

บทคัดย่อ

คำนวณแบบจำลองพลวัต โนเมเลกุลที่ใช้พิงค์นันศักย์และแบบที่รวมกลศาสตร์ความตื้มและกลศาสตร์ โนเมเลกุลของ Ru^{2+} และ Ru^{3+} ในน้ำ เพื่อศึกษาสมบัติทาง โครงสร้างและสมบัติทางพลศาสตร์ จากคำนวณพบว่า การกระจายในแนวรัศมีของชั้นชอลเวชันที่ 1 มีค่าเท่ากับ 2.42 Å และ 2.10 Å สำหรับ Ru^{2+} และ Ru^{3+} ตามลำดับ การคำนวณสมบัติทาง โครงสร้างอื่นๆ เช่น การกระจายตัวของมุนต่าง (angular distribution functions, tilt- และ θ -angle distributions) เพื่อใช้เคราะห์พุตกรรมของ Ru^{2+} และ Ru^{3+} ในน้ำ จากการคำนวณพบว่ามีการแตกเปลี่ยน โนเมเลกุลของน้ำระหว่างชั้นชอลเวชันที่ 2 และบัลค์ โดยมีค่าเวลาเฉลี่ยของการอาศัยอยู่ในชั้นชอลเวชันเท่ากับ 7.1 และ 6.5 ps สำหรับ Ru^{2+} และ Ru^{3+} ตามลำดับ

Abstract

Classical and *ab initio* quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed to investigate structural and dynamical properties of the hydrated Ru^{2+} and Ru^{3+} . The QM/MM simulations predict the average first-shell distances of 2.42 Å and 2.10 Å for the Ru^{2+} and Ru^{3+} , respectively. Several structural parameters such as angular distribution functions, and tilt- and θ -angle distributions were determined to characterize the hydration structures of Ru^{2+} and Ru^{3+} . Ligand exchange processes between the second hydration shell and the bulk occur with the mean residence times of 7.1 and 6.5 ps for Ru^{2+} and Ru^{3+} , respectively.