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SYNOPSIS

The cDNA for a stress-induced glycosyl hydrolase family 5 (GHS) B-glucosidase,
GH5BG, was cloned from rice seedlings. The GH5BG ¢cDNA encodes a 510 amino acid
precursor protein that comprises 19 amino acids of prepeptide and 491 amino acids of mature
protein. The protein was predicted to be extracellular. The mature protein is a member of a
rice-specific subfamily of GHS5 proteins that contain two major domains, a 3-1,3-exoglucanase-
like domain and a fascin-like domain, which is not commonly found in plant enzymes. The
GH5BG mRNA is highly expressed in the shoot during germination and in leaf sheaths of
mature plants. The GH5BG was up-regulated in response to salt stress, submergence stress,
methyl jasmonate, and abscissic acid in rice seedlings. A thioredoxin fusion protein produced
from the GH5BG cDNA in Escherichia coli hydrolyzed various p-nitrophenyl-glycosides,
including B-D-glucoside, a-L-arabinoside, B-D-fucoside, B-D-galactoside, 3-D-xyloside and B-D-
cellobioside, as well as B-(1,4)-linked glucose oligosaccharides and B-(1,3)-linked disaccharide
(laminaribiose). The catalytic efficiency (kc./Kp) for hydrolysis of B-(1,4)-linked
oligosaccharides by the enzyme remained constant as the degree of polymerization (DP)
increased from 3 to 5. This substrate specificity is significantly different from fungal GHS
exoglucanases, such as Candida albicans exo-p-(1,3)-glucanase, which may correlate to a

marked reduction a loop that makes up the active site wall in the Candida enzyme.

Keywords: B-glucosidase, rice, glycosyl hydrolase family 5, fascin-like domain, recombinant

protein expression, environmental stress

Abbreviations: ABA, abscissic acid; C. albicans Exg, Exo-B-(1,3)-glucanases of C. albicans;
DP, degree of polymerization; GH, Glycosyl hydrolases; GHS, glycosyl hydrolase family 5;
IMAC, immobilized metal affinity chromatography; ORF, open reading frame; pNP, p-
nitrophenyl; pNPG, pNP-B-D-glucoside; PGO, peroxidase/glucose oxidase
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INTRODUCTION

Glycosyl hydrolases (GH), enzymes that catalyze the hydrolysis of glycosidic bonds
between sugars and other moieties, can be classified into more than 100 families [1] (for up-to-
date information see Carbohydrate-Active Enzymes database (CAZY) at http://www.cazy.org
/CAZY /index.html). Based on their 3-dimensional structures, GH can be grouped into clans of
related structures [1]. Clan A is the largest group and contains 17 families, the structures of
which contain a core (B/a)s barrel with two catalytic amino acid residues, an acid/base and a
nucleophile, on the ends of strands 4 and 7 of the barrel, respectively [2-4]. GH family 5 (GHY)
is one clan A family that contains enzymes with a wide range of catalytic activities, including
cellulases, chitosanases, endoglucanases, exoglucanases, exoxylanases, endoxylanases, and
mannanases, with those that have investigated coming primarily from microorganisms [5-10],
though a B-mannanase from a plant was recently described [11]. Although there is much
variation in the protein sequences and enzyme activities of the family members, they all possess
eight conserved residues (including two glutamate residues acting as catalytic acid/base and
nucleophile) around the active site, which distinguish GHS from other GH families [8, 12].

There are now twenty-one known GHS5 3-D crystal structures: endoglucanases from
Acidothermus cellulolyticus, Bacillus agaradhaerens, Bacillus sp., Clostridium thermocellum,
Erwinia chrysanthemi, Pseudoalteromonas haloplanktis, Thermobifida fusca, and Thermoascus
aurantiacus; exo-p-(1,3)-glucanases (Exg) from C. albicans and Saccharomyces cervisiae;
mannanases from Bacillus sp., Cellvibrio mixtus, Thermobifida fusca, Thermotoga maritima,
Hypocrea jecorina, Lycopersicon esculentum, and Mytilus edulis; and xylanase from Hypocrea
Jjecorina ([4]; http://www.CAZY .org/CAZY /index. html). This abundance of structural data is
necessary, since the similar overall structure of GHS has resulted in several distinct activities, as
indicated. Though these enzymes may have similar (3/a)s barrel structures, differences in the
loops at the ends of the B-strands of this barrel result in active site clefts ranging from long
grooves to slot-like pockets [8, 13].

