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Continuous tabu search
Dhiranuch Bunnaga*, Min Sun®
e Department of Mathematics, Chiang Mai University, Chiang Mai, Thailand 50200
bDepar'tment of Mathematics, University of Alabama, Tuscaloosa, AL, USA, 35487

We present a stochastic global optimization algorithm, referred to as a tabu search, for

solving unconstrained optimization problems over a compact search domain. It is a real-
coded that converges in probability to the optimal solution. We have experimented with
several ways in defining “neighborhood.” The theoretical and experimental results show

that the tabu search performs better than pure random search.
Keywords— continuous tabu search, convergence in probability
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Global optimization is a task of finding at least one best solution that optimizes a

given objective function Min f(x). Many new theorems, algorithms and computational
xeQ

aspects in global optimization have been used to solve many problems in science and
engineering. The applications are for examples finance, allocation and location problems,

operations research, statistics, structural optimization, engineering design, network and



transportation problems, chip design and database problems, nuclear and mechanical
design, chemical engineering design and control, and molecular biology [1]. Algorithms for
solving global optimization problems can be categorized into two classes: the stochastic
methods that find the global minimum with high probability and the deterministic methods
that guarantee to find a global minimum with desired accuracy. Examples of those methods
are the following [3]:

1. Stochastic methods
® random search
® clustering methods
® simulated annealing
® tabu search

® genetic algorithms

2. Deterministic methods
® branch and bound

® interval methods
We propose our version of continuous tabu search for unconstrained optimization problem

Mén f(x) with the convergence in probability. We will experiment with different type of

“neighborhood” to see the performance of the algorithms. The convergence proof of each
algorithm will be provided. We might improve the efficiency of our algorithm by using tabu
search with other optimization methods. We are also interested in a repair operator for
quadratic constrained. A repair algorithm is designed to be an assistant of unconstrained
optimization algorithms used for solving constrained problems. The repair problem itself is a
distance minimization problem. i.e. if we let X be any given point, we want to find a point x
nearest to X that satisfy the constraint x’ Ox <b. In other words, we want to solve the

problem Min ||x - )7”2
xeQ

st. x'Ox<b.
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Continuous Tabu Search
Dhiranuch Bunnag, Min Sun

1. General idea of tabu search

We consider this optimization problem

minimize f(x):xeQ, (1)

where f is the function to be optimized and Q is a set of the feasible solutions or the
search domain. Tabu search (TS) is an iterative method originally designed for
combinatorial optimization problems. TS was introduced by Glover [4] and has been
successfully used to solve a wide range of problems such as scheduling, time-tabling,
graph coloring, the cutting stock problem, the Knapsack problem, and the Traveling
Salesman Problem.

The main idea of TS is to prevent the search from being trapped at locally optimal
solutions by prohibition of backward moves. A typical step of tabu search begins by
searching for a better candidate in a neighborhood of the current solution. To avoid
repeating the steps just used earlier, the method records recent moves in one or more tabu
lists. The intent of the list is to prevent the previous moves from being repeated and to
ensure that it is not reversed. One drawback of the tabu list is that we may get a tabu list
which prevents us from searching intensively in a promising region. If that happens we
will relax the tabu status by overruling it. It will be prescribed by aspiration conditions.

An outline of a general tabu search procedure may be described as follows.

1. Choose an initial solution x°. Set xbest = x° (the currently available best solution) and
k=0.
2. Generate a subset V' of candidates in a neighborhood of x* (N(x")) such that either

none of the tabu conditions is violated or at least one of the aspiration conditions is
satisfied.

3. Choose the best in V' (with respect to f(x)), and call it x**'.

4.1f f(x"") < f(xbest) then set xbest = x*"".

5. Update the tabu list and aspiration conditions. Set k =k +1.
6. If a stopping condition is fulfilled then stop. Otherwise go to step 2.

Stopping conditions could be the following:

. The number of iterations is larger than the maximum number of iterations
allowed.

o No more candidates can be generated in a neighborhood, i.e. V' = .

o The number of iterations since the last improvement of xbest has reached
a predetermined number.

o The objective function value reaches a pre-specified threshold value.

The choice of V' and the definition of neighborhood of x are crucial to the
effectiveness of TS. Glover and Hanafi provide an upper bound for the number of
iterations for the discrete tabu search in [5]. The idea of the discrete TS has been adapted
to the continuous case as reported in Chelouah and Siarry [2] , Battiti and Tecchiolli [1],
and Cvijovic and Klinowski [3]. <<briefly summarize them in the framework of the



general TS above

DB:

Cvijovic and Klinowski [3] assume solution space to be hypercube in R, n is a number
of variables. Partition each axis x; to be p; parts. Thus the solution space is divided into
cells. In each iteration, the neighborhood is defined to be those sample points from a
uniform distribution over a given number of randomly chosen cells. There are two kinds
of prohibit moves; if it produces a solution which we have already seen it in the previous
L iterations and if it results in a higher objective function value than some specified value.
The aspiration condition is the current best value of the objective function found so far.

Chelouah and Siarry [2] call the algorithm Enhanced Continuous Tabu Search (ECTS).
They define a hyperrectangular space centered on a point s= (s,52,...,Sx) to be a set R(s,r)
= { X = (X1,X2,....Xn) | |Xj - 8j| <1; 1 <1<n. Consider a set of hyperrectangles R(s,r)
centered on the current solution s with different r; hg, hy, h,,..., hy where h;.; <h;. The
space is partitioned into v subspaces Ci(s,hj.;,hi) = R(s,hj)\ R(s,hi.1), 1 <1 <v. The
neighbors of s is defined to be the v points randomly selected from inside of each C; 1 <1
<v. The tabu region is the union of all the hyperrectangles centered on those points in
tabu list. All newly generated neighbors must not be in the tabu region.

Battiti and Tecchiolli [1] describe the search region as a box. The bound of each x;is
described by L; <x; <Uj where i =1,2,...,N. Divide the initial box to be 2N equal size
boxes. Each box is evaluated the value f(B) by two possible ways; one is using the
average of the function values of the sample points from that box and the other is the
minimum of the function values among the sample points. The best box will be
subdivided into 2~ equal size boxes and the identification of this best box will be kept in
tabu list. The neighbors are defined to be the randomly chosen boxes, so those sample
boxes can be in different size. The length of the tabu list is adapted during the search. The
local minimum is obtained by using the shaker algorithm.

There are other hybrid methods such as in Chelouah and Siarry [9] and Hedar and
Fukushima [10] use tabu search with Nelder-Mead simplex algorithm. The tabu search is
used to find the promising area and then search this area by using simplex algorithm.

The articles related to the convergence of tabu search are for examples Hanafi [7] studied
the convergence of the combinatorial optimization problem using the scheme with two
assumptions; i) x e N(x’) < x’ € N(x) for all x and x’ in the search domain E. and ii) for
every pair of solutions x and x’ in E there exists a path from x to x’. It was shown that if
E is finite and the two assumptions hold then the tabu search terminates after exploring
all solutions in E.

