

รายงานวิจัยฉบับสมบูรณ์

โครงการการพัฒนาระบบการแยกโดยอาศัยหลักการใหลที่ทำให้ขนาดเล็กลง เพื่อการเตรียมตัวอย่างแบบออนไลน์

โดย ดร. รจนา บุระคำ และคณะ

สัญญาเลขที่ MRG4880157

รายงานวิจัยฉบับสมบูรณ์

โครงการการพัฒนาระบบการแยกโดยอาศัยหลักการใหลที่ทำให้ขนาดเล็กลง เพื่อการเตรียมตัวอย่างแบบออนไลน์

คณะผู้วิจัย

สังกัด

- 1. ดร. รจนา บุระคำ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น
- 2. ศ.ดร. เกตุ กรุดพันธ์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และ สำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

การพัฒนาระบบการแยกโดยอาศัยหลักการใหลที่ทำให้ขนาดเล็กลง เพื่อการเตรียมตัวอย่างแบบออนไลน์

หัวหน้าโครงการ: ดร. รจนา บุระคำ

นักวิจัยที่ปรึกษา: ศาสตราจารย์ ดร. เกตุ กรุดพันธ์

โครงการนี้ได้วิจัยเกี่ยวกับการพัฒนาระบบการแยกและการวิเคราะห์ทางเคมี โดยใช้เทคนิค การไหล เพื่อประยุกต์สำหรับการเตรียมตัวอย่างและการวิเคราะห์ โดยเน้นการลดขนาดการวิเคราะห์ ปรับขั้นตอนต่างๆให้ง่ายขึ้น และพัฒนาระบบแบบใหม่โดยใช้อุปกรณ์ที่มีราคาถูก ซึ่งได้พัฒนา 2 ระบบ ได้แก่ ซีเควนเชียลอินเจคชัน-แล็ปแอทวาล์ว สำหรับการสกัดแบบออนไลน์ในระดับไมโคร และ ซีเควนเชียลอินเจคชัน-โครมาโทกราฟีของเหลวสมรรถนะสูงสำหรับการเตรียมอนุพันธ์แบบออนไลน์

ระบบซีเควนเชียลอินเจคชัน-แล็ปแอทวาล์ว สำหรับการสกัดแบบออนไลน์ในระดับไมโคร ได้ออกแบบระบบโดยใช้กรวยแยกขนาดเล็กที่มีเครื่องตรวจวัด ติดไว้ที่พอร์ตของวาล์วเพื่อทำหน้าที่ สกัดและตรวจวัดสารเป้าหมาย โดยเลือกการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบในน้ำเป็น การวิเคราะห์อาศัยหลักการทำให้เกิดสารประกอบไอออนรวมตัว ตัวอย่างในการทดสอบระบบ ระหว่างสารลดแรงตึงผิวชนิดประจุลบกับเมทิลลืนบลู ซึ่งสามารถสกัดโดยใช้ใดคลอโรมีเทนก่อน ขั้นตอนการวิเคราะห์ทำได้โดยการคุดสารตัวอย่าง ตรวจวัดด้วยเทคนิคสเปกโทรโฟโทเมทรี รีเอเจนต์ และ ไดคลอโรมีเทน เข้าสู่ระบบแล้วให้เกิดการสกัดภายในท่อเล็กๆ หลังจากนั้นสารผสม หลังจากที่ปล่อยให้ชั้นของน้ำและตัวทำละลายอินทรีย์ จะถูกส่งไปยังกรวยแยกที่ติดอยู่บนวาล์ว แยกกันแล้ว จึงตรวจวัดการดุดกลื่นแสงของชั้นตัวทำละลายอินทรีย์ที่มีสารตัวอย่างที่สนใจอยู่ โดย ใช้สเปกโทรโฟโทมิเตอร์ผ่านทางสายใยแก้วนำแสงที่ติดอยู่บนส่วนของแล็ปแอทวาล์ว ประยุกต์สำหรับการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบในน้ำ โดยระบบที่พัฒนาขึ้นสามารถ สกัดสารโดยใช้ตัวทำละลายอินทรีย์ในปริมาณน้อยมาก เป็นระบบออนไลน์ ช่วยลดอันตรายอัน เนื่องจากไอของสารอินทรีย์ที่มีต่อผู้วิเคราะห์ได้ และสามารถประยุกต์สำหรับการวิเคราะห์สารอื่นๆ ได้อีกมากมาย

ระบบซีเควนเชียลอินเจคชัน-โครมาโทกราฟีของเหลวสมรรถนะสูง สำหรับการเตรียม อนุพันธ์แบบออนไลน์ ได้เลือกศึกษาการวิเคราะห์โลหะหนัก ได้แก่ Co(II) Cu(II) Ni(II) และ Fe(II) โดยใช้ 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) เป็น รีเอเจนต์ และตรวจวัดด้วยเทคนิคสเปกโทรโฟโตเมทรี ระบบที่พัฒนาขึ้นสามารถเตรียมอนุพันธ์ แบบออนไลน์และแยกสารประกอบเชิงซ้อนของโลหะทั้งสี่ชนิดได้ภายในเวลา 13 นาที และ ได้ นำไปประยุกต์สำหรับการวิเคราะห์โลหะในตัวอย่างที่หลากหลาย ซึ่งข้อได้เปรียบของระบบที่ พัฒนาขึ้นนี้ คือ การปรับขั้นตอนการเตรียมอนุพันธ์ให้ง่ายขึ้น โดยทำให้เป็นระบบออนไลน์ ที่ใช้ ปริมาณสารตัวอย่างและรีเอเจนต์น้อยลง นอกจากนี้ระบบซีเควนเชียลอินเจคชันสามารถทำงาน คู่ขนานไปกับระบบโครมาโทกราฟี จึงช่วยลดเวลาในการเตรียมตัวอย่างและการวิเคราะห์ลงได้

ABSTRACT

Development of Miniaturized Flow Separation Systems for On-Line Sample Pretreatment

Principal investigator: Dr. Rodjana Burakham

Mentor: Professor Dr. Kate Grudpan

In this project, separation and analytical systems involving flow-based techniques were

developed for sample pretreatment and chemical analysis. Two developed systems, including

sequential injection-lab-at-valve (SI-LAV) for on-line micro-extraction and sequential injection-

high performance liquid chromatography (SI-HPLC) for on-line pre-column derivatization,

emphasized miniaturization using simple and cost-effective instrumentation.

The SI-LAV system was developed for on-line micro-extraction using a small separating

chamber situating spectrophotometric detector via optical fibers attached at a port of a selection

valve. The extractive determination of anionic surfactant in water samples was selected as a model.

The detection method is based on the formation of ion-association compound between anionic

surfactant and methylene blue, which can be extracted into dichloromethane before

spectrophotometric detection. Sample, reagent and dichloromethane are sequentially aspirated via

the multiposition selection valve attached with an extraction coil where the extraction process is

performed. The aqueous and organic phases are separated in a conical separating chamber LAV

unit. The organic phase containing extracted product is then monitored spectrophotometrically.

Some water samples have been analyzed for anionic surfactants by the developed procedure. The

developed system involves a considerable reduction of organic solvent and can be applied for

various chemical analyses.

The SI was coupled to HPLC for an on-line simple pre-column derivatization and

determination of metal ions, including Co(II), Cu(II), Ni(II) and Fe(II). 2-(5-nitro-2-pyridylazo)-5-

[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) was used as a derivatizing reagent. The

detection principle is spectrophotometry. Using the proposed SI-HPLC system, on-line

derivatization and separation of four metals-nitro-PAPS complexes was achieved within 13 min.

The developed method has been successfully applied for the determination of metal ions in various samples. The system offers advantages in simple pretreatment step with on-line derivatization and less consumption of sample and reagent. In addition, by parallel operation of derivatization and separation, better analysis time could be gained.

Executive Summary

ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ (MRG4880157)

1. ชื่อโครงการ (ภาษาไทย) การพัฒนาระบบการแยกโดยอาศัยหลักการ ใหลที่ทำให้ขนาดเล็ก

ลงเพื่อการเตรียมตัวอย่างแบบออนไลน์

(ภาษาอังกฤษ) Development of Miniaturized Flow Separation Systems for

On-line Sample Pretreatment

2. หัวหน้าโครงการ คร. รจนา บุระคำ

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

อ.เมือง จ.ขอนแก่น 40002

โทร. 0 4320 2222-41 ต่อ 12243

โทรสาร 0 4320 2373

e-mail: rburakham@yahoo.com

นักวิจัยที่ปรึกษา ศาสตราจารย์ คร. เกตุ กรุคพันธ์

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

อ.เมือง จ.เชียงใหม่ 50200

โทร. 0 5394 1910

โทรสาร 0 5322 2268

e-mail: kate@chiangmai.ac.th

3. สาขาวิชาที่ทำการวิจัย

เคมีวิเคราะห์ เน้นการพัฒนาเครื่องมือและระบบการวิเคราะห์แบบใหม่

5. ระยะเวลาดำเนินงาน

2 ปี (1 มิถุนายน 2548 – 31 พฤษภาคม 2550)

6. วัตถุประสงค์ของโครงการ

เพื่อพัฒนาระบบการแยกโดยอาศัยหลักการใหลที่ทำให้ขนาดเล็กลง เพื่อเป็นระบบการ เตรียมตัวอย่างและการวิเคราะห์แบบออนไลน์แบบใหม่ ที่สามารถทำได้ง่าย และราคาประหยัด โดย อาศัยหลักการใหล การแยกด้วยโครมาโทกราฟีและเทคนิคอื่นๆที่เกี่ยวข้อง และระบบที่พัฒนาขึ้น สามารถนำมาประยุกต์ใช้ได้กับการวิเคราะห์ตัวอย่างจริง

7. ขอบเขตของการวิจัย

- (1) การพัฒนาเทคนิคซีเควนเชียลอินเจคชันร่วมกับเทคนิคการแยกทางโครมาโทกราฟีหรือ เทคนิคอื่นๆที่เกี่ยวข้อง เพื่อใช้ในการเตรียมตัวอย่างแบบออนไลน์ เช่น แล็ปแอทวาล์ว แบบแนวคิด ใหม่ เพื่อให้ได้ระบบการวิเคราะห์ที่สามารถวิเคราะห์ได้อย่างรวดเร็วและมีประสิทธิภาพสูง
- (2) การพัฒนาระบบ miniaturized flow separation systems ที่มี on-line sample pretreatment โดยสนใจการปรับ/พัฒนาระบบให้ง่าย และใช้เวลาในการวิเคราะห์น้อยลง

8. Output

มีผลงานเป็นระบบการวิเคราะห์แบบใหม่ที่เป็น miniaturized flow separation system ที่มี on-line sample pretreatment 2 ระบบ ได้แก่ SI-LAV สำหรับการสกัดแบบออนไลน์ และ SI-HPLC สำหรับการเตรียมอนุพันธ์แบบออนไลน์และการวิเคราะห์ด้วยโครมาโทกราฟี โดยทั้งสองระบบช่วย เพิ่มความสะดวก รวดเร็วในการวิเคราะห์ และลดค่าใช้จ่ายในการวิเคราะห์ เนื่องจากใช้อุปกรณ์ที่มี ราคาประหยัด และลดปริมาณการใช้สารเคมี

ผลงานบางส่วนของโครงการ ได้รับการตีพิมพ์ในวารสารวิชาการนานาชาติ 1 เรื่อง และ กำลังอยู่ในระหว่างการพิจารณาอีก 1 เรื่อง มีการนำเสนอในการประชุมวิชาการระดับนานาชาติ (ทั้ง แบบบรรยายและโปสเตอร์) จำนวน 3 เรื่อง และ ในการประชุมวิชาการระดับชาติจำนวน 7 เรื่อง นอกจากนี้ยังมีผลงานที่สัมพันธ์กับโครงการ ซึ่งได้รับการสนับสนุนบางส่วนจากแหล่งทุนอื่นๆ (โครงการเมธีวิจัยอาวุโส "การพัฒนาการวิเคราะห์ระดับไมโครและนาโนโดยเทคนิคที่ใช้การไหล" โดย สาสตราจารย์ คร. เกตุ กรุดพันธ์ และ โครงการพัฒนาบัณฑิตศึกษาและการวิจัยทางเคมี (PERCH)) ได้รับการตีพิมพ์ในวารสารวิชาการนานาชาติจำนวน 2 เรื่อง และ นำเสนอในการประชุม วิชาการทั้งระดับชาติและนานาชาติจำนวน 8 เรื่อง

1. ความสำคัญและที่มาของปัญหาที่ทำวิจัย

การพัฒนาเทคนิคในการวิเคราะห์ที่มีประสิทธิภาพ สามารถวิเคราะห์ใด้อย่างรวดเร็ว มีความ ใว (sensitivity) ความแม่นยำ (precision) และ ความถูกต้อง (accuracy) นับว่ามีความสำคัญต่อการ วิเคราะห์ในหลายๆด้าน นอกจากนี้ ในการวิเคราะห์ตัวอย่างต่างๆ ไม่ว่าจะเป็น ตัวอย่างทาง สิ่งแวดล้อม ยา อาหาร หรือตัวอย่างทางชีวภาพ นอกจากเทคนิคที่ใช้ในการวิเคราะห์ตัวอย่างแล้ว การ เตรียมตัวอย่าง นับว่ามีความสำคัญอย่างยิ่ง เพราะเป็นขั้นตอนที่ใช้เวลามาก และเป็นปัจจัยหนึ่งที่ ส่งผลต่อความถูกต้องของข้อมูลที่ได้จากการวิเคราะห์ เทคนิคในการเตรียมตัวอย่างจะแตกต่างกันไป แล้วแต่ลักษณะและองค์ประกอบของตัวอย่าง เช่น การสกัด (extraction) การแยกด้วยโครมาโทกราฟี (chromatography) การย่อย (digestion) เป็นต้น ซึ่งโดยปกติมักจะทำแบบ batch ต้องใช้สารตัวอย่าง และรีเอเจนต์ที่เกี่ยวข้องในปริมาณมาก สิ้นเปลืองเวลาและแรงงาน การพัฒนาระบบให้มีขนาดเล็กลง (miniaturization) สำหรับการเตรียมตัวอย่างที่สามารถทำแบบออนไลน์ ใช้เวลาและสารในปริมาณ น้อยและเป็นระบบอัตโนมัติ จึงน่าจะมีประโยชน์ต่อวงการเคมีวิเคราะห์เป็นอย่างมาก

การลดขนาดของระบบการวิเคราะห์ให้เล็กลง อาจพัฒนาได้โดยเกี่ยวข้องกับเทคนิคการ วิเคราะห์ที่อาศัยหลักการใหล (Flow-Based Analysis) ซึ่งเป็นเทคนิคการวิเคราะห์แนวใหม่ที่มี ประสิทธิภาพและเป็นที่นิยมกันอย่างแพร่หลายในปัจจุบัน เนื่องจากมีการใช้สารตัวอย่าง/รีเอเจนต์ ปริมาณน้อย สามารถวิเคราะห์ได้อย่างรวดเร็ว ให้ผลการวิเคราะห์ที่มีความถูกต้อง แม่นยำ และช่วย เพิ่มความสะดวกในกรณีที่มีตัวอย่างจำนวนมาก เนื่องจากส่วนใหญ่การทำงานของระบบจะเป็นแบบ อัตโนมัติ การประยุกต์ใช้เทคนิคเหล่านี้สำหรับการเตรียมตัวอย่างและการวิเคราะห์แบบออนไลน์ เช่น การสกัด การแยกด้วยโครมาโทรกราฟี และอื่นๆ จึงน่าจะช่วยเพิ่มความสะดวกในการวิเคราะห์ ทำให้สามารถลดความสิ้นเปลืองเวลา แรงงาน ค่าใช้จ่าย ตลอดจนการใช้สารเคมีและตัวอย่างในการ วิเคราะห์ ซึ่งนับว่ามีประโยชน์และจำเป็นอย่างมากสำหรับการวิเคราะห์

Flow injection analysis (FIA) เป็นเทคนิคการวิเคราะห์ที่ได้รับความนิยมแพร่หลายใน วงการเคมีวิเคราะห์ เนื่องจากเป็นเทคนิคที่มีความสะดวก รวดเร็วและมีประสิทธิภาพ สามารถพัฒนา และประยกต์ใช้ได้กับการวิเคราะห์ในหลายๆแขนง²⁻⁴

Sequential injection analysis (SIA) ็เป็นเทคนิคที่ได้รับการพัฒนามาจาก FIA เพื่อปรับการ ทำงานให้เป็นระบบอัตโนมัติและมีความสามารถบางอย่างที่แตกต่างไปจากระบบ FIA เพื่อให้ สามารถเลือกใช้ให้เหมาะสมกับงานแต่ละประเภท นอกจากนี้ยังเป็นเทคนิคที่ใช้สารในปริมาณบ้อย ปัจจุบัน เทคนิค SIA ยังได้รับการพัฒนาอย่างต่อเนื่องเพื่อให้เป็นระบบที่สามารถทำได้มากกว่าการ วิเคราะห์สารอย่างเดียว เช่น มีการใช้ SIA ในการทำ speciation 6.7 และ preconcentration

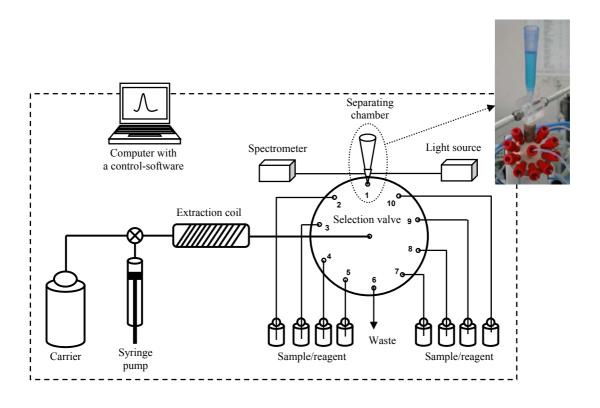
ปัจจุบันได้มีการพัฒนาระบบการวิเคราะห์ให้มีขนาดเล็กลง เรียกว่า micro-total analysis system (µ-TAS) เพื่อลดปริมาณการใช้สารตัวอย่างและรีเอเจนต์ เช่น SIA แบบ lab-on-valve และ lab-at-valve นอกจากนี้ ยังได้มีการพัฒนาเทคนิค SIA ให้มีความสามารถในการแยกสาร เรียกว่า sequential injection chromatography (SIC) โดยอาศัยความก้าวหน้าทางด้านโครมาโทกราฟิมา เกี่ยวข้อง ในขณะที่ SIA สามารถวิเคราะห์สารได้โดยใช้เครื่องมือที่มีความยุ่งยากซับซ้อนน้อยกว่าที่ ใช้ในระบบโครมาโทกราฟิ

การพัฒนาระบบการแยกโดยอาศัยหลักการใหล ที่ทำให้ขนาดเล็กลงเพื่อการเตรียมตัวอย่าง แบบออนไลน์ โดยการทำงานเป็นแบบอัตโนมัติ จึงน่าจะเป็นประโยชน์ต่อการวิเคราะห์ตัวอย่างใน หลายๆด้าน โดยเฉพาะในงานวิเคราะห์ที่มีจำนวนตัวอย่างมากๆ เช่น ทางด้านสิ่งแวดล้อม ยา อาหาร ฯลฯ เพื่อจะเป็นอีกทางเลือกหนึ่งของการวิเคราะห์แบบราคาประหยัด ซึ่งเหมาะกับงานวิเคราะห์ใน ประเทศไทย

ในโครงการวิจัยนี้ได้พัฒนาระบบการแยกโดยอาศัยหลักการไหลที่ทำให้ขนาดเล็กลง เพื่อ เป็นระบบการเตรียมตัวอย่างและการวิเคราะห์แบบออนไลน์แบบใหม่ ที่สามารถทำได้ง่าย และราคา ประหยัด โดยอาศัยหลักการไหล การแยกด้วยโครมาโทกราฟีและเทคนิคอื่นๆที่เกี่ยวข้อง และระบบ ที่พัฒนาขึ้นสามารถนำมาประยุกต์ใช้ได้กับการวิเคราะห์ตัวอย่างจริง ซึ่งจะเน้นการวิเคราะห์ตัวอย่าง ทางด้านสิ่งแวดล้อมและอาหาร โดยจะประกอบด้วย 2 ระบบการวิเคราะห์ คือ

- 1. พัฒนาระบบซีเควนเชียลอินเจคชัน-แล็ปแอทวาล์ว สำหรับการสกัดแบบออนไลน์ใน ระดับไมโคร โดยใช้การวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบเป็นตัวอย่างในการทดสอบระบบ
- 2. พัฒนาระบบการเตรียมอนุพันธ์แบบออนไลน์สำหรับการแยกและวิเคราะห์โลหะหนัก ด้วยเทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง

เอกสารอ้างอิง


- (1) J. Ruzicka, E.H. Hansen, Anal. Chim. Acta, 78 (1975) 145.
- (2) K. Grudpan, Talanta, 64 (2004) 1084.
- (3) R. Burakham, K. Higuchi, M. Oshima, K. Grudpan, S. Motomizu, Talanta, 64 (2004) 1147.
- (4) R. Burakham, M. Oshima, K. Grudpan, S. Motomizu, Talanta, 64 (2004) 1259.
- (5) J. Ruzicka, G.D. Marshall, Anal. Chim. Acta, 237 (1990) 329.

