Project code: MRG4880073

Project Title: Experimental investigation of vacuum cooling for porous materials

Investigator: Asst.Prof. Dr. Naris Pratinthong

King Mongkut's University of Technology Thonburi, School of Energy, Environment

and Materials

E-mail Address: naris.pra@kmutt.ac.th

Project Period: 1 June 2005 to 30 Mar 2009

Abstract

The aims of this research are to investigate the effect of porosity of porous media and operating conditions in vacuum cooling process on the temperature reduction of the porous media. The cylindrical light weight concrete (LC) with 50 mm in diameter and 125 mm in length was used to test in a vacuum chamber. The initial moisture content of moist samples was firstly controlled. The experiments were carried out at LC's initial temperatures of 60 °C, 40 °C and 26.5 °C with different pumping speeds of 60 m³/hr and 8.5 m³/hr. The final controlled pressure in the chamber range was between 1.63 to 0.63 kPa. Experimental results showed that variation of air temperature in the vacuum chamber can be divided into 4 stages according to the total pressure in the chamber. It was revealed that the higher the density the lower the cooling rate of LC. The falling rate of temperature increased as the initial temperature increased. The percentages of moisture loss at the LC initial temperatures of 60 °C, 40 °C and 26.5 °C were 7.23 %, 5.23 % and 5.03 % respectively. Time used in reducing the core temperature of LC from 60 °C to 10 °C was 4 min for the pumping speed of 60 m³/hr and was 39 min for the pumping speed of 8.5 m³/hr. Numerical model on heat and moisture transfer was developed using finite difference technique with an explicit scheme in order to predict temperature and moisture distribution in the saturated LC. The differences of temperatures between experimental and numerical results at the surface, the depth of 12.5 mm and the core of LC were 5 °C, 3°C and 2 °C, respectively. The difference of moisture content was 3.31 % on average. In this research, carrot and lettuce was also used to test. For lettuce, the core temperature of lettuce can be reduced from 24.7 °C to 2.6 within 20 min with the percentage of moisture loss about 5.3 %. The energy consumption using for reducing lettuce temperature by 1 degree Celsius was 0.038 kW.h

Keywords: Vacuum cooling/Porous media/Moisture transfer

รหัสโครงการ : MRG4880073

ชื่อโครงการ : การศึกษาการทำความเย็นโดยการระเหยภายใต้สูญญากาศสำหรับวัสดุพรุน

ชื่อนักวิจัย: นายนริส ประทินทอง

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี คณะพลังงาน สิ่งแวดล้อมและวัสดุ

E-mail Address: naris.pra@kmutt.ac.th

ระยะเวลาโครงการ : 1 มิถุนายน 2548 ถึง 30 มีนาคม 2552

บทคัดย่อ

จุดประสงค์ของงานวิจัยนี้คือศึกษาผลของความพรุนของวัสดุพรุนและเงื่อนไขการทำงานในกระบวนการทำ ความเย็นแบบสุญญากาศต่ออัตราการลดลงของอุณหภูมิของวัสดุพรุน คอนกรีตมวลเบาทรงกระบอกมีเส้น ผ่านศูนย์กลางขนาด 50 mm ยาว 125 mm ถูกนำมาใช้ในการทดสอบในห้องสุญญากาศ โดยความชื้น เริ่มต้นของตัวอย่างถูกควบคุมเป็นอันดับแรก การทดลองดำเนินการโดยควบคุมให้คอนกรีตมวลเบามี อุณหภูมิเริ่มต้นที่ 60 °C 40 °C และ 26.5 °C และใช้ความเร็วปั้มสองระดับคือ 60 และ 8.5 m³/hr ความดัน ควบคุมสุดท้ายในห้องสุญญากาศอยู่ระหว่าง 1.63 ถึง 0.63 kPa ผลการทดลองแสดงให้เห็นว่าการ เปลี่ยนแปลงอุณหภูมิอากาศในห้องสุญญากาศสามารถแบ่งออกได้เป็น 4 ช่วงตามความดันรวมในห้อง และ เห็นได้ชัดว่าเมื่อความหนาแน่นของคอนกรีตยิ่งสูงอัตราการทำความเย็นของคอนกรีตยิ่งต่ำ อัตราการลดลง ของอุณหภูมิคอนกรีตเพิ่มขึ้นเมื่อตามอุณหภูมิเริ่มต้นของคอนกรีตสูงขึ้น เปอร์เซ็นต์การสูญเสียของความชื้น ที่อุณหภูมิเริ่มต้น 60 $^{\circ}$ C 40 $^{\circ}$ C และ 26.5 $^{\circ}$ C มีค่าเท่ากับ 7.23% 5.23% และ 5.03% ตามลำดับ เวลาที่ใช้ใน การลดอุณหภูมิแกนกลางของคอนกรีตจาก 60 °C ถึง 10 °C ใช้เวลาเท่ากับ 4 นาทีสำหรับความเร็วปั้ม 60 m³/hr และ 39 นาที่สำหรับความเร็วปั้ม 8.5 m³/hr แบบจำลองเชิงตัวเลขของการถ่ายเทความร้อนและ ความชื้นได้ถูกพัฒนาขึ้นโดยใช้เทคนิคผลต่างสืบเนื่องแบบชัดแจ้งในการทำนายอุณหภูมิและความชื้นใน ค่าแตกต่างสูงสุดของอุณหภูมิระหว่างผลการทดลองกับผลการคำนวณจากแบบจำลองที่ผิว คอนกรีต ที่ความลึกจากผิวลงไป 12.5 mm และที่แกนกลางของวัสดุ มีค่าเท่ากับ 5 °C, 3°C และ 2 °C ตามลำดับ ปริมาณความชื้นแตกต่างโดยเฉลี่ยระหว่างผลการทดลองและผลการคำนวณมีค่าเท่ากับ 3.31 % ในงานวิจัยนี้ได้มีการนำเอาแครอทและผักกาดหอมมาทดสอบอีกด้วย สำหรับผักกาดหอม อุณหภูมิแกนกลางจาก 24.7 °C ถึง 2.6 °C ภายใน 20 min โดยมีเปอร์เซ็นต์สูญเสียความชื้นประมาณ 5.3 % และพลังงานที่ใช้ในการลดอุณหภูมิผักกาดหอมลง 1 °C เท่ากับ 0.038 kW.h

คำสำคัญ: การทำความเย็นภายใต้สุญญากาศ/วัสดุพรุน/การถ่ายเทความชื้น