

## รายงานวิจัยฉบับสมบูรณ์

# โครงการ การผลิตรีคอมบิแนนท์โปรตีน และการศึกษาหน้าที่ของกลูคาโนไฮโดรเลสจากข้าว

1. อ. ดร. รจนา โอภาสศิริ สำนักวิชาวิทยาศาสตร์

มหาวิทยาลัยเทคโนโลยีสุรนารี

2. รศ. ดร. เจมส์ เกตุทัต-คาร์นส์ สำนักวิชาวิทยาศาสตร์

มหาวิทยาลัยเทคโนโลยีสุรนารี

3. Dr. Takashi Akiyama National Agricultural Research Center

for Hokkaido Region

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย

## รายงานวิจัยฉบับสมบูรณ์

# โครงการ การผลิตรีคอมบิแนนท์โปรตีน และการศึกษาหน้าที่ของกลูคาโนไฮโดรเลสจากข้าว

1. อ. ดร. รจนา โอภาสศิริ สำนักวิชาวิทยาศาสตร์

มหาวิทยาลัยเทคโนโลยีสุรนารี

2. รศ. ดร. เจมส์ เกตุทัต-คาร์นส์ สำนักวิชาวิทยาศาสตร์

มหาวิทยาลัยเทคโนโลยีสุรนารี

3. Dr. Takashi Akiyama National Agricultural Research Center

for Hokkaido Region

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย

#### บทคัดย่อ

รหัสโครงการ: MRG4880066

ชื่อโครงการ: การผลิตรีคอมบิแนนท์โปรตีนและการศึกษาหน้าที่ของกลูคาโนไฮโดรเลสจากข้าว

ชื่อนักวิจัย : อ. ดร. รจนา โอภาสศิริ E-mail Address : opassiri@hotmail.com

ระยะเวลาโครงการ: 1 มิถุนายน 2548 – 31 พฤษภาคม 2550

ในการศึกษานี้ พบยืนของข้าวที่จัดอยู่ในกลุ่มเอนไซม์กลูคาโนไฮโดรเลสอย่างน้อย 139 ยีน ในฐานข้อมูล จีโนมข้าวและ Carbohydrate Active Enzyme database และยืนเหล่านี้ถูกจัดแยกไว้ใน 7 กลุ่มย่อยของ Glycosyl hydrolases family (GH) ได้นำเอนไซม์ในกลุ่มกลูคาโนไฮโดรเลส 2 ชนิด ที่อยู่ใน GH1 และ GH5 มาศึกษาการ เร่งปฏิกิริยาและหน้าที่ ได้เพิ่มจำนวน cDNA ขนาดเต็มสายของยืน GH1 *Os4bglu12* β-glucosidase จากตัน ลำดับกรดอะมิโนซึ่งแปลมาจากลำดับนิวคลีโอไทด์ของ Os4bglu12 ประกอบด้วย อ่อนข้าวด้วยวิธี RT-PCR กรดอะมิโน 510 ตัว ซึ่งกรดอะมิโนทางด้านปลายอะมิโนของ Os4bglu12 มีลำดับคล้ายกับของ cell wall-bound β-glucosidase ที่เคยถูกแยกได้จากข้าว จำนวนถึง 40 ตัว จากทั้งหมด 44 ตัว โปรตีน Os4bglu12 ซึ่งต่ออยู่กับ โปรตีนไทโอรีดอกซินที่ผลิตได้ใน Escherichia coli ในรูปรีคอมบิแนนท์โปรตีน สามารถย่อยกลูโคโอลิโกแซคคา ไรด์ที่มีกลูโคสต่อกันอยู่ 3-6 หน่วย ด้วยพันธะไกลโคซิดิกแบบ β-(1,4) และไดแซคคาไรด์ที่มีกลูโคสต่อกันด้วย พันธะไกลโคซิดิกแบบ β-(1,3) ได้ดีมาก ได้เพิ่มจำนวน cDNA ของ GH5 glucan 1,3-β-glucosidases ที่ให้ชื่อว่า GH5BG จากต้นอ่อนข้าวด้วยวิชี RT-PCR คาดว่าโปรตีนนี้จะถูกส่งออกนอกเซลล์โดยดูจากลำดับกรดอะมิโนที่ เป็น signal peptide GH5BG ซึ่งประกอบไปด้วยกรดอะมิโน 510 ตัว มีบริเวณสำคัญ 2 ส่วน ได้แก่ β-1,3exoglucanase-like domain และ fascin-like domain ซึ่งไม่ค่อยพบในเอนไซม์พืช โปรตีน GH5BG ซึ่งต่ออยู่กับ โปรตีนไทโอรีดอกซินที่ผลิตได้ในรูปรีคอมบิแนนท์โปรตีนสามารถย่อยกลูโคโอลิโกแซคคาไรด์ที่ต่อด้วยพันธะไกล ์ โคซิดิกแบบ β-(1,4) และใดแซคคาไรด์ที่มีกลูโคสต่อกันด้วยพันธะไกลโคซิดิกแบบ β-(1,3) ได้ดีมาก ค่าคงที่ทาง ็จลนศาสตร์ที่บ่งถึงประสิทธิภาพการเร่งปฏิกิริยา (k<sub>cal</sub>/K<sub>m</sub>) ของเอนไซม์นี้ในการย่อยกลูโคโอลิโกแซคคาไรด์แบบ β-(1,4) ที่มีกลูโคสต่อกันตั้งแต่ 3 ถึง 5 หน่วย มีค่าคงที่ ซึ่งแสดงให้เห็นว่าเอนไซม์นี้ควรจัดเป็น β-glucosidase

พบว่าทั้ง Os4bglu12 และ GH5BG สามารถย่อย *p*NP-β-glycosides ได้หลายชนิด ซึ่งแสดงให้เห็นว่าที่ subsite ตำแหน่ง -1 ของเอนไซมทั้งสองมีความจำเพาะต่อชนิดน้ำตาลที่เข้าจับต่ำ เอนไซม์ทั้งสองชนิดไม่สามารถ ย่อยกลูโคโอลิโกแซคคาไรด์และโพลิเมอร์ของกลูโคส ที่มีกลูโคสต่อกันด้วยพันธะไกลโคซิดิกแบบ β-(1,3) and 1,3,-1,4-β-glucans ได้ ผลการทดลองนี้แสดงให้เห็นว่าเอนไซม์ทั้งสองชนิดมีการทำงานแบบ exoglucanase หรือ β-glucosidase ซึ่งสอดคล้องกับบทบาทในเมทาโบลิซึมของผนังเซลล์

**คำหลัก:** กลูคาโนไฮโดรเลส, บีต้ากลูโคซิเดส, ข้าว, รีคอมบิแนนท์โปรตีน, ผนังเซลล์, โอลิโกแซคคาไรด์

#### **Abstract**

Project Code: MRG4880066

Project Title: Recombinant protein expression and functional characterization of

glucanohydrolase from rice

Investigators: Dr. Rodjana Opassiri E-mail Address: opassiri@hotmail.com Project Period: 1 June 2005 – 31 May 2007

In this study, at least 139 rice genes homologous to glucanohydrolases which are classified as the members in 7 subfamilies of glycosyl hydrolase family (GH) has been identified in rice genome database and Carbohydrate Active Enzyme database. The catalytic activities and functions of two members of rice glucanohydrolases in GH1 and GH5 were analyzed. The full-length cDNA of the GH1 gene, Os4bglu12 β-glucosidase, was cloned from rice seedlings by RT-PCR. The isolated Os4bglu12 cDNA encoded a 510 amino acid long precursor protein which is identical at 40 of 44 amino acid residues with the N-terminal amino acid sequence of a cell wall-bound enzyme previously purified from germinating rice. A thioredoxin-Os4bglu12 fusion protein expressed in *Escherichia coli* efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3-6 glucose residues and  $\beta$ -(1,3)-linked disaccharide. The cDNA for GH5 glucan 1,3-β-glucosidases, designated GH5BG, was cloned from rice seedlings by RT-PCR. The protein was predicted to be extracellular as judged by the signal peptide sequence. A 510 amino acid mature protein of GH5BG contains two major domains, a β-1,3exoglucanase-like domain and a fascin-like domain, which is not commonly found in plant enzymes. A recombinant thioredoxin-GH5BG fusion protein exhibited a marked preference for  $\beta$ -(1,4)-linked oligosaccharides and  $\beta$ -(1,3)-linked disaccharide. The catalytic efficiency  $(k_{cat}/K_m)$  values for hydrolysis of  $\beta$ -(1,4)-linked oligosaccharides by the enzyme remained constant as the degree of polymerization (DP) increased from 3 to 5, which indicated the enzyme can be classified as a  $\beta$ -glucosidase.

Os4bglu12 and GH5BG was found to hydrolyze many kinds of pNP  $\beta$ -glycosides which indicates the low stringency at the -1 subsite of both enzymes. Hydrolysis of  $\beta$ -(1,3)-linked oligosaccharides with DP more than 2, laminarin and 1,3, 1,4- $\beta$ -glucans by both enzymes could not be detected. These results indicated that both enzymes has exoglucanase/ $\beta$ -glucosidase activity, consistent with a role in cell wall metabolism.

**Keywords:** Glucanohydrolase,  $\beta$ -glucosidase, rice, recombinant protein, cell wall, oligosaccharides

### สรุปย่อ (Executive summary)

The purpose of this project is to study the catalytic activities and functions of glucanohydrolases in rice. This work was started from analysis of the coding DNA sequence that can be grouped into glucanohydrolases in rice genome database and Carbohydrate Active Enzyme database. Most of rice glucanohydrolases were found in 7 subfamilies of glycosyl hydrolase family (GH). In order to study the functions the new glucanohydrolases, 2 rice  $\beta$ -glucosidase cDNAs, Os4bglu12 and GH5BG, were cloned and recombinant proteins expressed in  $E.\ coli$  as soluble active form.

To study the function of glucanonohydrolaes in GH1, the full-length cDNA of the gene that most closely matched the previously reported cell-wall-bound \( \beta \)-glucosidase protein sequence purified from germinating rice, Os4bglu12 β-glucosidase, was cloned by RT-PCR with the primers derived from gene contig number AAAA02014151 in rice gemone database and the first-strand cDNA synthesized from the total RNA of rice seedlings as the template. The isolated Os4bglu12 cDNA encoded a 510 amino acid long precursor protein which is identical at 40 of 44 amino acid residues with the N-terminal amino acid sequence of a cell wall-bound enzyme. To express the protein in E. coli, the cDNA encoding mature proteins of rice Os4bglu12 was cloned by RT-PCR and inserted into pENTR-D/TOPO Gateway entry vector and transferred to the pET32a+/DEST Gateway expression vector for expression. The recombinant pET32a+/DEST-Os4bglu12 plasmid was transformed into OrigamiB (DE3) E. coli. A thioredoxin-Os4BGlu12 fusion protein expressed in E. coli efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3-6 glucose residues and  $\beta$ -(1,3)-linked disaccharide. This substrate specificity was similar to those reported for rice cell-wall-bound, rice BGlu1, and barley \beta-glucosidases, but not identical, which suggests that small sequence differences likely determine specific functional properties. Hydrolysis of  $\beta$ -(1,3)-linked oligosaccharides with DP > 2, laminarin and 1,3, 1,4-β-glucans by this enzyme could not be detected. Hydrolysis of pNP-glycosides with different sugars was used to assess Os4BGlu12 glycone specificity, and it was found to hydrolyze many kinds of pNP  $\beta$ -glycosides.

To assess the role of glucanonohydrolaes in GH5, the cDNA for GH5 glucan 1,3-β-glucosidases, designated *GH5BG*, was cloned from rice seedlings by RT-PCR with cDNA synthesized from rice seedling RNA and primers derived from the GenBank accession number AC107314 and AK065000. *GH5BG* cDNA included a reading frame encoding a 510 amino acid precursor protein. The protein was predicted to be extracellular. The mature protein is a

member of a rice-specific subfamily of GH5 proteins that contain two major domains, a β-1,3exoglucanase-like domain and a fascin-like domain, which is not commonly found in plant enzymes. To express the protein in E. coli, the cDNA encoding mature proteins of rice Os4bglu12 β-glucosidase was cloned into the pET32a+/DEST Gateway expression vector and transformed to Origami B (DE3) E. coli. A recombinant thioredoxin-GH5BG fusion protein produced in E. coli showed high hydrolytic activity towards various kinds of pNP-glycosides, including pNP-β-D-glucoside, pNP-α-L-arabinoside, pNP-β-D-fucoside, pNP-β-D-galactoside, pNP-β-D-xyloside and pNP-β-D-cellobioside. These results indicate there is low stringency at the -1 subsite of GH5BG. The GH5BG exhibited a marked preference for β-(1,4)-linked oligosaccharides and β-(1,3)-linked disaccharide. The catalytic efficiency (k<sub>cat</sub>/K<sub>m</sub>) values for hydrolysis of β-(1,4)-linked oligosaccharides by the enzyme remained constant as the DP increased from 3 to 5, which indicated the enzyme can be classified as a β-glucosidase. This substrate specificity is significantly different from fungal GH5 exoglucanases, such as Candida albicans exo-β-(1,3)-glucanase for which a 3D structure has been solved, which indicates that the structural differences with these related enzymes may effect functional differences. Although GH5BG was designated a putative glucan 1,3-β-glucosidases based on sequence homology, its catalytic activity is somewhat like GH1 \(\beta\)-glucosidases, which show similar oligosaccharide preferences.

These results indicated that both enzymes has exoglucanase/ $\beta$ -glucosidase activity that might involve in the cleavage of oligosaccharides release from the hydrolysis of cell wall by endoglucanses, which is consistent with a role in cell wall metabolism.

