Abstract

Project code: MRG4880124

Project title: Effects of Vinyl Monomers on the Formation on Polyethyleneimine-based

Core-Shell Nanoparticles

Investigator: Panya Sunintaboon, Department of Chemistry, Faculty of Science, Mahidol

University

E-mail address: scpsu@mahidol.ac.th

Various core-shell nanoparticle latexes with a PEI shell were prepared from styrene, n-butyl acrylate, ethyl acrylate, methyl methacrylate, and methacrylic acid by the emulsifierfree emulsion polymerization initiated by a PEI/t-butyl hydroperoxide(TBHP) redox pair. pHs of PEI solution, 7 and 11, adjusted by concentrated hydrochloric acid also showed a dramatic effect on the particle formation.

Stable particles of PMMA/PEI and PS/PEI can be prepared from both pHs 7 and 11 of PEI, while those of PnBA/PEI and PEA/PEI were prepared only at PEI pH 7. In contrast, stable particles of PMAA/PEI cannot be obtained, instead, gel products were obtained at both pHs of PEI. The effect of the selected vinyl monomers on the formation of particles were compared from latexes possibly prepared at PEI pH 7, which were PMMA/PEI, PEA/PEI, PnBA/PEI, PS/PEI. It was found that the type of monomers differently affected % monomer conversion, particle size, % grafting, and % grafting efficiency.

The type and strength of particle surface charge were confirmed by a ζ-potential measurement. Degree of protonation of PEI strongly influenced this value. Images from transmission electron microscope (TEM) clearly revealed the morphology of the particles. The resulted grafted copolymers of the corresponding latexes were characterized by an ATR-FTIR technique. In addition, the effect of ethanol as a cosolvent on the formation of PS/PEI at pH 7 was studied as well. It was found that upon increasing the amount of ethanol, % styrene conversion was not significantly altered, however, the particle size was increased.

Key words: core-shell nanoparticle; vinyl monomer; emulsifier-free; PEI.

บทคัดย่อ

รหัสโครงการ: MRG4880124

ชื่อโครงการ: อิทธิพลของไวนิลมอนอเมอร์ต่อการเกิดเป็นอนุภาคนาโน แบบ core-shell ที่มี Polyethyleneimine

(PEI) เป็นองค์ประกอบหลัก

ชื่อหักวิจัย: นายพันธ์ญา สุนินทบูรณ์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail address: scpsu@mahidol.ac.th

ในงานวิจัยนี้ได้มีการศึกษาอิทธิพลของไวนิลมอนอเมอร์ชนิดต่างๆคือ styrene (St), n-butyl acrylate (nBA), ethyl acrylate(EA), methyl methacrylate (MMA), และ methacrylic acid (MAA) ในการ สังเคราะห์อนุภาคนาโนแบบ core-shell โดยกระบวนการ emulsion grafted-copolymerization ที่ปราศจากการเติมสาร ลดแรงตึงผิว ในระบบการ สังเคราะห์นี้จะใช้ polyethyleneimine (PEI) ซึ่งเป็นพอลิเมอร์ที่มีละลาย น้ำได้ และมีหมู่เอมีนเป็นองค์ประกอบ เป็นพอลิเมอร์หลักสำหรับการกร๊าฟท์พอลิเมอร์ดังกล่าวข้างต้นซึ่งปฏิกิริยาการกร๊าฟท์จะเกิดจากอนุมูลอิสระที่เกิดขึ้น

บนโครงสร้างของ PEI ที่ถูกเหนี่ยวนำโดย t-butyl hydroperoxide (TBHP) นอกจากนี้ PEI ที่ pH 7 และ 11

ซึ่งปรับค่าโดยกรดไฮโดรคลอริกเข้มข้น ยังแสดงอิทธิพลต่อการเกิดปฏิกิริยาอีกด้วย

จากการทดลองพบว่าอนุภาคนาโนที่เสถียรของ PMMA/PEI และ PS/PEI สามารถเตรียมได้จาก PEI ทั้ง 2 สภาวะ (pHs 7 และ 11) ในขณะที่อนุภาคนาโนที่เสถียรของ PnBA/PEI และ PEA/PEI เตรียมได้จาก PEI ท**ี่** pH 7 เท่านั้น ในกรณีของ MAA ไม่สามารถเตรียมอนุภาคนาโนที่เสถียรได้ได้ แต่จะได้ผลิตภัณฑ์ที่มีลักษณะ เป็นเจล นอกจากนี้จากการทดลองเปรียบเทียบปฏิกิริยาที่เกิดขึ้นจากมอนอเมอร์ชนิดต่างๆ ที่ PEI pH 7 พบว่าความแตกต่าง ของมอนอเมอร์มีผลต่อ % conversion, particle size, % grafting, และ% grafting efficiency

ชนิด และค่าความแรงของประจุที่พื้นผิวของอนุภาคสามารถยืนยันได้จากผล ζ-potential และพบว่าสภาวะ ของ PEI มีผลอย่างมากต่อค่านี้ ภาพจากกล้องจุลทรรศน์อิเล็กตรอนสามารถแสดง morphology ของผลิตภัณฑ์ ลาเท็กซ์ที่สังเคราะห์ได้อย่างชัดเจน ข้อมูลจาก ATR-FTIR สามารถยืนยันว่ากร๊าพท์โคพอลิเมอร์เกิดขึ้นจริง นอกจากนี้ได้มีการศึกษาอิทธิพลของเอธานอลในบทบาทของ co-solvent ต่อการเกิดอนุภาคนาโนของ PS/PEI ที่ pH 7 และจากผลการทดลองพบว่าการปรับเปลี่ยนปริมาณของเอธานอลไม่มีผลต่อ % conversion ของ styrene มากนัก แต่จะส่งผลอย่างมากต่อขนาดของอนุภาคที่เกิดขึ้น