

รายงานวิจัยฉบับสมบูรณ์

โครงการ

บทบาทของออสทิโอโปรเทเจริน รีเซปเตอร์เอคทิเวเตอร์ออฟนิวเคลียร์แฟคเตอร์ แคปปาบีลิแกนด์และตัวบ่งชี้ทางชีวเคมีในโรคท่อน้ำดีอุดตันที่มีภาวะกระดูกพรุน

โดย ผู้ช่วยศาสตราจารย์นายแพทย์ สิทธิศักดิ์ หรรษาเวก และคณะ

พฤษภาคม 2550

สัญญาเลขที่ MRG4880111

รายงานวิจัยฉบับสมบูรณ์

โครงการ

บทบาทของออสทิโอโปรเทเจริน รีเซปเตอร์เอคทิเวเตอร์ออฟนิวเคลียร์แฟคเตอร์ แคปปาบีลิแกนด์และตัวบ่งชี้ทางชีวเคมีในโรคท่อน้ำดีอุดตันที่มีภาวะกระดูกพรุน

คณะผู้วิจัย

- 1. ผศ.นพ. สิทธิศักดิ์ หรรษาเวก
- 2. รศ.พญ. วรนุช จงศรีสวัสดิ์
- 3. รศ.นพ. ไพศาล เวชชพิพัฒน์
- 4. รศ.นพ. ธวัชชัย ชัยวัฒนรัตน์
- 5. ศ.นพ. ยง ภู่วรวรรณ

สังกัด

จุฬาลงกรณ์มหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยนี้สำเร็จลุล่วงเรียบร้อยได้ด้วยดี ผู้ทำวิจัยต้องขอขอบพระคุณพี่เลี้ยงที่ปรึกษา โครงการวิจัย ศาสตราจารย์ นายแพทย์ยง ภู่วรวรรณ ที่ได้ให้ความกรุณาช่วยเหลือ เอาใจใส่ ให้ คำปรึกษา และเป็นกำลังใจในการทำงานวิจัยด้วยดีมาตลอด

ขอขอบพระคุณผู้ร่วมทำวิจัยทุกท่าน รศ.พญ. วรนุช จงศรีสวัสดิ์ รศ.นพ. ไพศาล เวชช พิพัฒน์ และ รศ.นพ. ธวัชชัย ชัยวัฒนรัตน์ ซึ่งทำให้งานวิจัยสำเร็จเรียบร้อยด้วยดี และขอขอบคุณ เจ้าหน้าที่ห้องปฏิบัติการไวรัสตับอักเสบเป็นอย่างสูงที่ได้ช่วยเหลือ เทคนิคทางห้องปฏิบัติการและ วิเคราะห์ผลเลือด

ท้ายที่สุดขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่สนับสนุนทุนในการ ทำวิจัยโครงการนี้ให้สามารถทำการศึกษาวิจัยได้สำเร็จลงด้วยดี

บทคัดย่อ

รหัสโครงการ: MRG4880111

ชื่อโครงการ: บทบาทของออสทิโอโปรเทเจริน รีเซปเตอร์เอคทิเวเตอร์ออฟนิวเคลียร์แฟค เตอร์แคปปาบีลิแกนด์และตัวบ่งชี้ทางชีวเคมีในโรคท่อน้ำดีอุดตันที่มีภาวะ กระดูกพรุน

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์นายแพทย์ สิทธิศักดิ์ หรรษาเวก จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: fmedshs@md.chula.ac.th