- (6) J.F. van Staden, L.V. Mulaudzi, R.I. Stefan, Anal. Chim. Acta, 499 (2003) 129.
- (7) L.V. Mulaudzi, J.F. van Staden, R.T. Stefan, Anal. Chim. Acta, 467 (2002) 35.
- (8) J. Ruzicka, Analyst, 125 (2000) 1053.
- (9) J. Jakmunee, L. Patimapornlert, S. Suteerapataranon, K. Grudpan, Talanta, 65 (2005) 789.
- (10) D. Satinsky, P. Solich, P. Chocholous, R. Karlicek, Anal. Chim. Acta, 499 (2003) 205.
- (11) J. Huclova, D. Satinsky, R. Karlicek, Anal. Chim. Acta, 494 (2003) 133.

2. การพัฒนาระบบซีเควนเชียลอินเจคชัน-แล็ปแอทวาลั่วสำหรับการสกัดแบบออนไลน์ ในระดับไมโคร

(Development of sequential injection-lab-at-valve (SI-LAV) for on-line micro-extraction)

ระบบ SI-LAV ที่พัฒนาขึ้นสำหรับการสกัดในระดับไมโครแบบออนไลน์ แสดงดังรูปที่ 1 และได้เลือกการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบในน้ำเพื่อเป็นต้นแบบในการทดสอบระบบ โดยการวิเคราะห์อาศัยหลักการทำให้เกิดสารประกอบไอออนรวมตัว (ion association compound) ระหว่างสารลดแรงตึงผิวชนิดประจุลบ (ในการทดลองนี้ใช้ sodium dodecylsulphate (SDS)) กับ methylene blue ซึ่งสามารถสกัดโดยใช้ไดคลอโรมีเทนก่อนการตรวจวัดด้วยเทคนิคสเปกโทรโฟโท เมทรี ที่ความยาวคลื่น 650 นาโนเมตร แผนภาพปฏิกิริยาแสดงดังรูปที่ 2

รูปที่ 1 ระบบ SI-LAV สำหรับการสกัดแบบออนไลน์

DS (aq) + MB (aq) (Blue) (Blue) DS (org) + MB (org) (Blue) (Blue) DS (org) + MB (org) (Blue) (Blue)

Dichloromethane phase


รูปที่ 2 แผนภาพปฏิกิริยาการเกิด ion association ระหว่าง dodecyl sulphate (DS) กับ methylene blue (MB) และการสกัด

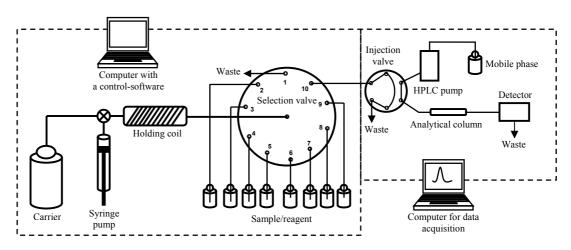
ขั้นตอนการวิเคราะห์ทำได้โดย syringe pump จะดูดสารตัวอย่าง รีเอเจนต์ และ ไดคลอโรมีเทน เข้าสู่ extraction coil เป็นลำดับ สารตัวอย่างที่มีสารลดแรงตึงผิวชนิดประจุลบอยู่จะเกิด ion association compound กับ methylene blue และถูกสกัดด้วยตัวทำละลายอินทรีย์ภายใน extraction coil ด้วยการ ทำงานของ syringe pump หลังจากนั้นสารผสมจะถูกส่งไปที่ LAV-separating chamber และปล่อยให้ เกิดการแยกระหว่างชั้นน้ำและชั้นสารอินทรีย์ ประมาณ 5 วินาที แล้วตรวจวัดชั้นสารอินทรีย์ซึ่งมีสาร ที่สนใจผสมอยู่ ด้วยเครื่องสเปกโทรโฟโทมิเตอร์ ผ่านทางสายใยแก้วนำแสง (optical fibers) ที่ยึดติด อยู่กับส่วนของ LAV จากนั้นจึงล้างระบบด้วยน้ำกลั่น เพื่อเตรียมพร้อมสำหรับการวิเคราะห์ตัวอย่าง ต่อไป

ได้ศึกษาตัวแปรที่เกี่ยวข้องในการทดลองที่มีผลต่อประสิทธิภาพในการสกัด ได้แก่ ลำดับ การดูดสาร จำนวนรอบของการผสมของระบบ SIA ปริมาตรของสารตัวอย่าง รีเอเจนต์ และ ตัวทำ ละลายอินทรีย์ อัตราส่วนระหว่างปริมาตรของสารละลายน้ำและสารอินทรีย์ โดยที่ ลำดับของการดูด สารและจำนวนรอบของการผสมนับเป็นตัวแปรที่สำคัญมาก ซึ่งจะมีผลต่อเวลาและประสิทธิภาพที่ สารละลายชั้นน้ำและชั้นสารอินทรีย์จะเกิดการสัมผัสกัน ซึ่งเป็นการเพิ่มประสิทธิภาพในการสกัด

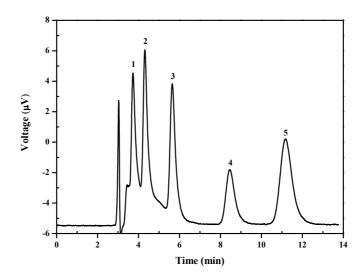
ได้ศึกษา analytical characteristics ของระบบที่พัฒนาขึ้น พบว่า กราฟมาตรฐานมีความเป็น เส้นตรง (linear range) อยู่ในช่วง 0.10-1.00~mg เ 1^{-1} โดยมีสมการเส้นตรงเป็น y = 0.3182x - 0.0031

ค่าสัมประสิทธิ์สหสัมพันธ์ (correlation coefficient, r^2) 0.9998 ตัวอย่างสัญญาณที่ได้จากการ วิเคราะห์และกราฟมาตรฐาน แสดงดังรูปที่ 3 ขีดจำกัดต่ำสุดของการวิเคราะห์มีค่าเท่ากับ 0.01 mg I^{-1} ค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ (relative standard deviation, RSD) ที่ได้มีค่าต่ำกว่า 6% และสามารถ วิเคราะห์ได้ 5 ตัวอย่างต่อชั่วโมง

รูปที่ 3 ค่าการดูดกลื่นแสงและกราฟมาตรฐานของ SDS ที่ได้จากระบบ SI-LAV


ระบบที่พัฒนาขึ้นนี้ ได้นำไปประยุกต์กับการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบใน ตัวอย่างน้ำธรรมชาติ โดยเก็บตัวอย่างจากแหล่งน้ำธรรมชาติในเขตจังหวัดขอนแก่น ผลการวิเคราะห์ ที่ได้จากวิธีที่พัฒนาขึ้นได้นำไปเปรียบเทียบกับข้อมูลที่ได้จากการวิเคราะห์ด้วยวิธีมาตรฐาน พบว่า ผลที่ได้จากทั้งสองวิธีไม่มีความแตกต่างกันอย่างมีนัยสำคัญ โดยการทดสอบด้วย t-test ที่ระดับความ เชื่อมั่น 95% รวมทั้งได้ศึกษาผลของ interfering ion ที่มีต่อการวิเคราะห์สารลดแรงตึงผิวชนิดประจุ ลบด้วยเทคนิคที่พัฒนาขึ้นด้วย (รายละเอียด reprint ในภาคผนวก ก1)

3. การพัฒนาระบบซีเควนเชียลอินเจคชัน-โครมาโทกราฟีของเหลวสมรรถนะสูงเพื่อการเตรียม อนุพันธ์แบบออนไลน์สำหรับการวิเคราะห์โลหะหนัก


(Development of sequential injection-high performance liquid chromatography for on-line derivatization and determination of heavy metals)

การพัฒนาระบบซีเควนเชียลอินเจคชัน เพื่อเตรียมอนุพันธ์แบบออนไลน์สำหรับการ วิเคราะห์โลหะหนักด้วยเทคนิค โครมาโทกราฟิของเหลวสมรรถนะสูง (high performance liquid chromatography, HPLC) โลหะที่ศึกษาได้แก่ Co(II) Fe(II) Ni(II) และ Cu(II) โดยใช้ 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) เป็นรีเอเจนต์ โดยจะทำ อนุพันธ์ระหว่างโลหะหนักในตัวอย่างกับรีเอเจนต์โดยใช้ระบบ SI ก่อนที่จะ inject เข้าสู่ระบบ HPLC เพื่อแยกสารประกอบเชิงซ้อนที่เกิดขึ้น โดยใช้คอลัมน์ C_{18} - μ Bondapak (3.9 x 300 mm) และ ตรวจวัดด้วยเทคนิคสเปกโทรโฟโทเมทรีที่ความยาวคลื่น 570 นาโนเมตร

ในส่วนของการแยกสารประกอบเชิงซ้อน metal-nitro-PAPS ใช้เทคบิคโครมาโทกราฟี ของเหลวสมรรถนะสูงแบบไอออนแพร์รีเวิร์สเฟส (ion-pair reversed-phase HPLC) ได้ศึกษา องค์ประกอบของเฟสเคลื่อนที่ (mobile phase) ที่เหมาะสม ได้แก่ ความเข้มข้นและ pH ของ สารละลายบัพเฟอร์ ปริมาณของ organic modifier และ ความเข้มข้นของ ion pairing agent โดยใน งานวิจัยนี้เลือกใช้ tetrabutyl ammonium bromide (TBABr) เฟสเคลื่อนที่ที่เลือกใช้ในงานวิจัยนี้ ได้แก่ สารละลายผสมของ 30% อะซีโตในไตรล์ ในบัพเฟอร์อะซิเตต pH 5.0 ความเข้มข้น 1.0×10^{-2} mol l $^{-1}$ และ TBABr เข้มข้น 3.5 x 10^{-3} mol l $^{-1}$ ที่มีอัตราการใหล 1.0 ml min $^{-1}$ ซึ่งสามารถแยก สารประกอบเชิงซ้อนของโลหะทั้ง 4 ชนิด และ nitro-PAPS ที่เหลือจากปฏิกิริยา ได้ภายในเวลา 13 นาที โดยมีลำดับการชะดังนี้ Cu(II)-nitro-PAPS Co(II)-nitro-PAPS excess nitro-PAPS reagent Ni(II)-nitro-PAPS และ Fe(II)-nitro-PAPS ตามลำคับ และสภาวะนี้จะใช้สำหรับการพัฒนาระบบ SI-HPLC สำหรับการเตรียมอนุพันธ์แบบออนไลน์และการวิเคราะห์สารประกอบเชิงซ้อน metalnitro-PAPS ต่อไป โดยได้ต่อระบบ SI สำหรับทำ on-line pre-column derivatization ดังรูปที่ 4 หลังจากทำให้เกิดสารประกอบเชิงซ้อนของ metal-nitro-PAPS ภายในระบบ SI แล้วจึงส่งไปที่ injection loop ของส่วน HPLC เพื่อ inject เข้าสู่คอลัมน์ต่อไป ตัวอย่างโครมาโทแกรมที่ได้จากการ ระบบ SI-HPLC แสดงดังรูปที่ 5 และได้มีการศึกษา analytical characteristics ของระบบ ได้แก่ ช่วง ความเป็นเส้นตรง ความแม่นยำ ขีดจำกัดต่ำสุดของการวิเคราะห์ และการประยุกต์ใช้วิธีที่พัฒนาขึ้น สำหรับการวิเคราะห์ตัวอย่างจริง โดยเลือกวิเคราะห์โลหะหนักในตัวอย่างหลายประเภท ได้แก่ นมผง คัดแปลงสำหรับทารก อาหารเสริม ไวน์จากโครงการหนึ่งตำบลหนึ่งผลิตภัณฑ์ และ น้ำคื่มบรรจุขวด พบว่า ผลที่ได้จากวิธีที่พัฒนาขึ้นสอดคล้องกับที่ได้จากวิธีมาตรฐาน (รายละเอียด manuscript ใน ภาคผนวก ก2)

รูปที่ 4 ระบบ SI-HPLC ที่พัฒนาขึ้นสำหรับการเตรียมอนุพันธ์แบบออนไลน์

รูปที่ 5 โครมาโทแกรมที่ได้จากระบบ SI-HPLC: 1, 0.100 mg l^{-1} Cu(II); 2, 0.050 mg l^{-1} Co(II); 3, excess nitro-PAPS; 4, 0.075 mg l^{-1} Ni(II); 5, 0.075 mg l^{-1} Fe(II)

Output ที่ได้จากโครงการ

ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- 1. R. Burakham, J. Jakmunee, K. Grudpan, Development of Sequential Injection-Lab-at-Valve (SI-LAV) Micro-Extraction Instrumentation for the Spectrophotometric Determination of Anionic Surfactant, Anal. Sci., 22 (2006) 137-140. (ภาคผนวก ก1)
- R. Burakham, S. Srijaranai, K. Grudpan, High-Performance Liquid Chromatography with Sequential Injection for On-line Pre-column Derivatization of Some Heavy Metals,
 - J. Chromatogr. A, Submitted. (ภาคผนวก ก2)

ผลงานที่นำเสนอในที่ประชุมวิชาการระดับนานาชาติ

- 1. **R. Burakham**, J. Jakmunee, K. Grudpan, Micro-total analysis system using sequential injection analysis with lab-at-valve (SIA-LAV) for on-line micro-extraction determination of anionic surfactants, *Oral presentation*, Pacifichem 2005, 15-20 December 2005, Honolulu, Hawaii, USA. (ภาคพนวก กร)
- 2. **R. Burakham**, S. Srijaranai, J. Jakmunee, K. Grudpan, Development of on-line sample preparation for chromatographic analysis, *Poster Presentation*, Interface of Analytical Sciences: Workshop of U.S. and Thai Analytical Scientists, 4-8 January 2006, Chiang Mai, Thailand. (ภาคผนวก ก4)
- 3. **R. Burakham**, S. Srijaranai, K. Grudpan, On-line derivatization and determination of some heavy metals by coupling of sequential injection with ion-pair reversed-phase high performance liquid chromatography, *Oral presentation*, 10th International Conference on Flow Analysis, 3-8 September 2006, Porto, Portugal. (ภาคผนวก กร)

ผลงานที่นำเสนอในที่ประชุมวิชาการระดับชาติ

- 1. **R. Burakham**, J. Jakmunee, K. Grudpan, Sequential injection-lab-at-valve for on-line micro-extraction, *Oral and Poster presentations*, The 4th Annual Symposium on TRF Senior Research Scholar on Flow-Based Analysis, 19th September 2005, Chiang Mai, Thailand. (ภาคผนวก ก6)
- 2. **R. Burakham**, J. Jakmunee, K. Grudpan, On-line micro-extraction determination of anionic surfactant using sequential injection with lab-at-valve system, *Oral presentation*, 31st Congress

- on Science and Technology of Thailand, 18-20 October 2005, Nakorn Ratchasima, Thailand. (ภาคผนวก ก7)
- 3. **R. Burakham**, Sequential injection-lab-at-valve: An alternative system for on-line micro-extraction, *Oral presentation*, Symposium on Advanced Flow-Based Chemical Analysis, 13 December 2005, Okayama University, Japan. (ภาคผนวก ก8)
- 4. R. Burakham, S. Srijaranai, K. Grudpan, Sequential injection: An on-line sample preparation for liquid chromatography and capillary electrophoresis, *Oral and Poster Presentations*, The 5th Annual Symposium on TRF Senior Research Scholar, 12 August 2006, Chiang Mai, Thailand. (ภาคพนวก ก9)
- 5. **R. Burakham**, S. Srijaranai, K. Grudpan, Determination of some heavy metals by sequential injection on-line derivatization and ion-pair reversed phase high performance liquid chromatography, *Oral and Poster Presentations*, The 5th Annual Symposium on TRF Senior Research Scholar, 12 August 2006, Chiang Mai, Thailand. (ภากพนวก ก10)
- 6. **R. Burakham**, S. Srijaranai, K. Grudpan, On-line derivatization determination of metal ions using sequential injection high performance liquid chromatography, 32nd Congress on Science and Technology of Thailand, 10-12 October 2006, Bangkok, Thailand. (ภาคพนาก ก11)
- R. Burakham, J. Jakmunee, K. Grudpan, Sequential injection with lab-at-valve system for online micro-extraction determination of anionic surfactant, *Poster Presentation*, TRF Meeting, 12-14 October 2006, Cha-am, Petchburi, Thailand. (ภาคพนวก ก12)

Output ที่สัมพันธ์กับโครงการ

ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- 1. A. Santalad, P. Teerapornchaisit, **R. Burakham**, S. Srijaranai, Capillary zone electrophoresis of organic acids in beverages, LWT-Food Sci. Technol., Inpress, doi:10.1016/j.lwt.2007.01.007. (ภาคผนวก ข1)
- 2. A. Santalad, **R. Burakham**, S. Srijaranai and K. Grudpan, Field-amplified sample injection and in-capillary derivatization for capillary electrophoretic analysis of metal ions in local wines, Microchem. J., Inpress, doi: 10.1016/j.microc.2007.03.006. (ภาคพนวก ข2)

ผลงานที่นำเสนอในที่ประชุมวิชาการระดับนานาชาติ

- 1. S. Srijaranai, W. Pimrote, C. Kukusamude, **R. Burakham**, T. Sakai, Simultaneous determination of Co(II), Cu(II), Ni(II), Fe(II) and V(V) as their nitro-PAPS chelates by flow injection coupled to high performance liquid chromatography, *Poster Presentation*, Pacifichem 2005, 15-20 December 2005, Honolulu, Hawaii, USA. (ภาคผนวก ข3)
- 2. A. Santalad, S. Srijaranai, P. Teerapornchaisit and **R. Burakham**, Capillary zone electrophoresis of carboxylic acids, *Poster Presentation*, Pacifichem 2005, 15-20 December 2005, Honolulu, Hawaii, USA. (ภาคผนวก ข4)
- 3. S. Srijaranai, **R. Burakham**, Some development of chromatographic separation for foods and pharmaceutical applications, *Poster Presentation*, Interface of Analytical Sciences: Workshop of U.S. and Thai Analytical Scientists, 4-8 January 2006, Chiang Mai, Thailand. (ภาคผนวก ปร)
- 4. K. Grudpan, J. Jakmunee, S.K. Hartwell, S. Lapanantnoppakhun, **R. Burakham**, Exploiting flow analysis with lab-at-valve (LAV) approach, *Oral Presentation (by K. Grudpan)*, 10th International Conference on Flow Analysis, 3-8 September 20006, Porto, Portugal. (ภาคพนาก ขอ)

ผลงานที่นำเสนอในที่ประชุมวิชาการระดับชาติ

- 1. A. Santalad, S. Srijaranai, P. Teerapornchaisit, **R. Burakham**, Analysis of carboxylic acids using capillary zone electrophoresis with pre-capillary derivatization, *Poster Presentation*, The 4th Annual Symposium on TRF Senior Research Scholar on Flow-Based Analysis, 19th September 2005, Chiang Mai, Thailand. (ภาคผนวก ข7)
- 2. A. Santalad, S. Srijaranai, P. Teerapornchaisit, **R. Burakham**, Analysis of carboxylic acids using capillary zone electrophoresis, *Oral Presentation (by A. Santalad)*, 31st Congress on Science and Technology of Thailand, 18-20 October 2005, Nakorn Ratchasima, Thailand. (ภาคผนวก ข8)
- 3. A. Santalad, S. Srijaranai, P. Teerapornchaisit, **R. Burakham**, Analysis of amino acids in beverages by capillary zone electrophoresis and pre-capillary derivatization, *Poster Presentation*, The 5th Annual Symposium on TRF Senior Research Scholar, 12 August 2006, Chiang Mai, Thailand. (ภาคผนวก ข9)

4. A. Santalad, S. Srijaranai, **R. Burakham**, In-capillary derivatization and capillary zone electrophoresis for analysis of metals using nitro-PAPS as derivatising reagent, *Oral Presentation (by A. Santalad)*, 32nd Congress on Science and Technology of Thailand, 10-12 October 2006, Bangkok, Thailand. (ภาคพนาก ข10)

1 High-Performance Liquid Chromatography with Sequential Injection for 2 On-line Pre-column Derivatization of Some Heavy Metals 3 Rodjana Burakham^{1*}, Supalax Srijaranai¹ and Kate Grudpan^{2,3} 4 ¹Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 5 6 40002 Thailand ²Department of Chemistry, Faculty of Science and ³Institute for Science and 7 Technology Research and Development, Chiang Mai University, Chiang Mai 8 9 50200 Thailand 10 11 **Abstract** 12 High-performance liquid chromatography (HPLC) was coupled with sequential injection (SI) for simultaneous analyses of some heavy metals, including 13 14 Co(II), Ni(II), Cu(II) and Fe(II). 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-15 sulfopropyl)aminolphenol (nitro-PAPS) was employed as a derivatizing reagent for 16 sensitive spectrophotometric detection by on-line pre-column derivatization. The SI 17 system offers an automated handling of sample and reagent, on-line pre-column 18 derivatization and propulsion of derivatives to the HPLC injection loop. The metal-

19 nitro-PAPS complexes were separated on a C_{18} - μ Bondapak column (3.9 x 300 mm).

