

รายงานวิจัยฉบับสมบูรณ์

โครงการ ศึกษาอิทธิพลของอายุ เพศและการออกกำลังกาย ต่อการ
แสดงออกของ parvalbumin ในหัวใจหนู

โดย ผศ.ดร. อุราพร วงศ์วัชรานนท์ และ คณะฯ

วันที่ 30 พฤษภาคม พ.ศ. 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการ ศึกษาอิทธิพลของอายุ เพศ และการออกกำลังกาย ต่อการแสดงออกของ parvalbumin ในหัวใจหมู

คณะผู้วิจัย

1. ผศ.ดร. อุร้าพร วงศ์วัชรานนท์	ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยสงขลานครินทร์	
2. ผศ.ดร. เอกสพธี ภูมารสิทธิ์	ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์
มหาวิทยาลัยสงขลานครินทร์	
3. ดร. วันดี อุดมอักษร	ภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์
มหาวิทยาลัยสงขลานครินทร์	
4. ผศ.นพ.พส.สุรพงษ์ วงศ์วัชรานนท์	ภาควิชาศัลยศาสตร์ คณะทันตแพทยศาสตร์
มหาวิทยาลัยสงขลานครินทร์	
5. ศ.ดร. ประเสริฐ ไศกณ	ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยมหิดล	

สนับสนุนโดยทบทวนมหาวิทยาลัยและสำนักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย ทบทวนและสกัด ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

คณะผู้วิจัยขอบคุณ ทบวงมหาวิทยาลัยและสำนักงานกองทุนสนับสนุนการวิจัย ที่ได้ให้การสนับสนุนทุนในการทำวิจัย เรื่อง อิทธิพลของ อายุ เพศ และการออกกำลังกาย ต่อการแสดงออกของ parvalbumin ในหัวใจหนู ขอบคุณ ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ที่ให้การสนับสนุนด้านเครื่องมือและสถานที่ในการทำวิจัย และขอบคุณ สถานสัตว์ทดลองภาคใต้ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ในการจัดสถานที่สำหรับการฝึกสัตว์ทดลองในการว่าyan

คณะผู้วิจัย

บทคัดย่อ

รหัสโครงการ : MRG 4880155
ชื่อโครงการ : อิทธิพลของ อายุ เพศ และการออกกำลังกาย ต่อการแสดงออกของ parvalbumin ในหัวใจหนู
ชื่อนักวิจัย : พศ.ดร. อุราพร วงศ์วัชรานนท์ และ คณะฯ ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์
E-mail Address : uraporn.v@psu.ac.th
ระยะเวลาโครงการ : 3 ปี

เรื่อง ความสัมพันธ์ของอายุกับการแสดงออกของ parvalbumin ภายในหัวใจหนูขาวใหญ่เพศเมีย

การศึกษาในครั้งนี้ ศึกษาการเปลี่ยนแปลงของการแสดงออกของ parvalbumin (PV) ในช่วงการพัฒนาของหัวใจภายหลังคลอด ว่ามีความสัมพันธ์กับการเปลี่ยนแปลงการทำงานของหัวใจหรือไม่ โดยนำหัวใจหนูสายพันธุ์ Wistar แรกเกิด อายุ 3 เดือน (วัยเด็ก) 6 เดือน (วัยก่อนวัยหนุ่มสาว) และ 12 เดือน (วัยหนุ่มสาว) มาศึกษาโดยใช้เทคนิค immunohistochemistry และ Western blot จากการศึกษาโดยใช้ทั้ง 2 เทคนิคพบ PV ในหัวใจหนูทุกช่วงอายุตั้งแต่แรกเกิดไปจนถึง 12 เดือน แต่พบว่าการแสดงออกของ PV ในหัวใจน้อยกว่าอย่างชัดเจนเมื่อเทียบกับในกล้ามเนื้อถาย extensor digitorum longus (EDL) พับปฎิกริยาอิมมูโนของ PV ในกล้ามเนื้อหัวใจหนูแรกเกิดบรรจุอยู่ไม่เต็มภายในไซโตพลาสซึม และการแสดงออกของ PV น้อย ($60.14 \pm 9.98\%$) เมื่อเทียบกับในกลุ่มอื่นๆ ที่พับปฎิกริยาอิมมูโนของ PV มีความเข้มมากและบรรจุอยู่เต็มภายในไซโตพลาสซึมของเซลล์กล้ามเนื้อหัวใจทุกเซลล์ การแสดงออกของ PV เพิ่มขึ้นเมื่อมีอายุมากขึ้น คือ 3 เดือน ($76.90 \pm 9.75\%$) 6 เดือน ($86.60 \pm 10.69\%$) และ 12 เดือน (100%) ผลจากการศึกษาแสดงให้เห็นการแสดงออกของ PV ที่เพิ่มขึ้นตามอายุ (จากแรกเกิดถึง 12 เดือน) ซึ่งอาจจะสัมพันธ์กับการปรับให้เกิดความเหมาะสมในการคลายตัวของหัวใจตาม การเพิ่มขึ้นของการทำงานของหัวใจ ในช่วงที่ร่างกายมีการเจริญเติบโต

คำหลัก หัวใจหนูเพศเมีย parvalbumin, calcium binding protein, ความสัมพันธ์ของอายุ พัฒนาการหลังคลอด immunohistochemistry, Western blot

Abstract

Project Code : MRG 4880155

Project Title : Influences of sex aging and exercise on the expression of parvalbumin in rat hearts

Investigator : Assit. Prof. Dr. Uraporn Vongvatcharanon et al.
Department of Anatomy, Faculty of Science, Prince of Songkla University

E-mail Address: uraporn.v@psu.ac.th

Project Period : 3 years

Age-related expressions of parvalbumin in the female rat heart

Changes of parvalbumin (PV) expressions during the postnatal development of the female rat heart were investigated in order to determine if they correlated with the age-related changes of the heart function. Newborn, 3-month (young), 6-month (young adult) and 12-month (adult) female Wistar rat's heart were processed for immunohistochemistry and Western blotting assay. PV was detected, by both methods, in all age groups from newborn to 12-month old rats but was very low compared to that in EDL fibers. However, in the newborn rat heart, PV immunoreactivity did not fully fill the cytoplasm of the cardiac myocytes and the PV expression was low ($60.14 \pm 9.98\%$) compared to the adult level. In contrast with 3-month to 12-month animals, strong PV immunoreactivity was detected throughout the cytoplasm of all cardiac myocytes and the expression of PV increased with increasing age: 3-month ($76.90 \pm 9.75\%$), 6-month ($86.60 \pm 10.69\%$) and 12-month (100%). Our study indicates that an increase of PV in the female rat heart with increasing age (from newborn to adult) may be associated with maintaining proper relaxation of the cardiac myocytes that is needed to cope with an increasing workload of the heart during body growth.

Keywords: Female rat heart; Parvalbumin; Calcium-binding protein; Age-related postnatal development; Immunohistochemistry; Western blotting

บทคัดย่อ

เรื่อง อิทธิพลของการชราภาพและการวัยนำเป็นระยะเวลานาน ต่อการแสดงออกของ parvalbumin ภายในหัวใจหนูขาวใหญ่

Parvalbumin (PV) เป็นโปรตีนที่มีขนาดเล็ก พนอยู่่ภายในไซโตพลาสซึม มีความสามารถจับกับแคลเซียม และสามารถซักนำให้กับสัมภ์เนื้อหัวใจเกิดการคลายตัวได้ การศึกษาริ้งนี้เพื่อศึกษาอิทธิพลของปัจจัย การชราภาพและการออกกำลังกายต่อการแสดงออกของ PV ภายในหัวใจหนูโดยหนูสายพันธุ์ Wistar อายุ 3, 6, 12 และ 18 เดือน จะถูกแบ่งเป็น 2 กลุ่ม ได้แก่ กลุ่มที่ไม่ได้ออกกำลังกาย (S) และกลุ่มออกกำลังกาย (E) โดยกลุ่มออกกำลังกายจะถูกฝึกให้วัยนำเป็นเวลา 6 เดือน หลังจากนั้นนำหัวใจหนูทั้ง 2 กลุ่มมาศึกษาโดยใช้เทคนิค immunohistochemistry และ Western blot ผลการศึกษาพบว่า หัวใจหนูอายุ 9 และ 12 เดือน มีปฏิกริยาอิมมูโนของ PV เพิ่มมาก ในขณะที่หัวใจหนูอายุ 18 เดือน มีปฏิกริยาอิมมูโนของ PV ลดลง และหัวใจหนูกลุ่มอายุ 24 เดือน มีปฏิกริยาอิมมูโนของ PV น้อยที่สุด การแสดงออกของ PV ไม่แตกต่างกันในหัวใจหนูอายุ 9 เดือน (62.35 ± 16.33) และ 12 เดือน (67.67 ± 15.12) ในขณะที่พบการลดลงอย่างมีนัยสำคัญของการแสดงออกของ PV ในหัวใจหนูอายุ 18 เดือน (49.05 ± 11.98) และ 24 เดือน (45.67 ± 4.64) เมื่อเทียบกับหัวใจหนูอายุ 12 เดือน ($p < 0.05$) การแสดงออกของ PV ไม่แตกต่างกันในหัวใจหนูอายุ 18 และ 24 เดือน หัวใจหนูกลุ่มออกกำลังกาย อายุ 9, 12 และ 18 เดือน มี ความเข้มของปฏิกริยาอิมมูโนของ PV เพิ่มมากขึ้น และพบการแสดงออกของ PV เพิ่มมากขึ้นอย่างมีนัยสำคัญ (9 เดือน $S = 62.35 \pm 16.33$, $E = 83.20 \pm 7.41$; 12 เดือน $S = 67.67 \pm 15.12$, $E = 87.46 \pm 15.47$; $p < 0.05$; 18 เดือน $S = 49.05 \pm 11.98$, $E = 82.01 \pm 21.11$; $P < 0.01$) เมื่อเทียบกับกลุ่มที่ไม่ได้ออกกำลังกายอย่างกัน ในขณะที่กลุ่มอายุ 24 เดือน ไม่พบความแตกต่างอย่างมีนัยสำคัญของการแสดงออกของ PV ระหว่างกลุ่มออกกำลังกายและกลุ่มที่ไม่ได้ออกกำลังกาย จากการศึกษาเสนอแนะว่า การออกกำลังกายโดยการวัยนำเป็นระยะเวลานานสามารถซักนำให้การแสดงออกของ PV เพิ่มขึ้น ซึ่งข้อมูลนี้อาจนำไปอธิบายถึงการบ่งช่องของการคลายตัวของหัวใจซึ่งพบมากในผู้สูงอายุ นอกจากนี้ผลการศึกษาเสนอแนะว่า การออกกำลังกายโดยการวัยนำเป็นระยะเวลานานสามารถซักนำให้การแสดงออกของ PV เพิ่มขึ้น ซึ่งข้อมูลนี้อาจนำไปอธิบายถึงกลไกพื้นฐานของการออกกำลังกายที่การทำให้การคลายตัวของหัวใจดีขึ้น

คำหลัก วัยชรา, วัยนำ, parvalbumin, calcium binding protein, immunohistochemistry, Western blot

Abstract

Influences of aging and long-term swimming exercise on the expression of parvalbumin in rat hearts

Parvalbumin (PV), a small (12 kDa) cytoplasmic calcium binding protein, has been implicated in mediating relaxation in cardiac myocytes. The influence of aging and exercise on the expression of PV in rat heart was investigated. Male Wistar rats at each of the following ages: 3, 6, 12 and 18-months were divided into sedentary and exercise groups. The exercise group had been trained to swim for 6 months. The hearts were processed for immunohistochemistry and Western blotting. The intensity of PV immunoreactivity (PV-ir) was strong in the 9 and 12-month hearts and decreased in the 18-month hearts. The smallest amount was in the 24-month rat heart when compared to those of the 9,12 and 18 month rat hearts. The expression of PV was not significantly different between the 9-month (62.35 ± 16.33) and 12-month hearts (67.67 ± 15.12). A significant decrease of PV expression was found at 18-months (49.05 ± 11.98) and 24-months (45.67 ± 4.64) compared to that of the 12-month rat heart ($P < 0.05$). No significant difference of PV expression was observed in the 18-month and 24-month rat hearts. The intensity of PV-ir was obviously stronger in the 9-month, 12-month and 18-month exercised rat hearts than those of the sedentary rat heart whereas, in the 24-month rat heart, PV-ir was slightly stronger in the exercised rat heart than that of the sedentary rat heart. A significant increase of PV expression was identified in the exercised rat heart compared to those of the sedentary rat heart in the 9-month ($S = 62.35 \pm 16.33$, $E = 83.20 \pm 7.41$), 12-month ($S = 67.67 \pm 15.12$, $E = 87.46 \pm 15.47$) ($P < 0.05$) and 18-month samples ($S = 49.05 \pm 11.98$, $E = 82.01 \pm 21.11$) ($P < 0.01$). No significant difference of PV expression was found in the 24-month sedentary and exercised rat hearts. Our data indicate that PV expression is down regulated in rat heart during aging. This may explain the diastolic dysfunction which has been predominantly found in the elderly. In addition, our data indicate that long-term swimming exercise could induce an increase of PV expression and this may explain the fundamental mechanism of exercise on improving the aging-induced decrease in cardiac myocyte relaxation.

Keywords: aging, swimming, parvalbumin, calcium binding protein, immunohistochemistry, Western blot

Executive Summary

โรคหัวใจล้มเหลวนิดไดแอสโตรลิก (Diastolic heart failure) เป็นโรคที่มีอันตรายร้ายแรง ถึงชีวิตและยังไม่มีแนวทางในการป้องกันหรือรักษา เป็นโรคที่พบมากในผู้สูงอายุและโดยเฉพาะ เพศหญิงพบได้มากกว่าเพศชาย เนื่องจากโรคหัวใจชนิดดังกล่าวเกิดจากความบกพร่องของการ คลายตัวของหัวใจ จึงนำมาสู่ความสนใจที่จะศึกษาโปรตีน parvalbumin (PV) ซึ่งเป็นโปรตีนที่พบ อยู่ภายในกล้ามเนื้อหัวใจ และได้มีการเสนอแนะว่าจะทำหน้าที่เกี่ยวข้องกับการคลายตัวของ เชลล์กล้ามเนื้อหัวใจ ดังนั้นการเปลี่ยนแปลงปริมาณของ PV จึงน่าจะส่งผลต่อความสามารถในการ คลายตัวของหัวใจ จึงนำมาสู่ความสนใจที่จะศึกษาถึงปัจจัยต่างๆ ที่อาจจะมีผลต่อการ แสดงออกของ PV ได้แก่ เพศ อายุ และการออกกำลังกาย สำหรับปัจจัยทางด้านเพศนั้น ได้ศึกษา การแสดงออกของ PV ในหัวใจหนูเพศเมีย ตั้งแต่แรกเกิด 3 เดือน 6 เดือน และ 12 เดือน พบว่าการ แสดงของ PV เพิ่มขึ้นเมื่อมีอายุเพิ่มขึ้น ซึ่งคาดว่าจะสัมพันธ์กับการปรับให้หัวใจมีการคลายตัว ที่เหมาะสมกับการเพิ่มขึ้นของการทำงานของหัวใจ ในช่วงที่ร่างกายมีการเจริญเติบโต ส่วนปัจจัย ทางด้านอายุนั้น ได้ศึกษาการแสดงออกของ PV ในหัวใจหนูเพศผู้ตั้งแต่วัยหนุ่มสาวไปจนถึงวัยชรา (9 เดือน 12 เดือน 18 เดือน และ 24 เดือน) โดยใช้เทคนิคเดียวกันกับการศึกษาปัจจัยทางด้านเพศ พบว่า การแสดงออกของ PV ลดลงในหนูวัยชรา ซึ่งข้อมูลดังกล่าวนี้ อาจจะนำไปอธิบายถึงการ บกพร่องของการคลายตัวของหัวใจซึ่งพบมากในผู้สูงอายุ นอกจากนี้ยังได้ศึกษาถึงปัจจัยทางด้าน การออกกำลังกาย โดยเลือกศึกษาการว่ายน้ำแบบเป็นระยะเวลานานและใช้เทคนิคเดียวกันกับ การศึกษาปัจจัยทางด้านเพศและอายุ ผลจากการศึกษาพบว่าการว่ายน้ำในวัยหนุ่มสาวสามารถ กระตุ้นให้มีการเพิ่ม การแสดงออกของ PV ได้ดีกว่าการว่ายน้ำในวัยชรา ผลของการว่ายน้ำใน การทำให้การแสดงออกของ PV เพิ่มขึ้นนั้น อาจจะนำไปอธิบายถึงกลไกพื้นฐานของการออก กำลังกายในการทำให้การคลายตัวของหัวใจดีขึ้น ซึ่งผลดังกล่าวอาจนำไปใช้เป็นแนวทางใน การป้องกันและรักษาโรคหัวใจล้มเหลวนิดไดแอสโตรลิกในอนาคต

