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Fig 7 A comparison between the variation in colony diameter length
of HeLa cells of the control and 400ppm TiO,-NPs treatment. The

diameter lengths of the colonies in control group are larger than those

treated by TiO,-NPs
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Fig. 8 Fractal dimensions of tumor boundaries at different conditions,
namely control and TiO, treatment conditions. The data shows that
the Df of the treated group (1.287040.0454) are systematically larger
than those of control group(1.0852+0.0197). It also clearly illustrates
that the shape treated samples is more diverse and rough on the
surface
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Fig. 9 A comparison between the variation in colony circularity of
HeLa cells of the control and 400ppm TiO,-NPs treatment. The
circularities of the colonies in control group are larger than those
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Abstract

Genetic alterations such as point mutations, chromosomal rearrangements, modification of DNA methylation and chromosome
aberrations accumulate during the lifetime of an organism. They can be caused by intrinsic errors in the DNA replication and repair
as well as by external factors such as exposure to mutagenic substances or radiation. The main purpose of the present work is to
begin an exploration of the stochastic nature of non-equilibrium DNA alteration caused by events such as tautomeric shifts. This
is done by modeling the genetic DNA code chain as a sequence of DNA-bit values (‘1° for normal bases and ‘—1’ for abnormal
bases). We observe the number of DNA-bit changes resulting from the random point mutation process which, in the model, is being
induced by a stochastic Brownian mutagen (BM) as it diffuses through the DNA-bit systems. Using both an analytical and Monte
Carlo (MC) simulation techniques, we observe the local and global number of DNA-bit changes. It is found that in 1D, the local
DNA-bit density behaves like 1/4/7, the global total number of the switched (abnormal) DNA-bit increases as +/f. The probability
distribution P(b, 0, ) of b(0, t) is log—normal. It is also found that when the number of mutagens is increased, the number of the
total abnormal DNA-bits does not grow linearly with the number of mutagens. All analytic results are in good agreement with the
simulation results.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Genetic alterations such as point mutations, chromo-

somal rearrangements, unequal crossing over, loss of

* Corresponding author. heterozygosity, mod}ﬁcatlon of DNA m.ethylatlf)n .and
E-mail addresses: scwtr@mahidol.ac.th, wtriampo@yahoo.com chromosome aberrations accumulate during the lifetime
(W. Triampo). of the organism. They are caused by intrinsic errors in the
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DNA replication and repair as well as by external factors
such as exposure to mutagenic substances or radiation.
Since the discovery that the configuration of a DNA or
RNA molecule is a double helix (Watson et al., 1988),
molecular biologists and geneticists have been study-
ing the crucial role of DNA in the genome organization.
Once it was recognized that DNA is the informational
active chemical component of essentially all genetic
materials, it was assumed that this macromolecule must
be extraordinarily stable in order to maintain the degree
of fidelity required of a master blueprint.

It was something of a surprise to learn that the pri-
mary structure of DNA is quite dynamic and subject
to constant changes. For example, gene transposition
is a well-established phenomenon in prokaryotic and
eukaryotic cells (Finnegan, 1990; Kleckner, 1981). In
addition, DNA is subject to alteration in the chemistry
or sequence of individual nucleotides (Lindahl, 1993;
Roberts, 1978; Singer and Kusmierek, 1982). Many of
these changes arise as a consequence of errors introduced
during replication, recombination and repairing itself.
Other basic alterations arise from the inherent instabil-
ity of specific chemical bonds that constitute the normal
chemistry of nucleotides under physiological conditions
of temperature and pH. Finally, the DNA of living cells
reacts to a variety of chemical compounds and a smaller
number of physical agents, many of which are present
in the environment. Each of these modifications of the
molecular structure of genetic material is appropriately
considered to be a DNA damage. DNA damages can be
classified into two major classes, spontaneous and envi-
ronmental. However, in some cases the actual chemical
changes in DNA that occur “spontaneously” are indistin-
guishable from those brought about through interaction
with certain environmental agents. The term “sponta-
neous” may merely imply that we have not identified a
particular environmental culprit. Changes in the DNA
sequence may result from processes such as insertion,
deletion, transversion and transition. For example, the
genetic instability characteristic of cancer cells may be
due, in part, to mutations in genes whose products nor-
mally function to ensure DNA integrity. DNA replication
in normal human cells is an extremely accurate process.
During the cell division cycle, copy errors occur with
probabilities less than 107 to 1079 per nucleotide. In
contrast, the malignant cells that constitute cancer tis-
sues are markedly heterogeneous and exhibit alterations
in nucleotide sequence of DNA.

As initially proposed by Delbruck et al. (1935) and
Watson and Crick (1953), spontaneous mutations are
initiated by quantum jump events such as tautomeric
shifts in single protons of DNA bases. Even what may

be the most common of spontaneous mutations involves
a chemical mechanism which must involve quantum
uncertainty, since it occurs when individual electrons
shift their positions to produce “tautomers”.

Specifically, nucleotide transitions can be induced
by exposure to endogeneous and exogeneous muta-
gens (agents causing genetic changes) such as chemical
carcinogens. However, not all mutagens are carcino-
genic. The nucleotide transitions are the interchange of
bases of the same shape, e.g., the purine bases transi-
tion, C(cytosine) <> T(thymine) or the pyrimidine bases
transitions, A(adenine) <> G(guanine). One of the mech-
anisms that can cause the transition is the shift of the
positions of the electrons for the bases to become a tran-
sient form (known in organic chemistry as a tautomeric
shift).

In standard complementary pairing, G pairs with C
and A with T. Keto-enol tautomeric shift leads to non-
standard form of G: G <> G resulting in G” pairing with
T. Amino-imino tautomeric shift leads to a non-standard
form of A: A <> A" resulting in A™ pairing with C. Non-
standard bases alter the pairing specificity, i.e., modified
purine pairs with the wrong pyrimidine and modified
pyrimidine pairs with the wrong purine. Fig. 1 shows
an example of the keto-enol tautomeric shift that results
in a transition mutation of the complementary strand.
Consider the pairing of ATGC with TACG: Let G in the
first strand undergo a tautomeric shift to G*. The com-
plementary strand that is generated would be TATG, not
TACG. This would be a transition from C <> T. To com-
plete the process of producing a mutation, a tautomeric
shift must take place during replication, either in the tem-
plate chain, or in the deoxyribonucleotide being added
by the DNA polymerase. Since the shifted form retains
its rare mis-matching structure for only a brief period, the
next replication cycle will most likely find itself reverted
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Fig. 1. A diagram of the keto-enol tautomeric shift that results in a
transition mutation of the complementary strand.
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to its normal form, and the polymerase will pair it with
its normal mate. Thus, in two cycles of replication, an
A-T pair is changed to a G—C pair, or vice versa. This,
in turn, can often result in a change in a triplet code,
leading to an amino acid substitution in a protein, and a
modification of some visible phenotypic property of the
organism.

Although it has never been demonstrated experimen-
tally that rare tautomers are responsible for spontaneous
mutations, subsequent experimental and theoretical
investigations (Leszczynski, 1999; Radchenko et al.,
1983) seem to confirm the essential correctness of this
postulate. It should be remarked that Neo—Darwinian
evolutionary theory is founded on the principle that
mutations occur randomly, and the direction of evolu-
tionary change is provided by selection for advantageous
mutations. However, the central tenet, that mutations
occur randomly, has recently been challenged by the
finding of the phenomenon termed adaptive or directed
mutation.

There have been a few approaches used to investi-
gate this mutation complex process ranging from wet
lab research to highly complicated computational cal-
culations. Theoretical models fall into two very broad
classes: deterministic and stochastic models. Determin-
istic models attempt to model or predict the average
behavior of systems according to some precise rules.
In contrast, stochastic models describe the probability
of very specific behaviors of individuals rather than
average behavior of the population. Stochasticity has
been recognized in the biology field of research and
modeling as the description of life systems (Kurakin,
2006). It had appeared as general principles underly-
ing the dynamics and organization of biological systems
at all scales: gene expression (Kurakin, 2005), enzymes
(Xie and Lu, 1999), self-organization of macromolecular
complexes mediating transcription (Dundr et al., 2002;
Kimuraetal., 2002), and DNA repair (Essers et al., 2002;
Hoogstraten et al., 2002).

Because a gene or DNA is a molecule, the statisti-
cal fluctuations of atomic or molecular scale cannot be
avoided. Mathematical modeling of genetic instability
has led to considerable insight into human tumorige-
nesis. One study of the mutational spectrum gave the
type, location and frequency of DNA changes in a par-
ticular gene (Hussain and Harris, 1999). Claytong and
Robertson (1955) proposed a random walk mutation
model as a model for genetic analysis. It was later pro-
posed explicitly by Crowj and Kimura (1964), by Kimura
(1965), and subsequently popularized by Lander (1975).
Zeng and Cockerham (1993) proposed a more general
mutation model, called the regression mutation model.

This model regards the regression coefficient of the effect
of an allele after mutation on the effect of the allele before
mutation as a parameter.

In 1989, Nowak and Schuster (1989) investigated
error thresholds in finite populations. They determined
that, at error rates above the critical value, the quasis-
pecies ceases to be localized in sequence space and start
to drift randomly. Sole’ and Deisboeck (2004) used a
quasispecies model to investigate the error threshold in
cancer cells. They demonstrated that, once the thresh-
old is reached, the highly unstable cancer cells become
unable to maintain their genetic information, leading to
a decrease in the velocity of tumor growth. The origi-
nal quasispecies model assumes that genomes replicate
conservatively, i.e., each single-stranded genome repli-
cates by producing a new, possibly error-prone, single
stranded copy without affecting the original. In this form,
the quasispecies model predicts the existence of an error
catastrophe or ‘“error threshold”, a threshold mutation
rate above which no viable species can exist. This thresh-
old depends on the replication rate of the fittest sequence,
the master sequence (Komarova et al., 2002) utilize a
stochastic model to evaluate the rate of formation of
dysplastic crypts by chromosomal instability (CIN) and
microsatellite instability (MIN) mechanisms in sporadic
colon cancer to obtain broad qualitative agreement with
the relative importance of CIN and MIN and the number
of polyps generated under these conditions.

The main purpose of the present work is to begin an
exploration of the stochastic nature of non-equilibrium
DNA alteration caused by events such as tautomeric
shifts in a theoretical DNA-bit alteration model This
is done by modeling the genetic DNA (or RNA) code
chain as a sequence of DNA-bit values (‘1’ for normal
bases and ‘—1’ for abnormal bases). This is similar to
what is used in computers or electronics. We observe
the number of DNA-bit changes resulting from the
random point mutation process (to mimic tautomeric
shifts) which is being induced by a stochastic Brown-
ian mutagen (BM) as it diffuses through the DNA-bit
systems. We will make analytic predictions and simu-
late the non-equilibrium process using the Monte Carlo
(MC) method. To the best of our knowledge, there has
not been a stochastic approach to investigate the non-
equilibrium stochastic kinetics of DNA-alteration. This
work therefore represents a new avenue for studying
non-equilibrium mutation.

2. Theoretical model and analytic predictions

As mentioned, earlier theoretical models fall into two
very broad classes: deterministic and stochastic models.

Please cite this article in press as: Triampo, D. et al., The stochastic model of non-equilibrium mutagen-induced alterations of
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Stochastic models evaluate the entire probability distri-
bution of random individual events. This kind of model
is potentially more informative in that it considers rare
events, not just average properties. Typically one defines
a variety of discrete states, and the rates or probabili-
ties of transition between the states. Often the different
states of a phenomenon of interest can be represented
as a Markov process. In a Markov process, the system
passes through the defined states in discrete steps with
a given set of transition probabilities. The possibilities
for where the system will go next, and the chance it will

Space (x)

“select” a particular option, depend only on where the
system is at the moment (i.e., its present state) rather
than on how it got there (its history). This type of anal-
ysis can in principle give the chance that the system is
in a given state as a function of time or other key vari-
ables. However, utilizing this approach often requires
a detailed understanding of individual states and tran-
sitions, which is not always available. As the system
complexity increases, the definition of all the relevant
states and the mathematical analysis of all the transitions
between them can become daunting. The results will

/ Random Walk (RW)

IFeANeA e e NaNNGMEE

1
Time (t) @

Fig. 2. Illustration of the discrete system incorporated with DNA-bit switching processes for 1D and switching rate g = 1. The initial 100% normal
DNA-bit state is shown on the top, with the Brownian mutagen (BM) represented by the filled circle. From the top, we show a possible configurations
after 3 step-moves. The BM switches a DNA-bit each visit, so those DNA-bits visited an even number of times are restored to their original value.
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be probabilities of discrete events, rather than average
properties.

