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     Global optimization is a task of finding at least one best solution that optimizes a 
given objective function )(xfMin

x Ω∈
.  Many new theorems, algorithms and computational 

aspects in global optimization have been used to solve many problems in science and 
engineering. The applications are for examples finance, allocation and location problems, 
operations research, statistics, structural optimization, engineering design, network and 



transportation problems, chip design and database problems, nuclear and mechanical 
design, chemical engineering design and control, and molecular biology [1].  Algorithms for 
solving global optimization problems can be categorized into two classes: the stochastic 
methods that find the global minimum with high probability and the deterministic methods 
that guarantee to find a global minimum with desired accuracy. Examples of those methods 
are the following [3]: 

1. Stochastic methods 
• random search 
• clustering methods 
• simulated annealing 
• tabu search 
• genetic algorithms 

2. Deterministic methods 
• branch and bound  
• interval methods 

We propose our version of continuous tabu search for unconstrained optimization problem 
)(xfMin

x Ω∈
 with the convergence in probability.  We will experiment with different type of 

“neighborhood’’ to see the performance of the algorithms. The convergence proof of each 
algorithm will be provided.  We might improve the efficiency of our algorithm by using tabu 
search with other optimization methods.   We are also interested in a repair operator for 
quadratic constrained. A repair algorithm is designed to be an assistant of unconstrained 
optimization algorithms used for solving constrained problems. The repair problem itself is a 
distance minimization problem. i.e. if we let x~ be any given point, we want to find a point x 
nearest to x~  that satisfy the constraint bQxxT ≤ .  In other words, we want to solve the 
problem      2~xxMin

x
−

Ω∈
  

        s.t.  bQxxT ≤ . 
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รายละเอียดการทําวิจัย 
 บทความที่กาํลังอยูในระหวางการปรับปรุงแกไขเพ่ือสงตีพิมพ 

 
Continuous Tabu Search           

Dhiranuch Bunnag, Min Sun 
 

     
1. General idea of tabu search  
     We consider this optimization problem  
                        minimize ( )f x x: ∈Ω,                                                                     (1) 
where f  is the function to be optimized and Ω  is a set of the feasible solutions or the 
search domain. Tabu search (TS) is an iterative method originally designed for 
combinatorial optimization problems. TS was introduced by Glover [4] and has been 
successfully used to solve a wide range of problems such as scheduling, time-tabling, 
graph coloring, the cutting stock problem, the Knapsack problem, and the Traveling 
Salesman Problem.  
     The main idea of TS is to prevent the search from being trapped at locally optimal 
solutions by prohibition of backward moves. A typical step of tabu search begins by 
searching for a better candidate in a neighborhood of the current solution. To avoid 
repeating the steps just used earlier, the method records recent moves in one or more tabu 
lists. The intent of the list is to prevent the previous moves from being repeated and to 
ensure that it is not reversed. One drawback of the tabu list is that we may get a tabu list 
which prevents us from searching intensively in a promising region. If that happens we 
will relax the tabu status by overruling it. It will be prescribed by aspiration conditions.  
     An outline of a general tabu search procedure may be described as follows.  
1. Choose an initial solution 0x . Set 0xbest x= (the currently available best solution) and 

0k = .  
2. Generate a subset V  of candidates in a neighborhood of kx ( ( ))kN x   such that either 
none of the tabu conditions is violated or at least one of the aspiration conditions is 
satisfied.  
3. Choose the best in V  (with respect to ( )f x ), and call it 1kx + .  
4. If 1( ) ( )kf x f xbest+ <  then set 1kxbest x += .  
5. Update the tabu list and aspiration conditions. Set 1k k= + .  
6. If a stopping condition is fulfilled then stop. Otherwise go to step 2.  
 
     Stopping conditions could be the following:  

• The number of iterations is larger than the maximum number of iterations 
allowed.  
• No more candidates can be generated in a neighborhood, i.e. V = ∅ .  
• The number of iterations since the last improvement of xbest  has reached 
a predetermined number.  
• The objective function value reaches a pre-specified threshold value.  

     The choice of V  and the definition of neighborhood of x  are crucial to the 
effectiveness of TS. Glover and Hanafi provide an upper bound for the number of 
iterations for the discrete tabu search in [5]. The idea of the discrete TS has been adapted 
to the continuous case as reported in Chelouah and Siarry [2] , Battiti and Tecchiolli [1],  
and  Cvijovic and Klinowski [3]. <<briefly summarize them in the framework of the 
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general TS above 
 
DB: 
Cvijovic and Klinowski [3] assume solution space to be hypercube in Rn , n is a number 
of  variables. Partition each axis xi to be pi  parts. Thus the solution space is divided into 
cells. In each iteration, the neighborhood is defined to be those sample points from a 
uniform distribution over a given number of randomly chosen cells.  There are two kinds 
of prohibit moves; if it produces a solution which we have already seen it in the previous 
L iterations and if it results in a higher objective function value than some specified value. 
The aspiration condition is the current best value of the objective function found so far. 
 
Chelouah and Siarry [2]   call the algorithm Enhanced Continuous Tabu Search (ECTS). 
They define a hyperrectangular space centered on a point s= (s1,s2,...,sn)   to be a set R(s,r) 
= { x = (x1,x2,...,xn) | |xi - si| < r; 1 ≤ i ≤ n . Consider a set of hyperrectangles R(s,r)  
centered on the current solution s with different r; h0, h1, h2,...,  hv where hi-1 < hi. The 
space is partitioned into v subspaces Ci(s,hi-1,hi) = R(s,hi)\ R(s,hi-1), 1 ≤ i ≤ v.  The 
neighbors of s is defined to be the v points randomly selected from inside of each Ci  1 ≤ i 
≤ v. The tabu region is the union of all the hyperrectangles centered on those points in 
tabu list. All newly generated neighbors must not be in the tabu region. 
 
Battiti and Tecchiolli [1] describe the search region as a box.  The bound of each  xi is 
described by  Li < xi < Ui where i = 1,2,...,N.  Divide the initial box to be 2N equal size 
boxes. Each box is evaluated the value f(B) by two possible ways; one is using the 
average of the function values of the sample points from that box  and  the other is the 
minimum of the function values among the sample points. The best box will be 
subdivided into 2N equal size boxes and the identification of this best box will be kept in 
tabu list. The neighbors are defined to be the randomly chosen boxes, so those sample 
boxes can be in different size. The length of the tabu list is adapted during the search. The 
local minimum is obtained by using the shaker algorithm.  
 
 
There are other hybrid methods such as in Chelouah and Siarry [9] and Hedar and 
Fukushima [10] use tabu search with Nelder-Mead simplex algorithm. The tabu search is 
used to find the promising area and then search this area by using simplex algorithm. 
 
 
The articles related to the convergence of tabu search are for examples Hanafi [7] studied 
the convergence of the combinatorial optimization problem using the scheme with two 
assumptions; i) x ∈N(x’) ⇔ x’ ∈  N(x)  for all x and x’ in the search domain E. and ii) for 
every pair of solutions x and x’ in E there exists a path from x to x’. It was shown that  if  
E is finite and the two assumptions  hold then the tabu search terminates after exploring 
all solutions in E. 
 
For the multiple-minima problem of continuous functions Ji and Tang [8] proposed the 
memory tabu search (MTS) which yields a sequence of solution that converges with 
probability one to the optimal solution. The MTS define neighborhood to be the whole 
search domain. The new move is generated by uniform distribution (or Gaussian 
distribution). The tabu moves are considered by three criteria: 
1) the total distance moved at the current iteration. 
2) the total change in the objective function.  
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3) the percentage improvement or destruction. 
 
 
The following two are added  to the references. 
 
 
[9] Rachid chelouah and Patrick Siarry, A hybrid method combining continuous tabu 
search and Nelder-Mead simplex algorithms for global optimization of multiminima 
functions, European Journal of Operational Research  2003  
 
[10] Abdel-Rahman Hedar and Masao Fukushima, Tabu search directed by direct search 
methods for nonlinear global optimization, European Journal of Operational Research  
2004 
>> 
 
     This article addresses TS in the continuous case. After presenting a more or less 
standard TS for the continuous optimization, we provide four <<three?  DB: It is three. 
>> additional variations. For all of them, we offer some theoretical convergence analysis. 
Under mild assumptions, the TS algorithms are shown to converge at least in probability. 
Near the end, we provide some numerical testing results of those algorithms along with 
comparison with the pure random search. 
 