ระยะเวลาโครงการ: 2 ปี

โรคท่อน้ำดีอุดตันเป็นโรคอักเสบเรื้อรังที่มีการดำเนินของโรคอย่างต่อเนื่อง ซึ่งจะทำให้เกิด การอุดตันของท่อน้ำดีที่ตำแหน่งใดตำแหน่งหนึ่งตั้งแต่ขั้วตับจนถึงลำไส้เล็กส่วนต้น แทนที่ด้วยเนื้อเยื่อพังพืด อันจะก่อให้เกิดภาวะตับแข็งจากน้ำดี (biliary cirrhosis) และเกิดความดัน ในหลอดเลือดพอร์ตอลสูง (portal hypertension) โรคท่อน้ำดีอุดตันเป็นสาเหตุที่พบได้บ่อยที่สุดที่ ทำให้มีการผ่าตัดเปลี่ยนตับในเด็ก ออสทิโอโปรเทเจริน (osteoprotegerin, OPG) และรีเซปเตอร์ เอคทีเวเตอร์ออฟนิวเคลียร์แฟคเตอร์แคปปาบีลิแกนด์ (receptor activator of nuclear factor-KB ligand, RANKL) เป็นโปรตีนที่มีบทบาทสำคัญในการควบคุมกระบวนการเจริญพัฒนาของเซลล์ตั้ง ์ตันในการเปลี่ยนแปลงเจริญเป็นเซลล์สลายกระดูก (osteoclast) เรียกกระบวนการดังกล่าวนี้ว่า osteoclastogenesis โปรตีน OPG เป็นโปรตีนตัวรับที่หลั่งออกมานอกเซลล์ในการควบคุมยับยั้ง การเปลี่ยนแปลงเป็นเซลล์สลายกระดูก (osteoclast differentiation) โดยการหลอกจับกับ RANKL โปรตีน RANKL นี้มีส่วนสำคัญในการกระตุ้นให้มีการเจริญเป็นเซลล์สลายกระดูกด้วยการจับกับ โปรตีนตัวรับ RANK ของกระบวนการเจริญของเซลล์สลายกระดูก วัตถุประสงค์ที่สำคัญของ การศึกษานี้เพื่อวิเคราะห์ระดับของ OPG และ RANKL ในซีรัมของผู้ป่วยท่อน้ำดีอุดตันที่มีภาวะ กระดูกพรุน (osteoporosis) และศึกษาความสัมพันธ์ระหว่าง ระดับโปรตีน OPG และ RANKL ความหนาแน่นมวลกระดูก ดัชนี่ชี้วัดของเมแทบอลิซึมของกระดูก และอาการสำคัญทางคลินิกใน ผู้ป่วยโรคท่อน้ำดีอุดตัน และระดับความรุนแรงของภาวะกระดูกพรุนเพื่อเป็นแนวทางการเฝ้าดูแลผู้ ป่วยท่อน้ำดีอุดตันที่มีภาวะกระดูกพรุนร่วมด้วย ผู้ป่วยทั้งสิ้นจำนวน 50 ราย และกลุ่มควบคุมซึ่งมี สุขภาพดีจำนวน 13 ราย ซึ่งมีอายุเฉลี่ย คือ 7.3± 0.6 ปี และ 8.0± 1.1 ปี ตามลำดับ ระดับของ โปรตีน OPG และ RANKL ในซีรัมสามารถตรวจวัดโดยวิธี enzyme-linked immunosorbant assay และตรวจวัดความหนาแน่นของมวลกระดูกโดยใช้เครื่อง dual-energy absorptiometry (DEXA) จากการศึกษาพบว่าผู้ป่วยโรคท่อน้ำดีอุดตันมีระดับของ OPG ในซีรัมสูง กว่ากลุ่มควบคุมที่มีสุขภาพดีอย่างมีนัยสำคัญทางสถิติ (4.0±0.3 vs 3.0±0.3 pmol/l, *P*<0.02) ใน กลุ่มผู้ป่วยนี้ ระดับ OPG มีค่าสูงในผู้ป่วยที่มีภาวะดีซ่าน เมื่อเปรียบเทียบกับผู้ป่วยที่ไม่มีภาวะดี ซ่านอย่างมีนัยสำคัญ (4.6±0.4 vs 3.6±0.4 pmol/l, *P*<0.04) ขณะเดียวกัน ระดับ RANKL ในซีรัม ผู้ป่วยท่อน้ำดีอุดตันมีค่าสูงมากกว่ากลุ่มควบคุม (2.9±0.2 vs 1.2±0.7 pmol/l, *P*<0.001) นอกจากนี้ ผู้ป่วยท่อน้ำดีอุดตันที่มีภาวะดีซ่านมีระดับของ RANKL สูงกว่ากลุ่มที่ไม่มีภาวะดีซ่าน (3.2±0.3 vs 2.7±0.2 pmol/l, *P*=0.2) ระดับ ในซีรัมของผู้ป่วยท่อน้ำดีอุดตันมีค่าสูงกว่ากลุ่มควบคุม CTX (0.38±0.07 vs 0.22±0.04 ng/ml, *P*<0.02) และในผู้ป่วยดังกล่าวระดับ CTX ในซีรัมมีค่าเพิ่มมาก ในผู้ป่วยที่มีภาวะดีซ่านเมื่อเปรียบเทียบกับผู้ป่วยที่ไม่มีภาวะดีซ่าน ขึ้นอย่างมีนัยสำคัญทางสถิติ (0.60±0.15 vs 0.23±0.04 ng/ml, *P*<0.01) สำหรับระดับ osteocalcin ในซีรัมพบว่า ไม่มีความ แตกต่างกันระหว่างผู้ป่วยท่อน้ำดีอุดตันที่มีภาวะดีซ่าน ผู้ป่วยที่ไม่มีภาวะดีซ่าน และกลุ่มควบคุม (20.88±4.04, 17.95±3.74 และ 16.34±1.47 ng/ml, P=0.3) โดยสรุป ระดับ OPG และ RANKL มี ค่าสูงในผู้ป่วยโรคท่อน้ำดีอุดตัน และระดับที่สูงนี้มีความสัมพันธ์เกี่ยวข้องกันกับระดับความรุนแรง ของผู้ป่วย โดยสมมติฐานว่า ระดับ OPG ในซีรัมที่สูงขึ้นในผู้ป่วยท่อน้ำอุดตัน ซึ่งมีระดับความ รุนแรงสูง อาจเป็นผลมาจากการตอบสนองชดเชยต่อการที่มีภาวะการสูญเสียมวลกระดูก ระดับ OPG และ RANKL อาจนำมาใช้เป็นดัชนีชี้วัดที่สำคัญในการเฝ้าติดตามผู้ป่วยท่อน้ำดีอุดตันที่มี ภาวะกระดูกพรุนได้

คำหลัก: ท่อน้ำดีอุดตัน, ความหนาแน่นของมวลกระดูก, ภาวะกระดูกพรุน, ออสทิโอโปรเทเจริน, รีเซปเตอร์เอคทิเวเตอร์ออฟนิวเคลียร์แฟคเตอร์แคปปาบีลิแกนด์ **Abstract**

Project Code: MRG4880111

Project Title: Role of Osteoprotegerin/ Receptor Activator of Nuclear Factor-kappaB

Ligand and Biochemical Markers in Biliary Atresia-Induced Osteoporosis

Investigator: Assistant Professor Sittisak Honsawek, MD.

Chulalongkorn University

E-mail Address: fmedshs@md.chula.ac.th

Project Period: 2 Years

Biliary atresia (BA), a fibrosclerosing obliteration of extrahepatic biliary system,

results in biliary cirrhosis and portal hypertension. Most patients consequently progress to

end-stage hepatic cirrhosis and need liver transplantation. Osteoprotegerin (OPG) and

receptor activator of nuclear factor-KB ligand (RANKL) are novel proteins that play an

essential role in the regulation of osteoclastogenesis. OPG is a secreted soluble receptor

that inhibits osteoclast differentiation through its binding to RANKL. RANKL is critical for

osteoclast stimulation by binding its receptor RANK on osteoclast lineage cells. The

purpose of this study is to evaluate the relationships between serum OPG and RANKL

levels, bone mineral density (BMD), and clinical outcome in patients with BA. We have

investigated fifty patients with BA and thirteen healthy controls. The mean age of BA

patients and controls were 7.3±0.6 and 8.0±1.1 years. Serum levels of OPG and RANKL

