectively. Therefore, reaction pH adjustment is needed prior to carry out the process.

hydrolysis, respectively. These mass spectrums indicated molecular sizes of peptides in Daltons unit present in the samples. From figure 3, it was shown that the average size of peptides before observed after enzymatic hydrolysis (Figure 4). hydrolysis ranged between 2427 and 9863 Daltons whereas the 1046-2795 Dalton peptides were spectrums of sericin protein in degumming waste water and sericin hydrolysate after enzymatic Average molecular weight of sericin powder was analysed. Figures 3 and 4 demonstrated mass

CONCLUSION

COD, BOD₅ and total solid indicating as the proper method to recover valuable protein as well as to wastewater treatment. Further hydrolysis with specific commercial protease provided sericin method. Also this method provided the improvement of degumming waste solution with lower pH, recovered from silk degumming waste solution by ways of drying or ultrafiltration. However, the The protein powder, containing similar amino acids profile with those in sericin, could be directly are needed for confirmation and scale-up. value-adding of the silk degumming waste. However, the field test as well as cost-benefit evaluation the membrane filtration and enzymatic hydrolysis show tempting perspectives for management and hydrolysate with molecular weight range between 1,046 and 2,795 daltons. Following these results, better quality of sericin with higher recovery percentage was obtained from the ultrafiltration

ACKNOWLEDGEMENTS

The authors would like to thank Thailand Research Fund (TRF) for financial support and Chul Thai Silk Co., Ltd. for silk degumming waste water throughout the research.

REFERENCES

- AOAC. Official Method of Analysis of AOAC International (2000) 17th edn, Association of Official Analytical Chemists, Gaithersburg, Md.
- APHA-AWWA-WEF. Standard methods for the examination of water and wastewater (1995). 20th American Public Health Association/American Water Works Association/Water
- Environment Federation, Washington, DC, USA.
 Chang-Kee, H., Yuk-Hyun, J., Sung-Hee, L., Geum-Ju, P., Deock-Hyoung, C. (2002). Anticancer agents containing antigenotoxic and immunostimulative peptides produced from the hydrolysate of silkworm cocoon. Patent No. WO02076487

- Fabiani, C., Pizzichini, M., Spadoni, M. and Zeddita, G. (1996). Treatment of waste water from silk degumming processes for protein recovery and water reuse. Desalination, 105, 1-9.
- Hemachantorn, K, (1996). Silk Technology 1. France.

 Thailand, pp. 36-37.

 Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N. and Nomura, M. (1998). Silk protein, M. (1998). 62(1), 145-147.
- Kristinsson, H.G. and Rasco, B.A. (2000). Fish protein hydrolysates: production, biochemical and functional properties. *Critical Reviews in Food Science and Nutrition*, **40**(1), 43-81.
- Park, K.-J., Jin, H.-H. and Hyun, C.-K. (2002). Antigenotoxicity of peptides produced from silk fibroin. Process Biochemistry, 38, 411-418.
- Rigoni-Stern, S., Szpyrkowicz, L. and Zilio-Grandi, F. (1996). Treatment of silk and Lycra printing wastewaters with the objective of water reuse. Water Science and Technology, 33(8), 95-104.
- Viswanath, P. and Nand, K. (1994). Anaerobic digestion of silk industry wastes. Bioresource Technology, 49(3), 273-276.
- Zhang, Y.-Q. (2002). Applications of natural silk protein sericin in biomaterials. *Biotechnology Advances*, 20(2), 91-1
 Zhang, Y.-Q., Tao, M.-L., Shen, W.-D., Zhou, Y.-Z., Ding, Y., Ma, Y. and Zhou, W.-L. (2004). its characters. Biomaterials, 25, 3751-3759. Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and

Table 1. Composition of degumming solutions before and after filtration

	Degummin	ing solution
	Before filtration	After filtration
Moisture (%)	98.94	97.57
Ash (%)	0.12	0.11
Total Nitrogen (%)	0.11	0.01
Protein (Nx6.25) (%)	0.69	0.06
pH	9.24	7.20
COD (mg/L)	8,870	260
BOD ₅ (mg/L)	4,840	158
Total solid (%)	1.06	0.01

Table 2. Amino acid composition in degumming solution compared with reference sericin

Amino acid	9	6 gram amino ac	% gram amino acid in 100 gram protein	1
	Sericin	Degumming	Hot water-soluble	Fibroin
	raw material ^{1/}	solution ^{2/}	Sericin ^{3/}	raw material ^{4/}
Aspartic acid	15.74	14.95	17.97	0.76
Serine	31.99	38.81	28.00	13.22
Glutamic acid	6.28	3.93	6.25	0.69
Glycine	14.20	14.45	16.29	41.25
Histidine	1.49	Not detected	1.32	Not detected
Arginine	4.29	3.27	3.52	0.86
Threonine	7.73	7.79	7.78	0.81
Alanine	4.85	5.13	5.20	28.87
Proline	0.71	0.47	Not detected	Not detected
Cystine	0.20	Not detected	0.69	Not detected
Tyrosine	3.01	2.44	2.87	10.96
Valine	3.30	3.33	3.77	2.63
Methionine	Not detected	Not detected	Not detected	Not detected
Lysine	4.17	3.12	3.72	0.17
Isoleucine	0.72	0.77	0.79	0.44
Leucine	0.96	1.18	1.21	0.32
Phenylalanine	0.37	0.34	0.64	0.58
11, 21 from laboratory analyzeig	my analyzeic			

