บทคัดย่อ

รหัสโครงการ: MRG4880066

ชื่อโครงการ: การผลิตรีคอมบิแนนท์โปรตีนและการศึกษาหน้าที่ของกลูคาโนไฮโดรเลสจากข้าว

ชื่อหักวิจัย : อ. ดร. รจนา โอภาสศิริ E-mail Address : opassiri@hotmail.com

ระยะเวลาโครงการ: 1 มิถุนายน 2548 – 31 พฤษภาคม 2550

ในการศึกษานี้ พบยืนของข้าวที่จัดอยู่ในกลุ่มเอนไซม์กลูคาโนไฮโดรเลสอย่างน้อย 139 ยีน ในฐานข้อมูล จีโนมข้าวและ Carbohydrate Active Enzyme database และยืนเหล่านี้ถูกจัดแยกไว้ใน 7 กลุ่มย่อยของ Glycosyl hydrolases family (GH) ได้นำเอนไซม์ในกลุ่มกลูคาโนไฮโดรเลส 2 ชนิด ที่อยู่ใน GH1 และ GH5 มาศึกษาการ เร่งปฏิกิริยาและหน้าที่ ได้เพิ่มจำนวน cDNA ขนาดเต็มสายของยืน GH1 *Os4bglu12* β-glucosidase จากตัน ลำดับกรดอะมิโนซึ่งแปลมาจากลำดับนิวคลีโอไทด์ของ Os4bglu12 ประกอบด้วย อ่อนข้าวด้วยวิธี RT-PCR กรดอะมิโน 510 ตัว ซึ่งกรดอะมิโนทางด้านปลายอะมิโนของ *Os4bglu12* มีลำดับคล้ายกับของ cell wall-bound β-glucosidase ที่เคยถูกแยกได้จากข้าว จำนวนถึง 40 ตัว จากทั้งหมด 44 ตัว โปรตีน Os4bglu12 ซึ่งต่ออยู่กับ โปรตีนไทโอรีดอกซินที่ผลิตได้ใน Escherichia coli ในรูปรีคอมบิแนนท์โปรตีน สามารถย่อยกลูโคโอลิโกแซคคา ไรด์ที่มีกลูโคสต่อกันอยู่ 3-6 หน่วย ด้วยพันธะไกลโคซิดิกแบบ β-(1,4) และไดแซคคาไรด์ที่มีกลูโคสต่อกันด้วย พันธะไกลโคซิดิกแบบ β-(1,3) ได้ดีมาก ได้เพิ่มจำนวน cDNA ของ GH5 glucan 1,3-β-glucosidases ที่ให้ชื่อว่า GH5BG จากต้นอ่อนข้าวด้วยวิธี RT-PCR คาดว่าโปรตีนนี้จะถูกส่งออกนอกเซลล์โดยดูจากลำดับกรดอะมิโนที่ เป็น signal peptide GH5BG ซึ่งประกอบไปด้วยกรดอะมิโน 510 ตัว มีบริเวณสำคัญ 2 ส่วน ได้แก่ β-1,3exoglucanase-like domain และ fascin-like domain ซึ่งไม่ค่อยพบในเอนไซม์พืช โปรตีน GH5BG ซึ่งต่ออยู่กับ โปรตีนไทโอรีดอกซินที่ผลิตได้ในรูปรีคอมบิแนนท์โปรตีนสามารถย่อยกลูโคโอลิโกแซคคาไรด์ที่ต่อด้วยพันธะไกล ิโคซิดิกแบบ β-(1,4) และไดแซคคาไรด์ที่มีกลูโคสต่อกันด้วยพันธะไกลโคซิดิกแบบ β-(1,3) ได้ดีมาก ค่าคงที่ทาง ็จลนศาสตร์ที่บ่งถึงประสิทธิภาพการเร่งปฏิกิริยา (k_{cat}/K_m) ของเอนไซม์นี้ในการย่อยกลูโคโอลิโกแซคคาไรด์แบบ β-(1,4) ที่มีกลูโคสต่อกันตั้งแต่ 3 ถึง 5 หน่วย มีค่าคงที่ ซึ่งแสดงให้เห็นว่าเอนไซม์นี้ควรจัดเป็น β-glucosidase

