บทคัดย่อ

อะทราซีน (atrazine: 2-chloro-4ethylamino-6-iso-propylamino-1,3,5-triazine) เป็นสารกำจัด วัชพืชที่ใช้กันอย่างกว้างขวาง และมีแนวโน้มที่จะส่งผลให้เกิดการปนเปื้อนในดินและน้ำใต้ดิน ดังนั้นจึงต้องหา วิธีการฟื้นฟูอย่างเร่งด่วน ในการศึกษาเป็นการศึกษาถึงประสิทธิภาพของอนุภาคโลหะเหล็กขนาดนาโนสเกล (nano scale zerovalent iron) ในการบำบัดและฟื้นฟูดินและน้ำที่ปนเปื้อนด้วยอะทราซีน นอกจากนี้ยังมี การศึกษาผลของความเป็นกรดเป็นด่าง (pH) ตัวเร่งปฏิกริยาพวกพัลลาเดียม (Pd) และผลของเกลือซัลเฟต ที่ มีผลต่อการบำบัดและฟื้นฟูดินและน้ำที่ปนเปื้อนด้วยอะทราซีนโดยใช้อนุภาคเหล็กขนาดนาโนสเกล การศึกษา ชี้ให้เห็นว่าประสิทธิภาพในการบำบัดน้ำที่ปนเปื้อนด้วยอะทราซีนความเข้มข้น 30 มิลลิกรัมต่อลิตร โดยใช้อนุภาคเหล็กขนาดนาโนสเกล 2% (w/v) ให้ประสิทธิภาพสูงกว่าเกือบ 7 เท่าเมื่อเทียบกับการใช้ อนุภาคเหล็กขนาดไมโครสเกลเกรดการค้า 5% (w/v) โดยให้ค่าค่งที่สำหรับปฏิกิริยา (k) เท่ากับ 1.39 d⁻¹ สำหรับการบำบัดโดยใช้อนุภาคเหล็กขนาดนาโนสเกล และ เท่ากับ 0.18 d⁻¹ สำหรับการบำบัดโดยใช้อนุภาค เหล็กไมโคร สเกลเกรดการค้า และผลผลิตจากการบำบัดคือ 2-ethyl-amino-4-isopropylamino-1,3,5-triazine นอกจากนี้เมื่อทำการปรับ pH จาก 4 7 และ 9 การเพิ่มขึ้นของ pH จะลดประสิทธิภาพของการบำบัดอะทรา ชื่นโดยอนุภาคเหล็กขนาดนาโนสเกล การใช้ Pd ร่วมกับอนุภาคเหล็กขนาดนาโนสเกลจะเพิ่มประสิทธิภาพใน การบำบัดอะทราซีน โดยให้ค่าค่งที่สำหรับปฏิกิริยา (k) เท่ากับ 3.36 d⁻¹ และเมื่อเติม 0.5%(w/v) ของเกลือ อะลูมินัมซัลเฟต เฟอร์ริคซัลเฟต และ เฟอร์รัสซัลเฟต จะเพิ่มประสิทธิภาพในการบำบัดอะทราซีนโดยอนุภาค ซึ่งเมื่อทำการทดลองกับดินที่มีการปนเปื้อนอะทราซีนให้ผลการศึกษาไป เหล็กขนาดนาโนสเกลตามลำดับ ในทางเดียวกัน

Abstract

Atrazine is one of the herbicides wildly used around the world. Atrazine-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of nano zerovalent iron (nano ZVI) to dechlorinate atrazine (2-chloro-4ethylamino-6-isopropylamino-1,3,5-triazine) in contaminated water and soil. This study determined the effects of iron source, solution pH, Pd catalyst and presence of Fe or Al sulfate salts on the destruction of atrazine. Our results indicate nano ZVI can be successfully used to remediate atrazine in water and soil. Aqueous solution of atrazine (30 mg L⁻¹) was treated with 2% (w/v) of nano ZVI and 5% (w/v) of commercial ZVI. Although, iron dose in nano ZVI treatment was less than that in commercial ZVI treatment, atrazine destruction kinetic rate ($k_{\rm obs}$) of nano ZVI treatment (1.39 d⁻¹) was around 7 times higher than that of commercial ZVI treatment (0.18 d⁻¹). Reductive dechlorination was the major process in destruction of atrazine by nano ZVI. The dechlorination product was 2-ethyl-amino-4-isopropylamino-1,3,5-triazine. Lowering the pH from 9 to 4 increased the destruction kinetic rates of atrazine by nano ZVI. Moreover, nano ZVI/Pd enhanced destruction kinetic rates of atrazine (3.36 d⁻¹). Pd played the important role as a catalyst during treatment of atrazine by nano ZVI. Atrazine destruction kinetic rates were greatly enhanced in both contaminated water and soil treatments by nano ZVI when sulfate salts of Fe(II), Fe(III) or Al(III) was add with the following order of removal rates: Al (III) (2.23 d^{-1}) > Fe (III) (2.04 d^{-1}) > Fe(II) (1.79 d^{-1}). The same results were found in atrazine-nano ZVI-soil incubation experiments.