บทคัดย่อ

รหัสโครงการ: MRG4880110

ชื่อโครงการ: การศึกษาฤทธิ์แก้ซึมเศร้า ฤทธิ์รักษาโรคจิต และกลไกการออกฤทธิ์ทางเภสัช

วิทยาที่เกี่ยวข้องของแกมมาแมงโกสติน สารสกัดจากเปลือกมังคุด

ชื่อนักวิจัย: นางมนฤดี สุขมา

ภาควิชาเภสัชวิทยาและพิษวิทยา คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

E-mail Address: monrudee@email.pharm.su.ac.th ระยะเวลาโครงการ: 1 มิถุนายน 2548-31 ธันวาคม 2550

การศึกษานี้มีวัตถุประสงค์เพื่อการศึกษาฤทธิ์แก้ซึมเศร้า ฤทธิ์รักษาโรคจิต และกลไกการออก ฤทธิ์ทางเภสัชวิทยาที่เกี่ยวข้องของแกมมาแมงโกสติน สารสกัดจากเปลือกมังคุดโดยใช้แบบจำลองการ เปลี่ยนแปลงพฤติกรรมสัตว์และศึกษาจาก mRNA expression ผลการศึกษาพบว่าเมื่อให้แกมมาแมงโก สติน 1-30 mg/kg ทางช่องท้อง สารไม่แสดงผลต่อ spontaneous locomotor activity และ 5-methoxy-แต่เมื่อให้โดย (5MeO-DMT)-induced N-N-dimethyltryptamine head twitch intracerebroventricular injection พบว่าแกมมาแมงโกสติน 100 nmole/mice สามารถลด immobility time ใน Force Swim Test ลดจำนวนครั้งของการเกิด head twitch response จากการเหนี่ยวนำโดย 5MeO-DMT และต้าน meta-chlorophenylpiperazine (mCPP)-induced hypolocomotor activity แบบ แปรผันตามขนาดยาที่ให้และแตกต่างอย่างมีนัยสำคัญเทียบกับกลุ่มทดลอง spontaneous locomotor activity, 5MeO-DMT-induced head waving response และ apomorphineinduced climbing เมื่อศึกษาผลของแกมมาแมงโกสตินต่อ serotonin_{2A, 2C} receptor mRNA expression พบว่าแกมมาแมงโกสติน 0.1 µM เพิ่มการแสดงออกของ 5-HT_{2A}R และมีแนวโน้มเพิ่มการแสดงออก ของ 5-HT_{2C}R mRNA โดยไม่มีผลเปลี่ยนแปลง β-actin mRNA expression และ serotonin สามารถลด ผลของแกมมาแมงโกสตินต่อการแสดงออกของ 5-HT_{2A/2C}Rs mRNA expression ได้ ผลจากการศึกษา นี้แสดงว่าแกมมาแมงโกสตินมีฤทธิ์แก้ซึมเศร้า โดยฤทธิ์ดังกล่าวอาจสัมพันธ์กับการเป็น 5-HT_{2A/2C}Rs antagonist นอกจากนั้นยังพบว่าแกมมาแมงโกสติน 0.1 µM เพิ่มการแสดงออกของ histamine H₁ receptor และ muscarinic M4 receptor แต่ไม่มีผลต่อการแสดงออกของ synaptotagmin mRNA ผล จากการศึกษานี้แสดงว่าแกมมาแมงโกสตินอาจออกฤทธิ์ยับยั้งการทำงานของ G-protein coupled receptors หรือยับยั้งการถ่ายโอนสัญญานของ G-protein coupled receptors

คำสำคัญ แกมมาแมงโกสติน มังคุด ฤทธิ์แก้ซึมเศร้า สารต้านตัวรับเซโรโตนิน

Abstract

Project Code: MRG4880110

Project Title: The antidepressant-like and antipsychotic effects of γ Mangostin, a

xanthone contained in fruit hull of mangosteen, and possible underlying

pharmacological mechanisms

Investigator: Mrs. Monrudee Sukma

Faculty of Pharmacy, Silpakorn University

E-mail Address: monrudee@email.pharm.su.ac.th

Project Period: June 1, 2005 – Dec 31, 2007

In the present study, the antidepressant-like, antipsychotic activity and its related central serotonergic system of γ mangostin, a tetraoxygenated diprenylated xanthone contained in fruit hull of mangosteen were evaluated. When given intraperitoneally, γ mangostin (10-30 mg/kg) was not able to change the number of HTR induced by 5-methoxy-N-Ndimethyltryptamine (5MeO-DMT), a serotonin receptor agonist. Interestingly, γ mangostin (100 nmole) markedly attenuated HTR induced by 5MeO-DMT when administered via intracerebroventricular injection (i.c.v.). Furthermore, at the same dose, γ mangostin decreased the duration of immobility time in FST as well as attenuated mCPP-induced hypolocomotor activity. It had no effect on the spontaneous locomotor activity and did not exhibited inhibitory effect on 5MeO-DMT- induced head waving response and apomorphine-induced climbing. In mRNA expression study, γ mangostin significantly increased 5-HT_{2A}Rs mRNA expression and have trend to increased 5-HT $_{
m 2C}$ Rs mRNA expression. These up-regulations were reversed by co-administration with serotonin. These results provide support for the potential antidepressantlike effect of γ mangostin and the involvement of the serotonergic systems especially 5- $HT_{2A/2C}Rs$ in the antidepressant-like effect of γ mangostin. In addition, these findings indicated that antagonistic effect of γ mangostin on 5-HT_{2A/2C}Rs might be related with transcription. For further experiment, effect of γ mangostin on other G-protein coupled receptors, histamine H₁ receptor and muscarinic M₄ receptor, mRNA expression were evaluated. We found that γ mangostin also induced H₁ receptor and M₄ receptor mRNA expression. These indicated that target of inhibitory effect of γ mangostin might be GPCRs or downstream signal transduction which results in homologous or heterologous mRNA up-regulation.

Keywords: γ mangostin, *Garcinia mangostana*, Antidepressant-like effects, Serotonin receptor antagonist