For the multiple-minima problem of continuous functions Ji and Tang [8] proposed the
memory tabu search (MTS) which yields a sequence of solution that converges with
probability one to the optimal solution. The MTS define neighborhood to be the whole
search domain. The new move is generated by uniform distribution (or Gaussian
distribution). The tabu moves are considered by three criteria:

1) the total distance moved at the current iteration.

2) the total change in the objective function.



3) the percentage improvement or destruction.

The following two are added to the references.

[9] Rachid chelouah and Patrick Siarry, A hybrid method combining continuous tabu
search and Nelder-Mead simplex algorithms for global optimization of multiminima
functions, European Journal of Operational Research 2003

[10] Abdel-Rahman Hedar and Masao Fukushima, Tabu search directed by direct search
methods for nonlinear global optimization, European Journal of Operational Research

2004
>>

This article addresses TS in the continuous case. After presenting a more or less
standard TS for the continuous optimization, we provide four <<three? DB: It is three.
>> additional variations. For all of them, we offer some theoretical convergence analysis.
Under mild assumptions, the TS algorithms are shown to converge at least in probability.
Near the end, we provide some numerical testing results of those algorithms along with
comparison with the pure random search.

2. Our simple continuous tabu search: TS1

A simple continuous tabu search is introduced and analyzed in this section. Assume
that the search domain Q is a hypercube inR",/ < x < b, and that there is a unique
globally optimal solution. We first introduce variables and parameters used in our
algorithm. <<consider the case when #(x*) is finite? Yes in the previous sentence we
assume unique globally solution. I think the argument is valid when
the number of x* is finite. MS: if so, relax the assumption above and justify accordingly.
You may keep the original proof for #(x*)=1 and provide extension arguments.>>

° Partition the ith direction of x into p, parts, i =1,...,n. Thus the entire

search domain is divided into N, = p,p,--- p, cells denoted as {1,2,...,N_}.

. N, = number of samples from each cell.

o y* = a solution that has the minimum value of f among all the candidates
discovered by the algorithm after k£ iterations.

o fbest at the k th iterationis f(3").

J L, = tabu list size.

J tabu_list = a vector of length L, that contains the names of tabu cells. We

address them by integers in {1,2,...,N_}.

J L, =number of distinct cells in tabu_list; 1<L <L,.

Algorithm 1: TS1
1. Set up parameters L,, N _, and List = all cells.

2. Set iteration counter k = 0, and tabu list = .



3. Randomly select a point x* .
4. Set fhest = f(x*), y" =x".
5. Repeat
flag =1 (search indicator for the new x)
While flag=1 do
Call candidate (List,N ,icell, %, ).

If (icell ¢ tabu list) or (f < fbest) then

Put icell in tabu_list (might appear more than once).
x"=%.

flag = 0.

If f < fbest then

y**!' = % (update the best solution that the algorithm just discovered).

fbest =f( x) .
else y""'=y".
Update k:k = k+1.

end if

end while
until one of stopping criteria is satisfied.

Subroutine candidate( List, N_, icell, X, f~ )

Input: List, N .

Output: icell,%, f .

1. Randomly select a cell from the input List and call it icell .

2. Randomly select N | sample points from this cell.

3. Evaluate f of each sample.

4. Find the minimum among the samples (minimum point X , minimum value f = f(X)).

5. Return icell, x, f .

Throughout the article, the randomness is with respect to an underlying probability
space. As usual, the capital letter X could be used to denote the random variable
representing the random sample, while the lower case x has been used to represent a
particular realization of X. In our implementations of TS, we use thetabu_list of fixed
length L, . We start out with an empty list. After L, iterations the list will be full. After

that we replace the oldest element in the list with the incoming element that the algorithm
has just detected. The same strategy is applied to any other list of a limited length.

Let x* be the unique globally optimal solution of (1) and
B,(¥',e,) = {re Q| f(x) - [(X)]< s}
We also assume <<assume continuity of f? DB: yes >> that m(Bg«(x*, [1¢)) > 0 for any [ ¢
>0, where m(A) means the Lebesgue measure of a set 4. Two sequences {x*} and

{y*} are produced by TSI. The sequence {x"} shows movements of the algorithm.



While a sequence {y"} keeps track of the best x found among all the samples from the
first iteration to the current iteration k& . Our goal is to show that
P({Y*},  NB,(x",6,)=) >0 ast> .
Explanation of the terms that we will use in our proof:
e ¢ = the current iteration counter.
e " =acell which containsx".
P(t) = the desired level of the f value at iteration ¢ or the current value of fbest .

P_(f(t)) = Probability of rejecting a cell that is contained in tabu_list

rej
<<DB: I need to remove “that is contained in fabu_list” in order to use it in the proof

of TS3.>>
at level S(¢). Suppose x is a minimum among the random samples from the cell. If

f(x)= B(t), reject this cell with probability B, (f(?)) . Therefore, P, (f(x"))=1 and
B (0)=0.
o P(c" ¢tabu list)= P(c" has never been chosen in the past L, iterations)
= (Zyk
)
e Probability of selecting a cell and obtaining ¢* is-.

e Probability of obtaining a point in B, (x",&,) when selecting a sample point in ¢”
m(By (x‘,gf)mc*)
m(c")

e In each iteration we sample N points in the candidate ice/l independently.

Supposing icell =", the probability that at least one of the points from ¢” is

contained in B (x gf) is _(1 (1- M) ).

e Probability of selecting a cell and obtaining a cell from tabu_list is VT > NL .

We would like to find or estimate the probability that TS1 yieldsx’ € B, (x",¢,) . First
consider the following dichotomy.

I B,(x',¢e,)c ¢’. For each iteration counter ¢, one of the following events must have
occurred in order to have y' € B, (x", & )

o Select a cell and obtainc”. Sample N, points and at least one of the points is

contained in B (x*, &,) . This event occurs with probability

m(B,(x",6, D\N
(1 (1=

m(c*)

e Select a cell and obtain a cell which is contained intabu_list . Reject the cell with

probability P_.(£(¢)) . Sample a new cell and obtainc’. Sample N, points from

rej
the cellc”, with at least one of the samples contained in B, (x",&,) . The

probability for this event is
Py (A1) (1= (1 =220y,

m(c")
e The first two selected cells are contained in tabu_list . Both cells are rejected
individually with probability 7, (£(¢)) . However in the selection of the third cell



we get ¢*. Among our N, samples, at least one of the samples is contained in

B,(x",¢,) . The probability for this event is at least
(G By (B@)) -7 (1= (1 =) )

e The process might continue with more rejections of cells from tabu_list before
obtaining ¢". The probability of rejecting & (k >3) cells before obtaining a cell

that has at least one sample belonging to B .(x*, ;) 1s at least

(= By (B -7 (1= (1= 2222y

m(c*)

Therefore, we can conclude that
P(X' € B/ (x',)) 2 (1= (1= 7200

m(c")

o Py () (1- (1= 2L

m(c")

F G By (BO)) (1= (1= 2oy

>3 0-0- w> MG B BONT @)
RPN
ZNC(I (1 ) )*)>0. (3)

II: B,(x",&,) S ¢ Uc, U---c, where m(c; "B, (x",&,))#0 for j=1,..,q with
somegq > 2. In other words, B, (x7, &,) 1s not entirely contained in a single cell. Let us

introduce a new set of notations:

_ * * * _ q
J B,=c;nB,(x",¢&;). Thus B (x",&,) =1 B, .
(B;) .. m(B)) m(B, ) m(B;)
o Let =22 = min L,...,qg <<min >>. 50 that =22 < —22
m(c) m(c) J=L.0q (RN R m(cy) m(cj)
for j=1,...,q.