We now look at a system of one-dimensional (1D)
chain of the DNA-bits (Fig. 2). The position of each
DNA-bit is labeled by “x” and that of a mutagen by a
lattice vector R(f). The DNA-bits are described by the
variables o, which may take the values “1” or “—1". The
bit variables encode the information about the status of
the nucleotide sequences for the transition creation pro-
cess. As we stated above, normal DNA-bits are denoted
by “1” and abnormal DNA-bits by “—1”. The mutagen
has a probability p for moving to one of its two near-
est neighbor sites in a time step §¢. After making such
a jump, there is a probability g that the DNA-bit on the
site departed from is switched. As known, parameters are
the variables which, based on the theoretical analysis, are
expected to influence the outcome of interest. In some
cases, values of the parameters are known from prior
experiments, and therefore these values can be fixed. In
other cases, the values of the parameters are unknown or
could reasonably be expected to vary over aknown range.
In this case, the parameters are adjustable. The greater
the excess of independent experimental data points over
adjustable parameters, the more valid the experimental
confirmation of the theory. Starting with the initial con-
dition that all bits are “1”’, we monitor the time evolution
of the numbers of the abnormal “—1” and normal bits
“1” for the different situations which shall be specified
later.

To mathematically model the stochastic mutagenesis,
we write the temporal probability distribution P(R, {0},
t) which is the probability that at time ¢, the mutagen is
at position R(#) and the DNA-bits have values given by
the set, {o,}. This distribution evolves according to a
master equation (Gardiner, 1985) of the form

P(R, {ox}, t + 81)

p(1—q)
2d

=(1 — pP(R, (0.}, N+ D P(R+1 {0}, 1)
l

pq
+ﬂ;P(R+l,...,—oR+l, o) (1

where [ represents the two orthogonal lattice vectors or
go-left and go-right vector (which have magnitude /). In
principle one can solve this system by the use of linear
difference equations. This approach would suffer from
having a too large of a number of degrees of freedom. For
the case of Brownian mutagen, we focus on the specific
case wherep=1andg=1.

An alternative continuum description was obtained
by viewing the process as a stochastic cellular automa-

ton (SCA). The process is then defined in terms of the
position R(#) of the BM. Each time step the agent makes a
random jump to one of its nearest neighbors and in which
the bit at the site it leaves behind definitely switches. This
corresponds to setting p = g = 1. Let us denote arandomly
chosen unit lattice vector by /(7), and the time-dependent
value of the spin at site x by o,(¢). Then we have

R(t + 8t) = R(t) + (1), 2)
and
0x(t + 81) = ox()(1 — 28+, R(r) (3)

We are interested in a continuum limit of these two
equations. In this limit, the first equation becomes the
Langevin stochastic equation for the random walk,

R e 4
Friatil “4)

where &(¢) is an uncorrelated Gaussian random variable
with zero mean (i.e., £(¢) is a white noise process). The
correlator of £(f) is given by

(EDEEN) = Ds(t — 1), (&)

where § is the Dirac delta function and D is the diffusion
constant. (---) indicates an average over the noise (or
equivalently the paths of the agent). The agent is chosen
to reside initially at the origin.

The equation governing the evolution of the DNA-bit
density denoted by ¢ is described by

dp(x, 1) = —Ap(x, N3(x — R()), (6)

where A is a phenomenological parameter which
describes how strongly the DNA-bit density is coupled
to the BM. It is the coarse-grained version of o. Taking
an initial condition ¢(x, 0) = 1 for all x and straightfor-
ward integration of Eq. (6) gives the explicit functional
solution

t
P(x, t) = exp[—k/ dr'8(x — R(t)). @)
0

‘We will now use the stochastic solution of local DNA-
bit density to calculate several interesting quantities. The
simplest quantity to consider is the mean local DNA-bit
density given by

b(x, 1) = (p(x, ) = > (=) xux, 1), ®)

n=0

where xo(x, t) = 1 and for n>0,

t n
Xn(x, 1) = L < {/ drd(x — R(f))} > : ©)
n! 0
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It can be shown that

t T] Tn—1
Xn(x, 1) =/ dn/ drz~~/ dr, g0, 71 — 12)
0 0 0

X X g(09 Tn—1 — Tn)g(xv Tn)7 (10)

where g(x, ) = 2nDt)~ 12 exp(—xZ/ZDt) is the probabil-
ity density of the random walk. Eq. (10) is an n-fold
convolution. Therefore, if we apply the temporal Laplace
transform, we get (for n>0)

Xn(-xv S) = /OO dt e_StXn(-xv t) = ég(oa S)n_lg(-xa S)a
0
(11)

28 1/2
—<D> |x|]. (12)

where 2(x, s) is the Laplace transform of the diffusion
equation Green function.

Summing over these function as given in Eq. (6) we
find

where

8(x,s) = p

1
(2DS)'/? x

- (13)

14430, s)

This exact result allows one to extract a great deal of
statistical information about the process. First, one can
simply invert the Laplace transform to find the average
local DNA-bit density (or average density of switching
relative to 1/2) as a function of x and #. The explicit forms
are given as

bx 1) = exf | —0 | pexp (22 4 i
X, 1) = — Xp [ —— + =—
D)2 P\ "2p

PNV Ix|
wrte (1) +(2Dt)1/2} (14)

where erf(z) and erfc(z) are the error function
(Abramowitz and Stegun, 1972). Considering the long
time behavior of the above expression, we find that the
average local DNA-bit density at the origin (x = 0) decays
asymptotically as

2D\ /2 D
b(o,t):<m> [HO[A%”' (15)

‘We note here that the continuum solution has the impor-
tant property that (¢(x, t; A)") = (¢(x, t; nt)). This allows
us to utilize the exact solution to reconstruct the probabil-
ity density for the local DNA-bit density. Theoretically,
it can be proved that the average DNA-bit density by N
agents =by(0, 1) is proportional to b(0, t)N ,i.e.,

Box. 5) = % {1 28(x, s) } '

M, 1) = b0, 01" = V2, ast> 1. (16)

Another interesting quantity which may be extracted
from b(0, 7) is the global switched DNA-bits, B(?),
defined as

B(1) = /dX[(b(x, 0)) — (b(x, 1))].

This quantity obeys the exact relation

dB(z)

P AD(0, t). (18)
We find that asymptotically B(r) ~ (r)'/?, independent of
the coupling. In other words, the total amount of disorder
created by a single BM on average increases as /2 that
is rather independent of the coupling between the BM
and the DNA-bits for large time.

We now consider the probability distribution function
P(b, x, t) of the local corrupted bit density. This P func-
tion will provide the information about the time evolution
of the probability distribution that describes the local
corruption behavior. Obviously, at the very early times,
the peak of the distribution is supposed to occur in the
vicinity of the origin. The complete analytic structure of
b(x, t; 1) is needed to reconstruct the distribution func-
tion P. This suggests that by knowing the first moment
of the corruption density, we can generate the higher
moment. Therefore, we can reconstruct the probability
density function. We define P via

P(b, x,t) = (8(b — br(x, 1)) 19)

where br(x, t) is the stochastic field solution given in Eq.
(15). We can express the § function using a frequency
integral, and then expand it in powers of the field as
follows:

P, x, 1) = /oo dﬁ e—iwh<eimbk(x,t)>
oo 2T

* do —iwb > (iw)n n
|5y oy
n=0

©do . s (iw)* _
/_oo 2 © ;T! (b(x, t;n))).
- (20)

We next take the Laplace transform of b(x, t; nA). From
Eq. (12) we have

ALY PR CE R TN
S

141220, 520,
g(x, s)
580, $)[1 4+ n2rg(0, 5)]°
The first term is handled as it is independent of n. Thus,
the sum over # for this yields a factor e'® which leads to

21
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the factor §(1 — b) when integrated over w. The details
of how to perform the sum over n for the second term,
we refer to a reference by Newman and Triampo (1999).
The final result for P(b, x,s)is

. 809 -8 Bs) 1
Po.x ) ="=0@ s 0 DT S0 2 b
1 1
exp [— 720.3) In <b)] . (22)

To this end, we need the explicit form for g(x, s) which
is given by Eq. (11). Inserting this into Eq. (22) and
inverting the Laplace transform, we have our final result

s il L1
P, x,t) = 6(1 — b)erf [(ZDI)I/Z] + (m)l/z 7

[ x| Inb 1?

where erf(z) is the error function where A = A/(2D)'/2.
In particular, the probability distribution for the average
bit corruption density at the origin takes the form

phon— L] _In)? 2
.0.0= w2 5p P 4321 (

which is a log—normal distribution and where we have
defined A = A / ﬁ This indicates the extreme nature of
the fluctuations in the system. For instance, the typical
value of the magnetization density can be found from the
above expression to decay exponentially.

For the asymptotic behavior of b(0, ) as b(0, 1) =~
1/4/t, P(b, 0, 1) in Eq. (24) becomes

P(b,0,1) ! ! 1 L)?
, U, = —= X €&X —— |In —
VT Pl 4z Jt
(In7)? 1 1
R expq — =eXps—7—7F— — —5
P ‘ PV 144 " o2
326 0 1 1
—  ex -
Il P t

TSR
2
=exp{ — € = exp{—b?} (25)
Jt

which is a normal distribution and where O(1/£) is
the correction to the order of 1/£°. We now claim that
log—normal distribution approaches normality when  is
infinitely large. Finally, we analyze the effects of many
BM’s within the system. We assume the BM’s to be
non-interacting, i.e., they are unaware of each other’s
immediate presence. The non-trivial statistics reside in

the fact that the mutating effects of the BM’s statisti-
cally interact via the overlapping of the BM histories.
As we have already seen, a single BM interferes with
the previous switched DNA-bit it has created, such that
the amount of mutating does not simply increase lin-
early in time. This effect is more severe when more than
one BM is present, as each BM can disturb the mutation
that another BM has previously created. We measure
the strength of this interference via a quantity called the
“mutation efficacy” of the mutagents, defined as

. BN
oy = lim
t—oo B(t)

where BV(f) is the average global mutation created by
N mutagents. If the BM’s were truly independent (in
terms of the mutation they create), then we would expect
oN X N.

3. Monte Carlo numerical results and discussion

Our aim in this section is to show the validity of our
predicted results obtained in the previous section. To do
so, we have performed the Monte Carlo simulations of
the discrete model defined in Section 2. All results are
obtained for a 1D chain of DNA-bits which at each site
can take either the value 1 (normal) or —1 (abnormal).
The chain length is considered negligible, as long as one
ensures that the BM never touches the system bound-
aries in any of its realizations up to the latest time at
which data is extracted. Thus, the system is infinitely
large. We performed an average over realizations (or
runs) with each run starting with the same initial config-
uration; namely all DNA-bits are normal. The DNA-bit
at the starting point has value=1 as shown in Fig. 2,
then the BM are introduced to the starting point (origin).
At each Monte Carlo step, the BM randomly walks to
either one of its two neighboring sites and switches the
DNA-bit of visited site before leaving. We let the BM
mutate the system independently with the consequence
that multiple occupancies are allowed.

We have focused on the local DNA-bit density at the
origin so we measured the average altered DNA-bits den-
sity at the origin where the BM started switching the
system denoted by b(0, 7). To investigate the accumu-
lated DNA alteration, we measure the total number of
abnormal DNA-bits B(f) versus time. Then we defined
a coarse-grained bit corruption over a patch contain-
ing 20 bits representing the bit at the origin to measure
the probability distribution of the local DNA-bit den-
sity, P(b, 0, t). The 20 bit patch size is chosen because,
computationally, this is primarily as a consequence of
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the optimization of the simulation technique. This is
technically to compromise the length and time scale of
BM versus the DNA global alteration time scale. If the
patch size is too small (it has been tested), it would not
quite allow us to obtain the data for the reasonably good
enough histogram data resulting in the good quality prob-
ability distribution. In contrast, if the patch size is too
large, it could lead to the scenario where the BM would
be spending to long time in just one site in unreasonable
large frequency to alter each DNA coarse-grained bit.
This situation could lead to the local change as unrealis-
tic “over-express” of a spontaneous or one time-step of a
single DNA in relation with global change that is not in
the reasonable time scales. Biologically, this optimal bit
patch size might imply some biological counterparts, i.e.,
how could each BM be able to induce DNA-alteration.
In addition, this optimal size might reflect the BM capa-
bility or efficiency to alter DNA. Moreover, it is known
that several factors like the sensitivity of each genetic
site to BM, specificity of BM/DNA matching, the fluc-
tuation of the response due to either “on or off”” genes or
the inhomogeneity of DNA array landscape, etc.

In addition, the BM is initially allocated evenly on
boundary of the patch to avoid the internal decimation
by the transient motion of the BM. Lastly, we consider
the situation of more than one BMs. We have measured
the asymptotic long time value of the ratio between the
number of the abnormal DNA-bit when many agents are
present and that when only one agent is present. It is
denoted by oy.

