

โครงการ กลไกการคื้อยาในระดับโมเลกุลของยากลุ่ม macrolides ในเชื้อ Streptococcus pneumoniae ที่แยกได้จากผู้ป่วยไทย

โดย คร. ธนิษฐา ฉัตรสุวรรณ และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ กลไกการคื้อยาในระดับโมเลกุลของยากลุ่ม macrolides ในเชื้อ Streptococcus pneumoniae ที่แยกได้จากผู้ป่วยไทย

คณะผู้วิจัย

สังกัด

- 1. คร. ธนิษฐา ฉัตรสุวรรณ ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- 2. นาง สุมาณี นิลเกต ฝ่ายจุลชีววิทยา โรงพยาบาลจุฬาลงกรณ์ สภากาชาดไทย
- 3. ศ. นพ. ยง ภู่วรวรรณ ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานคณะกรรมการอุคมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และสกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

การคื้อยากลุ่ม macrolides ในเชื้อ Streptococcus pneumoniae เป็นปัญหาที่พบเพิ่มสงขึ้น ทั่วโลก กลไกสำคัญที่มีผลต่อการคื้อยากล่ม macrolides มี 2 กลไกหลัก คือ การขับยาออกนอกเซลล์ ซึ่งควบคมโดยยืน mefA และ การเกิด methylation ที่ตำแหน่งที่เป็นเป้าหมายของยา ซึ่งควบคมโดยยืน ermB กลไกอื่นได้แก่การกลายพันธ์ที่ 23S rRNA และ ribosomal protein L4 และ L22 การศึกษานี้มี วัตถุประสงค์เพื่อตรวจหาความชุกและกลไกการคื้อยาในระดับโมเลกุลของยากลุ่ม macrolides ของ เชื้อ Streptococcus pneumoniae จำนวน 100 สายพันธ์ ซึ่งเพาะแยกได้จากสิ่งส่งตรวจจาก sterile sites ทำการหาค่า MIC ต่อยา erythromycin, clarithromycin และ penicillin โดยวิธี agar dilution และ E-test การเพิ่มจำนวนยืน mefA, ermB, 23SrRNA, ribosomal protein L4 และ L22 โดยวิธี PCR และ ทำการวิเคราะห์ลำดับนิวคลีโอไทค์ของ ribosomal genes สำหรับการศึกษาแบบแผนทางพันธกรรม ของเชื้อที่คื้อต่อยาในกลุ่ม macrolides ใช้วิธี Pulsed-field gel electrophoresis (PFGE) ผลการศึกษา พบว่าอัตราการคื้อต่อยา erythromycin, clarithromycin และ penicillin ในเชื้อ Streptococcus pneumoniae คือ 36%, 34% และ 16% ตามลำคับ อัตราการคื้อยา erythromycin ในเชื้อ Streptococcus pneumoniae ที่ไวต่อยา penicillin คือ 5.7%(3/53) และ พบเป็น 64.5%(20/31) และ 81.2%(13/16) ใน เชื้อที่ให้ผล intermediate resistant และคื้อต่อยา penicillin ตามลำคับ ในเชื้อที่คื้อยา erythromycin ทั้งหมด 36 สายพันธุ์ พบยืน mefA 12(33.3%) สายพันธุ์ และยืน ermB 24 (66.7%) สายพันธุ์ เมื่อทำ การวิเคราะห์การกลายพันธ์ใน ribosomal gene ในสายพันธ์ที่ดื้อยากลุ่ม macrolides พบว่ามีการ เปลี่ยนกรคอะมิโนที่ตำแหน่งที่ 20 จาก serine เป็น asparagine ใน ribosomal protein L4 จำนวน 13 (36.1%) สายพันธุ์ ไม่พบการกลายพันธุ์ใน ribosomal protein L22 และ 23S rRNA ทั้ง 4 copies ผล การวิเคราะห์ PFGE pattern พบ 24 profiles ไม่พบว่ามี clone ที่จำเพาะของเชื้อ S. pneumoniae แพร่กระจายในเชื้อที่คื้อยากลุ่ม macrolides จากการศึกษานี้พบว่าการคื้อยากลุ่ม macrolides ในเชื้อ S. pneumoniae ที่เพาะแยกได้จากผู้ป่วยไทยเพิ่มสูงขึ้นและกลไกการคื้อยากลุ่ม macrolides ที่สำคัญคือ การเกิด methylation ซึ่งควบคุมโดยยืน ermB

Abstract

Macrolide resistance in Streptococcus pneumoniae is an increasing problem worldwide. Two main mechanisms of macrolide resistance are active efflux, encoded by mefA gene and methylation of antibiotic target site, encoded by ermB gene. Other mechanisms of resistance include mutations in 23SrRNA and ribosomal proteins L4 and L22. We investigated the prevalence and molecular mechanisms of macrolide resistance in 100 S. pneumoniae clinical isolates from sterile sites. The minimal inhibitory concentrations (MICs) of erythromycin, clarithromycin and penicillin were examined by agar dilution and Etest. The mefA, ermB, 23S rRNA gene and ribosomal protein L4 and L22 genes were amplified by PCR and ribosomal genes were sequenced. Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). Of the 100 invasive S. pneumoniae, 36 (36%) were resistant to 36 erythromycin-resistant isolates, mefA was present in 12 isolates (33.3%) and ermB was present in 24 isolates (66.7%). Erythromycin resistance rate was 5.7% (3 of 53) among penicillin-susceptible isolates and was 64.5% (20 of 31) and 81.2% (13 of 16) among penicillin-intermediate and penicillin-resistant isolates, respectively. Mutations in ribosomal genes were analyzed in all macrolide-resistant isolates. Alteration in ribosomal protein L4 at Ser20 to Asn was found in 13 isolates (36.1%). Mutations in ribosomal protein L22 and all 4 copies of 23S rRNA were not detected. PFGE analysis demonstrated 24 unique PFGE profiles. No specific clone was widespread in macrolide-resistant S. pneumoniae This study showed that macrolide resistance has been increasing in S. isolates. pneumoniae isolated from Thai patients and the dominant macrolide resistance machanism was mediated by methylase, encoding by ermB gene.

หน้าสรุปโครงการ (Executive Summary)

1. ความสำคัญ และที่มาของปัญหา

S. pneumoniae เป็นแบคทีเรียที่เป็นสาเหตุสำคัญของการเจ็บป่วย และการตายในเด็กผู้สูงอายุ และผู้ป่วยที่มีภูมิคุ้มกันต่ำ เชื้อนี้พบได้บ่อยที่สุดในการทำให้เกิดโรคปอดอักเสบ จากการติดเชื้อนอก โรงพยาบาล (community-acquired pneumonia) นอกจากนี้ยังทำให้เกิดโรคหูชั้นกลางอักเสบ เยื่อหุ้ม สมองอักเสบ และภาวะติดเชื้อในกระแสเลือด แต่เดิมเชื้อนี้จะไวต่อยา penicillin มาก แต่ปัจจุบัน มี รายงานการดื้อต่อยา penicillin เพิ่มสูงขึ้นในหลายประเทศทั่วโลก รวมถึงการดื้อต่อยาปฏิชีวนะชนิด อื่นๆ เช่น ยาในกลุ่ม macrolides (ได้แก่ erythromycin และ clarithromycin เป็นต้น)

การดื้อต่อยาในกลุ่ม macrolides ในเชื้อ S. pneumoniae เกิดจากการที่เชื้อมีเอนไซม์ methylase ซึ่งจะเติมหมู่ methyl ที่บริเวณตำแหน่ง A2058 ของ 23S rRNA ซึ่งเป็นเป้าหมายของยา ทำ ให้ยาจับกับเชื้อใต้ไม่ดี ไม่สามารถออกฤทธิ์ได้ เอนไซม์ methylase นี้สร้างโดยยืน ermB และสามารถ ทำให้เกิดการดื้อยาข้ามกลุ่มได้แก่ยาในกลุ่ม lincosamide และ streptogramin B ซึ่งเป็นยาที่มีเป้าหมาย เดียวกัน เรียกลักษณะการแสดงออกนี้ว่า MLS_B phenotype นอกจากนี้เชื้อยังมีกลไกในการขับยา ออกจากเซลล์โดย efflux pump ซึ่งสร้างโดยยืน mefA ทำให้เชื้อดื้อต่อยากลุ่ม macrolides เฉพาะชนิด 14-membered และ 15-membered macrolide เท่านั้น แต่ไม่ดื้อต่อยาในกลุ่ม lincosamide และยาใน กลุ่ม streptogramin B เรียกลักษณะการแสดงออกนี้ว่า M phenotype โดยยืน ermB และ mefA จะพบ กระจายอยู่ในประเทศต่าง ๆ โดยมีความชุกแตกต่างกันไป โดยยืน mefA จะพบมากในประเทศ สหรัฐอเมริกา และแคนาดา ในขณะที่จะพบยืน ermB มากในแถบยุโรป การเปลี่ยนแปลงของ 23S rRNA และ ribosomal proteins ชนิด L4 และ L22 ก็มีความสัมพันธ์กับการดื้อต่อยาในกลุ่ม macrolides ในเชื้อ S. pneumoniae