2. Our simple continuous tabu search:  TS1  

     A simple continuous tabu search is introduced and analyzed in this section. Assume 
that the search domain Ω  is a hypercube in nR l x b, ≤ ≤ , and that there is a unique 
globally optimal solution. We first introduce variables and parameters used in our 
algorithm.  <<consider the case when #(x*) is finite? Yes in the previous sentence we 
assume unique globally solution. I think the argument is valid when 
the number of x* is finite.  MS: if so, relax the assumption above and justify accordingly. 
You may keep the original proof for #(x*)=1 and provide extension arguments.>> 

• Partition the i th direction of x  into ip  parts, 1i … n= , , . Thus the entire 
search domain is divided into 1 2c nN p p p= L  cells denoted as {1 2 c… N, , , }.  
• sN  = number of samples from each cell.  
• ky  = a solution that has the minimum value of f  among all the candidates 
discovered by the algorithm after k  iterations.  
• fbest  at the k th iteration is ( )kf y .  
• TL  = tabu list size.  
• tabu_list  = a vector of length TL  that contains the names of tabu cells. We 
address them by integers in {1 2 c… N, , , }. 
•  

TL ′  = number of distinct cells in tabu_list ;  1 T TL L′≤ ≤ .  
  

_____________________________________________________________________ 
Algorithm 1: TS1 
1. Set up parameters T sL N, , and List  = all cells. 
2. Set iteration counter k = 0, and tabu_list =∅ . 
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3. Randomly select a point x k .  
4. Set fbest = f(x )k , k ky x= . 
5. Repeat   
         flag =1 (search indicator for the new x) 
         While  flag = 1  do 
               Call candidate (List,N )s icell x f, , , %% . 

               If  (icell )tabu_list∉  or ( )f fbest<%  then 
                     Put icell  in tabu_list  (might appear more than once). 
                     x 1k x+ = % .  
                     flag = 0. 
                     If f fbest<%  then  
                          1ky x+ = % (update the best solution that the algorithm just discovered). 
                           fbest =f( )x% .  
                     else y 1k ky+ = .  
                     Update k :k = k+1 .  
               end if 
          end while 
   until  one of stopping criteria is satisfied. 
                      
_____________________________________________________________________      
Subroutine candidate( sList N icell x f, , , , %% ) 
Input:  List, N s . 

Output:  icell x f, , %% .  
1. Randomly select a cell from the input List  and call it icell . 
2. Randomly select N s  sample points from this cell. 
3. Evaluate f of each sample.  
4. Find the minimum among the samples (minimum point x% , minimum value ( )f f x=% % ).       
5. Return icell, x f, %% .  
_____________________________________________________________________ 
 
     Throughout the article, the randomness is with respect to an underlying probability 
space. As usual, the capital letter X could be used to denote the random variable 
representing the random sample, while the lower case x has been used to represent a 
particular realization of X. In our implementations of TS, we use the tabu_list of fixed 
length TL . We start out with an empty list. After TL  iterations the list will be full. After 
that we replace the oldest element in the list with the incoming element that the algorithm 
has just detected. The same strategy is applied to any other list of a limited length. 
 
      Let x∗  be the unique globally optimal solution of (1) and       
                                    ( ) { ( ) ( ) }f f fB x x f x f xε ε∗ ∗, = ∈Ω :| − |< .  
We also assume <<assume continuity of f? DB: yes >> that m(Bf(x*, �f)) > 0 for any �f 
> 0, where ( )m A  means the Lebesgue measure of a set A .  Two sequences { }kx  and 
{ }ky  are produced by TS1. The sequence { }kx  shows movements of the algorithm. 
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While a sequence{ }ky  keeps track of the best x  found among all the samples from the 
first iteration to the current iteration k . Our goal is to show that   
                                     1({ } ( ) ) 0k t

k f fP Y B x ε∗
= ∩ , = ∅ →  as t  ∞ .   

Explanation of the terms that we will use in our proof:  
• t  = the current iteration counter.  
• c∗  = a cell which contains x∗ .  
• ( )tβ  = the desired level of the f value at iteration t  or the current value of fbest .  
• ( ( ))rejP tβ  = Probability of rejecting a cell  that is contained in tabu_list   
<<DB: I need to remove “that is contained in tabu_list ” in order to use it in the proof 
of TS3. >> 
at level ( )tβ . Suppose x  is a minimum among the random samples from the cell. If 

( ) ( )f x tβ≥ , reject this cell with probability ( ( ))rejP tβ . Therefore, ( ( )) 1rejP f x∗ =  and 
( ) 0rejP ∞ = .  

• P ( c tabu_list∗ ∉ ) = P ( c∗  has never been chosen in the past TL  iterations)  

                                    = 1( )c T

c

N L
N
− .  

• Probability of selecting a cell and obtaining c∗  is 1
cN .  

• Probability of obtaining a point in ( )f fB x ε∗, when selecting a sample point in c∗  

is ( ( ) *)

( )
f fm B x c

m c

ε∗

∗

, ∩ .  

• In each iteration we sample sN  points in the candidate icell  independently. 
Supposing icell c∗= , the probability that at least one of the points from c∗  is 
contained in ( )f fB x ε∗,  is ( ( ) *)1

( )
(1 (1 ) )f f s

c

m B x c N
N m c

ε∗

∗

, ∩− − .  

• Probability of selecting a cell and obtaining a cell from tabu_list  is
 

1T

c c

L
N N

′

≥ .  
  
     We would like to find or estimate the probability that TS1 yields ( )t

f fx B x ε∗∈ , . First 
consider the following dichotomy.  
     I: ( )f fB x cε∗ ∗, ⊆ .   For each iteration counter t, one of the following events must have 

occurred in order to have ty ∈ ( )f fB x ε∗, .  

• Select a cell and obtain c∗ . Sample sN  points and at least one of the points is 
contained in ( )f fB x ε∗, . This event occurs with probability  

           ( ( ))1
( )

(1 (1 ) )f f s

c

m B x N
N m c

ε∗

∗

,− − .  

• Select a cell and obtain a cell which is contained in tabu_list . Reject the cell with 
probability ( ( ))rejP tβ . Sample a new cell and obtainc∗ . Sample sN  points from 

the cell c∗ , with at least one of the samples contained in ( )f fB x ε∗, . The 
probability for this event is   

                                
 ( ( ))1

( )
( ( )) (1 (1 ) )f fT s

c c

m B xL N
rejN N m c

P t εβ
∗′

∗

,⋅ ⋅ − − .  

• The first two selected cells are contained in tabu_list . Both cells are rejected 
individually with probability ( ( ))rejP tβ . However in the selection of the third cell 
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we get c∗ . Among our sN  samples, at least one of the samples is contained in 
( )f fB x ε∗, . The probability for this event is at least      

                          ( ( ))21 1
( )

( ( ( ))) (1 (1 ) )f f s

c c

m B x N
rejN N m c

P t εβ
∗

∗

,⋅ ⋅ − − .  

• The process might continue with more rejections of cells from tabu_list  before 
obtaining c∗ . The probability of rejecting k  ( 3)k ≥  cells before obtaining a cell 
that has at least one sample belonging to ( )f fB x ε∗,  is at least  

                                  ( ( ))1 1
( )

( ( ( ))) (1 (1 ) )f f s

c c

m B x Nk
rejN N m c

P t εβ
∗

∗

,⋅ ⋅ − − .  

            Therefore, we can conclude that  

           

( ( ))1
( )

( ( ))1 1
( )

( ( ))21 1
( )

( ( )) (1 (1 ) )

( ( )) (1 (1 ) )

( ( ( ))) (1 (1 ) )

f f s

c

f f s

c c

f f s

c c

m B x Nt
f f N m c

m B x N
rejN N m c

m B x N
rejN N m c

P X B x

P t

P t …

ε

ε

ε

ε

β

β

∗

∗

∗

∗

∗

∗

,∗

,

,

∈ , ≥ − −

+ ⋅ ⋅ ⋅ − −

+ ⋅ ⋅ ⋅ − − + .

  

 
1

( ( ))1 1(1 (1 ) )[1 ( ( ( ))) ]
( )

sf f N k
rej

kc c

m B x
P t

N m c N
ε

β
∗ ∞

∗
=

,
≥ − − + ⋅∑ (2) 

 
( ( ))1 (1 (1 ) ) 0

( )
sf f N

c

m B x
N m c

ε∗

∗

,
≥ − − > .               (3) 

 
     II: 1 2( )f f qB x c c cε∗ ∗ ∗ ∗, ⊆ ∪ ∪L  where ( ( )) 0j f fm c B x ε∗ ∗∩ , ≠  for 1j … q= , ,  with 

some 2q ≥ . In other words, ( )f fB x ε∗,  is not entirely contained in a single cell. Let us 
introduce a new set of notations:  

• ( )j j f fB c B x ε∗ ∗= ∩ , . Thus 1( ) q
f f j jB x Bε∗

=, = ∪ .  

• Let ( )( )
( ) ( )

min : 1,...,jk

k j

m Bm B
m c m c

j q∗ ∗= = <<min{…: j=1,…,q}>>, so that ( )( )
( ) ( )

jk

k j

m Bm B
m c m c∗ ∗≤  

for 1j … q= , , .                 
In view of the arguments used in the former case, we examine the following possible 
situations.  

• Select a cell and obtain *
jc for some j in {1,…,q} . Then sample sN  points 

from jc∗  and at least one of the samples is contained in ( )f fB x ε∗, . This event can 

occur with probability of at least ( )
( )

(1 (1 ) )k s

c k

m Bq N
N m c∗

− − .   