### 1. บทน้ำ (Introduction)

ที่มาของงานวิจัยเรื่องนี้มาจากความสนใจในการศึกษาถึงความสัมพันธ์ระหว่างโครงสร้างและหน้าที่ของ เอนไซม์ในกลุ่ม glucanohydrolases ซึ่งมีบทบาทในกระบวนการสร้างและสลายผนังเซลล์พืช ผนังเซลล์พืชทุก ชนิดประกอบขึ้นมาจากโพลีแซคคาไรด์หลากหลายชนิด โดยทั่วไปจะประกอบด้วย cellulose ประมาณ 15-40% hemicellulose และ pectin ประมาณ 30-40% และ lignin ประมาณ 20% (Doy and Kosugi, 2004) cellulose ทำ หน้าที่เป็นโมเลกุลโครงสร้าง ในขณะที่ hemicellulose และ pectin ทำหน้าที่เป็นโครงข่ายเชื่อมโยง celluloses เข้าด้วยกันด้วยพันธะไฮโดรเจน พืชแต่ละชนิดมีส่วนประกอบและการจัดเรียงตัวของโพลิเมอร์ที่ผนังเซลล์แตกต่าง กัน และแม้แต่ในเนื้อเยื่อต่างๆ ของพืชชนิดเดียวกันก็ยังแตกต่างกัน

แหล่งของผนังเซลล์ซึ่งมีอยู่เป็นปริมาณมากที่เหลือทิ้งจากภาคเกษตรกรรม เช่น ฟางข้าว ฟางข้าว บาร์เลย์และซังข้าวโพด สามารถนำมาใช้เป็นวัตถุดิบในการแปรรูปเป็นสารผลิตภัณฑ์ของน้ำตาลได้ โครงสร้าง พื้นฐานของผนังเซลล์พืชในกลุ่มธัญพืชและพืชตระกูลหญ้าแตกต่างจากพืชมีดอกอื่นๆ ตรงที่พืชเหล่านี้มี glycans ที่มีความซับซ้อนและหลากหลายมาก เรียก glycans เหล่านี้ว่า 1,3-1,4- $\beta$ -D-glucans (เรียกโดยย่อว่า  $\beta$ -glucans)  $\beta$ -glucans เป็นโพลิเมอร์ที่ไม่แตกแขนงที่ประกอบไปด้วย cellotriose และ cellotetraose ในสัดส่วน 2.5 ต่อ 1 ซึ่ง เชื่อมกันด้วยพันธะไกลโคซิดิกแบบ  $\beta$ -(1,3) (Carpita and McCann, 2000)  $\beta$ -glucans จะแทรกตัวและเชื่อมโยง มัด cellulose เข้าไว้ด้วยกัน ซึ่งช่วยให้ผนังเซลล์มีความแข็งแรง (Carpita, 1996)

เอนไซม์ที่เกี่ยวข้องกับการย่อยผนังเซลล์พืชเรียกรวมว่า glucanohydrolases ซึ่งเป็นเอนไซม์กลุ่มย่อยที่ ถูกจัดไว้ใน glycosyl hydrolases family (GH) และพบเอนไซม์นี้ในสิ่งมีชีวิตกลุ่มอื่นทั้งสัตว์และจุลินทรีย์ด้วย glucanohydrolases แบ่งได้เป็น 3 ประเภท ได้แก่ endoglucanase, exoglucanases และ β-glucosidases เอนไซม์ endo-glucanses ย่อยพันธะที่อยู่ภายใน cellulose จนได้โอลิโกแซคคาไรด์สายสั้นลง การที่เอนไซม์นี้จะ ย่อยสับสเตรทได้ สับสเตรทจะต้องมีจำนวนกลูโคสอย่างน้อยสี่หน่วย (Hatfield and Nevins, 1987) เอนไซม์ exoglucanase ย่อยกลูโคสออกจากโอลิโกแซคคาไรด์ได้ทั้งจากปลายด้าน reducing หรือ non-reducing (Huber and Nevins, 1981) ส่วน β-glucosidase สามารถย่อยโอลิโกแซคคารต์จากปลาย reducing ends ได้เท่านั้น (Hrmova and Fincher, 2001a; Opassiri, 2004) มีการตั้งสมมุติฐานว่าเอนไซม์เหล่านี้ที่พบในพืชวงศ์หญ้าอาจ ถูกส่งออกไปที่บริเวณผนังเซลล์เพื่อย่อย cellulose และ β-glucans (Taiz, 1984; Buchanan et al., 2000) เอนไซม์ glucanase บางซนิดในพืชยังเข้าไปมีส่วนร่วมในระบบป้องกันเซลล์พืช โดยช่วยย่อยผนังเซลล์ของเชื้อราจนเป็นโอลิโกแซคคาไรด์สายสั้นๆ โอลิโกแซคคาไรด์เหล่านี้ทำหน้าที่เป็นตัวกระตุ้น (elicitor) การทำงานของยืน หลายซนิดที่ตอบสนองค่อการบุกรุกของเชื้อ ในระบบการส่งสัญญาณของเซลล์ (Yamaguchi et al., 2000).

Hrmova and Fincher (2001a) เปรียบเทียบโครงสร้างของ glycosyl hydrolases ของพืช และอธิบาย ความสัมพันธ์ระหว่างโครงสร้างกับความจำเพาะต่อสับสเตรทของเอนไซม์ endohydrolase, exohydrolase และ β-glucosidase การที่เอนไซม์ทั้งสามชนิดมีความจำเพาะต่อสับสเตรทแตกต่างกันเนื่องจากมีรูปร่างของบริเวณจับ กับสับสเตรท (binding sites) ที่แตกต่างกัน โดยทั่วไป endohydrolases จะมีบริเวณจับกับสับสเตรทเป็นร่องยาว (grooves หรือ depressions) ตรงผิวนอกของโปรตีน ดังนั้น endohydrolase จึงสามารถจับกับบริเวณใดก็ได้ของ สับสเตรทที่เป็นโพลิเมอร์ แล้วจึงย่อยพันธะที่อยู่ภายในโพลิเมอร์นั้นด้วยกรดอะมิโนที่เป็นหมู่เร่งที่ฝังตัวอยู่ตรง บริเวณนั้น บริเวณจับกับสับสเตรทของ exohydrolase มีรูปร่างเป็นแบบท่อหรือโพลงที่ลึกเข้าไปจากผิวโปรตีน (dead-end tunnel, slot, funnel) ความจำเพาะต่อสับสเตรทจึงขึ้นกับว่าสับสเตรทมีรูปร่างพอดีกับรูปร่างของ

บริเวณจับมากพอที่จะยื่นเข้าไปสัมผัสกับกรดอะมิโนหมู่เร่งที่อยู่กันของท่อนั้นได้มากเพียงใด (Hrmova and Fincher, 2001a, 2001b) บริเวณจับของ β-glucosidase มีรูปร่างเป็นช่องแคบและตื้นที่พอจะให้กลูโคสแค่ 2 หน่วยยื่นเข้าไปได้ โดยส่วนที่เหลือจะยื่นออกมาด้านนอก (Hrmova and Fincher, 2001a)

จากข้อมูลลำดับนิวคลีโอไทด์ในจีโนมของพืชหลายชนิด เช่น Arabidopsis, ข้าว, ข้าวบาร์เลย์ และ ข้าวโพด พบว่า glucanohydrolases ที่มีอยู่เป็นจำนวนมากมีความหลากหลายทางด้านโครงสร้างและลำดับ กรดอะมิโนเป็นอย่างมาก และมีบทบาทหลากหลาย ได้แก่ การสังเคราะห์ ย่อยสลาย และเปลี่ยนแปลงโครงสร้าง ของโอลิโกแซคคาไรด์และโพลีแซคคาไรด์ (Hoj and Fincher, 1995; Davies and Henrissat, 2002) สามารถ จำแนกยืนของ glucanohydrolases ประมาณ 400 ยืน ออกเป็นกลุ่มย่อยได้ 9 กลุ่ม endoglucanases ถูกจัดไว้ ใน GH9, 10, 16, 17, 51และ 81 , exoglucanases ถูกจัดไว้ในกลุ่ม GH1, 3, และ 5 และ β-glucosidase ถูก จัดไว้ใน GH1 ปัจจุบันยังไม่สามารถศึกษากลไกการสร้างและสลายผนังเซลล์พืชที่เกิดขึ้นจริงๆ ในเซลล์พืชได้ เนื่องจากกระบวนนี้มีความซับซ้อนที่ต้องใช้เอนไซม์เข้าร่วมหลายชนิด ปัจจุบันมีเอนไซม์ glucanohydrolases เพียงบางชนิดในพืชได้ถูกนำมาศึกษาถึงบทบาทหน้าที่และความจำเพาะต่อสับสเตรต มียีนของ glucanohydrolases ของข้าวเพียงไม่กี่ยืนที่ได้มีการศึกษามา และเอนไซม์ที่ได้มีการศึกษาส่วนมากจะอยู่ในกลุ่ม GH 1, 3, 17 (Akiyama et al, 2004; Nishizawa et al, 2003; Opassiri et al, 2003; Zheng et al, 2003; Yamaguchi et al, 2002; Thomas et al, 2000; Rakwal et al, 1999) เป็นเรื่องยากที่จะคาดเดาความจำเพาะในการทำงานของ เอนไซม์เหล่านี้จากลำดับกรดอะมิโนเพียงอย่างเดียว ในข้าวมียืนอีกอย่างน้อย 130 ชนิดที่ยังไม่ได้มีการศึกษาว่า ้มีกลไกการทำงานอย่างไร มีความจำเพาะต่อสับสเตรตแตกต่างกันหรือไม่ ยีนที่ควบคุมการสังเคราะห์เอนไซม์ ดังกล่าวแสดงออกในช่วงเวลาหรือสภาวะใด เพื่อที่จะตอบคำถามดังกล่าวจึงมีความจำเป็นที่จะต้องแยกเอนไซม์ ชนิดออกมาศึกษาคุณสมบัติต่างๆ ตลอดจนการศึกษาโครงสร้าง เพื่อเข้าใจถึงกลไกการทำงานของเอนไซม์ แล้ว นำข้อมูลมาวิเคราะห์ถึงความแตกต่างและสัมพันธ์ในการทำงานระหว่างเอนไซม์แต่ละชนิด ความรู้ที่ได้จาก การศึกษาดังกล่าวจะเป็นประโยชน์ในการนำเอนไซม์ชนิดนี้ไปใช้ร่วมกับเอนไซม์อื่นๆ ที่มีความจำเพาะกับ ์สับสเตรตในรูปแบบที่แตกต่างกันไปใช้ในการย่อยสลายองค์ประกอบต่างๆ ในผนังเซลล์พืช เช่น cellulose และ glycans ซึ่งเป็น biomass ที่สามารถนำไปใช้ประโยชน์ในอุตสาหกรรมการผลิตสารต่างๆ เช่น แอลกอฮอร์, สาร เชื้อเพลิง, กรดอะมิโน, กระดาษ, สารเพิ่มคุณค่าอาหารสัตว์ และยารักษาโรค เป็นต้น หรือทำวิศวกรรมเอนไซม์ เพื่อให้มีหน้าที่เฉพาะตามที่ต้องการที่จะนำไปใช้ประโยชน์

## 2. วัตถุประสงค์ของโครงการ (Objectives)

- 1. เปรียบเทียบและหาความสัมพันธ์ของลำดับกรดอะมิโนของเอนไซม์ glucanohydrolases แต่ละชนิดใน subfamily ต่างๆ
- 2. เพิ่มจำนวนชิ้นส่วน cDNA ของยีนบางชนิดในกลุ่ม glucanohydrolase จากข้าวโดยใช้วิธี RT-PCR
- 3. ผลิตรีคอมบิแนนท์โปรตีนของ glucanohydrolase ของข้าว ในแบคทีเรียหรือยีสต์
- 4. ศึกษาสมบัติต่างๆ ทางชีวเคมี ของเอนไซม์และความจำเพาะในการย่อยสลาย glycans ชนิดต่างๆ

#### 3. วิธีการทดลอง (Materials and Methods)

#### 3.1 Database searching and sequence analysis

Identification of rice genes homologous to glucanohydrolases was done using the BLAST suite of programs (Altschul et al., 1997) in GenBank at NCBI (/www.ncbi.nlm.nih.gov), Beijng Genomic Institute (http://btn.genomics.org.cn/rice/) and Carbohydrate Active Enzyme Database (http://afmb.cnrs-mrs.fr/CAZY). Identification of homologous genes and cDNAs was done using tBLASTn and the known protein sequences derived from Entrez search at GenBang NCBI. Coding regions of genes were identified by BLASTx searches against the NCBI nr protein database. All gene/protein clone IDs were retrieved and collected in the catalog and grouped into each glycosyl hydrolase subfamily.

#### 3.2 Plant materials and growth conditions

Rice (*Oryza sativa* L. spp. *indica* cv. KDML105 and spp. *japonica* cv. Yukihikari) seeds were germinated in the dark from day 0 to day 3 and in 12 h light-12 h dark from day 4 to day 7 at 28°C on germinating paper moistened with sterile distilled water. The whole seedlings were harvested and kept at -70°C for RNA isolation.

#### 3.3 Cloning and recombinant protein expression of rice Os4bglu12 β-glucosidase cDNA

Total RNA was isolated from 100 mg 5-6-d-old rice seedlings using Trizol Reagent (Invitrogen, Carlsbad, CA). The total RNA (5 μg) was used as the template to synthesize the first-strand cDNA with SuperScript II reverse transcriptase according to the manufacturer's protocol (Invitrogen). Primers for amplifying the full-length coding sequence (CDS) cDNA (designated *Os4bglu12*) and a cDNA encoding the mature protein of rice *Os4bglu12* β-glucosidase were designed from the GenBank *indica* rice genome contig number AAAA02014151 and AK100820 and AK105375 cDNA sequences (Kikuchi *et al.*, 2003). A 5' sense primer *Os4bglu12*\_fullf (5'-TGTCCATGGCGGCAGCAG-3'), and the antisense primer *Os4bglu12*\_3'UTRr (5'-AACTGGATTACTTCCATCTC-3') were used to amplify the full coding cDNA. The amplification was done with 30 cycles of 94°C, 30 s, 53°C 30 s and 72°C 4 min, using *Pfu* DNA polymerase (Promega, Madison, WI). A full-length product was cloned into the *Eco*R V site of pBlueScript II SK+ (Stratagene, La Jolla, CA), and sequenced.

To express the protein in *Escherichia coli*, the cDNA encoding mature proteins of rice *Os4bglu12* β-glucosidase was cloned by RT-PCR and inserted into pENTR-D/TOPO Gateway

entry vector and transferred to the pET32a+/DEST Gateway expression vector for expression. The cDNA encoding mature proteins of the *Os4bglu12* was PCR amplified using cDNA cloned as the template with the *Os4bglu12*matNcoIf (5'-CACCATGGCCTACAATAGCGCCGGCG AG-3') and *Os4bglu12*stopr (5'-ATCATTTCAGGAGGAACTTCTTG-3') primers and *Pfu* DNA polymerase to introduce a direction cloning site at the 5' end. The amplification was done as above, but with 45°C annealing temperature. The PCR product was cloned into pENTR-D/TOPO Gateway entry vector, according to the supplier directions (Invitrogen) and sequenced.

The cDNA insert in the pENTR-D/TOPO vectors was subcloned into the pET32a+/DEST Gateway expression vector by LR Clonase recombination following the recommended protocols (Invitrogen) and thoroughly sequenced. The recombinant pET32a+/DEST-*Os4bglu12* plasmid was transformed into OrigamiB (DE3), and positive clones were selected with 15 μg/ml kanamycin, 12.5 μg/ml tetracycline and 50 μg/ml ampicilin LB-agar plate. For recombinant protein expression, the selected clones were grown in selecting LB medium at 37°C until the optical density at 600 nm reached 0.5-0.6, IPTG was added to a final concentration of 0.3 mM and the cultures were incubated at 20°C for 8 h. Induced cultures were harvested by centrifugation at 5000×g at 4°C for 10 min. The cell pellets were resuspended in freshly prepared extraction buffer (50 mM phosphate buffer pH 8.0, 200 μg/ml lysozyme, 1% Triton-X 100, 1 mM phenylmethylsulfonylfluoride (PMSF), 40 μg/ml DNase I), and incubate at room temperature for 30 min. The soluble protein was recovered by centrifugation at 12,000xg at 4°C for 10 min. All of the protein samples were subjected to SDS-PAGE by standard methods (Laemli, 1970).

#### 3.4 Cloning and recombinant protein expression of GH5BG β-glucosidase cDNA

Total RNA was isolated from 100 mg 5-6-d-old rice cv. KDML105 seedlings with Trizol Reagent, and 5 μg of total RNA was used as the template to synthesize the first-strand cDNA with SuperScript II reverse transcriptase according to the manufacturer's protocol (Invitrogen, Carlsbad, CA). The GenBank rice genome contig accession number AC107314 (deduced protein sequence GenBank AC AAAM08614) and AK065000 cDNA sequences (Kikuchi *et al.*, 2003) were used to design the primers to amplify a full-length coding sequence (CDS) cDNA and a cDNA encoding the mature protein of rice glycosyl hydrolase family 5 β-glucosidase (designated *GH5BG*). The 5' sense primer AK065000f (5'-GCTGAAAAATCTTC GTCTTCATC-3') and the antisense primer AAM08614EcoRIr (5'-CCATCCAACTGGAATTC

TCACTG-3') were used to amplify a 774 bp-5' PCR fragment. The 5' sense primer AAM08614EcoRIf (5'-CGCAGTGAGAATTCCAGTTG-3') and the antisense primer AK065000r (5'-CTTCACAAGAGAAAGTTACACTC-3') were used to amplify a 1016 bp-3' PCR fragment. The amplification for 5' and 3' PCR fragments was done with 30 cycles of 94°C, 30 s, 51°C 30 s and 72°C 4 min, using *Pfu* DNA polymerase (Promega, Madison, WI) with the first-strand cDNA as the template. Finally, the AK065000f and AK065000r primers were used to amplify a full CDS cDNA by using the 5' and 3' PCR cDNA fragments amplified above as template in overlapping PCR. The amplification was done as above, but with 45°C annealing temperature. A full-length product was cloned into the *Eco*R V site of pBlueScript II SK+ (Stratagene, La Jolla, CA), and sequenced. Protein analyses were done at the Expasy proteomics server (http://www.expasy. org/), predictions of signal sequences and cellular location were done were done with SignalP (Bendtsen, 2004) and PSORT (Nakai and Horton, 1999), respectively.