ปัจจุบัน มีรายงานการคื้อต่อยาในกลุ่ม macrolides เพิ่มมากขึ้นในประเทศไทย การคื้อต่อยา เหล่านี้ จะส่งผลให้อัตราการกำจัดเชื้อ S. pneumoniae ลดลง เนื่องจากในประเทศไทยยังไม่มี การศึกษากลไกการคื้อต่อยา macrolides ของเชื้อ S. pneumoniae อย่างละเอียด การศึกษาครั้งนี้จึงทำ การตรวจหาการคื้อต่อยา macrolides และ penicillin ใน S. pneumoniae ซึ่งแยกได้จากผู้ป่วยไทย เพื่อให้ข้อมูลแก่แพทย์ในการใช้ยาเพื่อรักษาโรค และศึกษากลไกการคื้อยา macrolides ในระคับ โมเลกุล โดยตรวจหาขืน ermB และ mefA และตรวจหาการกลายพันธุ์ของขืน 23S rRNA และ ribosomal proteins ชนิด L4 และ L22 รวมถึงศึกษาแบบแผนทางพันธุกรรมของเชื้อที่ดื้อต่อยาในกลุ่ม macrolides โดย Pulsed-field gel electrophoresis เพื่อให้ได้ข้อมูลในด้านระบาดวิทยา ซึ่งจะนำมาใช้ ในการควบคมและป้องกันโรคได้

2. วัตถุประสงค์

- 2.1 เพื่อศึกษากลใกการคื้อยาในกลุ่ม macrolides ในเชื้อ S. pneumoniae โดยตรวจหายืน erm B และ mef A
- 2.2 เพื่อศึกษากลใกการคื้อยาในกลุ่ม macrolides ในเชื้อ S. pneumoniae โดยตรวจหาการกลาย พันธุ์ของ 23S rRNA และ ribosomal proteins ชนิด L4 และ L22
- 2.3 เพื่อศึกษาแบบแผนทางพันธุกรรมของเชื้อที่ดื้อต่อยาในกลุ่ม macrolides โดยวิธี Pulsed-field gel electrophoresis
- 2.4 เพื่อหาความชุกของการคื้อต่อยาในกลุ่ม macrolides และ penicillin ของเชื้อ S. pneumoniae ที่ แยกได้จากผู้ป่วยไทย

3. ระเบียบวิธีวิจัย

3.1 Bacterial strains

เชื้อ S. pneumoniae จำนวน 100 สายพันธุ์ ได้จากการเพาะแยกเชื้อจากสิ่งส่งตรวจจาก sterile sitesของผู้ป่วย ที่มารับการรักษา ณ โรงพยาบาลจุฬาลงกรณ์ ตั้งแต่ เดือนมกราคมปี พ.ศ. 2545 ถึง พฤษภาคม พ.ศ. 2549 โดยสิ่งส่งตรวจ ได้แก่ เลือด, sterile fluid ต่างๆ เช่น Body fluid และ CSF เชื้อ 1 สายพันธุ์ แยกได้จากผู้ป่วย 1 ราย ซึ่งจะถูกเก็บไว้ที่ -70°C

3.2 การตรวจวิเคราะห์เชื้อ

เชื้อ S. pneumoniae ทั้งหมด จะนำมาตรวจโดยวิธีย้อมสีแกรม, ทดสอบ catalase, alpha hemolytic activity บนอาหารเลี้ยงเชื้อที่มีเลือดแกะ, ทดสอบความไวต่อ optochin, ทดสอบ bile solubility และ ตรวจหา autolysin gene (lyt A) ของ S. pneumoniae โดยวิธี PCR

3.3 การทดสอบความไวรับ

ทดสอบความไวรับของเชื้อ S. pneumoniae ต่อยา penicillin, ยาในกลุ่ม macrolides ได้แก่ erythromycin และ clarithromycin โดยยา penicillin และ erythromycin ใช้วิธี Agar dilution ส่วนยา clarithromycin ใช้วิธี Etest อ่านค่า MIC (Minimum Inhibitory Concentrations) ซึ่งคือ ค่าความ เข้มข้นของยาที่น้อยที่สุด ที่ยับยั้งการเจริญเติบโตของเชื้อ

3.4 การตรวจหายืน $\mathit{erm}\ B$ และ $\mathit{mef}\ A$

ทำการตรวจหายืน *ermB* และ *mefA* ในเชื้อ S. pneumoniae โดยการเพิ่มจำนวนยืนโดยใช้วิธี
PCR โดยใช้ primers ที่จำเพาะต่อ *ermB* และ *mefA* ตรวจหา PCR product โดยวิธี agarose gel
electrophoresis และนำมาย้อมด้วย ethidium bromide อ่านผลภายใต้แสง UV

3.5 การตรวจสอบลักษณะการแสดงออกของยืนดื้อยากลุ่ม macrolides

ทำทดสอบโดยนำเชื้อ *S. pneumoniae* มาเพาะบนอาหาร Mueller-Hinton agar ที่มี 5% sheep blood จากนั้นวาง disk ยา erythromycin (15 µg) และ clindamycin (2 µg) ห่างกัน 15-20 มิลลิเมตร เชื้อ *S. pneumoniae* ที่คือต่อยา erythromycin แต่ไวต่อยา clindamycin คือ การแสดงออกแบบ M phenotype ส่วนเชื้อที่คือต่อยา erythromycin และ clindamycin จะเป็นการแสดงออกแบบ constitutive MLS_B phenotype แต่ถ้า inhibition zone มีลักษณะ D shape จะเป็นลักษณะ inducible MLS_B phenotype

3.6 การตรวจหาการกลายพันธุ์ของ 23S rRNA และ ribosomal proteins ชนิด L4 และ L22

ทำการเพิ่มจำนวนยืนของ 23S rRNA ซึ่งมีอยู่ 4 copies และ ribosomal proteins ชนิด L4 และ L22 โดยใช้วิธี PCR และ ตรวจหาการกลายพันธุ์โดยการทำ DNA sequencing ด้วยเครื่อง automated sequencer จากนั้นนำผลการศึกษามาเปรียบเทียบลำดับเบสกับสายพันธุ์ที่ไวต่อยา

3.7 การศึกษาแบบแผนทางพันธุกรรม โดย Pulsed-field gel electrophoresis (PFGE)

เตรียม DNA จาก S. pneumoniae โดยนำเชื้อมาเตรียมเป็น agarose plug และทำการย่อยด้วย Sma I จากนั้นนำ DNA fragments ไปแยกโดย Pulsed-field gel electrophoresis โดยใช้ 1% agarose และ 0.5X Tris-borate-EDTA buffer และย้อมด้วย ethidium bromide อ่านผลภายใต้แสง UV จากนั้นนำ PFGE pattern มาวิเคราะห์โดยใช้ FPquest software (BIO-Rad)

4. ผลการศึกษา

4.1 การตรวจวิเคราะห์เชื้อ

เชื้อ S. pneumoniae ที่นำมาศึกษาทั้งหมด 100 สายพันธุ์ ได้นำมาตรวจวิเคราะห์ว่าเป็นเชื้อ S. pneumoniae จริง โดยผลการย้อมสีแกรมพบเป็น gram positive diplococci, มี alpha hemolysis บน

Blood agar, การทคสอบ catalase เป็นลบ, ไวต่อ optochin , ให้ผลบวกกับการทคสอบ bile solubility และตรวจพบ autolysin gene (lytA) โดยวิธี PCR

4.2 การทดสอบความใวรับต่อยา

ค่า MIC₅₀, MIC range และ อัตราการคื้อยาของเชื้อ *S. pneumoniae* จำนวน 100 สาย พันธุ์ พบเชื้อคื้อยา penicillin จำนวน 16 สายพันธุ์ (16%), คื้อยา erythromycin จำนวน 36 สายพันธุ์ (36%), คื้อยา clarithromycin จำนวน 33 สายพันธุ์ (33%) ซึ่งแสดงผลดังตารางที่ 1 เชื้อที่คื้อยา penicillin จะมีอัตราการคื้อยากลุ่ม macrolides สูง โดยพบว่า การคื้อยา erythromycin ในเชื้อ *S. pneumoniae* ที่ไวต่อยา penicillin คือ 5.7%(3/53) และพบ 64.5%(20/31) และ 81.2%(13/16) ในเชื้อที่ ให้ผล intermediate resistant และคื้อต่อยา penicillin ตามลำคับ

ตารางที่ 1 ความไวรับของเชื้อ S. pneumoniae ต่อยา erythromycin, clarithromycin และ penicillin

Antibiotics	MIC (mg/L)			% Resistance	
	MIC ₅₀	MIC ₉₀	Range		
Erythromycin	0.25	>256	0.016 - >256	36	
Clarithromycin	0.064	>256	<0.016 ->256	34	
Penicillin	0.064	2	0.016 – 8	16 (R)	
1 cinciliii	0.001	2	0.010	31 (I)	