Using the proposed SI-HPLC system, determination of four metal ions by means of

nitro-PAPS complexes was achieved within 13 min in which the parallel of

derivatization and separation were processed at the same time. Linear calibration

graphs were obtained in the ranges of 0.005 - 0.250 mg l⁻¹ for Cu(II), 0.007 - 1.000

24~ mg $l^{\text{-}1}$ for Co(II), 0.005 - 0.075~ mg $l^{\text{-}1}$ for Ni(II) and 0.005 - 0.100~ mg $l^{\text{-}1}$ for Fe(II).

20

21

22

23

^{*} Corresponding author. E-mail: rburakham@yahoo.com

1 The system provides means for automation with good precision and minimizing error

2 in solution handling with the relative standard deviation (RSD) of less than 6%. The

detection limits obtained were 2 µg l⁻¹ for Cu(II) and Co(II), and 1 µg l⁻¹ for Ni(II)

4 and Fe(II). The method was successfully applied for the determination of metal ions

in various samples, including milk powder for infant, mineral supplements, local

wines and drinking waters.

7

8

3

5

6

Keywords: on-line pre-column derivatization, sequential injection, metal ions, HPLC,

9 nitro-PAPS

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1. Introduction

Metal ion analysis is of great importance in various fields, including food, pharmaceutical, medical and environmental sciences. Numerous analytical techniques have been reported for the determination of heavy metals. The most widely used instruments, e.g. atomic absorption [1-3] and inductively coupled plasma atomic emission spectrometers [4-5], used for metal determination suffer from both spectral and chemical interferences and involve instrumentation complexity. A common UV-visible spectrophotometry [6] is often simpler and less expensive than atomic spectroscopic methods but does not allow a multi-elemental analysis and requires derivatization process for improving the sensitivity and selectivity. Highperformance liquid chromatography (HPLC) [7-10] and ion chromatography [11] have been widely recognized as one of the versatile methods for multi-element and sensitive analyses of metal ions using either pre- or post-column derivatization. In a typical post-column procedure, a chromogenic reagent is mixed with column eluent in a post-column mixer and the derivatives formed are detected. To be useful, postcolumn reactions must be rapid and generate low background signals. Dead volume associated with connecting tubing, detector and mixing devices must be minimized to avoid unnecessary peak dispersion. The pre-column derivatization procedure provides that the excess of reagent is completely separated from the chelates and does not actually contribute to be the increase in baseline signals at the peak positions of the chelates. This fact indicates that the attainable sensitivity is determined only by the inherent signal to noise ratio of the detector. The potential of this approach is realized in the reversed-phase HPLC partition mode, including the ion-pair type. Ionpair reversed-phase HPLC (IP-RPHPLC) offers both sensitivity and selectivity owning to the large degree of flexibility in the separation parameters. Several chelating agents have been successively used as a derivatizing reagent such as 4-(2-pyridylazo)resorcinol(PAR) [10], 5-(2-hydroxy-5-nitrophenylazo)thiorhodamine [12],2,4-dihydroxybenzylidenethiorhodamine [13], 1-(4-aminobenzyl) ethylenediamine-N,N,N',N'-tetraacetate [14], 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-(3-sulfopropylamino)aniline (5-Br-PSAA) [15] and 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) [16]. Pre-column derivatization is normally performed off-line (batch) because of instrumentation simplicity. But off-line manipulation is proved to be laborious, time consuming, especially if a number of samples is to be processed, and may result to low precision. On the other hand, on-line derivatization offers automation, ease and high sampling rate, providing an attractive alternative [17]. Some developments have involved the coupling of flow injection (FI) [10, 18-20] or sequential injection (SI) [17, 21] with HPLC for on-line pre-column derivatization. FI involves an inexpensive hardware and a simple operational basis, while SI offers high potential for higher degree in laboratory automation with less reagent consumption.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

In this work, attempts were made for coupling IP-RPHPLC with SI for on-line

2 pre-column derivatization and determination of some heavy metals, including Co(II),

3 Cu(II), Ni(II) and Fe(II). Nitro-PAPS was used as the derivatizing reagent for a

sensitive spectrophotometric detection. Application to a variety samples was

5 investigated.

2. Experimental

2.1 Chemicals and reagents

All of reagents used were analytical reagent grade. Deionized water was used throughout the experiments. The atomic absorption standard solutions (1000 mg Γ¹) of copper (II) nitrate and nickel (II) nitrate were obtained from Ajax Chemicals (Australia). Stock standard solution (1000 mg Γ¹) of cobalt (II) was prepared using cobalt (II) chloride hexahydrate in water. Stock standard solution (1000 mg Γ¹) of iron (II) was prepared by dissolving iron (II) sulphate heptahydrate in 10⁴ mol Γ¹ hydrochloric acid. Working standards were freshly prepared by diluting the stock solution with water to obtain appropriate concentrations. Nitro-PAPS was obtained from Dojindo laboratories (Japan). Tetrabutylammonium bromide (TBABr) was purchased from Fluka (Switzerland). Acetonitrile was of HPLC grade. All HPLC mobile phases were filtered through 0.45 μm membrane filters and sonicated prior to use.

2.2 Instrumentation

The SI-HPLC system used is schematically depicted in Fig.1(a). The SIA part consists of a 2.5 ml syringe pump (Cavro, USA), a 10-position selection valve VICI with a microelectric actuator (Valco Instruments, USA) and a holding coil (220 x 0.07).

cm i.d. PTFE tubing). Instrumentation control was manipulated via the FIAlab software (FIAlab Instruments, USA). The HPLC part consists of a Waters 6000A dual pump, a Rheodyne injector with a 50 μl injection loop and a Waters 484 absorbance detector (Waters, USA) operated at wavelength of 570 nm. The SI system was connected to the HPLC injection port by means of the 37 x 0.07 cm i.d. PTFE tubing. Separations were performed on a 3.9 x 300 mm C₁₈-μBondapak column

(Waters, USA). The CSW 32 software (Waters, USA) was used for data acquisition.

2.3 Procedure

Effective separation of the studied metal-nitro-PAPS complexes was achieved through the IP-RPHPLC mode using the mobile phase containing acetonitrile, buffer and ion pairing agent. Therefore, in order to ensure that there was no pairing ion reagent retained on the analytical column, the column was washed with 50% MeOH for 15 column-volumes and was then equilibrated with the mobile phase being used for 25 column-volumes before injection.

The SI-HPLC operation steps were as follows: the manifold lines were washed with water, and all of the reagents were filled into the ports of the selection valve. Then, suitable volumes of the reagents were sequentially aspirated and stacked as zones in the holding coil. By flow reversal of the syringe pump, the reaction mixture, metal-nitro-PAPS complexes in this work, was propelled to the HPLC injection loop and injected to HPLC system. A mobile phase flow rate of 1.0 ml min⁻¹ was used throughout.

3. Results and discussion

3.1 IP-RPHPLC of metal-nitro-PAPS chelates

To achieve adequate separation for the studied chelates within minimum elution time, optimization of the HPLC separation was performed by off-line derivatization of metal-nitro-PAPS chelates. Nitro-PAPS chelates of Co(II), Ni(II), Cu(II) and Fe(II) were formed by mixing metal ion solutions and the nitro-PAPS solution with the concentration ratio of 1:2 and was manually injected in the HPLC system. It has been known that the composition of mobile phase plays an important role in IP-RPHPLC. The mobile phase components include concentration of buffer, pH, amount of organic modifier and concentration of ion pairing agent. The selectivity of the IP-RPHPLC was susceptible to the content of organic modifier in the mobile phase due to the variation of polarity and hydrophobicity which lead to different strengths and selectivity. The role of buffer is to control the pH of the chromatographic system, while the role of the ion pairing agent is to provide the exchange sites for the target analytes. Therefore, some degrees of variation in the retention behavior and chromatographic selectivity are expected by addition of ion pairing agent in IP-RPHPLC. The mobile phase was selected from our preliminary studies and was found to be 30% acetonitrile in 10.0 mmol 1⁻¹ acetate buffer pH 5.0 and 3.5 mmol l⁻¹ TBABr. Separation of four metal-nitro-PAPS chelates and excess nitro-PAPS reagent was achieved within 13 min with the elution order of Cu(II)-nitro-PAPS, Co(II)-nitro-PAPS, excess nitro-PAPS reagent, Ni(II)-nitro-PAPS and Fe(II)nitro-PAPS, respectively. The conditions were adopted for the coupling of SI to HPLC.

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

3.2 On-line coupling of SI to HPLC

Using the SI-HPLC system shown in Fig. 1(a), the experimental parameters affecting the sensitivity of the determination were considered. First, it must be

ensured that the most concentrated part of the reaction mixture will be injected into the separation column. Therefore, after forming derivatives by the SI system, the dispensing volumes of the syringe pump ranging from 240-380 µl were optimized and the peak areas were compared. The dispensing volume (at a constant flow rate) determined the interval time between the start of dispensing of the derivative zone by the syringe pump of the SI system and the actual injection into the HPLC system. Second, the sequence orders of aspiration together with the volumes of sample and reagent and the number of flow reversals were examined. The operational sequence in which the sample and reagent were aspirated as small segments gave a higher sensitivity, while the mixing by several flow reversals was unnecessary. The metalnitro-PAPS derivatives could be formed immediately and the sensitivity was enhanced by mixing during the transportation to HPLC loop. However, the connection between SIA part and HPLC injection loop should be shorten to prevent further dispersion of product zone. It has been known theoretically that increase in the sample and/or reagent volumes results in increase in the sensitivity but it must be compromised between the volumes of derivative product and the volume of the HPLC injection loop. The derivative should be formed just enough for injecting into HPLC loop with adequate sensitivity and precision. In addition, the peak shape of the obtained chromatogram must be concerned. Increasing of the injection volume, the wider peak will be obtained and lead to over load the column. The selected operational sequences as well as the volumes of sample and reagent were summarized in Table 1 and Fig. 1(b). Finally, the chemical parameter, the concentration of nitro-PAPS reagent, was varied to increase the sensitivity and minimize the excess of reagent concentration. The optimum results were obtained using the nitro-PAPS concentration of 1 x 10⁻⁴ mol l⁻¹. The sensitivity determined by the peak areas of all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 metal complexes remained constant and the peak of excess nitro-PAPS reagent was

resolved from the derivative peaks. The typical chromatogram is represented in

3 Fig. 2.

3.3 Analytical characteristics

Under the selected SI and HPLC conditions, quantitative features of the proposed system were evaluated by examining the linear range, precision and limit of detection (LOD). Calibration graphs were constructed by plotting the peak area against the concentration of each metal ion. The detection limits were calculated at a signal level of three times the baseline noise (S/N = 3). The equations of the obtained calibration graphs, the linear ranges and the detection limits are given in Table 2. The relative standard deviations of the peak area and retention time of each analyte were less than 6%. The effects of interferences on the SI-HPLC of metal-nitro-PAPS chelates were studied by adding the metal ions at different concentrations into a mixture of 0.060 mg Γ^1 Co(II), 0.010 mg Γ^1 Cu(II), Fe(II) and Ni(II). No interference, i.e. no signal change within $\pm 5\%$, was observed from common ions with the maximum concentrations studied up to 20 mg Γ^1 of Na⁺, Ca²⁺ and Cl⁻; 25 mg Γ^1 of CO₃²⁻, 30 mg Γ^1 of SO₄²⁻, NO₂⁻ and NO₃⁻; and 50 mg Γ^1 of Cd²⁺, Pb²⁺ and Zn²⁺.

3.4 Analysis of real samples

The applicability of the SI-HPLC system was investigated by determining the metal ions in various samples, including modified milk powder for infant, mineral supplements, local wines and drinking water. For milk powder and supplement samples, fine powder samples were weighted, dissolved in water and filtered before the determination. For wines and drinking waters, the samples were analyzed by the

system without any further pretreatment except filtration and dilution. Typical chromatograms of sample determination are shown in Fig.3. The results, as shown in Table 3, were in agreement with the labeled values (for milk powder and mineral supplement samples) and those obtained by AAS methods (for wines and drinking waters), evaluated by t-test at 95% confidence level. It was not surprising that some metal ions such as Co(II) and Ni(II) were not detectable in these samples and all metal ions in drinking water samples were lower than the LODs. However, the recoveries, assessed by experiment of known amounts of metal ions (0.020 mg l⁻¹ each) spiked in the real samples, obtained were satisfactory (90-106%).

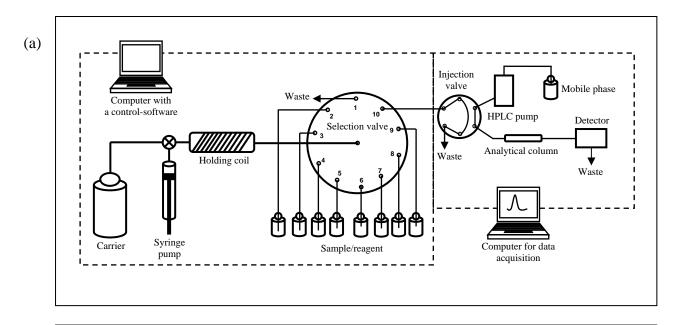
4. Conclusion

Coupling HPLC with SI offers on-line pre-column derivatization system for analyses of some heavy metal ions. The derivatives can be on-line formed and subsequently injected and analyzed in the HPLC system. This leads to possibility in automation. By parallel operation of derivatization and separation, advantages in less consumption of sample/reagent, as well as better analysis time could be gained. It has been demonstrated that HPLC hyphenated with SI could be an alternative for simultaneous analyses of some heavy metal ions in various samples.

Acknowledgements

We thank the Thailand Research Fund (TRF) and the Commission on Higher Education (CHE). This work was partly supported by the Postgraduate Education and Research Program in Chemistry (PERCH). Thanks are due to Professor T. Sakai for supply of the reagent (Nitro-PAPS) which was under the

- 1 Frontier Research Project-Materials for the 21st Century (Materials Development for
- 2 Environment, Energy and Information).


3

- 4 References
- 5 [1] A. Lasztity, A. Kelko-Levai, I. Varga, K. Zih-Perenyi, E. Bertalan, Microchim. J.,
- 6 73 (2002) 59.
- 7 [2] K. Torrence, R. McDaniel, D. Self, M. Chang, Anal. Bioanal. Chem., 372 (2002)
- 8 723.
- 9 [3] M. Quaresma, R. Cassella, M. Guardia, R. Santelli, Talanta, 62 (2004) 807.
- 10 [4] K. Benkhedda, B. Dimitrova, H. Infante, E. Ivanova, F. Adams, J. Anal. Atom.
- 11 Spectrom., 18 (2003) 1019.
- 12 [5] S. Melaku, R. Dams, L. Moens, Anal. Chim. Acta, 543 (2005) 117.
- 13 [6] K. Riganakos, P. Veltsistas, Food Chem., 82 (2003) 637.
- 14 [7] H. Matsumiya, N. Iki, S. Miyano, Talanta, 62 (2004) 337.
- 15 [8] Z. Li, G. Yang, B. Wang, C. Jiang, J. Yin, J. Chromatogr. A, 971 (2002) 243.
- 16 [9] H. Salar Amoli, A. Porgam, Z. Bashiri Sadr, F. Mohanazadeh, J. Chromatogr. A,
- 17 1118 (2006) 82.
- 18 [10] S. Srijaranai, S. Chanpaka, C. Kukusamude, K. Grudpan, Talanta, 68 (2006)
- 19 1720.
- 20 [11] C. Sarzanini, M.C. Bruzzoniti, TrAC-Trend Anal. Chem., 20 (2001) 304.
- 21 [12] Q. Hu, X. Yang, Z. Huang, J. Chen, G. Yang, J. Chromatogr. A, 1094 (2005) 77.
- 22 [13] X. Dong, Y. Han, Q. Hu, J. Chen, G. Yang, J. Braz. Chem. Soc., 17 (2006) 189.
- 23 [14] S. Saito, N. Danzaka, S. Hoshi, J. Chromatogr. A, 1104 (2006) 140.
- 24 [15] S. Gotoh, N. Teshima, T. Sakai, K. Ida, N. Ura, Anal. Chim. Acta, 499 (2003)
- 25 91.

- 1 [16] N. Teshima, S. Gotoh, K. Ida, T. Sakai, Anal. Chim. Acta, 557 (2006) 387.
- 2 [17] C.K. Zacharis, G.A. Theodoridis, A.N. Voulgaropoulos, Talanta, 69 (2006) 841.
- 3 [18] N. Dantan, W. Frenzel, S. Kuppers, Chromatographia, 54 (2001) 187.
- 4 [19] M.D. Luque de Castro, M. Valcarcel, J. Chromatogr. A, 600 (1992) 183.
- 5 [20] T. Hyotylainen, N. Savola, P. Lehtonen, M. Riekkola, Analyst, 126 (2001) 2124.
- 6 [21] C.K. Zacharis, G.A. Theodoridis, A.N. Volgaropoulos, J. Chromatogr. B, 808
- 7 (2004) 169.

List of figure captions

- Fig. 1(a) Schematic diagram of the SI-HPLC system, (b) Diagram of operational sequence of the SI-HPLC system
- Fig.2 Typical chromatogram of metal-nitro-PAPS complexes: 1, 0.100 mg l⁻¹ Cu(II);
 - 2, 0.050 mg l^{-1} Co(II); 3, excess nitro-PAPS; 4, 0.075 mg l^{-1} Ni(II);
 - 5, 0.075 mg l⁻¹ Fe(II)
 - Fig. 3 Chromatograms obtained from sample determination (a) milk (b) supplement (c) wine (d) drinking water

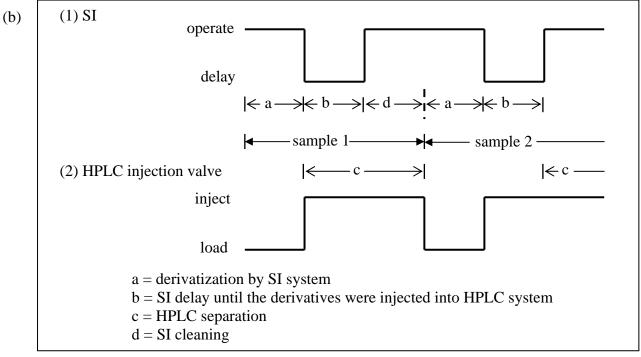


Fig. 1(a) Schematic diagram of the SI-HPLC system, (b) Diagram of operational sequence of the SI-HPLC system

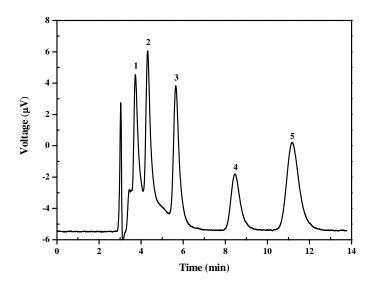


Fig.2 Typical chromatogram of metal-nitro-PAPS complexes:

- 1, 0.100 mg l⁻¹ Cu(II); 2, 0.050 mg l⁻¹ Co(II);
- 3, excess nitro-PAPS; 4, 0.075 mg l⁻¹ Ni(II);
- 5, 0.075 mg l⁻¹ Fe(II)

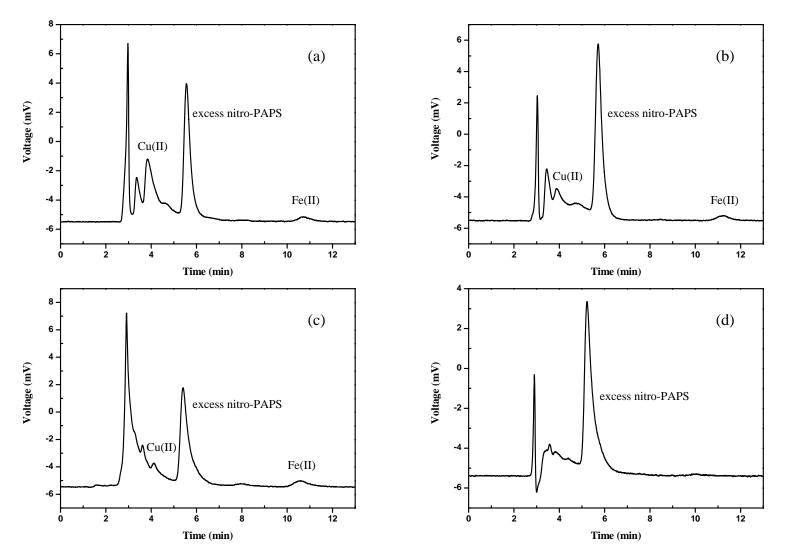


Fig. 3 Chromatograms obtained from sample determination (a) milk (b) supplement (c) wine (d) drinking water

Table 1 The operational sequence of the SI-HPLC system for on-line derivatization of metal-nitro-PAPS complexes

Sequence	Port	Flow rate	Volume	Description
	no.	$(\mu l \ sec^{-1})$	(μl)	
1	3-9	50	70	Aspiration of sample into HC*
2	2	50	25	Aspiration of nitro-PAPS into HC
3	3-9	50	70	Aspiration of sample into HC
4	2	50	25	Aspiration of nitro-PAPS into HC
5	3-9	50	60	Aspiration of sample into HC
6	10	50	300	Propulsion of metal-nitro-PAPS
				derivatives to HPLC loop
7	10	-	-	HPLC analysis