In Fig. 3, the plot between the local DNA-bit density
and time is shown. b(0, ) can be viewed as being the

S o1
o
001}
0001 s N ot .
100 101 102 10° 104 105

Fig. 3. The log—log plot of local DNA-bit density at the origin b(0, )
vs.time,d=1,p=1andg=1dueto1,2,3,4,5,6, 16 and 32 BMs. The
arrow directs the increment of number of BMs. The dash lines have
slope —0.4992, —1.0104, —1.4999 and —1.9487, respectively, along
the arrow direction and show the range of time in which the exponent
is extracted.

frequency of the local changes of DNA-bit caused by
the random or stochastic induction of the mutagen(s).
It is found that b(0, 1) ~ \/t for one BM and b™(0,
N =610, HIV = &2 for N> 1 which are in good agree-
ment with the analytic prediction. This indicates that b(0,
t) depends sensitively on the number of BMs in terms of
the overlap of the paths of different walkers and how
often the BMs have visited the origin. The decay of b(0,
f) due to N BAs is not linearly proportional to b(0, f)
due to 1 BM but instead it varies as the power N of b(0,
t). For N =2, it gives b(0, t) ~ ¢t. This result is consistent
with observations that the between-population genetic
variance (Roychoudhury and Nei, 1988; Lynch and Hill,
1986), and that the cumulative selection response from
mutation (Hill, 1982) asymptotically increase linearly
with time. It should be pointed out that the origin is
strongly altered by the multiple BMs since all of the inde-
pendent BMs always return to the origin and switched
its DNA-bits. In the process of N agents which are non-
interacting, they will interfere strongly with each other.
In other words, the overlap of their histories is found.
When time is infinitely large, b(0, #) approaches 0. It
implies 50% chance of finding the site to be normal or
abnormal. This agrees with the time limit of b(0, ). The
fluctuation at this equilibrium is relatively large com-
pared to that in the scaling regime. This results from
thermal fluctuation (Burgess, 1969).

Fig. 4 shows the probability distribution P(b, 0, #) of
b(0, f). In the early time regime, the simulated proba-
bility distribution is log—normal. The distribution curve
has a robust tail for larger value of average DNA-bit den-
sity. This reveals the extreme fluctuation at the origin and
the high probability that the origin will only be slightly
mutated. The fact that BM on 1D lattice always returns
to the origin (Hughes, 1995) is critical for this event. At
large time the distribution has completely changed from

— t=10"2
— t=10"3
- t=10"4
— t=10"5

T T T T
4 -08-06-04-02 0 02 04 06 08 1
Phi(0.t)

Fig. 4. The simulated probability distribution of a local DNA-bit den-
sity at the origin b(0, 1), d=1, p=1and g=1 due to 1 BM. In the early
time regime when the simulated probability distribution is log—normal
(Eq. (24)) and at large time the distribution has completely changed
from log—normal to normal.
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log—normal to normal. The peak occurs with a probabil-
ity of 0.1275. An important feature that this distribution
unambiguously points out is that the realizations where
the DNA-bits at the origin will be half abnormal and half
normal will have the highest probability of occurrence.
The distribution approaches normality as time proceeds
with the highest probability occurring at b(0, ) = 0. This
means that the origin is steadily altered. Itis expected that
the distribution approaches a normal distribution quicker
when there are more than one BM. The peak of the nor-
mal distributions remains at the same place. In contrast
to b(0, 1), the characteristics of the normal distributions
are independent of N and time.

In Fig. 5, we present the results of the numerical
simulations which gives the values of o). We have per-
formed numerical simulations of the many mutagens
system in order to test the prediction result. The micro-
scopic rule we use is that there is no hard-core exclusion
between the mutagens, and that for each time step the
N mutagens are in turn moved to a randomly chosen
nearest neighbor site. A DNA-bit which is occupied by
two mutagens, say, will thus (for g =1) be switched
twice in that time step. We observe the evolution of
the ratio of the average global DNA-bit switching for
N agents as compared to one agent for d=1. Asymp-
totically, this ratio is the mutating efficacy by definition.
Results are shown for N=2, 3, and 4. The curves are
asymptotic to constants as expected. As we see, oy
does not increase linearly as the number of mutagens
is increased. From the stochastic point of view, this
implies that there is a degree of interference between
the mutagens. In the process of N BMs which are
non-interacting, they will interfere strongly with each
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Fig.5. Plotof o vs. number of BMs. It shows that o does not increase
linearly as the number of mutagens is increased and, from the stochastic
point of view, this implies that there is a degree of interference between
the mutagens.

other. In other words, the overlap of their histories is
found.

Lastly, we suggest that our theoretical results can
be tested, at least in principle, directly by experiments.
Recently, it was shown that CIN and MIN can be
introduced in cancerous cell lines through specific muta-
genesis (Bardelli et al., 2001). In addition, Greenman et
al. (2007) and Haber and Settleman (2007) have shown
large scale analysis of DNA mutations across cancer
arrays. While an in-depth study of dynamics above the
error threshold along with careful consideration of the
enzymatic interactions, both subjects of future research,
would be necessary to rigorously quantify this state-
ment particularly to non-equilibrium aspects. This is
one example of a quantifiable and testable hypothesis
that can be used to experimentally test our theoretical
work. Theoretical modeling frequently uses simplifying
assumptions. Simplifying assumptions eliminate com-
plexities which may be peripheral to the issue under
consideration, allowing a focus on key features of a com-
plex biological system. For example, most models of
genetic instability assume that the rate of genetic change
is constant at any location in the genome, even though
there is evidence of mutation “hot spots” which violate
this assumption (Schaaper and Dunn, 1991). In deter-
mining whether this simplifying assumption impacts the
results when modeling genetic change in carcinogenesis,
one would need to know whether mutation “hot spots”
exist at key loci within cancer-associated genes.

4. Implication to genetic instability in cancer and
conclusion

In this work, we have modeled the stochastic kinetics
of the spontaneous mutation induced by nucleotide tran-
sition as a problem of a mutagen. The dynamics in the
model is to mimic the mutagenesis due to the tautomeric
shift which may occur when a mutagen interacts with
one of the bases in the DNA chain. The “tautomers” are
created when the interaction causes some of the elec-
trons in the base to shift their positions. To understand
how this model may feature the real world phenom-
ena, we have used both analytical model and computer
simulation techniques. Analytically, we have set up the
master equation and solved for local DNA-bit density,
global abnormal DNA-bits, and the probability distri-
bution function to describe the non-equilibrium nature
of mutagenesis. To confirm the theoretical findings, we
have performed computer simulations by applying some
stochastic cellular automata rules to a DNA-bit system.
Evidently, the model is non-trivial since the values of
DNA-bits depend very sensitively on the path of the
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BM, i.e., how often the BM has visited and switched
the DNA-bits. We find that the local DNA-bit density,
b(0, 1) ~ 1/4/t the global DNA-bit B(t) ~ 4/t, proba-
bility density function P(b, 0, f) is log—normal, and also
for the case of many mutagens, o does not increase
linearly as the number of the BMs increases. Instead, it
increases more slowly due to interference effects occur-
ring along the path of the mutagens. Our work may relate
to genetic instability in cancer.

Genetic instability is a hallmark of human cancers
(Lengauer et al., 1998; Loeb, 2001). Genetic changes
which are required in carcinogenesis are divided into two
very broad classes: those which are dominant, requir-
ing alteration of only one gene copy to contribute to a
premalignant or malignant phenotype, and those which
are recessive, requiring alteration of both gene copies
to contribute to a premalignant or malignant pheno-
type. Genetic alterations can happen in stem cells and
differentiated cells. If those genetic alterations affect
genes involved in cellular proliferation, cell-cycle reg-
ulation or apoptosis, then neoplastic growth might be
initiated (Levine, 1993; Mitelman et al., 1994; Kinzler
and Vogelstein, 1998; Lengauer et al., 1998; Knudson,
2001; Hahn and Weinberg, 2002). The alteration of one
gene, however, does not suffice to give rise to full-blown
cancer. For progression towards malignancy and inva-
sion, further mutational hits are necessary (Knudson,
2001). Hence the risk of cancer development does not
only depend on mutations initiating tumourigenesis, but
also on subsequent mutations driving tumor progression.

One point that we wish to make is that biological
processes such as mutagenesis can be modeled by a sim-
ple model with reasonable assumptions. Although for
very complex biological system, perhaps such simple
model may not be valid or can only be partially mod-
eled. To date, the number of theoretical investigation of
the kinetics of mutagenesis is scant, which is one of the
reasons we have modeled this problem. This work gives
an example of how an interaction between a living sys-
tem and its environment can be described as a stochastic
process. This work can also be viewed as a problem
in non-equilibrium disordering. Here, we started with
an initially ordered configuration and by applying local
update rules (the dynamics), we can tract the time evolu-
tion of the degree of disordering. A more detailed model
would require, for example, a complete description of
the tautomeric shifts, in order to understand the kinetics
of mutagenesis more fully. This may involve quantum
mechanics theory since one would need to know position
of the localization of the electrons in the bases as they
shift from a nitrogen ion to a hydrogen ion. It should be
pointed out that we have not addressed a very important

issue, the survivability of the mutation. At what degree
of mutagenesis is the DNA sequence not able to repli-
cate itself. In order to correct the errors which occur
during the DNA synthesis, DNA polymerase checks the
newly-synthesized DNA strand and corrects most of
the incorrect bases (Kornberg, 1974; Watson, 1970). It
was shown experimentally that this “proof-reading” step
reduces the number of mutations by a factor of 10> to
103. Such significant reduction should be also considered
while comparing the calculated and observed frequen-
cies of the mutations. Therefore, the frequency of the
spontaneous GC — AT before the checking step should
be in the approximate range of 107 to 1073.

Also we would like to note that the values of the
predicted non-equilibrium quantities are sensitive to the
level of calculations (level of theory and the basis set),
which suggests that a higher-level calculations should
be also performed. So far, computational calculations
of the nucleotide sequences done within the frame-
work of the “human genome” have proven to be useful
since they provide deeper insight into the principle of
genome organization and function. Much more work
has to be done to close the gap between the complexi-
ties of real biological entities and grossly oversimplified
mathematical (modeling) descriptions used to study bio-
logical and medical systems. The increase appreciation
of stochasticity in biological research is observed in
all scales of biological systems (Kurakin, 2005, 2006;
Xie and Lu, 1999; Dundr et al., 2002; Kimura et al.,
2002; Essers et al., 2002; Sirakoulis, 2004; Hoogstraten
et al.,, 2002). We believe our model will complement
detailed stochastic modeling by providing a set of pow-
erful mathematical tools and concepts to visualize DNA
alteration.
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Abstract

Lipid peroxidation plays an important role in cell membrane damage. We investigated
the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-
phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We
focused on four main oxidation products of linoleic acid with either a hydroperoxide or an
aldehyde group: 9-trams, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic
acid, 9-oxononanoic acid, and 12-o0x0-9-dodecadienoic acid. These oxidized chains replaced
the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a
function of the concentration of oxidized lipids, with concentrations from 2.8 to 50% for each
oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an
important conformational change in the lipids: the oxidized tails bend towards the water
phase and the oxygen atoms form hydrogen bonds with water and the polar lipid head group.
This conformational change leads to an increase in the average area per lipid and,
correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for
the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are
observed in the bilayers more frequently as the concentration of the oxidized lipids is
increased. The changes in the structural properties of the bilayer and the water permeability
are associated with the tendency of the oxidized lipid tails to bend towards the water interface.
Our results suggest that one mechanism of cell membrane damage is the increase in

membrane permeability due to the presence of oxidized lipids.

Keywords: lipid peroxidation, membrane damage, membrane permeability, computer

simulation, water defect, bilayer structure.



Introduction

Lipid peroxidation alters the physiological functions of cell membranes and plays an
important role in cellular membrane damage. Peroxidation is believed to be involved in
cellular ageing and in various diseases, such as Parkinson’s and Alzheimer’s disease (1-9) as
well as schizophrenia (10), atherosclerosis (11,12), inflammatory diseases (13) and cardiac
ischemia reperfusion injury (14,15). Unsaturated lipids are easily susceptible to peroxidation
(16). The effect of both unsaturation and peroxidation on the properties of lipid bilayers has
been well characterized experimentally (17-22). Still, the exact mechanism of membrane
damage by oxidized lipids is unclear. Oxidized lipid tails are more polar and can be shorter in
length, due to the presence of aldehyde or hydroperoxide groups (23,24). Lipid peroxidation
has been shown to perturb the bilayer structure and modify membrane properties such as
membrane fluidity, permeability to different substances and bilayer thickness. The existence
of a direct relationship between lipid peroxidation and membrane leakiness has been
suggested (25-28). Increased membrane permeability caused by oxidation of lipids and
membrane proteins can disrupt ion gradients, therefore altering metabolic processes. Lipid
peroxidation can influence the permeability of lipid membranes by increasing the dielectric
constant of the membrane interior and by increasing the microviscosity, possibly through
cross-linking of lipid radicals (23). Focusing on structural and dynamic properties, a decrease
in membrane thickness upon oxidation has been observed using X-ray diffraction analysis,
along with interdigitation of the terminal methyl segments (22). The effect of peroxidation on
lipid dynamics and membrane order is less clear. According to some researchers,
peroxidation does not affect the fluidity of the membrane (29) nor the reorientational
dynamics of the lipids (18). According to others, membrane fluidity is decreased (30-33) and
the decrease is higher near the double bonds of the bilayer, whereas other regions are less
affected (30). Some have reported an increase in the lipid tails order parameter (30,33-36),
others no change (37) or a decrease (18,38). Several reasons can explain the differences in
experimental results, including the use of different methodologies to generate peroxides,
leading to different (and usually not well-defined) lipid compositions of the membrane (22).
Despite the numerous studies on the effect of oxidation on the structure and dynamics of lipid
membranes, the relationship between increased membrane permeability and modifications in
the structure and dynamics of lipid bilayers is not clear.