R = fully resistant, I= intermediate resistant

4.3 การตรวจหายืน $erm\ B$ และ $mef\ A$

เชื้อคื้อต่อยา erythromycin จำนวน 36 สายพันธุ์ ตรวจพบยีน erm B จำนวน 24 สายพันธุ์ (66.7%) และ mef A จำนวน 12 สายพันธุ์ (33.3%) โดย ยีน erm B จะสร้างเอนไซม์ methylase ซึ่งจะเติมหมู่ methyl ที่บริเวณตำแหน่ง A2058 ของ 23S rRNA ซึ่งเป็นเป้าหมายของยา ทำให้ยาจับกับเชื้อได้ไม่ดี ไม่สามารถออกฤทธิ์ได้ ส่วน mefA เป็น efflux pump ทำหน้าที่ขับยา macrolides ออกจากเซลล์

4.4 การตรวจสอบลักษณะการแสดงออกของยืนดื้อยากลุ่ม macrolides

เมื่อศึกษาลักษณะการแสดงออกของยืนคื้อยากลุ่ม macrolides พบว่าเชื้อที่คื้อยากลุ่ม macrolides ทุกสายพันธุ์ที่ตรวจพบยืน erm~B~ (24 สายพันธุ์) มีลักษณะการแสดงออกของยืนคื้อยาเป็นแบบ constitutive MLS_B (c MLS_B) ซึ่งนอกจากจะมีการคื้อยากลุ่ม macrolides แล้งยังมีการคื้อยา lincosamides และ streptogramin B ร่วมด้วย ส่วนเชื้อทุกสายพันธุ์ที่ตรวจพบยืน mefA~ (12 สาย พันธุ์) จะคื้อเฉพาะยากลุ่ม macrolides เท่านั้น มีลักษณะการคื้อยาเป็นแบบ M phenotype

4.5 การตรวจหาการกลายพันธุ์ของ 23S rRNA และ ribosomal proteins ชนิด L4 และ L22

การตรวจหาการกลายพันธุ์ของ 23S rRNA และ ribosomal protein ชนิค L4 และ L22 ในเชื้อคื้อ ยา erythromycin จำนวน 36 สายพันธุ์ พบการกลายพันธุ์ใน ribosomal proteins ชนิค L4 โดยมีการ เปลี่ยนแปลง amino acid ตำแหน่งที่ 20 จาก Serine เป็น Asparagine จำนวน 13 (36.1%) สายพันธุ์ ตรวจไม่พบการกลายพันธุ์ ใน ribosomal protein ชนิค L22 และ 23S rRNA ทั้ง 4 copies

4.6 การศึกษาแบบแผนทางพันธุกรรม โดย Pulsed-field gel electrophoresis (PFGE)

ผลการวิเคราะห์แบบแผนทางพันธุกรรม โดย PFGE ในเชื้อดื้อยา erythromycin จำนวน 36 สาย พันธุ์ พบ PFGE pattern 24 profiles ไม่พบว่ามี clone ที่จำเพาะของเชื้อ S. pneumoniae แพร่กระจาย ในเชื้อที่ดื้อยากลุ่ม macrolides

5. สรุปผลการศึกษา

จากการศึกษานี้พบว่าการคื้อยากลุ่ม macrolides ในเชื้อ S. pneumoniae ที่เพาะแยกได้จากผู้ป่วย ไทยเพิ่มสูงขึ้นและมีกลไกการคื้อยากลุ่ม macrolides ที่สำคัญคือ เชื้อมียืน ermB ซึ่งสร้างเอนไซม์ methylase โดยจะเติมหมู่ methyl ที่ตำแหน่ง A2058 ของ 23S rRNA ซึ่งเป็นเป้าหมายของยา ทำให้ยา จับกับเชื้อได้ไม่ดี

นอกจากนี้ยังพบว่าการกลายพันธุ์ใน ribosomal proteins ชนิค L4 ที่ amino acid ตำแหน่งที่ 20 จาก Serine เป็น Asparagine มีความสัมพันธ์กับการคื้อยากลุ่ม macrolides จากการศึกษาแบบแผนทาง พันธุกรรมโดย PFGE ไม่พบว่ามี clone ที่จำเพาะของเชื้อ S. pneumoniae แพร่กระจายในเชื้อที่คื้อ ยากลุ่ม macrolides การศึกษาหาความชุกของการคื้อยาในเชื้อ S. pneumoniae และความไวรับต่อยา รวมถึงชนิดของการคื้อยา กลุ่ม macrolides มีความสำคัญในการเป็นแนวทางให้แพทย์เลือกใช้ยารักษา ผู้ป่วย

6. Output ที่ได้จากโครงการ

Abstract accepted at the 19th European Congress of Clinical Microbiology and Infectious Diseases, Helsinki, Finland (16-19 May 2009)

Title: "Molecular mechanisms of macrolide resistance in invasive *Streptococcus pneumoniae* isolated from Thai patients"

Molecular mechanisms of macrolide resistance in Streptococcus pneumoniae isolated from Thai patients

Introduction

Streptococcus pneumoniae is an important pathogen implicated in communityacquired pneumonia, otitis media, sinusitis, bacterial meningitis and bacteremia. It is one of the leading causes of morbidity and mortality in human(1). Resistance to macrolides in S. pneumoniae has increased considerably throughout the world(2-7). Two main mechanisms of macrolide resistance in S. pneumoniae are mediated by methylation of the antibiotic target site, encoded by the ermB gene and macrolide efflux, encoded by the mefA gene(8). The ermB gene encodes a 23S rRNA methylase. Methylation of adenine at position 2058 of the peptidyl transferase loop of 23S rRNA leads to reduced binding of 14-, 15- and 16-membered-ring macrolides, lincosamides and streptogramin B (MLS_B), resulting in resistance to all these compounds and expressing the MLS_B phenotype. The MLS_B antibiotics are chemically distinct but functionally related drugs. The target site for the MLS_B lies in domain V of 23S rRNA at peptidyltransferase region of the 50S subunit(9). They inhibit protein synthesis by blocking elongation of nascent peptide chain. Expression of MLS_B-type resistance can be either constitutive (cMLS_B) or inducible (iMLS_B). The *mefA* gene encodes an efflux pump, a proton motive force-driven transporter, specific to 14-, 15-membered-ring macrolides, corresponding to the M phenotype(9). It contains 12 transmembrane domains spanning the cytoplasmic membrane and has been characterized by lower-level resistance (MIC₉₀ values 0f 1-32 μ g/ml)(10-12).

While *ermB* is the dominant genotype in Europe and South Africa (such as 67.9% Greece, 86% Spain, 90.9% Belgium 46.7% Canada 92.4% Tunisia and 83.3% South Africa) (13-16) and is associated with high-level macrolide resistance, *mefA* is predominate in North America and exhibits low-level resistance(6, 17-19). However, some European countries such as Germany, Norway, Finland and Austria have reported an increasing incidence of the efflux mechanism, similar to North America (18, 20-23).

Other mechanisms of macrolide resistance are due to mutations within the 23S rRNA gene and ribosomal protein L4 or L22(24, 25). The mutations in domain V of the 23S rRNA at position A2058G (26-28), A2059C (28, 29), A2059G (21, 24, 25, 27-31), C2611T (26) and C2611G (25, 29) have been reported in macrolide-resistant *S*.

pneumoniae. Ribosomal protein mutations at position S20N (21, 24, 32-34), 69GTG₇₁-to-69TPS₇₁ substitution (26, 29, 31, 35, 36), A197V (33), and R95H (33) were associated with macrolide resistance. Mutations in ribosomal proteins L22 at position G95D (27, 30), C117T(21, 30, 33), P99Q(21, 30), A93E(21, 30), P91S(21, 30), R22C(21, 30), A101P(21, 30) and G83E(21, 30) have been shown to account for resistance in pneumococci.

Data on the macrolide resistance in invasive *S. pneumoniae* in Thailand has not been evaluated recently and the mechanisms of resistance have not been examined extensively before. Therefore, this study was designed to investigate the prevalence of macrolide resistance in invasive *S. pneumoniae* and to determine the molecular mechanisms of macrolide resistance including resistance including the presence of *ermB* and *mefA* and mutations in the 23S rRNA gene and ribosomal proteins L4 and L22.

Materials and Methods

Bacterial strains

A total of 100 *S. pneumoniae* isolates were collected from patients treated at the King Chulalongkorn Memorial Hospital, Bangkok, between January 2002 and May 2006. All pneumococci were isolated from sterile body sites including blood and cerebrospinal fluid. Identification of the isolates as *S. pneumoniae* was determined by gram staining, colonial morphology, catalase test, optochin susceptibility, bile solubility and the presence of *lytA* gene. All isolates were kept frozen at -70°C until used.

Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) of penicillin, erythromycin were determined by agar dilution on Mueller-Hinton agar (BBL Becton Dickinson, Sparks, MD, USA) supplemented with 5% sheep blood and doubling dilutions of antibiotics. Clarithromycin MICs were determined by E-test (AB Biodisk, Solan, Sweden). All plates were incubated at 37°C, in 5% CO₂ for 16–18 hours. *S. pneumoniae* ATCC 49619 was used as a control strain. According to guidelines from the Clinical Laboratory Standards Institute (CLSI, formerly NCCLS)(37), erythromycin and clarithromycin MICs of ≥ 1 mg/L were classified as resistant and penicillin MIC of 0.12-1 mg/L and ≥ 2 mg/L was intermediate and resistant, respectively.

Detection of macrolide resistance phenotypes

The double-disk method using erythromycin (15µg) and clindamycin (2µg) disks was used for determination of macrolide resistance phenotypes. The disks were placed 15-20 mm apart on Mueller-Hinton agar supplemented with 5% sheep blood on which a bacterial suspension of a 0.5 McFarland standard was inoculated previously. The absence of a zone of inhibition around the two disks indicated constitutive MLS_B (cMLS_B). Blunting of the clindamycin inhibition zone near erythromycin disk indicated inducible MLS_B (iMLS_B). Susceptibility to clindamycin with no blunting indicated the M phenotype.

Detection of macrolide resistance genes

The presence of macrolide resistance genes, *ermB* and *mefA*, was determined by PCR in a duplex reaction for all 100 *S. pneumoniae* isolates. The isolates were emulsified in 50 μl of sterile distilled water and boiled for 10 min. The supernatant was used as the DNA template. The PCR primers for the detection of *ermB* and *mefA* genes are listed in Table1, based on those previously described by Sutcliffe *et al* .(38) Each 50 μl PCR mixture was as followed; 1X PCR buffer (10mM Tris-HCl (pH 8.8), 50mM KCl), 3mM MgCl₂, 200 μM dNTP, 1.25 U *Taq* DNA polymerase (Fermentas, USA) and 2.5 μl of DNA template, 10 pmole and 5 pmole of each *ermB* and *mefA* primers, respectively. PCR cycling conditions consisted of an initial denaturation of 93°C for 3 min followed by 35 cycles of 93°C for 1 min, 52°C for 1 min and 72°C for 1 min, and a final extension of 72°C for 5 min. Amplified DNA fragments were analyzed by electrophoresis on 1.5 % agarose gels containing ethidium bromide (0.5 μg/ml). The electrophoresis was carried out at 80 volts for 50 minutes and the gels were visualized on UV light transilluminator. The PCR products were 639 bp for *ermB* and 348 bp for *mefA*.

Dectection of ribosomal mutations

Primers for amplification of 23S rRNA, L4 and L22 genes are listed in Table 1, as described by Tait-Kamradt *et al.*(39) Four copies of the peptidyltransferase region of the 23S rRNA were amplified using 23S 3' forward and the four downstream primers (DS 18, DS 23, DS 30 and DS 91)(38). Each 50 µl PCR mixture was as followed; 1X

PCR buffer (10 mM Tris-HCl (pH 8.8), 50mM KCl), 200 μM dNTP, 10 pmole of each primers, 1.25 U *Taq* DNA polymerase (Fermentas, CA, USA) and 2.5 μl of DNA template. For all the primer pairs, the concentration of MgCl₂ were 2 mM except that of DS91 was 3 mM. All PCRs were subjected to initial denaturation of 94°C for 1 min followed by 35 cycles of 94°C for 1 min, 54°C for 1 min and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR products of ribosomal protein genes were 720 bp for L4, 420 bp for L22. For 23S rRNA, the amplified fragments of DS 18, DS 23, DS 30 and DS 91 genes were 2002 bp, 2004 bp, 1296 bp and 1200 bp, respectively.

The DNA fragments were purified by QIAquick PCR purification kit as described by the manufacturer (QIAGEN, GmbH, Germany) and sequenced by automated DNA sequencer with ABI prime BigDye terminator cycle sequencing ready reaction kit (PE Applied Biosystem, Foster, CA, USA) by Macrogen Inc., Seoul, Korea. PCR primers were also used as sequencing primers. The nucleotide and protein sequences were analyzed and compared to the published sequences with the software available over the Internet at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/BLAST), Multalin (www.toulouse.inra.fr/multalin.html) and ExPASy (www.expasy.org/).

Table 1 . PCR primers

Primer name	Sequence 5' to 3'
erm B forward	GAA AA(AG) GTA CTC AAC CAA ATA
erm B reverse	AGT AA(CT) GGT ACT TAA ATT GTT TAC
mef A forward	AGT ATC ATT AAT CAC TAG TGC
mef A reverse	TTC TTC TGG TAC TAA AAG TGG
23S 3' forward	CGG CGG CCG TAA CTA TAA CG
23S 3' reverse	
DS 18	GCC AGC TGA GCT ACA CCG CC
DS 23	TAC ACA CTC ACA TAT CTC TG
DS 30	TTT TAC CAC TAA ACT ACA CC
DS 91	TAC CAA CTG AGC TAT GGC GG
L4 forward	AAA TCA GCA GTT AAA GCT GG
L4 reverse	GAG CTT TCA GTG ATG ACA GG
L22 forward	GCA GAC GAC AAG AAA ACA CG
L22 reverse	ATT GGA TGT ACT TTT TGA CC

PFGE analysis

PFGE was performed for all 36 macrolide-resisitant *S.pneumoniae*. The isolates were grown for 18 hr at 37°C in 5%CO₂ on 5% blood BHI agar (BBL, Microbiology Systems, Cockeys ville, Md.). Cells form the culture were washed, adjusted until turbidity at 540 nm = 3 in TE buffer pH 7.5 (10 mM Tris-HCl, 5 mM EDTA) and mixed with an equal volume 2% (w/v) Low melt Preparative Grade Agarose (Bio-Rad Laboratories, Hercules, California, USA). The cell-agarose mixture was distributed into a plug mold and allowed to solidify. The plugs were incubated overnight at 37 °C in lysis buffer (ES solution: 50mM Tris, 50mM EDTA, 1% Sarcosyl) with proteinase K at a final concentration of 1 mg/ml. Plugs were washed 6 times in TE buffer and stored at 4°C.

For restriction analysis, each plug was digested with 20 U of *Sma*I (Promega, Medison, WI, USA) for 6 hr at 37 °C. A contour-clamped homogeneous electric field DRIII apparatus (Bio-Rad) was used for running the gel for 24 hr at 14°C at 200 V ramped with an initial pulse time of 2 s and final pulse time of 30 s. Gels were stained with ethidium bromide. The PFGE patterns were analyzed by FPquest software (BIO-Rad) using the Dice coefficient and unweighted pair group method with arithmetic mean (UPGMA) with 1% tolerance and 1 % optimization.

Results

Antimicrobial susceptibility

The MIC₅₀, MIC₉₀ and resistance rates of macrolides and penicillin against 100 invasive *S. pneumoniae* isolates are summarized in Table 2. The results demonstrated that erythromycin, clarithromycin and penicillin MICs of *S. pneumoniae* isolates ranged from < 0.016 to >256 mg/L, <0.016 to >256 mg/L and 0.016 – 8 mg/L, respectively . MIC required to inhibit 50 % (MIC₅₀) and 90% (MIC₉₀) of isolates were 0.25 mg/L and >256 mg/L for erythromycin, 0.064 mg/L and >256 mg/L for erythromycin and 0.064 mg/L and 2 mg/L for penicillin, respectively.

Distribution of MICs of macrolides are shown in Figure 1 and Figure 2. For erythromycin, the distribution of the MICs showed a set of the sensitive strains with the MIC range of 0.016-0.5 mg/L The peak was at 0.125 mg/L and then declined from both sides. The majority of resistant strains had high-level MIC of >256mg/L. For

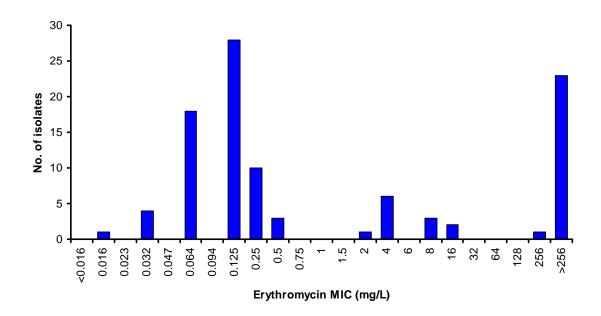

clarithromycin, the distribution of the MICs of sensitive strains had a peak at the MIC of 0.064 mg/L and then tailed off. The majority of resistant strains had high-level MIC of >256 mg/L.

