บทคัดย่อ

ที่มาของปัญหา

การแพ้กุ้งถือเป็นปัญหาที่สำคัญของการแพ้อาหารในเด็กไทย โดยทั่วไปผู้ป่วยที่แพ้กุ้ง มักจะแพ้ทั้งกุ้งน้ำจืดและกุ้งน้ำเค็ม อย่างไรก็ดียังมีผู้ป่วยบางรายที่รายงานว่าแพ้กุ้งชนิดใดชนิดหนึ่ง ยังไม่เคยการศึกษาเพื่อหาสารก่อภูมิแพ้ที่จำเพาะของกุ้งกุลาดำและกุ้งก้ามกรามที่ไม่ข้ามกลุ่มกันมา ก่อน ยิ่งไปกว่านั้น ยังไม่เคยมีการเปรียบเทียบผลของการทดสอบทางผิวหนังที่ได้จากสารสกัดจาก กุ้งที่นำเข้าจากต่างประเทศ เทียบกับสารสกัดจากกุ้งกุลาดำ (กุ้งน้ำเค็ม) และกุ้งก้ามกราม (กุ้งน้ำจืด) และการทดสอบผิวหนังแบบ prick to prick test (PTP, เอาเข็มทดสอบสะกิดอาหารแล้วมาสะกิด ผิวหนังของผู้ป่วย)

วัตถุประสงค์

- 1. เพื่อรายงานผู้ป่วยที่แพ้กุ้งกุลาดำ (Penaeus monodon, Pm) หรือกุ้งก้ามกราม (Macrobrachium rosenbergii, Mr) อย่างใดอย่างหนึ่งหรือทั้งสองอย่าง
- 2. เพื่อเปรียบเทียบผลการทดสอบทางผิวหนังที่ได้จากการทดสอบด้วยสารสกัดจากกุ้งที่ นำเข้าจากต่างประเทศ (ComSPT) เทียบกับสารสกัดจากกุ้งกุลาดำ (PmSPT) และกุ้ง ก้ามกราม (MrSPT) และการทดสอบทางผิวหนังแบบ PTP (PmPTP, MrPTP)
- 3. เพื่อหากลุ่มสารก่อภูมิแพ้ที่จำเพาะต่อกุ้งกุลาดำหรือกุ้งก้ามกราม

วิธีการศึกษา

การศึกษาทำในผู้ป่วยเด็กไทย อายุมากกว่า 5 ปี ที่มีประวัติของการแพ้กุ้ง ผู้ป่วยจะได้รับการ ทคสอบผิวหนังโดยใช้สารสกัดจากกุ้งกุลาดำและกุ้งก้ามกราม และ PTP เปรียบเทียบกับสารสกัด จากกุ้งที่นำเข้าจากต่างประเทศ หลังจากนั้นผู้ป่วยจะได้รับการทคสอบโดยการรับประทานกุ้งกุลาดำ หรือกุ้งก้ามกราม โดยจะทำห่างกัน 2-4 สัปดาห์ ซีรั่มของผู้ป่วยจะได้รับการวัด Specific IgE ต่อกุ้ง กุลาดำและกุ้งก้ามกราม โดยการทำ Immunoblot, 2D-immunoelectrophoresis และกลุ่มสารก่อ ภูมิแพ้ของกุ้งทั้งสองชนิดจะได้รับการตรวจโดย mass fingerprint เพื่อหาสารก่อภูมิแพ้ที่เป็นไปได้

ผลการศึกษา

ผู้ป่วยเด็ก 68 รายสามารถถูกแยกได้เป็น 4 กลุ่ม จากผลของการทดสอบอาหาร ผู้ป่วยที่แพ้ กุ้งกุลาดำอย่างเดียวพบร้อยละ 17.65 แพ้กุ้งก้ามกรามอย่างเดียวร้อยละ 23.53 แพ้กุ้งทั้งสองอย่าง ร้อยละ 47 ไม่แพ้ทั้งสองอย่างร้อยละ 11.76 จากการทดสอบทางผิวหนังพบความสัมพันธ์ระหว่าง ComPTP-PmSPT, ComSPT-PmPTP, ComSPT-MrPTP, PmSPT-PmPTP และ MrSPT-MrPTP ใน ผู้ป่วยที่แพ้กุ้งกุลาดำ ขนาดของ PmSPT ที่ \geq 30 mm จะทำนายผลการทดสอบอาหารที่เป็นผลบวก ได้ร้อยละ 80 ส่วนขนาดของ PmPTP และ ComSPT ที่ \geq 22.5 mm และ \geq 20 mm ตามลำดับ จะ ทำนายผลการทดสอบอาหารที่เป็นบวกได้ร้อยละ 95 ในผู้ป่วยที่แพ้กุ้งก้ามกรามขนาดของ MrSPT ที่ \geq 30 mm จะทำนายผลการทดสอบอาหารที่เป็นบวกได้ร้อยละ 95 การทดสอบโดยการทำ

