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Abstract

The temperature dependence of the upper critical fields, both perpendicular Hc2? and parallel Hc2k to layer planes of ferromagnet/
superconductor bi- and multilayers, is theoretically investigated. The secular equation of the superconducting order parameter for deter-
mining the phase diagram (H,T) is obtained by solving exactly the linearized Usadel equations in the multimode method taking into
account the material parameter values. For the bilayers system, the influence of the boundary resistivity on the critical fields, and the
dimensional crossover behavior of Hc2k(T) are studied in details. For the multilayered structure, the effects of the p-phase state on both
the superconducting transition temperature Tc and the upper critical fields (Hc2?, and Hc2k) are also considered. The nonmonotonic Tc

behaviors are predicted. The interplay between 0- and p-phases leading to the strong oscillations of Tc as well as the temperature depen-
dence of the zero temperature critical fields on the ferromagnetic layer thickness are investigated theoretically.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, extensive studies of artificially layered
structures, consisting of superconductor (S) and ferromagnet
(F), have attracted much attention [1–17]. The competition
between ferromagnetism and superconductivity is feasible
through the proximity effect. The one interesting feature
is nonmonotonic critical temperature Tc with increasing
the F layer thickness (df) while the S thickness (ds) is kept
fixed. The another remarkable feature is the temperature
dependence of upper critical fields Hc2 whose the dimen-
sionality specifies the superconducting layers are either
coupled (3D) or decoupled (2D). The occurrence of a 3D
to 2D crossover in Hc2k near Tc may indicate the coupling
phenomena via the proximity effect.

The evidences of the nonmonotonic Tc were reported on
S/F bilayers (Nb/Fe [19], Nb/CuNi [20]), F/S/F trilayers

(Fe/Nb/Fe [21,22], Fe/Pb/Fe [23], CuNi/Nb/CuNi [13,25],
Fe/V/Fe [24]), and S/F mutilayers (Nb/Gd [26], Nb/FeCu
[27], Nb/Co and V/Co [28], Nb/CuMn [29]), but some stud-
ies showed the contradicting results [30–33]. Attempts to
explain these discrepancies have been made. Strunk et al.
[31] proposed that the obtained Tc(df) behavior is due to
the transition from a paramagnetic to a ferromagnetic state
in magnetic films. Mühge et al. [21] interpreted the nonmon-
otonic Tc(df) dependence occurs due to the existence of
magnetically dead layers near the interface. Jiang et al.
[26,34] suggested that the pronounced oscillatory Tc(df)
dependence is the evidence of the p coupling in S/F
multilayers which had been predicted theoretically by
Radović et al. [35]. Aarts et al. [36] presented an experimen-
tal evidence of the interface transparency using the
Kupriyanov–Lukichev boundary conditions [37] in the
dirty limit at the S/F interface. Fominov et al. [11,12]
argued that the nonmonotonic Tc(df) is caused by the inter-
face transparency even in the weak ferromagnet. From the
experimental facts, the onset of ferromagnetism marks the
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onset of the nonmonotonic Tc(df) curve on the length scale
of the magnetic stiffness length nI = vF/I, where vF is the
Fermi velocity and I the exchange splitting of conduction
band. For df < nI, the magnetic layer becomes a paramagnet
and then this is called the intermixed layer. The influence
of alloying on an oscillation of Tc has been investigated
theoretically by Vodopyanov et al. [10]. Upon the onset of
ferromagnetism (df P nI) there exist two long-range orders,
the first one is the Cooper pairs with opposite spins and
the second one is the exchange field which tries to align
the electron spins and suppresses superconductivity. How-
ever, the situation changes if the spin-singlet pairs
acquire an admixture of spin-triplet part. The spin-triplet
pair is generated due to the interplay between the spin-
singlet superconductivity and the magnetization in F
[14–17] and is the so called odd triplet superconductivity
[18].