6

were measured by sandwich enzyme-linked immunosorbent assay. BMD of lumbar spine was determined by dual-energy X-ray absorptiometry (DEXA). BA patients had significantly elevated serum levels of OPG compared with controls (4.0±0.3 vs 3.0±0.3 pmol/l, P<0.02) and serum OPG levels in BA patients with jaundice were higher than those without jaundice (4.6±0.4 vs 3.6±0.4 pmol/l, P<0.04). Likewise, serum RANKL levels were significantly higher in BA patients with respect to controls (2.9±0.2 vs 1.2±0.7 pmol/l, P<0.001). In addition, serum RANKL levels were increased in BA patients with jaundice compared to those without jaundice, but was not significantly different (3.2±0.3 vs 2.7±0.2 pmol/l, P=0.2). Furthermore, serum CTX values were significantly greater in the BA patients compared with those of the controls (0.38±0.07 vs 0.22±0.04 ng/ml, P<0.02) and serum CTX levels in BA patients with jaundice were higher than those without jaundice (0.60±0.15 vs 0.23±0.04 ng/ml, P<0.01). There was no significant difference in serum osteocalcin levels between the jaundice group, jaundice-free group and the controls (20.88±4.04, 17.95±3.74 and 16.34±1.47 ng/ml, respectively, P=0.3). This study showed significant differences in the serum levels of OPG and RANKL in children with BA when compared with healthy controls. The high serum OPG and RANKL levels are associated with the severity of BA. The increase of serum OPG in BA patients with severe disease could reflect a compensatory response to bone loss.

Keywords: Biliary atresia, Bone mineral density, Osteoporosis, Osteoprotegerin,

Receptor activator of nuclear factor-KB ligand

Introduction

Biliary atresia (BA) is one of the most common causes of chronic cholestasis in children and is a progressive, inflammatory, fibrosclerosing cholangiopathy leading to complete obliteration of both intrahepatic and extrahepatic bile ducts (1). The obstruction presents as the triad of jaundice, acholic stools, and hepatosplenomegaly. Without medical and surgical intervention, cholestasis results in hepatic fibrosis, portal hypertension, end-stage liver disease, and death within a few years (2). Kasai portoenterostomy currently remains the treatment of choice for patients with BA. Although the etiology and pathogenesis of BA remain largely unknown, several mechanisms have been suggested including defects in morphogenesis of the biliary tract, defects in prenatal circulation, viral infection, environmental toxin exposure, and immunological dysregulation (3).

Osteopenia and osteoporosis are common among patients with chronic liver diseases as well as BA. It is characterized by low bone mass, microarchitectural deterioration of bone tissue, resulting from an imbalance of skeletal turnover maintained by two opposite but normally balanced process of bone formation and bone resorption that results in bone fragility and a consequent susceptibility to fracture (4). Although the pathogenesis of bone disease in BA is not yet completely understood, it has been postulated that malnutrition, malabsorption of vitamin D and calcium deficiency may be responsible for the imbalanced action of bone-forming osteoblasts and bone-resorbing osteoclasts (5). Recently, osteoporosis has been observed in a number of cholestatic liver

diseases including alcoholic cirrhosis (6), hemochromatosis (7), Wilson disease (8), primary biliary cirrhosis (9), and BA (5).

Receptor activator of nuclear factor-KB ligand (RANKL), a member of the tumor necrosis factor (TNF) superfamily, is a soluble or transmembrane ligand, which is produced by osteoblastic lineage cells and activated T lympocytes. RANKL binds to its specific receptor RANK that is expressed on osteoclast precursor cells and mature osteoclast. Interactions between RANKL and RANK are essential for both osteoclastogenesis and activation of bone resorbing osteoclasts (10). The effects of RANKL are counteracted by osteoprotegerin (OPG) which serves as a soluble neutralizing receptor. OPG is known to inhibit osteoclastogenesis by binding to RANKL, thereby preventing RANKL from interacting to RANK on osteoclasts (11). Although the emerging knowledge of the biological effects of the OPG/RANKL system derived from in vitro and animal studies has generated a new comprehension of osteoclast biology and has provided novel insights into the molecular and cellular basis of various metabolic bone diseases, the contribution of the OPG/RANKL system to the pathogenesis of bone disease in BA has not yet completely been elucidated. The purpose of this study therefore, was to investigate the OPG/RANKL system and bone mineral density (BMD) in patients with BA.

Materials and methods

Patients

A total of 50 BA patients were recruited into the study during annual routine follow-up between July 2005 and March 2006. The study group included 20 boys (40%) and 30 girls (60%) with a mean age of 7.3±0.6 years. The control group comprised 13 healthy children, age and gender matched with a mean age of 8.0±1.1 years (6 boys and 7 girls) among those who participated in an evaluation of hepatitis B vaccine during the same period. None of the BA patients in this study underwent liver transplantation or exhibit symptoms and signs of fever or ascending cholangitis at the time of blood sampling. The serum specimens were collected and stored at -70°C until assayed.

In order to compare the outcome among BA patients, they were classified according to the status of jaundice into two groups: patients with jaundice (TB≥2.0 mg/dl, n=20) and patients without jaundice (TB<2.0 mg/dl, n=30).

The study was approved by the Ethics Committee on Human Research of the Faculty of Medicine, Chulalongkorn University. All parents of children with BA and of the healthy controls were informed of the study's objectives, and written informed consents were obtained from the parents before the children entered the study.

Laboratory methods

Measurements of serum OPG and RANKL were performed using a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Biomedica GmbH, Vienna, Austria) according to the manufacturer's instructions. The range of controls tested for OPG

and RANKL were 0 to 30 pmol/l and 0 to 50 pmol/l, respectively. Sensitivity levels for these markers were 0.14 pmol/l for OPG and 0.4 pmol/l for RANKL. Recombinant human OPG and RANKL were used to generate the standard curve. The intra-assay and interassay coefficients of variation (CV) were less than 10% for both assays. The absorption was determined with an ELISA reader at 450 nm against 690/620 nm. In addition, liver function tests including serum albumin, total bilirubin (TB), direct bilirubin (DB), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), and gamma glutamyl transpeptidase (GGT) were measured by the central laboratory using the automated machine Hitachi 912.

Bone density measurements

All children underwent BMD measurements of the lumbar spine (anteroposterior lumbar vertebrae L1-L4) with dual-energy X-ray absorptiometry (DEXA) using Hologic QDR 2000 (Hologic Inc., Waltham, MA, USA). The results obtained from comparisons of BMD with age matched norms were expressed as Z-scores of BMD. Control data were obtained from Caucasian children provided in the software Hologic 2000. According to the WHO guidelines, osteoporosis was defined as a spinal BMD equal to 2.5 standard deviation (SD) or more below the average values obtained in an age and gender matched group. Osteopenia was defined as a BMD below 2.5 SD but above 1 SD under the average values. Normal BMD was defined as a spinal BMD equal to or below 1 SD under the average values. BMD was expressed as g/cm².