เนื้อหางานวิจัย: โครงการวิจัยเรื่อง อิทธิพลของอายุ เพศ และการออกกำลังกาย ต่อการแสดงออกของ parvalbumin ในหัวใจหนู

บทนำ

โรคหัวใจล้มเหลว (Heart failure) เป็นโรคที่มีอันตรายร้ายแรงถึงชีวิต อัตราการเสียชีวิตจากโรคหัวใจล้มเหลว อุบัติใน 5 อันดับแรกของสาเหตุการเสียชีวิตในปี 2545 ของประเทศไทยและเป็นอัตราการเสียชีวิตอันดับที่ 2 ของประชากรที่มีอายุมากกว่า 65 ปี นอกจากนี้ยังพบว่าเพศชายมีอัตราการเสียชีวิตด้วยโรคหัวใจมากกว่าเพศหญิง (สถิติสาธารณสุข, 2545) โรคหัวใจล้มเหลว แบ่งออกเป็น 2 ประเภท ได้แก่ โรคหัวใจล้มเหลวนิดซิสโตลิก (Systolic heart failure) ซึ่งจะพบได้ประมาณ 60% และสามารถรักษาโดยการใช้ยาต่าง ๆ เช่น β -blockers (Senior, 2001) อีกประเภทหนึ่งได้แก่ โรคหัวใจล้มเหลวนิดไดแอสโตลิก (Diastolic heart failure) ซึ่งจะพบได้ประมาณ 40% และพบมากในผู้สูงอายุ (Senni and Redfield, 2001; Schmidt *et al.*, 2004) ซึ่งโรคหัวใจล้มเหลวประเภทนี้ยังไม่มีวิธีการรักษา โรคหัวใจล้มเหลว ชนิดไดแอสโตลิก เกิดจากการคลายตัวของหัวใจช้ากว่าปกติ ทำให้เลือดไหลกลับเข้ามาในหัวใจได้น้อยลง มีผลทำให้การสูบฉีดเลือดจากหัวใจไปที่ปอดและไปเลี้ยงร่างกายลดลง (Lorell, 1991; Mandinov *et al.*, 2000; Zile and Brutsaert, 2002a) โดยมี 2 ปัจจัย ที่มีส่วนเกี่ยวข้องได้แก่ การเพิ่มความหนา หรือความแข็งของผนังหัวใจ และการที่กล้ามเนื้อหัวใจไม่สามารถคลายตัวได้อย่างปกติ (Aggarwal *et al.*, 2001 ; Zile and Brutsaert, 2002b)

ในระยะที่หัวใจคลายตัวนั้น แคลเซียมไอออนจะถูกดึงกลับเข้าไปใน sarcoplasmic reticulum โดยใช้ ATP-dependent calcium pumps จากการศึกษาในเนื้อเยื่อหัวใจของผู้ป่วยด้วยโรคหัวใจล้มเหลว และผู้ป่วยที่มีพยาธิสภาพของกล้ามเนื้อหัวใจ (cardiomyopathy) พบว่า การดึงแคลเซียมไอออนกลับเข้ามาเก็บใน sarcoplasmic reticulum นั้นใช้เวลานานกว่าปกติ (Morgan, 1991) จึงนำไปสู่ความสนใจที่จะศึกษาโปรตีนที่มีคุณสมบัติในการทำให้กล้ามเนื้อคลายตัวที่ชื่อ parvalbumin ซึ่งเป็นโปรตีนที่ทำหน้าที่ในการจับกับแคลเซียม (Ca^{2+} binding protein) พบบริมาณมากในกล้ามเนื้อลายชนิดหดและคลายตัวเร็ว (fast-twitch muscle fiber) โดยที่ parvalbumin จะทำหน้าที่ดึงแคลเซียมไอออน ออกมากจาก Troponin C และส่งแคลเซียมกลับเข้าสู่ sarcoplasmic reticulum ซึ่งจะมีผลทำให้กล้ามเนื้อคลายตัว ดังนั้นการคลายตัวจึงขึ้นอยู่กับอัตราการจับของแคลเซียมไอออนกับ parvalbumin และเป็นกระบวนการที่ไม่ต้องใช้พลังงาน (Berchtold *et al.*, 2000)

จากการศึกษาเมื่อไม่นานมานี้พบ parvalbumin ในหัวใจหนูเพศผู้ โดยเทคนิค immunohistochemistry และเสนอแนะว่า parvalbumin ในกล้ามเนื้อหัวใจ น่าจะทำหน้าที่เป็น

ปัจจัยในการคลายตัว (Relaxing factor) เช่นเดียวกับในกล้ามเนื้อลาย (Vongvatcharanon U. and Vongvatcharanon S., 2003) และมีการศึกษาเพิ่มเติมเพื่อยืนยันโดยใช้ทั้งเทคนิค immunohistochemistry และเทคนิค Western blot ในหัวใจหนูเพศผู้ พบการแสดงออกของ parvalbumin ในหัวใจ 2 เทคนิค (Vongvatcharanon et al., 2006) ซึ่งนำมาสู่การศึกษาถึงปัจจัยที่อาจจะส่งผลต่อการเปลี่ยนแปลงของปริมาณ parvalbumin

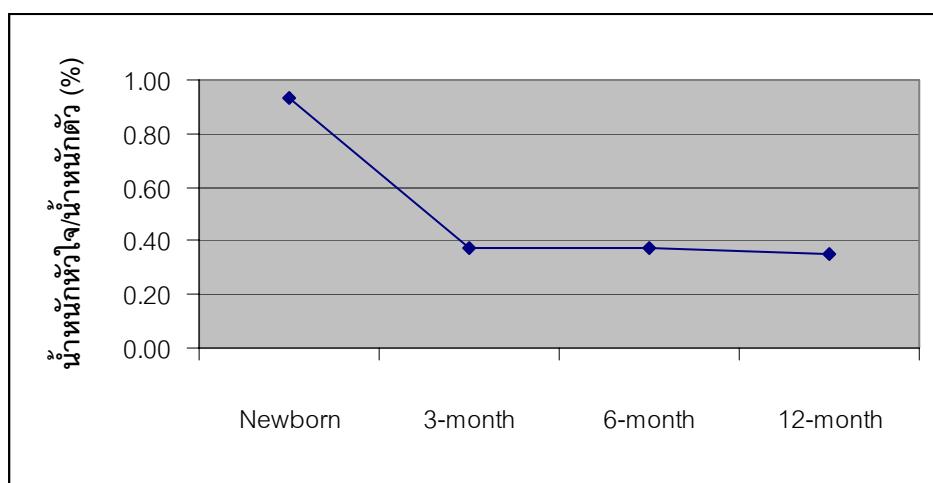
จากการศึกษาของ Cai et al, (2001) ในกล้ามเนื้อลายของหนูเพศผู้ พบว่ามีการเปลี่ยนแปลงปริมาณของ parvalbumin โดยที่ในกล้ามเนื้อลายชนิด fast-twitch ปริมาณของ parvalbumin ลดลงเป็นอย่างมาก ในหนูอายุ 2 ปี (เทียบได้กับวัยสูงอายุ) และการได้รับการฝึกให้ออกกำลังกายจะช่วยรักษาปริมาณของ parvalbumin ในหนูวัยสูงอายุไม่ให้ลดลง ในขณะที่กล้ามเนื้อลายชนิดหดและคลายตัวช้า (slow-twitch) นั้นไม่พบ parvalbumin และเมื่อหนูได้รับการฝึกให้ออกกำลังกายสามารถกระตุ้นการสร้าง parvalbumin ได้ทั้งในหนูวัยหนุ่มและวัยสูงอายุ การลดลงของ parvalbumin ภายในหัวใจ อาจนำไปสู่การอธิบายสาเหตุของการหัวใจล้มเหลวแบบ diastolic dysfunction ซึ่งพบได้บ่อยในผู้สูงอายุ นอกจากนี้การกระตุ้นการสร้าง parvalbumin โดยการฝึกให้ออกกำลังกาย อาจจะมีส่วนสำคัญในการใช้เป็นแนวทางในการป้องกันหรือรักษาโรคหัวใจล้มเหลวประเภทนี้ ดังนั้นต่อกล่าวไปในครั้งนี้ เพื่อศึกษาถึงปัจจัยต่าง ๆ ได้แก่ อายุ เพศ และการออกกำลังกาย ซึ่งอาจจะมีผลในการเปลี่ยนแปลงของปริมาณของ parvalbumin ในหัวใจของหนู

วัตถุประสงค์ของโครงการ

- ศึกษาอิทธิพลของเพศต่อการแสดงออกของ parvalbumin ในหัวใจหนู
- ศึกษาอิทธิพลของอายุต่อการแสดงออกของ parvalbumin ในหัวใจหนู
- ศึกษาอิทธิพลของการออกกำลังกายต่อการแสดงออกของ parvalbumin ในหัวใจหนู

1. การศึกษาอิทธิพลของเพศต่อการแสดงออกของ parvalbumin

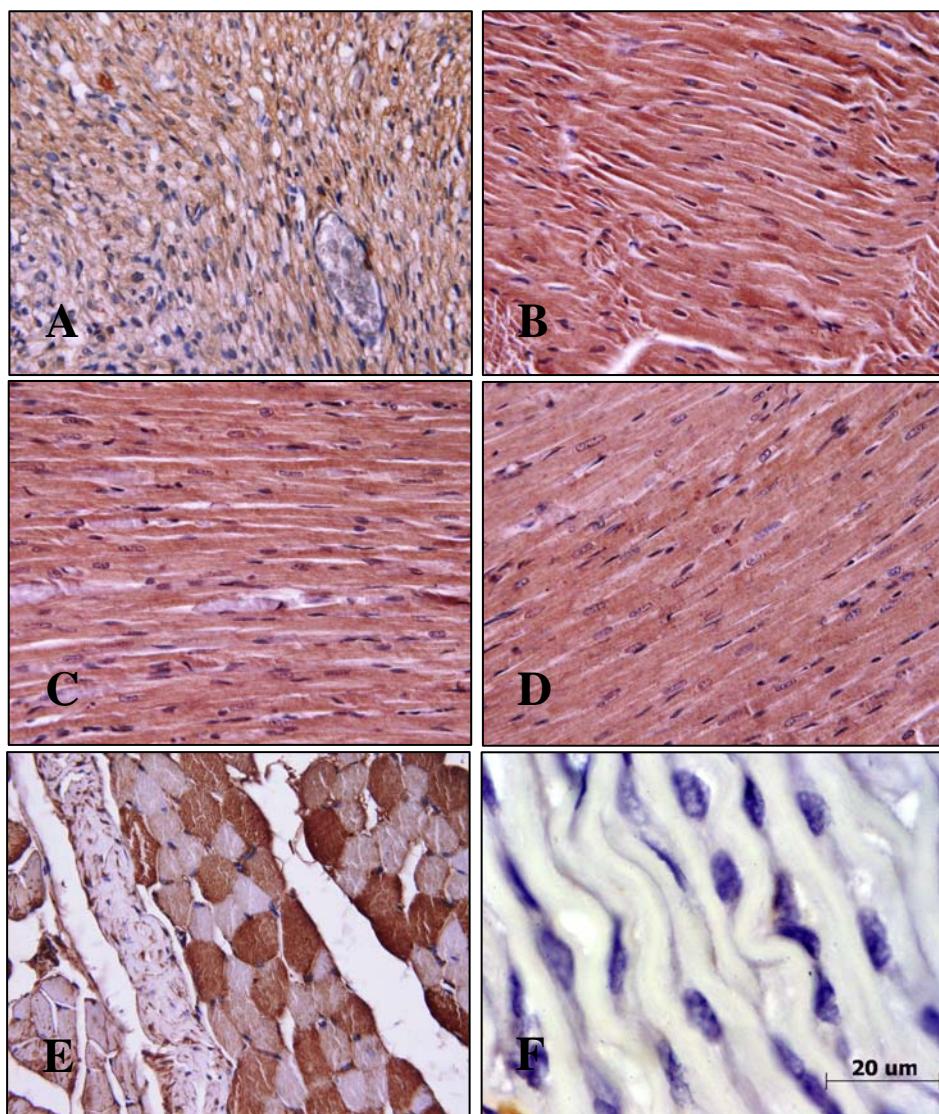
วิธีการทดลอง


- นำหนู Wistar เพศเมีย อายุ แรกเกิด 3 เดือน 6 เดือน และ 12 เดือน กลุ่มอายุละ 10 ตัว มาสลบโดยนีดคั่ว Nembutal (sodium pentobarbital 55 mg/kg) เข้าทางช่องท้อง
- ชั้นน้ำหนักหนูและผ่าตัดหัวใจออกมาน้ำหนักหัวใจ จากนั้นนำหัวใจเฉพาะส่วนที่เป็น ventricle แบ่งเป็น 2 ส่วน
- ส่วนที่ 1 นำไปสกัดโปรตีน แยกโปรตีนด้วยกระแทกไฟฟ้า และตรวจหาแอนบีโพรตีน parvalbumin โดยใช้เทคนิค Western blot

- ส่วนที่ 2 นำไปผ่านกระบวนการ Tissue processing for wax embedding แล้วตัดชิ้นเนื้อให้เป็นแผ่นบางๆ และนำไปข้อมเพื่อชีสสัง parvalbumin โดยใช้เทคนิค immunohistochemistry
- นำน้ำหนักหัวใจและน้ำหนักตัวมาหาสัดส่วนของน้ำหนักหัวใจต่อน้ำหนักตัว แล้วนำข้อมูลมาเขียนกราฟ เพื่อเป็นข้อมูลพื้นฐานในการใช้ประกอบการอธิบายการทำงานของหัวใจ
- ผ่าตัดน้ำก้ามเนื้อ extensor digitorum longus (EDL) ซึ่งเป็นก้ามเนื้อที่มีรายงานว่าพบ โปรตีน parvalbumin ในปริมาณมาก (Heizmann, 1982) ออกมามโดยใช้เป็น positive control
- ผ่าตัดน้ำหลอดเลือดขนาดใหญ่ เช่น หลอดเลือด aorta ซึ่งเป็นเนื้อเยื่อที่รายงานว่าไม่พบ โปรตีน parvalbumin (Celio และ Heizmann, 1982) ออกมามโดยใช้เป็น negative control

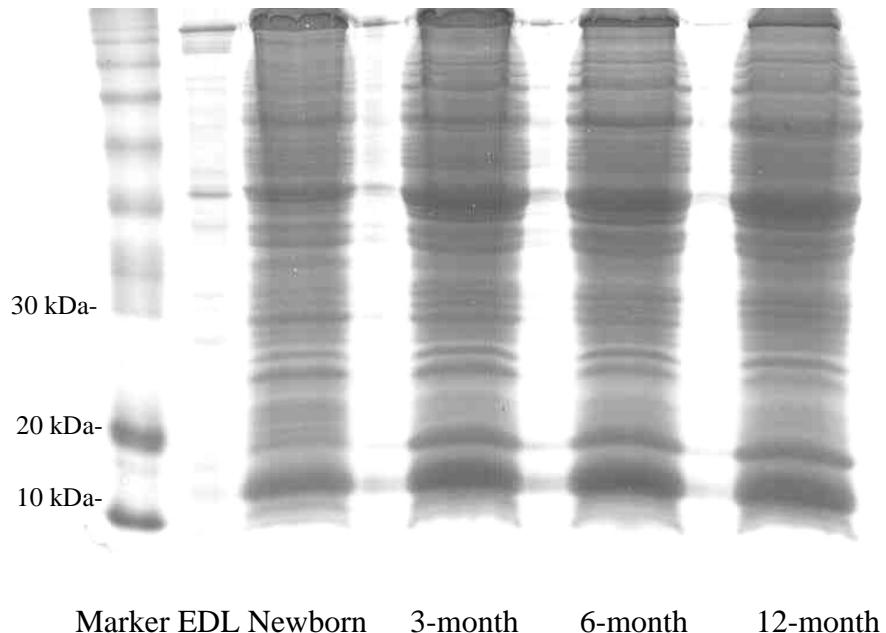
ผลการทดลอง

1.1 เปอร์เซ็นต์สัดส่วนของน้ำหนักหัวใจต่อน้ำหนักตัวของหนูเพศเมีย

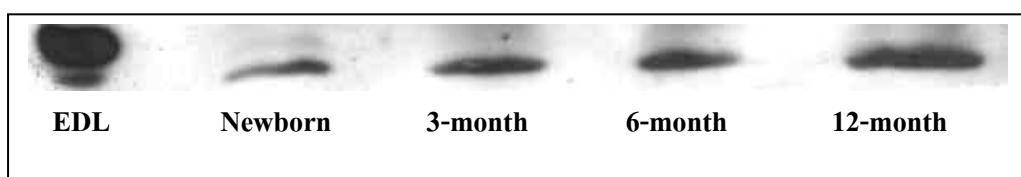

เปอร์เซ็นต์สัดส่วนของน้ำหนักหัวใจต่อน้ำหนักตัว ลดลงมากจากแรกเกิดไปจนถึงอายุ 3 เดือน หลังจากอายุ 3 เดือน ไปจนถึงอายุ 12 เดือน เปอร์เซ็นต์สัดส่วนของน้ำหนักหัวใจต่อน้ำหนักตัวใกล้เคียงกัน (รูปที่ 1)