• Select a cell and obtain a cell which is contained in tabu_list . Reject this 
cell with probability ( ( ))rejP tβ  and then sample a new cell. This time obtain one 

of *
jc and at least one of the samples is contained in ( )f fB x ε∗, . The probability 

for this event is at least ( )1
( )

( ( )) (1 (1 ) )k s

c c k

m Bq N
rejN N m c

P tβ ∗⋅ ⋅ − − .  

• The first two selected cells are contained in tabu_list . Both cells are 

rejected. For the third selection we get one of the *
jc and at least one of the 

samples from this cell is contained in ( )f fB x ε∗, . The probability for this event is 
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at least ( )21
( )

( ( ( ))) (1 (1 ) )k s

c c k

m Bq N
rejN N m c

P tβ ∗⋅ ⋅ − − .  

The situation might continue in this manner with more rejections of cells from tabu_list  
before obtaining some jc∗ . Therefore, we can conclude that   

          

( )
( )

( )1
( )

( )21
( )

( ( )) (1 (1 ) )

( ( )) (1 (1 ) )

( ( ( ))) (1 (1 ) )

k s

c k

k s

c c k

k s

c c k

m Bq Nt
f f N m c

m Bq N
rejN N m c

m Bq N
rejN N m c

P X B x

P t

P t …

ε

β

β

∗

∗

∗

∗∈ , ≥ − −

+ ⋅ ⋅ ⋅ − −

+ ⋅ ⋅ ⋅ − − + .

  

      
1

( ) 1(1 (1 ) )[1 ( ( ( ))) ]
( )

sN ik
rej

ic k c

m Bq P t
N m c N

β
∞

∗
=

≥ − − + ⋅∑          (4) 

The summation 
1

1( ( ( )))i
rej

i c

P t
N

β
∞

=

⋅∑  <<delete ]>> converges.  Therefore, 

                            ( )( ( )) (1 (1 ) ) 0
( )

sNt k
f f

c k

m BqP X B x
N m c

ε∗
∗∈ , ≥ − − > .                                  

(5) 
 
From the dichotomy explained above, we can find a lower bound of the probability that 
any Xt belongs to ( )f fB x ε∗, , ( ( ))t

f fP X B x ε∗∈ , , as follows:  

 

1

( ( ))1 (1 (1 ) ) if ( )
( )( ( ))

( )(1 (1 ) ) if ( )
( )

s

s

f f N
f f

t c
f f

qNk
f f j j

c k

m B x
B x c

N m cP X B x
m Bq B x c

N m c

ε
ε

ε
ε

∗
∗ ∗

∗
∗

∗ ∗
=∗

 ,
− − , ⊆

∈ , ≥ 
 − − , ⊆ ∪ .


 

Define BP  to be the lower bound of ( ( ))t
f fP X B x ε∗∈ ,    

                 
( ( )) ( )1min{ (1 (1 ) ) (1 (1 ) )}

( ) ( )
s sf f N Nk

B
c c k

m B x m BqP
N m c N m c

ε∗

∗ ∗

,
= − − , − − .                 (6) 

From the algorithm the sequence { }ky  has the following properties:  
1. 1( ) ( )t tf y f y+ ≤ .  
2. If ( ) ( ) for 1 2t i

f f f fy B x y B x i t t …ε ε∗ ∗∈ , , ∈ , = + , + , .  

3. Suppose ( )t
f fx B x ε∗∈ ,  at iteration t, we will then have ( )t

f fy B x ε∗∈ , . 
We therefore conclude that  

( ( ))i
f fP Y B x ε∗∈ ,  = ( ( ))i

f fP X B x ε∗∈ ,  if 1,..., 1i t= −  and  

( ( ))i
f fP Y B x ε∗∈ ,  ≥ ( ( ))i

f fP X B x ε∗∈ ,  if i≥ t. 

  This means once the algorithm has found ty  contained in ( )f fB x ε∗, , the sequence 

1{ }k
k ty ∞
= + will stay inside ( )f fB x ε∗, . This analysis now leads to our main result below. 

     Theorem 2.1 10 ({ } ( ) ) 0k t
f k f fP y B xε ε∗

=∀ > , ∩ , = ∅ → .  <<Yt  not changed?  DB: as 
t → ∞  >> 
  Proof. At each iteration t , ( ( ))t

f fP Y B x ε∗∈ ,  depends on the level of ( )tβ  or ( )f xbest  
as shown in the term ( ( ))rejP tβ  of Equations (2) and (4). However, we have found a 
lower bound ( BP  from (6)) of this probability which does not depend on iteration number.  
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      1({ } ( ) ) (i t
i f fP Y B x Pε∗
= ∩ , = ∅ = None of Yi belongs to ( ) )f fB x i tε∗, , ∀ ≤   

1
[1 ( ( ))]t i

f fi
P Y B x ε∗

=
= − ∈ ,∏     

                                                   
1
[1 ( ( ))]t i

f fi
P X B x ε∗

=
≤ − ∈ ,∏  

                                                   [1 ] 0 ast
BP t≤ − → →∞ . 

  . <<break into 2 separate lines in order to have the point in the right spot>>  
 
This completes the proof of convergence in probability of Algorithm 1.    
     Since the size of ( )f fB x ε∗,  is generally a lot smaller than the size of the partitioned 

cells, we can assume that ( )f fB x ε∗,  is entirely contained in one cell. Thus only the first 

case above is our major concern. We define
( ( ))

( )
f fm B x
m

ε
η

∗,
=

Ω
. If pure random search is 

used, the probability that we will find a point contained in ( )f fB x ε∗,  is η , that 

is ( ( ))t
f fP X B x ε∗∈ , =η .  

     Proposition 2.1 Let { }tx and {yt}be generated by Algorithm 1. If ( )f fB x ε∗,  is 
entirely contained in one cell, then 
          ( ( ))t

f fP Y B x ε∗∈ , ≥ ( ( ))t
f fP X B x ε∗∈ , ≥�                                       (7) 

  Proof. According to (3), it suffices to show 

                                        
( ( ))1 (1 (1 ) )

( )
sf f N

c

m B x
N m c

ε
η

∗

∗

,
− − ≥ . 

We will use induction on sN .   
( ( )) ( ( )) ( ( ))11 (1 (1 ))

( ) ( ) ( )
f f f f f f

s
c c

m B x m B x m B x
N

N m c N m c m
ε ε ε

η
∗ ∗ ∗

∗ ∗

, , ,
= ; − − = = =

Ω
  

2sN = ;    

2( ( )) ( ( )) ( ( )) ( ( ))1 (1 (1 ) ) 2
( ) ( ) ( ) ( )

f f f f f f f f

c c c

m B x m B x m B x m B x
N m c N m c N m c m c

ε ε ε ε∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

, , , ,
− − = −   

( ( ))
2

( )
f fm B x
m c

ε
η η

∗

∗

,
= −    

( ( ))
(2 )

( )
f fm B x
m c

ε
η η

∗

∗

,
= − ≥   

Suppose 
( ( ))1 (1 (1 ) )

( )
sf f N

c

m B x
N m c

ε
η

∗

∗

,
− − ≥    

Consider  
1( ( ))1 (1 (1 ) )

( )
sf f N

c

m B x
N m c

ε∗
+

∗

,
− −    

( ( )) ( ( ))1 (1 (1 ) (1 ))
( ) ( )

sf f f fN

c

m B x m B x
N m c m c

ε ε∗ ∗

∗ ∗

, ,
= − − −    

( ( )) ( ( )) ( ( ))1 (1 (1 ) (1 ) )
( ) ( ) ( )

s sf f f f f fN N

c

m B x m B x m B x
N m c m c m c

ε ε ε∗ ∗ ∗

∗ ∗ ∗

, , ,
= − − + −    
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( ( )) ( ( )) ( ( ))1 (1 (1 ) ) (1 )
( ) ( ) ( )

s sf f f f f fN N

c c

m B x m B x m B x
N m c N m c m c

ε ε ε∗ ∗ ∗

∗ ∗ ∗

, , ,
= − − + −    

( ( ))
(1 )

( )
sf f Nm B x

m c
ε

η η
∗

∗

,
= + −   

( ( ))
(1 (1 ) )

( )
sf f Nm B x

m c
ε

η η
∗

∗

,
= + − ≥   

This completes the proof.     
 <<Still true if ( )f fB x ε∗,  is NOT entirely contained in one cell? 
DB: I cannot show that it is true when Bf  does not contained entirely in one cell. It seems 
that the following held. 
1. If the number of Ns increases, the probability is higher. 
2. When using an approximation in (5), it seems to suggest that the process of selecting  
cells before getting sample points reduce the probability of getting the points from Bf , 
since the selected cell may contain only a portion of Bf . 
>> 
     TS1 might behave much like a pure random search although it is shown not to be 
worse. In practice it could take quite some times before ty  gets closer to the global 
solution x*. The algorithm lacks an intensification procedure that a successful global 
optimization should have. We have tried to improve the algorithm in three different ways 
without much change in the proof. The results will be shown in the next three sections 
after the explanation of each modification.  
 