C-terminal telopeptide of type I collagen (serum CTX)

The serum crossLaps (CTX, IBL immuno-biological laboratories) enzyme-linked immunosorbent assay (ELISA) is specific for a cross-linked, beta-aspartate-isomerized form of the epitope EKAHDGGR derived from the carboxyterminal telopeptide region of type I collagen alpha (1) chain. Collagen type I fragments reactive in the CTX assay are released during osteoclastic bone resorption and can be used as a measure of bone resorption activity. The Serum CrossLaps one-step ELISA assay is performed as a sandwich immunoassay with monoclonal antibodies in a one-step procedure. Standards, control, or unknown serum samples are added into microtiter wells coated with streptavidin, followed by a mixture of a biotinylated antibody and a peroxidase-conjugated antibody. A complex between C-telopeptide fragments of type I collagen measured in the CTX assay, biotinylated antibody, and peroxidase-conjugated antibody is generated, and the complex binds to the streptavidin surface via the biotinylated antibody. The amount of bound antigen is quantified by the use of a chromogenic peroxidase substrate.

Osteocalcin (OC)

Human osteocalcin (Diagnostic systems laboratories) ELISA assay is an enzymatically amplified one step sandwich-type immunoassay. In the assay, standards, controls and unknown diluted serum samples are incubated with anti-osteocalcin polyclonal detection antibody labeled with the enzyme horseradish peroxidase in microtitration wells coated with an affinity purified anti-osteocalcin mouse monoclonal antibody. After incubation and washing, the wells are incubated with the substrate tetramethylbenzidine (TMB). An

acidic stopping solution is then added and the degree of enzymatic turnover of the substrate is determined by dual wavelength absorbance measurement at 450 and 620 nm. The absorbance measured is directly proportional to the serum concentration of osteocalcin. Statistical analysis

All the values are expressed as mean \pm SEM. Statistical analysis was performed using SPSS software. Comparisons between the groups were performed using Student's *t*-test for unpaired data. A *P* value < 0.05 was considered to indicate statistical significance.

Results

The clinical characteristics and laboratory parameters between BA patients without jaundice and BA patients with persistent jaundice are demonstrated in table 1. Fifty BA patients and 13 healthy controls participated in the present study. All BA patients underwent Kasai operation. There were 30 BA patients without jaundice and 20 BA patients with persistent jaundice. There were no significant differences of age (7.3±0.6 vs 8.0±1.1 years) and gender (M/F, 20/30 vs 6/7) between the BA patients and the controls. The circulating concentrations of AST, ALT, ALP, and GGT were significantly higher in the BA patients with persistent jaundice compared to those without jaundice, while the BA patients with persistent jaundice had lower levels of albumin than those without jaundice.

The mean serum levels of OPG in patients with BA were significantly higher than those in healthy controls $(4.0\pm0.3 \text{ vs } 3.0\pm0.3 \text{ pmol/l}, P<0.02)$. In the BA patients, serum OPG levels were significantly elevated in the jaundice group $(4.6\pm0.4 \text{ pmol/l})$ compared with the jaundice-free group $(3.6\pm0.4 \text{ pmol/l}, P<0.04)$ and the healthy controls $(3.0\pm0.3 \text{ pmol/l}, P<0.004)$. There was no significant difference in serum OPG levels between the jaundice-free group and the controls (Figure 1). Likewise, serum RANKL levels were significantly higher in BA patients $(2.9\pm0.2 \text{ pmol/l})$ than in controls $(1.2\pm0.7 \text{ pmol/l}, P<0.001)$. Although the BA patients with jaundice had higher serum OPG levels than those without jaundice, the difference was not statistically significant $(3.2\pm0.3 \text{ vs } 2.7\pm0.2 \text{ pmol/l}, P=0.2)$ (Figure 2).

Subgroup analysis in BA patients with normal BMD (Z score \geq -1.0), with osteopenia (-2.5 < Z score < -1.0), and with osteoporosis (Z score \leq -2.5) revealed a

gradual increase in OPG serum levels, with a statistically significant increase observed in osteoporotic jaundice-free patients (*P*<0.05) whereas no difference in serum OPG levels was found among the groups of BA patients with jaundice (Figure 3). Serum RANKL levels showed no significant difference among the groups of BA patients (Figure 4).

In BA patients, serum OPG levels showed a positive correlation with AST, ALT, ALP, and GGT. There was an inverse correlation between OPG and BMD (R=-0.32, P=0.013). Furthermore, there was a negative correlation between serum RANKL levels and BMD (R=-0.25, P=0.041).

Since biochemical markers of bone turnover are important in the assessment of osteoblastic and osteoclastic functions, this study measured the serum osteocalcin and C-terminal cross-linking telopeptide of type I collagen levels. Osteocalcin is a noncollagenous protein secreted by osteoblasts and is widely accepted as a marker for osteoblastic activity and bone formation, whereas serum CTX, as a collagen-degradation product is a marker of bone resorption.

The mean serum CTX levels in the healthy controls were 0.22 ± 0.04 ng/ml whereas serum CTX levels in BA children were 0.38 ± 0.07 ng/ml as shown in Figure 5. Thus, the serum CTX values were significantly increased in the BA patients versus those of the controls (P<0.02). In the BA patients, serum CTX levels in the jaundice group were significantly higher than those in the jaundice-free group (0.60 ± 0.15 vs 0.23 ± 0.04 ng/ml, P<0.01) and the normal controls (P<0.01) (Figure 6).

Although, the mean serum levels of osteocalcin in patients with BA were higher than those in healthy controls, the difference was not statistically significant (19.12 \pm 2.75 vs 16.34 \pm 1.47 ng/ml, P=0.2) (Figure 7). There was no significant difference in serum osteocalcin levels between the jaundice group, jaundice-free group and the controls (20.88 \pm 4.04, 17.95 \pm 3.74 and 16.34 \pm 1.47 ng/ml, respectively, P=0.3) (Figure 8).