In view of the arguments used in the former case, we examine the following possible
situations.

o Select a cell and obtain cj- for some jin {I1,...,q} . Then sample N_ points
from ¢} and at least one of the samples is contained in B, (x",¢,) . This event can

occur with probability of at least -- (1 (1- '”(B‘)) ).

m(cy)
J Select a cell and obtain a cell which is contained in tabu_list . Reject this
cell with probability P_(£(¢)) and then sample a new cell. This time obtain one

rej

of ¢ j " and at least one of the samples is contained in B (x* ¢,) . The probability
for this event is at least5-- P, ((1)) -5 (1 (1- ’;((fk;) ).

o The first two selected cells are contained in fabu_list . Both cells are
rejected. For the third selection we get one of the Cj’ and at least one of the

samples from this cell is contained in B, (x",¢,) . The probability for this event is



at least (3 P, (B(1))° -5 (1- (1= 22 )

m(c

The situation might continue in thls manner with more rejections of cells from fabu_list
before obtaining some ¢’ . Therefore, we can conclude that

P(X'€B,(x",&,) 25 (1-(1-220)"%)

m(c

o By (B(0) 5 (1= (1= 22"

m(c)

F(G Py (BN - (1= (1= 2By

m(cp)
’"((B ))) L+ Z(— P, (BO)] @)

The summation Z( -P_(B(1)))" <<delete |>> converges. Therefore,

VC_[

q
>—(1-(1-
NC( (

i=l1 c

P(X' e B,(x',¢,)) zNi(l—(l By

> 0.
(k)))

)

From the dichotomy explained above, we can find a lower bound of the probability that
any X' belongs to B,(x",¢,), P(X' € B,(x",&,)), as follows:

PRI CTACRLT)) A B,(x'.e)cc
P(X'eB,(x",&,)) 2 N, ; ¢)
]36(1 (- %CS))N) it B,(x,e)c Ul c.
Define P, to be the lower bound of P(X' € B, (x",¢,))
o m(B(XE) m(B,).n
%—mln{NC 1-a ) )™ ) T 1-a- (k)) )} (0)

From the algorithm the sequence {y*} has the followmg properties:
L. SO FON.
2. If y' €B,(x",¢,), y' eB,(x",6,)fori=t+11+2,...
3. Suppose x' € B,(x",&,) atiteration ¢, we will then have y* € B, (x",¢,).
We therefore conclude that
P(Y'€B,(x",¢,)) = P(X' € B,(x",¢,)) if i=1,...,t—1 and
P(Y'€B,(x",¢,)) > P(X' € B,(x",¢,)) ifixt.
This means once the algorithm has found y’ contained in B, (x*,&,), the sequence
{y*17_,,, will stay inside B (x,¢,) . This analysis now leads to our main result below.

Theorem 2.1 V &, >0, P({y"},_ N B,(x",&,) =) —> 0. <<Y' not changed? DB: as
t — o0 >>
Proof. At each iteration 7, P(Y' € B .(x* &,)) depends on the level of S(¢) or f(xbest)

as shown in the term P_ (f(¢)) of Equations (2) and (4). However, we have found a

rej

lower bound ( P, from (6)) of this probability which does not depend on iteration number.



P({Y'},, NB,(x",&,) =) =P(None of Y' belongs to B,(x",&,),Vi<t)
=[] 0-P( eB,(x",&,))
<[] [1-PX'eB,(x".&)]

<[1-P,]’ >0ast—>o0.
. <<break into 2 separate lines in order to have the point in the right spot>>

This completes the proof of convergence in probability of Algorithm 1. O
Since the size of B,(x",&,) is generally a lot smaller than the size of the partitioned

cells, we can assume that B, (x",¢,) is entirely contained in one cell. Thus only the first
m(B,(x",&,))

m(€2)
used, the probability that we will find a point contained in B, (x", ;) 1s 1, that
isP(X'"eB,(x",¢,))=n.

case above is our major concern. We definer = . If pure random search is

Proposition 2.1 Let {x'}and {y'}be generated by Algorithm 1. If B L(x,g,) is
entirely contained in one cell, then
P(Y'eB,(x",&,)) =2 P(X' € B,(x",¢,)) 2] (7)
Proof. According to (3), it suffices to show
Nic(l - ——m(B;((i:f Dyiysp.

We will use induction on N, .

N, =1 L(l—(l— m(Bf(x:,g -)))) _ m(Bf(X*’*g ) _ m(B,(x",&,)) _
N, m(c") N.m(c") m(Q)
N, =2
L(l —(1- m(Bf (x*’gf)))z) ) m(Bf (x*,gf)) _ m(Bf (x*,gf ))m(Bf(X*’gf))
N, m(c") N.m(c") N.m(c")m(c")
o m(B,(x",&,))
m(c")
=n(2— m(Bf(xi,gf))) >
m(c")
LaoamB ey,
Suppose N (1-(1 ) Yey>n
Consider
L _ _M(Bf.(x*,gf)) N+l
S m(Bf(x*,gf)) Ny m(Bf(x*,gf))
"N 1-a ) )1 () )
_ L(l—(l— m(B_,»(xi,af)) N, m(Bf(xi,Sf)) . m(Bf(xi,gf)))N:)
N, m(c”) m(c”) m(c")



_ LoDy mB ) mB (g )
N, m(c") N.m(c") m(c")
— ey EATE )y
m(c")
-2
m(c’)

This completes the proof. [

<<Still true if Bf(x*, ¢,) 1s NOT entirely contained in one cell?

DB: I cannot show that it is true when B, does not contained entirely in one cell. It seems
that the following held.

1. If the number of N; increases, the probability is higher.

2. When using an approximation in (5), it seems to suggest that the process of selecting
cells before getting sample points reduce the probability of getting the points from By,

since the selected cell may contain only a portion of By.
>>

TS1 might behave much like a pure random search although it is shown not to be
worse. In practice it could take quite some times before )’ gets closer to the global

solution x*. The algorithm lacks an intensification procedure that a successful global
optimization should have. We have tried to improve the algorithm in three different ways
without much change in the proof. The results will be shown in the next three sections
after the explanation of each modification.