Another crucial parameter needed to elucidate the cou-
pling phenomenon of the magnetic layer is the upper critical
fieldHc2 which gives the information on the coherence length
and the dimensionality, becauseHc2 plays an important role
of the pair-breaking effect. Close to Tc, the temperature
dependence of the parallel upper critical field of a single S
film shows a square-root like behavior, H c2k /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=T c

p
,

(2D) whereas for the perpendicular field, Hc2? / 1 � T/Tc

which is the 3D behavior. Nevertheless,Hc2k of a contacted
S/F films revealed 3D behavior due to the strength I and the
range df of the pair breaking in F layers. The manifestation
of Hc2k is a 2D–3D crossover at the temperature T*

(T* < Tc). ForT* 6 T 6 Tc, deviations from the square-root
like behavior were observed [30–32,38–42] which indicated
the typical of 3D nature or the coupled regime. Below the
crossover temperature T* (T < T*), the Hc2k still exhibits a
2D behavior then within this temperature range the system
is in the decoupled regime.

On theoretical considerations, a proximity theory of
upper critical fields based on de-Gennes’s correlation func-
tion method [43] was formulated by Takahashi and Tachiki
[44] for the S/N superlattices (N is normal metal). A numer-
ical studies on S/F superlattices have been performed by
Kuboya and Takanaka [45]. This theory explained how Tc

and Hc2 are related to the pairing potential, the density of
states at Fermi surface, the diffusion coefficient, and the
exchange field of F layers. Later on, another S/F proximity
effect study came from Radović et al. [35,46–48] who
applied Usadel’s equations [49] to evaluate Tc and Hc2 ana-
lytically. Of course, in their model, the strong ferromagnet
exchange field I (�Tcs, where Tcs is the bulk transition tem-
perature in the absence of an external field), is solely consid-
ered and this implies that the effect of an orbital magnetic
field in F layers can be neglected completely and as a result
the propagating momentum is approximated to be fre-
quency independent. In the works of Refs. [35,48] Tc and
Hc2? of S/F superlattices were solved exactly with the pre-
dictions that an oscillatory dependence of Tc and Hc2? on
the F-layer thickness have been attributed to the p-phase
difference between neighboring S layers. However, in the

case of the parallel magnetic fieldHc2k, they considered only
the S layer embedded in F metal [47].

In this paper, we present the theoretical results of the
temperature dependence of Hc2? and Hc2k for F/S bilayers
and superlattices based on the exact multimode linearized
Usadel’s equations taking into account the finite value of
the interface transparency boundaries and the finite thick-
ness of the layers and also the arbitrary strength of an
exchange field I which is not merely restricted to the strong
value. In Section 2, the formulation for the linearized Usa-
del’s equations near the transition point with the gauge
choices, and the proper set of boundary conditions are pre-
sented. In Section 3 we give the detail calculations of the
upper critical fields (Hc2?, Hc2k) for the F/S bilayers and
show the reductions of the secular equations in the sin-
gle-mode approximation. In Section 4 we give the results
for the F/S superlattices and pay attentions to the effect
of p-phase shift on the critical fields. Our results recover
the S/N case (when we take I = 0) of the previous works
[44]. Finally, conclusions are presented in Section 5.

2. Formulation

We begin with the linearized integral equation for the
superconducting order parameter, D(r), [44]

DðrÞ ¼ pTNðrÞV ðrÞ
X
x

Z
dr0Kxðr; r0ÞDðr0Þ; ð1Þ

where x = (2n + 1)pT, with an integer n, the kernel
Kx(r, r

0) satisfies the Usadel equation

� 1

2
DðrÞP2 þ ðjxj þ iIðrÞsgnxÞ

� �
Kxðr; r0Þ ¼ dðr� r0Þ; ð2Þ

and the parameters N(r), V(r), D(r), and I(r) are all position
dependent which represent the electronic density of states,
the pairing interaction, the diffusion coefficient, and the ex-
change field, respectively. The gauge-invariant operator
P = $ � (2pi//0)A is expressed in terms of a fluxoid /0

and a magnetic vector potential A. The anomalous Usadel
function F(r,x) is simply an integral equation of the kernel
Kx(r, r