3. A modified continuous tabu search:  TS2  

     In order to improve and speed up TS1, we expand the neighborhood by allowing more 
sampling of cells in subroutine candidate2. We will randomly select ncell  cells instead of 
only one cell and allow the movement in the direction of the lowest f  among all the 
samples.  To refine the solution, we keep a list of length pL  of the best up-to-date ty . This 
list is called promising_list . A search is performed by sampling some points in a 
neighborhood of ty  from the promising_list  when the original algorithm stops 
improving. This part will not effect the convergence of the algorithm.    The algorithm is 
stated as follows. 
_____________________________________________________________________ 
Algorithm 2: TS2 
1.  Set up parameters T p sL L N ncell, , , , List  = all cells. 
2.  Set iteration counter k = 0, promising_list  = ∅ , and tabu_list =∅ . 
3.  Randomly select a point  x k . 
4.  Set fbest = f(x )k , k ky x= . 
5. Repeat 
        flag =1  (search indicator for the new x). 
        While flag = 1 do 
               Call candidate2 (List,N )s ncell icell x f, , , , %% . 

               If ( icell tabu_list∉ ) or ( f fbest<% ) then 
                       Put icell  in tabu_list (might appear more than once). 
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                     x 1k x+ = % . 
                     flag = 0. 
                       If f fbest<% then 
                          1ky x+ = % ( update the best solution that the algorithm just discovered). 
                           fbest = f% . 
                           If   y 1k promising_list+ ∉  then put 1ky +  in promising_list . 
                      else   y 1k ky+ = . 
                      Update  k : k = k+1 .  
                end if  
          end while 
      until one of stopping criteria is satisfied. 
6. Search for a better solution (if any) from the neighborhood of each point contained in 
promising_list. 
 
_____________________________________________________________________ 
Subroutine candidate2( sList N ncell icell x f, , , , , %% )  
Input:    List, N s ncell, .  

Output: icell x f, , %% .  
1. Randomly select ncell  different cells from the input List . 
2. In each cell randomly select N s  samples. 
3. Evaluate f  of all samples. 
4. Find the minimum among the samples (minimum point x% , minimum value ( )f f x=% % ). 
and use the corresponding cell of x%  as icell .  
5. Return icell, x f, %% .   
_____________________________________________________________________ 
 
     Its analysis of convergence again starts with considering two cases. 
  Case I: ( )f fB x cε∗ ∗, ⊆ .  In each iteration, one of the following events will occur.  

• icell c∗=  and when sampling sN  points from icell  we found that at least 
one of the samples is contained in ( )f fB x ε∗, . This event occurs with probability 

( ( ))

( )
(1 (1 ) )f f s

c

m B x Nncell
N m c

ε∗

∗

,− − .  

• The first icell  is contained in tabu_list  and this icell  is rejected. The 
probability that this candidate icell  is rejected is the same <<? 

DB: This is wrong. I want to say that if this icell is rejected, then all the ncell  sample 
cells will be automatically rejected too. This is because of the routine candidate2.  Even 
though some of them may not contained in tabu_list.  In this paragraph there is nothing to 
do with the probability yet, the probability will be calculated below this. 
>> as that for any other of ncell  sample cells to be rejected. Then the algorithm repeats 
the function call of candidate2. A second candidate icell  is returned and this time 
icell c∗= . At least one of the samples from this icell  is contained in ( )f fB x ε∗, . Note 
that when the first icell  is rejected, it doesn’t mean that the other 1ncell −  cells are also 
contained in tabu_list . The following three steps show how to calculate the probability 
for this event.  
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 Step 1.  Obtain at least one cell from tabu_list  when randomly select ncell  cells. Let  
             1p   = P (at least one cell is contained in tabu_list )  
                    = 1 P− (none is contained in tabu_list ). 
 Thus  

                

 

1 1
c T

c

N L
ncell

N
ncell

p

′ − 
 
 
 
 
 
 

= − .  <<subscript>> 

Step 2. Reject the first icell  returned from candidate2 since it is contained in tabu_list. 
Let nl  be the number of cells (from ncell  cells) which is contained in tabu_list  
(1 nl ncell≤ ≤ ) and C  be the set of those nl  cells. Let bf  denote the best value of f  
among the samples fromC .  Note that bf depends on t. 
                          P (reject the first icell  returned from candidate2)  
                          1 ( ( )) ( ( ( )))b ncell nl nl

rej rejp P f P tβ−= ⋅ ⋅ .  

Step 3. Select a new neighborhood by calling candidate2 again and obtain icell c∗= . At 
least one of the samples from this icell  is contained in ( )f fB x ε∗, .  
Therefore, the probability for this event to occur is   
                       ( ( ))

1 ( )
( ( )) ( ( ( ))) (1 (1 ) )f f s

c

m B x Nb ncell nl nl ncell
rej rej N m c

p P f P t εβ
∗

∗

,−⋅ ⋅ ⋅ ⋅ − − .  

• The process might continue with k  ( 2k ≥ ) rejections of cells from tabu_list  
before obtaining c∗ . Let inl  be the number of cells (from ncell  cells) which are 
contained in tabu_list  (1 inl ncell≤ ≤ ) at the i th neighborhood selection (by 
calling candidate2). iC  is a set of those inl  cells. b

if  = the best value of f  among 
the samples from iC . The probability of rejecting k  ( 2k ≥ ) cells before obtaining 
a cell that has at least one sample belonging to ( )f fB x ε∗,  is   

                   ( ( ))
1 ( )1

[( ( )) ( ( ( ))) ] (1 (1 ) )f fi i s

c

k m B xncell nl nl Nb ncell
rej i rej N m ci

p P f P t εβ
∗

∗

,−

=
⋅ ⋅ ⋅ ⋅ − −∏ .  

Therefore, we can conclude that   

            

( ( ))

( )

( ( ))
1 ( )

( ( ))
1 1

( ( ))

(1 (1 ) )

( ( )) ( ( ( ))) (1 (1 ) )

[( ( )) ( ( ( ))) ] (1 (1

f f s

c

f f s

c

f fi i

c

t
f f

m B x Nncell
N m c

m B x Nb ncell nl nl ncell
rej rej N m c

k m B xncell nl nlb ncell
rej i rej N mi

P X B x

p P f P t

… p P f P t

ε

ε

ε

ε

β

β

∗

∗

∗

∗

∗

∗

,

,−

,−
=

∈ ,

≥ − −

+ ⋅ ⋅ ⋅ ⋅ − −

+ + ⋅ ⋅ ⋅ ⋅ − −∏ ( )
) )sN

c
…∗ +

  

 
( ( ))

(1 (1 ) )
( )

sf f N

c

m B xncell
N m c

ε∗

∗

,
≥ − −  

 1
1 1

[1 [( ( )) ( ( ( ))) ]]i i

k
ncell nl nlb

rej i rej
k i

p P f P tβ
∞

−

= =

⋅ + ⋅ ⋅ .∑ ∏                       (8) 

 
Hence  

 
( ( ))

( ( )) (1 (1 ) ) 0
( )

sf f Nt
f f

c

m B xncellP X B x
N m c

ε
ε

∗
∗

∗

,
∈ , ≥ − − > .                          (9) 

 



 12

  Case II: 1 2( )f f qB x c c cε∗ ∗ ∗ ∗, ⊆ ∪ ∪L  where ( ( )) 0j f fm c B x ε∗ ∗∩ , ≠  for 1j … q= , ,  with 
2q ≥ . The following are the possible events in one iteration of the algorithm, leading to 

the desired event Xt∈ ( )f fB x ε∗, . 

• icell  is one of ( 1 )jc j … q∗ = , , .   

            (P at least one of the ncell  sample cells is jc∗ ) = 1 ( )c

c

N q q
N
−− .  

Then we found that at least one of the sN  samples from icell  is contained in ( )f fB x ε∗, . 
This event can occur with probability of at least  
                                         ( )

( )
(1 ( ) )(1 (1 ) )c k s

c k

N q m B Nq
N m c∗
−− − − .  

• The first candidate cell is contained in tabu_list . Reject this cell and get a second 
candidate cell. This time we obtain one of ( 1 )jc j … q∗ = , ,  and at least one of the 

samples from this cell is contained in ( )f fB x ε∗, . The probability for this event 

is ( )
1 ( )

( ( )) ( ( ( ))) (1 ( ) )(1 (1 ) )c k s

c k

N q m B Nb ncell nl nl q
rej rej N m c

p P f P tβ ∗

−−⋅ ⋅ ⋅ − − − .  

• For the first two times of selecting candidate cells, we obtain two cells which are 
contained in tabu_list . Both cells are rejected. The third time we find one of 

( 1 )jc j … q∗ = , ,  and at least one of the samples is contained in ( )f fB x ε∗, . The 
probability for this event is   

                2 ( )
1 ( )1

[( ( )) ( ( ( ))) ] (1 ( ) )(1 (1 ) )c ki i s

c k

N q m Bncell nl nl Nb q
rej i rej N m ci

p P f P tβ ∗

−−
=

⋅ ⋅ ⋅ − − −∏ .  