The cDNA encoding the predicted mature protein of the *GH5BG* was PCR amplified with the cloned full-length cDNA as the template, the AAM08614matNcoIf (5'-CACCATGGT CTCCGATGGGAGGACG-3') and AAM08614XhoIstopr (5'-CCCTCGAGCTAGCTTTTGA GAGAGATGATCC-3') primers and *Pfu* DNA polymerase to introduce an *Nco*I site at the 5' end and an *Xho*I site at the 3' end. The amplification was done as described above, but with 45°C annealing temperature. The cDNA product was digested with *Nco*I and *Xho*I, cloned into pENTR4 Gateway entry vector that had been digested with the same restriction enzymes, and subcloned into the pET32a+/DEST Gateway expression vector by LR Clonase recombination following the recommended protocols (Invitrogen) and thoroughly sequenced. The recombinant pET32a+/DEST-*GB5BG* plasmid was transformed into *E. coli* strain OrigamiB (DE3) by heat shock (Sambrook *et al.*, 1989), and positive clones were selected on 15 μg/ml kanamycin, 12.5 μg/ml tetracycline and 50 μg/ml ampicillin LB-agar.

To produce the protein, selected clones were grown in LB medium containing the same antibiotics as above at 37°C until the optical density at 600 nm reached 0.5-0.6. Then, IPTG was added to a final concentration of 0.5 mM and the cultures were incubated at 20°C for 12 h. Induced cultures were harvested by centrifugation at 3000  $\times$  g at 4°C for 10 min. The cell pellets were resuspended in freshly prepared extraction buffer (50 mM phosphate, pH 8.0, 200  $\mu$ g/ml lysozyme, 1% Triton-X 100, 1 mM phenylmethylsulfonylfluoride, 40  $\mu$ g/ml DNase I), and incubated at room temperature for 30 min. The soluble protein was recovered by centrifugation at 12,000 x g at 4°C for 10 min. The expressed thioredoxin-GH5BG fusion

protein was purified by immobilized metal affinity chromatography (IMAC) with cobalt BD TALON column according to the manufacturer's instructions (Clontech, Palo Alto, CA). The fractions with *p*NPG hydrolysis activity were pooled and concentrated with 10 kDa-cut off centrifugal ultrafiltration membranes (YM-10, Amicon, Beverly, MA). All of the protein samples were analyzed by SDS-PAGE by standard methods (Laemmli, 1970).

#### 3.5 Enzyme assays

The purified thioredoxin-Os4bglu12 and -GH5BG recombinant protein was tested against pNP (pNP) derivatives of monosaccharides and cellobiose to determine sugar specificity. In a 100  $\mu$ L reaction assay volume, 1.47-2.94 pmol enzyme was incubated with substrate in 50 mM sodium acetate, pH 5.0, at 37°C, except for the assay with pNP- $\beta$ -D-cellobioside, in which 29.4 pmol enzyme was used. At the end of the reaction time, 70  $\mu$ L of 0.4 M sodium carbonate was added to stop the reaction, and the absorbance of the liberated pNP was measured at 405 nm. The enzymes were tested with oligosaccharides including cellooligosaccharides with DP of 2-6, laminari-oligosaccharides DP 2-5 and gentiobiose. In a 50  $\mu$ L reaction volume, 0.74 pmol enzyme was incubated with substrate in 50 mM sodium acetate, pH 5.0, for 5 min at 37°C, and the reaction was stopped by boiling. The release of the glucose was determined by the PGO (peroxidase/glucose oxidase) assay method (Babcock and Esen, 1994; Opassiri et al. 2003).

The enzyme was also tested for hydrolysis of polysaccharides. In the assay, 1-5 µg enzyme was incubated separately with 0.5% (w/v) laminarin and barley  $\beta$ -glucans in 50 mM sodium acetate (pH 5.0) at 37°C for 30-60 min. The reaction was stopped by the addition of p-hydroxybenzoic acid hydrozide reagent and the increase in reducing sugars was measured colorimetrically, as described by Lever (1972). One unit of  $\beta$ -glucosidase activity was defined as the amount of enzyme that produced 1 µmol of product per min. Protein assays were performed by the Bio-Rad protein assay kit (Bio-Rad, Richmond, CA) using bovine serum albumin as a standard. The pH optimum was determined by measuring the release of pNP from pNP- $\beta$ -D-glucoside (pNPG) in different 50 mM buffers ranging in pH from 3.5 to 10 in 0.5 pH unit increments for 10 min (formate, pH 3.5-4.5; sodium acetate, pH 4.0-5.5; sodium phosphate, pH 5.5-8; Tris, pH 7.5-9.0; CAPS, pH 9.0-10). To find the temperature optimum, pNPG hydrolysis was measured in 50 mM sodium acetate, pH 5.0, at temperatures ranging from 5°C to 90°C in 5° increments for 10 min.

#### 4. Result and discussion

#### 4.1 Database searching and sequence analysis

The completion of the *Oryza sativa* L. spp. *japonica* Rice Genome Project and the complementary indica rice (*O. sativa* L. spp. *Indica*) genome project by the Beijing Genomic Institute and Carbohydrate Active Enzyme Database (http://afmb.cnrs-mrs.fr/CAZY) has allowed genome-wide analysis of gene families in this important crop. The sequence and mapping information provided to the public databases by these projects enabled us to identify glucanohydrolase genes. At least 139 genes homologous to glucanohydrolases which can be classified to be the members in 7 subfamilies of glycosyl hydrolase family in rice (Table 1).

Table 1 Summary of genes homologous to glucanohydrolase in glycosyl hydrolase family

| Family | Gene ID           | Protein ID | Putative protein                             |  |  |  |  |  |  |  |  |
|--------|-------------------|------------|----------------------------------------------|--|--|--|--|--|--|--|--|
| 1      | U28047            | AAA84906   | beta-glucosidase, beta-D-glucan exohydrolase |  |  |  |  |  |  |  |  |
|        | AAAA02002143      | BAD73293   | beta-glucosidase                             |  |  |  |  |  |  |  |  |
|        | AAAA02014151      | CAE05483   | beta-glucosidase, beta-D-glucan exohydrolase |  |  |  |  |  |  |  |  |
|        | AAAA02010831      | AAX95520   | beta-glucosidase                             |  |  |  |  |  |  |  |  |
|        | AAAA02022575      | -          | beta-glucosidase                             |  |  |  |  |  |  |  |  |
|        | AAAA02034198      | CNS08C89   | beta-glucosidase                             |  |  |  |  |  |  |  |  |
| 3      | AL732339          | CAJ86028   |                                              |  |  |  |  |  |  |  |  |
|        | AL442109          | CAJ86207   |                                              |  |  |  |  |  |  |  |  |
|        | AP004150          | BAD07748   | beta-D-glucan exohydrolase                   |  |  |  |  |  |  |  |  |
|        | AL606455          | CAE02971   |                                              |  |  |  |  |  |  |  |  |
|        | AC130602          | AAU90111   | beta-D-glucan exohydrolase                   |  |  |  |  |  |  |  |  |
|        | AC135599          | AAX96800   |                                              |  |  |  |  |  |  |  |  |
|        | AC091811          | AAL58966   | exoglucanase                                 |  |  |  |  |  |  |  |  |
|        | AP003106 BAB56084 |            | exo-1,3-beta-glucanase                       |  |  |  |  |  |  |  |  |
|        | AP003295          | BAB89846   | exo-1,3-beta-glucanase                       |  |  |  |  |  |  |  |  |
|        | AL662976          | CAD41212   |                                              |  |  |  |  |  |  |  |  |
|        | AC091811          | AAL58963   |                                              |  |  |  |  |  |  |  |  |
|        | AC091811          | AAL58976   | exohydrolase                                 |  |  |  |  |  |  |  |  |
| 5      | AAL442104         | CAH67677   | Cellulase                                    |  |  |  |  |  |  |  |  |
|        | AAL442104         | CAH67676   | Cellulase                                    |  |  |  |  |  |  |  |  |
|        | AL606614          | CAD41088   | Cellulase                                    |  |  |  |  |  |  |  |  |
|        | AP004583          | BAD61770   | Cellulase, endo-beta-1,4-mannanase           |  |  |  |  |  |  |  |  |
|        | AP003284          | BAB91747   | Cellulase, (1-4)-beta-mannan endohydrolase   |  |  |  |  |  |  |  |  |
|        | AP004817          | BAD17132   | Cellulase, (1-4)-beta-mannan endohydrolase   |  |  |  |  |  |  |  |  |
|        | AP003076          | BAB56016   | Cellulase, (1-4)-beta-mannan endohydrolase   |  |  |  |  |  |  |  |  |
|        | AC096687          | AAL79761   | Cellulase, endohydrolase                     |  |  |  |  |  |  |  |  |
|        | AC119290          | AAV43969   | glucan 1,3-beta-glucosidase                  |  |  |  |  |  |  |  |  |
|        | AC136224          | AAV44080   |                                              |  |  |  |  |  |  |  |  |

| Family | Gene ID                                | Protein ID | Putative protein                      |  |  |  |  |  |  |  |  |
|--------|----------------------------------------|------------|---------------------------------------|--|--|--|--|--|--|--|--|
| 5      | AAL60614                               | CAD41089   |                                       |  |  |  |  |  |  |  |  |
|        | AP004023                               | BAD16839   | cellulase                             |  |  |  |  |  |  |  |  |
|        | AC107314                               | AAM08614   | Glucan 1,3-beta-glucosidase           |  |  |  |  |  |  |  |  |
|        | APOO4213                               | BAD09304   | 1,3-beta-glucosidase                  |  |  |  |  |  |  |  |  |
|        | AC096687                               | AAL79758   | endohydrolase                         |  |  |  |  |  |  |  |  |
|        | AL606614                               | CAD41090   |                                       |  |  |  |  |  |  |  |  |
|        | AC107314                               | AAM08620   | Glucan 1,3-beta-glucosidase           |  |  |  |  |  |  |  |  |
| 9      | AL732351                               | CAJ86099   |                                       |  |  |  |  |  |  |  |  |
|        | AL732344                               | CAH68191   |                                       |  |  |  |  |  |  |  |  |
|        | AL606627                               | CAD41248   |                                       |  |  |  |  |  |  |  |  |
|        | AP005092                               | BAD33331   | Cellulase                             |  |  |  |  |  |  |  |  |
|        | AP005319                               | BAD16147   | endo-1,4-beta-glucanase               |  |  |  |  |  |  |  |  |
|        | AP003614                               | BAD53575   | endo-1,4-beta-glucanase               |  |  |  |  |  |  |  |  |
|        | BX548155                               | CAE01493   |                                       |  |  |  |  |  |  |  |  |
|        | AP004689                               | BAD05437   |                                       |  |  |  |  |  |  |  |  |
|        | AP002094                               | BAC00553   | endo-1,4-beta-glucanase               |  |  |  |  |  |  |  |  |
|        | AP005657                               | BAD10555   | endo-1,4-beta-glucanase               |  |  |  |  |  |  |  |  |
|        | AP004027                               | BAD45673   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AP004463                               | BAC55745   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AL606457                               | CAE03241   |                                       |  |  |  |  |  |  |  |  |
|        | AP006453                               | BAD26493   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AP004846 BAD19513<br>AP003722 BAB92772 |            | cellulase                             |  |  |  |  |  |  |  |  |
|        |                                        |            | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AP005112                               | BAD16040   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AC118133                               | AAP03405   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AC135914                               | AAT44235   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AP002094                               | BAD81358   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
|        | AP004885                               | BAD07956   | endoglucanase 1                       |  |  |  |  |  |  |  |  |
|        | AP005619                               | BAD46308   | endo-beta-1,4-glucanase               |  |  |  |  |  |  |  |  |
| 16     | AP004886                               | BAD07973   | xyloglucan endo-1,4-beta-D-glucanase  |  |  |  |  |  |  |  |  |
|        | AP005859                               | BAD08162   | xyloglucan endo-1,4-beta-D-glucanase  |  |  |  |  |  |  |  |  |
| 17     | U72255                                 | AAD10386   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | U72253                                 | AAD10384   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AB027430                               | BAA77785   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AF443600                               | AAL35900   | endo- beta-1,3-glucanase              |  |  |  |  |  |  |  |  |
|        | U72251                                 | AAD10382   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AF323610                               | AAK16694   | glucanase                             |  |  |  |  |  |  |  |  |
|        | AB027432                               | BAA77787   | beta-glucanase                        |  |  |  |  |  |  |  |  |
|        | U72254                                 | AAD10385   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AY217745                               | AAO64485   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AL732352                               | CAJ86292   |                                       |  |  |  |  |  |  |  |  |
|        | AP003884                               | BAD01673   |                                       |  |  |  |  |  |  |  |  |
|        | AP005185                               | BAC83955   | beta-1,3-glucanase                    |  |  |  |  |  |  |  |  |
|        | AC146936                               | AAX95654   |                                       |  |  |  |  |  |  |  |  |
|        | AP003804                               | BAC83070   | elicitor inducible beta-1,3-glucanase |  |  |  |  |  |  |  |  |

| Family | Gene ID   | Protein ID | Putative protein                        |  |  |  |  |  |  |  |
|--------|-----------|------------|-----------------------------------------|--|--|--|--|--|--|--|
| 17     | U72248    | AAD10379   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP003259  | BAC15778   | endo- beta-1,3-glucanase                |  |  |  |  |  |  |  |
|        | AL662947  | CAD40655   |                                         |  |  |  |  |  |  |  |
|        | AP004073  | BAD88030   | endo- beta-1,3-glucanase                |  |  |  |  |  |  |  |
|        | AC092781  | AAP68878   | lichenase                               |  |  |  |  |  |  |  |
|        | AC137611  | AAT69611   |                                         |  |  |  |  |  |  |  |
|        | AC134045  | AAX95357   | glucan endo-1,3-beta-glucosidase        |  |  |  |  |  |  |  |
|        | AC112160  | AAU44050   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004073  | BAB86248   | endo- beta-1,3-glucanase                |  |  |  |  |  |  |  |
|        | AP005446  | BAD36114   | elicitor inducible beta-1,3-glucanase   |  |  |  |  |  |  |  |
|        | AP002972  | BAD86947   | elicitor inducible beta-1,3-glucanase   |  |  |  |  |  |  |  |
|        | AP005810  | BAC84505   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC0099324 | AAO73270   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004073  | BAB86250   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP002542  | BAD67869   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC133930  | AAP44659   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC137064  | AAX95269   | glucan endo-1,3-beta-glucosidase        |  |  |  |  |  |  |  |
|        | AP005810  | BAC84500   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC108874  | AAT01345   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP003622  | BAD32917   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AB027428  | BAA77783   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004073  | BAD88015   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004230  | BAC20025   | glucanase                               |  |  |  |  |  |  |  |
|        | AP004031  | BAD87992   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP003799  | BAC75843   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP005788  | BAD26208   | elicitor inducible beta-1,3-glucanase   |  |  |  |  |  |  |  |
|        | AP004749  | BAD54223   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC104473  | AAN60993   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |  |  |  |  |  |
|        | AP005810  | BAC84503   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004869  | BAD15845   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP005786  | BAC80125   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | U72249    | AAD10380   | beta-1,3-qlucanase                      |  |  |  |  |  |  |  |
|        | AP003259  | BAC15784   | endo-1,3-beta-glucosidase               |  |  |  |  |  |  |  |
|        | AP003287  | BAD82033   | elicitor inducible beta-1,3-glucanase   |  |  |  |  |  |  |  |
|        | AC091787  | AAP12947   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP003221  | BAB86422   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP005294  | BAD10251   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP005110  | BAD28425   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AC084765  | AAP46217   | glucanase                               |  |  |  |  |  |  |  |
|        | AC105364  | AAN05325   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        |           |            |                                         |  |  |  |  |  |  |  |
|        | AC098696  | AAN04212   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP003259  | BAD87205   | endo-1,3-beta-glucosidase               |  |  |  |  |  |  |  |
|        | AP004690  | BAD05454   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |
|        | AP004073  | BAD88028   | endo-1,3-beta-glucosidase               |  |  |  |  |  |  |  |
|        | AC090871  | AAO37977   | beta-1,3-glucanase                      |  |  |  |  |  |  |  |

| Family   | Gene ID  | Protein ID | Putative protein            |  |  |  |  |  |  |  |
|----------|----------|------------|-----------------------------|--|--|--|--|--|--|--|
| 17       | AC133859 | AAP50997   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AC137064 | AAX95270   | endo-1,3-beta-glucosidase   |  |  |  |  |  |  |  |
|          | AP003259 | BAD87200   | endo- beta-1,3-glucanase    |  |  |  |  |  |  |  |
|          | AP003888 | BAC75423   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AP005810 | BAC84487   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AC097112 | AAT39206   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
| U72252   |          | AAD10383   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
| AB027429 |          | BAA77784   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AP004073 | BAB86249   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AP005840 | BAD31779   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AP004058 | BAD16854   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AP005092 | BAD33320   | endo-1,3-beta-glucosidase   |  |  |  |  |  |  |  |
| U72250   |          | AAD10381   | endo-1,3-beta-glucosidase   |  |  |  |  |  |  |  |
|          | AP004031 | BAB85436   | glucanase                   |  |  |  |  |  |  |  |
|          | AP004340 | BAC83528   | endo-1,3-beta-glucosidase   |  |  |  |  |  |  |  |
|          | AP004031 | BAB85424   | endo- beta-1,3-glucanase    |  |  |  |  |  |  |  |
|          | AC092778 | AAP12921   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AB070742 | BAC02926   | beta-1,3-glucanase          |  |  |  |  |  |  |  |
|          | AF030167 | AAB86556   | glucanase                   |  |  |  |  |  |  |  |
|          | AF030166 | AAB86541   | glucanase                   |  |  |  |  |  |  |  |
| 81       | AP005702 | BAD26084   | beta-glucan binding protein |  |  |  |  |  |  |  |