Exoglucanases are generally secreted enzymes with both hydrolase and transferase
activities on B-glucans [14]. Exo-B-(1,3)-glucanases may act in the metabolism of cell wall
glucan by cleaving a single glucose from the nonreducing end of -1,3-glucans [15]. Most
GHS exoglucanases that have been studied are fungal exo-B-(1,3)-glucanases, including those
from C. albicans [8, 16], S. cervisiae [17], Agaricus bisporus [18], Lentinula edodes [19], and
Pichia pastoris [20]. Cutfield et al. [8] reported the structure of C. albicans Exg to be a
distorted (P/a)s barrel structure with a deep active-site pocket. The geometry of the pocket fits
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for cleavage of -1,3- but not B-1,4-glycosidic linkages. According to active site labeling and
mutagenesis experiments, Glu-192 and Glu-292 in the mature C. albicans Exg protein were
identified as the proton donor and nucleophile, respectively [14, 16].

There has been no previous report of characterization of a GHS exoglucanase from a
plant. However, several genes encoding proteins similar to fungal exo-1,3-B-glucanses are
found in the genomic sequences from rice. In this study, we cloned cDNA of one of a putative
GHS5 glucan-1,3-B-glucosidase containing a fascin-like domain near its N-terminus from
germinating rice based on genomic data, and assessed its function by recombinant protein
expression and its expression by northern blot. The catalytic activity indicated the enzyme is a
B-glucosidase. This is the first report of a GHS B-glucosidase from a plant that contains a

fascin-like domain.

EXPERIMENTAL
Plant materials and growth conditions

Rice (Oryza sativa L. spp. indica cv. KDML105 and spp. japonica cv. Yukihikari) seeds
were germinated in the dark from day 0 to day 3 and in 12 h light-12 h dark from day 4 to day 7
at 28°C on germinating paper moistened with sterile distilled water. For expression analysis
whole Yukihikari seedlings were harvested and some were dissected into separate parts (shoot,
root, and endosperm) and kept at -70°C. Some 14-d-old rice seedlings were transferred to soil
and grown for an additional 4 weeks. Rice plants were harvested and separated to six parts
(flower, stem, root, node, leaf blade, and leaf sheath). Some 7-d-old rice seedlings were
exposed to abiotic stresses and plant hormones for an additional 2 days under the following
conditions: salt stress (0.3 M NaCl), osmotic stress (0.3 M sorbitol), drought (no water),
flooding (full submergence of seedlings 1 cm below surface of distilled water), cold stress (5
and 12°C), heat stress (37°C), 10°* M methyl jasmonate, 10 M ABA (abscissic acid), and 1
mg/mL ethephon. All plant samples were kept at -70°C for RNA isolation.
Cloning of GH5BG ¢cDNA

Total RNA was isolated from 100 mg 5-6-d-old rice cv. KDML105 seedlings with
Trizol Reagent, and 5 pg of total RNA was used as the template to synthesize the first-strand
cDNA with SuperScript II reverse transcriptase according to the manufacturer's protocol
(Invitrogen, Carlsbad, CA). The GenBank rice genome contig accession number AC107314
(deduced protein sequence GenBank AC AAMO08614) and AK065000 cDNA sequences [21]
were used to design the primers to amplify a full-length coding sequence (CDS) cDNA and a
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cDNA encoding the mature protein of rice glycosyl hydrolase family 5 -glucosidase
(designated GH5BG). The 5' sense primer AK065000f (5'-
GCTGAAAAATCTTCGTCTTCATC-3") and the antisense primer AAMO08614EcoRIr (5'-
CCATCCAACTGGAATTCTCACTG-3") were used to amplify a 774 bp-5' PCR fragment.
The 5' sense primer AAMO08614EcoRIf (5'-CGCAGTGAGAATTCCAGTTG-3") and the
antisense primer AK065000r (5'-CTTCACAAGAGAAAGTTACACTC-3') were used to
amplify a 1016 bp-3' PCR fragment. The amplification for 5' and 3' PCR fragments was done
with Pfu DNA polymerase (Promega, Madison, WI) with the first-strand cDNA as the
template. Finally, the AK065000f and AK065000r primers were used to amplify a full CDS
cDNA by using the 5' and 3' PCR cDNA fragments as template in overlapping PCR. A full-
length product was cloned into the EcoR V site of pBlueScript II SK+ (Stratagene, La Jolla,
CA), and sequenced.