In recent years, computational studies of model membranes proved to be particularly

useful in the description of the structure and dynamics of lipid bilayers (39,40) and in the



interpretation of experimental results (41). Both pure lipid bilayers (42-44) and mixtures of
lipids with proteins and cholesterol have been investigated using computational methods
(43,45-48). Unsaturated lipid bilayers also have been studied using computer simulations (49-
53), but the structural consequences of the presence of oxidized lipids have never been
investigated using computational methods, to the best of our knowledge.

In the present work, we use molecular dynamics simulations to characterize the effect of
lipid oxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine
(PLPC) lipid bilayers. In particular, we describe the effect of four different products of PLPC
peroxidation (54) at five concentrations, ranging from 2.8% to 50%. We focused on four
main oxidation products of linoleic acid, including either a hydroperoxide or an aldehyde
group: 9-trams, cis-hydroperoxide linoleic acid, 13-trams, cis-hydroperoxide linoleic acid, 9-
oxononanoic acid, and 12-oxo-9-dodecadienoic acid (Figure 1). These oxidized chains
replaced the sn-2 linoleate chain in PLPC. The goal of this work is to understand how
oxidized lipids change the membrane properties. In particular, we seek to characterize the
relationship between the changes in membrane permeability and the modifications of
structural and dynamic properties of the lipid bilayer, and to provide a detailed description at
the atomistic level of the chemical interactions responsible for the changes in the properties
of the membrane. The paper is organized as follows. First we describe the methods used to
derive the simulation parameters for the lipids and the simulation methods. Then we describe
a number of properties of a PLPC bilayer and how they change upon increasing the
concentration of oxidized lipids, and compare simulation results to experimental ones
reported in the literature. Finally, we discuss the relationship between permeability, structure

and dynamics of oxidized bilayers.

Method's

Force field parameters

A united atom force-field was used for the lipids in all simulations. The parameters for
the phosphatidylcholine (PC) head group and the lipid tails were taken from previous works
on PLPC and DPPC lipids (42,51). The hydroperoxide lipid tails were created by addition of
a hydroperoxide group at position C9 or C13 of the linoleate tail and shifting the double
bonds, as shown in Figure la and 1b. The aldehyde lipid tails were also built starting from
linoleic acid (Figure 1c, 1d). The bonded parameters for the O-O and O-H bonds and for the

0-0O-H angle were taken from previous calculations on hydrogen peroxide (55), while all



other missing parameters were derived using quantum chemistry calculations on 3-
hydroperoxy-1-butene (Figure 2a). The charges at the last carbon and oxygen and dihedral
angle parameters of C-C-C=0 in aldehyde lipid tail were calculated from propanal (Figure 2b)
by using the same procedure as for the hydroperoxide lipid tail. We used the Jaguar software
package (56) for all quantum calculations, with the B3LYP method of density functional
theory (57,58) and the LACV3P**++ basis set. Partial atomic charges were estimated using
natural population analysis (NPA) (59) and the electrostatic surface potential (ESP) fitting
method with Merz-Kollman atomic radii (60) after the geometry optimization. The results for
partial charges are reported in Table 1. For the calculation of bond and angle force constants,
we restrained the bond lengths and angles at seven different values, then fitted a harmonic
potential functions to the energy profile. For dihedral parameters, dihedral angles were
restrained at 36 different values from 0 to 360 degrees, and the standard proper dihedral
. NV
function (V(w) = 27’“[

n=0

1+cos(nw —-y)]) was fitted to the potential energy. For all bonded

parameters, the Lennard-Jones and electrostatic energy were calculated for different
geometries and subtracted from the total energy before fitting. Results for all bonded

parameters are reported in Table 2 and 3.

Bilayer setup and simulation details

The systems were generated starting from the equilibrium structure of a PLPC bilayer
containing 72 lipids. We replaced 2, 4, 8, 18, and 36 PLPC lipid molecules with each
oxidized lipid, obtaining 20 different bilayers with oxidized lipid concentrations of 2.8%,
5.6%, 11.1%, 25%, and 50% respectively. The two bilayer leaflets always contained the same
number of oxidized lipids. All 21 simulation systems contained 72 lipid (including PLPC and
oxidized lipids) and 2880 water molecules. All simulations were carried out with version
3.3.1 of the GROMACS package (61). After energy minimization, molecular dynamics
simulations were run for 180 ns, and the initial 80 ns were considered as an equilibrium
period. The integration time step was 2 fs. Periodic boundary conditions were applied in all
dimensions. A 1.0 nm cutoff was employed for the electrostatic and Lennard-Jones
interactions and the neighbor list was updated at every time step. The long range
electrostatics was calculated using particle mesh Ewald (62,63); the real-space interactions
were evaluated using a 1.0 nm cutoff, and the reciprocal-space interactions were evaluated on

a 0.12 nm grid with fourth-order B-spline interpolation. The relative error for the Ewald sum



in the direct and reciprocal space, controlled in GROMACS by the parameter ewald rtol, was
set to 10°. The LINCS algorithm was used to constrain all bond lengths (64). The weak
temperature coupling scheme was applied separately to the lipids and water (65), with a
temperature of 298 K and a time constant of 0.1 ps. The semi-isotropic pressure was applied
(65), with and equilibrium pressure of 1 bar both in the x-y plane and in the z direction
(bilayer normal) with a time constant of 4.0 ps and a compressibility of 4.5x10” bar™.

Molecular graphics were made using VMD (66).

Potential of mean force and permeability of water
Constraint simulations were used to calculate the potential of mean force (PMF) of water
as a function of the distance from the center of the bilayer, the local diffusion coefficient at
different depths and water permeability through the lipid bilayer (67,68). A series of 31
simulations was run with the distance between water and the center of bilayer constrained
between 0 and 3.0 nm, with 0.1 nm spacing. Only the component of the distance along the
bilayer normal (Z axis) was constrained, while water was completely free to move in the X
and Y directions. The SHAKE algorithm was used, with a relative tolerance of 10°. Two
water molecules were constrained at the chosen depths inside the bilayer, at a distance of 3.0
nm from each other. In the first simulation, one water molecule was restrained at 0 nm
(corresponding to the center of the bilayer) and the second at 3 nm (corresponding to the bulk
water phase). This setup allows for increased sampling at no computational cost. Each
simulation was 15 ns long and the forces were calculated as a function of the simulation time.
The free energy of water transfer from the bulk phase to various depths in the membrane can
be expressed as:
AG(z) = - f< F(Z)>dZ , (1)
bulk-
water

where < F(z") >, indicates the average force over the simulation time; the limits of the

integration range from bulk water to depth z. In order to estimate the error on the force, we
used a block averaging procedure on five intervals, each 3 ns long. We used the force
autocorrelation method for the calculation of the local time-dependent friction coefficient,
E(t), as described by Marrink (67,68). The static friction coefficient, &, is inversely
proportional to the local diffusion coefficient (D(z)) (68-70) and the permeability coefficient
(P) of the solute is defined as the inverse of the resistance (R). The resistance R to permeate

through the bilayer is obtained by integrating over the local resistances H(z):



exp(AG(z")/ RT) i = 1

R= fﬁﬁ(z )dz' = D) 7 )

outside outside

Results and discussion

Structural and dynamic properties of the lipid bilayer

The first important change in the simulations of all the oxidized lipids is in the
conformation of the lipid tails. Snapshots showing the conformation of oxidized and non-
oxidized lipids are shown in Figure 3. The portion of the lipid tail containing oxygen atoms is
found, on average, close to the interface region. This is confirmed by the distribution of
aldehyde and peroxide oxygen atoms in the bilayer, shown in Figure 4. For both the
aldehyde-containing and the peroxide-containing lipids, the maximum density of oxygen
atoms is around the carbonyl group, and the distribution is broader for aldehyde-containing
lipids. Together with the conformational change, hydrogen bonding is observed between the
oxidized lipid tail and water, carbonyl groups and phosphate groups. Table 4 shows the
average number of hydrogen bonds formed by the hydroperoxide and aldehyde groups with
other groups, in each simulation. In all cases, oxidized lipid tails form hydrogen bonds mostly
with water molecules. For hydroperoxide-containing lipids, hydrogen bonds with phosphate
groups are more probable than with carbonyl groups. The average total number of hydrogen
bonds per lipid does not change significantly with the concentration of oxidized lipids. Its
average value is 1.00 + 0.13 for hydroperoxide lipids and 0.48 £ 0.05 for aldehyde lipids.
This highlights a correlation between oxygen density distribution and hydrogen bonding:
hydroperoxide lipids have higher propensity to form hydrogen bonds with water and
narrower density distributions. These findings corroborate the model initially proposed by
van Kuijjk et al., suggesting that the hydroperoxide moieties reside in the proximity of the
lipid head group region, because of their hydrophilic character (71).

The presence of hydrogen bonding interactions involving the lipid tails affects most of
the properties of the lipid bilayer. Figure 5SA shows the electron density profile calculated
from our simulations of pure PLPC and for bilayers containing 50% concentration of each
oxidized lipid. The total density at the center of the bilayer is increased in the presence of
oxidation, and the maxima are shifted towards the center. The increase of the density at the
center of the bilayer corresponds to partial interdigitation of the phospholipids acyl chain

terminal methyl segment when the thickness of bilayer decreases. While experimental data on



PLPC are not available, the change in the electron density profile upon peroxidation has been
characterized experimentally for dilinoleoyl phosphatidylcholine (DLPC) bilayers, as shown
in Figure 5B (reproduced from reference (22)). Simulation results on PLPC compare
favorably with the experimental ones on DLPC, showing a decrease in the bilayer thickness
and a higher density in the center.

We calculated the average area per lipid and bilayer thickness in the 25 simulated
systems, and compared the results to previous simulations and experimental data. The
thickness of the bilayer was calculated from the simulations as the average distance between
phosphate groups in the two leaflets. Figure 6 shows the area per lipid molecule and the
bilayer thickness at different concentrations of each oxidized lipid. For the pure PLPC bilayer,
we found an average area per lipid of 0.651 + 0.015 nm* and an average thickness of 3.62 +
0.01 nm. The difference with previous calculations (51,72) and experimental findings (50,73)
is within 6% for the area and 3% for the thickness. For all the bilayers containing oxidized
lipids, the area increases with increasing concentrations of the oxidized lipids, and the
thickness decreases. Visual inspection of the trajectories suggests that the increase in area per
lipid and the corresponding decrease in the thickness are related to the preference of the more
polar oxidized tails for the interface and the head group region. The relationship between area
and thickness is not straightforward, since both the length of the oxidized lipid tail and the
position of the oxygen in tail have a specific effect on the structural properties of the bilayer.
The thickness is generally less when the bilayer contains aldehyde lipids, for which one of the
acyl tails is shorter. On the other hand, lipids with the peroxide or aldehyde groups farther
away from the carbonyl ester tend to give larger areas. Bilayers containing 13-tc generally
have the largest area per lipid, but not the smallest thickness.

The increase in the area per lipid observed in our simulations is consistent with
experimental results by Pradhan et al. showing that peroxidized lipids increase the
phospholipids spacing in erythrocyte membranes (74). Sabatini et al. characterized DPPC
monolayers containing oxidized lipids, in particular 9-al (referred to as PoxnoPC, in their
study) and the carboxylic acid analogue (75). They found that both oxidized lipids expanded
the monolayers, similarly to our results. Interestingly, film expansion was larger with the
carboxylic terminal group, the more polar group. They also proposed a model for the
arrangement of the sn-2 acyl chains in monolayers that is similar to the model of van Kuijk

(71), and consistent with our results.



The degree of ordering of the tail is also influenced by the presence of the oxygen atoms,
as shown by the deuterium order parameter (Figure 7). The deuterium order parameter can be

measured by NMR, and is defined as:

S. =%<3cosz(6j)—l>, 3)

J

where 6; is the angle between a C-D bond and the membrane normal. The brackets
indicate averaging over the two bonds in a certain CD, group, over all the lipids and over
time. Since we used a united atoms representation in our simulations, the positions of the
deuterium atoms were reconstructed assuming ideal tetrahedral geometry of the methylene
groups. The order parameter was calculated for all the CD bonds in the sn-1 and sn-2 chains
of both PLPC and the oxidized lipids in all the simulations. As expected, in PLPC molecules
the unsaturated lipid tail has lower order parameters compared to the saturated one. The
average order parameter for the acyl chains decreases with increasing concentration of
oxidized lipids, both for PLPC and for the oxidized lipids. The order parameter for both the
sn-1 and the sn-2 tails of oxidized lipids is lower than for the linoleate tail of the pure PLPC
bilayer. The disordering effect induced by the presence of the oxidized lipid tail is stronger
for aldehyde lipids than for hydroperoxide ones. This effect can possibly be due to the lower
hydrogen bonding propensity of the aldehyde tails, which makes them more mobile, and to
the larger free volume available for the sn-1 chain when the s»n-2 chain is shorter.