#### 4.2 Cloning and expression of Os4bglu12 β-glucosidase

#### Os4bglu12 β-glucosidase cDNAs cloning and sequence analysis

The protein product for *Os4bglu12* gene has highest sequence similarity to the previously described cell wallbound β-glucosidase purified from rice seedlings (Akiyama et al., 1998). Therefore, it was chosen for expression to test if the protein would have the expected activity. The sequence of the *Os4bglu12* β-glucosidase mRNA from rice was confirmed by RT-PCR cloning and sequencing, using rice cultivar KDML105 cDNA as the template. A specific PCR product of 1635 bp was produced, and its sequence overlapped that of the *indica* rice contig AAAA02014151. The reconstructed cDNA sequence of *Os4bglu12* included a 1530-nucleotide long open reading frame encoding a 510 amino acid long precursor protein (Figure 1). The Signal P program predicted the protein to contain a 24 amino acid signal sequence and a 486 amino acid mature protein. The deduced Os4bglu12 N-terminal amino acid sequence was identical to the N-terminal amino acid sequence of the previously purified cell-wall-bound rice β-glucosidase at 40 of 44 residues (Akiyama et al., 1998).

ATGGCGGCAGCAGGGCAATGCCCGGTGGCCTTCTCCTCACGTTCCTCCTC AGAMPGGLLLTFLL CTTGCTGTCGTCGCTTCCGGCGCCTACAATAGCGCCGGCGAGCCGCCGGTC T. A V V A S G A Y N S A G E P P V AGCCGGAGAAGCTTCCCCAAGGGGTTCATCTTCGGGACAGCCTCGTCGTCG S R R S F P K G F I F G T A S S S TATCAGTACGAGGGTGGCGCAGCGGAGGGCCGAGAGGACCAAGCATCTGG Q Y E G G A A E G G R G P S GACACCTTCACACATCAGCACCCAGAGAAAATCGCCGACAGAAGCAACGGG H P Ε K IADRS GATGTGGCTTCGGATTCCTACCATCTCTACAAGGAAGATGTGCGCCTCATG Y H L Y K E D V R S D S AAGGATATGGGAATGGATGCATACAGGTTCTCCATCTCATGGACAAGAATC G M D A YRFSISWT  $\verb|CTTCCAAATGGAAGTCTGAGGGGTGGAGTCAACAAAGAAGGCATAAAGTAC| \\$ G V N K E G I L P N G S L R G TACAATAATTTGATCAATGAGCTATTATCGAAAGGGGTGCAACCGTTTATT Y N N T, T N F, T, S K G V O P F T ACCCTTTTCCACTGGGACTCACCTCAGGCGTTGGAAGATAAATATAACGGA D S P O A L E D K Y N G TTTCTTAGCCCTAATATCATAAATGACTTTAAGGACTATGCTGAAATCTGC N I I N D F K D Y  ${\tt TTCAAGGAGTTTGGTGACAGAGTGAAAAATTGGATCACCTTCAATGAGCCT}$ V K N W TGGACTTTCTGCTCTAATGGCTATGCAACTGGCCTGTTTGCACCAGGCCGT W T F C S N G Y A T G L F A P G R  $\tt TGTTCGCCCTGGGAGAAGGGAAATTGCAGTGTTGGAGATTCAGGAAGGGAG$ C S P W E K G N C S V G D S G R E CCTTACACTGCATGCCATCATCAACTACTTGCCCACGCGGAAACTGTTCGG  $\tt TTGTACAAAGCGAAATATCAGGCCTTACAAAAAGGGAAGATTGGAATAACT$ Α L Q K G K CTGGTCTCGCACTGGTTTGTTCCCTTCTCCCGCTCCAAATCCAACAATGAT L V S H W F V P F S R S K S N N D GCTGCAAAGCGTGCTATAGACTTCATGTTTGGATGGTTTATGGATCCCCTC A A K R A I D F M F G W F M D P L R G D Y P L S M R G L V G N R L  ${\tt CCACAGTTCACTAAAGAACAGTCTAAGTTGGTCAAGGGTGCATTTGACTTT}$ P Q F T K E Q S K L V K G A F D F ATTGGACTTAACTACTACACTGCGAACTATGCTGATAACCTTCCTCCATCA Α N Y A D N T P P S AATGGCCTTAACAACAGCTATACCACCGATTCTCGAGCTAATCTTACCGGT L N N S Y T Т D S R A N L GTACGAAATGGCATCCCCATAGGACCGCAGGCTGCTTCACCTTGGCTTTAC Ρ G P GTCTACCCTCAAGGCTTCCGTGACTTGCTACTTTATGTTAAGGAGAACTAT Y P Q G F R D L L L Y V K E N Y GGCAATCCTACCGTCTACATCACTGAAAATGGCGTTGATGAATTCAACAAT G N P T V Y T T E N G V D E F N N AAGACCTTACCACTCCAAGAAGCCTTGAAGGATGACGCTAGGATAGAATAC L K D DARIEY TACCACAAGCACCTCCTTTCCCTGCTAAGTGCTATAAGGGATGGAGCAAAC S L L S Α Ι GTGAAGGGATACTTTGCATGGTCGCTGCTTGATAACTTCGAGTGGTCGAAC K G Y F A W S LLDNF E W GGCTACACAGTTCGATTTGGGATAAACTTCGTAGATTACAATGACGGAAGG GYTVRF G T N F V DYNDGR AAGAGATACCCCAAGAACTCTGCCCATTGGTTCAAGAAGTTCCTCCTGAAA SAHWFKKFLLK

Figure 1 The full-length cDNA sequence and deduced amino acid sequence of rice Os4bglu12

A few reports described the expression patterns of  $\beta$ -glucosidases in rice plants. Based on enzyme activity, gibberellic acid glucoside and pyridoxine glucoside β-glucosidases are found in rice bran (Schlieman, 1984; Iwami and Yasumoto, 1986), and the cell wall-bound enzyme is found in seedling (Akiyama et al., 1998). Northern blot analysis showed that Os3bglu7 and Os9bglu30 (rice bglu 2 in Opassiri et al., 2003) β-glucosidase genes are highly expressed in seedling shoots, but only Os3bglu7 is expressed in flowers (Opassiri et al., 2003). Microarray analysis indicated that the transcripts of the ESTs BE607353 and BG101702, whose sequences are homologous to Os3bglu7 and Os4bglu12 β-glucosidases genes, respectively, are upregulated in response to high salinity stress in salt-tolerant rice (var Pokkali), but not in the salt-sensitive cultivar IR29(Kawasaki et al., 2001). Subtractive hybridization cDNA library screening indicated that the transcript level of the EST contig BPHiw028, homologous to Os4bglu12, is upregulated in response to brown planthopper (Wang et al., 2005). The presence of tricin-O-glucoside, a probing stimulant for planthopper (Adjei-Afriyie et al., 2000), suggests that the role of this enzyme is to release an active flavonol for defense. However, these studies did not show the specific roles of these enzymes in rice cells in response to such stresses. Therefore, identification of natural substrates for the enzymes is needed to understand the functions of these enzymes.

#### Functional expression of recombinant Os4bglu12

The *Os4bglu12* cDNA CDS including the stop codon was inserted into pET32a(+)/DEST. The construct was used to transform *OrigamiB* (DE3) *E. coli*. Comparison of the protein profile of induced cultures with the *Os4bglu12* insert with those of empty plasmid controls by SDS-PAGE showed the thioredoxin-Os4bglu12 fusion protein as an intense band at 69 kDa on SDS-PAGE. The fusion protein was purified by IMAC, and a band corresponding to 69 kDa was observed in SDS-PAGE (Figure 2). The enzyme was found to hydrolyze *p*NPG with optimal activity at pH 5.0 and 37°C. The enzyme activity with *p*NPG at 70°C and 80°C drops about 17% and 39%, respectively, from the optimal activity at 37°C in a 10 min assay. It was stable at 4°C for several months.

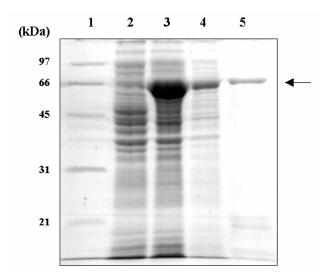


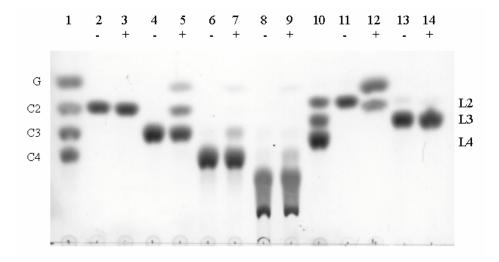

Figure 2 SDS-PAGE profiles of Os4bglu12 recombinant protein expressed in *OrigamiB* (DE3) *E. coli* after incubation in the presence of 0.3 mM IPTG, at 20°C for 8 h. Lanes: 1, standard marker (Bio-RAD); 2, total protein in *E. coli* cells containing pET32a(+) without an insert; 3, total protein of *E. coli* cells containing pET32a(+)/DEST-*Os4bglu12*; 4, soluble fraction of *E. coli* cells containing pET32a(+)/DEST-*Os4bglu12*; 5, purified Os4bglu12 recombinant protein. The arrow points to the position of thioredoxin fusion protein monomer.

#### Os4bglu12 substrate specificity

The activity of the purified rice Os4BGlu12  $\beta$ -glucosidase towards natural and artificial glycosides is summarized in Table 2. Since the reliable kinetic parameters could not be retreived dedrived from the cellobiose product inhibition, so the relative activities were used to determine the substrate specificity of this enzyme. The Os4BGlu12 hydrolyzed the  $\beta$ -1,3-linked glucose disaccharide laminaribiose, but not cellobiose ( $\beta$ -1,4) or gentiobiose ( $\beta$ -1,6). It showed high hydrolytic efficiency at different rates with  $\beta$ -(1,4)-linked oligosaccharides with DP of 3-6. Hydrolysis of  $\beta$ -(1,3)-linked oligosaccharides with DP > 2, laminarin and barley 1,3, 1,4- $\beta$ -glucans by this enzyme could not be detected. The rate of hydrolysis of oligometric substrates by Os4BGlu12 tended to remain approximately constant with increasing DP, which is a characteristic often observed with  $\beta$ -glucosidases (Reese *et al.*, 1968). On the TLC, Os4BGlu12 showed hydrolytic activity towards 5 mM laminaribiose and cello-oligosaccharides but the transglycosylation activity could not be detected (Figure 3).

Hydrolysis of *p*NP-glycosides with different sugars was used to assess Os4BGlu12 glycone specificity, and it was found to hydrolyze many kinds of *p*NP  $\beta$ -glycosides. It hydrolyzed *p*NPG and *p*NP- $\beta$ -D-fucopyranoside with 2-3 fold lower relative activity than oligosaccharides. It also hydrolyzed *p*NP- $\beta$ -D-galactopyranoside, *p*NP- $\beta$ -D-xyloside, and *p*NP- $\alpha$ -L-arabionoside, at 45%, 45% and 26% the rate of *p*NPG, respectively. Hydrolysis of *p*NP- $\beta$ -D-mannoside, *p*NP- $\beta$ -D-cellobioside, *p*NP- $\alpha$ - D-glucopyranoside, and *p*NP- $\beta$ -L-fucopyranoside were not detectable. High hydrolysis of  $\beta$ -xyloside is similar to white clover  $\beta$ -glucosidase, but otherwise rare in GH1 enzymes, as noted by Marana (2006), who placed the clover enzyme in a separate functional grouping based on this activity.

Rice Os4BGlu12, rice BGlu1 (Opassiri et al. 2003), cell-wall-bound rice β-glucosidase (Akiyama et al., 1998) and barley βΙΙ β-glucosidase (Hrmova et al., 1998) are enzymes that hydrolyze β-linked glucose oligosaccharides, but not polysaccharides. However, the specificity for glycones and substrate chain lengths of these enzymes are different. In contrast to barley cell-wall-bound enzyme, Os4BGlu12 did not hydrolyze and rice  $\beta$ -(1,3)-linked oligosaccharides longer than laminaribiose, and hydrolyzed various pNP-derivatives of monosaccharides. This substrate preference was not expected, since it was initially expected that Os4bglu12 was the gene for the cell-wall-bound \beta-glucosidase, and the sequence differences might be due to cultivar differences or sequencing errors. The substrate preference of Os4BGlu12 is somewhat similar to rice BGlu1, however, there were many differences between these enzymes. In contrast to rice BGlu1, Os4BGlu12 hydrolyzed β-(1,4)-linked oligosaccharides and laminaribiose at higher rates than pNPG, and did not hydrolyze cellobiose, gentiobiose, pNP β-D-mannoside, and pNP-β-D-cellobioside. Their sequence differences are likely to reflect the differences in substrate binding to the active site between these enzymes. The amino acids identified by Czjzek et al. (2000) as critical for glucose binding (Q38, H142, E191, E406, E464 and W465 in maize Bglu1) are conserved in rice Os4BGlu12, rice BGlu1, and barley β-glucosidase. Interestingly, the rice BGlu1 protein sequence was closest to barley BGQ60 at some of substrate binding residues that line the active site cleft and interact with the substrate aglycone of maize \(\beta\)glu1 (W378, F198, F205, and F466) (Czjzek et al., 2000), suggesting it may have a similar substrate-specificity. However, these above mentioned amino acid residues were different from those in the Os4BGlu12 enzyme and reflect the different substrate specificities for some oligosaccharides and glycones. For instance, BGlu1 and barley BGQ60 cluster with tomato and arabidopsis β-mannosidase and can hydrolyze β-mannoside,


while Os4BGlu12 does not, and they also hydrolyze longer chain 1,3-linked oligosaccharides (Hrmova *et al.*, 1996; Opassiri *et al.*, 2004). All three enzymes prefer shorter 1,3-linked oligosaccharides, with Os4bglu12 being the most extreme, only hydrolyzing the dimer with this linkage. This likely reflects the bent shape of oligosaccharides with the 1,3-linkage, which is somehow incompatible with the active site for longer chains. Elucidation of the tertiary structures of these enzymes would help to clarify the enzyme-substrate binding mechanism leading to these preferences. Elucidation of the tertiary structures of these enzymes would help to clarify the enzyme-substrate binding mechanism.

