เทคโนโลยีสำหรับการกัด(machining)เซรามิกส์รคหน้าที่มีคณสมบัติเป็นฉนวนเป็นที่ต้องการใน อตสาหกรรมหลายแขนง ในขณะที่เครื่องกัดวัสคุด้วยไฟฟ้า Electric Discharge Machining (EDM) ได้ใช้อย่างแพร่หลายสำหรับวัสดุที่นำไฟฟ้าได้ เมื่อไม่นานมานี้ เครื่อง EDM สามารถที่จะ กัดเซรามิกส์ที่เป็นฉนวนได้หลายชนิด ตัวอย่างเช่น ซิลิคอนไนไตรด์ ซิลิคอนคาร์ไบค์ เซอรโคเนีย แต่ สำหรับอลูมินาการสปาร์คเกิดขึ้นอย่างไม่เสถียร การกัดเป็นไปอย่างยากลำบาก กลไกในการสร้างชั้น เหนี่ยวนำไฟฟ้าบนผิวที่ถูกสปาร์คแตกต่างกันอย่างมากเมื่อเทียบกับเซรามิกส์ชนิคอื่น ชั้นเหนี่ยวนำไฟฟ้า ถกสร้างไม่เพียงพอที่จะรักษาความนำไฟฟ้าเพื่อการสปาร์คอย่างต่อเนื่องบนผิวเซรามิกส์ได้ การเลือกวัสด อิเลกโตรคที่เหมาะสมเป็นส่วนสำคัญสำหรับผลผลิตและผลกำไรต่อการผลิต ในปัจจุบันนี้อิเลกโตรคกรา ไฟต์มีบทบาทอย่างสำคัญในวงการ ${
m EDM}$ การศึกษานี้ได้เล็งเห็นว่าการ์บอนจากอิเลคโตรค กราไฟต์อาจมี ส่วนในการสร้างชั้นเหนี่ยวนำไฟฟ้า การทคลองนี้ใช้อิเลคโตรดทองแดง กราไฟต์ และทองแคงผสมกรา ไฟต์ เพื่อเปรียบเทียบผลของการสร้างชั้นเหนี่ยวนำไฟฟ้าซึ่งมีผลต่อสมบัติการ EDM ซึ่งได้เปรียบเทียบ ด้วย อัตราการขจัด สัดส่วนการสึกหรออิเลคโตรด และค่าความหยาบของผิวงาน อิเลคโตรคทองแดงผสมก ราไฟต์กัดด้วยเครื่องกัดด้วยไฟฟ้าบนอลูมินา 95 เปอร์เซ็นต์ได้แสดงผลอย่างดีเยี่ยม โดยให้อัตราการขจัดสูง อย่างเห็น ได้ชัคเมื่อเทียบกับอิเลคโตรคกราไฟต์และทองแคง ในกรณีเมื่อเลือกขั้วไฟฟ้าเป็นบวกอิเลค โตรคกราไฟต์ และ ทองแคงผสมกราไฟต์สามารถให้อัตราการขจัดได้สูงกว่าเมื่อเลือกขั้วไฟฟ้าเป็นลบ จาก ผลการวิเคราะห์ด้วย Energy Dispersive Spectroscopy ไม่สามารถพบชาตุทองแคงบนชั้น เหนี่ยวนำไฟฟ้าทั้งที่สร้างด้วย EDM-3 และ EDM-C3 อย่างไรก็ตามค่าความต้านทานของชั้น เหนี่ยวบำไฟฟ้าที่สร้างด้วย EDM-C3 มีค่าบ้อยกว่า EDM-3 อิเลคโตรด EDM-C3 สามารถลด ค่าความหยาบของพื้นผิว

คำสำคัญ: EDM; Assisting electrode; อลูมินา; กราไฟต์; Copper-infiltrated-graphite

Abstract

Technologies for machining advanced insulating ceramics are demanded in many industrial fields; normally, Electric Discharge Machining (EDM) is utilized for machining electrically conductive materials. Recently, several insulating ceramics, such as Si₃N₄, SiC and ZrO₂, have been successfully machined by EDM. As unstable discharges occur during the machining of Al₂O₃ ceramics, inferior machining properties have been obtained. It seems that the formation mechanism of the electrical conductive layer on the EDMed surface is much different as compared to other ceramics. An electrically conductive layers are not formed sufficiently to adhere to the EDMed workpiece surface and keep a stable and continuous discharge generation on the ceramics [3]. Selection of appropriate electrode material is important for productivity and profitability of manufacture. Nowadays, a graphite electrode is an important tool for EDM process. For this study, it is expected that carbon from graphite electrode implant and generate a conductive layer. Copper, graphite (Poco EDM-3) and copperinfiltrated-graphite (Poco EDM-C3) electrodes were used to compare the effects of generation of a conductive layer on alumina corresponding to EDM properties. Material removal rate (MRR), electrode wear ratio and surface roughness are compared. The Electrical Discharge Machining of 95% pure alumina shows that the EDM-C3 performs very well, giving significantly higher MRR than the EDM-3 and copper electrodes. In the case of EDM with EDM-3 and EDM-C3, using positive electrode polarity gives higher MRR than EDM with negative polarity. For EDS (Energy Dispersive Spectroscopy) results, it seems that no element of copper was observed on the conductive layer with an EDM-3 and an EDM-C3. However surface resistivity of a conductive layer created with EDM-C3 is less than with EDM-3. Surface roughness is improved with EDM-C3. .

Keywords: EDM; Assisting electrode; Alumina; Graphite; Copper-infiltrated-graphite