รูปที่ 1 กราฟแสดงเปอร์เซ็นต์สัดส่วนของน้ำหนักหัวใจต่อน้ำหนักตัวของหนูเพศเมีย

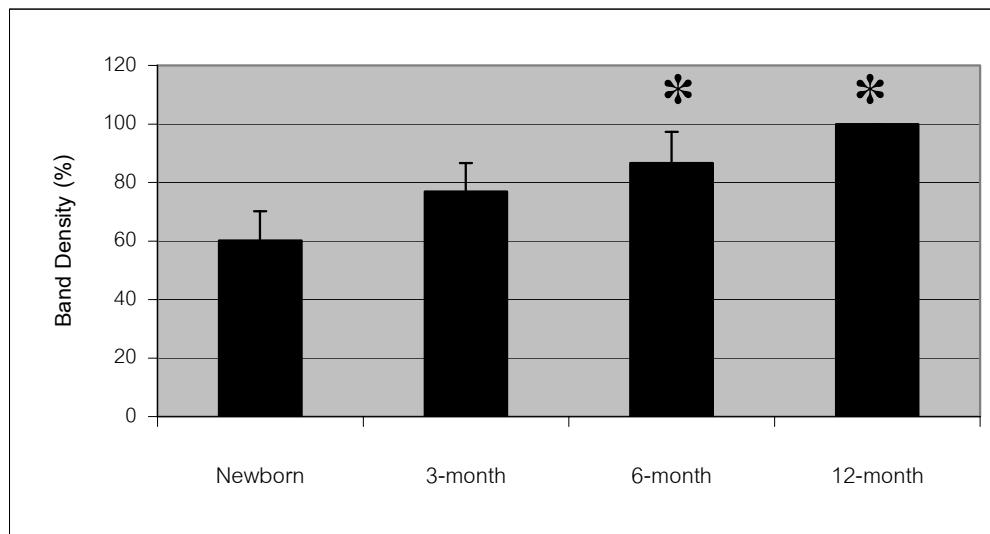
1.2 ผลการศึกษาโดยใช้เทคนิค immunohistochemistry และใช้ anti-parvalbumin antibody


พบว่า ในเนื้อเยื่อหัวใจหนูแรกเกิด เชลล์มีลักษณะที่ยังเจริญไม่สมบูรณ์ โดยเชลล์จะมีขนาดเล็ก รูปร่างค่อนข้างเรียว ใช้โตพลาสซึมใส พับปั๊กิริยาอิมมูโนของ PV (parvalbumin immunoreactivity) (สีน้ำตาล) บรรจุอยู่ไม่เต็มภายในใช้โตพลาสซึม (รูปที่ 2A) ขณะที่เชลล์กล้ามเนื้อหัวใจของหนูอายุ 3 6 และ 12 เดือน เชลล์รูปทรงกระบวนการแตกกิ่งก้านสาขាទับปั๊กิริยาอิมมูโนของ PV บรรจุอยู่เต็มภายในใช้โตพลาสซึมของทุกเชลล์และ ปั๊กิริยาอิมมูโนของ PV มีความเข้มเหมือนกันทุกเชลล์ (รูปที่ 2B, C และ D) ปั๊กิริยาอิมมูโนของ PV ในกล้ามเนื้อ EDL นั้นแตกต่างจากกล้ามเนื้อหัวใจ โดยบาง fiber พับ ปั๊กิริยาอิมมูโนของ PV มาก บาง fiber พับ ปั๊กิริยาอิมมูโนของ PV น้อยหรือไม่พับเลย (รูปที่ 2E) ไม่พบปั๊กิริยาอิมมูโนของ PV ภายในผนังหลอดเลือด aorta (รูปที่ 2F) และภายในเชลล์กล้ามเนื้อหัวใจ ที่มีกระบวนการย้อมเหมือนเนื้ออื่นๆยกเว้น primary antibody (ไม่ได้แสดงรูป)

รูปที่ 2 แสดงปฎิกริยาอิมมูโนของ PV (สีน้ำตาลอุ่นๆภายในไซโตพลาสซึม) ของ (A) กล้ามเนื้อหัวใจในหนูแรกเกิด, (B) กล้ามเนื้อหัวใจในหนูอายุ 3 เดือน (C) กล้ามเนื้อหัวใจในหนูอายุ 6 เดือน (D) กล้ามเนื้อหัวใจในหนูอายุ 12 เดือน (E) กล้ามเนื้อ EDL และ ไม่พบ ปฏิกริยาอิมมูโนของ PV ภายในผนังหลอดเลือด Aorta (F) ของหนูเพศเมีย


1.3 ผลการศึกษาโดยใช้ เทคนิค Western blotting

จากการสกัดโปรตีนและแยกโปรตีนด้วยกระแทกไฟฟ้า ได้ผลดังรูปที่ 3


รูปที่ 3 แสดงการผลแยกโปรตีนโดยใช้กระแทกไฟฟ้าของ กล้ามเนื้อ EDL และกล้ามเนื้อหัวใจ ในช่วงอายุต่างๆของหนูเพศเมีย

หลังจากนั้นนำขี้โปรตีนไปปั้น membrane และข้อมูลนี้ โปรตีน parvalbumin (PV) โดยใช้ anti-parvalbumin antibody แล้ว expose กับแผ่นฟิล์ม ได้ผลดังรูปที่ 4

รูปที่ 4 แสดงแถบโปรตีน parvalbumin ของ กล้ามเนื้อ EDL และกล้ามเนื้อหัวใจในช่วงอายุต่างๆ ของหนูเพศเมีย

จากการเปรียบเทียบการแสดงออกของ parvalbumin ภายในหัวใจหูหูเพคเมียในแต่ละช่วงอายุพบการแสดงออกตั้งแต่แรกเกิด ($60.14 \pm 9.98\%$) และเพิ่มขึ้นในหูหูอายุ 3 เดือน ($76.90 \pm 9.75\%$), 6 เดือน ($86.60 \pm 10.69\%$) ไปจนถึงอายุ 12 เดือน (เมื่อเทียบให้หูหูอายุ 12 เดือนมีการแสดงออกของโปรตีน parvalbumin = 100%) (รูปที่ 5)

รูปที่ 5 การเปรียบเทียบการแสดงออกของ parvalbumin ภายในหัวใจหูหูเพคเมียในแต่ละช่วงอายุ

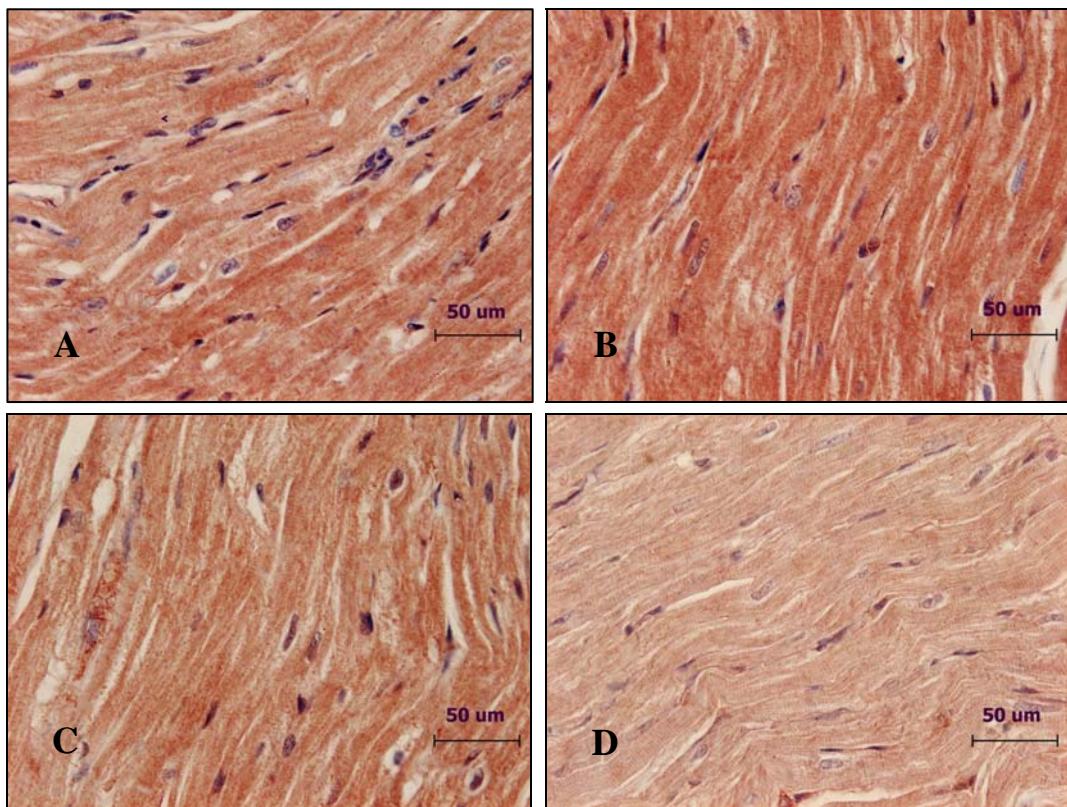
บทวิจารณ์

จากการศึกษาของ Vetter และคณะ (1995) พบว่าในขณะที่หูหูมีการเจริญเติบโตตั้งแต่แรกเกิดจนเจริญเต็มวัย (Adult) นั้น ภายในกล้ามเนื้อหัวใจ การส่ง Ca^{2+} กลับเข้าไปใน sarcoplasmic reticulum (SR) เพิ่มขึ้น และหัวใจคลายตัวได้เร็วขึ้น (Cappilli et al., 1988) ดังนั้นการเพิ่มขึ้นของโปรตีน parvalbumin ซึ่งเพิ่มขึ้นตามวัยนั้น อาจจะช่วยทำให้การส่ง Ca^{2+} กลับเข้าไปใน SR เพิ่มขึ้น เนื่องจาก parvalbumin จะทำหน้าที่ดึง Ca^{2+} ออกจาก Troponin C และช่วยส่ง Ca^{2+} กลับเข้าไปใน SR (Coutu et al., 2003) ซึ่งมีผลทำให้กล้ามเนื้อคลายตัวได้เร็วขึ้น

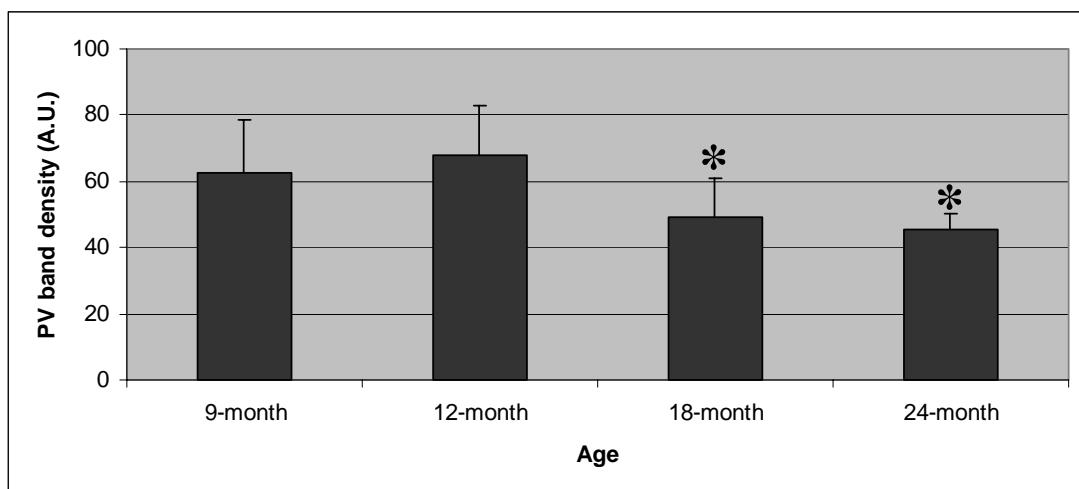
2. การศึกษาอิทธิพลของอายุต่อการแสดงออกของ parvalbumin

วิธีการทดลอง

- นำหนู Wistar rat เฟซผู้ อายุ 9 เดือน 12 เดือน 18 เดือน และ 24 เดือน กลุ่มอายุละ 10 ตัว มาสลบโดย มาสลบโดยนีดคั่วย Nembutal (sodium pentobarbital 55 mg/kg) เข้าทางช่องท้อง
- นำหัวใจเฉพาะส่วนที่เป็น ventricle แบ่งเป็น 2 ส่วน
- ส่วนที่ 1 นำไปปั่นจนวนการ Tissue processing for wax embedding แล้วตัดชิ้นเนื้อให้เป็นแผ่นบางๆ และนำไปข้อมเพื่อชี้แสดง parvalbumin โดยใช้เทคนิค immunohistochemistry
- ส่วนที่ 2 นำไปสกัดโปรตีน แยกโปรตีนด้วยกระแทกไฟฟ้า แล้วตรวจหาแอนติบอดีตต่อ parvalbumin โดยใช้เทคนิค Western blot
- ผ่าตัดกล้ามเนื้อ extensor digitorum longus (EDL) เพื่อนำมาใช้เป็น positive control


ผลการทดลอง

โดยใช้เทคนิค immunohistochemistry พบว่า หัวใจหนูอายุ 9 และ 12 เดือน มี ปฏิกิริยาอิมมูโนของ PV เข้มมาก ส่วนหัวใจหนู อายุ 18 เดือน มี ปฏิกิริยาอิมมูโนของ PV ลดลง ในขณะที่หนูอายุ 24 เดือน มีปฏิกิริยาอิมมูโนของ PV น้อยที่สุด (รูปที่ 6 A-D)


โดยใช้เทคนิค Western blot พบว่า การแสดงออกของ PV ในหัวใจหนูอายุ 9 เดือน (62.35 ± 16.33) และ 12 เดือน (67.67 ± 15.12) ไม่แตกต่างกันอย่างมีนัยสำคัญ การแสดงออกของ PV ลดลงอย่างมีนัยสำคัญในหัวใจหนูอายุ 18 เดือน (49.05 ± 11.98) และ 24 เดือน (45.67 ± 4.64) เมื่อเปรียบเทียบกับหัวใจหนูอายุ 12 เดือน ($p < 0.05$) ส่วนหัวใจหนูอายุ 18 และ 24 เดือน การแสดงออกของ PV ไม่แตกต่างกันอย่างมีนัยสำคัญ (รูปที่ 7)

บทวิจารณ์

การลดลงของการแสดงออกของ PV ในหัวใจหนูวัยชรา สอดคล้องกับการศึกษาของ Cai และคณะ (2001) ซึ่งพบการลดลงของการแสดงออกของ PV ในกล้ามเนื้อลาย EDL ของหนูวัยชรา นอกจากนี้ในหัวใจหนูวัยชรายังพบว่ามีการลดลงของ Ca^{2+} ATPase (Jiang and Narayanan, 1990) ดังนั้นการลดลงของ Ca^{2+} ATPase ร่วมกับการลดลงของ parvalbumin อาจจะนำไปอธิบายการบกพร่องของ การส่ง แคลเซียม กลับเข้า sarcoplasmic reticulum ส่งผลให้หัวใจเกิดการคลายตัวช้า นำไปสู่การอธิบายพยาธิสภาพของโรคหัวใจล้มเหลวนิดไดโอสโตรอลิก ซึ่งมีความบกพร่องของการคลายตัวและพบมากในกลุ่มวัยชรา