**Table 2** Substrate specificity of the purified rice Os4bglu12

| Substrate                   | Relative activity <sup>a</sup> (%) |
|-----------------------------|------------------------------------|
| Laminaribiose <sup>b</sup>  | 238                                |
| Laminaritriose              | 0                                  |
| Laminaritetraose            | 0                                  |
| Laminaripentaose            | 0                                  |
| Cellobiose                  | 0                                  |
| Cellotriose <sup>b</sup>    | 231                                |
| Cellotetraose <sup>b</sup>  | 301                                |
| Cellopentaose <sup>b</sup>  | 279                                |
| Cellohexaose <sup>b</sup>   | 295                                |
| Gentiobiose                 | 0                                  |
| Laminarin                   | 0                                  |
| Barley 1,3, 1,4-β-glucans   | 0                                  |
| <i>p</i> NP-β-D-glucoside   | 100                                |
| <i>p</i> NP-β-D-fucoside    | 118                                |
| <i>p</i> NP-β-D-galactoside | 45                                 |
| pNP-β-D-xyloside            | 45                                 |
| pNP-α-L-arabionoside        | 26                                 |
| pNP-β-D-mannoside           | 0                                  |
| pNP-β-D-cellobioside        | 0                                  |
| <i>p</i> NP-α-D-glucoside   | 0                                  |
| pNP-β-L-fucoside            | 0                                  |

<sup>&</sup>lt;sup>a</sup> Percent activity relative to glucose or pNP released from pNP-β-D-glucoside. The assay contained 1 mM substrate in 50 mM sodium acetate (pH 5.0) buffer at 37°C.

<sup>&</sup>lt;sup>b</sup>Note that the values for oligosaccharides are in terms of total glucose released.



**Figure 3** Hydrolysis of oligosaccharide substrates by Os4bglu12 detected by TLC. The Os4bglu12 was incubated with 5 mM substrates for 30 min and the products were detected after TLC by the carbohydrate staining. Samples were incubated with (+) or without (-) enzyme. Lanes: 1, glucose (G) and cello-oligosaccharides of DP 2–4 (C2-C4) marker; 2 and 3, cellobiose; 4 and 5, cellotriose; 6 and 7, cellotetraose, 8 and 9, cellopentaose, 10 laminarioligosaccharides of DP 2–4 (L2-L4) marker; 11 and 12, laminaribiose; 13–14 laminaritriose.

#### 4.3 Cloning and expression of glycosyl hydrolase family 5 β-glucosidase

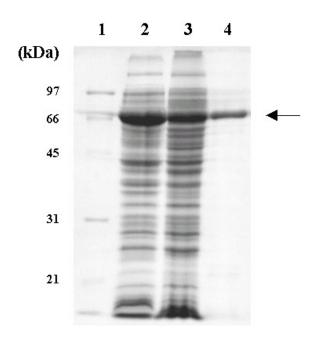
#### GH5BG cDNA cloning and sequence analysis

With the completion of high quality drafts of the rice genome, analysis of GH5 members in rice has been reported in the CAZY homepage (http://www.cazy.org/CAZY/). Twenty GH5 genes putatively encoding 7 cellulases, 9 endo- $\beta$ -mannanases, 3 glucan 1,3- $\beta$ -glucosidases, and one 1,3- $\beta$ -glucanase have been identified in rice databases (see CAZY). The putative glucan 1,3- $\beta$ -glucosidases encoded by these genes include Genbank accessions AAM08614, AAM08620, and AAV43969. The simplest putative glucan 1,3- $\beta$ -glucanase genes and AAM08614 was chosen for investigation.

A GH5 glucan-1,3-β-glucosidase cDNA, designated GH5BG, was cloned from rice seedlings by RT-PCR with KDML105 rice seedling RNA and primers derived from the GenBank accession number AC107314 (rice genomic contig from which AAM08614 is derived) and AK065000 (full-length cDNA, Kikuchi et al., 2003) sequences. A specific PCR product of 1680 bp was produced, and its sequence overlapped those of AC107314 and

| Candida :<br>Pichia :                                           | -MRHFELLLFLLCSPCLFSVSDGRTVRPAKRGAPSPPTRAVLGGWLVTEGWI<br>AWDYDNNVIRGVNLGGWFVLEBYMT<br>MNLYLITLLFASLCSAITLPKRDIIWDYSSEKIMGVNLGGWLVLEPYIT<br>-MAPSLFRTVVIACSSLSLAVAISPGFPYGNEKVRGVNLGGWLVLEBWIT<br>                                                                          | Г: 25<br>Г: 49<br>Г: 49                   |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | PSLFDDIPNKDLLDGTQLQFKSVTQNMYLCAEQGGGTILVANRTSASGWETFKL<br>PSLFEPFQNGN                                                                                                                                                                                                     | : 36<br>: 57<br>: 57                      |
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | WRIDEDTFDLRVFDNLFVTVAGDGVTVVATVASPGPGEAFQIVRNGDKTRARIR                                                                                                                                                                                                                    | : 36<br>: 57                              |
| Candida :                                                       | DDVPVDEYRYTERIGKS                                                                                                                                                                                                                                                         | : 74                                      |
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | KATOVI-REHWRTY IVESDEKFISTS GINAVRIPVGWWIASDENPPAPEVGESI<br>AASRII-QKHWSTWITE QDEKQISNIGINFVRIPIGYWAFOLLDND-PYVGEQV<br>LALDRI-QCHWSTYYDEKDEQDIAAYGINFVRIPIGYWAFOLLDDD-PYVGEQE<br>IAQSVI-BAHWNSWITE SDEEAIADAGINHVRLPIGYWAFDVGFGE-PYIS                                     | : 269<br>: 107<br>: 126<br>: 126<br>: 68  |
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | QALDNAFKWAEKYNTGVIVOLHAAPGSONFFEHSASRDGSODWGTTDANTAQTV<br>QYLEKAIGWARKNNTRYWIDLHGAPGSONGFDNSGLRDSYNFONGDNTQVTLN-<br>EYLDKALEWSRKHGTKWWIDLHGAPGSONGFDNSGKRDSWDFONGNVQVYLD-<br>FYLOKAVTWAGNHGTKVIVDLHGAPGSONGFDNSGORMDYPTWHSNLTNVARTD                                       | : 323<br>: 160<br>: 179<br>: 180<br>: 117 |
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | OVIDETTHRYASSPSLIAVELINEPLAFGVTIPAT MRYYKIGYNAVRKY -VLNTIFKKYGGNEYSDVVIG ELLINEPLGFVLNMDKLKOFFLIGYNSDROT -VLKYISKKYGTTDYYDVVIG OLLINEPLGFILDMDNIROFYALGYDLYRDV VIIKTIADMYKDNPGVVPILAFLNEPAGFDGSNVLSVVROYWRLSYGNIRYP -IWRFIAKRY-INEREHIAFELLINEVVEFDSTRWNKLMLEYIKAIREI     | : 372<br>: 211<br>: 230<br>: 232<br>: 163 |
| Candida :<br>Pichia :<br>Lentinula :                            | TSTAYVVMSNRLSASNTELLGFAAGFP-GAVLDVEYNNET GSVIPVIIHDA-FQVFGYWNNFLTVAEGQW-NVVVDHHHMQVES GNNFVVIHDAFYQAPEYWGDDFTSAEGYW-NVVIDHHMQVED YGSSQQSDIVVLIHDA-FQPLNYWNGFLTTADNNAQGVANDTHIVQUES DSTMWLYIGGNNYNSPDELKNLADIDDDYIVYN FHFYNFEFFTHQK                                        | : 253<br>: 272<br>: 280                   |
| Candida :<br>Pichia :<br>Lentinula :                            | SSFNGL VD QN DYVRTNR                                                                                                                                                                                                                                                      | : 272<br>: 293<br>: 299                   |
| Pichia :<br>Lentinula :                                         | SDELSTVTRPNGPLTFVGEWVAEWNWALKESHWALKESHWALKESHWALKESHWALKESHWALKESHWALKESHWALKESHWALKESHWALKESHWALKESH SAALTDCTPWLNGVGKGTRYEGQLDNSPWIGSCE STLSGFDLWLIVGEWIPAMTDCATYLNGRGIGSRYDGSYSGSTAVGSCT KPAIEFREK-KKCKLYCGEEGVIAI                                                     | : 380                                     |
| GH5BG :<br>Candida :<br>Pichia :<br>Lentinula :<br>Clostridium: | VQGASNQDYCEPACACLDVYGE-ATFGWAYWTYKNVEN-HWSMQWN<br>PLL-DISQWSDEHKTDTREYIEACLDAFEYTGGWVFWSWKTENAFFWSFQTL<br>NSQ-DPSKLSSERICEYREYVEACLDAFLHGKSAGFIFWCFKTEASLEWDFKRL<br>GLTGSASSFSSSYKTFLRESWBACAITSEA-AGAGWIQWTWKAENADFWTYQAG<br>ADLESRIKWHBDYISLLEE-YDIGGAVWNYKKMFPEIWNEDRK | : 500<br>: 371<br>: 393<br>: 401<br>: 328 |
| Candida :<br>Pichia :<br>Lentinula :                            | IQNGIISLKS:: 510 TYNGLFPQPVTDRQFPNQCGFH:: 394 VNAGINPQPLDDRQ:: 407 LMNGWIPQNPTSYBYPNICD: 421 PVSQEIVNILARRKT:: 343                                                                                                                                                        |                                           |

Figure 4 Alignment of the protein sequences of rice GH5BG with exo-β-1,3-glucanases and endo-β-1,4-glucanase. GH5BG is rice GH5BG, Candida is exo-β-1,3-glucanase from *Candida albicans* (AC CAA39908), Lentinula is exo-β-1,3-glucanase from *Lentinula edodes* (AC AB192344), Pichia is exo-β-1,3-glucanase from *Pichia pastoris* (AC AY954499), and Clostridium is endo-β-1,4-glucanase from *Clostridium thermocellum* (AC AAA23220). The alignment was generated with the ClustalX implementation of ClustalW (Jeanmougin et al., 1998; Thompson et al., 1994) and analyzed and manually adjusted with Gendoc (Nicholas and Nicholas, 1997). Alignment of the *C. thermocellum* sequence relied on the structural alignment of the 1CEC structural model with the *C. albicans* Exg 1CZ1 structure. The positions of the β-strands of the central ( $\beta/\alpha$ )<sub>8</sub> barrel are indicated by arrows above the alignment. Red bars (•) mark invariant GH family 5 residues and the black and grey shading highlight other identities between sequences, the asterisks identify the two catalytic glutamate residues, the blue bars (■) indicate the two phenylalanine found at the +1 subsites of *C. albicans* Exg. The region of rice GH5BG homologous to fascin is indicated by blue text.


AK065000. The full-length cDNA sequence contains a 1530-nucleotide open reading frame (ORF) encoding a 510 amino acid precursor protein. The protein sequence was predicted to contain a 19 amino acid long prepeptide and a 491 amino acid long mature protein, and to be secreted out of the cell. Its predicted pI is 5.28. The mature protein includes two domains, a fascin-like domain (amino acids 70-180) and a glucan-1,3-β-glucosidase domain (amino acids 37-60 and 208-496) (Figure 4). In human, fascin acts as a protein that tightly bundles F-actin and it is important for the formation of actin-based protrusions and for maintaining cytoplasmic F-actin bundles (Adams, 2004).

In addition to the putative rice GH5 glucan-1,3-β-glucosidases AAM08620 and AAV43969, the GH5BG amino acid sequence is highly similar to the putative 1,3-β-glucanase BAD10703 with 49% identity, but has only 28-33% identity with glucan-1,3-β-glucosidases of fungi. Comparison of the deduced amino acid sequence of rice GH5BG with those of fungal GH5 exoglucanases revealed that Glu-347, which lies in the conserved NEP motif, is likely to be the catalytic acid/base and Glu-450, which lies in the conserved GEW motif, is likely the catalytic nucleophile (Cutfield et al., 1999; Sakatomo et al., 2005; Xu et al., 2006). Similar to other GH5 members, rice GH5BG contains eight invariant residues, these being Arg-247, His-291, Asn-346, Glu-347, His-406, Tyr-408, Glu-450, and Trp-486. Phe-300 and Phe-411 of

GH5BG are also conserved with Phe-144 and Phe-258 in *C. albicans* Exg, which were found to be located at the entrance to the active site pocket by crystallographic structural analysis (Cutfield et al., 1999).

#### Functional expression of recombinant GH5BG and substrate specificity

The GH5BG cDNA was expressed in redox-deficient, Origami (DE3), as a catalytically active thioredoxin fusion protein. Induced cultures of  $E.\ coli$  Origami (DE3) expressing GH5BG thioredoxin fusion proteins had intense bands at 68 in total cell lysates in SDS-PAGE (Figure 5). The optimal pH of the enzyme to hydrolyze pNPG is pH 5.0. The pH optima of this enzyme is in a broad range from 30-50°C.



**Figure 5** SDS-PAGE of GH5BG-thioredoxin fusion protein expressed in *E. coli* strain OrigamiB (DE3) after incubation in the presence of 0.5 mM IPTG, at 20°C for 12 h. Lanes: 1, standard marker (Bio-RAD); 2, total protein of *E. coli* cells containing pET32a(+)/DEST-*GH5BG*; 3, soluble fraction of *E. coli* cells containing pET32a(+)/DEST-*GH5BG*; 4, purified thiredoxin-GH5BG. The arrow points to the thioredoxin-GH5BG.

The activity of the purified GH5BG towards artificial glycosides and oligosaccharides is summarized in Table 3. The GH5BG hydrolyzed a broad range of pNP-glycosides of the monosacharides,  $\beta$ -D-glucoside,  $\beta$ -D-fucoside,  $\beta$ -D-galactoside,  $\beta$ -D-xyloside, and  $\alpha$ -L-arabionoside, but it could not hydrolyze pNP- $\beta$ -D-mannoside. Among pNP-glycosides, pNP- $\beta$ -D-fucoside was hydrolyzed twice as efficiently as pNPG, whereas pNP- $\beta$ -D-galactoside and pNP- $\alpha$ -L-arabinoside were hydrolyzed with 27% and pNP- $\beta$ -D-xyloside with 15% the efficiency of pNPG. These results indicate there is low stringency at the -1 subsite of GH5BG, in which the non-reducing glycosyl moiety is bound, which is somewhat similar to many GH1 and GH3  $\beta$ -glucosidases such as rice BGlu1 (Opassiri et al., 2003, 2004). The enzyme could hydrolyze glycosides of  $\beta$ -D-glucose,  $\beta$ -D-fucose,  $\beta$ -D-galactose,  $\beta$ -D-xylose, and  $\alpha$ -L-arabionoside, which are epimers with equatorial OH-2, but not  $\beta$ -D-mannoside, which has an axial projection at OH-2. Therefore, the epimerization of OH-2 is critical for binding of the sugar residue to the -1 subsite. However, the equatorial or axial projection at OH-4 and the elimination of CH<sub>2</sub>OH-6 of D-glucose to H- in D-xylose or CH<sub>3</sub>- in D-fucose are not critical to the capacity of the substrates to bind to the active site.