Protein sequence alignments were done with the ClustalX implementation of ClustalW
[22, 23] and manually adjusted with the Gendoc program [24]. Protein analyses were done at
the Expasy proteomics server (http://www.expasy.org), and the signal sequence and cellular

location were predicted with SignalP [25] and PSORT [26], respectively.

Recombinant protein expression in E. coli

The cDNA encoding the predicted mature protein of the GH5BG was PCR amplified
with the cloned full-length cDNA as the template, the AAMO08614matNcolf (5'-CACCATGG
TCTCCGATGGGAGGACG-3") and AAMO08614Xholstopr (5'-CCCTCGAGCTAGCTTTTG
AGAGAGATGATCC-3") primers and Pfu DNA polymerase to introduce an Ncol site at the 5'
end and an X#hol site at the 3' end. The amplification was done as described above, but with
45°C annealing temperature. The cDNA product was digested with Ncol and Xhol, cloned into
pENTR4 Gateway entry vector that had been digested with the same restriction enzymes, and
subcloned into the pET32a+/DEST Gateway expression vector [27] by LR Clonase
recombination by the recommended protocol (Invitrogen) and thoroughly sequenced. The
recombinant pET32a+/DEST-GB5BG plasmid was transformed into E. coli strain OrigamiB
(DE3) [28], and positive clones were selected on 15 pg/ml kanamycin, 12.5 pg/ml tetracycline
and 50 pg/ml ampicillin LB-agar.

To produce the protein, selected clones were grown in the selection media at 37°C until

the optical density at 600 nm reached 0.5-0.6, then induced with 0.5 mM IPTG at 20°C for 12

h. Induced cultures were harvested by centrifugation at 3000 x g at 4°C for 10 min. The cell
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pellets were resuspended in freshly prepared extraction buffer (50 mM sodium phosphate, pH
8.0, 200 pg/ml lysozyme, 1% Triton-X 100, 1 mM phenylmethylsulfonyl- fluoride, 40 pg/ml
DNase I), and incubated at room temperature for 30 min. The soluble protein was recovered by
centrifugation at 12,000 x g at 4°C for 10 min. The expressed thioredoxin-GH5BG fusion
protein was purified by immobilized metal affinity chromatography (IMAC) with BD TALON
cobalt resin according to the manufacturer’s instructions (Clontech, Palo Alto, CA). The
fractions with pNPG hydrolysis activity were pooled and concentrated with 10 kD-cut off
centrifugal ultrafiltration membranes (YM-10, Amicon, Beverly, MA). All of the protein
samples were analyzed by SDS-PAGE by standard methods [29].

Enzyme assays and kinetic analysis

Kinetic parameters were calculated from triplicate assays of 5-7 substrate concentrations
done at 37°C in 50 mM sodium acetate, pH 5.0. The purified thioredoxin-GH5BG recombinant
protein was tested against pNP derivatives of monosaccharides and cellobioside to determine
sugar specificity. In a 100 pL reaction assay volume, 1.47-2.94 pmol enzyme was incubated
with substrate in 50 mM sodium acetate, pH 5.0, at 37°C, except for the assay with pNP-B-D-
cellobioside, in which 29.4 pmol enzyme was used. At the end of the reaction time, 70 pL of
0.4 M sodium carbonate was added to stop the reaction, and the absorbance of the liberated
pNP was measured at 405 nm. The enzyme was tested with oligosaccharides including cello-
oligosaccharides with DP of 2-6, laminari-oligosaccharides DP 2-5 and gentiobiose. In a 50 uL.
reaction volume, 0.74 pmol enzyme was incubated with substrate in 50 mM sodium acetate, pH
5.0, for 5 min at 37°C, except for the assay with cellobiose, in which 14.7 pmol enzyme was
used. The reactions were stopped by boiling, and the glucose released was quantified by the
PGO (peroxidase/glucose oxidase) assay method [30, 31].