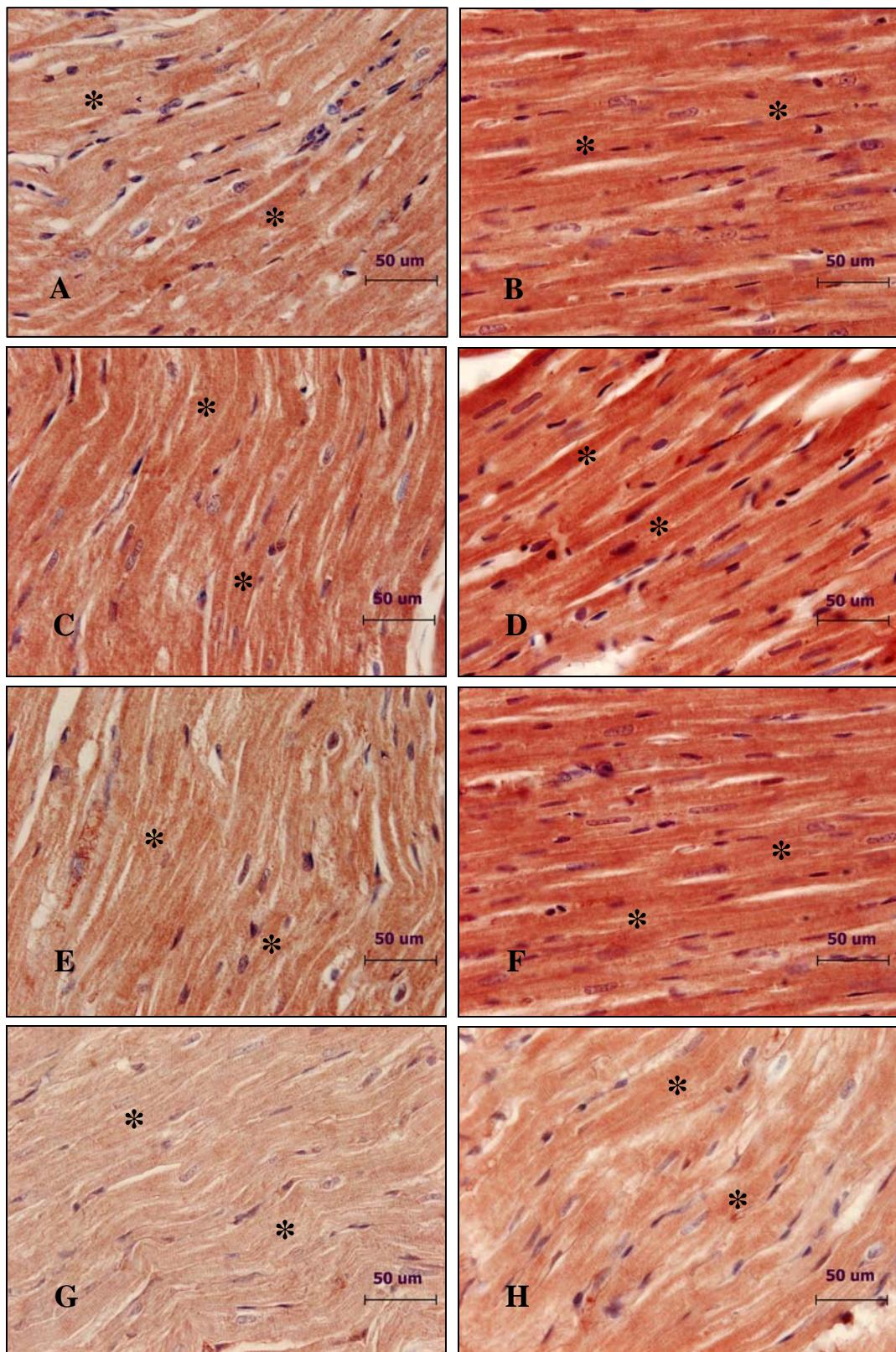
รูปที่ 6 แสดงปัญกิริยาอิมมูโนของ PV (สีน้ำตาล) อยู่ภายในไซโตกพาสซีนของกล้ามเนื้อหัวใจหนู อายุ 9 เดือน (A), 12 เดือน (B), 18 เดือน (C) และ 24 เดือน (D)

รูปที่ 7 การเปรียบเทียบการแสดงออกของ parvalbumin ภายในหัวใจหนูเพศผู้ในแต่ละช่วงอายุ
 * = แตกต่างอย่างมีนัยสำคัญ เมื่อเทียบกับหนูอายุ 12 เดือน

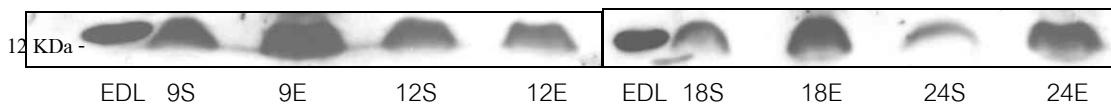
3. การศึกษาอิทธิพลของการออกกำลังกายต่อการแสดงออกของ parvalbumin ภายในหัวใจหมู

วิธีการทดลอง

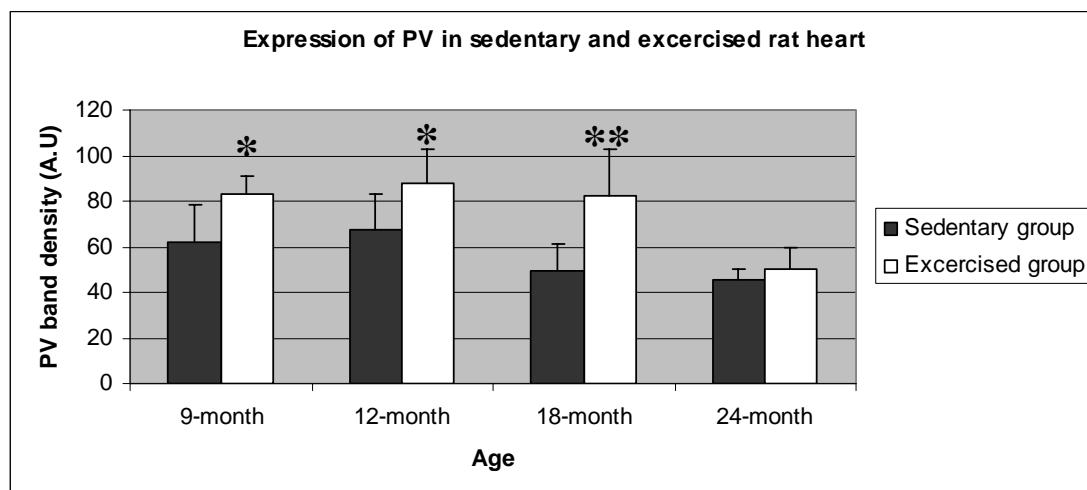
- นำหมู Wistar rat เพศผู้ อายุ 3 เดือน 6 เดือน 12 เดือน และ 18 เดือน แบ่งเป็น 2 กลุ่ม ได้แก่ กลุ่มที่ไม่ได้รับการฝึกให้ว่ายน้ำ (sedentary, S) และ กลุ่มที่นำมานอนว่ายน้ำ (exercise, E) โดยให้ว่ายในถังพลาสติกขนาดใหญ่ มี ความจุ 500 ลิตร (รูปที่ 8) อุ่นน้ำโดยใช้ไฟส่องให้ได้อุณหภูมิประมาณ 28°C และฝึกให้ว่ายโดยเริ่มจากสับปด้าห์แรกว่ายน้ำ 5 นาที และเพิ่มเวลาในสับปด้าห์ ถัดไปเรื่อยๆ ไปจนถึง 30 นาทีเป็นเวลา 6 เดือน หลังจากว่ายน้ำเช็คตัวให้ แห้งและใช้ไฟส่องในการให้ความอบอุ่น การฝึกว่ายน้ำดังกล่าวจาก งานวิจัยของ Gunduz และคณะ (2004)
- หลังจากครบ 6 เดือน หมูจะมีอายุ 9 เดือน 12 เดือน 18 เดือน และ 24 เดือน นำหมูทั้งหมดมาสลบโดยนีด nembutal (sodium pentobarbital 55 mg/kg) เข้าทางช่องท้อง
- นำหัวใจเฉพาะส่วนที่เป็น ventricle แบ่งเป็น 2 ส่วน
- ส่วนที่ 1 นำไปผ่านขั้นตอนการ Tissue processing for wax embedding แล้วตัด ชิ้นเนื้อให้เป็นแผ่นบางๆ และนำไปข้อมเพื่อชี้แสดง parvalbumin โดยใช้ เทคนิค immunohistochemistry
- ส่วนที่ 2 นำไปสกัดโปรตีน แยกโปรตีนด้วยกระเเสไฟฟ้า และตรวจหาแอน โปรตีน parvalbumin โดยใช้เทคนิค Western blot
- ผ่าตัดกล้ามเนื้อ extensor digitorum longus (EDL) เพื่อนำมาใช้เป็น positive control



รูปที่ 8 แสดงการฝึกให้หนูว่าyan


ผลการทดลอง

ผลการศึกษาโดยใช้เทคนิค immunohistochemistry พบว่า หัวใจหนูกลุ่มที่ได้รับการฝึกให้ว่าyan (E) อายุ 9, 12 และ 18 เดือน มีความเข้มของปฎิกริยาอิมมูโนของ PV เพิ่มมากขึ้นอย่างสังเกตได้ชัดเจน เมื่อเทียบกับกลุ่มที่ไม่ได้รับการฝึก (S) ที่มีอายุเท่ากัน (รูปที่ 9A-F) ส่วนกลุ่มอายุ 24 เดือน มีความเข้มของปฎิกริยาอิมมูโนของ PV เพิ่มขึ้นเล็กน้อย เมื่อเทียบกับกลุ่มที่ไม่ได้รับการฝึก (รูปที่ 9G และ H)


ผลการศึกษาโดยใช้เทคนิค Western blot พบว่าการแสดงออกของ PV ในหัวใจหนูทุกกลุ่ม (รูปที่ 10) แต่กลุ่มที่ได้รับการฝึกให้ว่าyan อายุ 9 เดือน ($S = 62.35 \pm 16.33$, $E = 83.20 \pm 7.41$) และ 12 เดือน ($S = 67.67 \pm 15.12$, $E = 87.46 \pm 15.47$) มีการแสดงออกของ PV เพิ่มขึ้นอย่างมีนัยสำคัญ ($p < 0.05$) เมื่อเปรียบเทียบกับหัวใจหนูกลุ่มที่ไม่ได้รับการฝึกที่มีอายุเท่ากัน ส่วนหัวใจหนูกลุ่มที่ได้รับการฝึกให้ว่าyan อายุ 18 เดือน มีการแสดงออกของ PV เพิ่มขึ้นอย่างมีนัยสำคัญที่ $p < 0.01$ ($S = 49.05 \pm 11.98$, $E = 82.01 \pm 21.11$) เมื่อเปรียบเทียบกับหัวใจหนูกลุ่มที่ไม่ได้รับการฝึกที่มีอายุเท่ากัน แต่หัวใจหนูอายุ 24 เดือน การแสดงออกของ PV ทั้งกลุ่มที่ได้รับการฝึกให้ว่าyan และกลุ่มที่ไม่ได้รับการฝึก ไม่แตกต่างกันอย่างมีนัยสำคัญ (รูปที่ 11)

รูปที่ 9 แสดงปฏิกิริยาอิมูโนของ PV (สีน้ำตาล,*) อยู่ภายในไซโตพลาสซึมของกล้ามเนื้อหัวใจหนู กลุ่มต่างๆ ได้แก่ (A) อายุ 9 เดือน ไม่ได้รับการฝึกให้ว่ายน้ำ, (B) อายุ 9 เดือน ได้รับการฝึกให้ว่ายน้ำ, (C) อายุ 12 เดือน ไม่ได้รับการฝึกให้ว่ายน้ำ, (D) อายุ 12 เดือน ได้รับการฝึกให้ว่ายน้ำ, (E) อายุ 18 เดือน ไม่ได้รับการฝึกให้ว่ายน้ำ, (F) อายุ 18 เดือน ได้รับการฝึกให้ว่ายน้ำ, (G) อายุ 24 เดือน ไม่ได้รับการฝึกให้ว่ายน้ำ, (H) อายุ 24 เดือน ได้รับการฝึกให้ว่ายน้ำ

รูปที่ 10 แสดงแคนป์โปรตีน parvalbumin ของกล้ามเนื้อ EDL และกล้ามเนื้อหัวใจในช่วงอายุต่างๆ ได้แก่ 9, 12, 18 และ 24 เดือน ทั้งกลุ่มที่ไม่ได้รับการฝึกให้ว่ายน้ำ (S) และกลุ่มที่นำมาฝึกว่ายน้ำ (E)

รูปที่ 11 การเปรียบเทียบการแสดงออกของ parvalbumin ภายในหัวใจหนูเพศผู้ในแต่ละช่วงอายุ ทั้งกลุ่มที่ไม่ได้รับการฝึกให้ว่ายน้ำ (S) และกลุ่มที่นำมาฝึกว่ายน้ำ (E)
* = แตกต่างอย่างมีนัยสำคัญ $p < 0.05$, ** = แตกต่างอย่างมีนัยสำคัญ $p < 0.01$

บทวิจารณ์

พบว่าการออกกำลังกายโดยการว่ายน้ำสามารถกระตุ้นให้มีการแสดงออกของ PV เพิ่มขึ้น โดยเฉพาะในหนูวัยหนุ่ม แต่การกระตุ้นการเพิ่มแสดงออกของ PV โดยการเริ่มว่ายน้ำในอายุ 18 เดือนนั้นได้ผลน้อยกว่าในหนูวัยหนุ่ม จากการศึกษาของ Take และคณะ (1996) พบว่าการออกกำลังกายโดยการว่ายน้ำมีผลทำให้ SR Ca^{2+} - ATPase mRNA เพิ่มขึ้น ดังนั้นการเพิ่มขึ้นของ SR Ca^{2+} - ATPase mRNA ร่วมกับการเพิ่มขึ้นของการแสดงออกของ PV อาจจะใช้ในการอธิบายถึงสาเหตุที่การออกกำลังกายทำการคลายตัวของหัวใจเดี๋ยวนี้ ซึ่งอาจจะนำไปสู่แนวทางในการป้องกันโรคหัวใจล้มเหลวชนิดไดแอสโตรลิก ซึ่งมีความบกพร่องของการคลายตัว

ອອກສາຮ້ອງອີງ

1. ສඛຕີສາຂາຮັມສຸຂ (2545) ສໍານັກນ ໂອຍບາຍແລະ ຍຸທະກາສຕ່ວ ສໍານັກງານປັດກະທຽວ ສາຂາຮັມສຸຂ
2. Aggarwal A, Brown KA, LeWinter MM (2001) Diastolic dysfunction: pathophysiology, clinical features, and assessment with radionuclide methods. *J Nucl Cardiol*, 8; 98-106.
3. Berchtold MW, Brinkmeier H and Muntener M (2000) Calcium ion in skeletal muscle: Its crucial role for muscle and function, plasticity and disease. *Physiolo Rev*, 80; 1216-1265.
4. Cai DQ, Li M, Lee KKH, Lee KM, Qin L and Chan KM (2001) Parvalbumin expression is downregulated in rat fast-twitch skeletal muscles during aging. *Arch Biochem Biophy*, 387; 202-208.
5. Cappelli V, Tortelli O, Zani B, Poggesi C and Reggiani C (1988) Age-dependent changes of relaxation and its load sensitivity in rat cardiac muscle. *Basic Res Cardiol*, 83; 65-76.
6. Coutu P, Hirsch JC, Szatkowski ML, Metzger JM (2003) Targeting diastolic dysfunction by genetic engineering of calcium handling proteins. *Trends Cardiovasc Med*, 13 ; 63-67.
7. Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. *Proc Natl Acad Sci USA* 1982, 79; 7243-7247.
8. Jiang MT, Narayanan N (1990) Effects of aging on phospholamban phosphorylation and calcium transport in rat cardiac sarcoplasmic reticulum. *Mech Ageing Dev* , 54; 87-101.
9. Lorell BH (1991) Significance of diastolic dysfunction of the heart. *Annu Rev Med*, 42; 411-436.
10. Mandinov L, Eberli FR, Seiler C, Hess BH (2000) Diastolic heart failure. *Cardiovasc Res*, 45; 813-825.
11. Morgan JP (1991). Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. *N Engl J Med*, 325; 625-632.
12. Senior K (2001) Heart failure: running to the rescue. *DDT*, 6(6), 275-276.

13. Senni M and Redfield MM (2001) Heart failure with preserved systolic function: A different natural history?. *J Am Coll Cardiol*, 38; 1277-1282.
14. Take CA,, Helgason T, Hyek MF, McBride RP, Chen M, Richardson MA, Taffet GE (1996) Serca2A and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. *Am J Physiol*, 271; H68-H72.
15. Vongvatcharanon U and Vongvatcharanon S (2003). Localization of Parvalbumin calcium binding protein in the rat heart. *ScienceAsia*, 29; 319-325.
16. Vongvatcharanon U, Imsonpang S, Promwikorn W, Vongvatcharanon S (2006) Up-regulation of parvalbumin expression in newborn and adult rat heart. *Acta Histochemica*, 108 ; 447-454.
17. Zile MR and Brutsaert DL (2002a) New concepts in diastolic dysfunction and diastolic function heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. *Circulation*, 105; 1387-1393.
18. Zile MR, Brutsaert DL (2002b) New concepts in diastolic dysfunction and diastolic heart failure : part II : causal mechanisms and treatment. *Circulation*, 105; 1503-1508.