The situation might continue in this manner with more rejections of cells from tabu_list  
before obtaining jc∗ . Therefore, we can conclude that   

         

( )
( )

( )
1 ( )

2 ( )
1 ( )1

( ( ))

(1 ( ) )(1 (1 ) )

( ( )) ( ( ( ))) (1 ( ) )(1 (1 ) )

[( ( )) ( ( ( ))) ] (1 ( ) )(1 (1

c k s

c k

c k s

c k

c ki i

c k

t
f f

N q m B Nq
N m c

N q m B Nb ncell nl nl q
rej rej N m c

N q m Bncell nl nlb q
rej i rej N m ci

P X B x

p P f P t

p P f P t

ε

β

β

∗

∗

∗

∗

−

−−

−−
=

∈ ,

≥ − − −

+ ⋅ ⋅ ⋅ − − −

+ ⋅ ⋅ ⋅ − − −∏ ) )sN …+

  

 ( )(1 ( ) )(1 (1 ) )
( )

sNqc k

c k

N q m B
N m c∗

−
≥ − − −  

 1
1 1

[1 [( ( )) ( ( ( ))) ]]i i

k
ncell nl nlb

rej i rej
k i

p P f P tβ
∞

−

= =

⋅ + ⋅ ⋅ .∑ ∏    (10) 

Consequently,  

 ( )( ( )) (1 ( ) )(1 (1 ) ) 0
( )

sNt qc k
f f

c k

N q m BP X B x
N m c

ε∗
∗

−
∈ , ≥ − − − > .               (11) 

From the two cases previously explained, we can find a lower bound of the probability 
that any tx  belongs to ( )f fB x ε∗, as follows:  

 ( ( ))t
f fP X B x ε∗∈ , ≥  

1

( ( ))
(1 (1 ) ) if   ( )

( )
( )(1 ( ) )(1 (1 ) ) if   ( )
( )

s

s

f f N
f f

c

qNqc k
f f j j

c k

m B xncell B x c
N m c

N q m B B x c
N m c

ε
ε

ε

∗
∗ ∗

∗

∗ ∗
=∗

 ,
− − , ⊆




− − − − , ⊆ ∪ .


 

Define BP  to be the lower bound of ( ( ))t
f fP X B x ε∗∈ , .  
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( ( )) ( )min{ (1 (1 ) ) (1 ( ) )(1 (1 ) )}

( ) ( )
s sf f N Nqc k

B
c c k

m B x N q m BncellP
N m c N m c

ε∗

∗ ∗

, −
= − − , − − − (12) 

    
The rest of the proof of convergence in probability is the same as for Algorithm 1.  
 

4.  Another modified continuous tabu search:  TS3   

     In the previous two algorithms, TS1 and TS2, we use randomly selected 
neighborhoods. They are not necessarily near the current cell where the current x  is 
located. We now place some restriction on the movement by defining the neighborhood to 
be those around the current cell. In other words, the algorithm will move in a more 
systematic way.  

4.1. Neighborhood definition 

     As mentioned before, we partition each direction i  of the original hypercube domain 
into ip  parts. We address each part as an integer in {0 1 1}i… p, , , − . Thus each cell will be 
represented by an integer vector of dimension n . The i th component of a cell vector is 
the address of the part in direction i . The scheme is shown in Figure 1. A search domain 
of this problem is[0 1] [0 1], × , . The x -direction is partitioned into 5 parts. We label each 
part as 0 1 2 3 4, , , , . The y -direction is partitioned into 4 parts (labeled as 0 1 2 3, , , ). The cell 
named icell  is represented by an integer vector [2, 2] . The neighborhood of kx , where 

kx  is contained in icell , is defined to be all those cells surrounding icell , namely [1, 1], 
[1, 2], [1, 3], [2, 3], [3, 3], [3, 2], [3, 1], [2, 1]. In general, suppose icell  is represented by 

0 1[ ]ni i … i, , , . The neighborhood cells are those cells that can be written in the form 

0 0 1 1 1 1[ ]n ni i … iδ δ δ− −+ , + , , +  where jδ  takes a value of 1 0− , , or 1 and [�0, …, �n-1]≠ 0.  

Therefore the total number of all neighborhood cells is3 1n − .  

  
            Figure 1. Neighborhood of the current point kx  contained in icell  
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4.2. Statement of Algorithm 3 

_____________________________________________________________________ 
Algorithm 3:  TS3   
1. Set up parameters T p sL L N, , . 
2. Set iteration counter k = 0 ,  tabu_list = ∅ , and promising_list =∅ . 
3. Initialization: randomly select a cell (icell) and within this cell select a point x k .  
    Set ( )kfbest f x= , k ky x= . 
4. Repeat 
           flag =1 (search indicator for the new x). 
           While flag = 1  do 
5.              Select  Ns  points from each neighborhood cell of the current cell.  
                 Find the best among the samples (call it x% ).  
                 Replace icell  with the address of the cell containing x% . 
6.              If (icell tabu_list∈ ) and  ( f fbest≥% )  then  
                         Randomly select a new icell  which does not belong to the neighborhood of the 
                         current icell , tabu_list , or promising_list . <<Don’t sample from this 
new cell?  DB:   the above current icell  should be removed.  >> 
                 end if 
7.               If ( icell tabu_list∉ ) or ( f fbest<% ) then 
                         Put icell  in tabu_list (might appear more than once). 
                         x 1k x+ = % . 
                         flag = 0.    
                         If f fbest<%  then  
                               1ky x+ = %  (update the best solution just discovered). 
                              fbest = f% . 
                                 If y 1k promising_list+ ∉  then put 1ky +  in promising_list . 
                          else  y 1k ky+ = . 
                          Update k : k = k+1 .  
                   end if  
            end while 
     until  one of stopping criteria is satisfied. 
_____________________________________________________________________ 
 

4.3. Convergence of Algorithm 3   

     A sequence of { }ky  is nonincreasing in f values 1( ( ) ( ))k kf y f y+ ≤ . Since the tabu 
length TL  is relatively short compared to the total number of cells, after a while it will 
lose its effect on the cells in tabu_list . Line 6 in the algorithm allows any cell outside the 
neighborhood of the current cell, tabu_list , and promising_list  to be selected. With all 
these features, the probability of missing a positive measure set in the search region is 
zero. We can apply the convergence of random search from Solis and Wet [6]. 
<<inconsistency: Why just quote [6] for TS3 while doing direct proof for the other algs?  
DB: The proof is provided below. 
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We will first introduce the layer of icell. Suppose  icell  is represented by 0 1 1[ ]ni i … i −, , , . 
Let Ck be a set of all points contained in the following cells 

0 0 1 1 1 1[ ]n ni i … iδ δ δ− −+ , + , , +  where 0jδ = , ± 1,..., ± k and j = 1,2,...,n. 
Let Lk be the kth layer of the neighborhood of the current cell say icell. 
L1 = (C1 - icell)∩ Ω  
Lk = (Ck - Ck-1) ∩ Ω  where k = 2,3,... 
 
 The following events will occur. 
 
1. In an initialization stage, we obtain ( )t

f fx B x ε∗∈ , .  

( ( ))t
f fP X B x ε∗∈ ,    

              = P(c* is chosen)P(at least one of the sample points contained in Bf) 

              = 1

cN
[1- P(None of the points contained in Bf)] 

              =  ( ( ))

( )

1 (1 (1 ) )f f sm B x N
m c

cN
ε∗

∗

,− −  

2. In the initialization stage we don’t obtain c*, but  c* is  in  the neighborhood of icell.  
( ( ))t

f fP X B x ε∗∈ ,  = P(icell is in the first layer of neighborhood of c* )P(at least one    
                                                                         of the sample points contained in Bf)  
 
>> 
 

5.  Final modified continuous tabu search:  TS4  

     In this algorithm we allow more flexibility in size of neighborhood, i.e. a 
neighborhood can be enlarged or shrunk. We now introduce some new notations.  

• <<tabu>> tabu_list  = a list of ( )t tx r,  1Tk L t k− ≤ ≤ − , where k  is the 
current iteration, and rt > 0 is the size parameter.  
• ( ) { 1 }t t t

i iR x r x x x r i … n, = :| − |≤ , = , ,  << rt >> where n  is the dimension of 
the search domain Ω .  

• <<tabu>>
1

( )
T

t
i i

i t L
tabu_region R x r

−

= −
= ∪ ,     

The parameters used  in the implementation are as follow:  
• 1c > , 001ρ = . .  

• ln lnmax( )
ln 2i ii

Mu l M m
c

ρ∆ −   ∆ = − , = , =      
 , 12 m

initr /=  . <<why?>> 

• The stopping criterion is the maximum number of iterations. For example, 
we use 10000.  

_____________________________________________________________________ 
Algorithm 4: TS4  
1. Set up parameters 1 max{ }init i ii

r c u lρ, , > , ∆ = − .   