Table 2 The susceptibility of macrolides and penicillin against 100 *Streptococcus pneumoniae* clinical isolates

Antibiotics	MIC (mg/L)			% Resistance	
Antibiotics	MIC ₅₀	MIC ₉₀	Range	, v Resistance	
Erythromycin	0.25	>256	0.016 - >256	36	
Clarithromycin	0.064	>256	<0.016 - >256	34	
Penicillin	0.064	2	0.016 – 8	16 (R) 31 (I)	

R = fully resistant, I= intermediate resistant

Figure 1 Distributions of erythromycin MICs

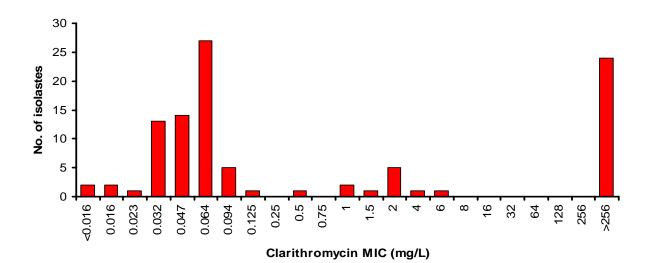


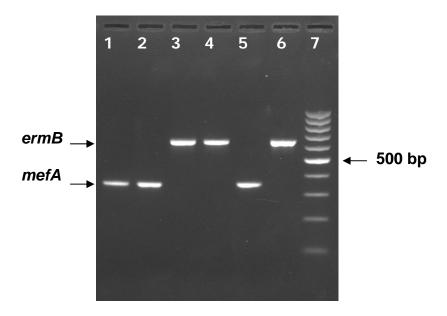
Figure 2 Distributions of clarithromycin MICs

Prevalence of macrolide and penicillin resistance

Of the 100 *S. pneumoniae* isolates, 36 (36%) were resistant to erythromycin and 34 (34%) to clarithromycin. All clarithromycin-resistant isolates were resistant to erythromycin. Sixteen isolates (16%) were resistant to penicillin and 31 (31%) were intermediate resistant. Erythromycin resistance rate was 5.7% (3 of 53) among penicillin-susceptible isolates and 64.5% (20 of 31) and 81.2% (13 of 16) among penicillin-intermediate and penicillin-resistant isolates, respectively (Table 3).

Table 3 Erythromycin resistance and penicillin susceptibility

	No. of isolates (%)			
	Penicillin	Penicillin	Penicillin	
	Susceptible	Intermediate	Resistant	
	(N=53)	(N=31)	(N=16)	
Erythromycin	3 (5.7%)	20 (64.5%)	13 (81.2%)	
resistance	3 (3.770)	20 (04.370)		

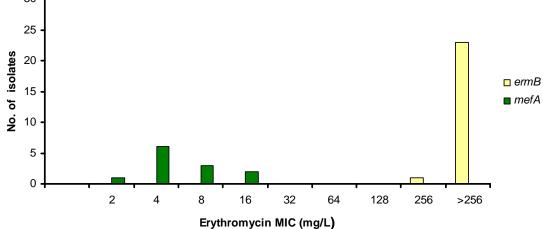

Macrolide resistance phenotypes and genotypes

Of the 36 isolates of *S. pneumoniae* isolates resistant to erythromycin, 24 (66.7%) exhibited resistance to erythromycin and clindamycin, corresponding to the constitutive MLS_B phenotype (cMLS_B). The remaining 12 isolates (33.3%) showed resistance to only erythromycin, expressing the M phenotype. Inducibly resistant isolate was not detected (Table 4).

Table 4 Phenotypes and genotypes of macrolide-resistant S. pneumoniae

Resistance	No. of isolates	Resistance genotype		
phenotype	(n = 36)	ermB (%)	mefA (%)	
$cMLS_B$	24 (66.7%)	24 (100%)	0 (0%)	
M	12 (33.3%)	0 (0%)	12 (100)	


Figure 3. PCR analysis of *ermB* and *mefA* genes. Lane 1, 2 and 5: isolates carrying *mefA*; Lane 3, 4 and 6: isolates carrying *ermB*; Lane 7; 100 bp DNA ladder.


The presence of *ermB* and *mefA*, was determined by PCR in a duplex reaction for all 100 *S. pneumoniae* isolates. Figure 3 shows PCR products of 639 bp for *ermB* and 348 bp for *mefA*. All 36 macrolide-resistant isolates contained either *ermB* or *mefA*. A double resistance mechanism, *mefA* and *ermB*, was not detected. Neither *mefA* nor *ermB* was detected in macrolide-sensitive strains. All strains with the cMLS_B phenotype had the *ermB* gene (66.7%) whereas all with the M phenotype carried the *mefA* gene (33.3%) (Table 4).

Distribution of erythromycin MIC and resistance genes

Figure 4 and Figure 5 show the correlation between macrolide MICs and resistance genes. MICs of macrolides for *ermB*-positive *S. pneumoniae* were higher than those for *mefA*-positive strains. The macrolide MICs of *S. pneumoniae* carrying ermB were ≥ 256 mg/L for erythromycin and ≥ 256 mg/L for clarithromycin whereas those with *mefA* ranged from 2 to 16 mg/L for erythromycin and from 0.064 to 6 mg/L for clarithromycin (Figure 5).

Figure 4 Distribution of erythromycin MICs and resistance genes

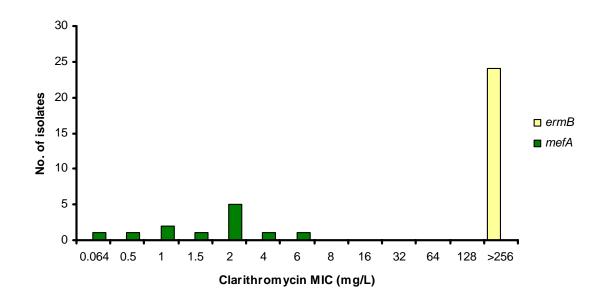


Figure 5 Distribution of clarithromycin MIC and resistance genes

Ribosomal mutations

All four copies of the domain V region of 23S rRNA and ribosomal protein L4 and L22 were amplified and sequenced individually in 36 macrolide-resistant *S. pneumonia* isolates. All sequences were compared with those of *S. pneumoniae* TIGR 4 from Genbank (Accession number AE005672). The sequences of all four 23S rRNA genes of all isolates were identical to those of *S. pneumoniae* TIGR 4 strain. This indicated that no changes were present in the peptidyl transferase region of the 23S rRNA. There were no amino acid changes in any of the strains tested for ribosomal protein L22. Silent mutations were found at nucleotide position 72 changing from G to T (Val-24, GTT to GTG) and position 303 from C to T (Asn-101, AAC to AAT) in one isolate. Mutations in ribosomal protein L4 were found in 13 isolates (36.1%). Amino acid change was found at position 20, changing from serine (AGC) to asparagine (AAC) (Figure 6). Nucleotide and amino acid sequence alignments of ribosomal proteins L4 and L22 are shown in Figure 7 -10. The resistance mechanisms of 36 macrolide-resistant *S. pneumoniae* are summarized in Table 5.

Figure 6 Ribosomal protein L4 mutation changing from Ser20(AGC) to Asn(AAC)

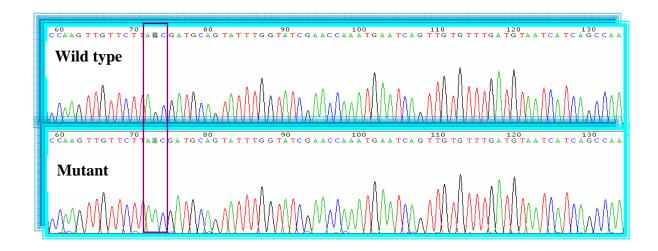


Figure 7 Alignment of nucleotide sequences of ribosomal protein L4

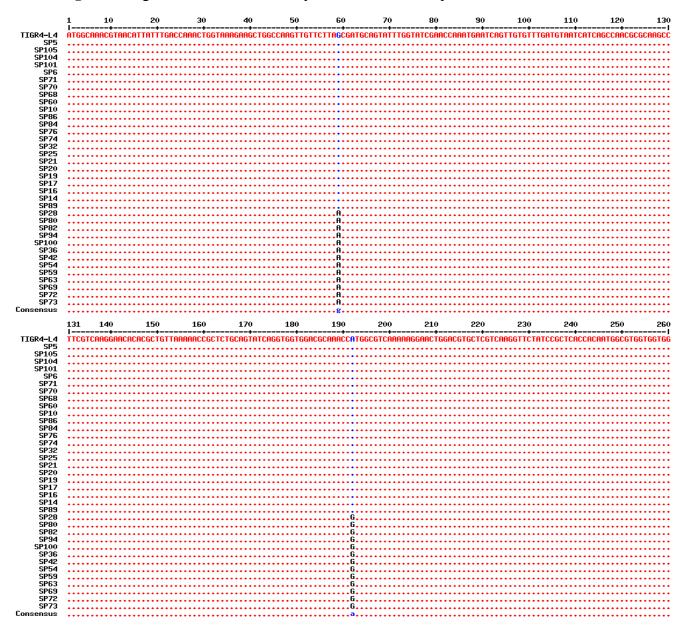


Figure 7 Alignment of nucleotide sequences of ribosomal protein L4 (continued)