พบว่าทั้ง Os4bglu12 และ GH5BG สามารถย่อย pNP- β -glycosides ได้หลายชนิด ซึ่งแสดงให้เห็นว่าที่ subsite ตำแหน่ง -1 ของเอนไซมทั้งสองมีความจำเพาะต่อชนิดน้ำตาลที่เข้าจับต่ำ เอนไซม์ทั้งสองชนิดไม่สามารถ ย่อยกลูโคโอลิโกแซคคาไรด์และโพลิเมอร์ของกลูโคส ที่มีกลูโคสต่อกันด้วยพันธะไกลโคซิดิกแบบ β -(1,3) and 1,3,-1,4- β -glucans ได้ ผลการทดลองนี้แสดงให้เห็นว่าเอนไซม์ทั้งสองชนิดมีการทำงานแบบ exoglucanase หรือ β -glucosidase ซึ่งสอดคล้องกับบทบาทในเมทาโบลิซึมของผนังเซลล์

คำหลัก: กลูคาโนไฮโดรเลส, บีต้ากลูโคซิเดส, ข้าว, รีคอมบิแนนท์โปรตีน, ผนังเซลล์, โอลิโกแซคคาไรด์

Abstract

Project Code: MRG4880066

Project Title: Recombinant protein expression and functional characterization of

glucanohydrolase from rice

Investigators: Dr. Rodjana Opassiri **E-mail Address:** opassiri@hotmail.com **Project Period:** 1 June 2005 – 31 May 2007

In this study, at least 139 rice genes homologous to glucanohydrolases which are classified as the members in 7 subfamilies of glycosyl hydrolase family (GH) has been identified in rice genome database and Carbohydrate Active Enzyme database. The catalytic activities and functions of two members of rice glucanohydrolases in GH1 and GH5 were analyzed. The full-length cDNA of the GH1 gene, Os4bglu12 β-glucosidase, was cloned from rice seedlings by RT-PCR. The isolated Os4bglu12 cDNA encoded a 510 amino acid long precursor protein which is identical at 40 of 44 amino acid residues with the N-terminal amino acid sequence of a cell wall-bound enzyme previously purified from germinating rice. A thioredoxin-Os4bglu12 fusion protein expressed in *Escherichia coli* efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3-6 glucose residues and β -(1,3)-linked disaccharide. The cDNA for GH5 glucan 1,3-β-glucosidases, designated GH5BG, was cloned from rice seedlings by RT-PCR. The protein was predicted to be extracellular as judged by the signal peptide sequence. A 510 amino acid mature protein of GH5BG contains two major domains, a β-1,3exoglucanase-like domain and a fascin-like domain, which is not commonly found in plant enzymes. A recombinant thioredoxin-GH5BG fusion protein exhibited a marked preference for β -(1,4)-linked oligosaccharides and β -(1,3)-linked disaccharide. The catalytic efficiency (k_{cat}/K_m) values for hydrolysis of β -(1,4)-linked oligosaccharides by the enzyme remained constant as the degree of polymerization (DP) increased from 3 to 5, which indicated the enzyme can be classified as a β -glucosidase.

Os4bglu12 and GH5BG was found to hydrolyze many kinds of pNP β -glycosides which indicates the low stringency at the -1 subsite of both enzymes. Hydrolysis of β -(1,3)-linked oligosaccharides with DP more than 2, laminarin and 1,3, 1,4- β -glucans by both enzymes could not be detected. These results indicated that both enzymes has exoglucanase/ β -glucosidase activity, consistent with a role in cell wall metabolism.

Keywords: Glucanohydrolase, β -glucosidase, rice, recombinant protein, cell wall, oligosaccharides