^{11, 21}from laboratory analysis ³¹from Zhang et al. (2004) ⁴¹from Hemachantorn (1996)

Table 3. Chemical composition of recovered sericin powder

Composition	Tray-	Freeze-	After	Sericin	Commercial
,	drying	drying	filtration	hydrolysate	SERICIN-P1/
Moisture (%)	4.73	4.83	5.19	4.96	12.00
Nitrogen (%)	12.18	12.28	14.75	14.89	13.00
Protein (Nx6.25) (%)	76.10	76.73	92.19	93.06	81.25
Ash (%)	36.89	21.68	5.84	5.42	3.00
pH `	9.60	9.27	7.85	7.74	Not determined
Water solubility (%)	96.28	97.58	97.62	100.0	Not determined
Yield (%)	0.93	1.04	95.0	91.3	Not determined

commercially hydrolysis of sericin

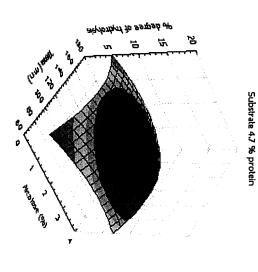


Figure 1. Influence of enzyme concentration and reaction time on the hydrolysis level as shown by Response Surface Curve

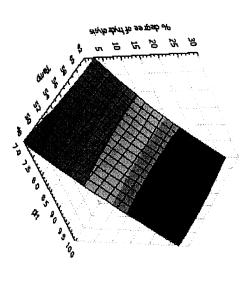


Figure 2. Influence of pH and temperature on the hydrolysis level as shown by Response **Surface Curve**

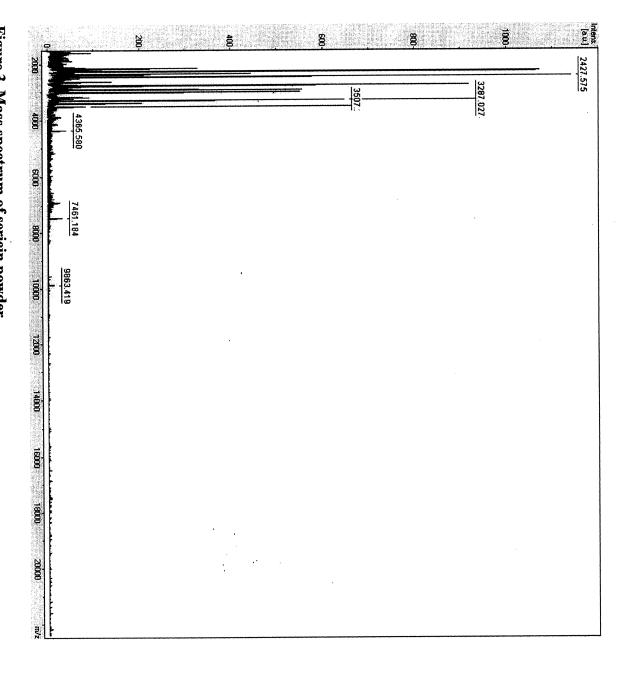


Figure 3. Mass spectrum of sericin powder

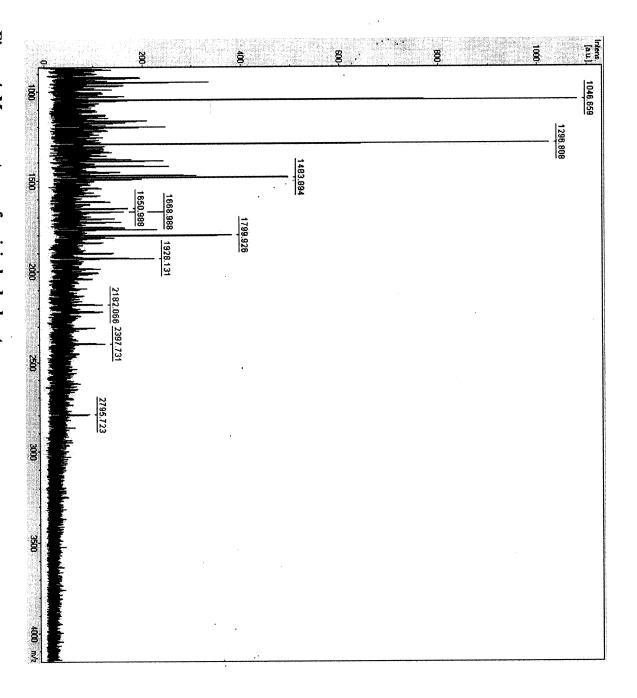


Figure 4. Mass spectrum of sericin hydrolysate

15 February 2007

Dr. Pilanee Vaithanomsat,

Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Enzyme Technology and Waste Management Research Unit.

50, Chatuchak, Bangkok 10900.