Discussion

Bone development during childhood and adolescence is a key determinant of adult skeleton health. A reduced bone mass is associated with increased fracture risk in adults as well as in children. Peak bone mass, which is reached by early adulthood, serves as a bone reserve for the remainder of life, therefore childhood and adolescence are crucial periods for bone development. Strategies implemented for optimization of bone acquisition, as well as factors adversely affecting bone growth during these susceptible periods can have potentially long-standing consequences (12).

Bone manifestations are well-known extrahepatic complications of chronic liver diseases (13,14). In these patients, several factors contribute to the development of bone disease. In particular, malnutrition, immobilization, and hormonal changes are causes for deteriorating bone metabolism in patients with chronic liver diseases (14). The mechanism leading to osteoporosis is still unclear. The equilibrium between bone formation and bone resorption is disturbed (15), and, apart from the decreased activity of osteoblasts (16), there are also studies indicating an increase in osteoclast activity (17). In contrast to primary biliary cirrhosis and primary sclerosing cholangitis, no disease-specific association between biliary atresia and osteoporosis is documented. Only few studies on bone metabolism have been performed in patients suffering from biliary atresia, especially post Kasai procedure (5,18,19).

Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor, is a soluble member of the tumor necrosis factor (TNF) receptor family and is a decoy receptor

that inhibits the interaction between the receptor for activation of nuclear factor-KB (RANK) and its ligand (RANKL) (20). The biological effects of OPG on bone cells include the inhibition of terminal stages of osteoclast differentiation, suppression of mature osteoclast activation, and induction of osteoclast apoptosis (21-22). Studies on transgenic mice overexpressing osteoprotegerin have shown that it decreased bone resorption and enhanced bone mass, whereas the OPG gene knockout mice developed severe osteoporosis due to an increase in osteoclastic bone resorption (23, 24). It was recently demonstrated that homozygous deletion of OPG gene potentially leads to juvenile Paget's disease in some children (25). In contrast, RANKL knockout mice displayed a reduced number of osteoclasts, increased BMD, even osteopetrosis (26). A single treatment of recombinant human OPG in young growing rats resulted in a significant increase in bone density and an inhibition of osteoclastic bone resorption (27). These results indicate that OPG and RANKL are crucial physiological regulators of osteoclastogenesis.

Bone loss, osteopenia as well as osteoporosis, is a common complication in patients with chronic cholestasis and particularly in those with BA. In the past, hepatic osteodystrophy was considered a late complication of patients with BA (28). The bone disorder associated with BA was osteopenia evidenced by cortical thinning and trabecular bone loss, which presumably resulted from low vitamin D levels as a consequence of intestinal malabsorption induced by cholestasis. Although the exact mechanism for osteopenic bone disease in BA remains unknown, cholestasis on its own may contribute significantly to bone loss in these patients. A higher serum bilirubin level was associated

with low bone density as observed in BA patients with jaundice. This finding is consistent with in vitro studies showing that bilirubin inhibits osteoblast function (29) and this osteoblast dysfunction may play a role in bone loss seen in BA. Malabsorption of vitamin D, vitamin K or minerals, deficiency of hormones, decreased physical activity, and minimal sunlight exposure have been thought to play a role in the pathogenesis of osteoporosis (30, 31). These factors may partly explain the presence of osteoporosis and low bone density in BA patients.

In the present study, we investigated for the first time the circulating levels of OPG and RANKL in the serum of BA patients. Significantly higher serum levels of OPG were observed in BA patients, and in particular in BA patients with jaundice than BA patients without jaundice or healthy controls. The production of OPG and its ligand is regulated by a variety of proinflammatory cytokines known to affect bone metabolism. Some of the proinflammatory cytokines, such as IL-1, IL-6, and TNF-0, could enhance OPG production and might regulate osteoclast differentiation and activation through an increased RANKL production (32, 33). Although bone cells are the major sources of OPG, other extrasleletal tissues may play a role in serum OPG elevation (21). It might be possible that other tissues or cells, such as inflammatory cells and fibroblasts in the liver could contribute to the OPG production (34). Another possible explanation may be that higher OPG levels could be secondary to decreased clearance.

The current study described alterations in the OPG-RANKL system and its relationship to decreased BMD in BA patients. Subgroup analysis of BA patients according

to jaundice status showed that the jaundice group had lower albumin levels but higher liver function than the jaundice-free group. These results suggest that BA patients with jaundice may have poor nutritional status and pronounced liver damage. Intriguingly, high OPG levels tended to be associated with low BMD in the BA patients. Subsequent analysis showed that serum OPG levels were inversely correlated with BMD in that osteoporotic BA patients revealed substantial elevation in serum OPG levels among the jaundice-free groups. These findings support the hypothesis that OPG increases as a compensatory reaction to decreased BMD.

Several studies have investigated serum OPG and RANKL levels in association with serum biochemical measurements in chronic liver diseases, but results have been inconsistent and conflicting. Szalay et al. were the first to examine serum OPG and RANKL levels in patients with primary biliary cirrhosis (PBC) (35). They have demonstrated that elevated serum OPG and low serum RANKL levels may, in part, represent a compensatory response to the negative balance of bone remodeling in PBC. Recently, Garcia-Valdecasas-Campelo et al. have shown high serum levels of OPG with normal levels of RANKL in chronic alcoholic liver disease (36). They observed negative correlations between OPG and serum albumin and prothrombin activity, indicating a relationship between elevated OPG and deranged liver function. In our study serum OPG and RANKL levels were elevated in patients with BA, in accordance with Fabrega's finding. Fabrega and colleagues described raised OPG and RANKL serum levels in patients with advanced alcoholic liver cirrhosis (37). The reason for these conflicting results is unclear but may lie

in differences in disease states, populations or assays studied, or in incomplete control for confounding variables.

The limitation of this study is lack of quantitative bone histomorphometry data because it could provide evidence as to whether bone was correlated with serum OPG and/or RANKL levels. Therefore, further research will be necessary to clarify this point. In addition, serum OPG and RANKL levels may not consistently reflect the amount of bioavailable OPG and RANKL in the bone microenvironment. OPG and RANKL are synthesized locally in bone tissue by osteoblasts. Since the OPG-RANKL action is on the skeleton, skeletal OPG-RANKL production may have little influence on serum levels. Thus, the changes of OPG-RANKL system in bone microenvironment might be different from those in circulation.