0);

F ðr;xÞ ¼
Z

d3r0Kxðr; r0ÞDðr0Þ. ð3Þ

The layered structures under our consideration consist of
superconductor- and ferromagnet-films located in the y–z
plane so the proximity effect will be taken along the x-axis.
Within the well-known relation H = $ · A for a uniform
applied magnetic field we may choose A = (0,0,Hy) for
the magnetic field perpendicular to the layer plane
H ¼ Hx̂ and so the gauge-invariant gradient reads as

P? ¼ o
ox

;
o
oy

;
o
oz

� 2piHy
/0

� �
.

In the case of parallel magnetic field H ¼ Hẑ, the gauge
choice A = (0,Hx, 0) implies
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Pk ¼ o
ox

;
o
oy

� 2piHx
/0

;
o
oz

� �
.

In the Radović’s fashion [48], the parameters in each layer
are treated separately. The exchange potential exists only in
F layers whereas the pairing interaction and the order
parameter are set equal to zero because the exchange field
quenches the superconductivity. The Usadel equations are

ðP2 � k2f ÞF fðr;xÞ ¼ 0 ð4Þ
for F, and

ðP2 � k2s ÞF sðr;xÞ ¼ � 1

pT csn
2
s

DðrÞ; ð5Þ

DðrÞ ¼ pTk
X
x

F ðr;xÞ ð6Þ

for S. Therefore

kf ¼ 1

nf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj þ iIsgnx

pT cs

s
; ks ¼ 1

ns

ffiffiffiffiffiffiffiffiffi
jxj
pT cs

s
ð7Þ

are the propagating momenta in each layer, nsðfÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DsðfÞ=2pT cs

p
is the coherence length and k the dimension-

less BCS coupling constant. The pair amplitudes Fs and Ff

are related through the boundary conditions at F/S inter-
faces [37]

nsrF s ¼ cnfrF f ; ð8Þ
F s ¼ F f � cbnfnf � rF f ð9Þ

with c = qsns/qfnf,cb = 2Df/vfTfnf. The parameters qs and qf
stand for the resistivity of each metal, usually qf > qs or
c < 1, this means that the pairing induced in F is weak.
cb is called the boundary resistivity since it represents a
jump of Cooper pairs at interfaces where nf is the unit vec-
tor outward normal to the interface, vf is the Fermi velocity
inside F and Tf the interface transparency parameter,
Tf 2 [0,1]. The limit T = 1 (cb = 0) corresponds to a per-
fectly transparency interface.

The structures of F/S proximity systems in the bilayer
case consist of F and S layers occupy the regions
�df 6 x 6 0 and 0 6 x 6 ds, respectively. At the outer sur-
faces (x < �df for F and x > ds for S) Ff and Fs satisfy the
conditions of no pairing current pass through vacuum

d

dx
F f jx¼�df

¼ 0;
d

dx
F sjx¼ds

¼ 0; ð10Þ

the F/S bilayer structure can be considered as a unit cell
with length ds + df so a superlattice is created from an infi-
nite stack of F/S bilayers. Instead of (10), the function Fs,f

is subject to the Bloch condition due to the periodicity of
the superlattice [35,48]

F ðxþ ds þ d fÞ ¼ eiuF ðxÞ; ð11Þ
where u is the phase shift between adjacent layers. The sta-
ble ground state corresponds to u = 0, however, the candi-
date state, u = p, is energetically favorable.

