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Abstract

Macrolide resistance in Streptococcus pneumoniae is an increasing problem
worldwide. Two main mechanisms of macrolide resistance are active efflux, encoded
by mefA gene and methylation of antibiotic target site, encoded by ermB gene. Other
mechanisms of resistance include mutations in 23SrRNA and ribosomal proteins L4
and L22. We investigated the prevalence and molecular mechanisms of macrolide
resistance in 100 S. pneumoniae clinical isolates from sterile sites. The minimal
inhibitory concentrations (MICs) of erythromycin, clarithromycin and penicillin were
examined by agar dilution and Etest. The mefA, ermB, 23S rRNA gene and ribosomal
protein L4 and L22 genes were amplified by PCR and ribosomal genes were sequenced.
Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). Of the
100 invasive S. pneumoniae, 36 (36%) were resistant to 36 erythromycin-resistant
isolates, mefA was present in 12 isolates (33.3%) and ermB was present in 24 isolates
(66.7%). Erythromycin resistance rate was 5.7% (3 of 53) among penicillin-susceptible
isolates and was 64.5% (20 of 31) and 81.2% (13 of 16) among penicillin—intermediate
and penicillin-resistant isolates, respectively. Mutations in ribosomal genes were
analyzed in all macrolide-resistant isolates. Alteration in ribosomal protein L4 at Ser20
to Asn was found in 13 isolates (36.1%). Mutations in ribosomal protein L22 and all 4
copies of 23S rRNA were not detected. PFGE analysis demonstrated 24 unique PFGE
profiles. No specific clone was widespread in macrolide-resistant S. pneumoniae
isolates.  This study showed that macrolide resistance has been increasing in S.
pneumoniae isolated from Thai patients and the dominant macrolide resistance

machanism was mediated by methylase, encoding by ermB gene.
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Molecular mechanisms of macrolide resistance in
Streptococcus pneumoniae isolated from Thai patients

Introduction

Streptococcus pneumoniae is an important pathogen implicated in community-
acquired pneumonia, otitis media, sinusitis, bacterial meningitis and bacteremia. It is
one of the leading causes of morbidity and mortality in human(1). Resistance to
macrolides in S. pneumoniae has increased considerably throughout the world(2-7).
Two main mechanisms of macrolide resistance in S. pneumoniae are mediated by
methylation of the antibiotic target site, encoded by the ermB gene and macrolide
efflux, encoded by the mefA gene(8). The ermB gene encodes a 23S rRNA methylase.
Methylation of adenine at position 2058 of the peptidyl transferase loop of 23S rRNA
leads to reduced binding of 14-, 15- and 16-membered-ring macrolides, lincosamides
and streptogramin B (MLSg), resulting in resistance to all these compounds and
expressing the MLSp phenotype. The MLSp antibiotics are chemically distinct but
functionally related drugs. The target site for the MLSg lies in domain V of 23S rRNA
at peptidyltransferase region of the 50S subunit(9). They inhibit protein synthesis by
blocking elongation of nascent peptide chain. Expression of MLSg-type resistance can
be either constitutive (cMLSg) or inducible (iMLSg). The mefA gene encodes an efflux
pump, a proton motive force-driven transporter, specific to 14-, 15-membered-ring
macrolides, corresponding to the M phenotype(9). It contains 12 transmembrane
domains spanning the cytoplasmic membrane and has been characterized by lower-level
resistance (MICyy values 0f 1-32 pg/ml)(10-12).

While ermB is the dominant genotype in Europe and South Africa (such as
67.9% Greece, 86% Spain, 90.9% Belgium 46.7% Canada 92.4%Tunisia and 83.3%
South Africa) (13-16) and is associated with high-level macrolide resistance, mefA is
predominate in North America and exhibits low-level resistance(6, 17-19). However,
some European countries such as Germany, Norway, Finland and Austria have reported
an increasing incidence of the efflux mechanism, similar to North America (18, 20-23).

Other mechanisms of macrolide resistance are due to mutations within the 23S
rRNA gene and ribosomal protein L4 or L22(24, 25). The mutations in domain V of the
23S rRNA at position A2058G (26-28), A2059C (28, 29), A2059G (21, 24, 25, 27-31),
C2611T (26) and C2611G (25, 29) have been reported in macrolide-resistant S.
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pneumoniae. Ribosomal protein mutations at position S20N (21, 24, 32-34),
60GTG71-to-69TPS7; substitution (26, 29, 31, 35, 36) , A197V (33), and R95H (33) were
associated with macrolide resistance. Mutations in ribosomal proteins L22 at position
G95D (27, 30), C117T(21, 30, 33), P99Q(21, 30), A93E(21, 30), P91S(21, 30),
R22C(21, 30), A101P(21, 30) and G83E(21, 30) have been shown to account for
resistance in pneumococci.