The reason why serum OPG and RANKL levels increase in BA patients is still not entirely clear, but it may be related to the imbalance between bone formation and resorption associated with severity in these patients. Additional studies on bone turnover markers, such as osteocalcin for bone formation and C-terminal cross-linking telopeptide of type I collagen for bone resorption are needed to determined whether bone loss in BA patients results from the decreased bone synthesis or the increased bone resorption.

In order to investigate the underlying mechanism of decreased bone mineral density in patients with BA, we measured the serum levels of CTX and osteocalcin, which are markers of bone turnover. The insignificant statistical difference in the osteocalcin levels between the BA patients and controls reflects that there is normal osteoblastic function in

BA. However serum CTX levels were significantly increased in patients with BA, which reflects increased bone resorption in the BA patients, particular in those with jaundice.

In conclusion, we found significant differences in the serum levels of OPG and RANKL in children with BA when compared with healthy controls. The increase of serum OPG in patients with severe disease could reflect a compensatory response to bone loss and osteoporosis. Based on the high serum CTX and OPG levels with normal osteocalcin and RANKL levels found in the present study, we conclude that decreased bone density in patients with BA is the consequence of increased bone resorption unrelated to RANKL production. Further studies are warranted to disclose the underlying mechanism of bone disorders in patients with BA.

Acknowledgement

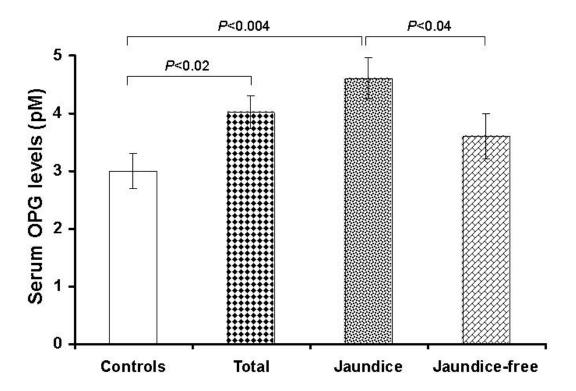
The present study was supported by a grant from the Thailand Research Fund, Center for Excellence Research Fund, Chulalongkorn University, and the Thailand Research Fund for Senior Research Scholar. The authors are greatly thankful to the staff of Center of Excellence in Viral Hepatitis Research, Chulalongkorn University and Chulalongkorn Memorial Hospital for their efforts in this study.

References

- 1. Kobayashi H, Stringer MD (2003) Biliary atresia. Semin Neonatol 8:383-391
- Balistreri WF, Grand R, Hoofnagle JH, Suchy FJ, Ryckman FC, Perlmutter DH, Sokol RJ (1996) Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology 23:1682-1692
- Mack CL, Sokol RJ (2005) Unraveling the pathogenesis and etiology of biliary atresia. Pediatr Res 57:87R-94R
- 4. Dempster DW, Lindsay R (1993) Pathogenesis of osteoporosis. Lancet 341:797-801
- Chongsrisawat V, Ruttanamongkol P, Chaiwatanarat T, Chandrakamol B,
 Poovorawan Y (2001) Bone density and 25-hydroxyvitamin D level in extrahepatic
 biliary atresia. Pediatr Surg Int 17:604-608
- Conte D, Caraceni MP, Duriez J, Mandelli C, Corghi E, Cesana M, Ortolani S,
 Bianchi PA (1989) Bone involvement in primary hemochromatosis and alcoholic
 cirrhosis. Am J Gastroenterol 84:1231-1234
- Diamond T, Stiel D, Posen S (1989) Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or other factors? Ann Intern Med 110:430-436
- Hegedus D, Ferencz V, Lakatos PL, Meszaros S, Lakatos P, Horvath C, Szalay F
 (2002) Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J Bone Miner Res 17:1961-1967.

- Matloff DS, Kaplan MM, Neer RM, Goldberg MJ, Bitman W, Wolfe HJ (1982)
 Osteoporosis in primary biliary cirrhosis: effects of 25-hydroxyvitamin D3 treatment.
 Gastroenterology 83:97-102.
- 10. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165-176.
- 11. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2-12
- 12. Hartman C, Hochberg Z, Shamir R. Osteoporosis in pediatrics. IMAJ. 2003;5:509–515.
- McGaughan GW, Feller RB. Osteoporosis in chronic liver disease: Pathogenesis, risk factors, and management. Dig Dis. 1994;12:223–231.
- Hay JE. Bone disease in liver transplant recipients. Gastroenterol Clin North Am.
 1993;22:237–249.
- 15. Rosen H. Primary biliary cirrhosis and bone disease. Hepatology. 1996;21:253–255
- Stellon AJ, Webb A, Compston J, Williams R. Low bone turnover state in primary biliary cirrhosis. Hepatology. 1987;7:137–142.

- 17. Eastell R, Dickson ER, Hodgson SF, et al. Rates of vertebral bone loss before and after liver transplantation in women with primary biliary cirrhosis. Hepatology. 1991;14:296–300.
- 18. Toki A, Todani T, Watanabe Y, Sato Y, Ogura K, Yoshikawa M, Yamamoto S, Wang ZQ. Bone mineral analysis in patients with biliary atresia after successful Kasai procedure. Tohoku J Exp Med. 1997;181:213-6.
- Ohshima K, Kubo Y, Samejima N. Bone mineral analysis and X-ray examination of the bone in patients with biliary atresia. Jpn J Surg. 1990;20:537-44.
- Hofbauer LC (1999) Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol 141:195-210
- 21. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, RenshawGegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319
- 22. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602


- 23. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268
- 24. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Comibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615
- 25. Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, Xu J, Grey A, Cornish J, Naot D (2006) Deletion of aspartate 182 in OPG causes juvenile Paget's disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res 21:438-445
- 26. Kiviranta R, Morko J, Alatalo SL, NicAmhlaoibh R, Risteli J, Laitala-Leinonen T, Vuorio E (2005) Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36:159-172.
- 27. Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852-858.