3. A modified continuous tabu search: TS2

In order to improve and speed up TS1, we expand the neighborhood by allowing more
sampling of cells in subroutine candidate2. We will randomly select ncell cells instead of
only one cell and allow the movement in the direction of the lowest f among all the

samples. To refine the solution, we keep a list of length L, of the best up-to-date y'. This
list is called promising list . A search is performed by sampling some points in a

neighborhood of y' from the promising list when the original algorithm stops

improving. This part will not effect the convergence of the algorithm. The algorithm is
stated as follows.

Algorithm 2: TS2

1. Set up parameters L,,L p,NS,ncell , List = all cells.

. Set iteration counter k = 0, promising list = &, and tabu_list =0 .
. Randomly select a point x".

. Set fbest = fix"), y* =x*.

. Repeat

flag =1 (search indicator for the new x).
While flag =1 do

Call candidate2 (List,N _, ncell,icell, %, [).

If (icell ¢ tabu list) or ( f < fbest ) then
Put icell in tabu_list (might appear more than once).



flag = 0.
If f < fbest then

y**' = ¥ (update the best solution that the algorithm just discovered).

fbest = f .
If y*'¢ promising list then put y**
else y“'=y".
Update k:k=k+1.
end if
end while
until one of stopping criteria is satisfied.

6. Search for a better solution (if any) from the neighborhood of each point contained in
promising_list.

l . . . .
in promising list .

Subroutine candidate2( List, N, ncell,icell, %, [ )

Input: List, N ,ncell.

Output: icell, x, /} .

1. Randomly select ncell different cells from the input Lisz .
2. In each cell randomly select N samples.

3. Evaluate f* of all samples.

4. Find the minimum among the samples (minimum point X , minimum value f = f(X)).
and use the corresponding cell of X as icell .

5. Return icell, x, f .

Its analysis of convergence again starts with considering two cases.
Casel: B f(x*, £,)c ¢’. In each iteration, one of the following events will occur.

o icell = ¢" and when sampling N points from icell we found that at least

one of the samples is contained in B,(x",&,) . This event occurs with probability
nce m(By (x".&/ )\ N,
el (| (1 - LI ),
J The first icell is contained in tabu_list and this icell is rejected. The
probability that this candidate icel/ is rejected is the same <<?
DB: This is wrong. I want to say that if this icell is rejected, then all the ncell sample
cells will be automatically rejected too. This is because of the routine candidate2. Even
though some of them may not contained in tabu_list. In this paragraph there is nothing to
do with the probability yet, the probability will be calculated below this.
>> as that for any other of ncell sample cells to be rejected. Then the algorithm repeats
the function call of candidate2. A second candidate icel/ is returned and this time

icell = ¢” . At least one of the samples from this icell is contained in B, (x",&,) . Note

that when the first icell is rejected, it doesn’t mean that the other ncell —1 cells are also
contained in tabu_list . The following three steps show how to calculate the probability

for this event.
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Step 1. Obtain at least one cell from tabu_list when randomly select ncell cells. Let
p, = P(atleast one cell is contained in fabu_list)
= 1- P (none is contained in tabu_list).

N,—-Ly
[ ncell ]

PR
[ncell]
Step 2. Reject the first icell returned from candidate2 since it is contained in tabu_list.
Let nl be the number of cells (from ncell cells) which is contained in tabu_list
(1< nl <ncell) and C be the set of those nl cells. Let f” denote the best value of f
among the samples from C . Note that f” depends on .

P (reject the first icell returned from candidate2)
=P (By (S )" (B, (BN

Step 3. Select a new neighborhood by calling candidate2 again and obtain icell =c¢". At
least one of the samples from this icell is contained in B, (x*,gf) .

Thus

pl=1- <<subscript>>

Therefore, the probability for this event to occur is
BBy () (B (BN -5 (1= (1222
e The process might continue with £ (k> 2) rejections of cells from tabu_list
before obtainingc”. Let n/, be the number of cells (from ncell cells) which are
contained in tabu_list (1< nl. < ncell) at the i th neighborhood selection (by
calling candidate2). C, is a set of those nl, cells. f” = the best value of f among
the samples from C, . The probability of rejecting & (k >2) cells before obtaining

a cell that has at least one sample belonging to B, (x*,&,) is

pl-l_[- [(Py (") - (P (B(1)" ] -2k (1_(1_%;;8»)%.
Therefore, we can conclude that

P(X"eB,(x",&,))

>nu/l(1 (1- ’”<Bfix )gf))) )
C

+p - (Prg,(f ))ncell nl (Pre](ﬂ(t)))ﬂl,ncell (1 (1 M) )
Tt p H_l [( ,e,(f )t (P,ej(ﬂ(t)))”l] neell (] _ (] — M) .

m(c")

ncell (1 a M)M)
m(c")
I Z p TR, G0 (B (B 1) ®
Hence
ncell mB,(x'.¢,))

)¥)>0. )

P(X'eB,(x",&,)) > (1 1-

m(c")

11



Casell: B (x",¢,)c ¢/ Uc, U---c, where m(c; "B, (x",&,))#0 for j=1,..,q with
q = 2. The following are the possible events in one iteration of the algorithm, leading to
the desired event X'€ B, (x",&,).

e cell isoneof ¢; (j=1,..,q).
P(at least one of the ncell sample cellsis ¢;)=1- (N;;,—:q)q .

Then we found that at least one of the N, samples from icell is contained in B, (x",¢,) .
This event can occur with probability of at least
(1= CrHNA-1-229").

e The first candidate cell is contamed intabu_list . Reject this cell and get a second

candidate cell. This time we obtain one of ¢; (j=1,...,q) and at least one of the
samples from this cell is contained in B, (x", ¢, ) . The probability for this event
is py - (B (f" )" "™ (B (BON" - (1= (FH)A~ (1~ ':f(f”) ).

e For the first two times of selecting candidate cells, we obtain two cells which are
contained in tabu_list . Both cells are rejected. The third time we find one of

¢; (j=1,...,q) and at least one of the samples is contained in B, (x",&,) . The
probability for this event is
2 ncell—nl; n = m{ By
P T I ) (B (BN 1- (1= () )(1 = (1 222y,
The situation might continue in this manner with more rejections of cells from tabu_list
before obtaining c; . Therefore, we can conclude that
P(X"eB,(x",&,))
— (Ne=ayay(1 = (1 = BN
> (1= () )(1 - (1= 22
+ - (By (S )" (B (BON™ - (1= (D)1= (1= 22"

m(cy)

TP 'H, 1 ( re/(f ))mell & (Pre/(ﬁ(t)))nl] (1 (NN Q)q)(l (1 m(B,J) )+

o
N.-q, m(B,).
> (A==
143 T, ) (B (B T (10)
Consequently, . "
POX' € B,(x",2,) > (1= (F Ly (1-(1- ”"((B))) >0, (11

From the two cases previously explained, we can find a lower bound of the probability
that any x' belongs to B,(x",&,) as follows:

ncell 3 m(B, (x*,é‘f))

(1-d ;
P(X'eB,(x&,)> { m(e)
N.—q m(B,)\y *

(1—(T)q)(1—(1— ( *)) ) if B (x,e,) Ve

)it B (e

J*
c m ck

Define P, to be the lower bound of P(X' € B,(x",¢,)).
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neell = m(B( &) p m(B,). v
n N —m(c) )", (- ( —Tyiya-(1- )

——)")} (12)
The rest of the proof of convergence in probability is the same as for Algorithm 1.