The enzyme was also tested for hydrolysis of polysaccharides. In the assay, 1-5 pg
enzyme was incubated separately with 0.5% (w/v) laminarin and barley 3-glucans in 50 mM
sodium acetate, pH 5.0, at 37°C for 30-60 min. The reaction was stopped by the addition of p-
hydroxybenzoic acid hydrozide reagent and the increase in reducing sugars was measured
colorimetrically, as described by Lever [32]. Protein assays were performed by the Bio-Rad
protein assay kit (Bio-Rad, Richmond, CA) using bovine serum albumin as a standard. Kinetic
parameters, K, and V. (at pH 5.0 and 37°C), were calculated by linear regression of
Lineweaver and Burk plots with the Enzfitter computer program (Elsevier Biosoft, Cambridge,

U.K.). Note that the activity values for disaccharides were determined by dividing the amount
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of glucose released by two, since two glucose molecules are released per molecule of
disaccharides hydrolyzed. The amount of products for oligosaccharides is given in terms of
total glucose released, since release of more than one glucose per substrate molecule due to
sequential cleavage should be negligible for V.

The pH optimum was determined by measuring the release of pNP from pNPG in
different 50 mM buffers ranging in pH from 3.5 to 10 in 0.5 pH unit increments for 10 min
(formate, pH 3.5-4.5; sodium acetate, pH 4.0-5.5; sodium phosphate, pH 5.5-8; Tris, pH 7.5-
9.0; CAPS, pH 9.0-10).

Northern blot analysis

GH5BG gene-specific probe was amplified using rice genomic DNA as the template
with the AAMO08614 Cterf (5'-GAATGTGCAGGGAGCATC-3") and AAMO08614 3UTRr (5'-
CTTTAATTCAGCTTCAC-3") primers derived from the C-terminal part of the CDS and 3'-
untranslated region of the gene, respectively. The rice /8S rRNA probe (342 bp) was PCR
amplified using first-strand cDNA synthesized from RNA extracted from 6-d-old rice seedlings
as template with the /8Sricef (5'-AAGTTTGAGGCAATAACAG-3'") and /8Sricer (5'-
CCTCTAAATGATAAGGTTC-3") primers, derived from the GenBank accession number
AF069218 sequence. The amplification for both probes was done with 7ag DNA polymerase
(Roche Diagnostics, Indianapolis, USA).

Total RNA was isolated from different parts of rice (Oryza sativa cv. Yukihikari) plants
at various developmental stages and environmental conditions by the method of [33]. Twenty
micrograms of total RNA from each sample was denatured and electrophoresed on a 1.2%
formaldehyde—agarose gels and transferred onto Hybond N+ nylon membrane (Amersham-
Pharmacia, Uppsala, Sweden) by standard procedures [28]. RNA blots were hybridized
separately with the o-[**P]dCTP-labeled gene-specific probe for GH5BG (396 bp), and 18S
rRNA (342 bp) for 16 h at 65°C. The blots were then washed once in 0.1% SDS, 2 x SSC for
20 min at 65°C and twice in 0.1% SDS, 0.1 x SSC for 20 min at 65°C. The membranes were
then exposed to x-ray film for signal detection for 4 to 6 days at -80°C.
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RESULT AND DISCUSSION
GHSBG cDNA cloning and sequence analysis

With the completion of high quality drafts of the rice genome, analysis of GH5
members in rice has been reported in the CAZY homepage (http://www.cazy.org/CAZY/).
Twenty GH5 genes putatively encoding 7 cellulases, 9 endo-f-mannanases, 3 glucan 1,3--
glucosidases, and one 1,3-B-glucanase have been identified in rice databases (see CAZY). The
putative glucan 1,3-B-glucosidases encoded by these genes include Genbank accession numbers
(AC) AAMO08614, AAM08620, and AAV43969. A BLAST comparison of AAM08614 with
the others showed that AAMO08620 contains 3 repeats of homologous sequences, each of which
has 71% identity to AAMO08614. The AAV43969 sequence is 69% identical to the AAM08614
sequence. The amino acid sequence of the putative 1,3-B-glucanase BAD10703 is also 49%
identical to AAMO08620, which has only 28-33% identity with glucan-1,3-B-glucosidases of
fungi, so BAD10703 is more closely related to AAM08620, despite its different annotation.
Therefore, there appear to be four putative rice glucan 1,3-B-glucanase genes, of which
AAMO08614 was chosen for investigation.