3. F/S bilayers

To determine the upper critical fields Hc2 or the super-
conducting transition temperature Tc, the main task is to
find Fs and D self-consistent. Since the Usadel equation
for Ff can be solved directly and so the boundary condi-
tions reduce to the prescribed values of Fs at the edges of
the S layer. The boundary conditions for the F/S bilayer,
from (8) and (9), are

ns
d

dx
F sð0Þ ¼ cnf

d

dx
F fð0Þ; ð12Þ

F sð0Þ ¼ F fð0Þ þ cbnf
d

dx
F fð0Þ; ð13Þ

together with (10). In the following, the orientation of mag-
netic field, either perpendicular or parallel, will be consid-
ered separately.

3.1. Perpendicular upper critical field Hc2?

According to Radović’s method [48] the pair amplitudes
Fs and Ff are assumed to be of the form

F s;fðr;xÞ ¼ f ðy; zÞgs;fðx;xÞ; ð14Þ
where f(y,z) is finite in the entire film plane and x indepen-
dent. The lowest state of f(y,z) provides the perpendicular
upper critical field Hc2?;

2p
/0

H c2? ¼ p2f � k2f ; ð15Þ

here pf is the constant of separation and satisfies

d2

dx2
gfðx;xÞ ¼ p2f gfðx;xÞ. ð16Þ

Thus for Ff, using (14)–(16) and (4) (with P?) becomes

d2

dx2
F fðx;xÞ � p2f F fðx;xÞ ¼ 0. ð17Þ

The solution of (17) subject to the outer boundary condi-
tion at x = �df, (10), is given by

F fðx;xÞ ¼ C coshðpf ½xþ d f �Þ. ð18Þ
For S, applying (14) and (15) to (5), the result is

d2

dx2
F sðx;xÞ � k2s?F sðx;xÞ ¼ � 1

pT csn
2
s

DðxÞ; ð19Þ

where ks? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þ ð2p=/0ÞH c2?

q
. Now making use (18),

the boundary conditions (12) and (13) can be written as

ns
d

dx
F sð0Þ ¼ W ?ðxÞF sð0Þ ð20Þ

with

W ?ðxÞ ¼ c

cb þ 1
pfnf

cothðpfd fÞ .
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To solve (19) exactly we employ (2) in the form

d2

dx2
� k2s?

� �
Kxðx; x0Þ ¼ � 1

pT csn
2
s

dðx� x0Þ ð21Þ

with the same boundary conditions as Fs, namely

ns
d

dx
Kxð0; x0Þ ¼ W ?ðxÞ; d

dx
Kxðds; x0Þ ¼ 0. ð22Þ

By virtue of the Fourier method

Kxðx; x0Þ ¼
X1

m¼�1
Kxðqm; x0Þ cosðqmxÞ; ð23Þ

Kxðqm; x0Þ ¼
1

ds

Z ds

0

dxKxðx; x0Þ cosðqmxÞ ð24Þ

with the eigenmode qm = mp/ds, (21) can be transformed
which leads to the result

Kxðqm; x0Þ ¼
cosðqmx0Þ

dspT csn
2
s ðk2s? þ q2mÞ

� X?ðxÞ
dspT cs

X1
l¼�1

cosðqlx0Þ
n4s ðk2s? þ q2mÞðk2s? þ q2l Þ

; ð25Þ

where

X?ðxÞ ¼ W ?ðxÞ
ðds=nsÞ 1þ W ?ðxÞ

ks?ns
cothðks?dsÞ

� � . ð26Þ

Consequently, the self-consistency equation (6) becomes

DðqmÞ ¼ kpT
X1

m0¼�1

X
x

Dðqm0 Þ
Z ds

0

dx0Kxðqm; x0Þ cosðqm0x0Þ.

ð27Þ
Using (25) we obtain the secular equation for (27) as
follows:

det jdmm0 � k
T
T cs

X
x

Lbi
mm0?ðxÞj ¼ 0; ð28Þ

where

Lbi
mm0?ðxÞ ¼

dmm0

n2s ðk2s? þ q2mÞ
� X?ðxÞ
n4s ðk2s? þ q2mÞðk2s? þ q2m0 Þ

. ð29Þ

The perpendicular upper critical field Hc2?(T) corresponds
to the largest temperature for a fixed magnetic field which
is a solution of (28).