*HC = Holding coil

Table 2 Analytical characteristics of the proposed system

Metal-nitro-PAPS	Linear range $(mg \ l^{-1})$	Linear equation	r^2	LOD^* $(\mu g \Gamma^I)$
Cu(II)	0.005-0.250	y = 1652.6x - 72.5	0.9928	2
Co(II)	0.007-0.100	y = 2479.5x - 3.2	0.9968	2
Ni(II)	0.005-0.075	y = 1607.8x - 1.5	0.9945	1
Fe(II)	0.005-0.100	y = 3018.0x - 4.9	0.9938	1

^{*}S/N = 3

Table 3 Analysis of real samples and recovery studies

Sample		Cu(II)			Co(II)			Ni(II)			Fe(II)	
	This work*	Labeled	Recovery	This work	Labeled	Recovery	This work	Labeled	Recovery	This work*	Labeled	Recovery
	(mg l^{-1})	(mg l^{-1})	(%)	(mg I^{-1})	(mg l^{-1})	(%)	$(mg l^{-1})$	$(mg 1^{-1})$	(%)	(mg l^{-1})	(mg l^{-1})	(%)
Milk 1	273.7±2.1	312.0	91	-	-	99	-	-	99	5.8 ± 0.2	7.0	97
Milk 2	314.0±3.6	340.0	95	-	-	98	-	-	96	5.5±0.1	6.0	95
Milk 3	552.5±1.8	580.0	97	-	-	99	-	-	99	7.2±0.1	7.8	99
	This work*	Labeled	Recovery	This work	Labeled	Recovery	This work	Labeled	Recovery	This work*	Labeled	Recovery
	(mg tab ⁻¹)	(mg tab ⁻¹)	(%)	(mg tab ⁻¹)	(mg tab ⁻¹)	(%)	(mg tab ⁻¹)	(mg tab ⁻¹)	(%)	(mg tab ⁻¹)	(mg tab ⁻¹)	(%)
Supplement 1	1.6±0.4	2.0	93	-	-	96	-	-	98	8.7±0.1	10.0	97
Supplement 2	2.1±0.1	2.5	90	-	-	99	-	-	99	12.9±0.1	15.0	94
	This work*	AAS	Recovery	This work	AAS	Recovery	This work	AAS	Recovery	This work*	AAS	Recovery
	(mg l^{-1})	(mg l^{-1})	(%)	$(mg l^{-1})$	$(mg l^{-1})$	(%)	(mg l^{-1})	$(mg l^{-1})$	(%)	$(\text{mg } 1^{-1})$	$(mg l^{-1})$	(%)
Wine 1	1.0±0.2	1.4	102	-	-	94	-	-	105	1.5±0.1	1.8	98
Wine 2	5.2±0.6	6.8	93	-	-	97	-	-	102	1.8±0.1	2.1	93
Wine 3	-	-	95	-	-	95	-	-	98	0.8 ± 0.2	1.0	105
Wine 4	-	-	106	-	-	101	-	-	96	0.2 ± 0.1	0.4	101
Water 1	-	-	93	-	-	99	-	-	99	-	-	98
Water 2	-	-	90	-	-	99	-	-	99	-	-	99

⁻ Not detected * n = 3

Supplement 1 ingredients (tab⁻¹): Cu (CuSO₄) 2 mg, Fe (FeSO₄) 10 mg Supplement 2 ingredients (tab⁻¹): Cu (CuSO₄) 2.5 mg, Fe (ferrous gluconate) 15 mg

Program Number: 875 Day / Time: Monday, Dec. 19, 7:20 PM - 7:40 PM

Micro - total analysis system using sequential injection analysis with lab - at - valve (SIA - LAV) for on - line micro extraction determination of anionic surfactants

R.Burakham¹; J.Jakmunee²; K.Grudpan²

1. Chemistry, Khon Kaen University, Muang, Khon Kaen, Thailand; 2. Chemistry, Chiang Mai University, Muang, Chiang Mai, Thailand

Sequential injection analysis with lab-at-valve (SIA-LAV) was investigated for on-line micro extraction determination of anionic surfactants. Sample, reagent and organic solvent are sequentially aspirated via a multiposition valve attached with extraction coil in a position and a separating unit situating a fiber optic spectrophotometer. Such an integrating system serves as a micro-total analysis system. Instrumentation will be represented. Advantages and limitation of the system will be discussed. The determination of anionic surfactants is based on the methylene blue method. Optimization of the procedure and its application to water samples will be reported.

Citation: R.Burakham, J.Jakmunee, K.Grudpan. Micro - total analysis system using sequential injection analysis with lab - at - valve (SIA - LAV) for on - line micro extraction determination of anionic surfactants. Program No. 875. 2005 Abstract Viewer. Honolulu, Hawaii: International Chemical Congress of Pacific Basin Societies

Application Design and Programming Copyright ScholarOne, Inc. All Rights Reserved. Patent Pending.

Development of On-line Sample Preparation for Chromatographic Analysis

Rodjana Burakham^a, Supalax Srijaranai^a, Jaroon Jakmunee^b and Kate Grudpan^b

^aDepartment of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 ^bDepartment of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200

Research interests focus on on-line sample preparation/preconcentration for chromatographic analysis, including high performance liquid chromatography (HPLC), ion chromatography (IC) and capillary electrophoresis (CE). The on-line sample pretreatment includes flow injection pre-column derivatization, sequential injection with lab-at-valve. Applications of such development would aimed for food, environmental and pharmaceutical samples are interested. New approaches for chromatographic separation using sequential injection chromatography (SIC) will be explored.

ON-LINE DERIVATIZATION AND DETERMINATION OF SOME HEAVY METALS BY COUPLING OF SEQUENTIAL INJECTION WITH ION-PAIR. REVERSED-PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Rodjana Burakham¹, Supalax Srijaranai¹ and Kate Grudpan²

'Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
'Department of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand
email: rburakham@yahoo.com

An ion-pair reversed-phase high performance liquid chromatography [IP-RPHPLC] was proposed for simultaneous determination of some heavy metals using 2-[5-nitro-2-pyridylazo]-5-[N-propyl-N-[3-sulfopropyl]amino]phenol (nitro-PAPS) as a derivatizing reagent. Sequential injection [SI] was coupled to HPLC system for a simple and efficient pre-column derivatization. Using the SI-HPLC system, separation of four metals-nitro-PAPS complexes was achieved within 12 min. Under the selected conditions, the analytical characteristics, including linear range, limit of detection, precision and accuracy, were evaluated. Advantages and limitation of the system will be discussed. The developed method was successfully applied for the determination of metal ions in various samples.

- [1] N. Teshima, S. Gotoh, K. Ida, T. Sakai, Anal. Chim. Acta, 557 (2006) 387.
- [2] S. Gotoh, N. Teshima, T. Sakai, K. Ida, N. Ura, Anal. Chim. Acta, 499 (2003) 91.

Sequential Injection-Lab-at-Valve for On-line Micro Extraction

Rodjana Burakhama, Jaroon Jakmuneeb and Kate Grudpanb

^aDepartment of Chemistry, Faculty of Science, Khon Kaen University,

Khon Kaen 40002 Thailand

^bDepartment of Chemistry, Faculty of Science and Institute for Science and Technology

Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand

A sequential injection with lab-at-valve system was developed for on-line micro extraction determination of anionic surfactant. Sample, reagents and organic solvent were sequentially aspirated into an extraction coil connected to the center of a selection valve where extraction taking place by flow reversal. The aqueous and organic phases were separated in a LAV unit attached to one port of the valve. The LAV unit situated a fiber optic spectrophotometer to monitor absorbance change of the extract product in the organic phase.

Keywords: Sequential Injection, Lab-at-Valve, Micro-extraction, anionic surfactant

การสกัดในระดับไมโครแบบออนไลน์สำหรับการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบด้วย ระบบซีเควนเชียลอินเกคชันอะนาลิซิส-แล็ปแอทวาล์ว

ON-LINE MICRO-EXTRACTION DETERMINATION OF ANIONIC SURFACTANT USING SEQUENTIAL INJECTION WITH LAB-AT-VALVE SYSTEM

รจนา บุระคำ^{1*}, จรูญ จักร์มุณี² และ เกตุ กรุดพันธ์^{2*} Rodjana Burakham^{1*}, Jaroon Jakmunee² and Kate Grudpan^{2*}

¹Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand; E-mail address: rburakham@yahoo.com ²Department of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand

บทคัดย่อ: ได้พัฒนาระบบซีเควนเชียลอินเจคชันแบบแล็ปแอทวาล์ว สำหรับการสกัดในระคับ ไมโครแบบออนไลน์ เพื่อการวิเคราะห์สารลดแรงตึงผิวชนิดประจุลบในน้ำ การวิเคราะห์อาศัย หลักการทำให้เกิดสารประกอบไอออนรวมตัวระหว่างสารลดแรงตึงผิวชนิดประจุลบกับเมทิล-ลีนบลูซึ่งสามารถสกัดโดยใช้ไดคลอโรมีเทนก่อนการวิเคราะห์ด้วยเทคนิคสเปกโทรโฟโทเมทรี ขั้นตอนการวิเคราะห์ทำได้โดยการดูดสารตัวอย่าง รีเอเจนต์ และ ไดคลอโรมีเทน เข้าสู่ระบบแล้ว ให้เกิดการสกัดภายในท่อเล็กๆ หลังจากนั้นสารละลายจะถูกส่งไปยังกรวยแยกเล็กๆ หลังจากที่ ปล่อยให้ชั้นของน้ำและตัวทำละลายอินทรีย์แยกกันแล้ว จึงตรวจวัดการดูดกลืนแสงของชั้นตัวทำละลายอินทรีย์ที่มีสารตัวอย่างที่สนใจอยู่ โดยใช้สเปกโทรโฟโทมิเตอร์ผ่านทางสายใยแก้วนำแสงที่ ติดอยู่บนส่วนของแล็ปแอทวาล์ว ระบบที่พัฒนาขึ้นได้ประยุกต์สำหรับการวิเคราะห์สารลดแรงตึง ผิวชนิดประจุลบในน้ำ

Abstract: Sequential injection with "Lab-at-Valve (LAV)" system was developed for on-line micro-extraction determination of anionic surfactant in water samples. The detection method is based on the formation of ion-association compound between anionic surfactant and methylene blue, which can be extracted into dichloromethane before spectrophotometric detection. Sample, reagent and dichloromethane are sequentially aspirated via a multiposition selection valve attached with an extraction coil where the extraction process is performed. The aqueous and organic phases are separated in a conical separating chamber LAV unit situating a fiber optic spectrometer. The organic phase containing extracted product is then monitored spectrophotometrically. Some water samples have been analyzed for anionic surfactants by the developed procedure.

Introduction: Solvent extraction is one of the versatile techniques for sample matrix separation and/or analyte preconcentration. However, manual extraction presents a series of drawbacks such as high consumption of sample and organic solvent, low sampling frequency, loss of analyte through manipulation and contamination of atmosphere by organic vapor. Many efforts have been made to overcome these inherent drawbacks. Among them, the successful techniques are probably the on-line solvent extraction using flow systems. In this work, sequential injection analysis with a new concept called "lab-at-valve" was proposed for on-line extraction in a micro-scale.

Methodology: The SIA-LAV system consisted of a 2.50 ml syringe pumping, a 10-position selection valve, a UV-Vis light source and a spectrophotometer. The syringe pump was connected to the center of the selection valve by an extraction coil. A separating LAV unit situating a fiber optic spectrophotometer was attached at one port of the valve. Both instrumental control and data acquisition were manipulated via the FIAlab software. Sample, reagent and organic solvent were sequentially introduced into the extraction coil. An ion association formed was extracted by programming the syringe pump to aspiration and dispensing modes. The solution was then propelled into the separating chamber where the aqueous and organic phases were separated. The organic phase containing ion-associated product was detected at 650 nm.

Results, Discussion and Conclusion: The experimental parameters affected the extraction efficiency and the sensitivity of the determination were selected to be optimized. They involved operational sequence, number of flow reversal and the sample volume. It was found that the operational sequence in which the sample, reagent and organic solvent were sequentially aspirated as a segment before several cycles of flow reversal provided high sensitivity because of high degree of contact between aqueous and organic phases. Using this system, a sample and organic solvent volumes of 1000 and 300 µl, respectively, were consumed. Application to the determination of anionic surfactant in water samples was demonstrated. Good agreement between the proposed and the standard "methylene blue" methods was achieved. SI-LAV involved a considerable reduction of both reagent and sample consumption. Therefore, only small volume of organic solvent was required. The proposed integrating system serves as a micro-total analysis system.

Acknowledgements: The Thailand Research Fund and the Commission on Higher Education are gratefully acknowledged for financial support.

References:

- (1) Kate Grudpan (2004) *Talanta*, **64**, 1084-1090.
- (2) Wiboon Praditweingkum and Kate Grudpan (2000) *J. Flow Injection Anal.*, **17**, 202-205.
- (3) Standard Methods for the Examination of Water and Wastewater, 7th ed., **1989**, pp. 59-63.

Keywords: sequential injection analysis, lab-at-valve, on-line extraction, anionic surfactant

Symposium on Advanced Flow-Based Chemical Analysis

Venue: Faculty of Science, Okayama University (Lecture Room 11)

Date: December 13, 2005, 14:00-18:00

Program			
14:00 Openir	ng Remarks		
14:05-14:50	K. Grudpan	Titration using flow-based techniques	
14:50-15:10	R. Burakham	Sequential injection-Lab-at-Valve: An alternative system for on-line micro-extraction	
15:10-15:30	L. Narong	Simultaneous flow titration for determination of iron and acid concentration	
15:30-16:10	Poster Session	I* ODD-number papers	
16:10-16:50	Poster Session	II* EVEN-number papers	
16:50-17:10	T. Takayanagi	Nonionic surfactant micelle as a pseudo-homogeneous extraction medium for the extraction of ion-associates	n
17:10-17:30	M. Oshima	Collection and concentration for ICP-AES and ICP-MS	
17:30-18:00	S. Motomizu	Trace analysis of the atmosphere for gaseous air pollutants by	
		flow-based analytical methods	
18:00 Closing	g Remarks		
19:00-	Social gather	ing at Naritaya	

^{*} Poster sessions will be held at 3rd floor. Free drinks are available during the poster sessions.

	Posters	
P01	S. Lunvongsa	Highly sensitive method for the spectrophotometric determination of copper using a
		catalytic reaction by flow-based technique
P02	K. Uraisin	Flow injection/spectrophotometric determination of trace amounts
		of bromate by using prochlorperazine
P03	A. Sabarudin	Development of novel chelating resins using chitosan as base material and their
		application to the adsorption/concentration of non-metallic elements
P04	Q. Li	Development of a novel flow-based method for the determination of micro amounts of
		formaldehyde based on Hantzsch reaction
P05	Nathawut	Gas-diffusion flow injection for kinetic determination of iodide
P06	T. Suekane	Determination of trace amounts of ammonia in air using batchwise
		collection/concentration method
P07	Rosi Ketrin K	Synthesis of novel chelating resin using chitosan as a base material and their application
		to the collection / concentration of metal ions in environmental water samples
P08	Lukman	Synthesis of novel chitosan resin and their application for metals/non-metals
		preconcentration
P09	M. Imamori	Preparation of a new type chelating resin based on chitosan
P10	O.Noguchi	Determination of trace elements in microsamples by air-segmented flow injection/ICP-MS
P11	D. Naito	Determination of anionic surfactants using new ion-association reagents
P12	N. Miyoshi	Determination of Vanadium by using chelating disk for collection / concentration
P13	H. Yamashita	Determination of fluorosurfactant using detection of fluoride
P14	T. Inoue	Advanced chemical analysis for EDC · HCl using flow-based analysis method
P15	F. Iwami	Study on the development of highly-sensitive chemical analysis method for trace metals
P16	Y. Joichi	Development of fully automated system for advanced trace chemical analysis
P17	T. Yamamoto	Development of on-line pretreatment method for ICP-AES
P18	M. Ishida	Highly-sensitive ion analysis by ion chromatography based on capillary electrophoresis

:

Sequential Injection: An On-line Sample Preparation for Liquid Chromatography and Capillary Electrophoresis

Rodjana Burakham, 1 Supalax Srijaranai 1 and Kate Grudpan 2

Research interests focus on on-line sample preparation for liquid chromatography (LC) and capillary electrophoresis (CE) using sequential injection analysis (SIA). The on-line sample preparation includes sequential injection on-line extraction-at-valve and sequential injection on-line solid phase extraction. New approaches for chromatographic separation using sequential injection chromatography (SIC) and monolithic column is also explored.

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002

² Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200

Determination of Some Heavy Metals by Sequential Injection On-line Derivatization and Ion-Pair Reversed Phase High Performance Liquid Chromatography

Rodjana Burakham, Supalax Srijaranai and Kate Grudpan

¹ Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand, E-mail: rburakham@yahoo.com

An on-line derivatization system for determination of some heavy metals was developed using sequential injection (SI) and ion-pair reversed-phase high performance liquid chromatography (IP-RPHPLC). 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) was chosen as a derivatizing reagent. SI system was coupled to HPLC for a simple and efficient pre-column derivatization. Using the proposed system, separation of four metals-nitro-PAPS complexes was achieved within 12 min. Under the selected conditions, the analytical characteristics, including linear range, limit of detection, precision and accuracy, were evaluated. Advantages and limitation of the system will be discussed. The developed method was successfully applied for the determination of metal ions in various samples.

² Department of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand

การเตรียมอนุพันธ์แบบออนใลน์สำหรับการวิเคราะห์โลหะโดยใช้เทคนิคซีเควนเชียลอินเจคชันและ

โครมาโทกราฟีของเหลวสมรรถนะสูง

ON-LINE DERIVATIZATION DETERMINATION OF METAL IONS USING SEQUENTIAL INJECTION HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

<u>รจนา บระคำ</u>¹, ศุภลักษณ์ ศรีจารนัย และ เกตุ กรุดพันธ์ 2

Rodjana Burakham¹, Supalax Sijaranai¹ and Kate Grudpan²

¹Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. E-mail: rburakhaml@yahoo.com

²Department of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand

บทคัดย่อ: การใช้ระบบซีเควนเชียลอินเจคชันเพื่อเตรียมอนุพันธ์แบบออนไลน์สำหรับการวิเคราะห์ โลหะด้วยเทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง โลหะที่วิเคราะห์ได้แก่ โคบอลต์ เหล็ก นิกเกิล และ คอปเปอร์ โดยใช้ 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) เป็นรีเอเจนต์ และวัดด้วยเทคนิคสเปกโทรโฟโตเมทรีที่ความยาวคลื่น 570 นาโนเมตร ระบบที่นำเสนอนี้สามารถเตรียมอนุพันธ์แบบออนไลน์และแยกสารประกอบเชิงซ้อนของโลหะทั้งสี่ ชนิดได้ภายใน 12 นาที และ ได้นำไปประยุกต์สำหรับการวิเคราะห์โลหะในตัวอย่างที่หลากหลาย

Abstract: Sequential injection (SI) was coupled to high performance liquid chromatography (HPLC) for an on-line simple pre-column derivatization and determination of metal ions, including Co(II), Fe(II), Ni(II) and Cu(II). 2-(5-nitro-2-pyridylazo)-5-[*N*-propyl-*N*-(3-sulfopropyl)amino]phenol (nitro-PAPS) was used as a derivatizing reagent. The detection principle is spectrophotometry at 570 nm. Using the proposed SI-HPLC system, on-line derivatization and separation of four metals-nitro-PAPS complexes was achieved within 12 min. The developed method has been successfully applied for the determination of metal ions in various samples.

Sequential injection with lab-at-valve system for on-line micro-extraction determination of anionic surfactant

Burakham, R.a*, Jakmunee, J.b, Grudpan, K.b

^aDepartment of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 ^bDepartment of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200

Abstract

Sequential injection with lab-at-valve system was developed for on-line micro-extraction determination of anionic surfactant. The detection method is based on the formation of ion-association compound between anionic surfactant and methylene blue, which can be extracted into dichloromethane before spectrometric detection. Sample, reagent and dichloromethane are sequentially aspirated via a multiposition selection valve attached with an extraction coil where the extraction process is performed. The aqueous and organic phases are separated in a conical separating chamber lab-at-valve unit situating a fiber optic spectrometer. The organic phase containing extracted product is then monitored spectrophotometrically. Some water samples have been analyzed for anionic surfactant by the developed procedure.

Keywords: sequential injection, lab-at-valve, micro-extraction, anionic surfactant

Outputs

1. Burakham R, Jakmunee J, Grudpan K. Development of sequential injection-lab-at-valve (SI-LAV) micro-extraction instrumentation for the spectrophotometric determination of an anionic surfactant, Anal. Sci. 2006; 22: 137-140.

*Corresponding author.