2. Set iteration counter t=0, n=0.  << n  k since n =dim(x)>> 
3. Randomly select a point  x 0 .   <<use superscript t>> 
4. rt = r 0 0 0( )init fbest f x y x, = , = . <<use superscript t>> 
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5. Set tabu_list = ∅ . 
6. Repeat      
           flag =1. 
           While  flag = 1 do 
                    Call candidate3(xt, rt, Ns, y, v).  
                    If  v < fbest then  
                             n=n+1, yn= y, flag = 0. 
                    else 
                            If y tabu_region∉  then  
                                    Enlarge the region 1t tr cr+ = . 
                                    If  rt+1>� then 1tr ρ+ = . 
<<� should be related to �, otherwise there might be a serious problem here, e.g. when 
� > � >> 
                                    Put  y and rt+1 in tabu_list .  
                           else 
                                    Shrink the region 1t tr r c+ = / . 
                                    If  r 1t ρ+ <  then 1t

initr r+ = . 
<<� should be related to rinit, otherwise there might be a serious problem here, e.g. when 
� > rinit >> 
                                    y 1t y+ = .  
<<This seems logically confusing and probably incorrect as well. yn= y was used earlier! I 
don’t see why you need two iteration counters t and n.>> 
                           end if 
                   end if 
                   x 1t y+ = . 
                   Update t = t +1. 
          end while 
      until one of stopping criteria is satisfied. 
 
_____________________________________________________________________ 
Subroutine candidate3(z, r, M, y, v) 
Input:  z, r, M 
Output:  y, v 
1. Randomly select M points from { x : |z 1 }i ix r i … n− |≤ , = , , . 
2. Choose the minimum among the M points and set it as y. 
3. Set v = f(y). 
4. Return y, v. 
_____________________________________________________________________ 
 
     Since the sampled domain will be shrunk or enlarged, the probability of missing some 
nonempty set will be zero. The convergence proof can be shown similarly. First we need 
to approximate some probabilities.  

• In the case of ( ) ( ) ( )t t
f f f fB x R x r B xε ε∗ ∗, ∩ , = , , the probability of 

selecting a point from ( )t tR x r,  and obtaining a point in ( )f fB x ε∗,  can be 
approximated as follows:  
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( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ( ))
f f f f f f

t t t

m B x m B x m B x
m m R x r m R x

ε ε ε
ρ

∗ ∗ ∗, , ,
≤ ≤

Ω , ,
. <<why?>> 

The probability that we will obtain a neighborhood ( )t tR x r,  in which 
( ) ( )t t

f fB x R x rε∗, ∩ , ≠ ∅  is approximated next. Recall that we defined 

( ( ))
( )

f fm B x
m

ε
η

∗,
=

Ω
.  

           ( ( ) ( ) ) ( ( ) ( ) ( ))t t t t t
f f f f f fP B x R x r P B x R x r x B xε ε ε∗ ∗ ∗, ∩ , ≠ ∅ = , ∩ , ≠ ∅ | ∈ ,    

      ( ( ) ( ) ( ))t t t
f f f fP B x R x r x B xε ε∗ ∗+ , ∩ , ≠ ∅ | ∉ ,   

           <<Where is the randomness in these expressions?>> 

              
( ( ))

1
( ( ))

f f
t t

m B x
…

m R x r
ε∗,

= ⋅ +
,

  <<why?>> 

               ( ( ))
( ) 0f fm B x

m
ε η

∗ ,
Ω≥ = >  . 

• P(At least one sample is contained in ( )f fB x ε∗, ) 

                                       = 1 -  P(None of the samples are contained in ( )f fB x ε∗, ) 

                                       = 
( ( ))

1 1
( ( , ))

sN

f f
t t

m B x
m R x r

ε∗ ,
− −  
 

 

                                       ≥ 1 (1 ) sNη− −       
• The probability that the algorithm yields a point which belongs to the set 

( )f fB x ε∗,  is <<why?>> ( ( ) ( ) )t t
f fP B x R x rε∗, ∩ , ≠ ∅ ×P(At least one sample is 

contained in ( )f fB x ε∗, ) ≥ (1 (1 ) )sNη η γ− − = .    
The convergence depends on whether or not we have   
                                                ( ) ( )t t

f fR x r B x ε∗, ∩ , ≠ ∅ ,   
which may occur in any iteration. Therefore,  
           2 3 4( ( )) (1 ) (1 ) (1 ) (1 )t

f fP X B x …ε γ η γ η γ η γ η γ∗∈ , ≥ + − + − + − + − +                       
                                             <<explain?>> 
             2 3 4(1 (1 ) (1 ) (1 ) (1 ) )…γ η η η η= + − + − + − + − +   

                   0γ
η

= > . 

The rest is similar to Theorem 2.1. We also can show that γ η
η
≥  as in the next 

proposition.  
     Proposition 5.1 Let { }tx and {yt}be generated by Algorithm 3. Then 
          ( ( ))t

f fP Y B x ε∗∈ , ≥ ( ( ))t
f fP X B x ε∗∈ , ≥�                         (13) 

Proof. Obviously, we only need to show 

                                      1 (1 ) sNγ η η
η
= − − ≥ . 

We use induction on sN .   
1 1 (1 )sN η η= ; − − = . 

2 22 1 (1 ) 2 (2 )sN η η η η η η= ; − − = − = − ≥ . 
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Suppose 1 (1 ) sNη η− − ≥  . 
Consider 11 (1 ) 1 (1 ) (1 )s sN Nη η η+− − = − − −   

1 (1 ) (1 )s sN Nη η η= − − + −    
(1 ) (1 (1 ) )s sN Nη η η η η η≥ + − = + − ≥ .  <<delete 2nd to the last>> 

 
 
 
   <<By now, our algs have been presented and analyzed. This is a good place to offer a 
discussion on differences between ours and existing continuous TS’s. Point out our 
contribution.>> 
 

6. Experimental results on tabu search  

     A number of standard test functions are chosen to show the effectiveness of our tabu 
search algorithms. Their optimal objective function values are available either through 
existing publications or by other reliable global optimization algorithms. The error in f* 
and the number of function evaluations (nfeval) are the averaged values taken over 100 
runs. When algorithms 2 and 3 >are implemented, ncell  is set to be 2 for 1-dimensional 
problem, 3 for 2-dimensional problem, and 4 for those problems with dimensions higher 
than 2. Tabu length TL  is assigned to be 10 for every run and promising length PL  of 3 is 
used if applicable. The number of samples in each cell ( )sN  is set to be one for (TS1, 
TS2, TS3) <<What about TS4?>>. The stopping condition is the predetermined number 
of maximum iterations: 400 for n = 1, 800 for n = 2, and 1200 for the dimensions higher 
than 2.  
     Table 1 shows the average error and the number of function evaluations of three tabu 
search algorithms TS1, TS2, and TS3 with the same initial cell ( )icell . TS3 performs best 
among them.  
     Table 2 shows the average error of f and number of function evaluations using 
algorithm 4 (TS4) and algorithm 3 (TS3) compared with the pure random search (PRS).  
     <<Comment on the missing entries in the tables.>> 
     From the experimental results we can draw the following conclusions.  

1. All algorithms perform very well with problems of dimension one. For 
higher dimensional problems, much depends on the complexity of problem and 
the size of search domain.  
2. All algorithms have difficulty when the search domain is large. Problems 
18, 22, 27, 29, 35 have domains [ 100 100] [ 100 100]− , × − ,  and all algorithms did 
not perform well.  
3. Algorithm 3 (TS3) and algorithm 4 (TS4) succeeded in more problems 
than the others. However, we must sacrifice the number of function evaluations. 
<<What if you let TS1, TS2, and PRS run longer, say reaching a compatible #(f)? 
Are TS3 and TS4 still better?>> 
4. Algorithm 4 performs best, but with higher numbers of function 
evaluations. The reason could be that it allows the changes in the size of 
neighborhood. <<What if you let TS1, TS2, TS3, and PRS run longer, say 
reaching a compatible #(f)? Is TS4 still better?>> 
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7. Conclusion 
 
     Different types of neighborhoods have a direct impact on the performance of TS. The 
size of the neighborhood also has an effect on the convergence speed. The larger the 
neighborhood the faster the search domain is covered. However, we will need a larger 
sample size. We have tried several ways of defining neighborhoods. The results show that 
tabu search algorithm has advantage over pure random search if the design of 
neighborhood is efficient. However, as we try to reduce the search space by using tabu 
list or tabu region it may result in wasting the function evaluations without improving the 
best objective function value. The TS algorithms we implemented are based on the 
convergence of random search. The information about the gradient for guiding the moves 
has not been used.  
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          Table 1. Average error and average number of function evaluations for 
algorithms  