Kasetsart University,

p_vaithanomsat@yahoo.com; oply@ku.ac.th

Dear Dr. Pilanee,

Chidchai Punyasawon, for consideration for publication in ScienceAsia. the Production Process for Silk Hydrolysate from Philosamia ricini (Iri Silk) Pupae 0609-756, received 05 September 2006), by Pilanee Vaithanomsat Thank you very much for submitting the manuscript entitled Optimization of and

the revised manuscript with the attached sheet(s) indicating responses or changes in interest, there are a number of queries and comments which require clarification from enclosed for your information. Please reply to every point of the referees' comments or queries, and send 3 copies of to me as soon as possible. the manuscript against the referees' amendments, together with the diskette, back In addition, the manuscript needs to be revised in light of their comments The manuscript has been read by two independent referees, whose reports are Although the referees have found the work to be of

manuscript may be considered as a new paper Kindly resubmit your revised manuscript within 4 months, otherwise your

Looking forward to receiving the revised manuscript and your reply to the from you soon. Thank you again for your interest in contributing to our

Yours sincerely

Prof. Dr. MR. Jisnuson Svasti Editor *ScienceAsia*

- N.B. 1. In the title page, please make sure that the authors' names are in full, including both first and last names
- 2. In the references, list all author names and initials up to 7 authors. After that, use the word "et al" for the
- In the text, mention of author names should use the surname of the first author plus "et al", when there are

EDITORIAL OFFICE: c/o Department of Biochemistry, Faculty of Science, Mahidol Univ 272Rama VI Road, Bangkok 10400.
Tel:+66-2-2015841 Fax: 3547174, 2015843 E-mail: scjss@mahidol.ac.th Faculty of Science, Mahidol University

Process Optimization for the Production of Philosamia ricini (Eri Silk) Pupae

Hydrolysate

²Department of Microbiology, Faculty of Science, Kasetsart University, 50 Chatuchak. Kasetsart University, 50 Chatuchak, Bangkok 10900, Thailand. Tel/Fax 66-2-942-8599 ¹Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI) Bangkok 10900, Thailand Pilanee Vaithanomsat¹*, Chidchai Punyasawon¹ and Vichien Kitpreechawanich²

*corresponding author; email: oplv@ku.ac.th, p_vaithanomsat@yahoo.com

ABSTRACT

started by blending fresh pupa into fine particles and water was added to adjust final out at 50 °C for 120 min. with stirring. The protein hydrolysate from silk pupa was activity. Commercial enzyme Alcalase was added to 0.5 % and the process was carried protein concentration to 4.6 %. The pH was adjusted to 7.5 to accommodate the enzyme dissolving in water and were as high quality as the commercial products 62.82 %. The results indicated that the hydrolysate product was capable of well degree of hydrolysis resulted from this condition was 73.27 % with nitrogen recovery freeze-dried, ground into fine powder and analysed for compositions. The maximum ricini), waste from silk reeling process, was investigated. The appropriate process The method for protein hydrolysate production from Eri silk pupae (Philosamia

Key Words: silk hydrolysate, Eri silk pupae, production, optimization

INTRODUCTION

fastest-growing categories in personal care with market value 2,000 million US dollars In recent years, natural products have grown from a niche segment to one of the

could be easily coated onto human hair and skin. soluble and well compatible with surfactant resulting in fibroin film that is shining and silk contains silk peptide with average molecular weight 1,000 daltons which are waterwhich can improve skin look and cover skin problem^{2,3,4,5}. Especially the hydrolyzed extremely needed. Silk protein or silk protein hydrolysate are one of such ingredients, per year¹. Cosmetics are the key products, and ingredients with specific properties are

purposes 10,11 One approach to upgrade silk pupa by-products was use of proteases by protein, 25-30% lipid, 4.96% fiber, and other substances, e.g. hormones, trace elements liver and preventing cancer. Proximate analysis of pupa showed that it contains 55-60% studies show that silkworm pupas are alimental for increasing immunity, protecting the agricultural purposes¹. Furthermore, Yang (2002) also reported that silkworm pupas matrix^{6,7}. The pupae can be sold for fertilizer, biogas⁸, feed stuff^{9,10} and other solution and further processed to obtain silk fibroin membrane as immobilization silk and spun-silk yarns. Parts of it could be chemically dissolved using LiBr aqueous and cocoon. Cocoon can be processed to make Dupion silk, or re-processed into flowprotein product. Therefore, the main purpose of this research was to optimize the choosing the enzyme type and hydrolysis conditions to obtain the hydrolysed silk pupa and vitamins, thus indicating that it could be a good protein source for various have been used as Chinese traditional medicines since ancient time 11. Pharmacological be further applied for various products. enzymatic hydrolysis condition suitable for silk pupa protein hydrolysate which could The by-products of manufacturing silk include the unusable parts of the pupa

MATERIALS AND METHODS

Preparation and analysis of raw material and products

material and all products were sampled for proximate analysis; moisture, ash, protein Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Coomassie staining (Pharmacia: weight patterns of hydrolysate were accessed by 10% Sodium Dodecyl Sulphatelipid and microbiological properties as described in the AOAC (2000)¹². The molecular fine particles using Vita mix® and then stored at temperature -20 °C until use. Raw EPS 300). The Philosamia ricini (Eri Silk) pupa was used in this study. It was ground into