Tel.:0-4320-2222 ext. 12243; Fax: 0-4320-2373

E-mail: rburakham@yahoo.com

ARTICLE IN PRESS

Available online at www.sciencedirect.com

LWT I (IIII) III-III

Capillary zone electrophoresis of organic acids in beverages

Apichai Santalad, Pattana Teerapornchaisit, Rodjana Burakham, Supalax Srijaranai*

Department of Chemistry, Faculty of Science, Khon Kaen University, 123 Mitrapab Road, Muang District, Khon Kaen 40002, Thailand Received 22 May 2006; received in revised form 7 December 2006; accepted 9 January 2007

Abstract

Capillary zone electrophoresis (CZE) with photodiode array detection (PDA) was applied to simultaneously determine eleven organic acids in wine, beer, and fruit and vegetable juices after derivatisation with 2-nitrophenylhydrazine (2-NPH) in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl). The parameters affecting CZE separation included type and concentration of buffer, pH, organic additive and applied voltage. Optimum conditions at 25 °C were: 30 mmol 1⁻¹ borate buffer, pH 10.0, containing $100 \, \text{ml} \, 1^{-1}$ acetonitrile, at $20 \, \text{kV}$, sample injection at $0.5 \, \text{psi}$ for $5 \, \text{s}$, with direct detection at $230 \, \text{nm}$. Separation of eleven organic acids was achieved within $12 \, \text{min}$. Linear calibration curves with good fit were obtained in the range $10.0-100.0 \, \text{mg} \, 1^{-1}$. Limits of detection ranged from $2.0 \, \text{to} \, 10.0 \, \text{mg} \, 1^{-1}$. Intra-day precision with $RSD \leq 4.0\%$ for migration time and $\leq 5.0\%$ for peak area, and interday precision with $RSD \leq 6.0\%$ and $\leq 9.0\%$ for migration time and peak area, were obtained. Recovery for all beverage samples was 97+15%.

© 2007 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

Keywords: Organic acids; Capillary zone electrophoresis; 2-nitrophenylhydrazine; Wine; Beer; Fruit juice; Vegetable juice

1. Introduction

Organic acids have important roles in beverages because they affect the organoleptic properties (e.g. taste, aroma and colour), stability, nutrition, acceptability and in maintaining quality (Shui & Leong, 2002; Soyer, Koca, & Karadeniz, 2003). Levels of organic acids in foods and beverages provide relevant information for monitoring the fermentation processes (Castiñeira, Peña, Herrero, & García-Martín, 2002; Esteves, Lima, Lima, & Duarte, 2004). These acids can be used for differentiation, classification, origin identification or possible adulteration of beverages. Therefore, it is important to be able to precisely determine the amounts of different acids present for quality control during beverage production, transformation, storage and distribution.

The most widely used methods for determination of organic acids are gas chromatography (GC) (Docherty & Ziemann, 2001) and high-performance liquid chromatogra-

*Corresponding author. Tel.: +664320222241x12243; fax: +6643202373.

E-mail address: supalax@kku.ac.th (S. Srijaranai).

phy (HPLC) (Kotani, Miyaguchi, Tomita, Takamura, & Kusu, 2004). HPLC has been the most popular method for analysing these acids after derivatisation. Nowadays, capillary zone electrophoresis (CZE) has become an attractive alternative technique to HPLC providing high efficiency, short analysis time and low reagent and sample consumption. In CZE, detection of organic acids can be performed using either direct UV measurements (Buchberger & Winna, 1996; Cortacero-Ramírez, Segura-Carretero, Hernáinz-Bermúdez de Castro, & Fernandez-Gutierrez, 2005) or indirect UV determination (Chen, Xu, Lente, & Ip, 1996; De Villiers, Lynen, Crouch, & Sandra, 2003; Esteves et al., 2004; Wu, Lo, Lee, & Lin, 1995). However, both direct and indirect UV detection offer less selectivity and samples need purification to eliminate interfering matrices, such as sugars or phenolic compounds. Derivatisation of organic acids before separation by CZE enhances both sensitivity and selectivity (Cunha, Fernandes, & Ferreira, 2002). Derivatising reagents that have been used for analysis of organic acids are 2nitrophenylhydrazine (2-NPH) (Miwa, 1985, 2000; Miwa & Yamamoto, 1988, 1996), phenacyl and naphthacyl bromide (Blau & Halke, 1993) and O-(4-nitrobenzyl)-N,N'-diisopropylisourea (PNBDI) (Cunha et al., 2002). 2-NPH has been

 $0023-6438/\$30.00 \odot 2007$ Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.lwt.2007.01.007

widely used because of the simplicity and rapidity of the derivatisation procedure.

The aim of the present study is to optimise CZE for the simultaneous determination and rapid quantification of the major organic acids in wine, beer and fruit and vegetable juices. 2-NPH was used as the derivatising reagent for organic acids before separation of their acid hydrazides.

2. Materials and methods

2.1. Chemicals and standards

All chemicals were of analytical reagent grade or better. 2-NPH (Fluka, Australia) solution (100 mmol l⁻¹) was prepared by dissolving the reagent in 0.1 mol l⁻¹ HClethanol (1:1 v:v). N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl) (Fluka, Slovakia) solution (0.25 mmol l⁻¹) was prepared by dissolving the reagent in pyridine-ethanol (3:97 v/v). Pyridine and ethanol were purchased from Carlo Erba (France). Potassium hydroxide (Merck, Germany) solution (1:10 w/v) was prepared in methanol-water (1:1 v/v). Organic acid standards used were glacial acetic acid (Carlo Erba, France); lactic acid, succinic acid, oxalic acid dihydrate, citric acid anhydrous and trans-aconitic acid (Fluka, Switzerland); suberic acid, glutaric acid and malonic acid (Acros, Belgium); malic acid (Sigma, Canada) and tartaric acid (HW, England). Stock solutions (1000 mg l⁻¹) of organic acids and various concentrations of organic acids were prepared by dissolving accurately weighed amounts in water. Sodium tetraborate (Univar-Ajax, Australia) was used for buffer preparation by dissolving accurately weighed amounts in water. Hydrochloric acid and sodium hydroxide (Carlo Erba, France) were used for adjusting buffer pH. Deionised water with resistivity of $18.2 \,\mathrm{M}\Omega\,\mathrm{cm}$ from the RiO_STM Type I Simplicity 185 purification system (Millipore water, USA) was used throughout the experiments.

2.2. Instrumentation

All CZE experiments were performed using a Beckman P/ACETM MDQ v.5.0 Capillary Electrophoresis system (Beckman Instrument Inc., Fullerton, CA, USA) equipped with a photodiode array detector (190–600 nm). KARAT software was used for system control and data handling. Separations were carried out using a fused-silica capillary with total length of 40.0 cm (30.0 cm effective length) and 75 µm internal diameter (Beckman Instrument Inc., Fullerton, CA, USA).

2.3. Derivatisation procedure

Stock organic acid solutions (100 μ l), 2-NPH (150 μ l) and EDC·HCl (200 μ l) were mixed and heated at 70 °C for 10 min. After addition of 100 μ l of 100 g l⁻¹ KOH, the

mixture was further heated at 70 °C for 10 min and then cooled, filtered and analysed by CZE.

2.4. Capillary zone electrophoresis conditions

All new capillaries were initially conditioned with methanol for 5 min, followed by water for 2 min, 0.1 mol l⁻¹ HCl for 10 min and water for 5 min. Then they were rinsed with 0.1 mol l⁻¹ NaOH for 10 min, with water for 5 min and equilibrated with the running buffer for 10 min. Between each separation cycle, the capillary was automatically rinsed with 0.1 mol l⁻¹ NaOH for 5 min, with water for 2 min and with running buffer for 5 min. All electrolyte solutions were filtered through a 0.45 µm membrane filter and degassed by sonication before use.

The parameters affecting the separations described below include: buffer pH (pH 5.0–11.0), type (acetate, phosphate, and borate) and concentration (20–40 mmol l⁻¹); organic modifier levels (acetonitrile, 50–200 ml l⁻¹) and separation voltage (15–30 kV). Absorbance detection at 230 nm was used throughout the experiments. The sample injection was set constant at 42 nl (hydrodynamic injection at 0.5 psi for 5 s).

2.5. Analysis of organic acids in beverages

Beverages studied include wine, beer, and vegetable and fruit juices. Samples were purchased from the local supermarkets in Khon Kaen Province in Northeastern Thailand. Wine samples are local products with various fruit origins. The samples were filtered through a 0.45 µm membrane filter and were diluted with water to the appropriate values in order to ensure that the results obtained were in the range of the calibration graph. The diluted samples were then derivatised and analysed by CZE. All analyses were performed in triplicate.

3. Results and discussion

3.1. Effect of pH

The pH of the electrolyte buffer has considerable influence on the separation because it impacts not only electroosmotic flow (EOF) but also electrophoretic mobilities of the analytes. At pH 5.0 (acetate buffer), no peaks of acid hydrazides were observed, presumably due to the predominance of non-ionised forms of acid hydrazides. Below pH 10.0 (phosphate or borate), good resolution could not be obtained. Above pH 10.0, no improvement in resolution was observed but analysis time increased (>20 min), so a borate buffer of pH 10.0 was selected as the optimum buffer for subsequent experiments.

3.2. Effect of buffer concentration

Fig. 1a shows the migration profiles of the acid hydrazides obtained for various concentrations (20–40 mmol l⁻¹) of the

A. Santalad et al. / LWT ■ (■■■) ■■■-■■■

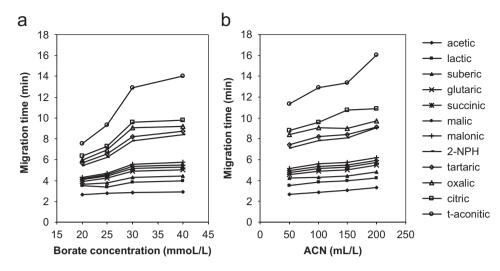


Fig. 1. Effect of (a) borate concentration and (b) acetronitrile content on migration time of acid hydrazides. Capillary electrophoretic conditions: $30 \,\mathrm{mmol}\,l^{-1}$ borate and $100 \,\mathrm{ml}\,l^{-1}$ ACN, voltage of $20 \,\mathrm{kV}$, sample injection (0.5 psi, 5 s) and detection at $230 \,\mathrm{nm}$.

borate buffer. With increasing borate concentration resolution increased, but the migration times also increased. In general, the electrophoretic mobility is inversely proportional to the viscosity and concentration of the running buffer (Chen, Chen, Lin, & Chang, 1999) so increasing buffer concentration results in longer migration time, associated with increased Joule heating in the capillary which results in decreasing separation efficiency. Therefore, borate buffer concentration of 30 mmol l⁻¹ was chosen.

3.3. Effect of organic modifier

Organic modifiers such as methanol, acetonitrile (ACN) and iso-propanol are often added into the running buffer to improve the selectivity and alter the retention mechanism by changing the polarity of the aqueous phase (Nielsen, Nielsen, & Frisvad, 1996). An organic component with low viscosity, such as ACN, is preferred for high-speed separations. ACN is also a very weak acid as well as a very weak base and, therefore, it is a good differentiating solvent for acids (Chen et al., 1999). It was found that the addition of ACN to the running buffer extended the migration times of the acid hydrazides and provided the increase in resolution (Fig. 1b). Some acid hydrazides, such as glutaric acid, succinic acid, malic acid and malonic acid, could not be separated in the running buffer without acetonitrile. To compromise between good resolution (higher than 1.0) and short analysis time, $100 \,\mathrm{ml}\,\mathrm{l}^{-1}$ ACN was selected to be used throughout.

3.4. Effect of running voltage

The driving force behind the migration of ions in CZE is the field strength applied across the capillary, which is related to the applied voltage divided by the capillary length. In this study, voltages used were 15–30 kV operating over a 40.0 cm capillary, which gives the field

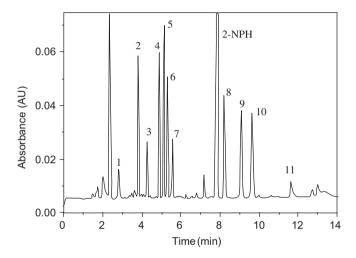
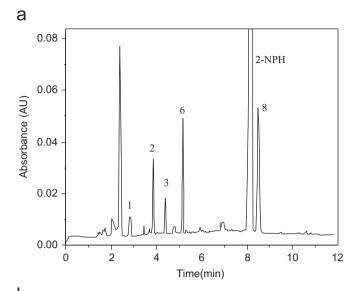


Fig. 2. Electropherogram of eleven standard organic acids (each concentration $60 \,\mathrm{mg} \, l^{-1}$); conditions: $30 \,\mathrm{mmol} \, l^{-1}$ borate (pH 10.0) and $100 \,\mathrm{ml} \, l^{-1}$ ACN, voltage of $20 \,\mathrm{kV}$, sample injection (0.5 psi, 5 s), temperature of 25 °C and detection at 230 nm; peaks: (1) acetic acid, (2) lactic acid, (3) suberic acid, (4) glutaric acid, (5) succinic acid, (6) malic acid, (7) malonic acid, (8) tartaric acid, (9) oxalic acid, (10) citric acid and (11) trans-aconitic acid.

strength of $375-750\,\mathrm{V\,cm}^{-1}$. Although, the analysis time decreased with an increase in the applied voltage (data not shown), high voltage (>25 kV) resulted in high current (>300 μ A) in the system. To ensure good separation and extend the lifetime of the capillary, applied voltage was compromised. Thus, the applied voltage was set to 20 kV to avoid too high current and to keep short analysis time.

3.5. Analytical characteristics and method validations

Fig. 2 shows a typical CZE electropherogram of eleven acid hydrazides under optimum experimental conditions, monitored at 230 nm. Grouped by their increasing negative charge-to-mass ratios, mono-carboxylic acids (acetic acid


and lactic acid) elute first as anticipated; di-carboxylic acids (suberic acid, glutaric acid, succinic acid, malic acid, malonic acid, tartaric acid and oxalic acid) elute next, and tri-carboxylic acids (citric acid and trans-aconitic acid) elute last.

The linearity of response, limit of detection (LOD), limit of quantitation (LOQ) and precisions (i.e. intra-day and inter-day reproducibility) were investigated. Table 1 shows equation of regression lines which had good linearity in the range $10.0-100.0\,\mathrm{mg}\,\mathrm{l}^{-1}$, with regression coefficient (R^2) values higher than 0.999. LOD and LOQ were estimated using a signal-to-noise ratio of 3 and 10, respectively. LODs ranged from 2.0 to 10.0 mg l⁻¹ whereas LOQs ranged from 10.0 to 20.0 mg l⁻¹. The reproducibility of the proposed method was studied by repeated injections of the acid hydrazide mixtures 10 times in 1 day (intra-day precision), whereas inter-day precision was tested by triplicate injections for 4 days. The results are reported in Table 1 in terms of relative standard deviation (RSD). Intra-day precision (RSD ≤ 4.0% for migration time and ≤5.0% for peak area) and inter-day precision (RSD ≤ 6.0% and ≤ 9.0% for migration time and peak area, respectively) were obtained. The results indicate that the proposed method has good precision for both qualitative and quantitative studies.

Recovery was studied by spiking the mixture of organic acids (each concentration of $40.0\,\mathrm{mg\,I^{-1}}$) into individual beverage samples. The percentage recoveries of organic acids from all types of samples were in the range 81.7-112.4 as summarised in Table 1. The recoveries showed dependence on the origin of the sample and the sample matrix.

3.6. Analysis of beverage samples

The proposed method was applied to the determination of organic acids in different beverages, including wine and beer, and fruit and vegetable juices. Fig. 3 shows typical

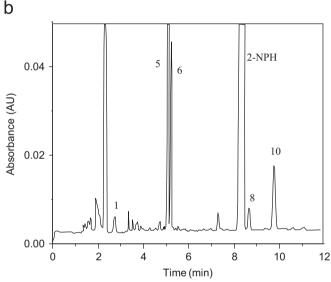


Fig. 3. Electropherograms of (a) red grape wine and (b) jambolan wine. CZE conditions and peak assignments as described in Fig. 2.

Table 1 Linear equations, regression coefficients, LOD, LOQ, precision and recovery range of the studied organic acids

Acid	Linear equation	R^2	$LOD \; (mg l^{-1})$	$LOQ (mg l^{-1})$	Precisi	on, RSD (%)	Recovery range ^a (%)		
					Intra-c	Intra-day $(n = 10)$		$ay (n = 4 \times 3)$	•
					$t_{\mathbf{M}}$	Peak area	$t_{\mathbf{M}}$	Peak area	•
Acetic	y = 641.12x + 17918	0.9995	5.0	10.0	2.34	4.64	2.32	6.64	83.2–110.9
Lactic	y = 206.02x + 3223.6	0.9998	5.0	10.0	1.44	3.58	2.04	6.55	85.0-109.9
Suberic	y = 364.67x + 441.4	0.9999	5.0	12.0	1.48	4.04	2.00	5.14	82.7-111.9
Glutaric	y = 905.13x + 1413.4	0.9991	2.0	10.0	1.67	4.38	2.27	8.44	83.4-112.4
Succinic	y = 1126.80x + 10787	0.9998	2.0	10.0	1.74	2.29	2.34	5.18	82.6-104.6
Malic	y = 808.42x + 1450.6	0.9992	3.0	10.0	1.86	3.98	2.45	6.99	89.4-111.9
Malonic	y = 459.50x + 82.64	0.9992	5.0	12.0	1.86	3.94	2.67	8.49	84.6-106.2
Tartaric	y = 1122.60x + 1078	0.9992	3.0	10.0	2.26	4.90	3.17	5.44	84.7-111.1
Oxalic	y = 1186.9x + 773.69	0.9998	4.0	10.0	3.15	2.66	5.25	8.60	81.7-105.4
Citric	y = 523.61x + 896.33	0.9994	3.0	10.0	2.46	2.95	3.22	5.00	84.8-102.3
t-Aconitic	y = 151.46x + 4310.3	0.9996	10.0	20.0	2.87	4.71	5.54	6.92	83.9-112.0

 $^{^{}a}n = 3$ for replicate injections in all types of beverage samples.

A. Santalad et al. / LWT I (IIII) III-III

Table 2
The contents of organic acids in wine and beer samples

Sample	Content of acid $(g l^{-1})$											
	Acetic	Lactic	Suberic	Glutaric	Succinic	Malic	Malonic	Tartaric	Citric			
Grape red wine	0.54	4.11	0.99	n.d.	n.d.	1.44	n.d.	2.34	n.d.			
Grape white wine	n.d.	n.d.	0.26	n.d.	0.56	4.41	0.44	2.38	13.49			
Strawberry white wine	0.36	0.52	0.30	0.12	0.75	6.48	n.d.	5.09	1.66			
Organic fruit wine	0.95	n.d.	n.d.	n.d.	2.10	1.39	n.d.	5.17	12.28			
Black galingale wine	1.16	n.d.	n.d.	n.d.	1.68	0.74	n.d.	3.86	7.34			
Jambolan wine	0.48	n.d.	n.d.	n.d.	5.73	3.58	n.d.	0.42	4.69			
Roselle wine	1.23	n.d.	n.d.	n.d.	2.52	0.51	n.d.	n.d.	12.44			
Mangosteen wine	0.76	n.d.	n.d.	n.d.	3.58	1.58	n.d.	0.16	2.58			
Star gooseberry wine	4.54	n.d.	n.d.	n.d.	3.25	11.01	n.d.	n.d.	n.d.			
Beer 1	0.05	0.45	n.d.	0.05	0.06	0.21	0.24	n.d.	0.41			
Beer 2	0.06	0.32	n.d.	0.05	0.08	0.28	0.12	n.d.	0.65			
Wines												
Esteves et al. (2004)	0.06 - 0.46	0.53 - 2.46	n.r.	n.r.	0.24 - 0.71	0.49 - 2.38	n.r.	0.82 - 2.75	n.r.			
De Villiers et al. (2003)	0.40 - 1.08	0.61 - 4.03	n.r.	n.r.	0.41-1.59	0.3 - 3.05	n.r.	0.92 - 2.67	n.d0.32			
Beers												
Pérez-Ruiz et al. (2004)	n.r.	0.55-0.63	n.r.	n.r.	n.r.	0.41 - 0.72	n.r.	n.d0.22	0.73-0.20			

n.d.: not detected, n.r.: not reported.

Table 3
The contents of organic acids in fruit and vegetable juice samples

Sample	Content of acid (gl^{-1})									
	Acetic	Succinic	Malic	Malonic	Tartaric	Citric				
Red grape 1	n.d.	n.d.	0.83	n.d.	0.50	1.79				
Red grape 2	n.d.	n.d.	10.30	n.d.	7.58	2.49				
Tangerine orange	n.d.	n.d.	0.62	n.d.	n.d.	5.39				
Apple	n.d.	n.d.	2.96	n.d.	n.d.	1.77				
Mixed berry	n.d.	n.d.	0.73	n.d.	0.16	7.55				
Longan	n.d.	n.d.	0.05	0.03	n.d.	0.09				
Grapefruit flavoured	n.d.	n.d.	0.37	n.d.	n.d.	6.36				
Muscat flavoured	n.d.	n.d.	0.65	n.d.	0.07	5.23				
Cherry flavoured	n.d.	n.d.	0.76	n.d.	0.06	3.84				
Mixed fruit and vegetable	n.d.	n.d.	0.89	0.20	n.d.	8.95				
Broccoli	n.d.	n.d.	2.46	n.d.	0.45	9.90				
Purple carrot	n.d.	0.06	5.50	0.19	n.d.	7.47				
Tomato	0.14	n.d.	7.66	n.d.	n.d.	13.23				
Apple juice										
Miwa (2000)	n.r.	n.r.	0.20 - 7.20	n.r.	n.r.	0.30-8.50				
Cunha et al. (2002)	n.r.	n.r.	0.20 - 4.90	n.r.	n.r.	0.10 - 3.70				
Chinnici et al. (2005)	n.r.	0.10-0.84	1.37-5.61	n.r.	n.r.	3.3-1.09				
Orange juice										
Cunha et al. (2002)	n.r.	n.d0.20	n.d4.30	n.r.	n.d.	1.50-12.50				
Grape juice										
Soyer et al. (2003)	n.r.	n.r.	1.40-3.50	n.r.	4.10-8.00	0.03 - 0.20				

n.d.: not detected, n.r.: not reported.

electropherograms obtained from the samples. Organic acids in the samples were identified by comparing their migration times $(t_{\rm M})$ with authentic compounds. As noted in Table 2, five acids (i.e. acetic acid, succinic acid, malic acid, tartaric acid, and citric acid) were almost always present in wines, and there was considerable variation in

levels (e.g., 0.51–11.01 g l⁻¹ for malic acid). Tartaric acid was detected in seven wine samples, but neither of the two beer samples. Some organic acids such as lactic acid, suberic acid, glutaric acid and malonic acid were found at low levels. In juice samples (Table 3), malic acid and citric acid were consistently present, but they varied considerably

in samples (e.g., $0.05-10.30\,\mathrm{g\,I^{-1}}$ for malic acid). The acid contents obtained by the proposed method are comparable to those reported in literatures. These results demonstrate that the present method is suitable for determining organic acids in various types of beverage samples.