4. Another modified continuous tabu search: TS3

In the previous two algorithms, TS1 and TS2, we use randomly selected
neighborhoods. They are not necessarily near the current cell where the current x is
located. We now place some restriction on the movement by defining the neighborhood to
be those around the current cell. In other words, the algorithm will move in a more
systematic way.

4.1. Neighborhood definition

As mentioned before, we partition each direction i of the original hypercube domain
into p, parts. We address each part as an integer in {0,1,..., p, —1} . Thus each cell will be

represented by an integer vector of dimension# . The i th component of a cell vector is
the address of the part in direction i. The scheme is shown in Figure 1. A search domain
of this problem is[0,1]x[0,1]. The x -direction is partitioned into 5 parts. We label each

part as 0,1,2,3,4. The y -direction is partitioned into 4 parts (labeled as0,1,2,3). The cell
named icell is represented by an integer vector [2, 2]. The neighborhood of x*, where

x" is contained in icell , is defined to be all those cells surrounding icell , namely [1, 1],
[1,2],[1, 3], [2, 3], [3, 3], [3, 2], [3, 1], [2, 1]. In general, suppose icell is represented by
liy,1;,---,i, ] . The neighborhood cells are those cells that can be written in the form

[iy + Opsiy + 0,5k, + 6, ] Where &, takes a value of —1,0, or I and [, ..., [Jn1]#0.

Therefore the total number of all neighborhood cells is3" —1.

1 T T T
3 0.9} -
[1.3] [2. 3] [3, 3]
0.8} _
07} K |
icell
2 06| [1. 2] [3. 2] 7
[2. 2]
0.5
0.4 e
1 [1, 1] [2, 1] [3, 1]
03} .
0.2 .
0 0.1 e
% o‘.1 0.2 0?3 0.4 o.ls 0.6 017 0.8 o?e 1
0 1 2 3 4

Figure 1. Neighborhood of the current point x* contained in icell
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4.2. Statement of Algorithm 3

Algorithm 3: TS3
1. Set up parameters L;,L,, N, .

2. Set iteration counter k = 0, tabu_list= &, and promising list = .

3. Initialization: randomly select a cell (icell) and within this cell select a point x * .
Set fbest = f(x*), y* =x*.
4. Repeat
flag =1 (search indicator for the new x).
While flag=1 do
5. Select N; points from each neighborhood cell of the current cell.
Find the best among the samples (call it X).
Replace icell with the address of the cell containing X .

6. If (icell tabu list)and ( f > fbest) then
Randomly select a new icell which does not belong to the neighborhood of the
current icell , tabu_list , or promising list . <<Don’t sample from this
new cell? DB: the above current icell should be removed. >>
end if
7. If (icell ¢ tabu_list ) or ( f < fbest ) then

Put icell in tabu_list (might appear more than once).
X k+1 — i .

flag = 0.

If f < fbest then

"' = ¥ (update the best solution just discovered).

fbest = 7.
If y*"'¢ promising list then put y**
else y*'= ",
Update k: k= k+1.
end if

end while
until one of stopping criteria is satisfied.

1 - . . .
in promising list .

4.3. Convergence of Algorithm 3

A sequence of {)*} is nonincreasing in f values (f(»"™") < f(»")). Since the tabu
length L, is relatively short compared to the total number of cells, after a while it will
lose its effect on the cells in fabu_list . Line 6 in the algorithm allows any cell outside the
neighborhood of the current cell, tabu list, and promising list to be selected. With all

these features, the probability of missing a positive measure set in the search region is
zero. We can apply the convergence of random search from Solis and Wet [6].
<<inconsistency: Why just quote [6] for TS3 while doing direct proof for the other algs?
DB: The proof is provided below.

14



We will first introduce the layer of icell. Suppose icell is represented by [i,i,...,7, ,].
Let Ci be a set of all points contained in the following cells

[iy + Opsiy +Opseeniy  + 6, ] Where 6, =0, £1,..., £kandj=12,..n.

Let Ly be the kth layer of the neighborhood of the current cell say icell.

L, = (C] - icell)ﬁ Q

Ly = (Cy-Ciy) N Q where k = 2,3,...

The following events will occur.

1. In an initialization stage, we obtain x’ € B f(x*, £)-
P(X"eB,(x",&,))
=P(c’ is chosen)P(at least one of the sample points contained in By)
1

N [1- P(None of the points contained in By)]

_ l m(B; (x*,sf D\N
= (-1 -2y
¢

2. In the initialization stage we don’t obtain ¢’, but ¢ is in the neighborhood of icell.
P(X'e B, (x", &,)) = P(icell is in the first layer of neighborhood of ¢ )P(at least one

of the sample points contained in By)

>>

5. Final modified continuous tabu search: TS4

In this algorithm we allow more flexibility in size of neighborhood, i.e. a
neighborhood can be enlarged or shrunk. We now introduce some new notations.

. <<tabu>> tabu_list =alistof (x',r") k—L, <t<k-1, where k is the
current iteration, and r' > 0 is the size parameter.
. R(xX',r"y={x:|x —x, |<r,i=1,..,n} <<r'>>where n is the dimension of

the search domain Q.
t—1 . .
o <<tabu>>tabu_region = o R(x',r")
i=t—Ly

The parameters used in the implementation are as follow:

. c>1, p=.001.
InA-1 M
J A=max(u,—1,), M = SoTae ym=|— |, r. =2"" <<why?>>
i Inc 2
o The stopping criterion is the maximum number of iterations. For example,

we use 10000.

Algorithm 4: TS4

1. Set up parametersz, ., p, c >1, A=max{u,—/}.

2. Set iteration counter =0, n=0. <<n - k since n =dim(x)>>
3. Randomly select a point x°. <<use superscript t>>

4.1'=r, , fbest = f(x°), y" =x". <<use superscript t>>

init >

15



5. Set tabu_list= & .
6. Repeat
flag =1.
While flag=1 do
Call candidate3(x", 1", N, y, V).
If v < fbest then
n=n+1, y"=y, flag = 0.
else
Ify ¢ tabu region then

Enlarge the region ' =cr'.
If 1'>00 then r' =p.
<<[1 should be related to [], otherwise there might be a serious problem here, e.g. when
> >>
Put y and r'" in tabu_list.
else
Shrink the region "' =7'/c.

t+1

If r'"'< p then "' =7, .