Enzymatic hydrolysis of silk pupae

the suspension was adjusted to suitable pH with 4 N NaOH. The reaction mixture was peptide bonds cleaved during the hydrolysis reaction 13 calculation of %degree of hydrolysis (%DH). %DH is defined as the percentage of pH of reaction was controlled by addition of 4 N NaOH whose volume was recorded for incubated at appropriate temperature with continuous stirring for a period of time. The protein content with final volume 100 g. Before subjecting to enzymatically hydrolysis, Chang-Kee et al., 2002)⁴: ground silk pupae were mixed with water to obtain optimal The production of a hydrolysate was performed as follows (adapted from

$$%DH = B \times N_b \times 1 \times 1 \times 1 \times 1 \times 100$$

 ∞ MP h_{tot}

wherein B Volume of NaOH (ml) used in hydrolysis reaction

 $N_b = NaOH concentration (N)$

MP = Protein content (N x 6.25) (gram)

x =Degree of dissociation of the ∞ -NH group

 \mathbf{h}_{tot} Total number of peptide bonds in a given protein (meqv/g protein)

minutes at 4 °C and pH was adjusted to 7.0 with 1 N HCl. The resulting silk hydrolysate was afterwards ground into fine powder. was subjected to freeze-drying for overnight to obtain water-soluble silk powder, which °C for 15 minutes. The cell debris was removed by centrifugation at 8,000 rpm for 15 The enzymatic reaction was terminated by heating the hydrolysate to 100

Selection of commercial protease enzymes used for hydrolysis of silk pupae

experiment was performed in triplicate. The analysis was done using Analysis of 500L (Novozymes A/S, Denmark) with the ratio of protein:enzyme = 6:0.5. Each treatments, indicated as 1) control (without enzyme), 2) Alcalase 2.4L FG (Novozymes Completely Randomize Design (CRD) and different commercial protease enzymes as 4 with highest %hydrolysis was selected as the most appropriate enzyme and used for A/S, Denmark), 3) Neutrase 0.8L (Novozymes A/S, Denmark), and 4) Flavourzyme further experiments Variance or ANOVA and Duncan's Mew Multiple Range Test (DMRT). The enzyme The experiment was carried out following the previous procedure using

for hydrolysis of silk pupae Optimization for concentration of substrate, enzyme, and hydrolysis period

concentration ranging from 0, 0.2, 0.5, 0.8, and 1%. The last factor was hydrolysis concentration varying from 4.6, 6, 8, 10, and 11.4%. The second factor was enzyme Design (CCD) with 3 factors and 5 levels ($-\infty$, -1, 0, 1, ∞). The first factor was substrate triplicate. The analysis was done using Response Surface Methodology (RSM) with period from 70, 90, 120, 150, and 170 minutes. Each experiment was performed in The experiment was carried out at pH 9.5 and 60 °C using Central Composite

as the most appropriate enzyme and was used for further experiments Quadratic Model. The condition with highest %nitrogen recovery¹⁴ (NR) was selected

nitrogen recovery (%) = total nitrogen in hydrolysis x hydrolysate weight x 100

total nitrogen in raw material x raw material weight

Optimization for pH and temperature for hydrolysis of silk pupae

section using Central Composite Design (CCD) with 2 factors and 5 levels ($-\infty$, -1, 0, 1, second factor was temperature ranging from 48, 50, 55, 60, and 62 °C. Each experiment recovery (NR) and %hydrolysis was selected as the most appropriate enzyme Methodology (RSM) with Quadratic Model. The condition with highest %nitrogen was performed in triplicate. The analysis was done using Response Surface ∞). The first factor was reaction pH varying from 7.0, 7.5, 8.5, 9.5, and 10.0. The The experiment was carried out at optimal condition obtained from previous

RESULTS AND DICUSSION

Preparation and analysis of raw material

observed as the lipid content (20.10%) in B. mori, which was domestic strain, was much and 15.97% and 1.36%, respectively for A. ricinii 15. However, differences were showed similarity as the main components were also moisture (65.13% and 70.14% 74.66%, indicating liquid as its main component, protein 18.44%, lipid 4.24% and ash strains. The protein content, even though, was not as high as that in Eri silk cocoon, higher than those in P. ricini (4.24%) and A. ricinii (11.09%), which were both wild respectively) with protein and ash contents 11.99% and 0.79%, respectively for B. mori 1.58% as shown in Table 1. Comparison with Bombyx mori and Attacus ricinii pupae Analysis of silk pupa from P. ricini (Eri Silk) showed high moisture content as

96.32%, it still was rather high and then could be applied as protein sources for either cosmetics or foods

Enzymatic hydrolysis of silk pupae

Selection of commercial protease enzymes used for hydrolysis of silk pupae

experiments. Table 2 showed %hydrolysis results from hydrolysis with different reaction without any protease enzymes at pH 7.0, 50 °C and at pH 9.5, 55 °C gave lower smaller peptides and free amino acids 13. According to the results, it demonstrated that case that the level of hydrolysis is high, it indicates high level of protein hydrolysis into representing a number of peptide bonds those being degraded during the reaction. In hydrolyzed peptide bonds compared with the original peptide bonds in raw material protease enzymes. The hydrolysis level means the percentage of enzymatically beings were not able to consume 16. As a result, enzymatic catalysis is chosen for the also resulted in change of amino acid structure from L-form into D-form which human not only destroyed some essential amino acids (tryptophane, cysteine or serine), but it the amino acids is maintained 13. For example, protein hydrolysis using alkaline solution specific and can be carried out under mild conditions so that the nutritional quality of %hydrolysis (13.93% and 15.78%, respectively). Therefore, the protease enzyme was Flavourzyme gave 39.29% and 23.96% hydrolysis, respectively. Furthermore, the the highest %hydrolysis (52.39%) was obtained from Alcalase while the Neutrase and actually needed to enhance hydrolysis reaction. The protein hydrolysis reaction using enzyme as catalyst is very efficient