4. Conclusion

CZE has been shown to be a powerful method for rapid and simultaneous analysis of organic acids in wine and beer, and in fruit and vegetable juices. The separation of eleven organic acids as their acid hydrazides was achieved within 12 min. The derivatisation with 2-NPH was simple and provided sensitive spectrometric detection. The main organic acids found in the beverages consisted of malic acid and citric acid, whereas the other organic acids were found at low levels. Oxalic acid and trans-aconitic acid were not found in any sample. This method is well suited for determining organic acids in beverages.

Acknowledgements

We are grateful to Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC) for financial support and to Chemistry Department, Faculty of Science, Khon Kaen University for all facilities.

References

- Blau, K., & Halke, J. M. (1993). *Handbook of derivatives for chromatography* (2nd ed). Chichester: Wiley.
- Buchberger, W., & Winna, K. (1996). Optimization of the separation of polyorganic acids by capillary zone electrophoresis. *Journal of Chromatography A*, 739, 389–397.
- Castiñeira, A., Peña, R. M., Herrero, C., & García-Martín, S. (2002).
 Analysis of organic acids in wine by capillary electrophoresis with indirect UV detection. *Journal of Food Composition and Analysis*, 15, 319–331.
- Chen, H., Xu, Y., Lente, F. V., & Ip, M. P. C. (1996). Indirect ultraviolet detection of biologically relevant organic acids by capillary electrophoresis. *Journal of Chromatography B*, 679, 49–59.
- Chen, M.-J., Chen, H.-S., Lin, C.-Y., & Chang, H.-T. (1999). Indirect detection of organic acids in non-aqueous capillary electrophoresis. *Journal of Chromatography A*, 853, 171–180.
- Chinnici, F., Spinabelli, U., Riponi, C., & Amati, A. (2005). Optimization of the determination of organic acids and sugars in fruit juices by ionexclusion liquid chromatography. *Journal of Food Composition and Analysis*, 18, 121–130.

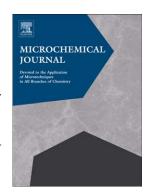
- Cortacero-Ramírez, S., Segura-Carretero, A., Hernáinz-Bermúdez de Castro, M., & Fernandez-Gutierrez, A. (2005). Determination of low-molecular-mass organic acids in any type of beer samples by coelectroosmotic capillary electrophoresis. *Journal of Chromatography* A, 1064, 115–119.
- Cunha, S. C., Fernandes, J. O., & Ferreira, I. M. P. L. V. O. (2002). HPLC/UV determination of organic acids in fruit juices and nectars. European Food Research and Technology, 214, 67–71.
- De Villiers, A., Lynen, F., Crouch, A., & Sandra, P. (2003). A robust capillary electrophoresis method for the determination of organic acids in wines. *European Food Research and Technology*, 217, 535–540.
- Docherty, K. S., & Ziemann, P. J. (2001). On-line, inlet-based trimethylsilyl derivatization for gas chromatography of mono- and diorganic acids. *Journal of Chromatography A*, 921, 265–275.
- Esteves, V. I., Lima, S. S. F., Lima, D. L. D., & Duarte, A. C. (2004). Using capillary electrophoresis for the determination of organic acids in Port wine. *Analytica Chimica Acta*, 513, 163–167.
- Kotani, A., Miyaguchi, Y., Tomita, E., Takamura, K., & Kusu, F. (2004).
 Determination of organic acids by high-performance liquid chromatography with electrochemical detection during wine brewing. *Journal of Agricultural and Food Chemistry*, 52, 1440–1444.
- Miwa, H. (1985). Reversed-phase ion-pair chromatography of some biologically important organic acids as 2-nitrophenylhydrazides. *Journal of Chromatography*, *333*, 215–219.
- Miwa, H. (2000). High-performance liquid chromatographic determination of mono-, poly- and hydroxyorganic acids in foods and beverages as their 2-nitrophenylhydrazides. *Journal of Chromatography A*, 881, 365–385.
- Miwa, H., & Yamamoto, M. (1988). Reversed-phase ion-pair chromatography of straight- and branched-chain diorganic acids urine as their 2-nitrophenylhydrazides. *Analytical Biochemistry*, 170, 301–307.
- Miwa, H., & Yamamoto, M. (1996). Determination of mono-, poly-, and hydroxyl-carboxylic acid profiles of beverages as their 2-nitrophenyl-hydrazides by reversed-phase ion-pair chromatography. *Journal of Chromatography A*, 721, 261–268.
- Nielsen, M. S., Nielsen, P. V., & Frisvad, J. C. (1996). Micellar electrokinetic capillary chromatography of fungal metabolites resolution optimized by experimental design. *Journal of Chromato-graphy A*, 721, 337–344.
- Pérez-Ruiz, T., Martínez-Lazano, C., Tomás, V., & Martín, J. (2004). High-performance liquid chromatographic separation and quantification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection. Journal of Chromatography A, 1026, 57-64.
- Shui, G., & Leong, L. P. (2002). Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. *Journal of Chromatography A*, 977, 89–96.
- Soyer, Y., Koca, N., & Karadeniz, F. (2003). Organic acid profile of Turkish white grapes and grape juices. *Journal of Food Composition* and Analysis, 16, 629–636.
- Wu, C. H., Lo, Y. S., Lee, Y.-H., & Lin, T.-I. (1995). Capillary electrophoresis determination of organic acids with indirect detection. *Journal of Chromatography A*, 716, 291–301.

Accepted Manuscript

Field-amplified sample injection and in-capillary derivatization for capillary electrophoretic analysis of metal ions in local wines

Apichai Santalad, Rodjana Burakham, Supalax Srijaranai, Kate Grud-

pan


PII: S0026-265X(07)00045-8

DOI: doi: 10.1016/j.microc.2007.03.006

Reference: MICROC 834

To appear in: Microchemical Journal

Received date: 21 March 2007 Revised date: 27 March 2007 Accepted date: 27 March 2007

Please cite this article as: Apichai Santalad, Rodjana Burakham, Supalax Srijaranai, Kate Grudpan, Field-amplified sample injection and in-capillary derivatization for capillary electrophoretic analysis of metal ions in local wines, *Microchemical Journal* (2007), doi: 10.1016/j.microc.2007.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Field-Amplified Sample Injection and In-Capillary Derivatization for
2	Capillary Electrophoretic Analysis of Metal Ions in Local Wines
3	
4	
5	
6	
7	Apichai Santalad ^a , Rodjana Burakham ^a , Supalax Srijaranai ^{a,*} and
8	Kate Grudpan ^b
9	
10	
11	
12	^a Department of Chemistry, Faculty of Science, Khon Kaen University,
13	Khon Kaen 40002, Thailand
14	
15	^b Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai
16	50200, Thailand
17	
18	
19	
20	
21	
22	* Corresponding author:
23	E-mail address: supalax@kku.ac.th (S. Srijaranai)
24	Tel. +66 4320 2222 41 ext. 12243
25	Fax: +66 4320 2373
26	
27	
28	
29	
30	
31	
32	
33	Abstract

1	
2	In-capillary derivatization and field-amplified sample injection (FASI)
3	coupled to capillary zone electrophoresis (CZE) was evaluated for the analysis of
4	metals (Co(II), Cu(II), Ni(II), and Fe(II)) using 2-(5-Nitro-2-Pyridylazo)-5-(N-Propyl-
5	N-Sulfopropylamino)Phenol (Nitro-PAPS) as the derivatizing agent. For FASI, the
6	optimum conditions were water as sample solvent, 1 s hydrodynamic injection (0.1
7	psi) of a water plug, 5 s of electrokinetic introduction (10 kV) of the sample. The in-
8	capillary derivatization was successfully achieved with zone-passing strategy in order
9	tandem injection of Nitro-PAPS reagent (0.5 psi, 7 s), a small water plug (0.1 psi, 1 s),
10	and metal ion introduction (10 kV, 5 s). The solution of 45 mmol L ⁻¹ borate pH 9.7
11	and $1.0x10^{-5}$ mol L ⁻¹ Nitro-PAPS containing 20% acetonitrile was used as the running
12	buffer. Limit of detection obtained by the proposed method was lower than those
13	from pre-capillary derivatization about $3-28$ times. The recovery of the method was
14	comparable to pre-capillary derivatization method. In-capillary derivatization-FASI-
15	CZE was applied to analysis of metals in wine samples. The results were compared
16	with those obtained by CZE with pre-capillary derivatization method and atomic
17	absorption spectrometry (AAS).
18	
19	
20	Key words: Capillary zone electrophoresis; Field-amplified sample injection; In-
21	capillary derivatization; Metal ions; Nitro-PAPS; Wines
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

-3-

1 Introduction

1

2 The analysis of heavy metals in a range of substances is of considerable interest 3 due to potential human toxicities. There is increasing demand for simple and reliable 4 methods for the simultaneous detection of several metal ions with low detection limits 5 and low sample/reagent consumption. Atomic absorption spectrometry (AAS) is the 6 most widely used method for metal analysis but simultaneous multi-element analysis 7 is not possible. Inductively coupled plasma atomic emission spectrometry (ICP-AES) 8 is capable of multi-element analysis, but the instrumentation is relatively expensive. 9 The simultaneous determination of metal ions with conventional high performance 10 liquid chromatography (HPLC) and ion chromatography (IC) have several 11 disadvantages, such as long analysis times and consumption of large volumes of 12 reagents. Recently, capillary electrophoresis (CE) has been shown to be a powerful separation technique for the analysis of metals in a wide variety of sample matrices 13 14 [1–8] because of the significant advantages of resolution, speed, simplicity and lower 15 sample/reagent consumption. The electrophoretic determination of metals can be 16 easily achieved by indirect detection through the addition of appropriate species to the 17 background electrolyte to produce UV-absorbing species [9, 10], but the number of 18 appropriate compounds for this environment is limited. The pyridylazo reagent, 2-(5-19 Nitro-2-Pyridylazo)-5-(N-Propyl-N-Sulfopropylamino) Phenol (Nitro-PAPS) is a 20 synthesized chromogenic reagent which forms water-soluble chelates with giving high molar absorptivities of ca. $10^4 - 10^5$ L mol⁻¹ cm⁻¹ [11–13]. Nitro-PAPS has been 21 22 used as a chromogenic reagent in various analytical techniques for the determination 23 of various metal ions. Flow-injection spectrophotometry for the determination of 24 Fe(II) in purified salts [13] and the trace analysis of V(V) in river water [14] using 25 Nitro-PAPS have been demonstrated. The HPLC-based determination of Cu(II), 26 Co(II), Ni(II) and Fe(II) in rain and river waters using Nitro-PAPS has been reported 27 [11]. The use of Nitro-PAPS chelates incorporating pre-capillary derivatization in CE 28 for the determination of trace metal impurities in nickel and iron salts has been 29 described [15]. 30 In CE, derivatization has been accomplished by either pre-capillary [16, 17], post-31 capillary [18] and in-capillary [1, 2, 19-21] methods. Pre-capillary derivatization 32 requires large amounts of derivatization ligand, whereas post-capillary derivatization 33 requires significant post-capillary hardware modification, and loss of efficiency 34 during separation and peak broadening has been noted [18, 22, 23]. The increased

-4-

1 popularity of in-capillary derivatization takes advantage of the fact that there is

2 minimal sample dilution compared to pre-capillary and post-capillary derivatization.

3 In-capillary derivatization can be performed by three modes: zone-passing, at-inlet

4 and throughout-capillary [24–26]. Among these strategies, zone-passing is

appropriate for the Nitro-PAPS derivatization since the formation of the metal

6 complex occurs within seconds.

In order to increase the sensitivity of detection in CE, the on-line preconcentration methods have been developed with different strategies, such as large volume sample stacking [27], sweeping [28], dynamic pH junction-sweeping [29], and field-amplified sample injection (FASI) [8, 30–35]. FASI is very popular since it is quite simple, requiring only the electrokinetic injection of the sample after the introduction of a small plug of high-resistivity solvent (mainly water). In FASI, samples are normally prepared in a low conductivity buffer and injected electrokinetically into a capillary containing a high-conductivity running buffer.

In this work, the feasibility of combining FASI with in-capillary derivatization of metal ions (Co(II), Cu(II), Ni(II), and Fe(II)) with Nitro-PAPS before their analysis by capillary zone electrophoresis (CZE) is demonstrated. The combination of electrokinetic injection and water or organic solvent field amplified stacking is investigated. Studies of effects of diluents (aqueous versus organic) on the stacking by the electroinjection under FASI is performed. Finally, in-capillary derivatization-FASI-CZE is applied to the analysis of these metal ions in local wine samples.

2 Materials and methods

2.1 Chemicals and reagents

All the reagents used in this work were of analytical reagent grade. Nitro-PAPS was purchased from Dojindo (Japan). A 1x10⁻³ mol L⁻¹ stock solution of Nitro-PAPS was prepared in deionized water. The 1000 mg L⁻¹ stock atomic absorption standard solutions of metal ions including Co(II), Cu(II), Ni(II) and Fe(II), were purchased from Ajax Finechem (Australia). The working solutions of each metal were daily prepared in deionized water except for Fe(II) was prepared in acidic medium of HCl (1% v/v). Sodium tetraborate was purchased from Univar-Ajak (Australia). Water for preparation of samples and buffer solution was the deionized water obtained from a RiO_sTM Type I Simplicity 185 (Millipore-Waters, U.S.A.) with the resistivity of 18.2 MΩ.cm.

-5-

1 2

2.2 Instrumentation

Experiments were performed on a Beckman P/ACE MDQ capillary electrophoresis instrument (Fullerton, CA, U.S.A.) equipped with a photodiode array detection system. The 32 Karat software version 5.0 (Beckman) was used for instrument control, data acquisition and data analyses. Electrophoretic separations were carried out using uncoated fused-silica capillaries (Beckman) with a total length of 60.2 cm (50.0 cm effective length) and 75 μ m I.D. On-capillary detections were performed at either selected wavelengths (200, 214, 250 and 570 nm) or in the scanning mode (190 – 600 nm). All CZE experiments were thermostated at 25 °C.

A Perkin-Elmer Instruments AAnalyst 100 atomic absorption spectrometer (U.S.A.) equipped with Perkin-Elmer single element hollow cathode lamps and an airacetylene flame with air and acetylene flow rates of 10 and 3 mL min⁻¹ was used for the determination of metals. The wavelengths (nm) selected for the determination of the analytes were as follows: Co 240.7, Cu 324.8, Ni 232.0, and Fe 248.3.

2.3 Pre-capillary derivatization (as a reference method)

The working solutions of metal ions were mixed with Nitro-PAPS solution $(1x10^{-3} \text{ mol L}^{-1})$ in the mole ratio of ligand:metal of 2:1 at pH 6.0 at room temperature. The sample solution was introduced into the electrophoretic system by hydrodynamic injection at 0.5 psi (1 psi = 6895 Pa) for 5 s before separation. The absorbance was detected at 250 nm.

2.4 In-capillary derivatization and FASI

In-capillary derivatization of metals and Nitro-PAPS was performed by zone-passing option in the tandem mode. Briefly, the capillary was first filled with the carrier electrolyte and then a plug of Nitro-PAPS solution was introduced at 0.5 psi for 7 s. After that, FASI was performed by introduction of a small water plug (0.5 psi, 1 s) and then the sample was introduced into the capillary with electrokinetic injection at 10 kV for 5 s. Subsequently, the separation voltage of 20 kV was applied through the capillary and the on-line reaction occurred inside the capillary when the metals mixed with the Nitro-PAPS. The complexing reaction occurs during the separation to

-6-

obtain the corresponding metal-Nitro-PAPS chelates and subjected to spectrometric detection.

2.5 Electrophoretic separation

Prior to use, all new capillaries were initially pretreated with the following cycles: methanol, 0.1 mol L⁻¹ HCl and 0.1 mol L⁻¹ NaOH for 10 min each and deionized water for 5 min between each rinses and finally equilibrated with the buffer solution for 10 min before applying voltage of 10 kV across the capillary for 5 min. To maintain reproducible migration times, the capillary was pre-conditioned with the running buffer for 3 min before each run. After completing the separation session, the capillary was flushed with 0.1 mol L⁻¹ NaOH for 5 min and then washed with deionized water for 3 min. The running buffer used throughout the separation was 45 mmol L⁻¹ borate buffer pH 9.7 and 1.0x10⁻⁵ mol L⁻¹ Nitro-PAPS containing 20 % acetonitrile. All running buffers were filtered through a 0.45 μm membrane filter (Nylon, Chrom Tech) and degassed by sonication before use.

2.6 Wine Samples

The wine samples studied included a variety of homemade red and white wines from a variety different fruits. The samples were purchased from the local supermarkets in Khon Kaen Province in Northeastern Thailand. The wines were filtered through a 0.45 μ m membrane filter and were appropriately diluted about 10 times with water before derivatization and analysis. All analyses were performed in triplicate.

The AAS determinations of metals in wines were performed on standard calibration curves. The calibration curves were constructed in range $0-5 \text{ mg L}^{-1}$ with obtained correlation coefficients higher than 0.999 for all studied metals. To obtain the results in line with the calibration curves, wine samples were appropriately diluted with water before directly analyses.

3 Results and discussion

3.1 Spectrometric properties

Although the metal ion-Nitro-PAPS complexes are normally detected at visible wavelengths, higher sensitivity and good signal-to-noise ratios were achieved

-7-

with detection at 250 nm. Using Job's method, the ligand-to-metal ratio of 2:1 was found for the Co(II), Ni(II) and Fe(II) complexes, and 1:1 for the Cu(II) complex.

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32

33

34

3.2 In-capillary derivatization and FASI

In-capillary derivatization can be achieved by successive introductions of a sample solution and the reagent solution followed by application of the specified voltages. Reaction occurs while both zones are overlapping each other in the capillary. In the present study, in-capillary derivatization of metal ions and Nitro-PAPS reagent was performed based on the zone-passing strategy. The Nitro-PAPS reagent was first introduced into the capillary by the hydrodynamic injection mode, followed by hydrodynamic injection of a small water plug and then the metal ions were injected using the electrokinetic mode. All solutions were successively introduced at the anodic end of the capillary. After the specified voltage was applied, the metal ions as positively charged species zones migrated faster than the Nitro-PAPS reagent zone toward the cathode, whereas the negatively charged Nitro-PAPS species migrated to the anode. Thus, the metal ions moved into the reagent zone and reacted to form the metal-Nitro-PAPS chelates. The mixing scheme is illustrated in **Figure 1**. The parameters affecting FASI such as injection voltage and sample matrix were investigated and optimized. Preliminary studies involving metal ions dissolved in different solvents such as 10% acetonitrile, water, and 0.4 mol L⁻¹ sodium chloride showed that metal ions prepared in water gave the highest peaks for all the chelates. Although metal ions in acetonitrile provided good peak shape, the migration times of the analytes were shifted to longer times. Thus, aqueous solutions of metal ions were used for further studies.

The effect of injection voltage was studied by introducing metal ions dissolved in water at different applied voltages (7 – 15 kV) with a constant time interval (5 s). The peak areas increased up to 10 kV and remained nearly constant thereafter, possibly due to the competing migration directions and rates that affect local concentrations. Thus, an injection voltage of 10 kV for 5 s was chosen. **Figure 2** summarizes the results corresponding to each derivatization strategy; R, S, and W refer to the reagent, sample, and water, respectively. Among the various zone-passing introduction modes, the R-S-R configuration gave the lowest responses, except for Cu(II). The R-S tandem mode gave higher sensitivities for all metal ions, compared to RSR. If the R-S tandem mode was carried out by introduction of a small water plug

1 (at 0.1 psi for 1 s) before electrokinetic metal introduction, RW(1)S, increasing
2 responses were observed. While a time of 2 s, designated RW(2)S, produced an
3 increase for Co(II), the responses for other metals decreased significantly, possibly
4 due to dilution in the reaction zone. The optimum condition is, therefore, represented
5 by RW(1)S.