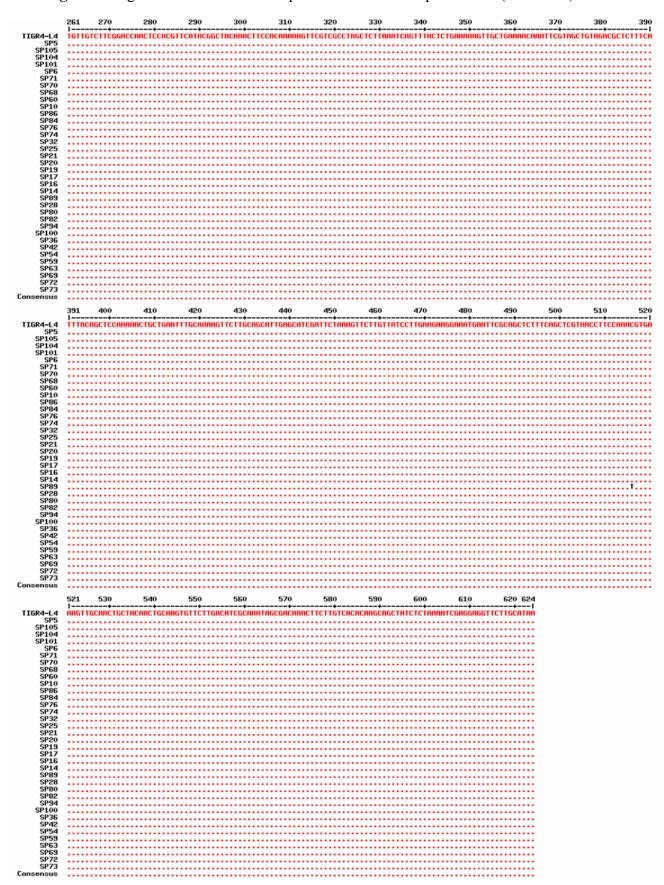


Figure 8 Alignment of amino acid sequences of ribosomal protein L4

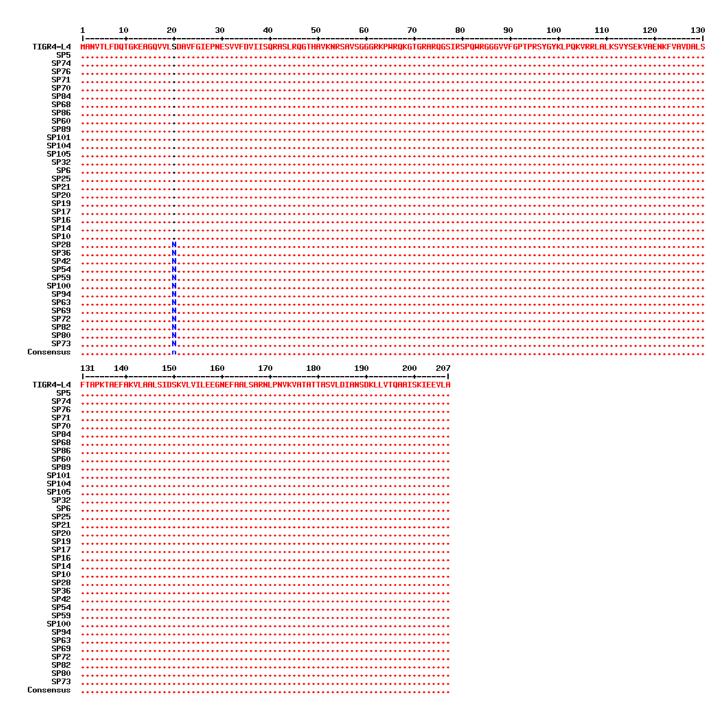
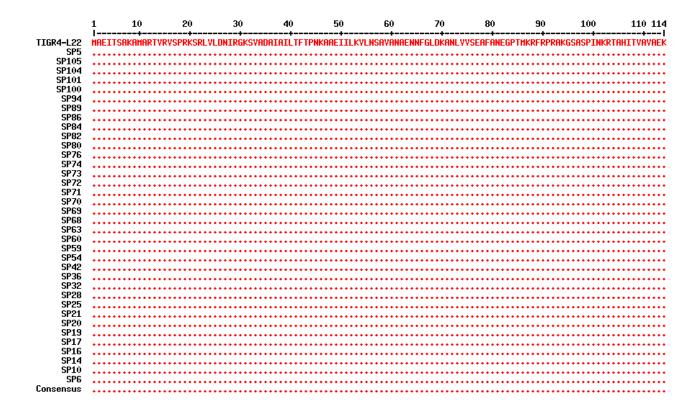
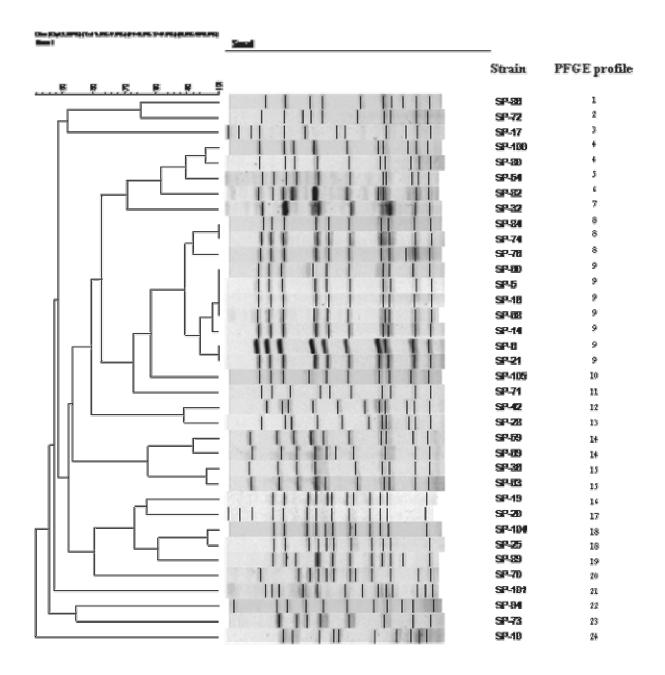


Figure 9 Alignment of nucleotide sequences of ribosomal protein L22

Figure 10 Alignment of amino sequences of ribosomal protein L22




 Table 5 Macrolide-resistant S. pneumoniae and mechanisms of resistance

Strain	Erythromycin MIC (mg/L)	Resistance gene	L4 mutation	L22 mutation	23S rRNA mutation
SP-104	2	mef	-	-	-
SP-63	4	mef	S2ON	-	-
SP-19	4	mef	-	-	-
SP-25	4	mef	-	-	-
SP-89	4	mef	-	-	-
SP-86	4	mef	-	-	-
SP-17	4	mef	-	-	-
SP-70	8	mef	-	-	-
SP-59	8	mef	S2ON	-	-
SP-69	8	mef	S2ON	-	-
SP-36	16	mef	S2ON	-	-
SP-94	16	mef	S2ON	-	-
SP-72	>256	ermB	S2ON		-
SP-100	>256	ermB	S2ON	-	-
SP-80	>256	ermB	S2ON	-	-
SP-54	>256	ermB	S2ON	-	-
SP-82	>256	ermB	S2ON	-	-
SP-32	>256	ermB	-	-	-
SP-84	>256	ermB	-	-	-
SP-74	>256	ermB	-	-	-
SP-76	>256	ermB	-	-	-
SP-60	>256	ermB	-	-	-
SP-5	>256	ermB	-	-	-
SP-16	>256	ermB	-	-	-
SP-68	>256	ermB	-	-	-
SP-14	>256	ermB	-	-	-
SP-6	>256	ermB	-	-	-
SP-21	>256	ermB	-	-	-
SP-105	>256	ermB	-	-	-
SP-71	>256	ermB	-	-	-
SP-42	>256	ermB	S2ON	-	-
SP-28	>256	ermB	S2ON	-	-
SP-20	>256	ermB	-	-	-
SP-101	>256	ermB	-	-	-
SP-73	>256	ermB	S2ON	-	-
SP-10	>256	ermB	-	-	-

PFGE Analysis

Molecular typing by PFGE was performed on 36 macrolide-resistant isolates. The results revealed 24 unique PFGE profiles, based on 90% similarity (Figure 11). The PFGE profile 9 consisted of 7 isolates. Four of the 7 isolates had 100% similarity to each other and another 2 isolates also had identical fingerprint pattern. Profile 9 was more prevalent than other profiles and accounted for 19.44% of isolates. Macrolide resistance gene type was consistent for isolates in the PFGE profile. All isolates in profile 9 carried *ermB* with erythromycin MIC of >256 mg/L. Profile 8 included 3 isolates, two of which had identical fingerprint patterns. The isolates in this profile had high-level erythromycin resistance (MIC>256 mg/L) and harbored the *ermB* gene. Profile 4, 14, 15 and 18 consisted of 2 isolates. The isolates in profile 4 had *ermB* and mutations in ribosomal protein L4. The profile 14 and 15 isolates had *mefA* and mutations in L4 whereas isolates in profile 18 carried only *mefA*. The remaining 18 isolates were genetically unrelated by PFGE. The results demonstrated that no specific clones was widespread in macrolide-resistant *S. pneumoniae* isolates.