Output ที่ได้จากโครงการ

Manuscript จำนวน 2 เรื่อง ได้แก่

1. Age-related expressions of parvalbumin in the female rat heart
2. Influences of aging and long-term swimming exercise on the expression of parvalbumin in rat hearts

ភាគធនវក

ប្រកបដោយ manuscript ចំនាប់ 2 នៃខ្លួន

1. Age-related expressions of parvalbumin in the female rat heart
2. Influences of aging and long-term swimming exercise on the expression of parvalbumin in rat hearts

Age-related expressions of parvalbumin in the female rat heart

Uraporn Vongvatcharanon^{a*}, Wandee Udomuksorn^b, Surapong Vongvatcharanon^c, Prasert Sobhon^d

^a Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat-Yai, 90112 Thailand

^b Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat-Yai, 90112 Thailand

^c Department of Oral Surgery (Anesthesiology section), Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112 Thailand

^d Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand

*Corresponding author

Assist. Prof. Dr. Uraporn Vongvatcharanon

Department of Anatomy, Faculty of Science,
Prince of Songkla University, Hat-Yai, Thailand 90112

e-mail: uraporn.v@psu.ac.th TEL: 00-66-74-288147, FAX: 00-66-74-446663

Short title: parvalbumin in the female rat heart

ABSTRACT

Changes of parvalbumin (PV) expressions during the postnatal development of the female rat heart were investigated in order to determine if they correlated with the age-related changes of the heart function. Newborn, 3-month (young), 6-month (young adult) and 12-month (adult) female Wistar rat's heart were processed for immunohistochemistry and Western blotting assay. PV was detected, by both methods, in all age groups from newborn to 12-month old rats but was very low compared to that in EDL fibers. However, in the newborn rat heart, PV immunoreactivity did not fully fill the cytoplasm of the cardiac myocytes and the PV expression was low ($60.14 \pm 9.98\%$) compared to the adult level. In contrast with 3-month to 12-month animals, strong PV immunoreactivity was detected throughout the cytoplasm of all cardiac myocytes and the expression of PV increased with increasing age: 3-month ($76.90 \pm 9.75\%$), 6-month ($86.60 \pm 10.69\%$) and 12-month (100%). Our study indicates that an increase of PV in the female rat heart with increasing age (from newborn to adult) may be associated with maintaining proper relaxation of the cardiac myocytes that is needed to cope with an increasing workload of the heart during body growth.

KEYWORDS: Female rat heart; Parvalbumin; Calcium-binding protein; Age-related postnatal development; Immunohistochemistry; Western blotting

INTRODUCTION

Parvalbumin (PV), is a low molecular weight protein (12 kDa) that belongs to the EF-hand family of calcium (Ca^{2+}) binding proteins. It has two metal binding sites, with high affinity for calcium and moderate affinity for magnesium¹. PV is found in high concentration in fast-contracting skeletal muscle fiber² and its role there has been postulated to be a relaxing factor capable of removing Ca^{2+} ions from the myofibrillar Ca^{2+} -binding subunit of troponin, troponin C and then transporting the Ca^{2+} ions to the sarcoplasmic reticulum (SR)^{3,4,5}. Due to its Ca^{2+} affinity, PV functions as an ATP-independent Ca^{2+} sink and enhances relaxation in skeletal muscle^{6,7}. PV is therefore considered as a target protein for diastolic heart failure for which currently, there is no specific treatment⁸. Diastolic dysfunction is characterized by a prolonged relaxation that is typically the result of a decreased rate of intracellular Ca^{2+} sequestration⁹.

PV was recently identified in rat heart tissue¹⁰ and it has been suggested that PV is involved in mediating relaxation in cardiac myocytes^{8, 11-14}. A mechanism by which PV mediates cardiac myocytes relaxation has been proposed by Couto et al.¹³. He explained that at late diastole, intracellular Ca^{2+} levels are low and PV is mainly bound to Mg^{2+} whereas at systole, intracellular Ca^{2+} levels rapidly increase resulting in some of the metal-binding sites on PV switching from binding Mg^{2+} to binding Ca^{2+} . However, unbinding of Mg^{2+} from PV is relatively slow, thus Ca^{2+} released at stimulation is bound primarily to TnC leading to activation of cardiac myocytes contraction. At the end of systole, Ca^{2+} dissociates from TnC and binds to PV resulting in activation of cardiac myocytes relaxation. At mid-diastole to late diastole, intracellular Ca^{2+} levels decrease, the metal-binding sites on PV switching back from binding Ca^{2+} to binding Mg^{2+} again. Therefore, changes of parvalbumin levels may affect heart function. According to the work of O'Mahony et al.¹⁵, women had proportionately more diastolic dysfunction heart failure than men, whereas men have more heart failure caused by systolic dysfunction than women¹⁶. Up to now, the underlying mechanisms remain to be clarified. The expression of PV may be associated. However, no information on the expression of parvalbumin in the female rat heart at different stages of maturation has been available. Therefore, this study aims to investigate expression of PV in the female rat heart at different stages of maturation (from newborn to adult). This may help to explain how the female cardiac response adapts to cope with the increasing workload of the heart during body growth. This data would have important clinical implications for the treatment of cardiovascular disease in women.

MATERIALS AND METHODS

Animals

Ten female Wistar rats at each of the following ages: newborn, 3-months-old (young), 6-months-old (young adult) and 12-months-old (adult) were obtained from the Animal Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand. The maturity stage was assigned according to the work of Narayanan¹⁷. The experimental protocols described in the present study were approved and guided by the Animal Ethical Committee of the Prince of Songkla University for care and use of experimental animals. Rats were anesthetized by an intraperitoneal injection of 75 mg/kg pentobarbital sodium. Hearts were then removed and divided into two halves. Only the left and right ventricles were used in this study. The Extensor digitorum longus (EDL) muscle was also removed, due to it being known to have a high parvalbumin content² and divided into two halves, to be used as positive controls. The ventricles and EDL were processed for immunohistochemistry and Western blotting.

Immunohistochemistry

Tissues were fixed in 10% formalin and processed for paraffin wax embedding. Serial 5 μ m-thick sections were cut and mounted on TESPA- coated slides. The immunohistochemistry method has been described previously¹⁰. Briefly, after deparaffinization and dehydration, the sections were incubated sequentially with 0.3% (v/v) Triton X-100 for 30 min, 3% (v/v) H₂O₂ in methanol for 30 min, 10% (v/v) normal horse serum (Vector Laboratories, Burlingham, CA) 60 min, and then with anti-parvalbumin mouse monoclonal antibody (Parv-19, Sigma) at a dilution of 1:1,000, for 48 h, at 4°C. The specificity of the antibody has been described previously^{10, 18-20}. The sections were then incubated with biotinylated secondary anti-mouse IgG antibody (Vector Laboratories), at a dilution of 1:200, for 2 h, washed in 0.1M Tris phosphate buffer, pH 7.4, 3 times for 5 min and incubated for 2 h with avidin-biotin complex. Immunoreactive sites were revealed using the diaminobenzidine (DAB) chromogen-based visualization system (Vector Laboratories). Negative controls were performed by omitting the primary antibodies.

Western blotting

Rat hearts and EDL were freshly removed and washed with phosphate buffered saline. The heart and EDL cell lysates were prepared using a pestle with mortar and lysis buffer. The cell lysates were centrifuged at 14000 X g, 4°C for 10 min. The supernatant fractions were separated and the protein concentrations were determined by the DC protein assay (BIO-RAD, Laboratories, Hercules, CA, USA). 20 μ g of varied age lysate samples were separated by SDS-

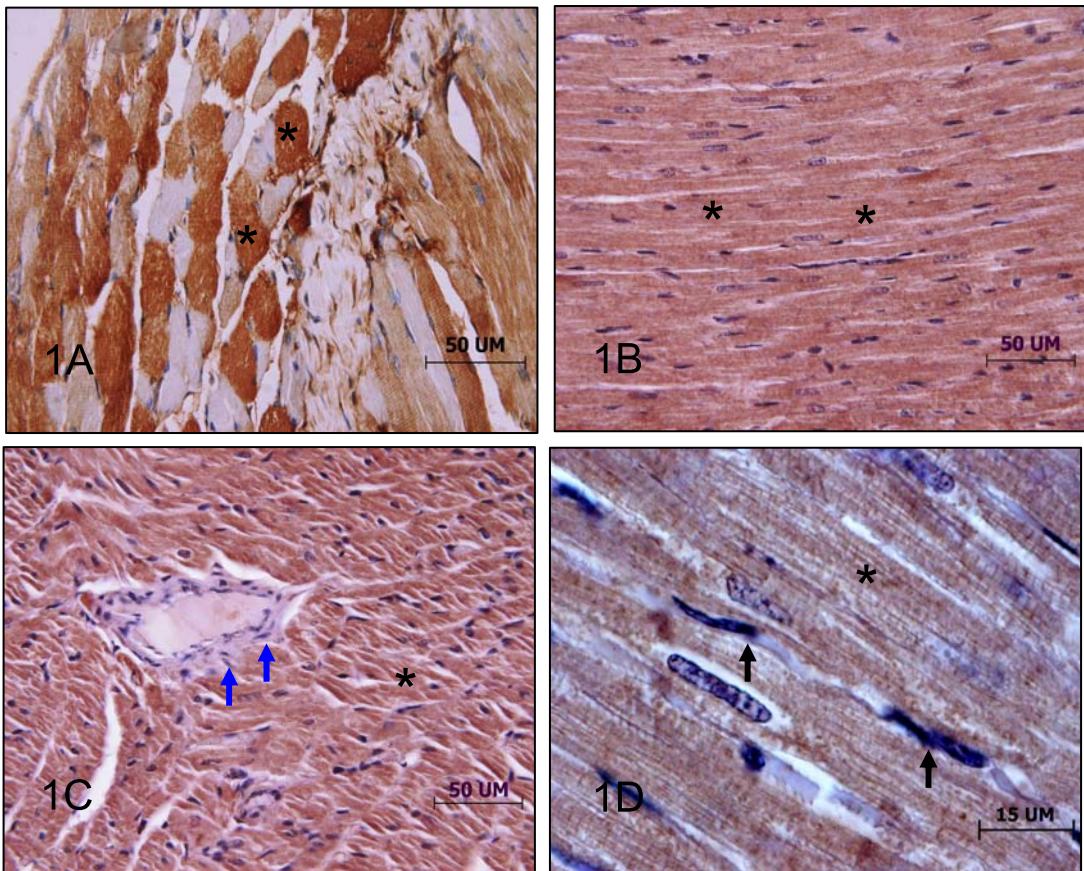
polyacrylamide gel (12%) electrophoresis and transferred onto nitrocellulose membranes. Blots were treated with anti-parvalbumin (Parv-19, Sigma) (1:1000) as primary antibody, followed by horse radish peroxidase conjugated anti-mouse IgG (1:5000) as the secondary antibody. The parvalbumin proteins were visualized using a chemiluminescence method (Amersham Bioscience). Band intensities were measured with a BIO-RAD model GS-700 Imaging Densitometer (Bio-Rad). Parvalbumin immunoreactivity of each group of animals was expressed as percentage of the signal measured in the adult (12-month old) animals. 10 repetitions of the experiment were performed. Therefore, the data were reported as means of the indicated number \pm standard error mean (SEM).

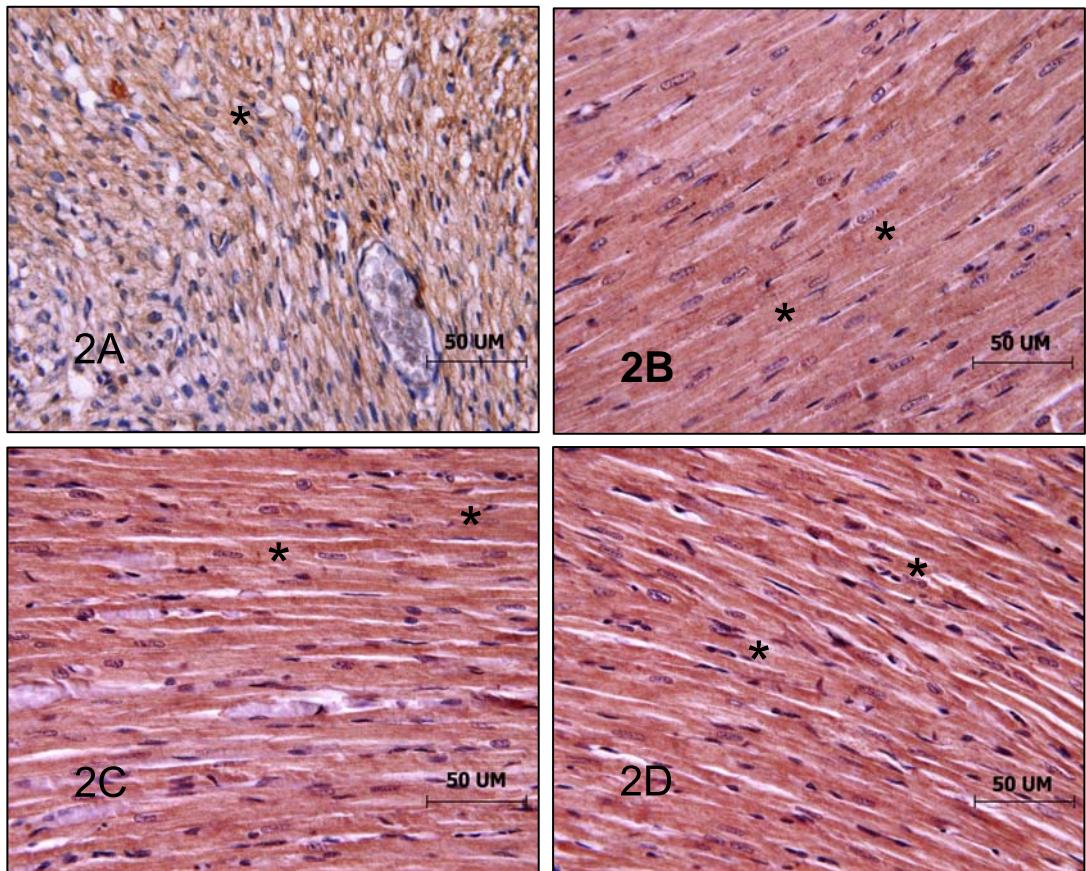
Statistical analysis

Statistical analysis was performed by One-way ANOVA to determine whether there were any significant differences among multiple groups of data. When there was a significant difference, a Least-Significant-Difference test was performed to determine which of the individual groups were different. P-Values < 0.05 was considered significant.

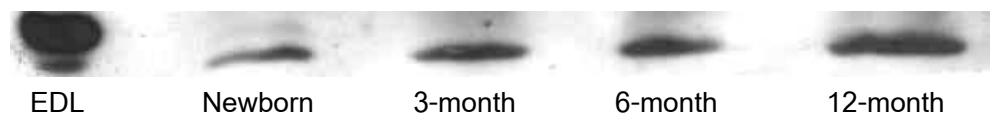
RESULTS

PV immunoreactivity in skeletal muscle and heart tissue

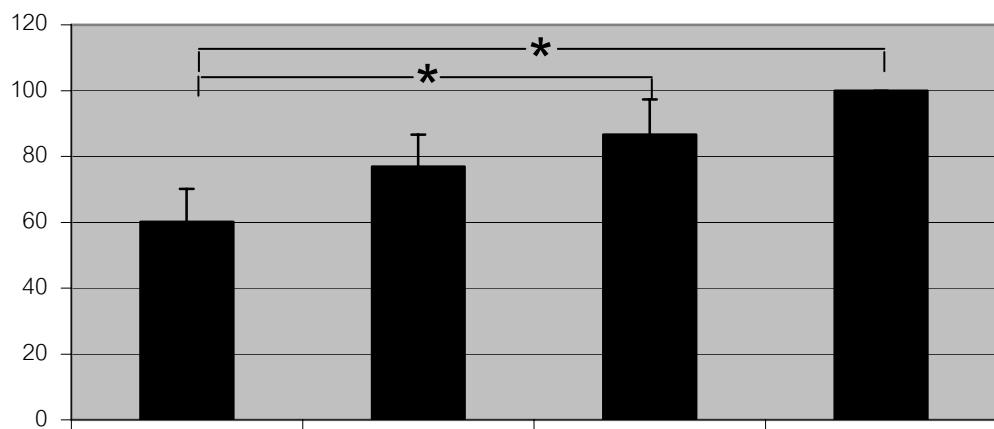

PV immunoreactivity was identified in the cytoplasm of EDL muscle fibers and heart tissue (Fig. 1A and B). Each fiber of EDL had different labeling intensities: strong, moderate and weak intensities (Fig. 1A). In the heart tissue (ventricular wall) composed of cardiac myocytes, connective tissue and blood vessels showing strong PV immunoreactivity was identified in cardiac myocytes whereas in blood vessels and fibroblast, no PV immunoreactivity were found (Fig. 1C and D). Identical PV immunoreactivity was observed in all cardiac myocytes (Fig. 1 B-D).