Wratten et al. (18) measured the membrane ordering in PLPC and DLPC bilayers
containing hydroperoxide and hydroxide groups using angle-resolved fluorescence
depolarization. Their results showed that the presence of oxidized lipid molecules cause a
decrease in membrane order. However, other studies showed an increase (30,34-36) or no
change (37) in the order parameter. It has been suggested that this discrepancy depends on the
presence of numerous oxidative products, different from our case.

Together with the changes in the structural properties of the bilayer, dynamic properties
of the lipids were also modified. We calculated the lateral diffusion coefficient from the mean
square displacements (MSD) of the lipids as a function of time. We observed that the two
monolayers move relative each other and relative to water during the simulations. Both types
of motion are artifacts due to the finite size of the simulated systems and to periodic boundary
conditions (76). We therefore subtracted the center of mass motion of each monolayer before
calculating the MSD. We then utilized the model proposed by Wohlert and Edholm for the
calculation of the lateral diffusion coefficient at short and long time scales (76). This model

considers two different types of diffusion occurring on different time scales. The diffusion at



short times (described by the D, coefficient) takes place within a circular area of radius R and
is not Brownian, while the diffusion at long times (described by the D, coefficient) involves
large displacements and is Brownian. Both diffusion coefficients can be calculated by fitting

the MSD curve to the following expression (76);

2 2
<rtse 2P 4p i owhere 2 =R ()
72+ 4D 2

In order to estimate the error of diffusion coefficients, we split our 100 ns trajectories in

five intervals of 20 ns each and fitted the MSD curves between 0 and 10 ns. For the pure

PLPC bilayer we found values of 10.3 & 0.8 107 ¢m?/s for Dy, 0.27 nm? for rO2 and 0.60 +

0.05 - 107 ecm?/s for D,. Previous simulations of a PLPC bilayer gave a diffusion coefficient
of 1.3+ 0.3 - 107 cm?/s for the diffusion at long times (53). This value is significantly higher
than our result, but it was obtained at a higher temperature (310K). Our results compare

favorably to previous simulation results for a DMPC bilayer, with D; = 13 - 107 cm*/s, D, =

0.79 - 107 cm®/s and =103 nm’® (76). The agreement with experimental diffusion

coefficients is also very reasonable: the diffusion coefficient at long times can be compared
with results from neutron scattering experiments, measuring D = 1~10 - 107 cm?/s (77,78),
while D, can be compared with diffusion coefficients from fluorescence recovery after photo
bleaching (FRAP) experiments, which typically give values around 0.5~1 - 107 cm?/s (79).
Short-time and long-time diffusion coefficients for all the simulated systems are
reported in Figure 8. Short-time diffusion coefficients decrease very slightly with increasing
concentration of oxidized lipids, while long time diffusion coefficients are not significantly
affected by peroxidation. Early experimental studies suggested an increase of membrane
microviscosity upon peroxidation (30-32,80), while more recent results indicated that the
effect of lipid oxidation causes pronounced structural effects but minimal effects on the
membrane dynamics (18,29). Our study suggests that, while the presence of oxidized lipids
has a large influence on structural properties, its effect on lipid diffusion is relatively small.
However, the diffusion appears to be faster for aldehyde lipids compared to hydroperoxide
lipids. This can be related to the stronger hydrogen bonding interactions observed for
hydroperoxide lipids, which involve not only water but also polar head groups of neighboring

lipids.



Water permeation through PLPC bilayers

The presence of oxidized lipids has a profound influence on the permeability of water
through PLPC bilayers. Water pores are observed in all the simulations containing 5% or
more oxidized lipids, and they are relatively stable at higher oxidation levels. Figure 9 shows
a water defect in a bilayer containing 13-tc lipids at 50% concentration. Based on visual
inspection of the trajectories, water defects can form independently in both leaflets and they
are larger in the presence of 12-al and 13-tc. This difference correlates well with the higher
area per lipid in bilayers containing 12-al and 13-tc lipids, which have polar oxygen atoms
closer to the terminal methyl group.

In order to understand the energetics of water penetration inside different bilayers, we
calculated the potential mean force (PMF) of water as a function of the distance from the
center of the bilayer using constraint simulations. Due to the high computational cost, we
limited the calculations to 9 systems, including pure PLPC and bilayers containing 11.1% and
50% of each oxidized lipid. For the same systems we also calculated the local diffusion
coefficient and the permeability of water across the bilayer. PMF profiles are shown in Figure
10. The shape of free energy profile for pure PLPC is very similar to previously published
profiles for DPPC (67,68,81). The free energy increases moving from the water interface to
the hydrophobic tail region, reaching a maximum of 29.4 £+ 2.3 kJ/mol at 0.5 nm from the
center of bilayer. A dip of about 1 kJ/mol is observed at the center of bilayer, which can be
interpreted as the effect of the slightly lower local density (67,68). Free energy values in our
simulation are higher than those obtained by Marrink and Bemporad simulating DPPC
bilayers (67,81). The difference might be explained by the different nature of the lipids and
the lower temperature used in our simulations (300K instead of 350K or higher). For the pure
PLPC bilayer, we compared PMF results obtained from constraint and umbrella sampling
simulations (data not shown), and did not find significant differences. For the mixtures
containing oxidized lipids, the shape of the PMF becomes Gaussian-like when the
concentrations of oxidized lipids increases, and the dip at the center of the bilayer disappears.
Since the density at the center of the bilayer increases with increasing level of oxidation, this
result is consistent with the idea that the dip in the PMF depends on the local density. The
free energy barrier to translocation across the bilayer decreases as the concentration of
oxidized lipids increases, with all four oxidized lipids. The free energy at the center of bilayer
is decreased by 0.6~1.6 kJ/mol in the presence of 11.1% oxidized lipids, and by 4.0 to 11.1
kJ/mol in the presence of 50% oxidized lipids. Like for the bilayer thickness, 12-al and 13-tc

lipids have a stronger effect on the free energy barrier compared to 9-tc and 9-al.



Local diffusion coefficients and the local resistance were calculated for water at different
depths in the membrane. In the case of the pure PLPC bilayer, we observe a decrease in the
local diffusion coefficient from bulk water to lipid tail interior and an increase in the central
portion of the bilayer. Although this behavior is qualitatively similar to that observed by
Marrink and Bemporad on DPPC bilayers (67,81), the discrepancy in the actual values is
significant. In the central region, the local diffusion coefficient of water is lower in oxidized
bilayers than in the non-oxidized bilayer. This is related to the increase in the local density at
the center of oxidized bilayers. As expected, the free energy barrier dominates the local
resistance profiles for water in the bilayers, and therefore water permeability. To our
knowledge, water permeability through PLPC bilayer has never been reported in the literature.
However, several papers reported experimental results for water permeability through
different saturated and unsaturated lipid bilayers. A value of 4.9 + 0.6 * 10” cm/s has been
reported for 1-stearoyl-2-linoleoyl phosphatidylcholine (SLPC), 9.1 + 2.4 * 10 cm/s for
1,2-dilinoleoyl phosphatidylcholine (DLPC) (82). Although comparable, these values are
higher than our findings for pure PLPC, 1.6 + 0.5 *10~ cm/s at 25 °C.

Table 5 shows the permeability of water through PLPC bilayers at two different
concentrations of oxidized lipids. As all oxidized lipids decrease the free energy barrier for
water penetration, all of them increase water permeability. This effect is not very large at the
concentration of 11.1%, but at 50% the increase in permeability is between one and two
orders of magnitude. The increase in water permeability with increasing concentration of
oxidized lipids is consistent with experimental results (25-28) and correlates with looser
packing of lipids. In our simulations, 12-al and 13-tc lipids have a larger effect on water
permeability compared to 9-al and 9-tc lipids. This result suggests a relationship between
permeability and the bilayer structural features. Water permeability appears to be related to
the position of the oxygen in the lipid tail more than to the length of the tail and the hydrogen
bonding capability of the oxidized moiety. Therefore, water permeability correlates better
with the area per lipid than with the bilayer thickness and hydrogen bonding capability.

Although our calculations are limited to the permeability of water through a lipid
membrane, we expect similar trends to be valid for any polar solute (27). An increase in the
permeability of all polar substances would lead to an imbalance for numerous substances in a

cell and therefore to cell death.



Conclusions

In the present work we studied the effect of lipid peroxidation on the properties of 1-
palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine  (PLPC) lipid bilayers using
molecular dynamics simulations. We simulated PLPC lipid bilayers containing different
concentrations of four oxidation products of linoleic acid, containing either a hydroperoxide
or an aldehyde group, in two different positions in the lipid tails. The aldehyde lipids have
different chain length compared to the hydroperoxide ones, and the hydroperoxide group is
more hydrophilic than the aldehyde group. These simple chemical features of the individual
lipid molecules lead to well-defined changes in the properties of the bilayers. While the
structural properties of the lipid membrane are strongly affected by the presence of oxidized
lipids, the dynamic properties are affected to a much lesser extent. All the oxidized tails show
a significant conformational difference compared to non-oxidized tails: the oxidized moiety
is generally close to the lipid head group region and forms hydrogen bonds mainly with water.
This tendency is more pronounced for hydroperoxide lipids compared to aldehyde lipids, due
to the higher hydrophilicity of the hydroperoxide group. Structural properties of the lipid
bilayer are found to depend on the different chemical features of the oxidized lipids: nature
and position of the functional group, length of the lipid tail. The area per lipid has a stronger
dependence on the position of the oxidized moiety, while the bilayer thickness depends
strongly also on the length of the tail. The changes in area per lipid and bilayer thickness are
reflected by a decrease in the order parameter of the lipid tails, which is stronger in the case
of aldehyde lipids. Despite the large changes in the structural properties of the lipid bilayer,
lipid dynamics does not appear to be significantly affected by the presence of oxidized lipids.
Water permeability through the bilayer is significantly increased in the presence of oxidized
lipids, and water defects are observed frequently at high concentrations of oxidized lipids.
Our results suggest that one mechanism of cell membrane damage is the increase in

membrane permeability due to the presence of oxidized lipids.
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Table 1. Partial atomic charges in the oxidized lipid tails.

functional group CH 0] 0] H reference molecule
hydroperoxide tails 0.30 -0.30 -0.45 0.45 3-hydroperoxy-1-butene
aldehyde tails 0.53 -0.53 - - propanal

Table 2. Force constant F¢ for optimized bonds and angles and dihedral angles.

Bond ro (Nm) Fc [kJ/(mol*n m2)] reference molecule
C-O 0.14180 225670 3-hydroperoxy-1-butene
0-0 0.14430 269580 H,0, (55)
O-H 0.09810 444130 H,0, (55)
Angle a, (degree) Fc [kJ/(moI*radz)] reference molecule
=C-C-O 104.00 418.40 3-hydroperoxy-1-butene
C-C-O 109.50 418.40 3-hydroperoxy-1-butene
C-0-0 105.90 598.37 3-hydroperoxy-1-butene
O-O-H 100.00 506.92 H,0, (55)

Table 3. Force constants for dihedral angles. The functional form is the following:
a(l+cos(x —=b))+c(1+cos2x —d))+e(1+cos(3x - f))

dihedral * b* c* d* e* f reference molecule
angles

C=C-C-O 212 223.90 0 0 3.62 180.50  3-hydroperoxy-1-butene

C-C-0-0 213 334.25 0 0 7.04 8.10 3-hydroperoxy-1-butene

C-0-O-H 8.46 2330 6.51 18.40 0 0 3-hydroperoxy-1-butene

C-C-C=O0 047 180.00 1.58 180.00 2.67 180.00 propanal

* kJ/(mol*rad?)

* degrees



Table 4. Average of the number of hydrogen bonds per oxidized lipid molecule.
Hydrogen bonds are between hydroperoxide or aldehyde groups and the lipid head group or

water.
Lipid bilayer % o_xi_dized carbonyl phosphate water
lipids group group
PLPC with 13-tc 2.8% 0.34 0.41 0.77
5.6% 0.36 0.44 0.85
11.1% 0.14 0.62 1.04
25.0% 0.30 0.45 0.94
50.0% 0.20 0.38 0.89
PLPC with 9-tc 2.8% 0.35 0.41 1.06
5.6% 0.50 0.20 0.93
11.1% 0.21 0.50 1.15
25.0% 0.22 0.53 1.04
50.0% 0.26 0.51 0.96
PLPC with 12-al 2.8% - - 0.54
5.6% - - 0.45
11.1% - - 0.54
25.0% - - 0.45
50.0% - - 0.41
PLPC with 9-al 2.8% - - 0.45
5.6% - - 0.45
11.1% - - 0.52
25.0% - - 0.54

50.0% - - 0.46




Table 5. Water permeability through PLPC bilayers containing four different oxidized
lipids (concentration of 11.1% and 50 %).