3.3 The optimization of CZE conditions

In order to achieve complete separation of metal-Nitro-PAPS chelates, the crucial parameters affecting the separation were: buffer pH, concentration of buffers, organic modifier, and separation voltage. Preliminary experiments with three common buffers, acetate (near pH 5.0), phosphate (near pH 7.0), and borate (near pH 9.0) buffers showed that acetate and phosphate did not lead to complete separation due to overlap of peaks from some metals and Nitro-PAPS, whereas borate buffer provided successful separation. Borate buffer was then investigated at the pH ranges of 9.0 – 10.5. Co(II), Cu(II) and excess Nitro-PAPS were well separated, but by increasing of pH, increased the resolution of Ni(II)- and Fe(II)-Nitro-PAPS could be achieved. At pH values higher than pH 10.5, excess Nitro-PAPS and Cu(II)-Nitro-PAPS peaks co-eluted. The best separation was obtained at pH 9.7.

The effect of borate concentration was then evaluated ranging from 35 to 55 mmol L^{-1} . Increasing the borate concentration resulted in decreased mobility and better resolution. However, high current in the capillary system was observed at high concentrations, so 45 mmol L^{-1} was chosen as the optimum value.

The type and concentration of organic modifier are other parameters that can improve resolution and selectivity in separations [17, 20]. For the present study, acetonitrile was selected and varied over the range of 10 - 25 % (v/v). The chelates of metals were completely separated with the running buffer containing 20% acetonitrile, so this was selected for subsequent runs.

In this study, voltages over the range of 15-22~kV showed little effect on separation. However, a poor baseline was observed when the separation was performed at the highest applied voltages, so the optimum of 20~kV was used throughout.

In all the studies, Nitro-PAPS (1.0x10⁻⁵ mol L⁻¹) was added into the running buffer in order to prevent the dissociation of metal-Nitro-PAPS chelates during the

9_

separation and provided good baselines [36]. No effects of Nitro-PAPS concentration changes were observed other than some baseline drift at higher values.

In summary, the optimum running buffer was 45 mmol L⁻¹ borate pH 9.7 and 20% acetonitrile containing 1.0x10⁻⁵ mol L⁻¹ Nitro-PAPS. The separation voltage was 20 kV and on-capillary detection was carried out at 250 nm. Under the optimum CZE conditions, the four metal ions was completely separated within 20 min (**Figure 3**) with the migration order of Co(II)-, unreacted Nitro-PAPS, Cu(II)-, Ni(II)- and Fe(II)-Nitro-PAPS, respectively. The peak of excess Nitro-PAPS (migration time 15 min) was close to the Cu(II) peak (16.0 min).

1011

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627

28

29

30

31

32

33

1

2

3

4

5 6

7

8 9

3.4 Analytical validations

To validate the quantitative aspects of the proposed method using FASI combined with in-capillary derivatization method, quality and quantity parameters using the optimized CZE method were evaluated and the results are shown in **Table 1**. Calibration curves based on the peak area at concentrations between 0.05 mg L⁻¹ and 5.00 mg L⁻¹ exhibited good linearity was obtained with R² values higher than 0.995. The reproducibility of the method was reported in terms of relative standard deviation (RSD) using six repeat determinations for intra-day precision and four replicate injections for inter-day comparisons. The RSD obtained from both of intra-day and inter-day precisions were lower than 0.5 % and 1.2 %, respectively, for migration time whereas 3.0 % and 4.5 % for peak area. Limit of detection (LOD) was estimated based on signal-to-noise ratio (S/N) of 3:1 for both pre-capillary and in-capillary methods. The results are shown in Table 2. Co(II)-Nitro-PAPS has larger molar absorptivity (ϵ) than the other studied metal ions about 1 order of magnitude (i.e. 10^5 L mol⁻¹ cm⁻¹ for Co(II)-Nitro-PAPS whereas the other metal ions have ε about 10⁴ L mol⁻¹ cm⁻¹). Thus, larger signal of Co(II)-Nitro-PAPS as well as its low LOD is Similar result was observed [11]. The in-capillary method with the electrokinetic injection (10kV, 5 s) gives lower concentration detection than precapillary approach by a factor of 3 - 28. Whereas the in-capillary method with the electrokinetic injection produced lower LODs in the range of 5 - 40 times when compared to pressure injection (0.5 psi, 5 s). The results obtained by the proposed method can be used for the analysis of metals in sub-ppm level as lower or similar to those obtained by others [9, 10, 19]. To ensure that the present method can be used

-10-

1 for the analysis of metals in real samples, the recovery was studied by spiking the

2 metal ion standard solutions at 2.0 mg L⁻¹ each into all samples and analyzed in

3 triplicate. As shown in **Table 2**, the recovery obtained from in-capillary method was

comparable to the pre-capillary method. The recovery ranges showed dependence on

the origin of the sample and the sample matrix (see below).

67

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

2324

25

2627

28

29

30

3132

33

34

4

5

3.5 Application

The analysis of 12 wine samples was performed following the procedure described in Section 2.6. Figure 4 shows the typical electropherograms obtained by the proposed method of Emblic fruit wine and white grape wine samples, respectively. Identification of peaks was carried out by comparing the migration time (t_M) of known metal ions in a standard containing only a single metal ion with those in a metal mixture and by spiking with known metals and looking for increases in peak height. The contents of metals present in all studied wines are listed in **Table 3**. Only Cu(II) and Fe(II) were found in the studied wine samples whereas Co(II) and Ni(II) were not detected. Cu(II) was found in Emblic fruit and Black Galingale wines with a high level about 20 mg L⁻¹ for the first sample. The levels of copper in various beverages (e.g. wines, tea, fruit juices, etc.) from some other countries have been reviewed [37]. In wines, the copper concentration was found to be less than 2 mg L⁻¹. Although copper was classified as an essential metal, excessive levels in wines are potentially toxic. The maximum acceptable level of copper in wine as established by the Office International de la Vigne et du Vin (OIV) is 1 mg L⁻¹ [38]. Iron is usually present in musts and wines at a concentration range varying from 0.5 up to 20 mg L⁻¹ [39]. The highest permissible concentration of iron in table wines set by the official national legislation has been determined to be 10 mg L⁻¹. Iron contents higher than 8 - 10 mg L⁻¹ may result in turbidity and color changes [40]. In the present study, Fe(II) was found at different amounts in all wine samples. The highest value (~ 51 mg L⁻¹) of Fe(II) was found in Emblic fruit wine which also has the highest content of Cu(II). The Longan wine contained Fe(II) at a level of 34 mg L⁻¹ and Fe(II) in Roselle wine at 19 mg L⁻¹. Fe(II) was also detected in other wine samples at levels of 16 mg L⁻¹ or lower. The presence of copper and iron at these levels suggest that all wines may be risk of cloudiness and lack of stability. To establish the reliability of the proposed method for analysis of metals in wine samples, the results obtained using the CZE method with in-capillary derivatization and FASI method have been

-11-

compared to those using pre-capillary derivatization method and AAS (**Table 3**). The statistical significant as determined by the *t*-test at 95% confidence level showed no significant difference in the results obtained by the three methods. Comparisons presented here suggest that rapid and reliable results can be obtained in a highly automated process to establish the quality of wines. Iron contamination in homemade preparations is of particular interest.

7

9

1112

13

14

15

16

17

18 19

20

21

22

23

24

1

2

3

4

5

6

4 Conclusion

The method and results described here demonstrate that FASI in combination with in-capillary derivatization is a useful technique for CZE determination of cobalt(II), copper(II), nickel(II), and iron(II) using Nitro-PAPS as the complexing FASI of metal ions and in-capillary mixing with Nitro-PAPS were successfully obtained with zone-passing strategies using tandem injection order of Nitro-PAPS, a small water plug, and metal ions. Under the optimum condition, the separation of four metals can be achieved within 20 min. Limit of detections obtained from in-capillary derivatization with electrokinetic injection were 3 – 28 folds higher than those obtained from the pre-capillary method. The successful application of this method for the determination of metals in wines has been demonstrated. Only copper and iron were found at high levels in wine samples that and these may influence on color and stability of the homemade wines. In-capillary derivatization and FASI were superior in terms of simplicity and ease of automation when compared to pre-capillary derivatization. Moreover, small quantities (~ nL level) of reagent and sample were required. Thus, the method can be considered to be an alternative to other more complicated methods for analysis of metals in wines.

2526

27

28

29

30

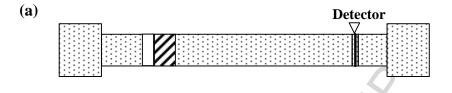
31

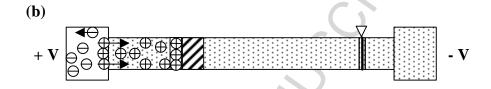
Acknowledgements

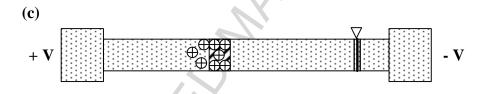
We are grateful to the Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC) and the Thailand Research Fund (TRF) for financial support. We wish to thank Prof. Richard L. Deming (Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, U.S.A.) for his kind comments.

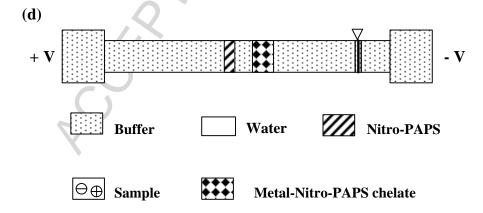
References

- 2 [1] Z.L. Chen and R. Naidu, J. Chromatogr. A, 1023 (2004) 151.
- 3 [2] F. Priego-Capote and M.D. Luque de Castro, J. Chromatogr. A, 1113 (2006)
- 4 244.
- 5 [3] C. Ortega, S. Cerutti, R.A. Olsina, L.D. Martínez and M.F. Silva, J. Pharm.
- 6 Biomed. Anal., 36 (2004) 721.
- 7 [4] F. Qu and J.-M. Lin, J. Chromatogr. A, 1068 (2005) 169.
- 8 [5] A.-N. Tang, D.-Q. Jiang and X.-P. Yan, Anal. Chim. Acta, 507 (2004) 199.
- 9 [6] M. Übner, M. Kaljurand and M. Lopp, J. Chromatogr. A, 1057 (2004) 253.
- 10 [7] S. Suárez-Luque, I. Mato, J.F. Huidobro and J. Simal-Lozano, Talanta 68
- 11 (2006) 1143.
- 12 [8] Z.L. Chen, J.-M. Lin and R. Naidu, Anal. Bioanal. Chem., 375 (2003) 679.
- 13 [9] Y.S. Fung and K.M. Lau, J. Chromatogr. A, 1118 (2006) 144.
- 14 [10] N. Shakulashvili, T. Faller and H. Engelhardt, J. Chromatogr. A, 895 (2000)
- 15 205.
- 16 [11] T. Okutani, Y. Tsukada, A. Sakuragawa, T. Yamaji and S. Morita, J.
- 17 Chromatogr. A, 788 (1997) 113.
- 18 [12] T. Yamane and Y. Yamaguchi, Anal. Chim. Acta, 345 (1997) 139.
- 19 [13] T. Yamane and H. Yamada, Anal. Chim. Acta, 308 (1995) 433.
- 20 [14] T. Yamane and Y. Yamaguchi, Microkim. Acta, 130 (1998) 111.
- 21 [15] T. Kagawa, T. Takayanagi, M. Oshima, and S. Motomizu, Bunseki Kagaku,
- 22 51 (2002) 791.
- 23 [16] B.-F. Liu, L.-B. Liu and J.-K. Cheng, J. Chromatogr. A, 848 (1999) 473.
- 24 [17] B.-F. Liu, L.-B. Liu, H. Chen and J.-K. Cheng, Anal. Chim. Acta, 434 (2001)
- 25 309.
- 26 [18] S. Hardy, P. Jones, J.M. Riviello and N. Avdalovic, J. Chromatogr. A, 834
- 27 (1999) 309.
- 28 [19] M. Wang, J.-M. Lin, F. Qu, X. Shan and Z. Chen, J. Chromatogr. A, 1029
- 29 (2004) 249.
- 30 [20] E. Naujalis and A. Padarauskas, J. Chromatogr. A, 977 (2002) 135.
- 31 [21] W.-P. Yang, Z.-J. Zhang and W. Deng, J. Chromatogr. A, 1014 (2003) 203.

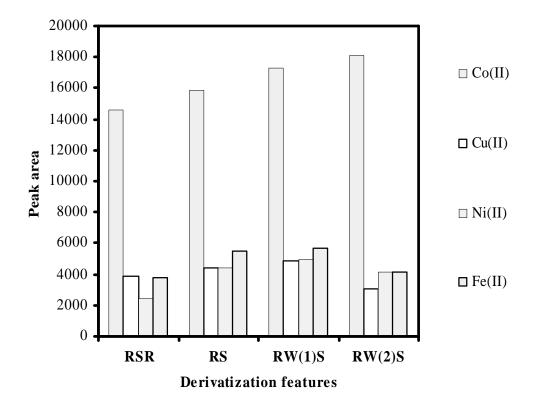

-13-


- 1 [22] H.A. Bardelmeijer, H. Lingeman, C. De Ruiter and W.J.M. Underberg, J.
- 2 Chromatogr. A, 807 (1998) 3.
- 3 [23] R. Zhu and W.T. Kok, J. Pharm. Biomed. Anal., 17 (1998) 985.
- 4 [24] R.M. Latorre, S. Hernández-Cassou and J. Saurina, J. Chromatogr. A, 934
- 5 (2001) 105.
- 6 [25] G. Jankovskiene, Z. Daunoravicius and A. Padarauskas, J. Chromatogr. A, 934
- 7 (2001) 67.
- 8 [26] A. Taga, A. Nishino and S. Honda, J. Chromatogr. A, 822 (1998) 271.


9


- 10 [27] E. Bermudo, O. Núñez, L. Puignou and M.T. Galceran, J. Chromatogr. A,
- 11 1129 (2006) 129.
- 12 [28] J.F. Palmer, J. Chromatogr. A, 1036 (2004) 95.
- 13 [29] P. Britz-McKibbin, T. Ichihashi, K. Tsubota, D.D.Y. Chen and S. Terabe, J.
- 14 Chromatogr. A, 1013 (2003) 65.
- 15 [30] S.-W. Sun and H.-M. Tseng, J. Pharm. Biomed. Anal., 36 (2004) 43.
- 16 [31] Q. Weng, G. Xu, K. Yuan and P. Tang, J. Chromatogr. B, 835 (2006) 55.
- 17 [32] Y. Xu, Y. Gao, H. Wei, Y. Du and E. Wang, J. Chromatogr. A, 1115 (2006)
- 18 260.
- 19 [33] C.-C. Chen, S.-M. Wu, Y.-H. Huang, W.-K. Ko, H.-S. Kou and H.-L.Wu,
- 20 Anal. Chim. Acta, 517 (2004) 103.
- 21 [34] L.-Y. Zhang and M.-X. Sun, J. Chromatogr. A, 1100 (2005) 230.
- 22 [35] N. García-Villar, J. Saurina and S. Hernández-Cassou, Electrophoresis, 27
- 23 (2006) 474.
- 24 [36] D.A. Oxspring, T.J. Maxwell and W.F. Smyth, Anal. Chim. Acta, 323 (1996)
- 25 97.
- 26 [37] P.C. Onianwa, I.G. Adetola, C.M.A. Iwegbue, M.F. Ojo and O.O. Tella, Food
- 27 Chem., 66 (1999) 275.
- 28 [38] S. Galani-Nikolakaki, N. Kallithrakas-Kontos and A.A. Katsanos, Science
- 29 Total Environ., 285 (2002) 155.
- 30 [39] K.A. Riganakos and P.G. Veltsistas, Food Chem., 82 (2003) 637.
- 31 [40] C.M. Garcia-Jahres, M.A. Lage-Yusty and J. Simal-Lozano, Fresenius J. Anal.
- 32 Chem., 338 (1990) 703.

1	Figure Captions
2	
3	Figure 1 The schematic reaction of metal ions and Nitro-PAPS based on in-capillary
4	derivatization. (a) Hydrodynamic introduction of buffer, Nitro-PAPS and
5	water plug, (b) electrokinetic injection of the sample, (c) mixing and reaction
6	of metals with Nitro-PAPS, and (d) separation of the metal-Nitro-PAPS
7	chelates.
8	
9	Figure 2 Comparison of introduction order for in-capillary derivatization based on
10	zone-passing. Conditions: metal ion standards = 3.0 mg L ⁻¹ each, reagent
11	solution=1.0x10 ⁻³ mol L ⁻¹ , reagent injection time=7 s at 0.5 psi; sample
12	introduction=10kV for 5 s; water injection time=1 s at 0.1 psi; running
13	buffer=45 mmol L ⁻¹ borate pH 9.7 and 1.0x10 ⁻⁵ mol L ⁻¹ Nitro-PAPS
14	containing 20% acetonitrile, potential=20 kV. Segment assignment: S,
15	Sample; R, reagent; W, water.
16	
17	Figure 3 Electropherogram of metal ion standards (3.0 mg L ⁻¹ each) obtained from in-
18	capillary derivatization and FASI under the optimum condition as followed:
19	45 mmol L ⁻¹ borate pH 9.7 and 1.0x10 ⁻⁵ mol L ⁻¹ Nitro-PAPS containing 20%
20	acetonitrile, applied voltage of 20 kV, temperature of 25 °C and on-capillary
21	detection at 250 nm.
22	
23	Figure 4 Electropherograms of wine samples under the optimum conditions: (a)
24	Emblic fruit wine and (b) white grape wine. Remarkable with asterisks (*)
25	are unknown peaks.
26	
27	
28	
29	
30	
31	
32	
33	
34	



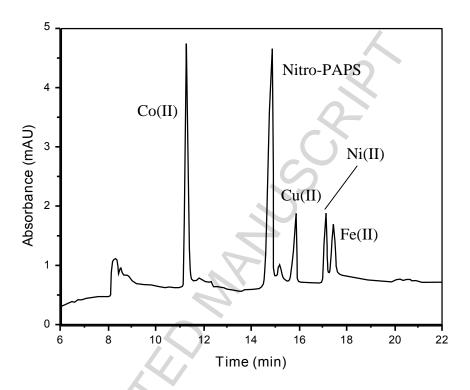


Figure 1 The schematic reaction of metal ions and Nitro-PAPS based on in-capillary derivatization. (a) Hydrodynamic introduction of buffer, Nitro-PAPS and water plug, (b) electrokinetic injection of the sample, (c) mixing and reaction of metals with Nitro-PAPS, and (d) separation of the metal-Nitro-PAPS chelates.

Figure 2 Comparison of introduction order for in-capillary derivatization based on zone-passing. Conditions: metal ion standards = 3.0 mg L⁻¹ each, reagent solution=1.0x10⁻³ mol L⁻¹, reagent injection time=7 s at 0.5 psi; sample introduction=10kV for 5 s; water injection time=1 s at 0.1 psi; running buffer=45 mmol L⁻¹ borate pH 9.7 and 1.0x10⁻⁵ mol L⁻¹ Nitro-PAPS containing 20% acetonitrile, potential=20 kV. Segment assignment: S, Sample; R, reagent; W, water.

Figure 3 Electropherogram of metal ion standards (3.0 mg L^{-1} each) obtained from incapillary derivatization and FASI under the optimum condition as followed: 45 mmol L^{-1} borate pH 9.7 and 1.0×10^{-5} mol L^{-1} Nitro-PAPS containing 20% acetonitrile, applied voltage of 20 kV, temperature of 25 °C and on-capillary detection at 250 nm.

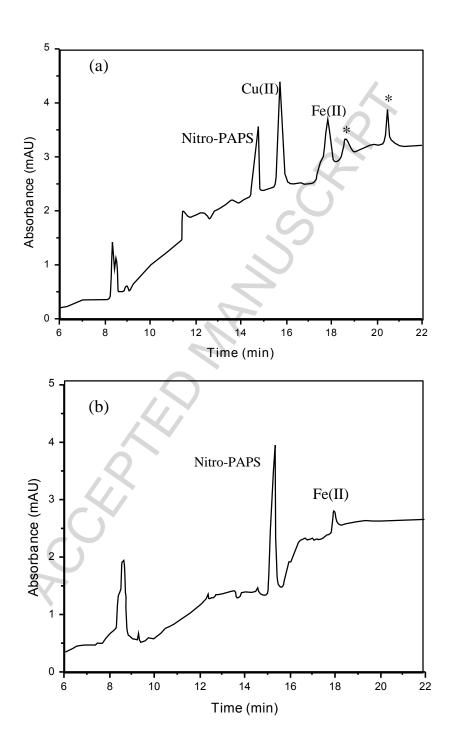


Figure 4 Electropherograms of wine samples under the optimum conditions: (a)

Emblic fruit wine and (b) white grape wine. Remarkable with asterisks (*)

are unknown peaks.