(82 and 40 kDa) which were similar to that before the hydrolysis reaction (data not hydrolysis. It indicated that the reaction without enzyme showed two prominent bands Figure 1 showed the sizes of Eri pupa protein without and after the enzymatic

protein were hydrolyzed into smaller peptides by added enzymes. However, the shown). In contrast, after hydrolysis, the prominent bands appeared not only at 82 kDa ones from Neutrase and Flavourzyme were very similar and gave hydrolysate with hydrolysis patterns obtained from 3 commercial enzymes were rather different. The but also at 31 kDa with smear area between 7-16 kDa. This suggested that parts of pupa Thus, the Alcalase was selected for the next experiments efficient protease enzyme for hydrolysis of pupa protein with %hydrolysis = 52.39%. significantly different hydrolysis ability to pupa protein and Alcalase was the most in Table 2. Therefore, it could be concluded that the three protease enzymes possessed area below size 7 kDa. These results were consistent with %hydrolysis mentioned above from Alcalase did not show the 82-kDa band at all but instead it demonstrated smear majority size around 82 and 31 kDa and minority size below 31 kDa whereas the one

for hydrolysis of silk pupae Optimization for concentration of substrate, enzyme, and hydrolysis period

reactions without and with enzyme was shown in lanes 2 and 3, respectively, that hydrolysis reactions as monitored by 12% SDS-PAGE. The difference between enzyme used in the reaction, the more powerful protein hydrolysis was concentration on hydrolysis reaction was also demonstrated in lanes 5 and 6; the more disappeared indicating the effect of hydrolysis period. The effect of enzyme minutes (lanes 3 and 4, respectively), the obvious protein bands around 10-25 kDa also lane 3. Furthermore, when the enzymatic reaction was prolonged from 60 to 120 prominent bands around 75-100 kDa in lane 2 disappeared after enzymatic hydrolysis in Figure 2 showed protein sizes of Eri pupa hydrolysate from different

yielding more products. As also shown in the tannery fleshing protein hydrolysis and nitrogen recovery were raised as more enzyme was added (0 - 1%). This indicated concentration of enzyme was considered, it showed that the level of protein hydrolysis resulting in poor hydrolysis reaction and nitrogen recovery. In contrast, when the concentrations could be active so that the enzyme could not properly work and therefore that the substrate was too concentrated than that the enzyme in range of experimented tended to decrease as the substrate was more concentrated (4.6 - 11.4% protein) due to of substrates and enzymes. The hydrolysis level and percentage of nitrogen recovery hydrolysis (70-170 minutes) whereas they were strongly affected by the concentrations hydrolysis level and nitrogen recovery were slightly influenced by a period of respectively, as shown by the Response Surface Curves. It was shown that the concentration and hydrolysis period on %hydrolysis and %nitrogen recovery, 0.5% enzyme and 120 minutes to obtain the highest nitrogen recovery 76.98% surface curve between % hydrolysis and % nitrogen recovery (Figure 5) demonstrated reaction experimented by Raju et al. (1997)¹⁷ that the enzyme concentrations played a that more enzymes in the reaction could effectively bind to more substrates and then that the most optimum hydrolysis condition for Eri pupa was 4.6% protein substrate very vital role in addition to other factors. In conclusion, the superimposed response Figures 3 and 4 demonstrated the effects of substrate concentration, enzyme

Optimization for pH and temperature for hydrolysis of silk pupae

second order polynomial equation, the results indicated that the proposed model analyzed using multiple regression in order to obtain the regression coefficients for the on %hydrolysis and %nitrogen recovery. However, when the results were statistically Table 3 demonstrated the effect of pH and temperature of hydrolysis reaction

pH and temperature due to that this condition consumed the lowest energy hydrolysis reaction did not directly affect %hydrolysis and %nitrogen recovery possessed no significant (p > 0.05). It could be concluded that pH and temperature of Therefore, the reaction with pH 7.5 and temperature 50 °C was selected as the optimal

Analysis of products

nitrogen, 1.70% lipid, 11.97% ash, total plate count, yeast and mold < 100 CFU/g with shown in Table 4. demonstrated similarity in protein contents with less moisture and more ash contents as 100% water solubility. Comparison with the commercial products, "Promois®". The Eri pupa hydrolysate powder contained 4.63% moisture, 11.47% total

samples. material and the results indicated similarity in amino acids profiles between the two types and amounts of amino acids present in the product compared with those in raw amino acids but also water-soluble short-chain peptides. Furthermore, Table 6 showed enzymatic hydrolysis of pupa protein resulted in hydrolysate containing not only free acids (1.77%, 1.57%, 1.39%, 1.33% and 1.32%, respectively). This implied that acids with tyrosine, histidine, phenylalanine, leucine and arginine as main free amino demonstrated that the sum of free amino acids was 16.40% out of 54.21% total amino Table 5 compared amounts of free and total amino acids in the products, it