We will show that (28) and (29) reduce to the Abriko-
sov–Gorkov like-formula [50] in the single-mode approxi-
mation (SMA). It is sufficient to take only the (0,0)
element of Lmm0 with the assumptions that (i) the S layer
thickness is very thin ds/ns � 1, and (ii) the exchange field
inside the F layer is so strong I/pTcs � 1, or kfnf �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iI=pT cs

p
. As a result, we obtain

ln t ¼ w
1

2

� �
�Rew

1

2
þ .
2t

� �
; ð30Þ

where t = T/Tcs is the reduced temperature, w(x) is the
digamma function, and the complex pair-breaking
parameter

.ðtÞ ¼ .biðtcÞ þ hc2?ðtÞ; ð31Þ
containing the contributions from the strong ferromagnetic
exchange field through

.biðtcÞ ¼ W
ðds=nsÞ

¼ cðns=dsÞ
cb þ cothðkfd fÞ=kfnf

; ð32Þ

and the (dimensionless) orbital field effect hc2? ¼
ð2p=/0ÞH c2?n

2
s .

It should be noted that the function W is obtained from
W?(x) by taking kf to be x-independent and neglecting the
orbital magnetic field in F.

At t = tc, hc2?(tc) = 0, and (30) reduces to the equation of
the variation of the superconducting critical temperature tc
on the material parameters such that the layer thicknesses is
either ds/ns in S, or df/nf in F, and the boundary resistivity
cb. The F/S structure coincides with the F/S/F triple layers
when the relation d tri

s ¼ 2dbi
s is used. An investigation of Tc

behavior has already been reported in Ref. [51].

3.2. Parallel upper critical field Hc2k

In this case we try the pair amplitude Fs,f(r,x) in the
form

F s;fðr;xÞ ¼ exp i
2pHx0
/0

y
� �

F s;fðx;xÞ; ð33Þ

here x0 denotes a free parameter which indicates the posi-
tion of the center of superconducting nucleus. As usual
by applying (33) to (4)–(6) with the replacement P ! Pk,
the Usadel equations read

d2

dx2
F fðx;xÞ � k2f þ

2pH
/0

� �2

ðx� x0Þ2
" #

F fðx;xÞ ¼ 0; ð34Þ

in F (�df 6 x 6 0), and

d2

dx2
F sðx;xÞ � k2s þ

2pH
/0

� �2

ðx� x0Þ2
" #

F sðx;xÞ ¼ � DðxÞ
pT csn

2
s

;

ð35Þ
DðxÞ ¼ kpT

X
x

F sðx;xÞ; ð36Þ

in S (0 6 x 6 ds). The general solution of (34) is expressed
in terms of the confluent hypergeometric functions
U(a,b;z) [52] as

F fðx;xÞ ¼ C1u1ðxÞ þ C2u2ðxÞ ð37Þ

with

u1ðxÞ ¼ exp �pH
/0

ðx� x0Þ2
� �

U
1

4
þ/0k

2
f

8pH
;
1

2
;
2pH
/0

ðx� x0Þ2
� �

;
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and

u2ðxÞ¼
ffiffiffiffiffiffiffiffiffi
2pH
/0

s
ðx� x0Þ

� exp �pH
/0

ðx� x0Þ2
� �

U
3

4
þ/0k

2
f

8pH
;
3

2
;
2pH
/0

ðx� x0Þ2
� �

.