Immunoblot, 2D-immunoelectrophatsis และ Mass fingerprint พบสารก่อภูมิแพ้ที่จำเพาะของกุ้ง กุลาคำที่อาจเป็นไปได้ ได้แก่ Lipid binding protein, Chemosensory protein, Nonmuscle myosin heavy chain-B, Oxygen transporter, Cdk inhibitor, และ Zinc ion binding. ส่วนสารก่อภูมิแพ้ของ กุ้งก้ามกรามที่อาจเป็นไปได้ ได้แก่ Calcium ion binding protein, Heme binding protein, Amalyse inhibitor, Protein domain specific binding, Protein kinase activity, และ Chaperone protein. ทั้งนี้ จำเป็นจะต้องได้รับการทดสอบเพิ่มเติมต่อไป

สรุป

ผู้ป่วยที่มีประวัติแพ้กุ้งอาจแพ้กุ้งน้ำเก็มหรือกุ้งน้ำจืด อย่างใดอย่างหนึ่งได้ ขนาดของการ ทดสอบทางผิวหนังโดยใช้สารสกัดจากกุ้งแต่ละชนิดหรือ PTP อาจช่วยทำนายผลการทดสอบ อาหารที่เป็นบวก การทราบกลุ่มของสารก่อภูมิแพ้ที่จำเพาะในกุ้งแต่ละชนิดจะมีประโยชน์ที่จะผลิต ชุดทดสอบการแพ้กุ้งหรือทำวัคซีนเพื่อรักษาโรคแพ้กุ้งในอนาคต

Abstract

Background: Allergy to specific shrimp species has not been systematically studied by oral challenges. Identification of the unique, non cross-reacting allergens among different shrimp species has never been reported. The concordance between skin test reactivity from commercial and crude shrimp extracts as well as from prick to prick (PTP) test has never been studied. **Objective:** 1) To report cases of *Penaeus monodon (Pm*, seawater shrimp) or *Macrobrachium rosenbergii (Mr, freshwater shrimp)*-specific allergy among shrimp-allergic children. 2) To identify unique allergens from both *M. rosenbergii* and *P. monodon*. 3) To compare skin tests using commercial and crude shrimp extracts plus PTP method.

Methods: Children ≥ 5 years of age with history of shrimp allergy were recruited. Skin prick tests (SPT) using Pm (PmSPT) and Mr (MrSPT) extracts as well as PTP method (PmPTP, MrPTP) were done compared to commercial shrimp extract (ComSPT). Open challenges to both shrimp species were performed. Patients' serum was used to identify specific IgE to shrimp allergens by immunoblot and 2D-immunoelectrophoresis. Groups of potential allergens were studied by mass fingerprint analysis.

Results: Sixty-eight patients were divided into 4 groups by food challenges. Specific allergy to *Pm* and *Mr* were identified in 17.65% and 23.53% of subjects, respectively. Positive and negative challenges to both shrimp species were found in 47.06% and 11.76% of subjects, respectively. Correlations between mean wheal diameter (MWD) from ComSPT-*Pm*SPT, ComSPT-*Pm*PTP, ComSPT-*Pm*PTP and *Mr*SPT-*Mr*PTP were observed. In patients with *Pm* allergy, *Pm*SPT with MWD of 30 mm provided 80% positive predictive probability. *Pm*PTP and ComSPT MWD of 22.5 and 20 mm provided 95% positive predictive probability, respectively. In patients with *Mr* allergy, *Mr*SPT with MWD of 30 mm provided 95% positive predictive probability. After IgE-immunoblot, 2-D electrophoresis and mass fingerprint analysis, the candidate unique allergens from *P. monodon* were Lipid binding protein, Chemosensory protein, Nonmuscle myosin heavy chain-B, Oxygen transporter, Cdk inhibitor, and Zinc ion binding. The candidate unique allergens from *M. rosenbergii* were Calcium ion binding protein, Heme binding protein, Amalyse inhibitor, Protein domain specific binding, Protein kinase activity, and Chaperone protein. However, further experiments are needed to confirm that these allergens are specific to shrimp allergy.

Conclusion: Specific allergy to Pm or Mr confirmed by food challenges was demonstrated. Predictive probability of SPT may be helpful in the setting where food challenge is not feasible.

Groups of candidate unique allergens from both kinds of shrimp were identified. However, further experiments are needed to confirm that these allergens are specific to shrimp allergy.