For disaccharides, GH5BG hydrolyzed laminaribiose ( $\beta$ -1,3), but had very low activity with cellobiose ( $\beta$ -1,4) or gentiobiose ( $\beta$ -1,6). It also hydrolyzed cello-oligosaccharides with degrees of polymerization (DP) of 3-6 at a relatively high rate. On the other hand, GH5BG could not hydrolyze laminari-oligosaccharides with DP 3-5, laminarin, or barley 1,3-1,4- $\beta$ -glucans. The catalytic efficiency ( $k_{cat}/K_m$ ) values for hydrolysis of  $\beta$ -(1,4)-linked oligosaccharides by GH5BG remained approximately constant as the DP increased from 3 to 5 and decreased for cellohexaose. Having rates of hydrolysis of oligomeric substrates which remain approximately constant or decrease with increasing DP length is a characteristic often observed with  $\beta$ -glucosidases, unlike polysaccharide exohydrolases, in which the hydrolytic rate increases with oligosaccharide length (Reese et al, 1968).

Although GH5BG was designated a putative glucan 1,3- $\beta$ -glucosidases based on sequence homology, its catalytic activity is somewhat like GH1  $\beta$ -glucosidases, which show similar oligosaccharide preferences. Rice BGlu1 GH1 exoglucanase/ $\beta$ -glucosidase (Opassiri et al., 2004) and rice Os4bglu12 GH1  $\beta$ -glucosidase (Opassiri et al., 2006) are the enzymes that prefer to hydrolyze  $\beta$ -1,4-linked oligosaccharides and a broad range of pNP-glycosides, but with differences in catalytic efficiency compared to GH5BG.

**Table 3** Kinetic parameters of rice GH5BG in the hydrolysis of pNP-glycosides, disaccharides and oligosaccharides

| Substrate                 | k <sub>cat</sub>   | K <sub>m</sub>    | k <sub>cat</sub> /K <sub>m</sub>    |  |  |
|---------------------------|--------------------|-------------------|-------------------------------------|--|--|
|                           | (s <sup>-1</sup> ) | (mM)              | (s <sup>-1</sup> mM <sup>-1</sup> ) |  |  |
| Cellobiose                | $4.3 \pm 0.8$      | $16.4 \pm 1.9$    | $0.27 \pm 0.02$                     |  |  |
| Cellotriose               | $41 \pm 5$         | $4.53 \pm 0.01$   | $9.1 \pm 1.2$                       |  |  |
| Cellotetraose             | $38 \pm 2$         | $4.09 \pm 0.17$   | $9.3 \pm 0.9$                       |  |  |
| Cellopentaose             | $35.5 \pm 0.4$     | $3.4 \pm 0.4$     | $10.4 \pm 0.4$                      |  |  |
| Cellohexaose              | $9.7 \pm 0.8$      | $2.2 \pm 0.5$     | $4.5 \pm 0.5$                       |  |  |
| Laminaribiose             | $36 \pm 5$         | $7.0 \pm 1.1$     | $5.05 \pm 0.07$                     |  |  |
| Laminaritriose            | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |
| Laminaritetraose          | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |
| Laminaripentaose          | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |
| Laminarin                 | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |
| Barley 1,3, 1,4-β-glucans | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |
| pNP-β-D-glucoside         | $36.1 \pm 0.7$     | $0.47 \pm 0.03$   | 77 ± 4                              |  |  |
| pNP-β-D-fucoside          | $24.5 \pm 0.5$     | $0.17 \pm 0.07$   | $144 \pm 3$                         |  |  |
| pNP-β-D-galactoside       | $27 \pm 3$         | $1.30 \pm 0.10$   | $20.7 \pm 0.5$                      |  |  |
| pNP-β-D-xyloside          | $3.2 \pm 0.3$      | $0.27 \pm 0.05$   | $11.9 \pm 1.5$                      |  |  |
| pNP-α-L-arabinoside       | $2.88 \pm 0.08$    | $0.14 \pm 0.02$   | 21 ± 3                              |  |  |
| pNP-β-D-cellobioside      | $2.07 \pm 0.09$    | $6.23 \pm 0.17$   | $0.34 \pm 0.01$                     |  |  |
| pNP-β-D- mannoside        | n.d. <sup>a</sup>  | n.d. <sup>a</sup> | n.d. <sup>a</sup>                   |  |  |

<sup>&</sup>lt;sup>a</sup> means not detectable

Similar to rice BGlu1, GH5BG had cleaved the  $\beta$ -glucosidic bond between the 2 glucose residues in  $pNP-\beta$ -D-cellobioside, thereby releasing glucose and pNPG, which was then rapidly hydrolyzed (data not shown), but the catalytic efficiency of GH5BG for hydrolysis of  $pNP-\beta$ -D-cellobioside is about 10 times lower than that of rice BGlu1 (Opassiri et al, 2003, 2004). Although GH5BG could hydrolyze both cellotriose and  $pNP-\beta$ -D-cellobioside, it hydrolyzed  $pNP-\beta$ -D-cellobioside about 26 times less efficiently than cellotriose. This suggests that the  $pNP-\beta$ -D-cellobioside, unlike cellotriose, cannot bind well to the third subsite in the active site cleft of GH5BG.

Opassiri et al. (2004) reported subsite affinity differences between barley and rice GH1  $\beta$ -glucosidases, which each have 6 subsites for binding  $\beta$ -1,4-linked glucosyl residues. Barley  $\beta$ II  $\beta$ -glucosidase has a relatively low  $K_m$  (2.67 mM) and high  $k_{cat}$  (11.58 s<sup>-1</sup>) for cellobiose, but cellotriose has a nearly 6-fold lower  $k_{cat}$  (Hrmova et al., 1998). In contrast, the  $k_{cat}$  of rice BGlu1 increases 10 fold as the DP increases from 2 to 3. The difference corresponded to a high affinity of subsite +2 for glucose residue 3 in BGlu1, while a negative interaction was seen at this site in the barley enzyme. Conversely, the binding affinity at site +1 is negligible for BGlu1, consistent with its high  $K_m$  and low  $k_{cat}$  for cellobiose. Because of this, the affinity of cellobiose binding nonproductively in subsites +2 and +3 is expected to be higher than binding in the productive position at the -1 and +1 subsites, so cellobiose is a better inhibitor than substrate. It is likely that GH5BG also binds to cellobiose in a nonproductive position better than in the productive position. Once the third glucosyl residue's interaction is added in cellotriose, the binding to the productive position becomes more favorable.

#### 5. Conclusions

In this study, At least 139 genes homologous to glucanohydrolases which can be classified to be the members in 7 subfamilies of glycosyl hydrolase family in rice has been grouped. In addition, the 2 rice β-glucosidase cDNAs, *Os4bglu12* and *GH5BG*, were cloned and recombinant proteins expressed in E. coli as soluble active form.

Os4bglu12 contig containing the deduced amino acid sequence which appeared to be very similar to the previously purified and characterized cell wall-bound  $\beta$ -glucosidase was cloned by RT-PCR. Recombinant Os4BGlu12 protein hydrolyzed  $\beta$ -linked oligosaccharides and pNP-glycosides. The specificity of Os4BGlu12 for oligosaccharides and pNP-glycosides was different from the previously characterized GH1  $\beta$ -glucosidases/exoglucanases cell-wall-bound rice  $\beta$ -glucosidase, rice BGlu1, and barley  $\beta$ II  $\beta$ -glucosidase.

A putative GH5 glucan-1,3- $\beta$ -glucosidase contains a fascin-like domain at the N-terminus was cloned from germinating rice. A recombinant thioredoxin-GH5BG produced in *E. coli* showed high hydrolytic activity toward various kinds of *p*NP-glycosides and exhibited a marked preference for  $\beta$ -(1,4)-linked oligosaccharides and laminaribiose ( $\beta$ -(1,3)-linked disaccharide). The substrate specificity of GH5BG is different from fungal GH5 exo- $\beta$ -(1,3)-glucanases, which is likely due to differences in the structures of the loops around the active site, in addition to the structures and placement of the amino acid resides around the active site.

These results indicated that both enzymes has exoglucanase/ $\beta$ -glucosidase activity that might involve in the cleavage of oligosaccharides release from the hydrolysis of cell wall by endoglucanses, which is consistent with a role in cell wall metabolism.

#### **Abbreviations**

BGI, Beijing Genomic Institute; CDS, coding sequence; *C. albicans* Exg, Exo- $\beta$ -(1,3)-glucanases of *C. albicans*; DP, degree of polymerization; EST, expressed sequence tag; GH, Glycosyl hydrolases; GH1, glycosyl hydrolase family 1; GH5, glycosyl hydrolase family 5; IMAC, immobilized metal affinity chromatography; pI, isoelectric points; MW, molecular weights; ORFs, open reading frames; *p*NP, *p*-nitrophenol; *p*NPG, *p*-nitrophenyl- $\beta$ -D-glucoside; PGO, peroxidase/glucose oxidase.

#### 6. เอกสารอ้างอิง (References)

- Adams, J. C. (2004). Roles of fascin in cell adhesion and mobility. *Curr. Opin. Cell Biol.* 16: 590-596.
- Adjei-Afriyie, F., Kim, C., Takemura, M., Ishikawa, M., and Horiike, M. (2000). Isolation and identification of the probing stimulants in rice plat for the white-black planthopper, Sogatella furcifera (Homoptera: Delphacidae). *Biosci. Biotechnol. Biochem.* 64: 443-446.
- Akiyama T, Pillai MA, and Sentoku N. (2004). Cloning, characterization and expression of OsGLN2, a rice endo-1,3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. *Planta*. 220: 80-86.
- Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25: 3389-3402.
- Babcock, G. W. and Esen, A. (1994). Substrate specificity of maize  $\beta$ -glucosidase. *Plant Sci.* 101: 31-39.
- Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. *J. Mol. Biol.* 340: 783-795.
- Buchanan, B.B., Gruissem, W. and Jones R.L. (2000). Biochemistry and Molecular Biology of Plants. John Wiley and Sons, Inc., New Jersey.
- Carpita N.C. (1996). Structure and biogenesis of the cell walls of grasses. *Annu. Rev. Plant. Mol. Biol.* 47: 445-476.

- Carpita, N. and McCann, M. (2000). The cell wall. In *Biochemistry and Molecular Biology of Plants*, BB. Buchanan, W. Gruissem and RLJones (eds.). American Society of Plant Physiologists, Maryland. pp. 52-108.
- Cutfield, S. M., Davies, G. T., Murshudov, G., Anderson, B. F., Moody, P. C., Sullivan, P. A. and Cutfield, J. F. (1999). The structure of the exo-β-1,3-glucanase from *Candida albicans* in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. *J. Mol. Biol.* 294, 771-783.
- Czjzek, M., Cicek, M., Zamboni, V., Burmeister, W.P., Bevan, D.R., Henrissat, B. and Esen, A. 2000. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. *Proc. Natl. Acad. Sci.* USA. 97: 13555-13560.
- Davies, G. J. and Henrissat, B. (2002). Plant glyco-related genomics. *Biochem Soc Trans*. 30: 291-297.
- Doy, R. H. and Kosugi, A. (2004). Cellulosomes: Plant-cell-wall-degrading enzyme complexes. *Nature Reviews Microb.* 2: 541-551.
- Hatfield, R. D. and Nevins, D. J. (1987). Hydrolytic activity and substrate specificity of an endoglucanase from *Zea mays* seedling cell wall. *Plant Physiol*. 83: 203-207.
- Hoj, K. R. and Fincher G. B. (1995). Molecular evolution of plant β-glucan-endohydrolases. *Plant J.* 7: 367-379.
- Hrmova, M., Harvey, A. J., Wang, J., Shirley, N. J., Jones, G. P., Stone, B. A., Hoj, P. B. and Fincher, G. B. (1996). Barley β-D-glucan exohydrolases with β-D-glucosidase activity. *J. Biol. Chem.* 271: 5277-5286.
- Hrmova, M., MacGregor, E. A., Biely, P., Stewart, R. J. and Fincher, G. B. (1998) Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1,4)-β-D-glucan exohydrolase. J. Biol. Chem. **273**, 11134-11143
- Hrmova, M. and Fincher, G. B. (2001a). Plant enzyme structure: Explaining substrate specificity and the evolution of function. *Plant Physiol.* 125: 54-57.
- Hrmova, M. and Fincher, G. B. (2001b). Structure-function relationship of  $\beta$ -glucan exohydrolases from higer plants. *Plant Mol. Biol.* 47: 73-91.
- Huber, D. J. and Nevins, D. J. (1981). Partial purification of endo- and exo-β-D-glucanase enzymes from *Zea mays* L. seedlings and their involvement in cell wall autohydrolysis. *Planta*. 151: 206-214.

- Iwami, K. and Yasumoto, K. (1986). Synthesis of pyridoxineβ-glucosidase and its in situ absorbtion in rat small intestine. Nutr. Res. 6: 407-414.
- Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. and Gibson, T. J. (1998) Multiple sequence alignment with Clustal X. *Trends Biochem. Sci.* 23: 403-405.
- Kawasaki, S., Borchert, C. Deyholos, M. Wang, H., Brazille, S., Kawai, K. Galbraith, D., and Bonert, H. J. (2001). Gene expression profiles during the initial phase of salt stress in rice. *Plant Cell.* 13: 889-905.
- Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J.,
  Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E.,
  Yahagi, W., Suzuki, K., Li, C., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida,
  Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda,
  H., Kobayashi, M., Xie, Q., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo,
  S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi,
  T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J.,
  Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashidume, W., Hayatsu, N., Imotani, K.,
  Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y.,
  Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M. and
  Hayashizaki, Y. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones
  from japonica rice. *Science*. 301: 376-379.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*. 227: 680-685.
- Lever, M. (1972). A new reaction for colorimetric determination of carbohydrates. *Anal. Chem.* 47: 273-279.
- Marana, S. R.(2006). Molecular basis of substrate specificity in family 1 glycoside hydrolases. *IUBMB Life*. 58: 63-73.
- Nakai, K. and Horton, P. (1999). PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. *Trends Biochem. Sci.* 24: 34-35.
- Nicholas, K. B. and Nicholas, H. B. (1997). Genedoc: a tool for editing and annotating multiple sequence alignments [Online]. Available: http://www.psc.edu/biomed/ gendoc.
- Nishizawa, Y., Saruta, M., Nakazono, K., Nishio, Z., Soma, M., Yoshida, T., Nakajima, E., and Hibi, T. (2003). Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. *Plant Mol. Biol.* 51: 143-152.

- Opassiri, R., Ketudat Cairns, J. R., Akiyama, T., Wara-Aswapati, O., Svasti, J. and Esen, A. (2003). Characterization of a rice β-glucosidase highly expressed in flower and germinating shoot. *Plant Sci.* 165: 627-638.
- Opassiri, R., Hua, Y., Wara-Aswapati, O., Akiyama, T., Esen, A. and Ketudat Cairns, J. R. (2004). β-Glucosidase, exo-β-glucanase and pyridoxine transglucosylase activities of rice BGlu1. *Biochem. J.* 379: 125-131.
- Opassiri, R., Pomthong, B., Onkoksoong, T., Akiyama, T., Esen, A. and Ketudat Cairns J. R. (2006). Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. *BMC Plant Biol.* 6: 33.
- Rakwal R, Agrawal GK, and Yonekura M. (1999). Separation of proteins from stressed rice (*Oryza sativa* L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. *Electrophoresis*. 20: 3472-3478.
- Reese, E. T., Maguire, A. H. and Parrish, F. W. (1968). Glucosidases and exo-glucanases. Can. J. *Biochem.* 46: 25-34.
- Sakamoto, Y., Irie, T. and Sato, T. (2005). Isolation and characterization of a fruit body-specific exo-β-1,3-glucanase-encoding gene, exg1, from *Lentinula edodes*. *Curr. Genet.* 47: 244-252.
- Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
- Schliemann, W. (1984). Hydrolysis of conjugated gibberellins by β-glucosidases from dwarf rice (Oryza sativa L. cv. Tan-ginbozu). *J. Plant Physiol.* 116: 123-132.
- Taiz L. (1984). Plant cell expansion: regulation of cell wall mechanical properties. *Annu. Rev. Plant physiol.* 35: 585-657.
- Thomas BR, Inouhe M, Simmons CR, and Nevins DJ. (2000). Endo-1,3;1,4-β-glucanase from coleoptiles of rice and maize: role in the regulation of plant growth. *Int J Biol Macromol*. 27: 145-149.
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22: 4673-4680.
- Wang, X., He, R., He, G. (2005). Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. *J. Plant Physiol.* 162: 1254-1262.