Data on the macrolide resistance in invasive S. pneumoniae in Thailand has not
been evaluated recently and the mechanisms of resistance have not been examined
extensively before. Therefore, this study was designed to investigate the prevalence of
macrolide resistance in invasive S. pneumoniae and to determine the molecular
mechanisms of macrolide resistance including resistance including the presence of
ermB and mefA and mutations in the 23S rRNA gene and ribosomal proteins L4 and
L22.

Materials and Methods
Bacterial strains

A total of 100 S. pneumoniae isolates were collected from patients treated at the
King Chulalongkorn Memorial Hospital, Bangkok, between January 2002 and May
2006. All pneumococci were isolated from sterile body sites including blood and
cerebrospinal fluid. Identification of the isolates as S. pneumoniae was determined by
gram staining, colonial morphology, catalase test, optochin susceptibility, bile solubility
and the presence of IytA gene. All isolates were kept frozen at -70°C until used.
Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) of penicillin, erythromycin were
determined by agar dilution on Mueller-Hinton agar (BBL Becton Dickinson, Sparks,
MD, USA) supplemented with 5% sheep blood and doubling dilutions of antibiotics.
Clarithromycin MICs were determined by E-test (AB Biodisk, Solan, Sweden). All
plates were incubated at 37°C, in 5% CO, for 16—18 hours. S. pneumoniae ATCC 49619
was used as a control strain. According to guidelines from the Clinical Laboratory
Standards Institute (CLSI, formerly NCCLS)(37), erythromycin and clarithromycin
MICs of > 1 mg/L were classified as resistant and penicillin MIC of 0.12-1 mg/L and

> 2 mg/L was intermediate and resistant, respectively.
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Detection of macrolide resistance phenotypes

The double-disk method using erythromycin (15pg) and clindamycin (2pg)
disks was used for determination of macrolide resistance phenotypes. The disks were
placed 15-20 mm apart on Mueller-Hinton agar supplemented with 5% sheep blood on
which a bacterial suspension of a 0.5 McFarland standard was inoculated previously.
The absence of a zone of inhibition around the two disks indicated constitutive MLSg
(cMLSg). Blunting of the clindamycin inhibition zone near erythromycin disk indicated
inducible MLSg (iMLSg). Susceptibility to clindamycin with no blunting indicated the
M phenotype.

Detection of macrolide resistance genes

The presence of macrolide resistance genes, ermB and mefA, was determined by
PCR in a duplex reaction for all 100 S. pneumoniae isolates. The isolates were
emulsified in 50 ul of sterile distilled water and boiled for 10 min. The supernatant
was used as the DNA template. The PCR primers for the detection of ermB and mefA
genes are listed in Tablel, based on those previously described by Sutcliffe et al .(38)
Each 50 pul PCR mixture was as followed; 1X PCR buffer (10mM Tris-HCI (pH 8.8),
50mM KCI), 3mM MgCl,, 200 uM dNTP, 1.25 U Taq DNA polymerase (Fermentas,
USA) and 2.5 pl of DNA template, 10 pmole and 5 pmole of each ermB and mefA
primers, respectively. PCR cycling conditions consisted of an initial denaturation of
93°C for 3 min followed by 35 cycles of 93°C for 1 min, 52°C for 1 min and 72°C for 1
min, and a final extension of 72°C for 5 min. Amplified DNA fragments were analyzed
by electrophoresis on 1.5 % agarose gels containing ethidium bromide (0.5 pg/ml). The
electrophoresis was carried out at 80 volts for 50 minutes and the gels were visualized
on UV light transilluminator. The PCR products were 639 bp for ermB and 348 bp for
mefA.