CONCLUSION

shown to be solubilized faster with commercial Alcalase 2.4 L FG, Neutrase 0.8 Flavourzyme 500 L than the reaction without protease enzyme. The recovery of soluble as 18.44 % suitable for protein source in various applications. Eri pupa protein was also Proximate analysis revealed that P. ricini (Eri Silk) pupa contained high protein

condition was the best optimized. However, the condition with a slightly lower drgree hydrolysis reached maximum to 79% to obtain most soluble nitrogen when hydrolysis nitrogen improved with increase in protease and substrate concentrations. The drgree of showed greater content of total nitrogen with more percentage of ash and less moisture. pupa hydrolysate showed similarity in properties to the commercial silk hydrolysate. It hydrolysate production due to the economic reason. Characterization of laboratory Eri of hydrolysis, 76%, was selected as the most appropriate condition for Eri pupa ingredients as one of substitutes to cosmetic or food industries in the future purpose, as well as incorporation such abundantly available inexpensive protein Therefore, it is advantageous to consider scaling up the production process for industrial another from silk sericin, their properties could be comparable for substitution. Even though they were originally from different parts of silk, one from silk pupa and

ACKNOWLEDGEMENTS

support and Assoc.Prof.Dr.Thipvadee Attatham, Kasetsart University, for Eri silk pupae raw material throughout the research. The authors would like to thank Thailand Research Fund (TRF) for financial

REFERENCES

- Lee, Yong-woo. "Utilization of By-Products." Silk Reeling and Testing Manual. 2002. http://www.fao.org/docrep/x2099e/x2099e09.htm Food and Agricultural Organization of the United Nations. Rome: 1999. 2 Mar
- [2] Kato, N., S. Sato, A. Yamanaka, H. Yamada, N. Fuwa and M. Nomura. (1998) Silk protein, inhibits lipid peroxidation and tyrosinase activity. Bioscience Biotechnology Biochemistry 62(1): 145-147

- [3]Yamada, H., Nakao, H., Takasu, Y. and K. Tsubouchi. (2001) Preparation of Science and Engineering C. 14: 41-46. undergraded native molecular fibroin solution from silkworm cocoons. Material
- [4] Chang-Kee, H., J. Yuk-Hyun, L. Sung-Hee, P. Geum-Ju and C. Deock-Hyoung produced from the hydrolysate of silkworm cocoon. Patent No. WO02076487. (2002) Anticancer agents containing antigenotoxic and immunostimulative peptides
- [5] Hu, D., Liu Q., Cui H., Wang, H., Han, D. and H. Xu. (2005) Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells. Life Sciences 77 (17): 2098-2110
- [6] Liu, Y., Liu, H., Qian, J., Deng, J. and Yu, T. (1995) Regenerated silk fibroin hydrogen peroxide utilizing methylene blue as electron shuttle. Analytica Chimica membrane as immobilization matrix for peroxidase and fabrication of a sensor for Acta 316: 65-72
- [7] Liu, H., Liu, Y., Qian, J., Yu, T. and Deng, J. (1995) Fabrication and features of a fibroin as immobilization matrix for peroxidase. Talanta 43: 111-118 methylene green-mediating sensor for hydrogen peroxide based on regenerated silk
- <u>®</u> Viswanath, P. and K. Nand. (1994) Anaerobic digestion of silk industry waste Bioresource Technology. 49 (3): 273-276
- [9] Nandeesha, M. C., Srikanth, G. K., Keshavanath, P., Varghese, T.J., Basavaraja, N. of common carp, Cyprinus carpio. Biological Wastes. 33(1): 17-23. and S.K. Das. (1990) Effects of non-defatted silkworm-pupae in diets on the growth
- [10] Rangacharyulu, P.V., GEri, S.S., Paul, B.N., Yashoda, K.P., Jagannatha Rao, R. Machendrakar, N.S., Mohanty, S.N. and P.K. Mukhopadhyay. (2003) Utilization of

- fermented silkworm pupae silage in feed for carps. Bioresource Technology 86: 29-
- [11] Yang, H.X., Zhu, X.R. and H.S. Lu. (2002) Research progress on application of 322 silkworm pupas in medical science. Bulletin of Science and Technology 18: 318-
- [12] AOAC. 2000. Official Method of Analysis of AOAC International. 17th ed Association of Official Analytical Chemists. Gaithersburg, Md
- [13] Adler-Nissen, J. (1982) Determination of the degree of hydrolysis of food protein hydrolyzates by trinitrobenzenesulfonic acid. Journal of Agricultural Food Chemistry 27: 1256-1262
- [14] Bjorn, L., R. Nirtvedt, E. Lied and M. Espe. (2002) Studies on the nitrogen ProtamexTM protease. Process Biochemistry 37: 1263-1269. recovery in enzymic hydrolysis of Atlantic salmon (Salmo salar, L) frames by
- [15]Mishra, N., N.C. Hazarika, K. Narain and J. Mahanta. (2003) Nutritive value of non-mulberry silkworm pupae and consumption pattern in Assam, India. Nutrition Research.23:1303-1311.
- [16] Hall, G.M. and N.H. Ahmad. (1992) Functional properties of fish protein hydrolysate. In Fish processing technology, G.M. Hall (Ed.), p. 249-270, Blackle Academic. London
- [17]Raju, A.A., C. Rose and N.M. Rao. (1997) Enzymatic hydrolysis of tannery fleshings using chicken intestine proteases. Animal Feed Science Technology. 66: 139-147