<<[J should be related to rini, otherwise there might be a serious problem here, e.g. when
L > T >>

y t+1 =y.
<<This seems logically confusing and probably incorrect as well. )=y was used earlier! I
don’t see why you need two iteration counters t and n.>>
end if
end if

t+1

xT=y.
Update t = ¢ +1.
end while
until one of stopping criteria is satisfied.

Subroutine candidate3(z, r, M, y, v)

Input: z,r, M

Output: y, v

1. Randomly select M points from { x : |z,—x, |<r,i=1..,n}.
2. Choose the minimum among the M points and set it as y.
3. Setv=A1(y).

4. Return y, v.

Since the sampled domain will be shrunk or enlarged, the probability of missing some
nonempty set will be zero. The convergence proof can be shown similarly. First we need
to approximate some probabilities.

. In the case of B, (x",&,)NR(x',r")=B,(x",&,), the probability of
selecting a point from R(x',7') and obtaining a point in B, (x7, &,) canbe

approximated as follows:

16



mB,(x"¢,)) _m(B,(x",¢,)) _m(B,(x,¢,))
m©Q)  mRE,r) T mR(,p))
The probability that we will obtain a neighborhood R(x',7") in which

B, (x",&,)NR(x',r")# D is approximated next. Recall that we defined

_ m(B,(x",&,))
mQ)

P(B,(x",e,)NR(x'",r")# D)= P(B,(x",e,)"R(x",r") =D |x" € B,(x",¢,))
+P(B,(x",e,)NR(X',r'") 2D |x" ¢ B,(x",&,))

<<Where is the randomness in these expressions?>>

:M.l+m <<Why?>>

m(R(x',r"))
m(B,(x",&.))
2@ =1>0.

e P(Atleast one sample is contained in B, (x",&,))

=1 - P(None of the samples are contained in B, (x*,gf) )

[ _mB,G e )
m(R(x',r"))

> 1-(1-m™

e The probability that the algorithm yields a point which belongs to the set

. <<why?>>

B, (x",&,) is <<why?>> P(B,(x",&,) N R(x",r") # &) xP(At least one sample is

contained in B, (x",&,))> n(1-(1-n)")=y.
The convergence depends on whether or not we have
R(X',r'YNB,(x",¢,)# D,
which may occur in any iteration. Therefore,
P(X'eB,(x",e ) 2y+(U-ny+A-n) y+A-n) y+1-n'y+..

<<explain?>>
=y(+ (A=) +1A=n) +A=-n) +(1-n)" +..)
=250,
7
The rest is similar to Theorem 2.1. We also can show that %2 n as in the next
proposition.
Proposition 5.1 Let {x'}and {y'}be generated by Algorithm 3. Then
P(Y'€B,(x",&,)) = P(X' € B,(x",&,)) =] (13)
Proof. Obviously, we only need to show

Lo1--n)" 27.
]

We use induction on N, .
N, =1 1-(1-n)=n.
N, =2 1-(l=n)’ =2n-n"=nQ2-n)=7n.
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Suppose 1-(1-n)" >n .
Consider 1-(1-7)"" =1-(1-n)" (1-7)

=1-(1-m" +n-m™
>n+n(1-n)" =n(1+1-n)")>n. <<delete 2™ to the last>>
m|

<<By now, our algs have been presented and analyzed. This is a good place to offer a
discussion on differences between ours and existing continuous TS’s. Point out our
contribution.>>

6. Experimental results on tabu search

A number of standard test functions are chosen to show the effectiveness of our tabu
search algorithms. Their optimal objective function values are available either through
existing publications or by other reliable global optimization algorithms. The error in f*
and the number of function evaluations (nfeval) are the averaged values taken over 100
runs. When algorithms 2 and 3 >are implemented, ncell is set to be 2 for 1-dimensional
problem, 3 for 2-dimensional problem, and 4 for those problems with dimensions higher
than 2. Tabu length L, is assigned to be 10 for every run and promising length L, of 3 is

used if applicable. The number of samples in each cell (NV,) is set to be one for (TSI,

TS2, TS3) <<What about TS47>>. The stopping condition is the predetermined number
of maximum iterations: 400 for n = 1, 800 for n = 2, and 1200 for the dimensions higher
than 2.

Table 1 shows the average error and the number of function evaluations of three tabu
search algorithms TS1, TS2, and TS3 with the same initial cell (icell) . TS3 performs best

among them.
Table 2 shows the average error of f and number of function evaluations using

algorithm 4 (TS4) and algorithm 3 (TS3) compared with the pure random search (PRS).

<<Comment on the missing entries in the tables.>>

From the experimental results we can draw the following conclusions.
1. All algorithms perform very well with problems of dimension one. For
higher dimensional problems, much depends on the complexity of problem and
the size of search domain.
2. All algorithms have difficulty when the search domain is large. Problems
18,22, 27,29, 35 have domains [-100,100]x[—-100,100] and all algorithms did

not perform well.

3. Algorithm 3 (TS3) and algorithm 4 (TS4) succeeded in more problems
than the others. However, we must sacrifice the number of function evaluations.
<<What if you let TS1, TS2, and PRS run longer, say reaching a compatible #(f)?
Are TS3 and TS4 still better?>>

4. Algorithm 4 performs best, but with higher numbers of function
evaluations. The reason could be that it allows the changes in the size of
neighborhood. <<What if you let TS1, TS2, TS3, and PRS run longer, say
reaching a compatible #(f)? Is TS4 still better?>>

18



7. Conclusion

Different types of neighborhoods have a direct impact on the performance of TS. The
size of the neighborhood also has an effect on the convergence speed. The larger the
neighborhood the faster the search domain is covered. However, we will need a larger
sample size. We have tried several ways of defining neighborhoods. The results show that
tabu search algorithm has advantage over pure random search if the design of
neighborhood is efficient. However, as we try to reduce the search space by using tabu
list or tabu region it may result in wasting the function evaluations without improving the
best objective function value. The TS algorithms we implemented are based on the
convergence of random search. The information about the gradient for guiding the moves
has not been used.
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Table 1. Average error and average number of function evaluations for
algorithms