A GHS glucan-1,3-B-glucosidase cDNA, designated GH5BG, was cloned from rice
seedlings by RT-PCR with KDML105 rice seedling RNA and primers derived from the
GenBank accession number AC107314 (rice genomic contig from which AAMO08614 is
derived) and AK065000 (full-length cDNA, [21]) sequences. A specific PCR product of 1680
bp was produced, and its sequence overlapped those of AC107314 and AK065000. The full-
length cDNA sequence contains a 1530-nucleotide open reading frame (ORF) encoding a 510
amino acid precursor protein. The protein sequence was predicted to contain a 19 amino acid
long prepeptide and a 491 amino acid long mature protein, and to be secreted out of the cell. Its
predicted pl is 5.28. The mature protein includes two domains, a fascin-like domain (amino
acids 70-180) and a glucan-1,3-B-glucosidase domain (amino acids 37-60 and 208-496) (Figure
1). The fascin-like domain found at the N-terminus of this enzyme is not commonly found in
plant enzymes, but it aligned well with the N-terminus of fascin found in sea urchin,
Drosophilia, Xenopus, mouse, and human [34-38]. BLAST search analysis in GenBank
revealed the fascin-like domain was found in 5 plant enzymes, at the N-terminus of a putative
Medicago truncatula endoglucanase, AC ABE91799, and the previously described putative rice
GHS glucan-1,3-B-glucosidases, AC AAM08614 (GH5BG), AAM08620, AAV43969, and
BADI10703. In human, fascin contributes to the bundle of F-actin [39]. However, this action

requires a cytoplasmic location, whereas GH5BG is predicted to be extracellular, so it is
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unlikely to interact with intracellular actin molecules. In fact, all the plant sequences with the
fascin-like domain, except AAMO08620, contain signal sequences for secretion, so the fascin-
like domain may have been adapted for binding other molecules or to bind actin in the case of

cell lysis.

Functional expression of recombinant GHSBG and substrate specificity

The GH5BG ¢cDNA was expressed in redox-deficient, Origami (DE3), as a catalytically
active thioredoxin fusion protein. Induced cultures of E. coli Origami (DE3) expressing
GHS5BG thioredoxin fusion proteins had intense bands at 68 kD in total cell lysates in SDS-
PAGE (Figure 2). The fusion protein was purified and found to hydrolyze p-nitrophenyl b-d-
glucopyranoside (pNPG) with an optimal pH of 5.0. The activity of the purified GH5BG
towards artificial glycosides and oligosaccharides is summarized in Table 1. The GH5SBG
hydrolyzed p-nitrophenyl (pNP)-glycosides of the monosacharides, B-D-glucoside, -D-
fucoside, B-D-galactoside, B-D-xyloside, and a-L-arabionoside, but it could not hydrolyze pNP-
-D-mannoside. Among pNP-glycosides, pNP-B-D-fucoside was hydrolyzed twice as
efficiently as pNPG, whereas pNP-[-D-galactoside and pNP-a-L-arabinoside were hydrolyzed
with 27% and pNP-B-D-xyloside with 15% the efficiency of pNPG. These results indicate there
is low stringency at the -1 subsite of GH5BG, in which the non-reducing glycosyl moiety is
bound, which is somewhat similar to many GH1 and GH3 B-glucosidases, such as rice BGlul
[32,40]. The enzyme could hydrolyze glycosides of B-D-glucose, 3-D-fucose, 3-D-galactose, 3-
D-xylose, and a-L-arabionoside, which are epimers with equatorial OH-2, but not 3-D-
mannoside, which has an axial projection at OH-2. Therefore, the epimerization of OH-2 is
critical for binding of the sugar residue to the -1 subsite. However, the equatorial or axial
projection at OH-4 and the conversion of CH,OH-6 of D-glucose to H- in D-xylose or CH3- in
D-fucose are not critical to the capacity of the substrates to bind to the active site.