Table 1 Chemical composition of silk worm

		%	% on fresh weight	
	Eri silk cocoon ^{1/}	Eri silk	Bombyx mori pupa ²¹ Attacus ricinii pupa ²¹	Attacus ricinii pupa ^{2/}
		pupa ^{1/}		
moisture	4.26	74.66	65.13	70.14
ash	3.22	1.58	0.79	1.36
protein	96.32	18.44	11.99	15.97
lipid	1.55	4.24	20.10	11.09
	I/I aboratory analysis			

Laboratory analysis

²/Mishra et al. (2003)

Table 2 Effect of different commercial protease enzymes on %hydrolysis

5	4	ယ	2	·		Tr.
Flavourzyme 500 L	Neutrase 0.8 L	Alcalase 2.4 L FG	No enzyme	No enzyme		Enzyme
0.5	0.5	0.5	0	0	(%v/w)	Enzyme
6	6	6	6	6	(% protein)	Substrate
90	90	90	90	90	(min)	Time
7.0	7.0	9.5	9.5	7.0		pH
50	50	55	55	50	(°C)	Temp
23.96 с	39.29 b	52.39 a	15.78 d	13.93 d	(%)	Hydrolysis

Means in the same row with different letters are significantly different at 95% level (p \leq

0.05) as determined by Duncan's multiple range test

Table 3 Effect of different reaction pH and temperatures on %hydrolysis and 120 minutes) %nitrogen recovery (under the condition %protein:enzyme = 4.6:0.5 for

11	10	9	∞	7	6	5	4	ယ	2				Tr.
8.5	8.5	8.5	10.0	8.5	7.0	9.5	7.5	8.5	9.5	7.5		pH	Indeper
62	55	48	55	55	55	60	60	55	50	50	(°C)	Temperature	Independent variance
79.13	77.54	64.29	70.71	75.05	73.31	70.88	76.02	72.73	67.29	73.27	(%)	Hydrolysis	Depende
54.06	68.00	89.28	81.84	78.44	59.68	81.95	51.20	72.38	64.45	62.26	(%)	Nitrogen recovery	Dependent variance

Table 4 Chemical and biological properties of products

	Eri pupa	Commercial products "Promois®"	ucts "Promois®"
Properties	hydrolysate	SILK-1000P ^{1/}	SERICIN-P ^{2/}
	powder		
Moisture (%)	4.63	10.0	12.0
Total nitrogen (%)	11.47	13.0	13.0
Lipid (%)	1.62	not determined	not determined
Ash (%)	11.97	3.0	4.6
Total plate count (CFU/g)	< 100	not determined	not determined
Yeast and mold (CFU/g)	< 100	not determined	not determined
I obtained from fibroin hydrolysis	cic .		

obtained from fibroin hydrolysis obtained from sericin hydrolysis

Table 5 Comparison of free and total amino acids present in the product

Amino acids	Eri pupa hydrolysate powder	lysate powder
(g/100 g sample)	Free amino acids	Total amino acids
Aspartic acid	0.76	5.23
Serine	1.27	4.02
Glutamic acid	1.20	6.77
Glycine	0.39	2.52
Histidine	1.57	2.47
Arginine	1.32	3.80
Threonine	0.86	3.45
Alanine	1.01	2.94
Proline	0.40	2.85
Cysteine	0.16	Not determined
Tyrosine	1.77	3.60
Valine	0.98	3.26
Methionine	0.57	Not determined
Lysine	1.04	3.83
Isoleucine	0.69	2.57
Leucine	1.33	3.82
Phenylalanine	1.39	3.08
Total	16.70	54.21

Table 6 Comparison of the products and raw material in terms of types and amounts of amino acids

100	100	Total
4.41	3.69	Phenylalanine
6.88	7.70	Leucine
4.63	4.79	Isoleucine
6.19	6.35	Lysine
Not determined	2.31	Methionine
6.58	6.51	Valine
4.70	4.47	Tyrosine
Not determined	0.51	Cysteine
5.85	4.49	Proline
7.80	11.06	Alanine
6.84	4.23	Threonine
5.16	5.24	Arginine
3.76	3.16	Histidine
7.93	9.27	Glycine
10.95	10.90	Glutamic acid
9.04	6.82	Serine
9.29	8.51	Aspartic acid
powder	raw material	(%mol)
Eri pupa hydrolysate	Eri pupa	Amino acids

