

Abstract

Organic Field-Effect Transistor (OFET) is a type of FET which has an active layer made from an organic material. While FETs are dominantly silicon-based, there is a growing need for organic FETs, especially in the application domain of optoelectronic, e.g., to develop large-area displays, since organic FETs offer several advantages, e.g., they allow for much higher density of charge carriers in their channels and do not suffer from the problem of high tunneling currents, which is the case when using SiO_2 insulating layer with less than 10-nm thickness. A key to develop organic FETs is to find suitable organic high-dielectric insulators to be used instead of silicon-based material. One approach is to replace SiO_2 with organic materials with the length of only single-molecule or less than 3 nm in size. In this work, we chose 16-(*p*-nitrophenoxy)hexadecanethiol **[1]** and 16-(*p*-methoxyphenoxy)hexadecanethiol **[2]** and successfully synthesized the compounds starting from 10-undecenoic acid. Deposition of these compounds on an Au gate electrode was subsequently done using self-assembled monolayer technique. The organic layers constructed were well characterized by using FTIR and contact angle measurements. Fabrication of organic FETs based on the compounds **1** and **2** allows for subsequent studies of their transport characteristics and performance limits. We hope that **1** and **2** will reveal dielectric properties when embedded in transistor devices.

บทคัดย่อ

Organic Field-Effect Transistor (OFET) เป็น FET ประเภทหนึ่งซึ่งประกอบด้วยชั้นของสารกึ่งตัวนำที่เป็นสารอินทรีย์ ถึงแม้ว่าโดยทั่วไป FET มักทำจากซิลิโคน แต่ในปัจจุบันความต้องการ OFET มีสูงขึ้นมาก โดยเฉพาะในการนำไปประยุกต์ใช้ในงานประเกตอพโตอิเล็กทรอนิก เช่น เพื่อพัฒนาจอภาพขนาดใหญ่ เนื่องจาก OFET มีข้อดี หลายอย่าง กล่าวคือ มีความหนาแน่นของพากะประจุสูงและไม่มีปัญหาเกี่ยวกับกระแสไฟฟะลุ่ม ซึ่งมักเกิดกับ FET ที่มีชั้นวนเป็นซิลิโคนได้มาก ที่หนาน้อยกว่า 10 นาโนเมตร การค้นหาสารอินทรีย์ที่มีคุณสมบัติเป็นชั้นวนไฟฟะ เพื่อนำมาใช้แทนวัสดุที่ทำมาจากซิลิโคน จึงเป็นหัวข้องานวิจัยที่น่าสนใจในการพัฒนา OFET ซึ่งอาจทำได้โดยใช้สารอินทรีย์ที่มีความยาวน้อยกว่า 3 นาโนเมตร ในงานนี้จึงเลือกสาร 16-(*p*-nitrophenoxy)hexadecanethiol [1] and 16-(*p*-methoxyphenoxy)hexadecanethiol [2] โดยเริ่มต้นจาก 10-undecenoic acid และนำสาร 1 และ 2 ที่สังเคราะห์ได้มาเตรียมเป็นชั้นสารบนแผ่นอิเล็กโตรดที่ทำการหงดโดยอาศัยแรงดึงเห็นด้วยแบบโคเวเลนท์ระหว่างทอง และหมุนท่ออล ด้วยเทคนิค Self-Assembled Monolayer หลังจากนั้นชั้นของสาร 1 และ 2 ได้ถูกนำไปวิเคราะห์เบื้องต้นด้วย FTIR และการวัดค่ามุ่งสัมผัส สุดท้ายชั้นของสารทั้งสองนี้จะถูกนำไปประกอบเป็น OFETs และนำไปศึกษาคุณสมบัติทางไฟฟะ ซึ่งคาดว่า 1 และ 2 น่าจะมีคุณสมบัติเป็นชั้นวนได้ในทรานซิสเตอร์