- Xu, Z., Shih, M. and Poulton. J. E. (2006). An extracellular exo-β-(1,3)-glucanase from *Pichia pastoris*: purification, characterization, molecular cloning and functional expression. *Protein Exp. Puri.* 47: 118-127.
- Yamaguchi T, Nakayama K, Hayashi T, Tanaka Y, and Koike S. (2002). Molecular cloning and characterization of a novel β-1,3-glucanase gene from rice. *Biosci. Biotechnol. Biochem*. 66: 1403-1406.
- Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY and Wu P. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. *Theor. Appl. Genet.* 107: 1505-1515.

## 7. Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

#### 7.1 ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- 1) **Opassiri R**, Pomthong B, Onkoksoong T, Akiyama T, Esen A, and Ketudat Cairns JR. 2006. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biology. 6: 33. (unofficial Impact factor 2007 3.44, official Impact factor due June 2008)
- 2) Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Ketudat-Cairns M, and Ketudat Cairns JR. 2007. A stress-induced rice β-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochemical Journal. (in review) (Impact factor 2005 4.224)

### 7.2 กิจกรรมอื่น ๆ ที่เกี่ยวข้อง

ได้แก่

(1) การเสนอผลงานในที่ประชุมนานาชาติ

Opassiri, R., Pomthong, B., Onkoksoong, T., Akiyama, T., and Ketudat Cairns, J.R. 2006. Functional genomic analysis of rice glycosyl hydrolase family 1. The 20th IUBMB International Congress of Biochemistry and Molecular Biology and 11<sup>th</sup> FAOBMB Congress, Kyoto, Japan, 18-23 June 2006.

- (2) การเชื่อมโยงทางวิชาการกับนักวิชาการอื่นๆ ทั้งในและต่างประเทศ
  - รศ. ดร. สุมนทิพย์ บุญนาค คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น เกี่ยวกับคำแนะนำและ เทคนิควิธีในการศึกษาบทบาททางสรีรวิทยาของยืนในข้าว
  - Dr. Takashi Akiyama Department of Low-Temperature Science, National Agricultural Research Center for Hokkaido Region ประเทศญี่ปุ่นเกี่ยวกับเทคนิคในการวิเคราะห์การทำงาน ของเอนไซม์ glucan hydrolase ในการย่อยสลายสับสเตรทกลุ่ม glycans และ oligosaccharides ชนิดต่างๆ

### 7.3 การประยุกค์ใช้ความรู้ที่ได้จากงานวิจัย

- 1) ข้อมูลที่ได้จากงานวิจัยนี้เป็นพื้นฐานในการทำงานวิจัยที่เกี่ยวข้องกับการศึกษาเอนไซม์ในกลุ่มกลูคาร โนไฮโดรเลสชนิดอื่นๆ ต่อไป
- 2) เอนไซม์ที่ผลิตได้ในรูปแบบรีคอมบิแนนท์โปรตีนในแบคทีเรียสามารถผลิตได้ในปริมาณมากและมี ต้นทุนไม่สูงมาก จึงน่าเหมาะที่จะนำเอนไซม์นี้ไปใช้ในการศึกษาการย่อย biomass เพื่อนำไปใช้เป็นวัตถุดิบใน การผลิตสารผลิตภัณฑ์จากน้ำตาลได้

#### ภาคผนวก

#### บทความสำหรับเผยแพร่

ผนังเซลล์พืชทุกชนิดประกอบขึ้นมาจากโพลีแชคคาไรด์หลากหลายชนิด พืชแต่ละชนิดมีส่วนประกอบ และการจัดเรียงตัวของโพลิเมอร์ที่ผนังเซลล์แตกต่างกัน แหล่งของผนังเซลล์ซึ่งมีอยู่เป็นปริมาณมากที่เหลือทิ้ง จากภาคเกษตรกรรม เช่น ฟางข้าวและข้าวบาร์เลย์ ซังข้าวโพด สามารถนำมาใช้เป็นวัตถุดิบในการแปรรูปเป็น สารผลิตภัณฑ์ของน้ำตาลได้ โครงสร้างพื้นฐานของผนังเซลล์พืชในกลุ่มธัญพืชและพืชตระกูลหญ้าแตกต่างจากพืช มีดอกอื่นๆ ตรงที่พืชเหล่านี้มีโพลิเมอร์ของน้ำตาลที่มีความซับซ้อนและหลากหลายมาก เอนไซม์ในกลุ่มกลูคาโน ไฮโดรเลส เป็นเอนไซม์ที่มีบทบาทในกระบวนการสร้างและสลายผนังเซลล์พืชโดยเกี่ยวข้องกับการย่อยสลายโพลิ เมอร์ของน้ำตาลกลูโคส เอนไซม์เหล่านี้ถูกจัดไว้เป็นสมาชิกกลุ่มย่อยของกลุ่มเอนไซม์ไกลโคซิลไฮโดรเลส กลูคาโนไฮโดรเลสแบ่งได้เป็น 3 ประเภท ได้แก่ เอนโดกลูคาเนส เอกโซกลูคาเนส และบีตัากลูโคชิเดส เอนไซม์ เอนโดกลูคาเนสทำหน้าที่ย่อยพันธะที่อยู่ภายในโมเลกุลเซลลูโลสซึ่งเป็นส่วนประกอบของผนังเซลล์พืช จนได้โอลิโก แซคคาไรด์สายสั้นลง เอนไซม์เอกฌโซกลูคาเนสจะย่อยกลูโคสออกจากด้านหัวหรือท้ายของโอลิโกแซคคาไรด์ก็ได้ ส่วนบีตัากลูดคซิเดสย่อยกลูโคสจากปลายท้ายของโอลิโกแซคคาไรด์ได้เท่านั้น

ในการศึกษานี้พบยีนของข้าวที่จัดอยู่ในกลุ่มเอนไซม์กลูคาโนไฮโดรเลสอย่างน้อย 139 ยีน เพื่อที่จะทำให้ เกิดความเข้าใจตลอดจนการนำเอนไซม์นี้มาใช้ประโยชน์ จึงได้นำเอนไซม์ในกลุ่มกลูคาโนไฮโดรเลส 2 ชนิด ที่อยู่ ในไกลโคชิลไฮโดรเลสกลุ่มที่ 1 และ 5 ชนิดที่เป็นเอนไซม์บีต้ากลูโคชิเดส มาศึกษาหน้าที่และการเร่งปฏิกิริยา ได้เพิ่มจำนวนชิ้นส่วน cDNA ของบีต้ากลูโคชิเดสของข้าวทั้งสองชนิด ซึ่งได้ให้ชื่อเอนไซม์นี้ว่า Os4bglu12 และ GH5BG ด้วยวิธี RT-PCR และได้ใช้เทคนิคการตัดต่อ cDNA ดังกล่าวเข้ากับดีเอ็นเอพาหะแล้วนำเข้าสู่เซลล์ แบคทีเรียเพื่อให้เกิดการผลิตเอนไซม์ในรูปแบบโปรตีนสายผลมให้ได้ปริมาณมาก (เรียกรีคอมบิแนนท์โปรตีน) เอนไซม์ที่ผลิตถูกนำมาศึกษาคุณสมบัติทางชีวเคมีและความจำเพาะต่อสารตั้งต้น พบว่าเอนไซม์ทั้งสองชนิดนี้มี ความสามารถในการย่อยพันธะที่เชื่อมต่อระหว่างโมเลกุลกลูโคสของกลูโคโอลิโกแซคคาไรด์ที่มีกลูโคสต่อกันอยู่ 3-6 หน่วย ด้วยพันธะไกลโคซิดิกแบบ β-(1,4) และไดแซคคาไรด์ที่มีกลูโคสต่อกันด้วยพันธะไกลโคซิดิกแบบ β-(1,3) ได้ดีมาก และเอนไซม์ทั้งสองชนิดยังย่อย pNP-β-glycosides ได้หลายชนิด ซึ่งแสดงให้เห็นว่าเอนไซม์ น่าจะสามารถย่อยโมเลกุลน้ำตาลชนิดอื่นนอกเหนือจากกลูโคสได้อีก จากการทดลองนี้ทำให้คาดว่าเอนไซด์นี้ น่าจะมีบทบาทสำคัญในการย่อยสลายผนังเซลล์ โดยนำโอลิโกแซคคาไรด์หรือไดแซคคาไรด์ที่เกิดจากการย่อย ผนังเซลล์ดัวยเอนโดกลูคาเนสหรือเอกโซกลูคาเนส มาย่อยต่อจนกระทั่งได้น้ำตาลโมเลกุลเดี่ยว

การศึกษาเอนไซม์โดยสกัดออกมาจากข้าวโดยตรงจำเป็นต้องใช้หลายขั้นตอน เอนไซม์ที่ได้มีปริมาณ น้อยและมักจะถูกปนเปื้อนกับเอนไซม์อื่นๆที่มีสมบัติและขนาดใกล้เคียงกัน แต่เอนไซม์ที่ได้จากการนำ cDNA ของยีนที่สนใจมาใช้ผลิตเอนไซม์ในรูปรีคอมบิแนนท์โปรตีนจะสามารถถูกผลิตขึ้นได้ในปริมาณมากและมีความ บริสุทธิ์สูง ดังนั้นจึงสามารถนำเอนไซม์ไปใช้ในการศึกษาสมบัติต่างๆ ตลอดจนการศึกษาโครงสร้างผลึกซึ่งอาจ นำไปสู่การค้นพบกลไกการทำงานของเอนไซม์และการทำวิศวกรรมเอนไซม์ในขั้นต่อไป เอนไซม์ที่ได้จาก การศึกษานี้อาจจะสามารถนำไปประยุกต์ใช้ในอุตสาหกรรมการย่อยสลายโพลิเมอร์ของน้ำตาลที่จะนำไปใช้ในการ ผลิตสารต่างๆ ได้ เช่น แอลกอฮอล์, กรดอะมิโน เป็นต้น

#### Reprint

## **BMC Plant Biology**



Research article

**Open Access** 

# Analysis of rice glycosyl hydrolase family I and expression of Os4bgluI2 $\beta$ -glucosidase

Rodjana Opassiri<sup>1</sup>, Busarakum Pomthong<sup>1</sup>, Tassanee Onkoksoong<sup>1</sup>, Takashi Akiyama<sup>2</sup>, Asim Esen<sup>3</sup> and James R Ketudat Cairns\*<sup>1</sup>

Address: <sup>1</sup>Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand, <sup>2</sup>Department of Low-Temperature Science, National Agricultural Research Center for Hokkaido Region, Sapporo 062-8555, Japan and <sup>3</sup>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA

Email: Rodjana Opassiri - opassiri@hotmail.com; Busarakum Pomthong - busarakum\_p@yahoo.com; Tassanee Onkoksoong - onkoksoong@yahoo.com; Takashi Akiyama - takiyama@affrc.go.jp; Asim Esen - aevatan@vt.edu; James R Ketudat Cairns\* - cairns@sut.ac.th

\* Corresponding author

Published: 29 December 2006

Received: 19 September 2006 Accepted: 29 December 2006

BMC Plant Biology 2006, 6:33 doi:10.1186/1471-2229-6-33

This article is available from: http://www.biomedcentral.com/1471-2229/6/33

© 2006 Opassiri et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

**Background:** Glycosyl hydrolase family I (GHI)  $\beta$ -glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GHI  $\beta$ -glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GHI members, their expression and the activity of one of them, to begin to decipher their roles in rice.

Results: Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed  $\beta$ -(1,4)-linked oligosaccharides of 3–6 glucose residues and laminaribiose.

Conclusion: Careful analysis of the database sequences produced more reliable rice GHI gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only a few of their functions could be implied from those of GHI enzymes from Arabidopsis and other dicots. This implies that analysis of GHI enzymes in monocots is necessary to understand their function in the major grain crops. To begin this analysis, Os4bglu12  $\beta$ -glucosidase was characterized and found to have high exoglucanase activity, consistent with a role in cell wall metabolism.

Page 1 of 19 (page number not for citation purposes)

#### Background

β-glucosidases (3.2.1.21) are glycosyl hydrolases that hydrolyze the β-O-glycosidic bond at the anomeric carbon of a glucose moiety at the nonreducing end of a carbohydrate or glycoside molecule. These enzymes are found essentially in all living organisms and have been implicated in a diversity of roles, such as biomass conversion in microorganisms [1] and activation of defense compounds [2,3], phytohormones [4,5], lignin precursors [6], aromatic volatiles [7], and metabolic intermediates by releasing glucose blocking groups from the inactive glucosides in plants [8]. To achieve specificity for these various functions, β-glucosidases must bind to a wide variety of aglycones, in addition to the glucose of the substrate.

The \( \beta\)-glucosidases that have been characterized to date fall predominantly in glycosyl hydrolase families 1 and 3 [9], with family 1 enzymes being more numerous in plants. Glycosyl hydrolase family 1 (GH1) contains a wide range of β-glycosidases, including β-galactosidases, β-mannosidases, phospho-β-galactosidases, phospho-βglucosidases, and thioglucosidases, in addition to β-glucosidases. The plant enzymes in this family generally fall in a closely related subfamily, but, despite their high sequence similarity, display a wide range of activities. Besides β-glucosidases with diverse specificities, these plant enzymes include thio-β-glucosidases or myrosinases, β-mannosidases, disaccharidases, such as priand meverosidase furcatin hydrolase, hydroxyisourate hydrolase, which hydrolyzes an internal bond in a purine ring, rather than a glycosidic linkage [7,9-11]. In addition, many enzymes in this group are capable of releasing multiple kinds of sugars from aglycones, such as isoflavonoid \( \beta\)-glucosidases, which can release the disaccharide acuminose and malonyl glucose, in addition to glucose itself, from isoflavonoids [12,13]. Other \( \beta\)-glucosidases in this subfamily may have high specificity for glucosides or glucosides and fucosides, or may hydrolyze other glycosides, such as β-galactosides, β-mannosides, and β-xylosides, as well. Primeverosidase has high specificity for primeverosides, with no hydrolysis of glucosides [7], while furcatin hydrolase can hydrolyze glucosides as well as disaccharide glycosides [10]. Clearly, plant family 1 glycosyl hydrolases show a range of sugar specificities.

Plant family 1 glycosyl hydrolases tend to show high specificity for their aglycones, though many hydrolyze synthetic, nonphysiological substrates, like *p*-nitrophenol (*p*NP)-β-glycosides [14]. The aglycones span a wide range of structures, including sugars [15-17], hydroxaminic acids [18], isoflavonoids [12,13], rotenoids [19], alkaloids [20,21] hydroxyquinones [3], cyanogenic nitriles [2], etc. It is the specificity for these aglycones which is

thought to specify the function of most of these enzymes [14]. Since many  $\beta$ -glucosidases function in plants, it is important that these enzymes specifically hydrolyze their own substrates and not other substrates with which they may come into contact. It seems evident that the substrate specificity, localization of the enzymes with respect to potential substrates, and the activities of the substrates and hydrolysis products will determine the roles of these enzymes.

Xu et al. [22] described 47 GH1 genes in the Arabidopsis genome, including 7 apparent thioglucosidases, and one enzyme that had high β-mannosidase activity, in agreement with the prediction from its similarity to tomato β-mannosidase. With the completion of high quality drafts of the rice genome, a thorough analysis of GH1 can be conducted in rice. To date, only a few rice β-glucosidase isozymes have been functionally characterized, with the activities described being hydrolysis of gibberellin glucosides, pyridoxine glucosides and oligosaccharides [16,17,23,24].