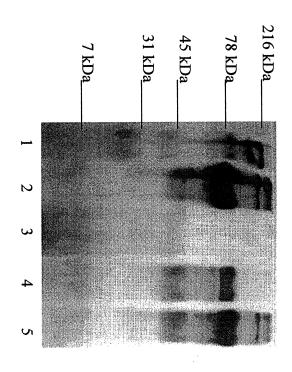


Figure 1 Protein size of Eri pupa hydrolysate as monitored by 12% SDS-PAGE. Lanes hydrolyzed with Flavozyme. aprotinin (7 kDa) Lane 2, Eri pupa hydrolysate hydrolyzed without enzyme; kDa), carbonic anhydrase (45 kDa), soybean trypsin inhibitor (32 kDa) and Standards, Bio-Rad, USA) which comprise myosin (216 kDa), BSA (78 hydrolysate hydrolyzed with Nutrase; Lane 5, Eri pupa hydrolysate Lane 3, Eri pupa hydrolysate hydrolyzed with Alcalase; Lane 4, Eri pupa 1 and 6, protein molecular weight marker; (Kaleidoscope Prestained

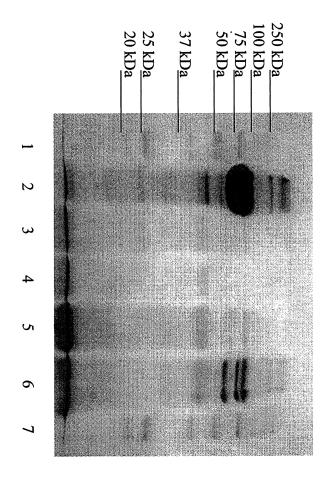


Figure 2 Protein size of Eri pupa hydrolysate as monitored by 12% SDS-PAGE. Lanes protein: Alcalase 4.6:0 for 60 min; Lane 3, Eri pupa protein: Alcalase 4.6:0.5 proteins in molecular masses from 20 to 250 kDa; Lane 2, Eri pupa Standards, Bio-Rad, USA) which contains 7 highly purified recombinant pupa protein: Alcalase 10.0:1.0 for 120 min; Lane 6, Eri pupa protein: Alcalase for 60 min; Lane 4, Eri pupa protein: Alcalase 4.6:0.5 for 120 min; Lane 5, Eri 1 and 7, protein molecular weight marker; (Precision Plus Protein TM 10.0:0.5 for 120 min.

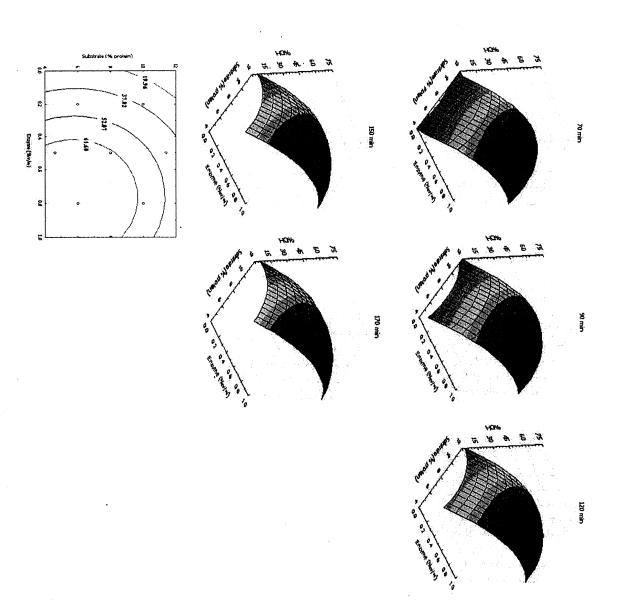


Figure 3 Effect of substrate concentration, enzyme concentration and hydrolysis period on % hydrolysis as shown by the Response Surface Curve

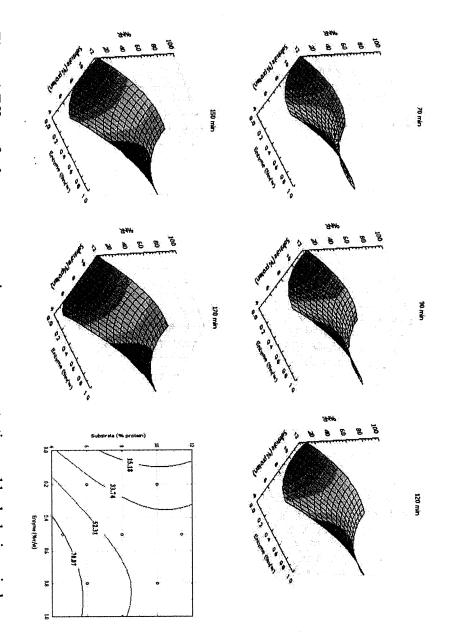


Figure 4 Effect of substrate concentration, enzyme concentration and hydrolysis period on %nitrogen recovery as shown by the Response Surface Curve

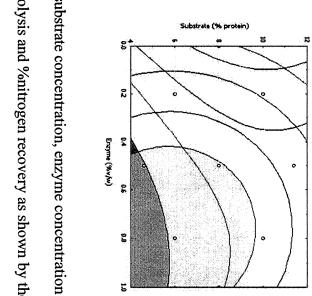


Figure 5 Effect of substrate concentration, enzyme concentration and hydrolysis period on %hydrolysis and %nitrogen recovery as shown by the Superimposed Response Surface Curve