Dectection of ribosomal mutations

Primers for amplification of 23S rRNA , L4 and L22 genes are listed in Table 1,
as described by Tait-Kamradt et al.(39) Four copies of the peptidyltransferase region of
the 23S rRNA were amplified using 23S 3’ forward and the four downstream primers

(DS 18, DS 23, DS 30 and DS 91)(38) . Each 50 ul PCR mixture was as followed; 1X
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PCR buffer (10 mM Tris-HCI (pH 8.8), 50mM KCI), 200 uM dNTP, 10 pmole of each
primers, 1.25 U Taq DNA polymerase (Fermentas, CA, USA) and 2.5 ul of DNA
template. For all the primer pairs, the concentration of MgCl, were 2 mM except that of
DS91 was 3 mM. All PCRs were subjected to initial denaturation of 94°C for 1 min
followed by 35 cycles of 94°C for 1 min, 54°C for 1 min and 72°C for 1 min, and a
final extension of 72°C for 10 min. The PCR products of ribosomal protein genes were
720 bp for L4, 420 bp for L22. For 23S rRNA, the amplified fragments of DS 18, DS
23, DS 30 and DS 91 genes were 2002 bp, 2004 bp, 1296 bp and 1200 bp, respectively.

The DNA fragments were purified by QIAquick PCR purification kit as
described by the manufacturer (QIAGEN, GmbH, Germany) and sequenced by
automated DNA sequencer with ABI prime BigDye terminator cycle sequencing ready
reaction kit (PE Applied Biosystem, Foster, CA, USA) by Macrogen Inc., Seoul, Korea.
PCR primers were also used as sequencing primers. The nucleotide and protein
sequences were analyzed and compared to the published sequences with the software
available over the Internet at the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/BLAST), Multalin (www.toulouse.inra.fr/multalin.html)
and ExPASy (www.expasy.org/).

Table 1. PCR primers

Primer name Sequence 5" to 3’
erm B forward GAA AA(AG) GTA CTC AAC CAA ATA
erm B reverse AGT AA(CT) GGT ACT TAA ATT GTT TAC
mef A forward AGT ATC ATT AAT CAC TAG TGC
mef A reverse TTC TTC TGG TAC TAA AAG TGG
23S 3’ forward CGG CGG CCG TAA CTA TAA CG
23S 3' reverse
DS 18 GCC AGC TGA GCT ACA CCG CC
DS 23 TAC ACA CTC ACA TAT CTC TG
DS 30 TTT TAC CAC TAA ACT ACA CC
DS 91 TAC CAA CTG AGC TAT GGC GG
L4 forward AAA TCA GCA GTT AAA GCT GG
L4 reverse GAG CTT TCA GTG ATG ACA GG
L22 forward GCA GAC GAC AAG AAA ACA CG

L22 reverse ATT GGA TGT ACTTTT TGA CC
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PFGE analysis

PFGE was performed for all 36 macrolide-resisitant S.pneumoniae. The isolates
were grown for 18 hr at 37°C in 5%CO, on 5% blood BHI agar (BBL, Microbiology
Systems, Cockeys ville, Md.). Cells form the culture were washed, adjusted until
turbidity at 540 nm = 3 in TE buffer pH 7.5 (10 mM Tris-HCl, 5 mM EDTA) and
mixed with an equal volume 2% (w/v) Low melt Preparative Grade Agarose (Bio-Rad
Laboratories, Hercules, California, USA). The cell-agarose mixture was distributed into
a plug mold and allowed to solidify. The plugs were incubated overnight at 37 °C in
lysis buffer (ES solution: 50mM Tris, 50mM EDTA, 1% Sarcosyl) with proteinase K at
a final concentration of 1 mg/ml. Plugs were washed 6 times in TE buffer and stored at
4°C.

For restriction analysis, each plug was digested with 20 U of Smal (Promega,
Medison, WI, USA) for 6 hr at 37 °C. A contour-clamped homogeneous electric field
DRIII apparatus (Bio-Rad) was used for running the gel for 24 hr at 14°C at 200 V
ramped with an initial pulse time of 2 s and final pulse time of 30 s. Gels were stained
with ethidium bromide. The PFGE patterns were analyzed by FPquest software (BIO-
Rad) using the Dice coefficient and unweighted pair group method with arithmetic

mean (UPGMA) with 1% tolerance and 1 % optimization.

Results
Antimicrobial susceptibility

The MICsy, MICy and resistance rates of macrolides and penicillin against 100
invasive S. pneumoniae isolates are summarized in Table 2. The results demonstrated
that erythromycin, clarithromycin and penicillin MICs of S. pneumoniae isolates
ranged from < 0.016 to >256 mg/L, <0.016 to >256 mg/L and 0.016 — 8 mg/L,
respectively . MIC required to inhibit 50 % (MICsg) and 90% (MICy) of isolates were
0.25 mg/L and >256 mg/L for erythromycin, 0.064 mg/L and >256 mg/L for
erythromycin and 0.064 mg/L and 2 mg/L for penicillin, respectively.