To assess the functions of GH1 in rice, genes homologous to GH1  $\beta$ -glucosidase genes have been identified from the rice genome, and their structures, predicted protein products and evidence of expression evaluated. In addition, we have cloned a  $\beta$ -glucosidase from germinating rice based on genomic data, and assessed its biochemical properties after expression in  $E.\ coli.$ 

#### Results and discussion Glycosyl hydrolase family I $\beta$ -glucosidase family

The completion of the Oryza sativa L. spp. japonica Rice Genome Project and the complementary indica rice (O. sativa L. spp. indica) genome project by the Beijing Genomic Institute (BGI) has allowed genome-wide analvsis of gene families in this important crop [25,26]. The sequence and mapping information provided to the public databases by these projects enabled us to identify the genes for glycosyl hydrolase family 1 members (putative β-glucosidases) in rice, determine their gene structures and genomic organization, and model their protein products and phylogenetic relationships. In this study, we used the DNA sequences of japonica rice in the Monsanto Rice Genome Sequencing Project, the Torrey Mesa Research Institute and GenBank at NCBI and the indica rice sequences of the BGI as the starting point to examine the sequences homologous to GH1 members by manual annotation. By examination of the gene structures and prediction based on the knowledge of other plant GH1 genes, we rectified any errors in gene structures from the automatic annotation by the Rice Genome Sequencing Project contigs. Thereafter, the GH1 members of indica rice were compared with those of japonica rice to identify which genes are orthologues (see Table 1). Finally, all contig sequences were searched against the completed sequences of the 12 rice chromosomes in GenBank to map each contig position on the chromosomes and identify the new GH1 members that were not present in the other databases. A new systematic code for the genes based on their chromosome location was devised with the chromosome number followed by a bglu number counting from the top of chromosome 1 through the bottom of chromosome 12 (Table 1). To avoid confusion, previously published synonyms for all family members are provided in Table 1. The retrieved gene sequences were searched against the dbEST and japonica rice full-length cDNA databases to determine the mRNA expression patterns of each gene in rice.

Forty β-glucosidase genes, including 34 full-length genes, 2 pseudogenes, 2 gene fragments, and 2 intronless genes, were identified, as listed in Table 1. Thirty-six out of 40 genes are found in both japonica and indica rice with 98-100% sequence identity. The Os11bglu35 gene was present only in japonica rice sequences, while Os11bglu37, Osbglu39 and Osbglu40 were only found in indica rice. The thirty-eight mapped GH1 genes are distributed over all chromosomes, except chromosome 2 (Table 1). The Osbglu39 and Osbglu40 sequences have not been mapped to any chromosome, and it is possible they represent contamination of endophytic genes remaining in the indica genome draft. Twenty-two out of 40 gene sequences are derived from the automated annotation in the public databases and 18 genes are derived from manual annotation. We corrected 4 of 22 automated annotation contigs that had misassigned one or more intron-exon boundaries. Os11bglu35 and Os11bglu37 appear to be pseudogenes, since they have premature stop codons and cannot produce full-length proteins.

The size of rice GH1 is not unexpected, since a search of the Arabidopsis thaliana genome identified 47 glycosyl hydrolase family 1 homologues, including 8 probable pseudogenes and 3 intronless genes, which are distributed throughout all five chromosomes [22]. The slightly larger size of the family in Arabidopsis may be due to the presence of myrosinases, which are not found in rice, and a larger number of pseudogenes. The large size of both rice and Arabidopsis GH1 may reflect different substrate specificity and expression patterns in rice tissues and/or in response to environmental conditions among the GH1 members.

The presence of many GH1 genes in rice suggests they may hydrolyze an array of possible substrates, depending on their substrate specificity and localization with respect to the substrates. Although a number of glycosides that could serve as potential substrates for rice GH 1  $\beta$ -glucosidases have been purified from rice tissues, there have been few reports about the hydrolysis of these substrates by the

enzymes. The major glycosides found in various tissues of rice include glycosylsterols, flavonoid glucosides, hormone glucosides, a vitamin glucoside, and pantonic acid glucoside. Glycosylsterols found in rice are glycosyl-sitosterol, -campesterol and -stigmasterol in rice bran [27] and β-sitosterol-3-O-β-D-glucoside in rice hulls [28]. The major flavonoid glucosides present in rice include 1) anthocyanins, such as cyanidin-O-β-D-glucoside and peonidin-O-β-D-glucoside, in black rice [29,30]; 2) tricin-Oglucoside in rice hulls, bran, leaf and stem [28,31]; and 3) hydroxycinnamate sucrose esters, such as 6'-O-feruloylsucrose and 6'-O-sinapoylsucrose in germinated brown rice [32]. Hormone glucosides found in rice include gibberellin glucosides in ungerminated seeds and anther [23,33], salicylic glucoside [34] and indole-3-acetic acid (IAA)-glucoside [35]. Pyridoxine-β-D-glucoside was found in rice bran, callus and seedling [36-38]. Another glycoside, namely R(-) pantoyllactone-β-D-glucoside, was found in the shoots but not the roots of rice seedlings [39].

Many compounds (including glycosides) have been found in rice tissues in response to environmental stresses and in transgenic rice plants. Recently, it was found that there is a high accumulation of IAA-glucoside in tryptophan-overproducing transgenic rice [35] and of salicylic glucoside in rice overproducing NH1, a key regulator of salicylic acid mediated systematic acquired resistance, in transgenic rice [34]. The level of pyridoxine glucoside was reported to be increased by the application of pyridoxine to rice callus and germinating seeds [37,38]. Markham et al. [40] reported that exposing UV-tolerant rice to high UV-B levels increased the levels of flavone glucosides. These results may indicate that the presence of high amounts of some metabolic compounds is corrected by converting them to the glucoside-conjugated forms. It still needs to be shown whether or not these compounds are later reactivated by β-glucosidases.

#### Protein sequence alignment and phylogenetic analysis

The open reading frames (ORFs) of thirty-seven genederived cDNAs (excluding Os11bglu36, Osbglu39 and Osbglu40, which are more closely related to bacterial GH1 genes) showed a high level of shared deduced amino acid sequence identity to each other and other known plant βglucosidase sequences. All deduced β-glucosidase protein sequences contain the putative catalytic acid/base and nucleophilic glutamate residues, except Os4bglu14 and Os9bglu33, in which the acid/base glutamate is replaced with glutamine, as seen in thioglucosidases. The catalytic acid/base and nucleophile consensus sequences are: W-X-T/I-F/L/I/V/S/M-N/A/L/I/D/G-E/Q-P/I/Q and V/I/L-X-E-N-G, respectively, with relative frequencies of amino acids at each position shown in Figure 1. These sequences are similar to the consensus sequences previously derived from known GH1 β-glucosidase sequences [41,42]. The

> Page 3 of 19 (page number not for citation purposes)

Page 4 of 19 (sezoquuq noiteitor for 10 for 19 (sezoquuq noiteitor)

Table 1: Summary of identified genes homologous to gly cosyl hydrolase family 1 glucosidase

http://www.biomedcentral.com/1471-2229/6/33

| DF 30                        |                                                        |                                           |                                           |                                                              |                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                          |                                                              |                                           |                                                                                                                              |                                                       |                                           | ment,                                     |                                                                        | ment<br>19-13                             |                                                              |                                                                   |                                            |                                            |                                                             |
|------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------------|
| Comment                      |                                                        |                                           |                                           |                                                              |                                                                               |                                          | i Ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                          |                                                              |                                           |                                                                                                                              |                                                       |                                           | Gene fragment,<br>lacks exon 1–8          |                                                                        | Gene fragment<br>lacks exon 9–13          |                                                              |                                                                   |                                            |                                            |                                                             |
| Tissue libraries'            | sh, pn, wh-TL 2 wk If.A BF3                            | pn-FW, wh-TL 35 d If-Dr, 3 wk If-BI       | sh, 2 wk If ABF3, 3 wk If-BI              | sh, pa-FW, pa-FW-Dr, 3 wk IEBI                               | sh, st-IM, pn, pn-FW, wh-TL wh-BT,<br>wh-TF, 2 wk ff-AtJMT, If-Dr, 3 wk If-Ls | sh, pn-PW, cl-Co, 3 wk IFBI              | cl. st. rt-SD, stelft, pn, pn-PW, wh-TL, cl-ABA, cl-NAA, cl-BAP, cl-Cd, cl-haet, cl-Co, stelf, cl-Cd, stelf, cl-Cd, stelf, cl-Cd, stelf, cl-Cd, stelf, stelf | sh, pn. pn-PW wh-TL wh-TF, d-BAP,<br>sh-Co, 2 wk if ABF3      | sh, FFIM, 3-4 wk re-Sa                   | sh, IFM, wh-TL, 2 wk if ABF3, 2 wk if.<br>AdMT, 3 wk if-Bl   | sh-Co                                     | cl, sh, 2 wk ffand rr, sp, wh-TL wh-<br>TF, I wk rr-Sa, sd-Co, pn-PW-Dr, 2<br>wk cl-HDACI, 2 wk sd-Ph, 3 wk IFBI,<br>IFBT-Xa | sh. pn. wh-TL wh-TF, 3 wk ffWd, 3<br>wk ff-Bl, ffM-Bl | 45                                        |                                           | rt-SD, sh, pn, pn-PW, wh-TL, cl-Co, 3<br>wk rt-Sa, 3 wk ff-Bl, ff-M-Bl |                                           | sh, pn-FW, 3 wk If-BI                                        | pn-FW, pn-FW-Dr, 2 wk ff. AgMT, 3<br>wk ff-Wd                     |                                            |                                            | sh, IFM, pn-PW, d-BAP, chNAA, 3wk<br>IFLs, 3wk IFBI, IFM-BI |
| Number ESTsh                 | <u>E</u>                                               | +                                         | 4                                         | •                                                            | 23                                                                            | <u>+</u>                                 | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T.                                                            | =                                        | 7                                                            | +                                         | 8                                                                                                                            | 77                                                    | _                                         | 0                                         | <u> </u>                                                               | 0                                         | 2                                                            | is.                                                               | 0                                          | 0                                          | 36                                                          |
| Corresponding cDNAss         | AK069177 (F)<br>AK060988 (n)                           |                                           | AK063065 (n)                              |                                                              | AK119221 (F)                                                                  | AX129294 (F)<br>AX119546 (F)             | OSU28047(F)AK100165<br>(F) AK103027 (F)<br>AK105026 (F)<br>AK059920 (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AK120790 (F)<br>AK105850 (n)AK059517<br>(n)                   | AK066908 (F?)                            | AK062793 (F)<br>AK062029 (F)<br>AK073031 (n)<br>AK068304 (n) |                                           | AK1062776 (n)<br>AK100820 (n)<br>AK105375 (n)                                                                                | AK070962 (F)                                          | AK067841 (F)                              |                                           | AK066850 (F)<br>AK068772 (F)                                           |                                           | AK058333 (n)                                                 | AK105546 (F)                                                      | AK120998 (F?)                              |                                            | AK071469 (F)                                                |
| Gene pattern                 | 2                                                      | 2                                         | 2                                         | 2                                                            | _                                                                             | _                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                             | _                                        | _                                                            | _                                         | _                                                                                                                            | _                                                     | E                                         |                                           | m                                                                      |                                           | e                                                            | 2                                                                 | _                                          | _                                          |                                                             |
| Gene locus IL//position/IChr | AP008207/17752382 bp-17760802<br>bp/chr 1              | AP008207/34595732 bp-34582220<br>bp/chr 1 | AP008207/34604232 bp-34599017<br>bp/chr l | A P008207/38998348 bp-39003033<br>bp/chr 1                   | A P008207/40834604 bp-40840341<br>bp/chr 1                                    | AP008209/5850657 bp-5844110 bp/<br>chr 3 | A P008209/28041529 bp-28037050<br>bp/chr 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A P008209/28050325 bp-28045526<br>bp/chr 3                    | AP008210/23697091bp-23691010<br>bp/chr 4 | AP0082 I0/2370885 I bp-23703582<br>bp/chr 4                  | AP008210/23717688 bp-23710742<br>bb/chr 4 | AP008210/23728066 bp-23723058<br>bpichr 4                                                                                    | AP000210/23742711 bp-23738 108<br>bp/chr 4            | AP008210/25617791 bp-25613930<br>bp/chr 4 | AP008210/25626016 bp-25623565<br>bp/chr 4 | A P008210/25631832 bp-25640157<br>bp/chr 4                             | AP008210/25646002 bp-25648366<br>bb/chr 4 | AP008210/2566/349 bp-25654991<br>bp/chr 4                    | AP008211/17386160 bp-17389960<br>bp/chr 5                         | A P008211/17403620 bp-17407871bp/<br>chr 5 | A P008211/17421799 bp-17427364<br>bp/chr 5 | A P008211/17450999 bp-17456012<br>bo/chr 5                  |
| RGP GenBank IDs              | AP00321Z (F) (BAD732934) AP00820Z (F)                  | AP003570 (F) AP004331 (F) AP008207 (F)    | AP00357Q (F) AP004331 (F) AP008207 (F)    | AP003349 (F) (BAD82183) AP003418 (F) (BAD82346) AP008207 (F) | AP003272 (F) (BAD87322) AP004330 (F) (BAD88178) AP008207 (F)                  | AC146619 (F) AP008209 (F)                | AC091670 (F) (AAX95519) AC133334 (F)<br>(AAS77254) AP008209 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC091670 (F) (AAX 95520) AC133334 (F) (AAS07251) AP008202 (F) | AL731582 (F) AP008210 (F)                | AL731582 (F) (CAE05481) AP008210 (F)                         | AL731582 (F) (CAE05482) AP008210 (F)      | AL731582 (F) (CAE05483) AP008210 (F)                                                                                         | AL73182 (F) (CAE05485) AP00821Q (F)                   | AL606622 (F) (CAE03392) AP008210 (F)      | AL606622 (n) (CAE003399) AP008210 (n)     | AL606622 (F) (CAE54544) AL606652 (F) (CAE01908) AP008210 (F)           | AL606622 (n) AL606659 (n) AP008210 (n)    | AL606622 (F) (CAE01910) AL606659 (F) (CAE54546) AP008210 (F) | AC121366 (F) (AAS79738) AC135927 (F)<br>AC137618 (F) AR008211 (F) | AC121366 (F) AC137618 (F) AP008211 (F)     | AC121366 (F) AC137618 (F) AP008211 (F)     | AC121366 (F) AC137618 (F) (AAV31358)<br>AP008211 (F)        |
| (AAAA)•                      | 02002143 (F)<br>02002142 (aa<br>110-189 <sup>6</sup> ) | 1.                                        | 02004130 (F)<br>02004127 (aa<br>134-288)  | 1                                                            |                                                                               | 02008013 (F)                             | 0.2010831 (az 1–<br>99) 0.2006516 (az<br>100–504)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02010831 (F)                                                  | 02014146 (F)                             | 02014151 (F)                                                 | 02014151 (F)                              | 02014151 (F)                                                                                                                 | 02014151 (F)<br>02014154 (aa<br>465-520)              | ( <u>B</u>                                | 02014355                                  | 02014360 (aa 1-<br>69) 02014359 (aa<br>70-516)                         | 02014358                                  | 02014362 (aa 1-<br>46) 02014361 (aa<br>47-505)               |                                                                   | 02016859 (F)<br>02017035 (F)               | 02016862 (F)                               | 02016869 (F)<br>02016867 (as 1-                             |
| Gene name                    | Ostbøvi                                                | Osf byte 2                                | Ost byłu3                                 | Osibgu4                                                      | Ost bybu5                                                                     | Os3bgtr6                                 | 0s3bgb/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01305018                                                      | Os4bgtv9                                 | 05455610                                                     | 0s4bgb11                                  | 0s4bgb112                                                                                                                    | 0546gtr13                                             | Ostbgt14                                  | 054658115                                 | 05465616                                                               | 0s4bgti17                                 | 0s4bgtu18                                                    | 611899550                                                         | 0s.5bgts 20                                | OsSbgh21                                   | 0s5bgb 22                                                   |

38

BMC Plant Biology 2006, 6:33