1

ACCEPTED MANUSCRIPT

-19-

Table 1 The analytical characteristics of the proposed method

complex	linear equation,		linearity	R ² intra-day precision,		inter-day precision,		
	y = ax + b		(mg L^{-1})	RSD(%), n = 6		RSD(%), $n = 4x3$		
	a	b	_		t_{M}	peak area	t_{M}	peak area
Co(II)-Nitro-PAPS	27032.0	-87.0	0.05 - 3.00	0.9982	0.28	2.00	0.35	4.00
Cu(II)-Nitro-PAPS	1476.7	472.5	0.10 - 3.00	0.9989	0.38	2.43	0.51	4.20
Ni(II)-Nitro-PAPS	1769.1	537.4	0.05 - 5.00	0.9953	0.42	2.75	0.67	3.85
Fe(II)-Nitro-PAPS	4384.0	-524.6	0.20 - 5.00	0.9996	0.25	2.55	0.32	4.36

ACCEPTED MANUSCRIPT

-20-

Table 2 The limit of detection (LOD) and recovery for in-capillary and pre-capillary methods

		LOD (mg L ⁻¹)		()	C	D d (o)	
complex	pre-capillary ^a	in-capillary			factor	Recovery ^d (%), $n = 3$	
		electrokinetic	pressure	pre-capillary/	pressure /	pre-capillary	in-capillary
		injection ^b	injection ^c	electrokinetic	electrokinetic	FF	<i></i>
Co(II)-Nitro-PAPS	0.20	0.025	0.30	8.0	12.0	80 – 102	80 – 95
Cu(II)-Nitro-PAPS	0.20	0.080	0.50	2.5	6.2	83 – 104	85 – 102
Ni(II)-Nitro-PAPS	0.70	0.025	1.00	28.0	40.0	80 – 103	82 - 97
Fe(II)-Nitro-PAPS	0.70	0.100	0.50	7.0	5.0	82 – 94	87 – 103

^a injection of complexes at 0.5 psi for 5 s

^b metal ion injection at 10 kV for 5

^c metal ion injection at 0.5 psi for 5 s

^d reported as mean values for the twelve studied wine samples

ACCEPTED MANUSCRIPT

-21-

Table 3 The content of metals in wine samples (mean, n=3)

wine		copper(II), mg L ⁻¹		iron(II), mg L ⁻¹			
_	in-capillary	pre-capillary	AAS	in-capillary	pre-capillary	AAS, total iron	
Emblic fruit	19.53	19.96	20.36	50.89	51.37	51.80	
Mangosteen	n.d.	n.d.	n.d.	7.78	7.36	7.54	
Jambolan	n.d.	n.d.	n.d.	11.17	11.95	13.84	
Star gooseberry	n.d.	n.d.	n.d.	12.29	12.59	11.26	
Organic fruit	n.d.	n.d.	n.d.	10.03	10.28	11.30	
Black galingale	5.37	5.52	5.46	15.25	15.73	15.78	
Roselle	n.d.	n.d.	n.d.	19.09	20.69	19.60	
Longan	n.d.	n.d.	n.d.	34.49	35.38	39.40	
Bel fruit	n.d.	n.d.	n.d.	14.18	15.67	13.30	
Strawberry	n.d.	n.d.	n.d.	15.86	16.71	14.52	
White grape	n.d.	n.d.	n.d.	15.26	15.78	14.34	
Red grape	n.d.	n.d.	n.d.	13.03	13.89	12.90	

n.d.: not detected

Program Number: 677 Day / Time: Sunday, Dec. 18, 8:00 PM - 10:00 PM

Simultaneous determination of Co (II) , Cu (II) , Ni (II) , Fe (II) and V (V) as their nitro - PAPS chelates by flow injection coupled to high performance liquid chromatography

- S.Srijaranai ¹; W.Pimrote ¹; C.Kukusamude ¹; T.Sakai ²; <u>R.Burakham</u> ¹
- 1. Chemistry, Khon Kaen University, Muang, Khon Kaen, Thailand; 2. Applied Chemistry, Aichi Institute of Technology, Toyota, Japan

A presented method involves the on-line complexation of metal ions with 2-(5-nitro-2-pyridylazo)-5-(N- n-propyl-N-sulfopropyl)-aminophenol (Nitro-PAPS) and subsequent simultaneous separation by ion-pair reversed phase high performance liquid chromatography. The lab made flow injection system was used for an on-line complexation and was coupled with HPLC via switching valve. The separation was performed on a M-Bondapak C18 column and visible detection at 570 nm. Mobile phase compositions such as percentage of organic modifier, concentration of buffer and concentration of ion pairing agent were optimized using the sequential simplex method. The optimum mobile phase was obtained after 19 experiments. Using the optimum condition, baseline * separation of five metal-(nitro-PAPS) chelates was achieved within 17 min. Detection limits ranged from 1.0 to 55.0 ng mL⁻¹ for Co(II) and V(V), respectively. Application of the proposed method to the analysis of water and wine samples is demonstrated.

Citation: S.Srijaranai, W.Pimrote, C.Kukusamude, T.Sakai, R.Burakham. Simultaneous determination of Co (II), Cu (II), Ni (II), Fe (II) and V (V) as their nitro - PAPS chelates by flow injection coupled to high performance liquid chromatography. Program No. 677. 2005 Abstract Viewer. Honolulu, Hawaii: International Chemical Congress of Pacific Basin Societies

Application Design and Programming Copyright ScholarOne, Inc. All Rights Reserved. Patent Pending.

Program Number: 676 Day / Time: Sunday, Dec. 18, 8:00 PM - 10:00 PM

Capillary zone electrophoresis of carboxylic acids

A.Santalad; S.Srijaranai; P.Teerapornchaisit; R.Burakham

Chemistry, Khon Kaen University, Muang, Khon Kaen, Thailand

The simultaneous separation and determination of carboxylic acids was performed by capillary zone electrophoresis (CZE) with UV detection of their 2-nitrophenylhydrazine derivatives. Optimum conditions for the derivatization and capillary electrophoresis separation of 12 carboxylic acids were investigated. Twelve studied carboxylic acids, including acetic, succinic, glycolic, suberic, glutaric, citric, tartaric, lactic, sorbic, suberic, malonic and *trans*-aconitic acids, were separated in 10 minutes. Advantages of such a system will be discussed. The proposed method has been successfully applied to the determination of carboxylic acids in real samples.

Citation: A.Santalad, S.Srijaranai, P.Teerapornchaisit, R.Burakham. Capillary zone electrophoresis of carboxylic acids. Program No. 676. 2005 Abstract Viewer. Honolulu, Hawaii: International Chemical Congress of Pacific Basin Societies

Application Design and Programming Copyright ScholarOne, Inc. All Rights Reserved. Patent Pending.

Some Development of Chromatographic Separation for Foods and Pharmaceutical Applications

Supalax Srijaranai and Rodjana Burakham

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002

The research group has been active in explorting some novel packing materials for chiral chromatographic separation. The applications for such development are aimed for enantiomeric drugs. Some other investigations involve phenolic acids and antioxidants in foods, sugar, amino acids and carboxylic acids inraw sugar and cane juice for sugar cane industry.

EXPLOITING FLOW ANALYSIS WITH LAB-AT-VALVE (LAV) APPROACH

<u>Kate Grudpan</u>^{1,2}, Jaroon Jakmunee^{1,2}, Supaporn Kradtap Hartwell^{1,2}, Somchai Lapanantnoppakhun^{1,2} and Rodjana Burakham³

Department of Chemistry, Faculty of Science and Institute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200 Thailand
Department of Chemistry, Faculty of Science, Khon Kaen University,
Khon Kaen 40002 Thailand
email: kate@chiangmai.ac.th

A "Lab-at-Valve (LAV)" system has been proposed as an alternative micro-total analysis system (μ TAS). A LAV system is designed to be an integrated unit to accommodate an analytical process including sampling, chemical reaction for detection and detector. The LAV device is attached to a position of a selection valve of a SI system. Manipulation of SI-LAV is made via a software control. LAV is similar to Lab-on-Valve (LOV) which is a device attached on top of a selection valve after the top piece of the purchased selection valve is taken out. Discussion on similarity and difference of LAV and LOV will be made. LAV instrumentation will be briefed. Some LAV applications will be demonstrated. They include potentiometric determination of chloride, on-line micro extraction spectrophotometric determination of surfactant and pharmaceutical preparations. LAV-bead injection for some biochemical compounds such as hyaluanan and chrondroitin sulfate.

Analysis of Carboxylic Acids using Capillary Zone Electrophoresis with Pre-Capillary Derivatization

Apichai Santalad, Supalax Srijaranai, Pattana Teerapornchaisit and Rodjana Burakham

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002
Thailand

The capillary zone electrophoresis (CZE) with photo diode array detection was developed for analysis of carboxylic acids. The carboxylic acids were derivatized with 2-Nitrophenylhydrazine (2-NPH) in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl). The conditions for separation of carboxylic derivatives were investigated including pH, type and concentration of buffers, organic modifier and applied voltage. The optimum conditions were 30 mM borate buffer (pH 10.0) containing of 10 % acetonitrile, voltage of 20 kV, temperature of 25 °C, hydrodynamic injection at 0.5 psi for 5 sec and detection at 230 nm. The electrophoretic separation of 11 carboxylic acids, performed on fused-silica capillary 75 μ m I.D. x 40 cm, was achieved within 10 min. The present method was successfully applied for analysis of carboxylic acids in beverage.

Keywords: Capillary Zone Electrophoresis, 2-Nitrophenylhydrazine, Carboxylic Acids, Beverage

การวิเคราะห์กรดคาร์บอกซิลิกด้วยเทคนิคแคพพิลลารีโซนอิเล็กโทรฟอริซีส

ANALYSIS OF CARBOXYLIC ACIDS USING CAPILLARY ZONE ELECTROPHORESIS

อภิชัย แสนตลาด*, ศุภลักษณ์ ศรีจารนัย, พัฒนา ธีรพรชัยสิทธิ์ และ รจนา บุระคำ Apichai Santalad*, Supalax Srijaranai, Pattana Theerapornchaisit and Rodjana Burakham

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand

E-mail address: apichai_san@hotmail.com

บทคัดย่อ : งานวิจัยนี้นำเสนอเทคนิคแคพพิลลารีโซนอิเล็กโทรฟอริซีส (CZE) ร่วมกับการตรวจวัด ด้วยโฟโตไดโอด แอเรย์ (PDA) สำหรับการวิเคราะห์กรดคาร์บอกซิลิก หลังจากการเตรียมอนุพันธ์กับ 2-Nitrophenylhydrazine (2-NPH) และ N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC.HCI) ศึกษาปัจจัยที่มีผลต่อการแยกด้วยเทคนิค CZE ได้แก่ พีเอช (pH) ชนิคและ ความเข้มข้นของสารละลายบัฟเฟอร์ สารอินทรีย์ และความต่างศักย์ที่ใช้ในการแยก พบว่า สภาวะที่ เหมาะสมสำหรับการแยกกรดคาร์บอกซิลิกทั้ง 11 ชนิด คือ สารละลายบัฟเฟอร์บอเรต เข้มข้น 30 มิลลิ โมลต่อลิตร (พีเอช 10.0) ที่มีอะซิโตในไตรล์ 10 เปอร์เซ็นต์ ศักย์ไฟฟ้าในการแยก 20 กิโลโวลต์ และ อุณหภูมิ 25 องศาเซลเซียส ฉีคสารตัวอย่างด้วยความดัน 0.5 psi นาน 5 วินาที และตรวจวัดที่ความยาว คลื่น 230 นาโนเมตร ท่อแคพพิลลารีที่ใช้มีขนาดเส้นผ่านศูนย์กลางภายใน 75 ไมโครเมตร ความยาว 40 เซนติเมตร สามารถแยกกรดคาร์บอกซิลิกทั้ง 11 ชนิด ภายในเวลา 10 นาที นำวิธีนี้ไปใช้วิเคราะห์กรด การ์บอกซิลิกในตัวอย่างเครื่องดื่ม

Abstract: The capillary zone electrophoresis (CZE) with photo diode array detection (PDA) is developed for the analysis carboxylic acids. The method is based on derivatization with 2-Nitrophenylhydrazine (2-NPH) in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC.HCl). The parameters affecting CZE separation were studied, including, pH, types and concentration of buffer, organic additive and applied voltage. The optimum conditions were 30 mM borate buffer (pH 10.0) containing 10 % acetonitrile, voltage of 20 kV, temperature of 25 °C, hydrodynamic injection at 0.5 psi for 5 sec and detection at 230 nm. The separation of 11 carboxylic acids, using a 75 μ m i.d. x 40 cm fused-silica capillary tube, was achieved within 10 min. The present method was successfully applied for analysis of carboxylic acids in beverages.

Introduction: Carboxylic acids are widely distributed in foods and beverages with different contents that affect on their flavor, stability, nutrition, acceptability and keeping quality of products. Ion chromatography (IC), gas chromatography (GC) and high performance liquid chromatography (HPLC) have been recognized as powerful techniques for analyses of carboxylic acids. Recently, capillary electrophoresis (CE) becomes an alternative for the separation of various substances. This work presents the

development of carboxylic acid determination using CZE and photo diode array detection after derivatization with 2-Nitrophenylhydrazine.

Methodology: The studied carboxylic acids including, acetic acid, lactic acid, suberic acid, glutaric acid, succinic acid, malic acid, malonic acid, tartaric acid, oxalic acid, citric acid and trans-aconitic acid. The derivatization was performed by reacting of carboxylic acids with 2-NPH in the presence of EDC.HCl and was heated at 70 °C for 10 min. The acid hydrazides were cooled and filtered before the introduction into CE system. The experimental parameters affecting the separation of carboxylic acids were investigated. Those parameters were types and concentration of buffer, pH, organic additive, separation voltage and the detection wavelength. A fused-silica of 75 μm i.d. x 40 cm was used.

Results, Discussion and Conclusion: The optimum conditions were found to be 30 mM borate buffer (pH 10.0) containing of 10 % acetonitrile, hydrodynamic injection at 0.5 psi for 5 sec, applied voltage of 20 kV and detection wavelength at 230 nm. The separation of 11 carboxylic acids was completed within 10 min. The calibration graphs were linear in the range of 10.00-100.00 mg l⁻¹ with the correlation coefficient greater than 0.99. The limits of detection (LOD) were in the range of 2.00-10.00 mg l⁻¹. The applicability of the method was investigated by analyzing carboxylic acids in beverage samples. The recoveries of 82-116% were obtained.

Acknowledgement: The financial support from the Postgraduate Education and Research Program in Chemistry (PERCH) is gratefully acknowledged.

References:

- (1) Miwa, H. (2000) *J. Chromatogr. A*, **881**, 365 385
- (2) Sadecka, J.; Polonsky, J. (2000) *J. Chromatogr. A*, **880**, 243 279
- (3) Peters, R.; Hellenbrand, J.; Mengerink, Y.; Van der Wal, Sj. (2004) *J. Chromatogr. A*, **1031**, 35-50
- (4) Klampfl, C.W. (1997) Trends. Anal. Chem, 16, 221 229

Keywords: Carboxylic acids, 2-Nitrophenylhydrazine, Capillary zone electrophoresis, Beverage

Analysis of Amino Acids in Beverages by Capillary Zone Electrophoresis and Pre-Capillary Derivatisation

<u>Apichai Santalad</u>, Supalax Srijaranai, Pattana Teerapornchaisit and Rodjana Burakham

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand

A simple and rapid method for the simultaneous analysis of amino acids has been demonstrated. Amino acids were derivatised based on pre-capillary derivatisation with 1,2-naphthoquinone-4-sulfonate (NQS) in basic medium and mild conditions. Their derivatives were analysed by capillary zone electrophoresis (CZE). The crucial parameters affecting CZE separation were investigated including buffer (pH, type and concentration), organic modifier and separation voltage. The separation of seven amino acids was achieved within 17 min. The present method was successfully applied to the analysis of amino acids in beverage samples.

การเตรียมอนุพันธ์ในแคพพิลลารีและเทคนิคแคพพิลลารีโซนอิเล็กโทรฟอริซิสสำหรับการวิเคราะห์

โลหะโดยใช้ Nitro-PAPS เป็นรีเอเจนต์

IN-CAPILLARY DERIVATISATION AND CAPILLARY ZONE ELECTROPHORESIS FOR ANALYSIS OF METALS USING NITRO-PAPS AS DERIVATISING REAGENT

<u>อภิชัย แสนตลาด,</u> ศุภลักษณ์ ศรีจารนัย และ รจนา บุระคำ

Apichai Santalad, Supalax Srijaranai and Rodjana Burakham

Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand

E-mail address: apichai san@hotmail.com

บทคัดย่อ: ศึกษาการเตรียมอนุพันธ์ในแคพพิลลารีร่วมกับเทคนิคแคพพิลลารีโซนอิเล็กโทรฟอริซิส สำหรับการวิเคราะห์โลหะ 4 ชนิด คือ โคบอลต์(II) คอปเปอร์(II) นิกเกิล(II) และเหล็ก(II) โดยใช้ Nitro-PAPS เป็นรีเอเจนต์ ซึ่งปฏิกิริยาจะเกิดขึ้นจากการผสมกันระหว่างโลหะกับรีเอเจนต์ภายใน แคพพิลลารีเมื่อมีการให้ความต่างศักย์เข้าไปในระบบ ศึกษาวิธีสำหรับเตรียมอนุพันธ์แบบในแคพพิลลารี ประกอบด้วย รูปแบบการเตรียมอนุพันธ์ และการฉีดสารตัวอย่างและรีเอเจนต์เข้าสู่แคพพิลลารี นอกจากนี้ยังศึกษาพารามิเตอร์ที่มีผลต่อการแยกในระบบอิเล็กโทรฟอริซิส คือ พีเอชและความเข้มข้น ของสารละลายบัฟเฟอร์ ตัวทำละลายอินทรีย์ และความต่างศักย์ เปรียบเทียบผลที่ได้ระหว่างการเตรียม อนุพันธ์แบบในแคพพิลลารีเป็น วิธีที่น่าสนใจและเป็นอีกทางเลือกหนึ่งสำหรับการวิเคราะห์โลหะ

Abstract: The feasibility of in-capillary derivatisation (ICD) and capillary zone electrophoresis (CZE) were investigated for the determination of four metals ions (Co(II), Cu(II), Ni(II) and Fe(II)). 2-(5-Nitro-2-pyridylazo)-5-[*N*-n-propyl-*N*-(3-sulfopropyl)amino]phenol (Nitro-PAPS) was used as derivatising reagent. The derivatisation was carried out inside the capillary. The strategies for in-capillary derivatisation include modes of derivatisation and types of reagent/sample introduction. The crucial electrophoretic parameters, including buffer pH, buffer concentration, organic modifier and applied voltage were optimised to provide good resolution. The analytical features obtained from in-capillary and pre-capillary derivatisations were compared. The scheme of in-capillary derivatisation is attractive and serves as alternative technique for metal analysis.

Introduction: The analysis of trace heavy metals is interesting task because of their toxicity. The favourable analytical techniques for simultaneous metal analysis are high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) based on derivatisation pre-, on- and post-column derivatisation. Using CE, on-column (or incapillary) derivatisation gives more advantage features comparing to pre-column, such as the small reaction chamber in capillary which means the minimum dilution and less reagent consumption. In the present work, CE with in-capillary derivatisation was proposed for analyses of some heavy metals. Nitro-PAPS was chosen as the derivatising reagent.

Methodology: The different strategies of in-capillary derivatisation were investigated for developing reaction of metals and Nitro-PAPS. The segment of Nitro-PAPS solution $(1x10^{-3} \text{ M})$ was introduced into capillary by hydrodynamic injection at 0.5 psi for appropriated time. A mixture of metal ions was subsequently introduced by electrokinetic injection (10 kV, 5 s). Then, the voltage was applied between both ends of the capillary at 10 kV for 1 min to develop the reaction inside the capillary before the separation. The crucial parameters affecting CZE separation were optimised including buffer pH, buffer concentration, organic additive and applied voltage. A fused silica of $75 \, \mu \text{m}$ I.D. $x \, 60.2 \, \text{cm}$ was used.

Results, Discussion and Conclusion: The derivatisation was successfully performed by zone passing technique. The Nitro-PAPS segment was introduced into capillary at the end of anode by hydrodynamic mode before introducing of metal ions by electrokinetic injection. After the application of voltage, Nitro-PAPS as neutral migrated to the cathode by electroosmotic flow (EOF) whereas the metal species migrated with the higher velocities than reagent. Thus, the metals mixed with the reagent inside the capillary to form their derivatives. The separation conditions were 45 mmol L⁻¹ borate (pH 9.7) containing 20 % acetonitrile, applied voltage of 20 kV and on-capillary detection at 250 nm. Under the optimum condition, four metal-Nitro-PAPS complexes were completely separated within 20 min. The order of migration was Co(II), Cu(II), Ni(II) and Fe(II), respectively.

Acknowledgement: The financial support from the Postgraduate Education and Research Program in Chemistry (PERCH) is gratefully acknowledged.

References:

- (1) Priego-Capote, F. and Luque de Castro, M.D. (2006) *J. Chromatogr. A* **1113**, 244 250.
- (2) Wang, M., Lin, J.-M., Qu, F., Shan, X. and Chen, Z. (2004) *J. Chromatogr. A* **1029**, 249 254.
- (3) Chen, Z. and Naidu, R. (2002) J. Chromatogr. A **966**, 245 251.
- (4) Naujalis, E. and Padarauskas, A. (2002) *J. Chromatogr. A* **977**, 135 142.
- (5) Dahlén, J. and Karlsson, S. (1999) *J. Chromatogr. A* **848**, 491 502.

Keywords: In-capillary derivatisation, Capillary zone electrophoresis, Nitro-PAPS, Metals