Distribution of MICs of macrolides are shown in Figure 1 and Figure 2. For
erythromycin, the distribution of the MICs showed a set of the sensitive strains with the
MIC range of 0.016-0.5 mg/L. The peak was at 0.125 mg/L and then declined from both
sides. The majority of resistant strains had high-level MIC of >256mg/L. For
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clarithromycin, the distribution of the MICs of sensitive strains had a peak at the MIC
of 0.064 mg/L and then tailed off. The majority of resistant strains had high-level MIC
of >256mg/L.

Table 2 The susceptibility of macrolides and penicillin against 100 Streptococcus

pneumoniae clinical isolates

o MIC (mg/L) .
Antibiotics % Resistance
MICsg MICqy Range
Erythromycin 0.25 >256 0.016 - >256 36
Clarithromycin 0.064 >256 | <0.016 - >256 34
16 (R)
Penicillin 0.064 2 0.016 -8
31 (D

R = fully resistant, I= intermediate resistant

Figure 1 Distributions of erythromycin MICs
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Figure 2 Distributions of clarithromycin MICs
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Prevalence of macrolide and penicillin resistance

Of the 100 S. pneumoniae isolates, 36 (36%) were resistant to erythromycin and
34 (34%) to clarithromycin. All clarithromycin-resistant isolates were resistant to
erythromycin. Sixteen isolates (16%) were resistant to penicillin and 31 (31%) were
intermediate resistant. Erythromycin resistance rate was 5.7% (3 of 53) among
penicillin-susceptible isolates and 64.5% (20 of 31) and 81.2% (13 of 16) among

penicillin—intermediate and penicillin-resistant isolates, respectively (Table 3).

Table 3 Erythromycin resistance and penicillin susceptibility

No. of isolates (%0)
Penicillin Penicillin Penicillin
Susceptible Intermediate Resistant
(N =53) (N=31) (N =16)
Erythromycin
_ 3 (5.7%) 20 (64.5%) 13 (81.2%)
resistance

>256
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Macrolide resistance phenotypes and genotypes

Of the 36 isolates of S. pneumoniae isolates resistant to erythromycin, 24
(66.7%) exhibited resistance to erythromycin and clindamycin, corresponding to the
constitutive MLSg phenotype (cMLSg). The remaining 12 isolates (33.3%) showed
resistance to only erythromycin, expressing the M phenotype. Inducibly resistant

isolate was not detected (Table 4).

Table 4 Phenotypes and genotypes of macrolide-resistant S. pneumoniae

Resistance No. of isolates Resistance genotype
phenotype (n = 36) ermB (%) mefA (%)
cMLSg 24 (66.7%) 24 (100%) 0 (0%)

M 12 (33.3%) 0 (0%) 12 (100)

Figure 3. PCR analysis of ermB and mefA genes. Lane 1, 2 and 5: isolates carrying
mefA; Lane 3, 4 and 6: isolates carrying ermB; Lane 7; 100 bp DNA ladder.
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The presence of ermB and mefA, was determined by PCR in a duplex reaction
for all 100 S. pneumoniae isolates. Figure 3 shows PCR products of 639 bp for ermB
and 348 bp for mefA . All 36 macrolide-resistant isolates contained either ermB or
mefA. A double resistance mechanism, mefA and ermB, was not detected. Neither mefA
nor ermB was detected in macrolide-sensitive strains. All strains with the ¢cMLSg
phenotype had the ermB gene (66.7%) whereas all with the M phenotype carried the
mefA gene (33.3%) (Table 4).

Distribution of erythromycin MIC and resistance genes

Figure 4 and Figure 5 show the correlation between macrolide MICs and
resistance genes. MICs of macrolides for ermB-positive S. pneumoniae were higher
than those for mefA-positive strains. The macrolide MICs of S. pneumoniae carrying
ermB were > 256 mg/L for erythromycin and >256 mg/L for clarithromycin whereas
those with mefA ranged from 2 to16 mg/L for erythromycin and from 0.064 to 6 mg/L

for clarithromycin (Figure 5).