PV immunoreactivity in heart tissue at different ages

In the newborn, cardiac myocytes showed different features from those of the 3, 6 and 12-month groups. The newborn cardiac myocytes were spindle-shaped with a central and clear cytoplasm and PV immunoreactivity did not fully fill the cytoplasm (Fig. 2A). In contrast, the cardiac myocytes from 3-12 month old animals were cylindrical in shape, branched and exhibited striations in their cytoplasm. In addition, strong parvalbumin immunoreactivity was detected throughout the cytoplasm of all cardiac myocytes (Fig. 2B-D). The intensity of parvalbumin immunoreactivity was found to increase with increasing age (Fig. 2B-D). No PV immunoreactivity was identified in negative controls (data not shown).


Quantification of parvalbumin by Western blotting

Parvalbumin was detected in heart tissue of rats of all age groups. However, the expression of parvalbumin in the heart tissue was low compared to that of EDL (Fig. 3A). Densitometric quantification of the blots of parvalbumin revealed that there was a statistically significant difference in parvalbumin expression among different age groups ($p<0.05$). The expression of parvalbumin was low in the newborn rat heart ($60.14 \pm 9.98\%$) and then increased in hearts from 3-month ($76.90 \pm 9.75\%$), 6-month ($86.60 \pm 10.69\%$) and 12-month (100%) animals, as illustrated in Figure 3B. A significant increase of parvalbumin expression was detected in 6-month and 12-month compared to the newborn groups ($p<0.05$) (Fig. 3B).



3A

Band Density (%)

3B

Legends to Figures

Figure 1. (A) 3-month old rat EDL section showing strong PV immunoreactivity in the cytoplasm of some muscle fibers (*).

(B) 3-month old rat heart section showing strong PV immunoreactivity in the cytoplasm of all cardiac myocytes (*).

(C) Cross section of 3-month old rat heart section showing strong PV immunoreactivity in the cytoplasm of all cardiac myocytes (*) and no PV immunoreactivity in blood vessel (blue arrows).

(D) Higher magnification of heart section showing strong PV in the cytoplasm of all cardiac myocytes and no PV immunoreactivity in fibroblasts (black arrows).

Figure 2. The PV immunoreactivity in the cytoplasm of cardiac myocytes (*) at different ages; (A) newborn, (B) 3-month, (C) 6-month and (D) 12-month rat hearts.

Figure 3A. Western blotting showing expression of PV in EDL and rat hearts at different ages: newborn, 3-month, 6-month and 12-month.

Figure 3B. Histogram showing densitometric quantitation of blots of PV in rat hearts at different ages: newborn, 3-month, 6-month and 12-month. * significantly different, $P < 0.05$

DISCUSSION

Our results from Western blotting and immunohistochemistry identified a different pattern of PV expression and immunoreactivity between fast-twitch skeletal muscle fibers (EDL) and heart tissue. Our data demonstrated a high expression of PV in EDL that correlated to the previous study using HPLC (High performance liquid chromatography) that showed high concentrations of PV in EDL². The high concentration of PV in EDL explains its ability to relax rapidly. This may be related to its functional ability. In the muscle that functions for fine movements, the contraction and relaxation process must be highly coordinated. Thus extensor muscles relax fairly rapidly when the flexor muscle contracts. However, each fiber of the EDL showed different intensities of PV immunoreactivity whereas all cardiac myocytes had a similar pattern of immunoreactivity in the cytoplasm, indicating that they all might contain a similar concentration of PV. If this is the case, then all activated cardiac myocytes may operate simultaneously and this may be important for rhythmic function, in that all contractile units have synchronized activity to produce an effective cardiac output.

In rat skeletal muscle, PV was identified 4 days after birth²¹ whereas in this study, PV was detected in heart muscle at birth. Leberer and Pette²² suggested that PV synthesis in rat skeletal muscle is related to their immediate use after birth. However, the heart was already functioning before birth, therefore, it will be interesting to study PV levels in embryonic heart to investigate its role.

As an approach to correct diastolic dysfunction, a PV skeletal muscle gene was transferred to cardiac myocytes. This resulted in an increased PV level in cardiac tissue and an enhanced heart relaxation performance^{8,11-14}. With this technique an over-expression of PV in cardiac tissue and possible activation of the immune response may cause potential problems²³. Thus, the application of this technique for treatment of DHF in humans remains controversial and perhaps a more effective technique is required to prevent possible adverse effects.

From our study, the low level of PV found in the newborn rat heart, may indicate an inefficient diastolic heart function in the newborn. This can be related to the work of Zhou et al²⁴ who found that the diastolic function matures 3 weeks after birth. In 3 to 12-month rat hearts all cardiac myocytes were mature, and parvalbumin immunoreactivity fully filled the cytoplasm of all cardiac myocytes. As judged from the intensity of parvalbumin immunoreactivity the expression of parvalbumin increased with increasing age. This may explain a higher Ca^{2+} uptake of the sarcoplasmic reticulum in adult compared to the neonatal heart²⁵ and this could explain an increase in load sensitivity of relaxation of the heart during maturation from the neonatal to adult

rat heart²⁶. The up-regulation of PV expression from newborn to adult found in female rat hearts may be a fundamental adaptation of the heart to deal with an increasing workload during postnatal growth. It is likely that the up-regulation occurs in parallel with the increasing function of the neuroendocrine system, especially sex hormone. Thus, it is hypothesized that the PV up-regulation is associated with levels of sex hormone. Previously, it has been demonstrated that the protective effects of ovarian function on the cardiovascular system are largely mediated by 17 β -estradiol²⁷. According to the work of Cai et al.²⁸, PV expression in male rat skeletal muscle was down regulated during aging (in 18 and 24 month old). Furthermore, it has been shown that female rats enter menopause between ages 15 and 18 months²⁹. This suggests that the down regulation may be sex hormone related. However, the animal used in the present study ranged only from newborn to 12 month old. Therefore, it is of interest to investigate the relationship between sex hormone and PV expression. Thus, the further study is underway to study the PV levels in ovariectomized rats or the rats entering menopause. Measurement of the PV expression in aging or ovariectomized animals could explain some mechanisms of diastolic heart failure in aging women.

ACKNOWLEDGEMENTS

This study was funded by a Thailand Research Funding (TRF) under MRG 4880155. We would like to thank Dr. Brian Hodgson for assistance with the English and Miss Pranom Intasaro for sample preparation.

REFERENCES

1. Pauls TL, Cox JA and Berchtold MW (1998) The Ca^{2+} (-) binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. *Biochim Biophys Acta* 1306, 39-54.
2. Heizmann CW, Berchtold MW and Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. *Proc Natl Acad Sci USA* 79, 7243-7.
3. Gerday C, and Gillis JM (1976) The possible role of parvalbumins in the control of contraction. *J Physiol (Lond)* 258, 96-7.
4. Haiech J, Derancourt J, Pechere JF and Demaille JG (1979). Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. *Biochemistry* 18, 2752-8.
5. Gillis JM and Thomason D, Lefevre J and Kretsinger RH (1982) Parvalbumins and muscle relaxation: a computer simulation study. *J Muscle Cell Motil.* 3, 377-98.
6. Hou TT, Johnson JP and Rall JA (1991) Parvalbumin content and Ca^{2+} and Mg^{2+} dissociation rates correlated with changes in relaxation rate of frog muscle fibres. *J Physiol* 441, 285-304.
7. Hou TT, Johnson JP and Rall JA (1993) Role of parvalbumin in relaxation of frog skeletal muscle *Adv Exp Med Biol* 332, 141-51.
8. Szatkowski ML, Westfall MV, Gomez CA, Wahr PA, Michele DE, DelloRusso C, Turner II, Hong KE, Albayya FP and Metzger JM (2001) In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. *J Clin Invest* 107, 191-8.
9. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W and Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. *Circ Res* 61, 70-6.
10. Vongvatcharanon U and Vongvatcharanon S (2003) Localization of parvalbumin calcium binding protein in the rat heart. *Science Asia* 29, 319-25.
11. Michele DE, Szatkowski ML, Albayya FP and Metzger JM (2004) Parvalbumin gene delivery improves diastolic function in the aged myocardium in vivo. *Mol Ther* 10, 399-403.

12. Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL and Hajjar RJ (2004) In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. *Cardiovasc Res* 66, 318-23.
13. Coutu P, Hirsch JC, Szatkowski ML and Metzger JM (2003) Targeting diastolic dysfunction by genetic engineering of calcium handling proteins. *Trends Cardiovasc Med* 13, 63-7.
14. Wahr PA, Michele DE and Metzger JM (1999) Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes. *Proc Natl Acad Sci USA* 96, 11982-5.
15. O' Mahony MS, Sim MFV, Ho SF, Steward JA, Buchalter M and Burr M (2003) Diastolic heart failure in older people. *Age and Ageing* 32, 519-24.
16. Diller PM, Smucker DR, David B, and Graham RJ (1999) Congestive heart failure due to diastolic or systolic dysfunction. *Arch Fam Med* 8, 414-20.
17. Narayanan N (1987) Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. *Mech Ageing Dev* 38, 127-43.
18. Celio MR and Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. *Nature* 293, 300-2.
19. Celio MR and Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. *Nature* 297, 504-506.
20. Celio MR, Baier W, Scharer L, de Viragh PA and Gerdy C (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin. *Cell Calcium* 9, 81-6.
21. Olive M and Ferrer I (1994) Postnatal development of parvalbumin immunoreactivity in striated muscles of the rat. *Anat Embryol (Berl)* 190, 301-5.
22. Leberer E and Pette D (1986) Neural regulation of parvalbumin expression in mammalian skeletal muscle. *Biochem J* 235, 67-73.
23. Senior K (2001) Heart failure: running to the rescue. *DDT* 6, 275-6.
24. Zhou YQ, Foster FS, Parkes R and Adamson SL (2003) Developmental changes in left and right ventricular diastolic filling patterns in mice. *Am J Physiol Heart Circ Physiol* 285, H1563- 75.

25. Vetter R, Studer R, Reinecke H, Kolar F, Ostadalova I and Drexler H (1995) Reciprocal changes in postnatal expression of the sarcolemmal $\text{Na}^+ \text{-Ca}^{(2+)} \text{-}$ exchanger and SERCA2 in rat heart. *J Mol Cell Cardiol* 27, 1689-701.
26. Cappelli V, Tortelli O, Zani B, Poggesi C and Reggiani C (1988) Age-dependent changes of relaxation and its load sensitivity in rat cardiac muscle. *Basic Res Cardiol* 83, 65-76.
27. Dubey RK and Jackson EK (2001) Cardiovascular protective effects of 17β -estradiol metabolites 91, 1868-83.
28. Cai DQ, Li M, Lee KKH, Lee KM, Qin L, and Chan KM (2001) Parvalbumin expression is downregulated in rat fast-twitch skeletal muscles during aging. *Arch Biochem Biophys* 387, 202-8.
29. Durbin PW, Williams MH, Jeung N and Arnold JS (1966) Development of spontaneous mammary tumors the life-span of the female Charler River (Sprague Dawley) rat: the influence of ovariectomy, thyroidectomy, and adrenalectomy-ovariectomy. *Cancer Res* 26, 400-11.

Influences of aging and long-term swimming exercise on the expression of parvalbumin in rat hearts

Uraporn Vongvatcharanon^{1*}, Kanjana Khornchatr¹, Wandee Udomuksorn², Wilirat Kunkaun¹, Ekkasit Kumarnsit³, Surapong Vongvatcharanon⁴, Prasert Sobhon⁵

¹ Department of Anatomy, Faculty of Science, Prince of Songkha University, Songkla, Thailand 90112

² Department of Pharmacology, Faculty of Science, Prince of Songkha University, Songkla, Thailand 90112

³ Department of Physiology, Faculty of Science, Prince of Songkha University, Songkla, Thailand 90112

⁴ Department of Oral Surgery (Anesthesiology section), Faculty of Dentistry, Prince of Songkha University, Songkla, Thailand 90112

⁵ Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand 10400

* Corresponding author

Assist. Prof. Dr. Uraporn Vongvatcharanon

Department of Anatomy,

Faculty of Science,

Prince of Songkha University,

Songkla,

Thailand 90112

Abstract

Parvalbumin (PV), a small (12 kDa) cytoplasmic calcium binding protein, has been implicated in mediating relaxation in cardiac myocytes. The influence of aging and exercise on the expression of PV in rat heart was investigated. Male Wistar rats at each of the following ages: 3, 6, 12 and 18-months were divided into sedentary and exercise groups. The exercise group had been trained to swim for 6 months. The hearts were processed for immunohistochemistry and Western blotting. The intensity of PV immunoreactivity (PV-ir) was strong in the 9 and 12-month hearts and decreased in the 18-month hearts. The smallest amount was in the 24-month rat heart when compared to those of the 9, 12 and 18 month rat hearts. A significant decrease of PV expression was found at 18-months (49.05 ± 11.98) and 24-months (45.67 ± 4.64) compared to that of the 12-month rat heart (67.67 ± 15.12) ($P < 0.05$). The intensity of PV-ir was obviously stronger in the 9-month, 12-month and 18-month exercised rat hearts than those of the sedentary rat heart whereas, in the 24-month rat heart, PV-ir was slightly stronger in the exercised rat heart than that of the sedentary rat heart. A significant increase of PV expression was identified in the exercised rat heart compared to those of the sedentary rat heart in the 9-month ($S = 62.35 \pm 16.33$, $E = 83.20 \pm 7.41$), 12-month ($S = 67.67 \pm 15.12$, $E = 87.46 \pm 15.47$) ($P < 0.05$) and 18-month samples ($S = 49.05 \pm 11.98$, $E = 82.01 \pm 21.11$) ($P < 0.01$). Our data indicate that PV expression is down regulated in rat heart during aging. This may explain the diastolic dysfunction which has been predominantly found in the elderly. In addition, our data indicate that long-term swimming exercise could induce an increase of PV expression and this may explain the fundamental mechanism of exercise on improving the aging-induced decrease in cardiac myocyte relaxation.

Key words Parvalbumin, Calcium binding protein, Aging, Swimming, Rat heart

Introduction

Many studies have shown that physiological aging induces a decrease in cardiac functions (Rengo et al. 1991). In several mammalian species including humans, it has been demonstrated that aging is related to impaired cardiac relaxation (Weisfeldt 1975; 1980). In addition, prolonged relaxation is identified in senescent myocytes (Weisfeldt 1998). This impairment in diastolic function is a hallmark of congestive heart failure in the elderly (Haney et al. 2005). Diastolic heart failure represents one of the major causes of morbidity and mortality in the elderly population (O'Mahony et al. 2003; Kitzman 2002). It is identified by a prolonged relaxation resulting in impaired filling and a depression in stroke volume (Lorell 1991; Mandinov et al. 2000; Zile and Brutsaert 2002). According to the work of Gwathmey et al. (1987), it has been shown that in human cardiac tissue samples obtained from diastolic heart failure patients, the duration time required to remove calcium (Ca^{2+}) from the myoplasm is prolonged.

Parvalbumin (PV), a small (12kDa) cytoplasmic calcium binding protein, plays an important role as a relaxing factor in fast-twitch skeletal muscle by acting as a calcium sink to temporarily bind calcium before uptake by the sarcoplasmic reticulum (SR) (Muntener et al. 1995; Hou et al. 1993; Lannergren et al. 1993). This process has the additional advantage that it is a non- ATP dependent process (Gerday and Gillis 1976; Haiech et al. 1979; Gillis et al. 1982). PV is therefore a target protein for the treatment of human diastolic heart failure. Recent, research has identified PV in the heart tissue of various species: rat (Inaguma et al. 1991; Vongvatcharanon and Vongvatcharanon 2003; Vongvatcharanon et al. 2006), mouse, chicken, rabbit, pig (Vongvatcharanon et al. 2008) and it has been demonstrated that PV is implicated in mediating relaxation in cardiac myocytes (Coutu et al. 2003). In an aging rat, down regulation of PV expression has been identified in fast-twitch skeletal muscles (Cai et al. 2001). In addition, from previous studies, up regulation of PV expression has been demonstrated in the adult rat heart (Vongvatcharanon et al. 2006). However, there has been no information on PV expression in the rat heart during aging. This information may be useful for explaining the pathology of diastolic dysfunction which has been predominantly found in the elderly.