For disaccharides, GH5SBG hydrolyzed laminaribiose (B-1,3) with a relatively high
efficiency of 5.05 mM™'s™", but it was 20 fold less efficient with cellobiose (B-1,4). Hydrolysis
of gentiobiose (3-1,6-linked) was not detectable. It also hydrolyzed cello-oligosaccharides with
degrees of polymerization (DP) of 3-6 at relatively high rates, with a catalytic efficiency of 9-10
mM's” for DP 3-5 and a drop to half this for cellohexaose, due to a drop in the ke, for this
substrate. On the other hand, GH5BG could not hydrolyze laminari-oligosaccharides with DP
3-5, laminarin, or barley 1,3-1,4-B-glucans. Having rates of hydrolysis of oligomeric substrates

which remain approximately constant or decrease with increasing DP length is a characteristic
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often observed with B-glucosidases, unlike polysaccharide exohydrolases, in which the
hydrolytic rate increases with oligosaccharide length [41].

The marked preference for -1,4-linked oligosaccharides and -1,3-linked disaccharide
of rice GH5BG is different from fungal GHS exo-f-1,3-glucanases, which prefer to hydrolyze
1,3-glucans (laminarin) [8, 19, 20]. This difference in substrate specificity must be the result
of differences in the structures and/or positions of amino acid residues in the active site between
rice GH5SBG and the fungal enzymes. The geometry of the pocket of C. albicans Exg allows
hydrolysis of longer -1,3-linked oligosaccharides and is not well suited for cleavage of 1,4-
glycosidic linkages [8]. In contrast, GH5BG exhibited a marked preference for 3-1,4-linked
oligosaccharides and cannot hydrolyze extended 3-1,3-linked oligosaccharides, thus the
geometry of the pocket may be quite different from C. albicans Exg.

The sequence alignment between GH5BG with Exg from C. albicans and a GHS endo-
1,4-B-glucanase (cellulase) from C. thermocellum [13] in Figure 1 shows that though rice
GHS5BG is somewhat more similar to C. albicans Exg, it shares some features more similar to
the cellulase. In addition to being more similar at some residues near the active site, such at
Tyr407, Asn409, and Tyr488, it lacks the extended loop at the end of strand 7 of the -barrel,
which forms a wall along one side of the active site in the fungal exoglucanases, Nevertheless,
the unique structure of the rice GH5BG and the related rice exoglucanase-like genes, along with
GH5BG’s distinct substrate preferences, suggest that GHSBG and its three closely related rice
homologues should be considered a separate subfamily of GHS.

Comparison of the deduced amino acid sequence of rice GH5BG with those of fungal
GHS5 exoglucanases revealed that Glu-347, which lies in the conserved NEP motif, is likely to
be the catalytic acid/base and Glu-450, which lies in the conserved GEW motif, is likely the
catalytic nucleophile [8, 19, 20]. Similar to other GH5 members, rice GH5BG contains eight
invariant residues, these being Arg-247, His-291, Asn-346, Glu-347, His-406, Tyr-408, Glu-
450, and Trp-486. These residues contribute hydrogen-bond interactions to the nonreducing
terminal sugar residue at the -1 subsite found in C. albicans Exg. Since these residues are
conserved, the geometry of the -1 subsite is not likely to account for the differences in substrate
specificity between GH5SBG and the fungal enzymes. However, differences are seen at the +1
subsite, in which amino acid residues Trp-229, Leu-304, and Asn-305 of C. albicans Exg are
not conserved in GH5BG. C. albicans Exg residues Leu-304 and Asn-305 are located in the
extended loop after strand 7 of the 3-barrel and surround Glu-292 (the catalytic nucleophile)
together with Ala-296, Asp-299, and Gly-306 [14]. These residues are conserved among fungal
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GHS exo- B-1,3- glucanases and many GHS5 members with this extended loop, but not GH5BG.
However, GH5BG does contain Phe-300 and Phe-411, corresponding to Phe-144 and Phe-258
in C. albicans Exg, which were found to be located at the +1 subsite near the entrance to the
active-site pocket [8]. Indeed, these residues are found in the same position when a homology
model of GH5BG was built with the C. albicans Exg structure (1CZX) as template. Cutfield et
al [8] suggested that the role of the aromatic side chains of these two Phe residues is to direct
substrates into the pocket and that it acts as a clamp for acceptor molecules participating in
transfer reactions. The geometry of the +1 substite might have a high stringency requirement
for the stereochemistry of the linkage and the orientation of a second sugar. Hrmova et al. [42]
suggested that the narrow phenyl groups would restrain the position of the second sugar in
productive binding for hydrolysis more than the larger tryptophan indole rings found in a
similar position with respect to the active site in barley GH family 3 exo-glucanase, which can
accept B-1,3- and B-1,4- linkages. If the orientation of the nonreducing glucose residue in the -
1 site is the same in each case, the orientation of the sugar in the +1 site should be different,
depending on whether it is linked through its 3, 4, or 6 oxygen. So, the $-1,4- and B-1,6- linked
disaccharides and longer B-1,3-linked oligosaccharides may not maintain proper binding
geometry.