TS1, TS2, and TS3 with the same initial point

TS1 TS2 TS3

# dim aveerror nfeval aveerror nfeval ave error nfeval
1 1 1.00E-04 403 1.00E-05 1118 1.26E-04 460
2 1 1.10E-04 416 3.00E-05 1157 8.53E-05 393
3 1 1.15E-03 338 7.70E-04 783 1.51E-03 421
4 1 4.65E-04 380 5.30E-05 989 8.01E-04 393
5 1 5.56E-03 374 2.18E-03 781 5.56E-03 374
6 2 5.59E-02 424 1.55E-02 549 1.42E-03 5988
7 2 7.23E-02 534 9.01E-02 759 1.73E-03 6714
8 2 4.85E-02 386 1.57E-02 887 1.23E-03 8128
9 2 1.62E-02 301 6.27E-03 905 1.39E-04 6761
10 2 1.93E-01 254 1.20E-01 595 2.12E-03 6525
11 2 1.75E-01 308 1.75E-01 308  9.77E-03 5792
12 2 4.85E-01 548 1.71E-01 1445 3.79E-02 7227
13 2 1.48E-02 380 2.95E-03 1444 1.94E-04 5263
14 2 9.33E-02 381 4.19E-02 1198 7.26E-03 5260
15 2 7.16E-01 371 2.43E-01 861 1.04E-02 6197
16 2 7.10E-02 558 3.11E-02 562 3.31E-03 6755
17 2 8.26E-02 505 6.62E-02 909  9.87E-03 10071
18 2 2.89E+00 428 1.81E+00 882  8.35E-01 5361
19 2 6.36E-02 478 3.04E-02 896 7.13E-04 8078
20 2 2.18E-02 487 1.88E-02 694 993E-04 4410
21 2 6.00E-01 355 5.72E-01 764  5.47E-01 6397
22 2 9.99E-01 538 1.53E-01 399 1.53E-01 399
23 2 - - 6.88E-01 159 3.85E-01 4774
24 2 - - 6.02E-01 310 1.58E-01 5913
25 2 - - - - 3.73E-02 28329
26 2 - - 8.54E-01 378 2.55E-01 4873
27 2 - - 9.64E-01 147 5.82E-01 7310
28 3 3.80E-02 6161 2.55E-01 605 3.80E-02 6162
29 3 - - - - 8.94E-01 45587
30 3 6.53E-01 328 2.89E-01 650 1.75E-03 13782
31 3 9.84E-03 394 9.41E-03 747 1.23E-04 8512
32 4 - - - - 8.11E-01 44492
33 5 4.67E-01 491 4.63E-01 317 1.83E-01 3790
34 6 4.79E-04 375 3.58E-04 1380 1.71E-06 102156
35 9 -

9

1.32E+00 213 9.11E-01 409 2.30E-03 2194543

(98]
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Table 2. Average error of / and number of function evaluations

using TS3, TS4, and pure random search (PRS)

PRS

dim error
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8.02E-08
6.65E-05
3.71E-05
2.42E-05
1.91E-05
6.72E-04
3.53E-03
5.89E-04
3.76E-04
3.78E-03
5.34E-03
1.19E-01
7.47E-05
3.60E-03
5.62E-03
9.20E-04
9.72E-03
9.54E-01
2.59E-03
1.52E-05
5.46E-01
6.76E-01
6.35E-01
3.26E-01
5.30E-01
7.74E-02
1.31E+00
4.38E-02
4.38E+00
3.13E-02
4.44E-05
7.60E+01
3.00E-01
9.18E-05

4.79E-01

nfeval
535
929
133
2401
19174
51189
24359
51189
28294
49686
51189
28691
28204
51189
16927
49174
57563
28294
39616
8069
51919
9154
24214
51189
28691
16590
28691
18027
1812
21692
24162
14730
67091
23848

45064

TS4
error
1.40E-07
8.70E-07
7.28E-05
6.09E-05
1.26E-05
7.49E-04
2.17E-03
1.70E-07
3.04E-05
1.89E-06
9.33E-03
4.34E-02
2.13E-04
7.40E-04
2.20E-07
6.86E-04
9.85E-03
7.23E-02
6.10E-07
5.78E-04
5.49E-01
3.55E-01
2.00E-07
2.30E-07
8.65E-02
1.30E-07
4.79E-01
5.39E-04
3.25E-03
6.00E-08
1.66E-06
1.50E-03
4.00E-01
1.00E-08
5.79E+01
2.45E-05

nfeval
5167
1957
1151
4957
8083
1531
19603
27711
25759
31489
3829
1923
2539
24795
454305
3433
4577
127881
170613
6995
5141
17703
138017
113371
1817
208071
14319
116801
318659
105897
246647
359107
2315
38523
233987

TS3
error
1.26E-04
8.53E-05
1.51E-03
8.01E-04
5.56E-03
1.42E-03
1.73E-03
1.23E-03
1.39E-04
2.12E-03
9.77E-03
3.79E-02
1.94E-04
7.26E-03
1.04E-02
3.31E-03
9.87E-03
8.35E-01
7.13E-04
9.93E-04
5.47E-01
1.53E-01
3.85E-01
1.58E-01
3.73E-02
2.55E-01
5.82E-01
3.80E-02
8.94E-01
1.75E-03
1.23E-04
8.11E-01
1.83E-01
1.71E-06

1110731 2.30E-03

nfeval
460
393
421
393
374
5988
6714
8128
6761
6525
5792
7227
5263
5260
6197
6755
10071
5361
8078
4410
6397
399
4774
5913
28329
4873
7310
6162
45587
13782
8512
44492
3790
102156

2194543
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8. Testing functions

1. f(x)=5.0+sin(x)+ sin(lOTx) +log(x)—0.84x;
search domain: 2.7 <x<7.5; f(x")=0.39869259.
2. f(x)=2.0+sin(x)+ sin(z?x);

search domain: 3.1<x<20.4; f(x")=0.0940388.
f(x)=6.0+sin(2x+1)+sin(3x +2) +sin(4x+3) +sin(5x+4)

3. . <<same
+sin(6x + 5);
line>>
search domain: —10< x <10; f(x")=1.0899717.
4. f(x)=1.0+ (x +sin(x)) exp(—x7);
search domain: —10 < x <10; f(x")=0.17576058.
5. F(x)=0.02(12+3x—3.5x" + 7.2x°)(1 + cos(47x))(1+ 0.8sin(37x));

search domain: —1< x<1; f(x")=-.0679996.

6. Rastrigin function
f(x)=x} +2x} —0.3cos(37x,) — 0.4 cos(47x,) +0.7;

search domain: ~1<x, <1, j=1,2; x"=(0,0); f(x")=0.

7. Hump function
6

f(x)=1.03163+4.0x7 —2.1x; +x?1+x]x2 —4.0(1.0—x3)x3;

search domain: -5< x; <5, j=1,2;
x" =(.0898-.7126),(—.0898.7126); f(x")=0.

8. f(x)=1.0x" +0.2x; —0.3cos(37x,) cos(4rxx,) +0.3;
search domain: —1<x, <1, j=1,2; x" =(0,0); f(x")=0.
9. f(x)=1.0x" +2.0x; —0.3cos(37zx, +47x,)+0.3;

search domain: ~1<x, <1, j=1,2; x" =(0,0); f(x")=0.

20
10. f(x)=)_(x,+x,b,+x¢, —a,); where
i=l1

a=(4.284,4.149,3.877,0.533,2.211,2.389,2.145,3.231,1.998,1.379,

2.106,1.428,1.011,2.179,2.858,1.388,1.651,1.593,1.046,2.152)
b=1(.286,.973,.384,.276,.973,.543,.957,.948,.543,.797,.936,.889, .006,

.828,.399,.617,.939,.784,.072,.889)
c =(.645,.585,.310,.058,.455,.779,.259,.202,.028,.099,.142,.296, .175,

.180,.842,.039,.103,.620,.158,.704)
search domain: -10<x; <10, j=1,2;
1 local minimum £(2.35,-.319) =20.9805;
1 global minimum: x* =(.864,1.23); f(x")=16.0817.
11. f(x)=x{ +x; —cos(18.0x,) — cos(18.0x, ) +3.0;

22



12.