Lipid bilayer % oxidized lipid permeability of water (*10'3 cm/s)

PLPC 0 16+£05
PLPC with 9-tc 11.1% 3.3+06

50% 11.6+4.5

PLPC with 13-tc 11.1% 21+0.8
50% 92 + 40

PLPC with 9-al 11.1% 3219

50% 16.1+4.7

PLPC with 12-al 11.1% 40+£22

50% 66 + 32




Figure 1. Products of the oxidation of linoleic acid considered for this work.
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Figure 2. Lipid fragments used for the calculation of bonded parameters and partial

charges for the oxidized lipid tails.
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Figure 3. Snapshots of a single PLPC and 13-tc taken at 5 ns intervals. Lipids are colored
by atom type: nitrogen is blue, carbon is cyan, oxygen is red, phosphorus is tan. Molecules
are oriented along the z axis and superimposition was done on the phosphorus and oxygen

atoms.




Figure 4. Electron density profiles for the oxygen atoms of the oxidized acyl chains in

PLPC bilayers containing 11.1% of oxidized lipids. The maximum density of the phosphate

group is 1.85 nm from the center in a pure PLPC bilayer.

3 T I T I T I T I T
25 —— -O0OHin9%tc
-------- -OOH in 13-tc
I ---- =0in9-al i
e ok i s\ T =0in 12-al |
(=]
o) I i
2
e 151 —
o
c b -
g
8 b -
®
0.5 -
- = ”'fl:"". |
0 '''' - —T' —————
0 0.5 1 1.5 2

distance from the center of the bilayer (nm)

25



Figure 5. (A) Total electron density in simulations of PLPC bilayers including two oxidation
products, 12-al and 9-tc, at 50% concentration. (B) Relative electron density in X-ray

diffraction experiments on DLPC and peroxidized products (reproduced from reference (22)).
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Figure 6. The thickness and area per lipid of lipid bilayer, containing various

concentrations of each oxidized lipid.
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Figure 7. Deuterium order parameter in the sn-2 lipid chains of PLPC and each oxidized

lipid, in the 11% mixtures.
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Figure 8. Short time (D;) and long time (D,) lateral diffusion coefficient for each

oxidized lipid as a function of the concentration.
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Figure 9. Snapshot showing a stable water defect in a PLPC bilayer containing 50% 13-
tc lipids. PLPC is shown as sticks in grey, PLPC in cyan; all phosphate atoms are shown as
tan spheres, oxygen atoms in the hydroperoxide group are shown as red spheres; water

oxygen atoms are shown as blue spheres (with bigger size inside the bilayer).




Figure 10. Potential of mean force for water as a function of the distance from the center
of the bilayer, in a bilayer containing pure PLPC or 11.1% oxidized lipids or 50% oxidized

lipids. Error bars are omitted for clarity.
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concentration would reduce the local minimum (maximum) effect, which is related to the probability of polar
division in each single oscillator cycle.

Though the studied model is simple and neglects some complex mechanisms concerning protein oscillation
in correlation with cell division, it is demonstrated to be good enough for positioning the dividing site.
Therefore, with regards to this problem, more experimental and theoretical works are needed. Especially,
more realistic model (of course more complicated model) development through deterministic and stochastic
approaches is still very much in need. Lastly, it is to be mentioned that this study may be of significant

importance in the development of new technological processes in the fields of agriculture, food and medicine.
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Abstract

Cell division in Escherichia coli and other rod-shaped bacteria depends on the precise
placement of a division septum at the cell center. The MinCDE system consisting of three proteins:
MinC, MinD, and MinE, controls accurate cell division at the center of the cell through pole-to-pole
oscillation. With some simplifying assumptions and relying on our deterministic model, we present a
one-dimensional stochastic model describing effects of an external electric field to the MinCDE
system. Computer simulations were performed to investigate the response of the oscillatory dynamics
to various strength of the electric field and the total number of Min proteins. Providing a strong enough
electric field, it has been found, is capable of interfering with the Min CDE dynamics as a consequence
of the possible change in the division process. Interestingly, it was found that the effects of an electric
field do not depend on the total number of Min proteins. The noise involved has shifted the correct
trend of Min proteins behavior. However, as a consequence of the robustness of the dynamics, the
oscillatory pattern of the proteins still exists even though the number of Min proteins is relatively low.
However, consideration of the correlations between the local and global minimum (maximum) of
MinD (MinE) suggests that using high enough Min protein concentration would reduce the local
minimum (maximum) effect, which is related to the probability of polar division in each single
oscillator cycle.

Though the studied model is simple and neglects some complex mechanisms concerning
protein oscillation in correlation with cell division, it is demonstrated to be good enough for
positioning the dividing site. Therefore, with regards to this problem, more experimental and
theoretical works are needed. Especially, more realistic model (of course more complicated model)
development through deterministic and stochastic approaches is still very much in need. Lastly, it is to
be mentioned that this study may be of significant importance in the development of new technological

processes in the fields of agriculture, food and medicine.
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1. Introduction

Cell division in Escherichia coli and other rod-shaped bacteria depends on the precise
placement of a division septum at the cell center in order to ensure the equipartition of cytoplasmic
components into the two daughter cells. It has been known that the dynamics of Min proteins,
MinCDE, consisting of three proteins: MinC, MinD, and MinE, play a key role in determining the site
of septal placement in E. coli (de Boer et al., 1989). Previous studies (Rothfield et
al.,1999;Margolin,2001;Addinall et al.,2002) have shown that the earliest event in this process is the
polymerization of the tubulin-like protein FtsZ at mid-cell into an annular structure called the Z-ring.
In the absence of the Min system, Z-rings form at mid-cell as well as cell poles, resulting in the
production of minicells (Akerlund et al.,1992). It has been shown that the three Min proteins must act

in the certain way for cell dividing process to be achieved (de Boer et al.,1989).

MinC and MinD act in concert to form a nonspecific inhibitor of septation. MinC interacts with
the division protein FtsZ to prevent formation of stable FtsZ ring marking the dividing site (Hu Z et
al., 1999). In other words, MinC is an antagonist of FtsZ polymerization and a specific inhibitor of Z-
ring formation (Hu et a/.,1999; Hu and lutkanhaus,2000), while MinD plays a role is making MinC-
mediated division inhibition sensitive to suppression by MinE (de Boer et al.,1992). Because MinC
binds to MinD, the movement of MinC from pole to pole with relatively long polar dwell times and a
short transit time blocks the formation of polar Z-rings but not medial rings (Meinhardt and de Boer,
2001; Margolin,2001). Therefore, the ATPase activity of MinD is presumed to provide the driving

force for the pole-to-pole oscillation of the MinC division inhibitor.

The MinCD division inhibitor lacks site specificity, as evidenced by the observation that
expression of MinC and MinD in the absence of MinE leads to a block in septation at all potential
division sites, leading to formation of long nonseptate filaments. Filamentation is suppressed by
MinE, which acts as a topological specificity factor to prevent the division inhibitor from acting at the
midcell site while permitting it to block septation at polar division sites. Consistent with the ability of
MinE to specifically counteract the division inhibitor at midcell, a MinE-green fluorescent protein
(MinE-GFP) localizes to a ring-like structure at sites adjacent to the midcell, and this localization
pattern requires the simultaneous expression of MinD (Raskin and de Boer, 1997). MinD is required
to localize MinE at midcell (Raskin and de Boer,1997). It was shown in a related study that MinD
localizes to the cell pole in a MinE-dependent fashion and undergoes a rapid oscillation from pole to

pole (Raskin and de Boer 1999).
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The necessity for quantitative modeling and simulations is especially compelling when the
process of interest displays spatiotemporal pattern formation, such as the oscillations of the Min
proteins. Several studies have been made with different reaction-diffusion models to explain these
oscillations (Meinhardt and de Boer, 2001; Howard et a/., 2001; Kruse, 2002; Howard and Rutenberg,
2003; Huang 2003, Modchang et al., 2005). It has also recently emerged that MinD forms helical
filaments in living cells (Shih, 2003); recent mathematical models (Drew et al., 2005; Meacci and
Kruse, 2005; Pavin ef al., 2005) have attempted to include this feature. The model by Drew et al.
(Drew et al., 2005) includes polymer growth from nucleation sites at the ends of the cell. Both of these
models use continuous partial differential equations. The model by Pavin et al. (Pavin et al., 2005)
differs in that it is a three-dimensional stochastic model, but it does not exhibit the observed large scale
helical filaments. Incorporating stochastic feature introduced into Min modeling is nevertheless likely
to be important for systems of this type (Howard and Rutenberg, 2003, Tostevin and Howard, 2006,
Fange and EIf, 2006, Pavin et al., 2006, Kerr et al., 2006 ).

Given the significance of the protein oscillation in correlation with the cell division, another
interesting question may be asked: how the abnormal or unsuccessful cell division is affected by the
abnormal protein oscillation? More specifically, under externally perturbation of stresses such as pH,
heat, electric field, or magnetic field, how does each perturbation or combined perturbation affect
protein oscillation in correlation with the cell division? Focusing on the effect of electric field is the
central issue of this research work. Because the protein is typically charged, it thus could interact with
the electric field (Simonson, 2003). For Min protein, MinCDE, they are membrane-bound and are
diffusive in the cytoplasm and on the membrane. We believe that a high enough field could effect the
dynamic movement of these proteins assuming that the cell survives. However, the motion mode and
spatial distribution of these electric charged proteins may be greatly effected by this external electric
field perturbation.

Motivated in part by this debate, in this study the effect of constant electric fields on MinCDE
protein dynamics in E. coli has been examined. We present a simple one-dimensional stochastic
model that may predict the experimental observations of the Min oscillations in the near future. The
stochastic modeling approach is used in order to take into account the fluctuations or noises. With this
approach, it will allow us to understand how the intrinsic chemical fluctuations in spatially extended
systems can cause different properties than what would be described by a mean-field model or
deterministic counterpart. The noise or fluctuation in non-homogeneous systems has, for instance,

been shown to create new steady states (Togashi and Kaneko, 2004), drive spatial oscillations (Howard
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5
and Rutenberg, 2003), cause spatial phase separation of a bistable system (EIf and Ehrenberg, 2004),
or drive the irregular relocation dynamics of Soj protein in Bacillus subtilis (Doubrovinski and
Howard, 2005). Random fluctuations in genetic networks are inevitable as chemical reactions are

probabilistic and many genes, RNAs and proteins are present in low numbers per cell (Paulson , 2004).

In this paper, the relative concentrations of MinD and MinE are to be reported as functions of
space and time. For each Min protein species considered, the characteristic model parameters, field
strength J, and the number of Min proteins, are varied and comparatively interpreted. The
highlighting aim of this study is to enhance the understanding of protein dynamic phenomena related to
different intensity of electric treatments under various conditions. Here, we have tested the hypothesis
that a direct current (dc) electric field may be one other extrinsic factor that can perturb cell division
via protein oscillation. In addition, it has been reported that dc electric fields are able to induce
directional responses such as cell migration (galvanotaxis/electrotaxis) and cell division in many cell
types (Robinson, 1985; Song ef al., 2002; Wang et al., 2000; Zhao et al., 1999). We attempt to find out
whether small dc physiological electric field can change the protein dynamic oscillation in E. coli cell

division by using a computational stochastic modeling as a tool.

The discoveries and conclusions of this study may be of significant importance in the
development of new technological processes in the fields of agriculture and food science, particularly
fermenting process controls and eliminating the undesirable pathogenic microorganisms. Electric and
electromagnetic treatments are among the many food preparation processes and /or conservation
techniques used in recent years [ Pathak et al., 2003, Espachs-Barroso et al., , 2003, Giner et al., 2003,
Martin et al., 2003). The main objective of such treatments is to reduce or eliminate part of the often-
undesirable microorganisms present.

Recently in cancer research, low-intensity, intermediate-frequency, alternating electric fields,
delivered by means of insulated electrodes, have been found to have a profound inhibitory effect on
the growth rate of a variety of human and rodent tumor cell lines. These findings demonstrate the
potential applicability of the described electric fields as a novel therapeutic modality for malignant
tumors (Kirson et al., 2004, Hernandez-Bule ez al., 2007, Janigro et al., 2006, Cucullo et al., 2005).
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2. Model rationale of protein oscillatory perturbation under an external electric field

It has been known that studies of the response of living systems to uniform physical fields (i.e.,
electric, gravitational, and magnetic) are capable of yielding novel insight into a variety of biological
processes(Denegre et al., 1998; Gerhart et al., 1989; Helmstetter, 1997.; Henderson et al., 1998.;
Valles, 2002; Yokota et al., 1992.; Zhao et al., 1999). Particularly, the direct current electric fields are
able to induce directional responses such as cell division in many cell types (Robinson, 1985; Song et
al., 2002; Zhao et al., 1999). For example, Zhao et al. (1999) showed that the application of static
electric fields to dividing human corneal epithelial cells causes the division planes to orient(Kirson et
., 2004).