Eliminating the constants C1 and C2, with denoting
u01;2 ¼ nfdu1;2=dx, to obtain the boundary conditions for Fs

d

dx
F sðdsÞ ¼ 0; ns

d

dx
F sð0Þ ¼ W kðxÞF sð0Þ; ð38Þ

W kðxÞ ¼ c
cb þ BkðxÞ ;

BkðxÞ ¼ u1ð0Þu02ð�d fÞ � u2ð0Þu01ð�d fÞ
u01ð0Þu02ð�d fÞ � u02ð0Þu01ð�d fÞ . ð39Þ

Repeating the same arguments that have been discussed in
the previous subsection, we obtain the secular equation for
determining the parallel upper critical field Hc2k(T) as a
function of temperature

det dmm0 � k
T
T cs

X
x

Lbi
mm0kðxÞ

					
					 ¼ 0. ð40Þ

Therefore the matrix element

Lbi
mm0kðxÞ ¼

dmm0

n2s ðk2sk þ q2mÞ
� XkðxÞ
n4s ðk2sk þ q2mÞðk2sk þ q2m0 Þ

þ 2XkðxÞh2c2k
n2s ðk2sk þ q2mÞ

�
X1
l¼�1

x0
ds

vþl þ 1� x0
ds

� �
ð�1Þlv�l

� �
Lbi
lm0k

� 2h2c2k
n2s ðk2sk þ q2mÞ

�
X
l 6¼m

x0
ds

þ 1� x0
ds

� �
ð�1Þmþl

� �
Lbi
lm0k

n2s ðqm � qlÞ2

ð41Þ
has the self-consistency manner due to the parallel orienta-
tion of magnetic field causes the electron eigenstates cou-
pling to each others. Here

XkðxÞ ¼ W kðxÞ
ðds=nsÞ 1þ W kðxÞ

kskns
cothðkskdsÞ

� � ; ð42Þ

v	l ¼
X1

m 6¼l;m¼�1

ð	1Þm
n4s ðqm � qlÞ2ðk2sk þ q2mÞ

; ð43Þ

and

k2sk ¼ k2s þ
hc2kds

n2s

 !2
1

3
� x0
ds

þ x0
ds

� �2
 !

; ð44Þ

where hc2k ¼ 2pHn2s=/0 is the dimensionless parallel mag-
netic field.

In the SMA scheme, the pair-breaking parameter,
including the orbital field effect reads as

.ðtÞ ¼ .biðtcÞ þ h2c2k
ds

ns

� �2
1

3
� x0
ds

þ x0
ds

� �2
" #

; ð45Þ

where .bi(tc) is given by (32), in deriving this expression an
asymptotic behavior of u1,2(x) function has been used i.e.,
u1,2(x) = exp(±kfx). It can be seen that the vortex nucle-
ation is also accounted in the pair-breaking parameter
which is the generalization of Ref. [46].

We may reproduce the work of Radović et al. [46] by
considering the F/S/F system and using the relation
dbi
s ¼ d tri

s =2, the explicit form of .tri(t) is

.triðtÞ ¼ 2cðns=d tri
s Þ

cb þ cothðkfd fÞ=kfnf

þ h2c2k
d tri
s

2ns

� �2
1

3
� 2x0

d tri
s

þ 2x0
d tri
s

 !2
24 35. ð46Þ

By taking: (1) no boundary resistivity cb = 0, (2) a thin S
film embedded in a ferromagnet kfdf � 1, and (3) no vorti-
ces appear in the decoupled S layer so the superconductiv-
ity nucleation starting in the middle of the film x0 = 0, thus
.tri(t) becomes

.triðtÞ ¼ 2cðkfnfÞ
d tri
s =ns

þ 1

12
h2c2k

d tri
s

ns

� �2

; ð47Þ

which is identical to Radović et al.’s result. Also, for the
case of thin S film in vacuum, c = 0, and Tcs = Tc, (30)
and (47) imply the laminar nucleation field near the critical
temperature Tc, H c2k ¼

ffiffiffi
3

p
/0=pdsnGLðT Þ, where nGL

(T) = (p/2)ns(1 � T/Tc)
�1/2, is the Ginzburg–Landau

coherence length [53].
We perform the numerical calculations of hc2? and hc2k

vs. t by varying the boundary resistivity cb (Figs. 1–3) and
the position of superconducting nucleus x0 (Figs. 4 and 5).
Here the orbital field effect in F is neglected and the vortex
nucleation is confined in S (0 6 x0/ds 6 1). We limit ourself
to the case of weak ferromagnet (I/pTcs = 10) and weak
proximity effect (c = 0.2). In Figs. 1–3, we take ds/ns = 3
and df/nf = 2 (Figs. 1 and 2), and 0.5 (Fig. 3).