- 28. Katayama H, Shirakata A, Miyano T (1985) Hepatic osteodystrophy in congenital biliary atresia. Nippon Igaku Hoshasen Gakkai Zasshi 45:455-61
- 29. Janes CH, Dickson ER, Okazaki R, Bonde S, McDonagh AF, Riggs BL (1995) Role of hyperbilirubinemia in the impairment of osteoblast proliferation associated with cholestatic jaundice. J Clin Invest 95:2581–2586
- 30. D'Antiga L, Moniz C, Buxton-Thomas M, Cheeseman P, Gray B, Abraha H, Baker AJ, Heaton ND, Rela M, Mieli-Vergani G, Dhawan A (2002) Bone mineral density and height gain in children with chronic cholestatic liver disease undergoing transplantation. Transplantation 73:1788–1793
- 31. Argao EA, Specker BL, Heubi JE (1993) Bone mineral content in infants and children with chronic cholestatic liver disease. Pediatrics 91:1151–1154
- 32. Hofbauer L C, Lacey D L, Dunstan C R (1999) Interleukin-1 β and tumor necrosis factor- α , but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25:255–259.
- 33. Ueland T, Bollerslev J, Godang K (2001) Increased serum osteoprotegerin level in disorders characterized by persistent inmune activation or glucocorticoid excess – possible role in bone homeostasis. Eur J Endocrinol 145:685–690.
- 34. Moschen AR, Kaser A, Stadlmann S, Millonig G, Kaser S, Muhllechner P, Habior A, Graziadei I, Vogel W, Tilg H (2005) The RANKL/OPG system and bone mineral density in patients with chronic liver disease. J Hepatol 43:973-983.

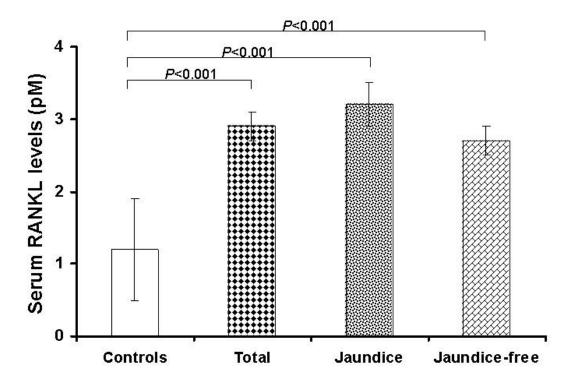
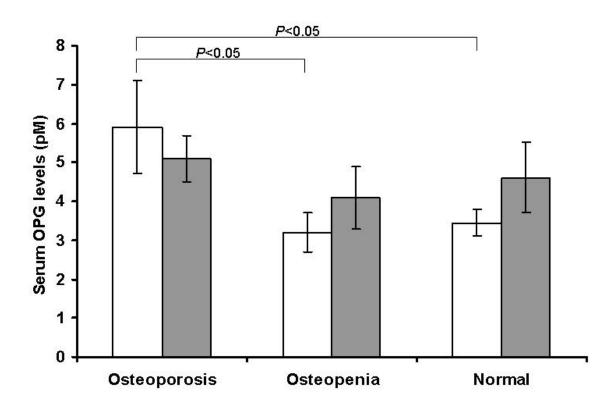

- 35. Szalay F, Hegedus D, Lakatos PL, Tornai I, Bajnok E, Dunkel K, Lakatos P (2003)
 High serum osteoprotegerin and low RANKL in primary biliary cirrhosis. J Hepatol
 38:395-400
- 36. Garcia-Valdecasas-Campelo E, Gonzalez-Reimers E, Santolaria-Fernandez F, De la Vega-Prieto MJ, Milena-Abril A, Sanchez-Perez MJ, Martinez-Riera A, Gomez-Rodriguez Mde L (2006) Serum osteoprotegerin and RANKL levels in chronic alcoholic liver disease. Alcohol Alcohol 41:261-266
- 37. Fabrega E, Orive A, Garcia-Suarez C, Garcia-Unzueta M, Antonio Amado J, Pons-Romero F (2005) Osteoprotegerin and RANKL in alcoholic liver cirrhosis. Liver Int 25:305-310

Table 1. The clinical characteristics and laboratory parameters of BA patients with and without jaundice. Data are expressed as mean and SEM. *P* values for differences between the jaundice and jaundice free patients.


BA Patients	Total	Jaundice	Jaundice free	Р
N	50	20	30	
Sex(M/F)	M20/F30	M10/F10	M10/F20	NS
Age(year)	7.3±0.6	5.8±0.8	8.3±0.7	0.01
Albumin (g/dl)	3.9±0.1	3.4±0.2	4.3±0.1	0.0005
Total bilirubin(mg%)	4.5±1.0	9.8±1.9	0.9±0.1	0.0005
Direct bilirubin(mg%)	3.0±0.8	7.0±1.5	0.3±0.1	0.0005
AST (IU/L)	151.9±17.5	243.4±28.2	90.9±14.0	0.0005
ALT (IU/L)	128.0±16.4	176.2±25.0	95.9±19.8	800.0
ALP (IU/L)	508.1±47.3	637.6±58.7	421.8±64.4	0.009
GGT (IU/L)	242.2±33.3	311.0±50.7	196.4±42.6	0.05
Z-score	-1.3±0.2	-2.3±0.3	-0.7±0.2	0.0005
OPG (pmol/L)	4.0±0.3	4.6±0.4	3.6±0.4	0.04
RANKL (pmol/L)	2.9±0.2	3.2±0.3	2.7±0.2	NS

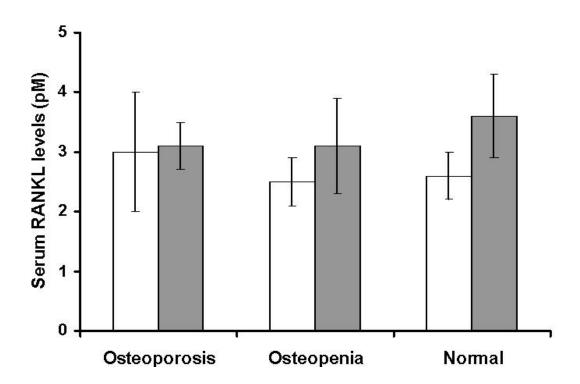

Figure 1. Serum OPG levels in BA patients and in healthy controls. Data are expressed as mean and SEM.