Electrical phenomena govern many biological processes from molecular binding interactions to
intercellular communication. Endogenous or exogenous perturbations of small extracellular electric
fields have been observed to affect cellular processes, and several different mechanisms for these
effects have been proposed (Weaver and Astumian, 1990). Diverse biological responses to electric
fields continue to motivate experimental searches for mechanisms of electromagnetic interactions with
cells. It has been shown that development (Jaffe, 1979), regeneration (Borgens et al., 1981.; Borgens et
al., 1977; Jaffe and M-m., 1979. ), and repair (Kenner et al., 1975.) are all effected by electric fields
and that many other basic cellular functions including motility (Cooper and Keller, 1984.; Cooper and
Schliwa, 1985.; Luther ef al., 1983) and receptor regulation (Young and M-m, 1983.) are modulated by
applied external electric fields. In addition, cell membrane permeabilization and fusion are effected by
applied fields (Knight and F, 1982. ; Tessie et al., 1982.; Zimmermann and Vienken.J, 1982.). Local
perturbation of plasma membrane potentials provides a hypothetical mechanism of interaction of
applied electric fields with cells. Electric fields of high strength applied as short time pulses
(microsecond) to aqueous suspensions of living cells have remarkable effects on the cell membranes or

even Kkill the organisms.

Electric fields can be applied to cell suspensions by the use of capacitor discharges as a part of
a high voltage circuit (Hilsheger and Niemann, 1980; Sale and Hamilton, 1967). Some investigators
have observed that siusoidal electric fields alter fundamental cellular functions (Goodman et al.,
1983); such studies have led to concern about potential biological hazards from exposure to
environmental sinusoidal fields. Most of the proposed coupling mechanisms are the subject of

substantial debate. The possibility of applying low-intensity electricity has been studied because of its
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7
effects on viable microbial interactions (Bawcom et al., 1995; Rajnicek ef al., 1994). In order to study
the effects of a high-voltage electric current application (intensity > 25 kW cm ) on microorganisms,
experiments were carried out on different yeasts and bacterial species (Palaniappan et al., 1990). In
other experiments, the same authors (Palaniappan et al., 1992) demonstrated that there was a notable
reduction in the viability of bacterial cultures, indicating that this was due to chemical reactions
induced by electric treatment. From the above mentioned reports, it can be seen that the behavior of a
single cell or cell clusters in an external electric field may notbe yet thoroughly understood. Moreover,
to the best of our knowledge, no study has been performed to assess the effects of the electric field on

the protein oscillatory dynamics of the cell, either theoretically or experimentally.

It is hypothesized that E. coli’s cell membrane may act as a “shield” or “absorber” to the
cytoplasmic organelles including cytoplasmic and membrane bound Min proteins. It is possible that
the field will eventually penetrate the membrane and interact with those interior components of the cell
and consequently generate the electric force on charged objects including Min proteins. It is important
to note that, if the field is too strong, the cell membrane may be damaged possibly resultint in cell

death or abnormality (Bowcom, 1995; Zimmermann, 1974; Zimmermann, 1976; Zimmermann, 1982).

Another possibility is due to the generation of induced secondary field. High enough field
strength could polarize or redistribute the somewhat mobile charges. With this induced polarization, it
is possible to generate the secondary field inside the E. coli in the direction parallel but opposite to the
direction of a primary applied field. This is based on the consideration that the cell membrane is a
dielectric material as shown in Figure 1. It has been shown previously that these membrane dielectric
properties are highly characteristic of, and rapidly affected by, alterations in physiological activities
and induction of pathologic states in cells (Huang et al.,1992;Gascoyne ef al., 1993; Gascoyne et al.,
1994; Ginsa et al., 1991; Huang et al., 1996; Huang et al., 1999; Yang et al., 1999). Such differences
can be not only used for cell characterization, but also exploited for selective cell manipulation,
separation and sorting (Gascoyne., 1997; Pethig and Markx, 1997; Yang et al., 1999; Yang et al.,
2000). This situation is, in fact, very complicated and highly dependent on the electrolytic conditions.
It is known that even in the absence of an external electric field, particles exposed to an ion cloud
become charged. Ions will collide with the particle due to their thermal motions. As the particle
becomes charged, it will repel ions of the same sign and leads to a nonhomogenous distribution of ions
in its neighborhood. This phenomena can be viewed as nonlinear feedback. However, here our first
step model will assume that this effect is somewhat negligible as far as the protein oscillatory behavior

is concerned.
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3. Possible experiments using fluorescent microscopy together with single particle tracking (SPT)
technique

In the past decade, two important technological innovations have contributed to reshaping
molecular biology research. The first was the development of fluorescent proteins that allow
researchers to selectively label single proteins. The second is high-resolution fluorescence imaging that
is made possible by the new generation of bright-field and confocal microscopes (Pierce et al., 1997,
Endow, 2001; Kain and Kitts, 1997). Because of new tools, biologists are able to study molecular
dynamics within the living cell at sub-micron resolutions. They can record time-lapse series to study
molecular transport or conformal changes within the cell. While these methods offer an enormous
potential for increasing our understanding of biology, they also constitute a challenge for researchers
in the field who have not yet devised efficient ways to exploit and quantitatively interpret this
unprecedented flow of data. Currently, the large majority of data analysis and feature extraction is
done manually, which is very time consuming, so that image processing technique have been

developing to solve this problem.

Adopting the above mentioned techniques, a number of previous studies of Min protein
oscillations focuses on the spatial-temporal pattern formation and the biochemical basis function
(Rothfield et al., 2005; Shih ef al., 2002.). However, the experimental data of spatial-temporal pattern
formation has been poorly interpreted for quantitative study. To cope with this drawback, here for the
first ime ever, we apply the Single Particle Tracking (SPT) technique (Saxton and Jacobson, 1997,
Qian,1991) to explore the dynamics of GFP-MinD protein as the indicator of MinD dynamics. The
analysis does not only concentrate on the ensemble positions of GFP:MinD, but also on the dynamics
and localization via the ensemble positions. Data analysis is performed to provide the qualitative and
quantitative interpretation is turn of the behavior of MinD oscillation. To the best of our knowledge,
this SPT method has not yet been used for this specific protein problem. All previous quantitative
results of the MinD dynamics were mostly obtained by either experimental approach via other
techniques or modeling and simulations (Rothfield et al., 2005; Shih ef al., 2002., Meinhardt and de
Boer, 2001; Howard et al., 2001; Kruse, 2002; Howard and Rutenberg, 2003; Huang 2003).

Here we will briefly describe how one may use SPT technique to experimentally investigate the
focused problem, namely the effect of an electric field on the Min protein oscillation. However, since

works are still on going, we here present the framework for the case in the absence of the field.
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9
Briefly, SPT technique is the method or an image processing technique used to follow the spot — like
particle in the fluorescence image under the ntensity of fluorescence signal. The data from SPT
measurement generally yield a key characteristic of a cell membrane or membrane-bound proteins. It
is not only a probe of membrane microstructure but it also has major influence upon reaction kinetics
within the cell membrane. Therefore, the SPT technique has been used in a large field of biophysical
research to measure the trajectory of individual proteins or lipids in the cell membrane, such as plasma
and nuclear membrane (Saxton and Jacobson, 1997), nuclear trafficking of Viral Genes (Babcock et
al., 2004), chromosome dynamics (Sage ef al., 2005), and bacterial actins motion (Kim et al., 2006).
To demonstrate the idea of how one can perform the experiment to support our theoretical predictions

(at least in principle), here the materials and experimental procedure are briefly described as follow.

In the experiment, E. coli RC1/pFX9 [Amin/P,-gfp:: AninD AminE] was used. For examination of
MinD labeled with green fluorescent proteins (GFP), a starter of RC1/pFx9 cells were grown in the
optimal condition media until the ODgyonm is approximately 0.4 (log phase). The centrifugation was
performed to collect the cells. Finally, the sample will be treated with isopropyl-B-D-
thiogalactopyranoside (IPTG) for protein induction, diluted with a media before use. In our
experiment, the 5-7 ul of each E. coli sample was dropped in a glass slide coated with Poly-L-lysine
then covered with a coverslip at room temperature before examination. After that fluorescence
microscopy were used with an InVivo software to obtain fluorescence image sequence. In this
process, a charge-coupled device (CCD) camera was attached to the video port of microscope to
acquire images and movies. After the images are obtained, the SPT technique is used to follow the
region of interest (ROI) which consists of the highest GFP:MinD concentration signal. The collected
data in SPT measurement are supported by SpotTracker Java plugin of public domain ImageJ
software. Typically, the acquired images are in the configuration of fluorescence signal that could
have faded after about 4-5 minutes have passed and subsequently the final image sequence is noisy.
Hence, to improve the quality of the acquired images, we used the software’s function called Gaussian
filter to reduce the noise. The improved images are further enhanced by using the rescaling option of
SpotTracker plugin. Lastly, the tracking of ROI with SpotTracker plugin was performed to collect the
positions at given times in text file (Sage et al., 2005). The positions of ensemble were then analyzed
by MATLAB software. In this work, the focus is on the dynamics and localization patterns of MinD

protein in quantitative manner. The summary of the procedure is shown in the Figure 2.

From the data without the field exposure, the ensemble GFP:MinD oscillations from pole to
pole with the approximately 45 seconds of period was shown in Fig.3(B), the 2D image sequence of

pole-to-pole MinD oscillations at each successive time for the rescaled and enhanced signal is shown.
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Each fluorescence image represents the ensemble of GFP:MinD signal locating at polar zones. The
time(s) labeled on the left side of the column is the first time at which GFP:MinD assembles after
switching to the new pole. The sequence of positions (x,y) at successive times can be used to
determine the trajectory of GFP-MinD in x and y components as shown in Figure 3 (C) and (D),

respectively.

To sum up, with the described technique the protein oscillatory dynamics can be studied.
Though the case study of the protein oscillation under an electric field treatment has not been carried
ort experimentally, with the modification and optimization, it is believed to be accomplished in the
future. It is worth noting that things must be done with special care because of many possible problems
including the noise, frame-shift, and optimal electric field strength. We believe that this particular

research problem will open up very rich areas of future research and investigations in various aspects.

4. A Stochastic Model

Here, we present a simple one-dimensional stochastic model which predicts Min proteins
oscillations in E. coli. Based on our deterministic model at the mean-field level (Modchang et al.,

2005.) , the dynamics of these Min proteins in the presence of an external field, are described by
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where p, and p, are the concentrations of the MinD and the MinE proteins in the cytoplasm,
respectively, and p, and p, are the concentrations of the MinD and the MinE proteins on the

cytoplasmic membrane, respectively. The first equation describes the time rate of change of the
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concentration of MinD (p,) in the cytoplasm. The second is for the change in the MinD
concentration (p, )on the cytoplasmic membrane. The third is for the change of the concentration of
MinE (p;) in the cytoplasm. The last one is for the change in the MinE concentration (p,) on the
cytoplasmic membrane. The constant o, represents the spontaneous association of MinD to the
membrane wall (Rowland ef al., 2000), whereas the constant ¢, describes ejection of MinD from the
cell membrane by membrane-bound MinE. Similarly, the constant o, represents the spontaneous
membrane dissociation of MinE, whereas the constanto; describes the recruitment of cytoplasmic
MinE to the membrane by cytoplasmic MinD (Huang ez al., 1996). The constant o] corresponds to the
membrane-bound MinE suppression of the binding of MinD to the membrane, and o', corresponds to
the cytoplasmic MinD suppression of the release of the membrane-bound MinE. Since the
experimental results given in the work of Raskin and de Boer (1999) show that the MinC dynamics
simply follows that of the MinD protein, so, for the sake of simplicity, consideration of the MinC
dynamics is omitted. In this model , we adopted the dynamic model of compartmentization in the
bacterial cell division process proposed by Howard and Rutenberg (2003) (as schematically

summarized in Figure 4) by adding an extra term that depends on the external electric field.

To investigate how the intrinsic chemical fluctuations in spatially extended systems can give
rise to properties radically different from what would be described by a mean-field model in the Min
systems, we modify our deterministic model to a discrete particle model, where the Min protein
molecule is represented as a particle and may hop between lattices. The number of protein molecules

at site kis n', with i={D,d,E,e} representing cytoplasmic MinD, membrane-bounded MinD,

cytoplasmic MinE, and membrane- bounded MinE, respectively. Here, the dynamics of Min system is
a reaction-diffusion system consisting of two processes. The first one is the diffusion process that
describes diffusion of the Min proteins. At the molecular level the diffusion process often results in a
net flow of chemical species from regions of higher concentration to regions of lower concentration.

The second one is the reaction process that describes self-organization of biological systems.

For the diffusion process, in the absence of external electric field, at each time step A7, these
particles have an equal probability Dl.At/(Ax)2 to hop to one of its neighboring sites with lattice space

Ax and time step Az. When the external electric field is present, the probabilities for a particle to hop
to the left neighboring site or to the right neighboring site are no longer equal, but, in this case, they

become
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p, = DA (0.5+JZA’); p =24 [o.s-ﬂj,
(Ax) 2Ax (Ax) 2Ax

where P, and P, are probabilities for a particle to hop to the left and right neighboring sites,
respectively. J, is an external field parameter. We assume that a chemical substance moving in the
region of an external field will experience a force that is proportional to the external field parameter J, .
In general,J, = 4.E, i={D,d,E,e}, where E is the field strength and x is the ionic mobility of the

chemical substance, which is proportional to the diffusion coefficient and depends on the total amount

of free charges in that substance.