13.

14.

15.

16.

17.

18.

19

20

21

22.

search domain: ~1<x, <1, j=1,2; f(x")=1.0.

2

f(x)= Zﬁ— | cos(%)+2.0;

search domain: ~100 < x; <100, j=1,2; f(x")=1.0.
f()=(x—-2)" +(x, ~2)%

search domain: -5 < x, <5, j=1,2; f(x)=0.0.
f(x)=1.0+sin’(x,) +sin’(x,) = 0.1lexp(—x_ —xJ);
search domain: -10 < x, <10, j=1,2; f(x")=0.9.
f(x)=100.0(x, —x7)* +(6.4(x, —0.5)* —x, —0.6)*;
search domain: -5 < x, <5, j=1,2; f(x')=0.

2
=1

De Jong function
f(x)=100.0(x; —x,)* +(1.0—x,)*;
search domain: —2.048 <x, <2.048, j=1,2; x" =(1,1); f(x")=0.
Schaffer function F6
sin’ (yx7 +x5)—0.5
f(x)=0.5+ "
(1.0+.001(x; +x3))
search domain: ~100 < x; <100, j=1,2; x" =(0,0); f(x")=0.
Schaffer function F7
F(x)=(x] +x3)"[1.0+sin* (50.0(x] +x3)*1)];
search domain: ~100 < x; <100, j=1,2; x" =(0,0); f(x")=0.
. Branin RCOS

S(x) =(x, —izxf +3x1 -6)° +10(1—i)cos(xl)+1o;
4 T 87

search domain: -5 <x, <10,0 < x, <15; no local minimum,;
3 global minima: x* =(-x,12.275),(x,2.275),(9.42478,2.475) ;
f(x")=0.397887.
. The six-hump camel back function

4
F(x)=(4.0-2.1x +;—‘0)x12 + 3,0, + (~4.0+4.0x2)x;

search domain: -3 < x, <3,-2<x, <2;

x" =(-0.0898,0.7126),(0.0898,-0.7126) ; f(x")=-1.0316.
. Shubert

S ) =12 jeos((j+Dx, + MY, jeos((i+Dx, + )

search domain: —10 <x; <10, j =1,2; 760 local minima; 18 global minima:

f(x")=-186.7309.
Easom

S (x)=—=cos(x;) cos(x,) exp(=((x, = 7)" +(x, = 7)*));
search domain: —100 < x; < 100, j =1,2; several local minima (exact number

23



23.

24.

25.

unspecified in usual literature); 1 global minimum: x" = (7,7); f(x)=-1.
Bohachevsky function #1
f(x)=x+2.0x3 —0.3cos(3.07x,) — 0.4 cos(4.07x,) +0.7;

search domain: —50 < x; <50, j=1,2; x" =(0,0); f(x")=0.

Bohachevsky function #2
f(x)=x" +2.0x3 —0.3cos(3.07x,) cos(4.07x,) +0.3;

search domain: —50 < x; <50, j=1,2; x" =(0,0); f(x")=0.

Bohachevsky function #3
f(x)=x] +2.0x} —0.3cos(3.07x,) + cos(4.07x,) +0.3;

search domain: —50 < x; <50, j=1,2; x" =(0,0); f(x")=0.

26. Goldstein and Price

27.

28.

29.

F(x) =[1+(x, +x, +1)>(19—14x, +13x] —14x, + 6x,x, +3x3)]
[30+(2x, —3x,)” (18— 32x, +12x7 —48x, —36x,x, +27x;)};
search domain: -2 < x 1<2,j=12;4 local minima;
1 global minimum: x* =(-1,0); f(x")=3.
f(x)=x"+2x; —0.3cos(37x,)—0.4cos(4xx,)+0.7;
search domain: —100 < x; < 100, j =1,2; several local minima (exact number

unspecified in usual literature); 1 global minimum: x" =(0,0); f(x")=0.

3
£(0)=3 | min(d,.x)|; where
i=1

1 -6 -1
b=(8,-04,2)", A= 0 4 -3|,d=Ax+b.
-1 2 1

search domain: ~1<x, <1, j=1,2,3; x"=(0,0.1,0); f(x)=0.
Let b, =(1,3,5)", b, =(2,1,3)"

—
[e)

|
=
[E—

|
0=
[e)

u=Ax-b,v=4x-b, .

3
f(x) =2 | max(u,,v,)|;
i=1
search domain: —100 < x; <100, j=1,2,3;
x" =(3.7379,4.5878,5.4657); f(x)=0.

30. De Jong (3 variables)

fE)=x7+x;+x7;
search domain: -5.12 < x, <5.12, j =1,2,3; 1 single minimum (global):

X' =(0,0,0); f(x")=0.

31. Hartmann



32.

33.

34.

35.

36.

1= _Z € exp[—Z a,(x;=p,)’L

search domain: 0 < x;<l,j=1,23;4 local minima:

p, =(p.,» Piy» Pi;) =1 th local minimum approximation; f(p,) = —c,;
1 global minimum: x* =(0.11,0.555,0.855); f(x")=-3.86278.

1 ajj

1 3.0 10.0
2 0.1 10.0
3 3.0 10.0
4 0.1 10.0

The Colville function

30.0
35.0
30.0
35.0

Ci Pij

1.0 0.3689 0.1170 0.2673
1.2 0.4699 0.4387 0.7470
3.0 0.1091 0.8732 0.5547
3.2 0.0381 0.5743 0.8828

£(x)=100.0(x, —x7)* +(1=x,)* +90(x, — ;)" + (1 - x,)’
+10.1(x,—1)>+(x,—1)>+19.8(x,~1)(x,~1);

search domain: —10 < x; < 10, j=1,...,

De Jong function F3

f(x)ziixjj;

4; x"=(LLLD; f(x)=0.

search domain: -5.12<x,<5.12, j=1,...,5;

f(x")=-30 forall -5.12<x, <
Grlewank S functlon
6 cos(x) 1
S(x)= 600 = H 20

Jj=1

search doma1n.—l<xj <1,] =1,...,6;

Rosenbrock’s function (9 variables)

S(x)= Zg: 100(x,,, —x’ ) +(1-x)%;

search domain: =100 <x; <100, j =1,...,9; x" =(L1,...,1); f(x")=0.

Zakharov’s function (9 variables)

f(x)= i X7+ (ZQ: 0.5ix,)* + (29: 0.5ix,)*;

search domain: —1 < x; < Lj=1,..

-5.0.

X' =(0,0,0,0,0,0); f(x*)=0.

,9; X =(0,..,0); f(x")=0.

25