Figure 4 Distribution of erythromycin MICs and resistance genes
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Figure 5 Distribution of clarithromycin MIC and resistance genes
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Ribosomal mutations

All four copies of the domain V region of 23S rRNA and ribosomal protein L4
and L22 were amplified and sequenced individually in 36 macrolide-resistant S.
pneumonia isolates. All sequences were compared with those of S. pneumoniae TIGR
4 from Genbank (Accession number AE005672). The sequences of all four 23S rRNA
genes of all isolates were identical to those of S. pneumoniae TIGR 4 strain. This
indicated that no changes were present in the peptidyl transferase region of the 23S
rRNA. There were no amino acid changes in any of the strains tested for ribosomal
protein L22. Silent mutations were found at nucleotide position 72 changing from G to
T (Val-24 , GTT to GTG) and position 303 from C to T (Asn-101, AAC to AAT) in
one isolate. Mutations in ribosomal protein L4 were found in 13 isolates (36.1%).
Amino acid change was found at position 20, changing from serine (AGC) to
asparagine (AAC) (Figure 6). Nucleotide and amino acid sequence alignments of
ribosomal proteins L4 and L22 are shown in Figure 7 -10. The resistance mechanisms

of 36 macrolide-resistant S. pneumoniae are summarized in Table 5.
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Figure 6 Ribosomal protein L4 mutation changing from Ser20(AGC) to Asn(AAC)
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Figure 7 Alignment of nucleotide sequences of ribosomal protein L4
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Figure 7 Alignment of nucleotide sequences of ribosomal protein L4 (continued)
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Figure 8 Alignment of amino acid sequences of ribosomal protein L4
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Figure 9 Alignment of nucleotide sequences of ribosomal protein L22
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Figure 10 Alignment of amino sequences of ribosomal protein L22
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Table 5 Macrolide-resistant S. pneumoniae and mechanisms of resistance

Erythromycin

Strain MIC Resistance gene L4 mutation L22 mutation 23S rR_NA
(mg/L) mutation
SP-104 2 mef - - -
SP-63 4 mef S20N - -
SP-19 4 mef - - -
SP-25 4 mef - - -
SP-89 4 mef - - -
SP-86 4 mef - - -
SP-17 4 mef - - -
SP-70 8 mef - - -
SP-59 8 mef S20N - -
SP-69 8 mef S20N - -
SP-36 16 mef S20N - -
SP-94 16 mef S20N - -
SP-72 >256 ermB S20N -
SP-100 >256 ermB S20N - -
SP-80 >256 ermB S20N - -
SP-54 >256 ermB S20N - -
SP-82 >256 ermB S20N - -
SP-32 >256 ermB - - -
SP-84 >256 ermB - - -
SP-74 >256 ermB - - -
SP-76 >256 ermB - - -
SP-60 >256 ermB - - -
SP-5 >256 ermB - - -
SP-16 >256 ermB - - -
SP-68 >256 ermB - - -
SP-14 >256 ermB - - -
SP-6 >256 ermB - - -
SpP-21 >256 ermB - - -
SP-105 >256 ermB - - -
SP-71 >256 ermB - - -
SP-42 >256 ermB S20N - -
SP-28 >256 ermB S20N - -
SP-20 >256 ermB - - -
SP-101 >256 ermB - - -
SP-73 >256 ermB S20N - -

SP-10 >256 ermB - - -
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PFGE Analysis

Molecular typing by PFGE was performed on 36 macrolide-resistant isolates.
The results revealed 24 unique PFGE profiles, based on 90% similarity (Figure 11). The
PFGE profile 9 consisted of 7 isolates. Four of the 7 isolates had 100% similarity to
each other and another 2 isolates also had identical fingerprint pattern. Profile 9 was
more prevalent than other profiles and accounted for 19.44% of isolates. Macrolide
resistance gene type was consistent for isolates in the PFGE profile. All isolates in
profile 9 carried ermB with erythromycin MIC of >256 mg/L. Profile 8 included 3
isolates, two of which had identical fingerprint patterns. The isolates in this profile had
high-level erythromycin resistance (MIC>256 mg/L) and harbored the ermB gene.
Profile 4, 14, 15 and 18 consisted of 2 isolates. The isolates in profile 4 had ermB and
mutations in ribosomal protein L4. The profile 14 and 15 isolates had mefA and
mutations in L4 whereas isolates in profile 18 carried only mefA. The remaining 18
isolates were genetically unrelated by PFGE. The results demonstrated that no specific

clones was widespread in macrolide-resistant S. pneumoniae isolates.
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Figure 11 PFGE patterns of 36 macrolide-resistant S. pneumoniae isolates
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Discussion