For the reaction processes, at site k¥ the following reactions may occur

Probability:
ny —nl -1, nt—nh+1 PD_>d:o'1At/(1+0'1'nf),
né—)ng+1, nf,—)ng—l Pd%DzazAtnif,

k k k k _ k
ng —ng—1, n, —-n, +1 Py, =0 Atnp,

e E—e

ngﬁn§+l, nf—)nf—l Pe_>E=0'4At/(l+0'2n]’3).
The first (third) reaction indicates that each MinD (MinE) molecule at site & in the cytoplasm may
bind to the cell membrane with equal probability P, , (P;_,)and the second (fourth) reaction
indicates that each membrane-bound MinD (MinE) molecule at sitt & may be released to the
cytoplasm with equal probability P, ,,, (P, ;). These reactions are stochastic analogs of the reaction
processes in our deterministic model (Modchang et al., 2005. ). Since the protein synthesis can be
blocked without affecting the protein oscillation (Raskin and de Boer, 1999), we do not include the

protein synthesis or degradation in our model. We also assume that the total amount of MinD and

MinE is conserved.
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5. Simulations, conditions, and parameters

In our simulation, we use lattice spaces Ax = 0.02 um and time steps Ar =2x10"s. The length
of the E. coli is taken to be2 um, there are 100 lattice sites covering the bacterium cell. We use
D, =0.28um’s", D,=0.003um’s", D, =0.6 um’s",D, =0.006 um’s",0,=20s" and o, =0.8s"
(Howard and Rutenberg, 2003; Howard et al., 2001). To see how the effects of an external electric
field on the oscillatory behaviors of Min proteins may change when the number of Min protein is
changed, four representative parameter sets shown in Table 1 are used, where N is the total number of
MinD which is equal to the total number of MinE. We use equal numbers of Min proteins because

“wild type” oscillations are observed when both proteins are equally expressed on plasmids (Shih et

al., 2002.).

To preserve the strength of the interaction between Min proteins when the total number of Min
proteins is changed, the four parameters o7, o,, 0, and o, are scaled as in Table 1. (Howard and

Rutenberg, 2003).

Table 1. Scaled parameters used in the simulations

N ol o,(s™) o3(s™) A
200 25.0 0.27 30.0 20.0
400 2.0 0.135 15.0 10.0
800 0.6 0.0675 7.5 5.0

1500 0.25 0.036 4.0 2.7

Since there are no experimental values of x4 for either MinD and MinE, we assume that they have the
same type of free charges and define a new parameter J such that

D.J
J =ufE="E ,
B )

7

where | = {D, d,E ,e} . Initially, we assume that MinD and MinE are mainly at the opposite ends of the

cell. The hard wall boundary conditions are imposed at both ends of the bacterium.
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6. Results and discussions

Figure 5 shows space-time plots of the total (nf) +n§) MinD (above) and total (ng +n )

MinE (below) concentration for J =0.0 m/s to J=0.3 m/s and (a) N =400, (b) N=1500. Clearly, in
the absence of the field J=0.0 m/s, the MinD and MinE are in good agreement with the
experimental results. Namely, the MinE are more localized at midcell which then sweeps toward a cell
pole, displacing the MinD to localize at the poles. Once the MinE cluster reaches the cell pole it
disappears in the cytoplasm, only to reform at midcell where the process repeats, but in the other half
of the cell. This process is repeated forever resulting in the Min proteins oscillations. When the
external electric field is turned on J # 0, the oscillation patterns are no longer symmetric about the
mid-cell. This is mainly because Min proteins themselves are charged macromolecules (MinD,
molecular weight = 29,936.61D and charge: 4.5¢; MinE, molecular weight = 10,416.08 D and charge:
0.5e. See www.eolproject.org:8080/). Hence, when protein molecules are in the electric field, they will
be pushed in the direction of the fields (or opposite to the field direction, depending on its charges). In
our simulation, we assume that MinD and MinE have the same type of charges which are consistent
with the above data. As the external field parameter J increases from 0.0 m/s to 0.3 m/s, the period of
the oscillation of both MinD and MinE increases from 100 s to 150 s. The periods measured from our
systems are in good agreement with experiments, with periods from 30-120 s in the absence of the
field. With respect to fluctuation driven instability, it is also found that in the case of a low N the
stochastic fluctuated data could be very far off from the average behavior or those results obtained
from the deterministic model. The noise involved has shifted the correct trend of Min proteins
behavior. However, as a consequence of the robustness of the dynamics, the oscillatory pattern of the

proteins still exists even though the number of min proteins is relatively low.

In Figure 6, the relative MinD and MinE concentrations as functions of x for J = 0.3 m/s with
N=400and N= 1500 are shown. From their average lines, the minima of MinD and maxima of MinE
are significantly shifted from the midcell (x =1). It is also indicated by both Figures 1 and 2 that,
although both MinD and MinE are pushed in the same direction by the electric field, they tend to be
more concentrated at the opposite ends when J is increased. A possible explanation is that this
phenomenon arises because, in nature, MinD and MinE tend to repel each other, so that in the absence
of an electric field, the location of the minimum of MinD is the location of the maximum of MinE.
Moreover, although there is an electric force to push them in the same direction, this force cannot
overcome the repelling forces between them. The fluctuations around the solid lines can be very large

when N is small.
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Figure 7 shows the relative concentration profiles of MinD (above) and MinE (below) as
functions of position x along the bacterium length under the influence of an electric field with J = 0.3
m/s, at various total numbers of Min proteins. It indicateds that the position of the global minimum of
MinD and a position of the global maximum of MinE do not change as the total number of Min
proteins is changed. This implies that only J controls these global extremum positions. Moreover, the
values of the global minimum relative concentrations of MinD protein appears to be lowered as N
increases, while the global maximum of MinE protein concentration is higher. These demonstrate the
significance of using fewer protein copies that could result in not only the degradation of the accuracy
of the extremum, but also the central features. Of course the correlation between these minimum and
maximum is constrained by the conservative law of the total number of the both Min protein copies,
but fluctuation sets bounds on the concentration levels. These effects can also be discussed in the
context of nucleoid occlusion (Yu, 1999) as follows. In the absence of the field, MinCDE system
normally tends to prevent polar FtsZ rings, because the nucleoids will inhibit FtsZ rings elsewhere
away from midcell. Considering the correlations between the local and global minimum (maximum) of
MinD (MinE), it suggests that using high enough Min protein concentration would reduce the local
minimum (maximum) effect, which is related to the probability of polar division in each single
oscillator cycle. This leads us to believe that too low a concentration of Min proteins can result in an
unacceptable probability of polar division. This may suggest that E. coli may be using the optimal
number of Min proteins, trading off midpoint precision against the cost of protein synthesis [Howard
2003 PRL]. This activity of E. coli is believed to be even more subtle when the situation is more

complicated including the presence of the electric field. .

Figure 8 shows relative concentrations of MinD (above) and MinE (below) as functions of
position x along the bacterium length under the influence of an electric field for N = 1500. It is seen
that, in the case of no external field (J/ = 0.0 m/s), the relative concentrations of MinD and MinE are
symmetric about the midcell. MinD has a minimum at the midcell, whereas MinE has a maximum,
which is in good agreement with that which was reported in a previous studies [ Howard 2003]. When
the external electric field is turned on, a shift in the minimum of MinD and maximum of MinE were
once again observed to be J dependent. Both the positions of MinD concentration minimum and
MinE concentration maximum are more pronouncedly shifted toward the left pole as J increases. It is
noted that the minimum of MinD and the maximum of MinE are always shifted to the left pole. This

difference arises because of the relative magnitudes of the forces acting on the two proteins. First of
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all, there is an internal force between the MinD and the MinE proteins. This force causes MinE to
repel MinD. In the absence of any other forces, this explains why the location of the maximum of
MinE is the location of the minimum of MinD. When an external field is applied (as expressed by a
non-zero value of J), then one must take into account the relative magnitudes of the two forces. These
results are consistent, at least qualitatively, with those obtained with a deterministic partial differential

model proposed by Modchang et al.(2005).

In Figure 9 (a) and (b), we show the concentrations of the MinD and the MinE proteins at the
left end grid and the right end grid versus time. In these figures, it is easy to see that when J = 0.0 m/s,
the concentrations of MinD (or MinE) at the left end grid and the right end grid have the same patterns
of oscillation with the same frequencies and amplitudes, but with a phase difference of 180°. When an
external field is applied, the amplitudes of the oscillations at the two end grids are no longer equal. As
J is increased, the amplitude of the oscillation at the left end grid of MinD is seen to decrease while

those of the MinE increase.

6. Concluding remarks

We have used a stochastic model to study the effects of an external electric field and noise on
the E. coli MinCDE system. Proper divisions of bacteria require accurate definition of the division
site. This accurate identification of the division site is determined by the rapid pole-to-pole
oscillations of MinCDE. The stochastic approach is motivated by previous studies of how the intrinsic
chemical fluctuations in spatially extended systems can give rise to properties that are radically
different from what would be described by a mean-field model. The model itself has been modified

from that of Howard and Rutenberg (2003) together with that of Modchang et al.(2005).

We found that a strong enough external electric field can shift the MinD concentration
minimum and MinE concentration maximum position from the mid-cell. Shifting from the mid-cell
appears to depend on the strength of the electric field. We have also found evidence that the effects of
an electric field may not depend on the total number of Min proteins in E. coli. The results from the
use of this stochastic model are, at least qualitatively, consistent with that obtained by using our

deterministic model (Modchang et al., 2005). With respect to the fluctuation driven instability, it was
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also found that in the case of low N the stochastically fluctuated data could be very far off from the
average behavior or those results from the use of a deterministic model. The noise involved has
shifted the correct trend of Min proteins behavior. However, as a consequence of the robustness of the
dynamics, the oscillatory pattern of the proteins still exists even though the number of Min proteins is
relatively low. However, considering the correlations between the local and global minimum
(maximum) of MinD (MinE), our result suggests that using high enough Min protein concentration
would reduce the local minimum (maximum) effect, which is related to the probability of polar
division in each single oscillator cycle. This leads us to believe that too low a concentration of Min

proteins can result in an unacceptable probability of polar division.

Though the studied model is simple and neglects some complex mechanisms concerning
protein oscillation in correlation with cell division, it was demonstrated to be good enough for
positioning the dividing site. Therefore, with regards to this problem, more experimental and
theoretical works are needed. More realistic model (which would of course be more complicated),

either deterministic or stochastic, needs to be developed.

Lastly, it is to be mentioned that this study may be of significant importance in the development of
new technological processes in the fields of agriculture, food and medicine. Moreover, with the correct
link to other compartments like signal transduction or even at the level of system biology, we believe it

will contribute greatly to the health and wellbeing of mankind of our communities.
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Figure 1. Dielectric like E. coli cell in a uniform field E, showing the polarization on the left

and the polarization charge with its associated, opposing, electric field on the right.
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Figure 2: Fluorescence image analysis procedure.
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Fig3: The GFP:MinD oscillations from pole to pole with the approximately 45 seconds of period. (A)
The differential interference contrast (DIC) images showing cell length ~4 gm. (B) The 2D image
sequence of pole-to-pole MinD oscillations at each successive time. Each fluorescence image
represents the ensemble of GFP:MinD signal locating at polar zones. The time(s) labeled on the left
side of column is the first time of GFP:MinD assembles after switching to new pole. (C) The results of
SPT show the GFP signal time evolution trajectory of MinD oscillations on the x(#). The red line
represents the ensemble of GFP:MinD trajectory. (D) Spot projection on y(f) GFP signal time
evolution trajectory of MinD oscillations.
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Figure 4. Schematic diagram of the MinCDE dynamics.
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Figure 5. Space-time plots of the total (rj, +n ) MinD (above) and total (nf +n!) MinE

(below) concentrations for J =0.0 m/s to J =0.3 m/s where (a) N= 400 and (b) N = 1500. The color
scale, running from blue to red, denotes an increase in the total numbers of Min proteins from the
lowest to the highest. The vertical scale spans time for 500 s. The time increases from top to bottom.
The horizontal scale spans the bacterial length 2 ym. Note the increase in the MinD concentration at

the right pole and MinE concentration at the left pole.
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Figure 6. (a), (b) relative MinD concentrations and (c), (d) relative MinE concenftrations as
functions of x for /= 0.3 m/s. In (a), (c) N =400 and (b), (d) N = 1500. Solid lines show averages over
15 successive cycles. Markers in the figures represent Min protein concentrations of four individual

oscillation cycles.
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Figure 7. Relative concentrations of MinD (above) and MinE (below) as functions of position

x along the bacterium length under the influence of an electric field with J = 0.3 m/s. The curves show

that varying the total number of Min proteins does not change the MinD global minimum and MinE

global maximum position.
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Figure 8. Relative concentrations of MinD (above) and MinE (below) as functions of position x along
the bacterium length under the influence of an electric field for N= 1500. The curve shows a shift,
which depends on the strength of the field, in the local minima of the MinD and the local maxima of

the MinE from the mid-cell