It is well known that chronic endurance exercise training improves cardiac functions (Barnard et al. 1980; Schaible and Schever 1985; Jin et al. 2000). Normally, diastolic filling is reduced in aging, however, exercise training was found to increase diastolic filling in healthy young and old men (Levy et al. 1993). The role of exercise training in improving diastolic function is unclear. It has been demonstrated that exercise training improves the aging-induced decrease in myocardial contraction and relaxation (Levy et al. 1993; Li et al. 1986; Starnes et al. 1983). In rat, swimming exercise has been demonstrated to induce cardiovascular responses especially, by inducing an increase in the left ventricular end-diastolic volume and much more than did a running exercise (Geenen et al. 1988). Therefore, the purpose of the present studies was to evaluate the

effect of aging and long-term swimming exercise on the expression of PV in the rat heart. The results from this study may explain the pathology of diastolic dysfunction in the elderly and may have an important clinical implication for preventing diastolic heart failure.

Materials and methods

Animals

Twenty male Wistar rats at each of the following ages: 3-months-old (young), 6-months-old (young adult), 12-months-old (adult), 18- months-old (middle aging) were obtained from the Animal Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand. The maturity stage was assigned according to the work of Narayanan (1987). The experimental protocols described in the present study were approved and guided by the Animal Ethical Committee of the Prince of Songkla University for the care and use of experimental animals. All rats were given standard rat chow and tap water *ad libitum* and were housed at $23\pm 2^{\circ}\text{C}$ on a 12 h dark and 12 h light cycle. The rats from each of the different age groups were divided into two groups, a sedentary group ($n= 10$) and an exercise group ($n= 10$).

Training program

The swimming protocol initially started at 5 min/day and was gradually increased by an additional 5 min/day. Swimming frequency was three days/week for a total duration of six month. The rats swam in groups of five animals, because it has been demonstrated that the intensity of swimming exercise was significantly raised by any interaction among the rats (Iemitsu et al. 2004), in a 60-cm-deep tub and a surface area of $2,830\text{ cm}^3$ with water temperature maintained at $32\text{--}34^{\circ}\text{C}$, and were towelled dry, and kept warm by lighting after each exercise session. According to the work of Matsumoto et al (1996), a forced-swimming apparatus, a swimming pool with a pump (type C-P60H, Hitachi, Tokyo, Japan) that generated circulating currents, was developed to standardize the workload and reduce the swimming time for endurance swimming. Thus, after 2-month, the rats swam in a circulating water tank which had been modified for them. Measurement of the maximum swimming time was evaluated in each age group according to the work of Matsumoto et al (1996). Briefly, the rats were made to swim in groups of five at a time until fatigue, defined by the failure to rise to the surface of the water to breathe within a 7-s period. A different time for the forced swimming were applied to the different age groups. 20 min/day for 3 and 6 month old rats, 15 min/day for 12-month old rats and 10 min/day for 18 month old rats for a total duration of four months. At the end of the exercise period, the rats were 9, 12, 18 and 24 months old.

Tissue preparation

Rats were anesthetized by an intraperitoneal injection of 75 mg/kg of pentobarbital sodium. Hearts were then removed and divided into two halves. Only the left and right ventricles were used in this study. The Extensor Digitorum Longus (EDL) muscle was also removed, due to it being known to have a high parvalbumin content (Heizmann et al. 1982) and this was divided into two halves, to be used as positive controls. The ventricles and EDL were processed for immunohistochemistry and Western blotting.

Immunohistochemistry

Tissues were fixed in 10% formalin and processed for paraffin wax embedding according to routine protocols. Serial 5 μ m-thick sections were cut by a microtome and mounted on TESPA-coated slides. The immunohistochemistry method has been described previously (Vongvatcharanon et al 2006; 2008). Briefly, after deparaffinization and dehydration, the sections were incubated sequentially with 0.3% (v/v) Triton X-100 for 30 min, 3% (v/v) H_2O_2 in methanol for 30 min, 10% (v/v) normal horse serum (Vector Laboratories, Burlingham, CA) 60 min, and then with anti-parvalbumin mouse monoclonal antibody (Parv-19, Sigma) at a dilution of 1:1,000, for 48 h, at 4°C. The specificity of the antibody has been described previously (Celio and Heizmann 1981; 1982; Celio et al. 1988; Vongvatcharanon et al 2006). The sections were then incubated with biotinylated secondary anti-mouse IgG antibody (Vector Laboratories), at a dilution of 1:200, for 2 h, washed in 0.1M Tris phosphate buffer, pH 7.4, 3 times for 5 min and incubated for 2 h with the avidin-biotin complex. Immunoreactive sites were revealed using the diaminobenzidine (DAB) chromogen-based visualization system (Vector Laboratories). Negative controls were performed by omitting the primary antibodies.

Western blotting

The Western blotting method has been described previously (Vongvatcharanon et al 2006). Briefly, rat hearts and EDL were freshly removed and washed with phosphate buffered saline. The heart and EDL cell lysates were prepared using a pestle with mortar and lysis buffer. The cell lysates were centrifuged at 14000 X g, 4°C for 10 min. The supernatant fractions were separated and the protein concentrations were determined by the DC protein assay (Bio-Rad, Thailand). 0.5 μ g of lystate EDL sample and 20 μ g of varied age lysate heart samples were separated by SDS-polyacrylamide gel (12%) electrophoresis and transferred onto nitrocellulose membranes. Blots were treated with anti-parvalbumin (Parv-19, Sigma) (1:1000) as the primary antibody, followed by horse radish peroxidase conjugated anti-mouse IgG (1:5000) as the secondary antibody. The parvalbumin protein bands (12 KDa) were visualized using a chemiluminescence method (Amersham Biosciences). Band intensities were measured with an Imaging Quant TL (v. 2003.03) Densitometer (Amersham Biosciences).

Statistical analysis

The data were reported as means of the indicated number \pm standard error mean (SEM). Statistical analysis for comparing the expression of PV in the different age groups was performed by One-way ANOVA to determine whether there were any significant differences among multiple groups of data. When there was a significant difference, a Least-Significant-Difference test was performed to determine which of the individual groups had a different. P-Value and, < 0.05 was considered

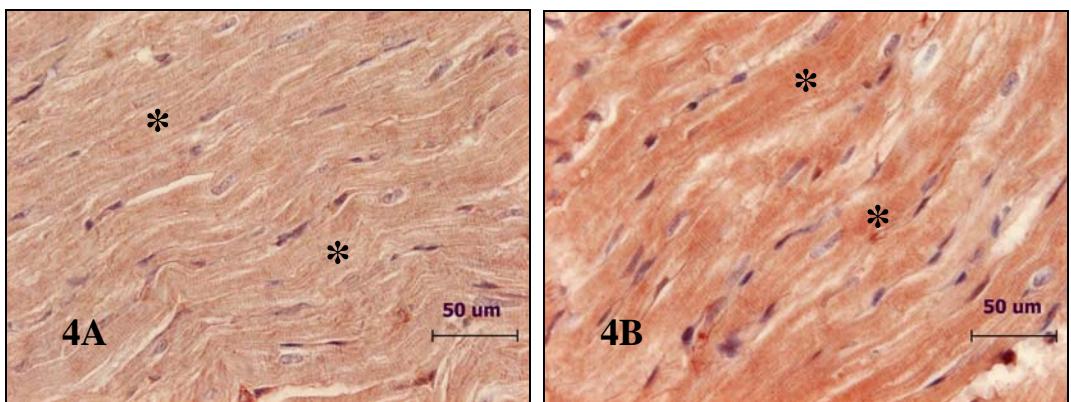
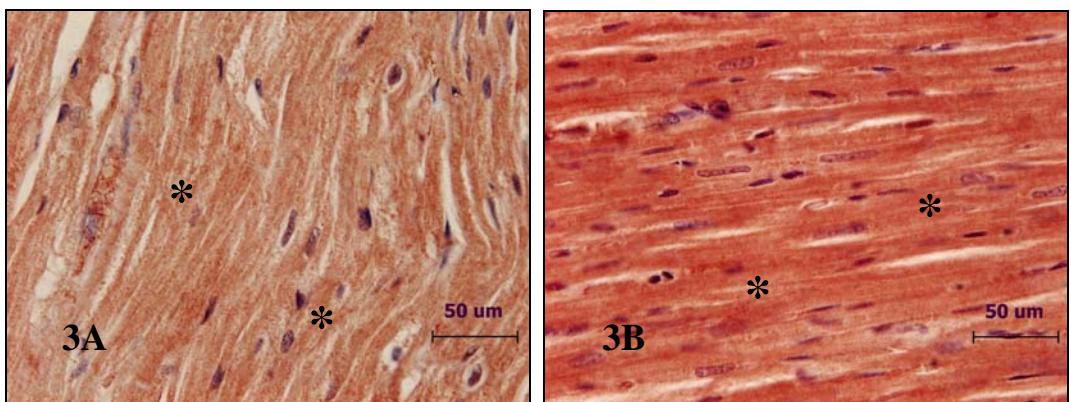
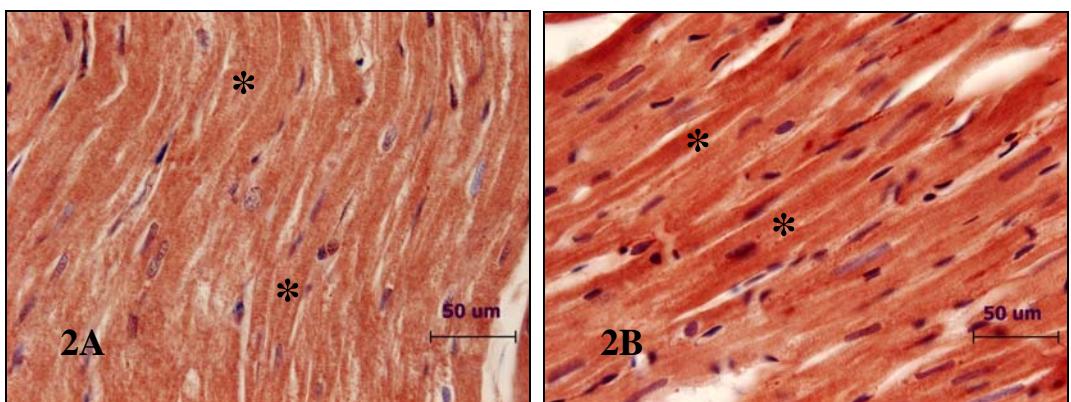
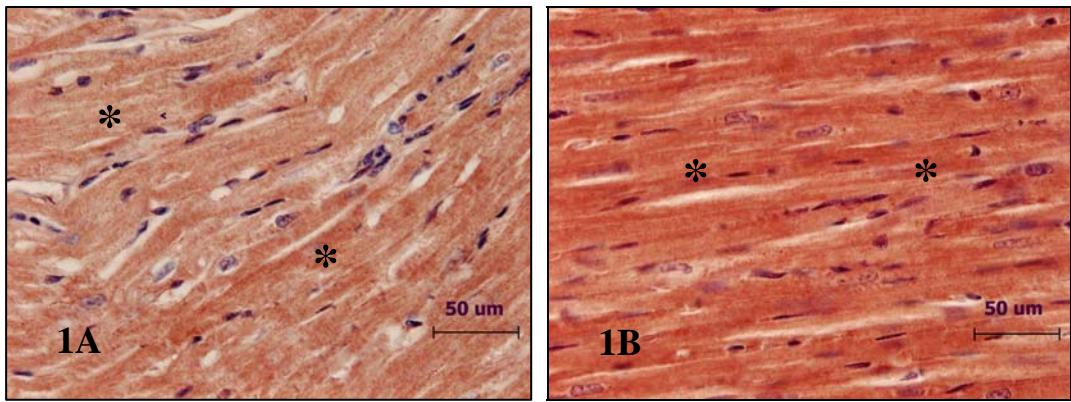
significant. For comparing the expression of PV in the non exercise and exercise groups the T-test was performed.

Results

PV immunoreactivity (PV-ir) in the aging rat heart

PV-ir was identified in the cytoplasm of all cardiac myocytes and all cardiac myocytes in any sample had identical intensities of PV-ir (Fig. 1A). The intensity of PV-ir was strong in the 9-month and 12-month rat hearts (Fig. 1A and 2A). The intensity of PV-ir decreased in the 18-month rat heart (Fig. 3A) and the intensity of PV-ir was weakest in the 24-month rat heart compared to those of the 9,12 and 18 month samples (Fig. 4A).

PV immunoreactivity (PV-ir) in the sedentary and exercised rat heart





The intensity of PV-ir was obviously stronger in the 9-month, 12-month and 18-month exercised rat heart than those of the sedentary rat heart (Fig. 1A-B, 2A-B and 3A-B). whereas, in the 24-month rat heart, PV-ir was only slightly stronger in the exercised rat heart than that of the sedentary rat heart (Fig.4A and B).

Expression of PV in aging rat heart


The expression of PV was identified in EDL and the rat hearts in all age groups (Fig.5). The expression of PV was not significantly different between 9-month (62.35 ± 16.33) and 12-month (67.67 ± 15.12) samples. On the other hand, a significant decrease of PV expression was found in the 18-month (49.05 ± 11.98) and 24-month samples (45.67 ± 4.64) compared to that of the 12-month rat heart samples ($P < 0.05$) (Fig.6). No significant difference of PV expression was observed in the 18-month and 24-month rat hearts.

Expression of PV in the sedentary and exercised rat heart

Expression of PV was higher in the exercised rat heart than in the sedentary rat heart in the 9-month, 12-month, 18-month and 24-month samples (Fig.5). A significant increase of PV expression was identified in the exercised rat heart compared to those of the sedentary rat heart in the 9-month ($S = 62.35 \pm 16.33$, $E = 83.20 \pm 7.41$), 12-month ($S = 67.67 \pm 15.12$, $E = 87.46 \pm 15.47$) ($P < 0.05$) and 18-month samples ($S = 49.05 \pm 11.98$, $E = 82.01 \pm 21.11$) ($P < 0.01$). No significant differences of PV expression were found in the 24-month sedentary and exercised rat hearts ($S = 45.68 \pm 4.65$, $E = 49.92 \pm 9.67$) (Fig.7).

Expression of PV in aging rat heart

Expression of PV in rat heart at different aging

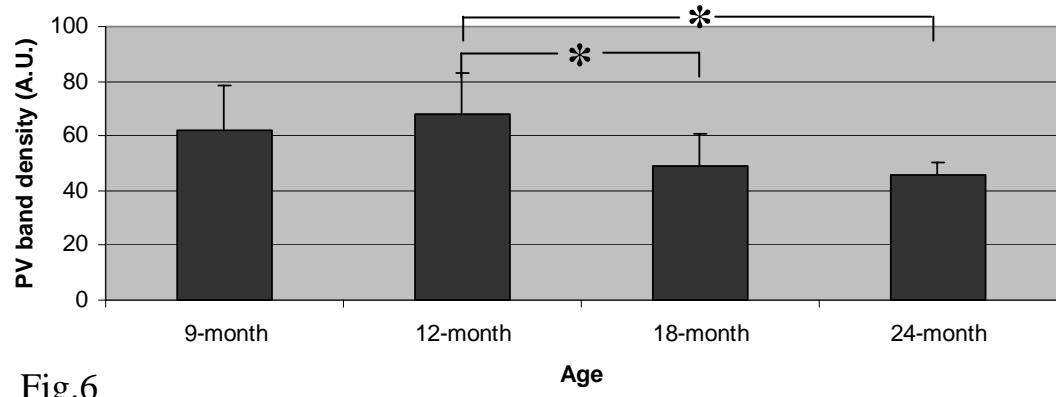


Fig.6

Expression of PV in sedentary and excercised rat heart

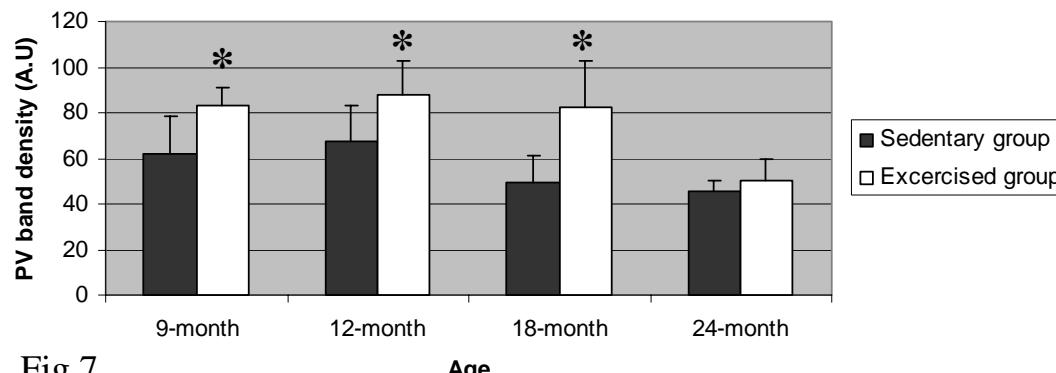


Fig.7

Legends to Figures

Figure 1. (A) 9-month sedentary rat heart section showing strong intensity of PV-ir in the cytoplasm of all cardiac myocytes(*)
(B) 9-month exercised rat heart section showing stronger intensity of PV-ir in cardiac myocytes(*)

Figure 2. (A) 12-month sedentary rat heart section showing strong intensity of PV-ir in the cytoplasm of all cardiac myocytes(*)
(B) 12-month exercised rat heart section showing stronger intensity of PV-ir in cardiac myocytes(*)

Figure 3. (A) 18-month sedentary rat heart section showing strong intensity of PV-ir in the cytoplasm of all cardiac myocytes(*)
(B) 18-month exercised rat heart section showing stronger intensity of PV-ir in cardiac myocytes(*)

Figure 4. (A) 24-month sedentary rat heart section showing weak intensity of PV-ir in the cytoplasm of all cardiac myocytes(*)
(B) 24-month exercised rat heart section showing slightly stronger intensity of PV-ir in cardiac myocytes(*)

Figure 5. Expression of PV in EDL and rat heart in the different groups.