Resistance to macrolides has emerged in many parts of the world during the last
20 years (2, 40). The increasing rate of macrolide-resistant S. pneumoniae is of clinical
concern and public interest. Macrolide resistance varied between countries. The
variation is important for physicians to use local resistance data when choosing
appropriate antibiotics. The present study investigated the in-vitro susceptibility of
invasive S. pneumoniae isolates to macrolides and analyzed for the genes associated
with resistance and their phenotypes. The results showed an increasing prevalence of
macrolide resistance in invasive S. pneumoniae to be 36% for erythromycin and 34%
for clarithromycin. Erythromycin resistance rate in penicillin-resistant S. pneumoniae
was high (81.2%). In Thailand , the rate of erythromycin resistance in pneumococci
isolated from specimens of invasive infections was 16% in 1997-1998(41) and high
prevalence rate was reported to be 34.8% in S. pneumoniae isolated from patients with
community-acquired pneumonia in 1998-2001(42). Similar to what have been observed
elsewhere, the prevalence of macrolide-resistant pneumococci has been increasing. It is
probably consequent to an increased selective pressure generated by increased
prescriptions of macrolides in community medicine. In Asian countries, high
prevalence rates of erythromycin resistance among S. pneumoniae were 88.3% in
Vietnam, 87.2% in Taiwan, 85.1% in Korea, 76.5% in Hong Kong and 75.6% in
China (7).

The prevalence of ermB and mefA among S. pneumoniae varies geographically.
The mefA gene predominates in North America whereas the ermB gene in Europe and
South Africa(17-19, 43, 44). In the present study, the predominant of ermB, the MLSg
phenotype in S. pneumoniae isolated from Thai patients is similar to the results from
other countries such as Europe, South Africa, Japan, Taiwan and China(18, 45, 46). All
of the isolates carrying ermB showed the MLSg phenotype (66.7%), while the isolates
carrying mefA had the M phenotype (33.3%). The resistance genotypes were consistent
with the expected phenotypes. Macrolide-resistant isolates carried either ermB or mefA.
The strains expressing the M phenotype conferred low-level resistant to erythromycin
whereas strains expressing the MLSg phenotype showed high-level resistance.

The dual mechanism (both ermB and mefA) was not detected in our study.

Despite high prevalence of macrolide resistance in S. pneumoniae, there is no report of
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dual mef and ermB mechanism in Thailand. Jenkins et al. reported an increasing
prevalence of isolates carrying both mef and ermB genes from 9.7% in 2000 to 18.4%
in 2004 from the PROTEKY US study (47). High prevalence of this mechanism
(39.1%) was report in South Korea (48). Since the prevalence of mef and ermB dual
mechanism has been increasing, monitoring the spreading of isolates carrying this
resistance mechanism should be considered, due to expressing high-level macrolide
resistance.

In this study, mutations in all 4 copies of 23S rRNA were not detected. It has
been reported that mutations in domain V of the 23S rRNA at position A2058G (26-
28), A2059C (28, 29), A2059G (21, 24, 25, 27-31), C2611T (26) and C2611G (25, 29)
were associated with macrolide resistance. Similar to other studies, ribosomal protein
L4 mutation was detected at position S20N in 36.1% of macrolide-resistant isolates
(21, 24, 32-34). The «GTG7-to-69TPS7; substitution (26, 29, 31, 35, 36) , A197V
(33), and R95H (33) were also linked to macrolide resistance which were not found in
this study. Mutations at G95D (27, 30), C117T(21, 30, 33), P99Q(21, 30), A93E(21,
30), P91S(21, 30), R22C(21, 30), A101P(21, 30) and G83E(21, 30) in ribosomal
protein L22 associated with macrolide resistance were not detected in this study.

A total of 24 PFGE profiles were identified in 36 macrolide-resistant S.
pneumoniae isolates. The present study showed that there was genetic heterogeneity
among macrolide-resistant isolates. However, isolates in profile 9 were more prevalent
than other profiles and there was the linkage between type of macrolide resistance
genes and PFGE profiles. The results suggests that clonal spread is not responsible for
macrolide resistance in these isolates.

In conclusion, the results demonstrated that the prevalence of macrolide
resistance among invasive S. pneumoniae isolated from Thai patients was high (36%).
The most prevalent mechanism of macrolide resistance was mediated by ermB, a
23SrRNA methylase, which reduced the binding of macrolides to the 23S rRNA and
exhibited the MLSg phenotype. Mutations in ribosomal protein L4 at S20>N involved
in macrolide resistance. No specific clones were responsible for macrolide resistance in
S. pneumoniae isolates. It is important to update local susceptibility data and types of

macrolide resistance to guide empirical choices in antimicrobial therapy.
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