                                    TS1, TS2, and TS3 with the same initial point    

 
 TS1 TS2  TS3 
#  dim ave error   nfeval   ave error   nfeval ave error   nfeval    
1  1 1.00E-04  403  1.00E-05  1118  1.26E-04  460   
2  1 1.10E-04  416  3.00E-05  1157  8.53E-05  393   
3  1 1.15E-03  338  7.70E-04  783  1.51E-03  421   
4  1 4.65E-04  380  5.30E-05  989  8.01E-04  393   
5  1 5.56E-03  374  2.18E-03  781  5.56E-03  374   
6  2 5.59E-02  424  1.55E-02  549  1.42E-03  5988   
7  2 7.23E-02  534  9.01E-02  759  1.73E-03  6714   
8  2 4.85E-02  386  1.57E-02  887  1.23E-03  8128   
9  2 1.62E-02  301  6.27E-03  905  1.39E-04  6761   
10  2 1.93E-01  254  1.20E-01  595  2.12E-03  6525   
11  2 1.75E-01  308  1.75E-01  308  9.77E-03  5792   
12  2 4.85E-01  548  1.71E-01  1445  3.79E-02  7227   
13  2 1.48E-02  380  2.95E-03  1444  1.94E-04  5263   
14  2 9.33E-02  381  4.19E-02  1198  7.26E-03  5260   
15  2 7.16E-01  371  2.43E-01  861  1.04E-02  6197   
16  2 7.10E-02  558  3.11E-02  562  3.31E-03  6755   
17  2 8.26E-02  505  6.62E-02  909  9.87E-03  10071   
18  2 2.89E+00 428  1.81E+00  882  8.35E-01  5361   
19  2 6.36E-02  478  3.04E-02  896  7.13E-04  8078   
20  2 2.18E-02  487  1.88E-02  694  9.93E-04  4410   
21  2 6.00E-01  355  5.72E-01  764  5.47E-01  6397   
22  2 9.99E-01  538  1.53E-01  399  1.53E-01  399   
23  2 -  -  6.88E-01  159  3.85E-01  4774   
24  2 -  -  6.02E-01  310  1.58E-01  5913   
25  2 -  -  -  -  3.73E-02  28329   
26  2 -  -  8.54E-01  378  2.55E-01  4873   
27  2 -  -  9.64E-01  147  5.82E-01  7310   
28  3 3.80E-02  6161  2.55E-01  605  3.80E-02  6162   
29  3 -  -  -  -  8.94E-01  45587   
30  3 6.53E-01  328  2.89E-01  650  1.75E-03  13782   
31  3 9.84E-03  394  9.41E-03  747  1.23E-04  8512   
32  4 -  -  -  -  8.11E-01  44492   
33  5 4.67E-01  491  4.63E-01  317  1.83E-01  3790   
34  6 4.79E-04  375  3.58E-04  1380  1.71E-06  102156  
35  9 -  -  -  -  -  -   
36  9 1.32E+00 213  9.11E-01  409  2.30E-03  2194543 
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                      Table 2. Average error of f  and number of function evaluations  

                                  using TS3, TS4,  and  pure random search (PRS) 
 

  PRS   TS4 TS3 
#  dim error   nfeval  error   nfeval  error   nfeval    
1  1 8.02E-08  535  1.40E-07 5167  1.26E-04  460   
2  1 6.65E-05  929  8.70E-07 1957  8.53E-05  393   
3  1 3.71E-05  133  7.28E-05 1151  1.51E-03  421   
4  1 2.42E-05  2401  6.09E-05 4957  8.01E-04  393   
5  1 1.91E-05  19174  1.26E-05 8083  5.56E-03  374   
6  2 6.72E-04  51189  7.49E-04 1531  1.42E-03  5988   
7  2 3.53E-03  24359  2.17E-03 19603  1.73E-03  6714   
8  2 5.89E-04  51189  1.70E-07 27711  1.23E-03  8128   
9  2 3.76E-04  28294  3.04E-05 25759  1.39E-04  6761   
10  2 3.78E-03  49686  1.89E-06 31489  2.12E-03  6525   
11  2 5.34E-03  51189  9.33E-03 3829  9.77E-03  5792   
12  2 1.19E-01  28691  4.34E-02 1923  3.79E-02  7227   
13  2 7.47E-05  28204  2.13E-04 2539  1.94E-04  5263   
14  2 3.60E-03  51189  7.40E-04 24795  7.26E-03  5260   
15  2 5.62E-03  16927  2.20E-07 454305  1.04E-02  6197   
16  2 9.20E-04  49174  6.86E-04 3433  3.31E-03  6755   
17  2 9.72E-03  57563  9.85E-03 4577  9.87E-03  10071   
18  2 9.54E-01  28294  7.23E-02 127881  8.35E-01  5361   
19  2 2.59E-03  39616  6.10E-07 170613  7.13E-04  8078   
20  2 1.52E-05  8069  5.78E-04 6995  9.93E-04  4410   
21  2 5.46E-01  51919  5.49E-01 5141  5.47E-01  6397   
22  2 6.76E-01  9154  3.55E-01 17703  1.53E-01  399   
23  2 6.35E-01  24214  2.00E-07 138017  3.85E-01  4774   
24  2 3.26E-01  51189  2.30E-07 113371  1.58E-01  5913   
25  2 5.30E-01  28691  8.65E-02 1817  3.73E-02  28329   
26  2 7.74E-02  16590  1.30E-07 208071  2.55E-01  4873   
27  2 1.31E+00  28691  4.79E-01 14319  5.82E-01  7310   
28  3 4.38E-02  18027  5.39E-04 116801  3.80E-02  6162   
29  3 4.38E+00  1812  3.25E-03 318659  8.94E-01  45587   
30  3 3.13E-02  21692  6.00E-08 105897  1.75E-03  13782   
31  3 4.44E-05  24162  1.66E-06 246647  1.23E-04  8512   
32  4 7.60E+01  14730  1.50E-03 359107  8.11E-01  44492   
33  5 3.00E-01  67091  4.00E-01 2315  1.83E-01  3790   
34  6 9.18E-05  23848  1.00E-08 38523  1.71E-06  102156  
35  9 -  -  5.79E+01 233987  -  -   
36  9 4.79E-01  45064  2.45E-05 1110731 2.30E-03  2194543 
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8. Testing functions  

1.                10( ) 5 0 sin( ) sin( ) log( ) 0 84
3
xf x x x x= . + + + − . ;  

         search domain: 2 7 7 5x. < < . ; ( ) 0 39869259f x∗ = . .  

2.                  2( ) 2 0 sin( ) sin( )
3
xf x x= . + + ;  

          search domain: 3 1 20 4x. < < . ; ( ) 0 0940388f x∗ = . .  

3.                  
( ) 6 0 sin(2 1) sin(3 2) sin(4 3) sin(5 4)
sin(6 5)

f x x x x x
x

= . + + + + + + + +
+ + ;

 <<same 

line>> 
         search domain: 10 10x− < < ; ( ) 1 0899717f x∗ = . .  

4.                 2( ) 1 0 ( sin( )) exp( )f x x x x= . + + − ;  
                      search domain: 10 10x− < < ; ( ) 0 17576058f x∗ = . .  
5.                 2 3( ) 0 02(12 3 3 5 7 2 )(1 cos(4 ))(1 0 8sin(3 ))f x x x x x xπ π= . + − . + . + + . ;  

         search domain: 1 1x− < < ; ( ) 0679996f x∗ = −. .  
6. Rastrigin function  
                       2 2

1 2 1 2( ) 2 0 3cos(3 ) 0 4cos(4 ) 0 7f x x x x xπ π= + − . − . + . ;  
         search domain: 1 1 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

7. Hump function  

                         
6

2 4 2 21
1 1 1 2 2 2( ) 1 03163 4 0 2 1 4 0(1 0 )

3
xf x x x x x x x= . + . − . + + − . . − ;  

         search domain: 5 5 1 2jx j− < < , = , ;   

                    ( 0898 7126) ( 0898 7126)x∗ = . − . , −. . ; ( ) 0f x∗ = .  
8.                 2 2

1 2 1 2( ) 1 0 0 2 0 3cos(3 )cos(4 ) 0 3f x x x x xπ π= . + . − . + . ;  
         search domain: 1 1 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

9.                 2 2
1 2 1 2( ) 1 0 2 0 0 3cos(3 4 ) 0 3f x x x x xπ π= . + . − . + + . ;  

         search domain: 1 1 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

10.   
20

2
1 2 2

1
( ) ( )i i i

i
f x x x b x c a

=

= + + − ;∑  where  

        
(4 284 4 149 3 877 0 533 2 211 2 389 2 145 3 231 1 998 1 379

2 106 1 428 1 011 2 179 2 858 1 388 1 651 1 593 1 046 2 152)
a = . , . , . , . , . , . , . , . , . , . ,
. , . , . , . , . , . , . , . , . , .

  

       
( 286 973 384 276 973 543 957 948 543 797 936 889 006

828 399 617 939 784 072 889)
b = . ,. , . , . , . , . , . , . , . , . , . , . , . ,
. , . ,. , . ,. , . , .

  

       
( 645 585 310 058 455 779 259 202 028 099 142 296 175

180 842 039 103 620 158 704)
c = . ,. , . , . , . , . , . , . , . , . , . , . , . ,
. ,. , . , . , . ,. , .