Figure 2. Serum RANKL levels in BA patients and in healthy controls. Data are expressed as mean and SEM.

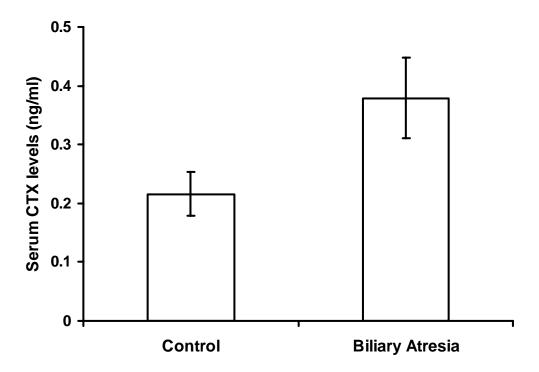


Figure 3. Serum OPG levels among BA patients with osteoporosis, osteopenia, and normal BMD. Data are expressed as mean and SEM.

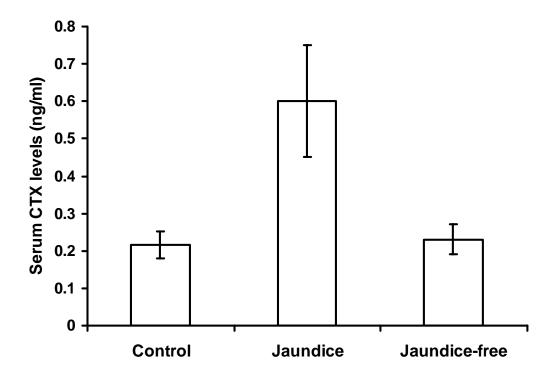


Figure 4. Serum RANKL levels among BA patients with osteoporosis, osteopenia, and normal BMD. Data are expressed as mean and SEM.

.

Figure 5. Serum C-terminal telopeptide of type I collagen (CTX) levels in healthy controls and in BA patients. Data are expressed as mean and SEM.

Figure 6. Serum C-terminal telopeptide of type I collagen (CTX) levels in healthy controls, in jaundice group and in jaundice-free group of BA patients. Data are expressed as mean and SEM.

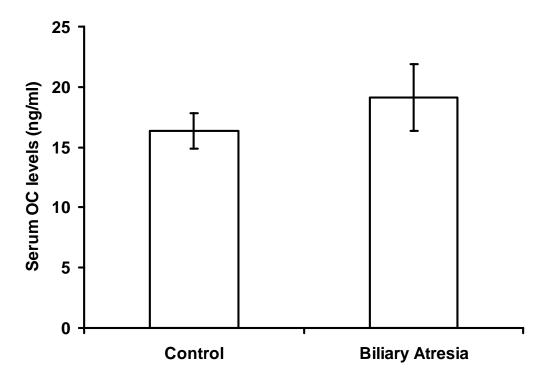
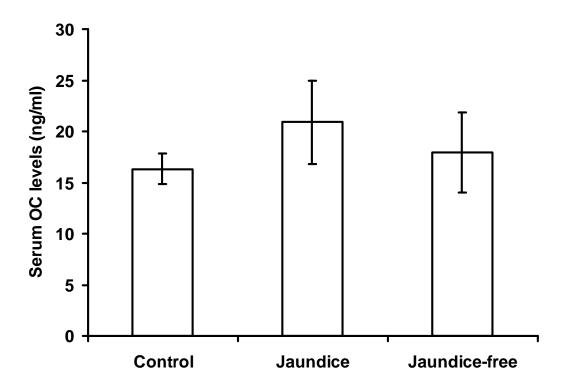



Figure 7. Serum osteocalcin (OC) levels in healthy controls and in BA patients.

Data are expressed as mean and SEM.

Figure 8. Serum osteocalcin (OC) levels in healthy controls, in jaundice group and in jaundice-free group of BA patients. Data are expressed as mean and SEM.

Output จากโครงการวิจัยที่ได้รับทุนจากสกว.

- 1. ได้เขียนผลงานและส่งเพื่อพิจารณาตีพิมพ์ในวารสารวิชาการนานาชาติ ซึ่งกำลังอยู่ในขั้นตอน ของการพิจารณาและจะจัดส่งชื่อวารสาร ชื่อเรื่อง ชื่อผู้แต่ง ปี เล่มที่ เลขที่ และหน้าให้ในภายหลัง
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
- 2.1 ประโยชน์เชิงวิชาการ สามารถนำข้อมูลที่ได้มาพัฒนาการเรียนการสอน และเป็นข้อมูล พื้นฐานสำหรับการทำวิจัยในอนาคต หรืองานวิจัยในเชิงกว้างและเชิงลึกต่อไป
 - -ได้ทราบข้อมูลพื้นฐานความหนาแน่นมวลกระดูกของผู้ป่วยท่อน้ำดีอุดตัน
 - -ได้ทราบระดับของ osteoprotegerin (OPG) และ Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL) ในซีรัมของผู้ป่วยท่อน้ำดีอุดตัน
 - -ได้ทราบค่าของดัชนีชี้วัดเมแทบอลิซึมของกระดูกสำหรับการสร้างกระดูกคือ osteocalcin และสำหรับการสลายกระดูก CTX ในซีรัมของผู้ป่วยท่อน้ำดีอุดตัน
 - -ได้ทราบความสัมพันธ์ทางคลินิกและการพยากรณ์การเกิดกระดูกพรุน โดยใช้ระดับ OPG และ RANKL ในผู้ป่วยท่อน้ำดีอุดตัน
 - -ได้ทราบความสำคัญของมวลกระดูกและการเกิดกระดูกบางหรือกระดูกพรุนกับ โรคท่อน้ำดีอุดตัน
- 2.2 ประโยชน์เชิงสาธารณะ ได้ทำให้เกิดการสร้างเครือข่ายความร่วมมือและทำให้เกิดความ สนใจในวงกว้างสำหรับผู้สนใจในการทำวิจัยที่เกี่ยวข้องกับท่อน้ำดีตีบตัน ซึ่งเป็นปัญหาที่สำคัญใน ประเทศไทย