Figure 11 PFGE patterns of 36 macrolide-resistant S. pneumoniae isolates

Discussion

Resistance to macrolides has emerged in many parts of the world during the last 20 years (2, 40). The increasing rate of macrolide-resistant S. pneumoniae is of clinical concern and public interest. Macrolide resistance varied between countries. The variation is important for physicians to use local resistance data when choosing appropriate antibiotics. The present study investigated the in-vitro susceptibility of invasive S. pneumoniae isolates to macrolides and analyzed for the genes associated with resistance and their phenotypes. The results showed an increasing prevalence of macrolide resistance in invasive S. pneumoniae to be 36% for erythromycin and 34% for clarithromycin. Erythromycin resistance rate in penicillin-resistant S. pneumoniae was high (81.2%). In Thailand, the rate of erythromycin resistance in pneumococci isolated from specimens of invasive infections was 16% in 1997-1998(41) and high prevalence rate was reported to be 34.8% in S. pneumoniae isolated from patients with community-acquired pneumonia in 1998-2001(42). Similar to what have been observed elsewhere, the prevalence of macrolide-resistant pneumococci has been increasing. It is probably consequent to an increased selective pressure generated by increased prescriptions of macrolides in community medicine. In Asian countries, high prevalence rates of erythromycin resistance among S. pneumoniae were 88.3% in Vietnam, 87.2% in Taiwan, 85.1% in Korea, 76.5% in Hong Kong and 75.6% in China (7).

The prevalence of *ermB* and *mefA* among *S. pneumoniae* varies geographically. The *mefA* gene predominates in North America whereas the *ermB* gene in Europe and South Africa(17-19, 43, 44). In the present study, the predominant of *ermB*, the MLS_B phenotype in *S. pneumoniae* isolated from Thai patients is similar to the results from other countries such as Europe, South Africa, Japan, Taiwan and China(18, 45, 46). All of the isolates carrying *ermB* showed the MLS_B phenotype (66.7%), while the isolates carrying *mefA* had the M phenotype (33.3%). The resistance genotypes were consistent with the expected phenotypes. Macrolide-resistant isolates carried either *ermB* or *mefA*. The strains expressing the M phenotype conferred low-level resistant to erythromycin whereas strains expressing the MLS_B phenotype showed high-level resistance.

The dual mechanism (both *ermB* and *mefA*) was not detected in our study. Despite high prevalence of macrolide resistance in *S. pneumoniae*, there is no report of

dual *mef* and *ermB* mechanism in Thailand. Jenkins *et al.* reported an increasing prevalence of isolates carrying both *mef* and *ermB* genes from 9.7% in 2000 to 18.4% in 2004 from the PROTEKY US study (47). High prevalence of this mechanism (39.1%) was report in South Korea (48). Since the prevalence of *mef* and *ermB* dual mechanism has been increasing, monitoring the spreading of isolates carrying this resistance mechanism should be considered, due to expressing high-level macrolide resistance.

In this study, mutations in all 4 copies of 23S rRNA were not detected. It has been reported that mutations in domain V of the 23S rRNA at position A2058G (26-28), A2059C (28, 29), A2059G (21, 24, 25, 27-31), C2611T (26) and C2611G (25, 29) were associated with macrolide resistance. Similar to other studies, ribosomal protein L4 mutation was detected at position S20N in 36.1% of macrolide-resistant isolates (21, 24, 32-34). The ₆₉GTG₇₁-to-₆₉TPS₇₁ substitution (26, 29, 31, 35, 36), A197V (33), and R95H (33) were also linked to macrolide resistance which were not found in this study. Mutations at G95D (27, 30), C117T(21, 30, 33), P99Q(21, 30), A93E(21, 30), P91S(21, 30), R22C(21, 30), A101P(21, 30) and G83E(21, 30) in ribosomal protein L22 associated with macrolide resistance were not detected in this study.

A total of 24 PFGE profiles were identified in 36 macrolide-resistant *S. pneumoniae* isolates. The present study showed that there was genetic heterogeneity among macrolide-resistant isolates. However, isolates in profile 9 were more prevalent than other profiles and there was the linkage between type of macrolide resistance genes and PFGE profiles. The results suggests that clonal spread is not responsible for macrolide resistance in these isolates.

In conclusion, the results demonstrated that the prevalence of macrolide resistance among invasive *S. pneumoniae* isolated from Thai patients was high (36%). The most prevalent mechanism of macrolide resistance was mediated by *ermB*, a 23SrRNA methylase, which reduced the binding of macrolides to the 23S rRNA and exhibited the MLS_B phenotype. Mutations in ribosomal protein L4 at S20 \rightarrow N involved in macrolide resistance. No specific clones were responsible for macrolide resistance in *S. pneumoniae* isolates. It is important to update local susceptibility data and types of macrolide resistance to guide empirical choices in antimicrobial therapy.

Acknowledgements

I would like to thank the Thailand Research Fund, Commission for Higher Education and the Molecular Research Fund, Faculty of Medicine, Chulalongkorn University for research funding.

References

- 1. Musher DM. Infections caused by *Streptococcus pneumoniae*: clinical spectrum, pathogenesis, immunity, and treatment. Clin Infect Dis. 1992 Apr;14(4):801-7.
- 2. Adam D. Global antibiotic resistance in *Streptococcus pneumoniae*. J Antimicrob Chemother. 2002 Jul;50 Suppl:1-5.
- 3. Hyde TB, Gay K, Stephens DS, Vugia DJ, Pass M, Johnson S, et al. Macrolide resistance among invasive *Streptococcus pneumoniae* isolates. Jama. 2001 Oct 17;286(15):1857-62.
- 4. Felmingham D, Reinert RR, Hirakata Y, Rodloff A. Increasing prevalence of antimicrobial resistance among isolates of *Streptococcus pneumoniae* from the PROTEKT surveillance study, and compatative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother. 2002 Sep;50 Suppl S1:25-37.
- 5. Doern GV, Brown SD. Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000-01. J Infect. 2004 Jan;48(1):56-65.
- 6. Farrell DJ, Jenkins SG. Distribution across the USA of macrolide resistance and macrolide resistance mechanisms among *Streptococcus pneumoniae* isolates collected from patients with respiratory tract infections: PROTEKT US 2001-2002. J Antimicrob Chemother. 2004 Aug;54 Suppl 1:i17-22.
- 7. Song JH, Chang HH, Suh JY, Ko KS, Jung SI, Oh WS, et al. Macrolide resistance and genotypic characterization of *Streptococcus pneumoniae* in Asian countries: a study of the Asian Network for Surveillance of Resistant Pathogens (ANSORP). J Antimicrob Chemother. 2004 Mar;53(3):457-63.
- 8. Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in *Streptococcus pneumoniae*. Antimicrob Agents Chemother. 2002 Sep;46(9):2727-34.
- 9. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991 Jul;35(7):1267-72.

- 10. Clancy J, Petitpas J, Dib-Hajj F, Yuan W, Cronan M, Kamath AV, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, *mefA*, from *Streptococcus pyogenes*. Mol Microbiol. 1996 Dec;22(5):867-79.
- 11. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000 Dec;64(4):672-93.
- 12. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996 Nov;40(11):2562-6.
- 13. Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, Katopodis GD, Beratis NG, Sutcliffe J, et al. Identification of an *erm*(A) erythromycin resistance methylase gene in *Streptococcus pneumoniae* isolated in Greece. Antimicrob Agents Chemother. 2001 Jan;45(1):342-4.
- 14. Rachdi M, Boutiba-Ben Boubaker I, Moalla S, Smaoui H, Hammami A, Kechrid A, et al. Phenotypic and genotypic characterization of macrolide resistant *Streptococcus pneumoniae* in Tunisia. Pathol Biol (Paris). 2008 May;56(3):125-9.
- 15. Descheemaeker P, Chapelle S, Lammens C, Hauchecorne M, Wijdooghe M, Vandamme P, et al. Macrolide resistance and erythromycin resistance determinants among Belgian *Streptococcus pyogenes* and *Streptococcus pneumoniae* isolates. J Antimicrob Chemother. 2000 Feb;45(2):167-73.
- 16. Morosini MI, Canton R, Loza E, Negri MC, Galan JC, Almaraz F, et al. In vitro activity of telithromycin against Spanish *Streptococcus pneumoniae* isolates with characterized macrolide resistance mechanisms. Antimicrob Agents Chemother. 2001 Sep;45(9):2427-31.
- 17. Farrell DJ, Morrissey I, Bakker S, Felmingham D. Molecular characterization of macrolide resistance mechanisms among *Streptococcus pneumoniae* and *Streptococcus pyogenes* isolated from the PROTEKT 1999-2000 study. J Antimicrob Chemother. 2002 Sep;50 Suppl S1:39-47.
- 18. Reinert RR, Ringelstein A, van der Linden M, Cil MY, Al-Lahham A, Schmitz FJ. Molecular epidemiology of macrolide-resistant *Streptococcus pneumoniae* isolates in Europe. Journal of clinical microbiology. 2005 Mar;43(3):1294-300.
- 19. Johnston NJ, De Azavedo JC, Kellner JD, Low DE. Prevalence and characterization of the mechanisms of macrolide, lincosamide, and streptogramin resistance in isolates of *Streptococcus pneumoniae*. Antimicrob Agents Chemother. 1998 Sep;42(9):2425-6.