However, this does not explain how the rice GH5SBG can hydrolyze longer 3-1,4-
oligosaccharides and 1,3-linked disaccharides. The fact that the cellotriose is hydrolyzed better
than cellobiose implies that GHSBG has 3 subsites for binding 3-1,4-linked glucosyl residues in
the active site. Although GH5BG was designated a putative glucan 1,3-B-glucosidase based on
sequence homology, its catalytic activity is somewhat like GH1 B-glucosidases, which show
similar oligosaccharide preferences. Rice BGlul GH1 exoglucanase/p-glucosidase [40] and
rice Os4bglul2 GH1 B-glucosidase [27] are enzymes that prefer to hydrolyze 3-1,4-linked
oligosaccharides and a broad range of pNP-glycosides, but with differences in catalytic
efficiency compared to GHSBG. Similar to rice BGlul, GH5BG had cleaved the B-glucosidic
bond between the 2 glucose residues in pNP-p-D-cellobioside, thereby releasing glucose and
PpNPG, which was then rapidly hydrolyzed (data not shown), but the catalytic efficiency of
GHS5BG for hydrolysis of pNP-B-D-cellobioside is about 10 times lower than that of rice BGlul
[31, 40]. Although GH5BG could hydrolyze both cellotriose and pNP-B-D-cellobioside, it
hydrolyzed pNP-B-D-cellobioside about 26 times less efficiently than cellotriose. This suggests
that the pNP-B-D-cellobioside, unlike cellotriose, cannot bind well to the third subsite in the
active site cleft of GHSBG.
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Expression of GH5BG in rice tissues and in response to environmental conditions

The transcript level of GH5BG was high in the shoot of 7-d-old seedlings and very low
in the root and endosperm. In 6-week-old mature plant, GH5BG transcripts were detected at
significant levels in leaf sheaths, while low signal was seen in other mature plant parts (Figure
3).

To determine the effects of environmental conditions on rice GH5BG gene expression
during seedling growth, the transcript levels of GH5BG were compared between 9-d-old
seedlings that had been exposed to various conditions for 2 days to 9-d-old rice seedlings grown
at 28°C (control) (Figure 3). The GH5BG transcript level was up-regulated in response to salt
stress, submergence stress, 10*M methyl jasmonate, and 10" M abscissic acid in rice seedlings
and increased slightly in response to ethephon. The mRNA transcripts were detected at levels
similar to the control when the seedlings were treated with sorbitol, drought, cold, and heat
stresses. The up-regulation of GH5BG in response to various environmental conditions may
correlate with a need to recycle cell wall oligosaccharides in these processes, or to the function

of other, as yet unidentified, substrates.