      

          search domain: 10 10 1 2jx j− < < , = , ;  
         1 local minimum (2 35 319) 20 9805f . , −. = . ;  
         1 global minimum: ( 864 1 23)x∗ = . , . ; ( ) 16 0817f x∗ = . .  
11.            2 2

1 2 1 2( ) cos(18 0 ) cos(18 0 ) 3 0f x x x x x= + − . − . + . ;  
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      search domain: 1 1 1 2jx j− < < , = , ; ( ) 1 0f x∗ = . .  

12.            
2 22

1 1

( ) cos( ) 2 0
200

i i

i i

x xf x
i= =

= − + . ;∑ ∏  

       search domain: 100 100 1 2jx j− < < , = , ; ( ) 1 0f x∗ = . .  

13.             2 2
1 2( ) ( 2) ( 2)f x x x= − + − ;  

       search domain: 5 5 1 2jx j− < < , = , ; ( ) 0 0f x∗ = . .  

14.             2 2 2 2
1 2 1 2( ) 1 0 sin ( ) sin ( ) 0 1exp( )f x x x x x= . + + − . − − ;  

       search domain: 10 10 1 2jx j− < < , = , ; ( ) 0 9f x∗ = . .  

15.             2 2 2 2
2 1 2 1( ) 100 0( ) (6 4( 0 5) 0 6)f x x x x x= . − + . − . − − . ;  

       search domain: 5 5 1 2jx j− < < , = , ; ( ) 0f x∗ = .  
16.   De Jong function  
                     2 2 2

1 2 1( ) 100 0( ) (1 0 )f x x x x= . − + . − ;  
       search domain: 2 048 2 048 1 2jx j− . < < . , = , ; (1 1)x∗ = , ; ( ) 0f x∗ = .  

17.   Schaffer function F6  

                      
2 2 2

1 2
2 2 2
1 2

sin ( ) 0 5
( ) 0 5

(1 0 001( ))
x x

f x
x x
+ − .

= . + ;
. + . +

 

       search domain: 100 100 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  
18.   Schaffer function F7  
                       2 2 0 25 2 2 2 0 1

1 2 1 2( ) ( ) [1 0 sin (50 0( ) )]f x x x x x. .= + . + . + ;  
         search domain: 100 100 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

19.  Branin RCOS  

                      2 2
2 1 1 12

5 5 1( ) ( 6) 10(1 )cos( ) 10
4 8

f x x x x x
π π π

= − + − + − + ;  

        search domain: 1 25 10 0 15x x− < < , < < ; no local minimum;  
       3 global minima: ( 12 275) ( 2 275) (9 42478 2 475)x π π∗ = − , . , , . , . , . ; 
      ( ) 0 397887f x∗ = . .  

20.  The six-hump camel back function  

                      
4

2 2 2 21
1 1 1 2 2 2( ) (4 0 2 1 ) ( 4 0 4 0 )

3 0
xf x x x x x x x= . − . + + + − . + . ;
.

 

       search domain: 1 23 3 2 2x x− < < ,− < < ;  
                  ( 0 0898 0 7126) (0 0898 0 7126)x∗ = − . , . , . , − . ; ( ) 1 0316f x∗ = − . .  
21.  Shubert  

                  
5 5

1 2
1 1

( ) [ cos(( 1) )][ cos(( 1) )]
j j

f x j j x j j j x j
= =

= + + + + ;∑ ∑  

search domain: 10 10 1 2jx j− < < , = , ; 760 local minima; 18 global minima:                   

               ( ) 186 7309f x∗ = − . .  
22.   Easom  
                2 2

1 2 1 2( ) cos( )cos( ) exp( (( ) ( ) ))f x x x x xπ π= − − − + − ;  
  search domain: 100 100 1 2jx j− < < , = , ; several local minima (exact  number   
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  unspecified in usual literature); 1 global minimum: ( )x π π∗ = , ; ( ) 1f x∗ = − .  
23.   Bohachevsky function #1  
                       2 2

1 2 1 2( ) 2 0 0 3cos(3 0 ) 0 4cos(4 0 ) 0 7f x x x x xπ π= + . − . . − . . + . ;  
        search domain: 50 50 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

24.   Bohachevsky function #2  
                  2 2

1 2 1 2( ) 2 0 0 3cos(3 0 )cos(4 0 ) 0 3f x x x x xπ π= + . − . . . + . ;  
    search domain: 50 50 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

25.   Bohachevsky function #3  
                  2 2

1 2 1 2( ) 2 0 0 3cos(3 0 ) cos(4 0 ) 0 3f x x x x xπ π= + . − . . + . + . ;  
    search domain: 50 50 1 2jx j− < < , = , ; (0 0)x∗ = , ; ( ) 0f x∗ = .  

26.  Goldstein and Price  

                    
2 2 2

1 2 1 1 2 1 2 2
2 2 2

1 2 1 1 2 1 2 2

( ) [1 ( 1) (19 14 13 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

f x x x x x x x x x

x x x x x x x x

= + + + − + − + +

⋅ + − − + − − + ;
 

      search domain: 2 2 1 2jx j− < < , = , ; 4 local minima;  

      1 global minimum: ( 1 0)x∗ = − , ; ( ) 3f x∗ = .  
27.       2 2

1 2 1 2( ) 2 0 3cos(3 ) 0 4cos(4 ) 0 7f x x x x xπ π= + − . − . + . ;  
search domain: 100 100 1 2jx j− < < , = , ; several local minima (exact number 

unspecified in usual literature); 1 global minimum: (0 0)x∗ = , ; ( ) 0f x∗ = .  

28.      
3

1
( ) min( )i i

i
f x d x

=

= | , |;∑  where 

            (8 0 4 2)Tb = ,− . , , 
1 6 1
0 4 3
1 2 1

A
− − 

 = − 
 − − 

, d Ax b= + .   

            search domain: 1 1 1 2 3jx j− < < , = , , ; (0 0 1 0)x∗ = , . , ; ( ) 0f x∗ = .  

29.   Let 1 (1 3 5)Tb = , , , 2 (2 1 3)Tb = , ,   

                                

1
2

1
1 2

1
2

1 0
1 0

0 1
A

− 
 = − 
 − 

, 

1
2

2 1
2 3 5

1 1
4 3

1 0
1

1
A

− 
 = − − 
 − − 

,  

1 1u A x b= − , 2 2v A x b= −  . 

         
3

1

( ) max( )i i
i

f x u v
=

= | , |;∑  

        search domain: 100 100 1 2 3jx j− < < , = , , ;  

       (3 7379 4 5878 5 4657)x∗ = . , . , . ; ( ) 0f x∗ = .  
30.  De Jong (3 variables)  
       2 2 2

1 2 3( )f x x x x= + + ;  
       search domain: 5 12 5 12 1 2 3jx j− . < < . , = , , ; 1 single minimum (global):  

      (0 0 0)x∗ = , , ; ( ) 0f x∗ = .  
31. Hartmann  
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4 3

2

1 1

( ) exp[ ( ) ]i ij j ij
i j

f x c a x p
= =

= − − − ;∑ ∑  

search domain: 0 1 1 2 3jx j< < , = , , ; 4 local minima:   
           1 2 3( )i i i ip p p p= , , = i th local minimum approximation; ( )i if p c≅ − ;  
           1 global minimum: (0 11 0 555 0 855)x∗ = . , . , . ; ( ) 3 86278f x∗ = − . .  
 

 i   aij    ci    Pij   
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673  
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470  
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547  
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828  

 
32. The Colville function  

       
2 2 2 2 2 2

2 1 1 4 3 3

2 2
2 4 2 4

( ) 100 0( ) (1 ) 90( ) (1 )
10 1( 1) ( 1) 19 8( 1)( 1)

f x x x x x x x
x x x x
= . − + − + − + −

+ . − + − + . − − ;
 

      search domain: 10 10 1 4jx j …− < < , = , , ; (1 1 1 1)x∗ = , , , ; ( ) 0f x∗ = .  
33. De Jong function F3  

             
5

1

( )
j

f x jx
=

= ; ∑    

search domain: 5 12 5 12 1 5jx j …− . < < . , = , , ;   

           ( ) 30f x∗ = −  for all 5 12 5 0jx− . ≤ ≤ − . .  
34. Griewank’s function  

       
66

2

1 1

cos( )1 1( )
600 720

j
j

j j

x
f x x

j= =

= − + ;∑ ∏  

      search domain: 1 1 1 6jx j …− < < , = , , ; (0 0 0 0 0 0)x∗ = , , , , , ; ( ) 0f x∗ = .  
35. Rosenbrock’s function (9 variables)  

              
8

2 2 2
1

1
( ) 100( ) (1 )i i i

i
f x x x x+

=

= − + − ;∑  

search domain: 100 100 1 9jx j …− < < , = , , ; (1 1 1)x∗ = , ,..., ; ( ) 0f x∗ = .  
36. Zakharov’s function (9 variables)  

              
9 9 9

2 2 4

1 1 1
( ) ( 0 5 ) ( 0 5 )i i i

i i i
f x x ix ix

= = =

= + . + . ;∑ ∑ ∑  

search domain: 1 1 1 9jx j …− < < , = , , ; (0 0)x …∗ = , , ; ( ) 0f x∗ = .  
 