- 20. Littauer P, Sangvik M, Caugant DA, Hoiby EA, Simonsen GS, Sundsfjord A. Molecular epidemiology of macrolide-resistant isolates of *Streptococcus pneumoniae* collected from blood and respiratory specimens in Norway. J Clin Microbiol. 2005 May;43(5):2125-32.
- 21. Rantala M, Huikko S, Huovinen P, Jalava J. Prevalence and molecular genetics of macrolide resistance among *Streptococcus pneumoniae* isolates collected in Finland in 2002. Antimicrob Agents Chemother. 2005 Oct;49(10):4180-4.
- 22. Reinert RR, Al-Lahham A, Lemperle M, Tenholte C, Briefs C, Haupts S, et al. Emergence of macrolide and penicillin resistance among invasive pneumococcal isolates in Germany. J Antimicrob Chemother. 2002 Jan;49(1):61-8.
- 23. Reinert RR, Reinert S, van der Linden M, Cil MY, Al-Lahham A, Appelbaum P. Antimicrobial susceptibility of *Streptococcus pneumoniae* in eight European countries from 2001 to 2003. Antimicrobial agents and chemotherapy. 2005 Jul;49(7):2903-13.
- 24. Reinert RR, Wild A, Appelbaum P, Lutticken R, Cil MY, Al-Lahham A. Ribosomal mutations conferring resistance to macrolides in *Streptococcus pneumoniae* clinical strains isolated in Germany. Antimicrob Agents Chemother. 2003 Jul;47(7):2319-22.
- 25. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother. 2000 Aug;44(8):2118-25.
- 26. Doktor SZ, Shortridge VD, Beyer JM, Flamm RK. Epidemiology of macrolide and/or lincosamide resistant *Streptococcus pneumoniae* clinical isolates with ribosomal mutations. Diagn Microbiol Infect Dis. 2004 May;49(1):47-52.
- 27. Farrell DJ, Douthwaite S, Morrissey I, Bakker S, Poehlsgaard J, Jakobsen L, et al. Macrolide resistance by ribosomal mutation in clinical isolates of *Streptococcus pneumoniae* from the PROTEKT 1999-2000 study. Antimicrob Agents Chemother. 2003 Jun;47(6):1777-83.
- 28. Neeleman C, De Valk JA, Klaassen CH, Meijers S, Mouton JW. In-vitro susceptibility and molecular characterisation of macrolide resistance mechanisms among *Streptococcus pneumoniae* isolates in The Netherlands: the DUEL 2 study. Clin Microbiol Infect. 2005 Apr;11(4):312-8.

- 29. Pihlajamaki M, Kataja J, Seppala H, Elliot J, Leinonen M, Huovinen P, et al. Ribosomal mutations in *Streptococcus pneumoniae* clinical isolates. Antimicrob Agents Chemother. 2002 Mar;46(3):654-8.
- 30. Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in *Streptococcus pneumoniae*. Antimicrob Agents Chemother. 2002 Jan;46(1):125-31.
- 31. Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, et al. Two new mechanisms of macrolide resistance in clinical strains of *Streptococcus pneumoniae* from Eastern Europe and North America. Antimicrob Agents Chemother. 2000 Dec;44(12):3395-401.
- 32. Hirakata Y, Mizuta Y, Wada A, Kondoh A, Kurihara S, Izumikawa K, et al. The first telithromycin-resistant *Streptococcus pneumoniae* isolate in Japan associated with *erm*(B) and mutations in 23S rRNA and riboprotein L4. Jpn J Infect Dis. 2007 Feb;60(1):48-50.
- 33. Reinert RR, Al-Lahham A. Time-kill study of the activity of telithromycin against macrolide-resistant *Streptococcus pneumoniae* Isolates with 23S rRNA mutations and changes in ribosomal proteins L4 and L22. Antimicrob Agents Chemother. 2005 Jul;49(7):3011-3.
- 34. Pihlajamaki M, Jalava J, Huovinen P, Kotilainen P. Antimicrobial resistance of invasive pneumococci in Finland in 1999-2000. Antimicrob Agents Chemother. 2003 Jun;47(6):1832-5.
- 35. Nagai K, Appelbaum PC, Davies TA, Kelly LM, Hoellman DB, Andrasevic AT, et al. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 Pneumococci from 10 central and Eastern European countries. Antimicrob Agents Chemother. 2002 Feb;46(2):371-7.
- 36. Davies TA, Bush K, Sahm D, Evangelista A. Predominance of 23S rRNA mutants among non-*erm*, non-*mef* macrolide-resistant clinical isolates of *Streptococcus pneumoniae* collected in the United States in 1999-2000. Antimicrob Agents Chemother. 2005 Jul;49(7):3031-3.
- 37. Clinical and Laboratory Standards Institute. Performance Standards for susceptibility Testing: Fifteen Informational Supplement M 100-S15. CLSI, Wayne, PA, USA. 2005.

- 38. Sutcliffe J, Tait-Kamradt A, Wondrack L. *Streptococcus pneumoniae* and *Streptococcus pyogenes* resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996 Aug;40(8):1817-24.
- 39. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, et al. *mefE* is necessary for the erythromycin-resistant M phenotype in *Streptococcus pneumoniae*. Antimicrob Agents Chemother. 1997 Oct;41(10):2251-5.
- 40. Appelbaum PC. Resistance among *Streptococcus pneumoniae*: Implications for drug selection. Clin Infect Dis. 2002 Jun 15;34(12):1613-20.
- 41. Chokephaibulkit K, Srifuengfung S, Mingbanjerdsuk J, Tosasuk K, Vanprapar N, Chearskul S, et al. Evaluation of susceptibility status of invasive pneumococcal isolates to various antibiotics and risk factors associated with invasive penicillin-nonsusceptible pneumococcal infection: Bangkok 1997-1998. Southeast Asian J Trop Med Public Health. 2000 Sep;31(3):498-505.
- 42. Sangthawan P, Chantaratchada S, Chanthadisai N, Wattanathum A. Prevalence and clinical significance of community-acquired penicillin-resistant pneumococcal pneumonia in Thailand. Respirology. 2003 Jun;8(2):208-12.
- 43. Fitoussi F, Doit C, Geslin P, Brahimi N, Bingen E. Mechanisms of macrolide resistance in clinical pneumococcal isolates in France. Antimicrob Agents Chemother. 2001 Feb;45(2):636-8.
- 44. Klugman KP, Capper T, Widdowson CA, Koornhof HJ, Moser W. Increased activity of 16-membered lactone ring macrolides against erythromycin-resistant *Streptococcus pyogenes* and *Streptococcus pneumoniae*: characterization of South African isolates. J Antimicrob Chemother. 1998 Dec;42(6):729-34.
- 45. Felmingham D, Canton R, Jenkins SG. Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among *Streptococcus pneumoniae* isolates 2001-2004. J Infect. 2007 Aug;55(2):111-8.
- 46. Isozumi R, Ito Y, Ishida T, Osawa M, Hirai T, Ito I, et al. Genotypes and related factors reflecting macrolide resistance in pneumococcal pneumonia infections in Japan. J Clin Microbiol. 2007 May;45(5):1440-6.
- 47. Jenkins SG, Brown SD, Farrell DJ. Trends in antibacterial resistance among *Streptococcus pneumoniae* isolated in the USA: update from PROTEKT US Years 1-4. Ann Clin Microbiol Antimicrob. 2008 Jan 11;7:1.

48. Waites KB, Jones KE, Kim KH, Moser SA, Johnson CN, Hollingshead SK, Kang ES, Hong KS, Benjamin WH Jr. Dissemination of Macrolide-Resistant *Streptococcus pneumoniae* Isolates Containing Both *erm*(B) and *mef*(A) in South Korea J. Clin. Microbiol. 2003 Dec; 41(12): 5787-5791.

Output

Abstract accepted at the 19th European Congress of Clinical Microbiology and Infectious Diseases, Helsinki, Finland (16-19 May 2009)

Title: "Molecular mechanisms of macrolide resistance in invasive *Streptococcus* pneumoniae isolated from Thai patients"