In summary, the cDNA of a putative GHS glucan-1,3-p-glucosidase containing a fascin-
like domain at the N-terminus was cloned from rice seedlings. A recombinant thioredoxin-
GHS5BG produced in E. coli showed high hydrolytic activity toward various kinds of pNP-
glycosides and exhibited a marked preference for B-(1,4)-linked oligosaccharides and
laminaribiose (B-(1,3)-linked disaccharide). The substrate specificity of GH5BG is different
from fungal GHS5 exo-B-(1,3)-glucanases, which is likely due to differences in the structures of
the loops and types of amino acids around the active site, indicating GH5BG along with 3
closely related rice enzymes could be considered a new subfamily of GH5. GH5BG is
expressed rice leaves and and seedling shoots, while its expression is induced by stress-related
hormones, submergence and salt in whole seedlings. The protein appears to be secreted outside
the cell, where it may be involved in release of glucose from cell wall derived oligosaccharides

in these conditions.
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Figure legends

Figure 1 Alignment of the protein sequences of rice GH5BG with exo-f-1,3-glucanases and
endo-B-1,4-glucanase. GH5BG is rice GH5BG, Candida is exo-p-1,3-glucanase from Candida
albicans (AC CAA39908), Lentinula is exo-B-1,3-glucanase from Lentinula edodes (AC
AB192344), Pichia is exo-B-1,3-glucanase from Pichia pastoris (AC AY954499), and
Clostridium is endo-B-1,4-glucanase from Clostridium thermocellum (AC AAA23220). The
alignment was generated with the ClustalX implementation of ClustalW [22, 23] and analyzed
and manually adjusted with Gendoc [24]. Alignment of the C. thermocellum sequence relied on
the structural alignment of the 1CEC structural model with the C. albicans Exg 1CZ1 structure.
The positions of the B-strands of the central (f/a)s barrel are indicated by arrows above the
alignment. Red bars mark invariant GH family 5 residues and the black and grey shading
highlight other identities between sequences, the asterisks identify the two catalytic glutamate
residues, the blue bars indicate the two phenylalanine found at the +1 subsites of C. albicans

Exg. The region of rice GH5BG homologous to fascin is indicated by blue text.

Figure 2 SDS-PAGE of GH5BG-thioredoxin fusion protein expressed in E. coli strain
OrigamiB (DE3) after incubation in the presence of 0.5 mM IPTG, at 20°C for 12 h. Lanes: 1,
standard marker (Bio-RAD); 2, total protein of E. coli cells containing pET32a(+)/DEST-
GHS5BG; 3, soluble fraction of E. coli cells containing pET32a(+)/DEST-GH5BG; 4, purified
thiredoxin-GH5BG. The arrow points to the thioredoxin-GH5BG.

Figure 3 Northern-blot analysis of GH5BG transcript levels in (A) 7-d-old rice seedlings and 6-
wk-old mature plant tissues and (B) 7-d-old rice seedlings grown a further 2 days with various
abiotic stresses and plant hormones. GH5BG, RNA blots were probed with a->2P-labeled
GH5BG gene-specific probe, /18SrRNA indicates the same blot probed with an a->>P-labeled
185 rRNA cDNA probe. Twenty micrograms of total RNA from the appropriate tissues were

loaded in each lane.
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Table 1 Kinetic parameters of rice GH5BG in the hydrolysis of pNP-glycosides, disaccharides

and oligosaccharides

Substrate Keat K Keat/Km
") (mM) (s mM™)

PpNP-B-D-glucoside 36.1£0.7 047+0.03 |77+4
pNP-B-D-fucoside 245+0.5 0.17+£0.07 | 144+3
PpNP-B-D-galactoside 27+3 1.30+0.10 |20.7+0.5
pNP-B-D-xyloside 32+03 0.27+0.05 |11.9+£1.5
pNP-a-L-arabinoside 2.88+0.08 [0.14+0.02 |21+3
PpNP-B-D-cellobioside 2.07+0.09 |623+0.17 |0.34+0.01
pNP-B-D- mannoside nd.? n.d.? n.d.?
Cellobiose 43+0.8 16.4+1.9 0.27 £0.02
Cellotriose 41+£5 453+001 |9.1+1.2
Cellotetraose 38+2 4.09+0.17 |93£09
Cellopentaose 355+04 34+0.4 104+04
Cellohexaose 9.7+£0.8 22+0.5 45+0.5
Laminaribiose 365 7.0+£1.1 5.05+0.07
Laminaritriose n.d.* n.d.® n.d.*
Laminaritetraose n.d.? n.d.? n.d.?
Laminaripentaose nd.? n.d.? nd.?
Laminarin nd.? n.d.? n.d.?
Barley 1,3, 1,4-B-glucans n.d.? n.d.? n.d.?

? means not detectable
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