Figure 6. Histogram showing the PV band density (A.U.= arbitrary unit) in different age groups. * significantly different at $P<0.05$, $n=6$

Figure 7. Histogram showing the PV band density (A.U.= arbitrary unit) in sedentary and exercised rat heart in the different age groups.
* significantly different, at $P<0.05$, ** significantly different, at $P<0.01$, $n=6$

Discussion

Expression of PV in aging rat heart

Our data demonstrated that the intensity of PV immunoreactivity decreased in middle age and aging rat hearts. In addition, our data showed the highest expression of PV in the 12-month rat heart and this was reduced at 18- and 24- months. The lowest PV expression was identified at 24-months, so indicating that down regulation of PV expression was found in the rat heart during aging. Our data agree with a previous study by Cai et al. (2001) who showed that PV was down regulated in rat fast-twitch skeletal muscle during aging. In an aging heart, it has been demonstrated that the cells are larger in the left ventricle because there is a drop out of individual cells with age. In humans between the age of 20 and 90, there is a 40% to 50% drop in the total number of nuclei and hence the number of cells in the cardiac myocytes (Olivetti et al. 1991). This indicated an age-associated drop out of individual cells with a compensatory hypertrophy of the remain cell (Weisfeldt 1998). The drop in the total number of cardiac myocytes may reflect down regulation of PV expression in the aging rat heart compared to the adult rat heart.

According to the function of PV as a relaxing factor in skeletal muscle, attempts have been performed to use PV for clinical purpose in the treatment of diastolic heart dysfunction. The PV gene from a rat fast-twitch skeletal muscle was transferred *in vivo* into rat cardiac myocytes to increase PV levels in the cardiac tissue (Wahr et al. 1999; Szatkowski et al. 2001; Coutu et al. 2003; Michele et al. 2004; Schimdt et al. 2004). After transfer of the PV gene, diastolic dysfunction in diseased cardiac myocytes was corrected (Wahr et al. 1999), the speed of heart relaxation performance was increased (Szatkowski et al. 2001) and the *in vivo* diastolic function of an aged myocardium was enhanced (Michele et al. 2004). However, with this technique, activation of an immune response and overexpression are considered as major potential problems (Senior, 2001). Therefore, the potential application of this technique for human therapeutic purpose is still controversial and more effective techniques need to be established in order to prevent possible adverse effects. As a consequence of PV gene transfer, it has been suggested that PV is involved in mediating cardiac myocyte relaxation and the mechanism of PV in mediating cardiac myocyte relaxation was proposed by Coutu et al. (2003). They suggested that in late diastole, intracellular Ca^{2+} levels are low and PV is mainly bound to Mg^{2+} . At systole, intracellular Ca^{2+} levels increase resulting in the metal-bind sites on PV turning from the binding of Mg^{2+} to binding Ca^{2+} . However, the process of unbinding Mg^{2+} from PV is slow, thus the Ca^{2+} released at stimulation would primarily bind to TnC leading to cardiac myocyte contraction. At the end of systole, Ca^{2+} dissociated from the TnC and bound to PV resulting in cardiac myocyte relaxation. At mid to late diastole, intracellular Ca^{2+} levels reduce and the metal binding sites on PV changed back from binding Ca^{2+} to binding Mg^{2+} again. Therefore, a decrease of PV level may lead to prolonging cardiac relaxation. Abnormal cardiac relaxation and diastolic dysfunction have been widely demonstrated in a rat model of

senescence (Weisfeldt 1998; 1980). In addition, in several mammalian species including humans, postmaturational aging is associated with a slower rate of relaxation. The cellular and molecular mechanisms underlying this age-related change have only been partially identified to date. The rat model has been used for a number of studies on age related changes. These have identified an age-related decrease in the Ca^{2+} - sequestering activity. In the aging human heart, a decline in the myocardial sarcoplasmic reticulum content was found to prolong the contraction period by slowing the removal of Ca^{2+} following contraction (Cain et al., 1998). In aged Wistar rat, it has been demonstrated that the time to peak tension and peak shortening is increased and the duration of contraction is prolonged. This is most likely due to a reduced rate of Ca^{2+} uptake by the sarcoplasmic reticulum generated by a decline in either the Ca ATPase content or a reduction in the Ca ATPase activity (Jiang and Narayanan 1990). Thus, a decrease in either the Ca ATPase content or reduction in the Ca ATPase activity and a decrease in PV level in the aging rat heart may explain a reduction in the rate of Ca^{2+} uptake by the sarcoplasmic reticulum and contributes to a prolonged cardiac myocyte relaxation. This may explain the diastolic dysfunction that increases with age and is a hallmark of the aging heart (Schmidt et al. 2004).

Expression of PV in exercised rat heart

From our data, long term swimming exercise could induce up-regulation of PV expression in the rat heart of all age groups. However, the effect of exercise on mediating an increase of PV expression was different among the different age groups. In the 9 and 12-month rat heart, the exercise induced percentage increase of PV expression was lower than that of the 18-month sample (9-month = 133 %, 12-month = 129 % and 18 month = 167 %) This may be due to the basal PV expression in the 9- and 12-month samples being already high before exercise whereas in the 18-month sample, down regulation of PV expression was observed before exercise, therefore, exercise could induce a bigger increase of PV expression in the 18-month sample than in the 9-and12-month sample. These data indicate that the age group in which long term swimming exercise could induce an increase of PV expression was at 18-months. This is an important age group with clinical implications for preventing diastolic dysfunction in the elderly. From our data, we suggest that exercise in the young adult, adult and middle aged could induce PV expression better than exercise in the aging group. According to the work of Michele et al. (2004), it was reported that after the PV gene was transferred to the myocardium *in vivo*, the expression of PV is reduced in old rat heart compared to young rats. They explained that the reduced PV expression in the old rat heart compared to the young rat heart was due to morphological changes in the aged myocardium including cardiac hypertrophy. This may impact on the percentage of myocytes that can be targeted by a single injection of adenovirus and any alteration of protein synthesis in the aged myocardium may account for the lower levels of PV expression. It has been demonstrated that the rate of RNA and protein synthesis decreases in the aging group (Meerson et al. 1987). This may explain the low level of PV expression in the aging and

exercised aging groups. In contrast, from previous studies a high intensity running program could induce PV expression in both young and old skeletal muscles (Cai et al. 2001). This may be due to the different training regime of the exercise programs that might involve different tissues. It has been demonstrated that aging produces a decrease in cardiac function, such as cardiac myocytes contraction and relaxation and the risk of cardiovascular morbidity increases in the aged heart (Cappasso et al. 1983; Lakatta 1987). On the other hand, exercise training improves the aging-induced decrease in cardiac myocyte contraction and relaxation (Levy et al. 1993; Li et al. 1986). One explanation is that aging decreases the expression of SR Ca^{2+} -ATPase mRNA in the heart (Maciel et al. 1990). On the other hand, it has been shown that exercise training in aged rats improves the aging-induced decrease in expression of SR Ca^{2+} -ATPase mRNA in the heart (Take et al. 1996). In addition, exercise has been shown to enhance calcium uptake of the cardiac sarcoplasmic reticulum (Take et al. 1990) and could lead to an improvement of cardiac relaxation. Our data has demonstrated the down regulation of PV expression in the aging rat heart and long term swimming exercise induce an increase in PV expression in all age groups (adult, middle age and aging), this may also explain a prolongation of cardiac myocyte relaxation in the aging heart and exercise training improves the aging induced reduction in cardiac myocyte relaxation.

In conclusion, PV expression is down regulated in rat heart during aging and long term swimming exercise could reverse this aging-related change. Our results indicate that long term swimming exercise could be recommended to improve heart function during aging because PV plays an important role in regulating cardiac myocyte contraction and relaxation.

Acknowledgements

This study was financially supported by the Commission on Higher Education and Thailand Research Fund under MRG4880155. We would like to thank Dr. Brian Hodgson at PSU for assistance with the use of English.

References

Barnard RJ, Duncan HW, Baldwin KM, Grimsditch G, Buckberg GH (1980) Effects of intensive exercise training on myocardial performance and coronary blood flow. *J Appl Physiol* 49 : 444-449.

Cai DQ, Li M, Lee KKH, Lee KM, Qin L, Chan KM (2001) Parvalbumin expression is downregulated in rat fast-twitch skeletal muscles during aging. *Arch Biochem Biophys* 387 : 202-208.

Cain BS, Meldrum DR, Joo KS, Wang JF, Meng X, Cleveland JC Jr, Banerjee A, Harken AH (1998) Human SERCA2a levels correlate inversely with age in senescent human myocardium. *J Am Coll Cardiol* 32: 458-467.

Cappasso JM, Malhotra A, Remily RM, Scheuer J, Sonneblick EH (1983) Effects of age on mechanical and electrical performance of rat myocardium. *Am J Physiol Heart Circ Physiol* 245: H72-H81.

Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. *Nature* 293: 300-2.

Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. *Nature* 297: 504-6.

Celio MR, Baier W, Scharer L, de Viragh PA, Gerday C (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin. *Cell Calcium* 9: 81-6.

Couto P, Hirsch JC, Szatkowski ML, Metzger JM (2003) Targeting diastolic dysfunction by genetic engineering of calcium handling proteins. *Trends Cardiovasc Med* 13 : 63-67.

Geenen D, Buttrick P, Scheuer J (1988) Cardiovascular and hormonal responses to swimming and running in the rat. *J Appl Physiol* 65: 116-123.

Gerday C, Gillis JM (1976) The possible role of parvalbumins in the control of contraction. *J Physiol (Lond)* 258: 96-7.

Gillis JM, Thomason D, Lefevre J, Kretsinger RH (1982) Parvalbumins and muscle relaxation: a computer simulation study. *J Muscle Cell Motil* 3: 377-98.

Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. *Circ Res* 61: 70-76.

Haiach J, Derancourt J, Pechere JF, Demaille JG (1979) Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. *Biochemistry* 18: 2752-8.

Haney S, Sur D, Xu Zijian (2005) Diastolic heart failure: A review and primary care perspective. *J Am Board Fam Pract* 18 : 198-198.

Heizmann CW, Berchtold MW, Rowleson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. *Proc Natl Acad Sci USA* 79: 7243-7.

Hou TT, Johnson JD, Rall JA (1993) Role of parvalbumin in relaxation of frog skeletal muscle. *Adv Exp Med Biol* 332: 141-151.

Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Matsuda M, Yamaguchi I (2004) Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. *Am J Physiol Heart Circ Physiol* 286: H1696-H1705.

Inaguma Y, Kurobe N, Shinohara H, Kata K (1991) Sensitive immunoassay for rat parvalbumin: tissue distribution and developmental changes. *Biochim Biophys Acta* 1075 : 68-74.

Jiang MT, Narayanan N (1990) Effects of aging on phospholamban phosphorylation and calcium transport in rat cardiac sarcoplasmic reticulum. *Mech Ageing Dev* 54: 87-101.

Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, VanPeborgh J, Paoni NF (2000) Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. *Am J Physiol Heart Circ Physiol* 279: H2994-H3002.

Kitzman DW (2002) Diastolic heart failure in the elderly. *Heart Fail Rev* 7 : 17-27.

Lakatta EG (1987) Cardiac muscle changes I senescence. *Annu Rev Physiol* 49: 519-531.

Lannergren J, Elzinga G, Stienen GJ (1993) Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of *Xenopus laevis*. *J Physiol* 463 : 123-140.

Levy WC, Cerqueira MD, Abrass IB, Schwartz RS, Stratton JR (1993) Endurance exercise training augments diastolic filling at rest and during exercise in healthy young and older men. *Circulation* 88 : 116-126.

Li Y, Lincoln T, Mendelowitz D, Grossman W, Wei JY (1986) Age-related differences in effect of exercise training on cardiac muscle function in rats. *Am J Physiol Heart Circ Physiol* 251 : H12-H18.

Lorell BH (1991) Significance of diastolic dysfunction of the heart. *Annu Rev Med* 42: 411-36.

Maciel LM, Polikar R, Rohere D, Popovich BK, Dillmann WH (1990) Age-induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca^{2+} -ATPase of the rat heart. *Circ Res* 67: 230-234.

Matsumoto K, Ishihara K, Tanaka K, Inove K, Fushiki T (1996) An adjustable-current swimming pool for the evaluation of endurance capacity of mice. *J Appl Physiol* 81: 1843-1849.

Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. *Cardiovasc Res* 45: 813-25.

Meerson FZ, Javich MP, Lerman MI (1987) Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyperfunction and on aging. *J Mol Cell Cardiol* 10: 145.

Michele DE, Szatkowski ML, Albayya FP, Metzger LM (2004) Parvalbumin gene delivery improves diastolic function in the aged myocardium *in vivo*. *Mol Ther* 10: 399-403.

Muntener M, Kaser L, Weber J, Berchtold MW (1995) Increase of skeletal muscle relaxation speed by direct injection of parvalbumin Cdna. *Proc Natl Acad Sci USA* 92: 6504-6508.

Narayanan N (1987) Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. *Mech Ageing Dev* 38: 127-43.

Olivetti G, Melessari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart : myocytes loss and reactive cellular hypertrophy. *Cir Res* 68: 1566-1568.

O'Mahony MS, Sim MFV, Ho SF, Steward JA, Buchalter M, Burr M (2003) Diastolic heart failure in older people. *Age and ageing* 32 : 519-524.

Rengo F, Vitale D, Ferrara N, Nicolino A, Rengo C, Leodco D, Abete P, Guerra N (1991) Aging and left ventricular diastolic function. *Cardiol* 36 : 247-253.

Schaible TF, Scheuer J (1985) Cardiac adaptations to chronic exercise. *Prog Cardiovasc Dis* 27: 297-324.

Schmidt U, Zhu X, Lebeche D, Huq F, Guerrero JL, Hajjar RJ (2004) *In vivo* gene transfer of parvalbumin improves diastolic function in aged rat hearts. *Cardiovasc Res* 66: 318-323.

Senior K (2001) Heart failure: running to the rescue. *DDT* 6: 275-276.

Starnes JW, Beyer RE, Edington DW (1983) Myocardial adaptations to endurance exercise in aged rats. *Am J Physiol Heart Circ Physiol* 245 : H560-H566.

Szatkowski ML, Westfall MV, Gomez CA, Wahr PA, Michele DE, DelloRusso C, Turner II, Hong KE, Albayya FP, Metzger JM (2001) *In vivo* acceleration of heart relaxation performance by parvalbumin gene delivery. *J Clin Invest* 107: 191-8.

Take CA, Taffet GE, Hudson EK, Blaylock SL, McBride RP, Michael LH (1990) Enhanced calcium uptake of cardiac sarcoplasmic reticulum in exercise-trained old rats. *Am J Physiol* 258 : H431-H435.

Take CA, Helgason T, Hyek MF, McBride RP, Chen M, Richardson MA, Taffet GE (1996) Serca2A and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. *Am J Physiol*; 271: H68-H72.

Vongvatcharanon U, Vongvatcharanon S (2003) Localization of parvalbumin calcium binding protein in the rat heart. *Science Asia* 29: 319-325.

Vongvatcharanon U, Imsonpang S, Promwikorn W, Vongvatcharanon S (2006) Up-regulation of parvalbumin expression in newborn and adult rat heart. *Acta Histochemica* 108 : 447-454.

Vongvatcharanon S, Vongvatcharanon U, Boonyoung P (2008) Immunohistochemical localization of parvalbumin calcium-binding protein in the heart tissues of various species. *Acta Histochemica* 110: 26-33.

Wahr PA, Michele DE, Metzger JM (1999) Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes. *Proc Natl Acad Sci USA* 96: 11982-5.

Weisfeldt ML (1975) Function of cardiac muscle in aging rat. *Adv Ecp Med Biol* 61: 95-118.

Weisfeldt ML (1980) Aging of the cardiovascular system. *N Engl J Med* 303: 1172-1174.

Weisfeldt M (1998) Aging, changes in the cardiovascular system, and responses to stress. *Am J Hypertens* 11 : 41S-45S.

Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. *Circulation* 105: 1387-93.