The perpendicular upper critical field hc2? shows the lin-
ear temperature dependence near Tc for any cb. For the par-
allel upper critical fields hc2k, we find x0/ds = 0.55 gives the
maximum of hc2k at all temperature ranges and the square-
root temperature dependence of hc2k in the vicinity of Tc is
illustrated in Figs. 2 and 3 for different values of cb. The com-
parison shows that the 2D behavior is not caused by the size
of the F layer (thick or thin). Therefore we can see that the
critical fields, in both directions, increase as cb increases,
and the F layer thicknesses become important only for small
cb. In Figs. 4 and 5 the thicknesses of the S layer are taken as
ds/ns = 1.5, and 4.0, and vary a parameter x0/ds in each
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curve. It is clear that when ds/ns = 4, all curves in Fig. 5 exhi-
bit a 2D behavior, this means that hc2k is in the decoupled
regime and so the Cooper pairs in the S layer do not pene-
trate through the F layer. In the case of the thinner S layer
(Fig. 4), a 3D-like feature is seen around the mid-film, even
for weak ferromagnets. The linearity diminishes as the cen-
ter of superconducting nuclei shifts away from the middle
point. As a result, the dimensional crossover from 3D to
2D reaches to Tc. On the other hand, a 2D behavior is still
kept when superconducting nuclei are formed near the film
boundaries with the lower critical fields.

4. F/S superlattices

As already mentioned in Section 2 that the superlattice
consists of a repeated structure of bilayers. This means

Fig. 2. Reduced parallel upper critical field hc2k vs. reduced temperature t
with varying cb. x0/ds = 0.55, and other parameters are the same as in
Fig. 1.

Fig. 3. Reduced parallel upper critical field hc2k vs. reduced temperature t
for different values of cb. df/nf = 0.5. The values of other parameters are
the same as in Fig. 2.

Fig. 4. Reduced parallel upper critical field hc2k as a function of reduced
temperature t for several values of x0/ds. ds/ns = 1.5, df/nf = 2, c = 0.2,
cb = 0.1, and I/pTcs = 10.

Fig. 5. Reduced parallel upper critical field hc2k as a function of reduced
temperature t for several values of x0/ds. ds/ns = 4. The values of other
parameters are the same as in Fig. 4.

Fig. 1. Reduced perpendicular upper critical field hc2? as a function of
reduced temperature t for several values of cb. I/pTcs = 10, ds/ns = 3,
df/nf = 2, and c = 0.2.
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the set of Usadel’s equations and their procedures that lead
to the secular equation can be applied directly except only
the boundary conditions must be changed. We can write
down two pairs of boundary conditions by means of (8),
(9) and (11) as

F sð0Þ ¼ e�iu F fðds þ d fÞ þ cbnf
d

dx
F fðds þ d fÞ

� �
;

F sðdsÞ ¼ F fðdsÞ � cbnf
d

dx
F fðdsÞ;

ð48Þ

and

ns
d

dx
F sð0Þ ¼ e�iucnf

d

dx
F fðds þ d fÞ ;

ns
d

dx
F sðdsÞ ¼ cnf

d

dx
F fðdsÞ.

ð49Þ

We use (48) to evaluate the constant coefficients of the gen-
eral solution of Ff in terms of Fs and utilize them with (49)
to obtain the boundary conditions for Fs at x = 0 and ds.
As a result, the desired formulas are given by

ns
d

dx
F sð0Þ ¼ c½PF sð0Þ þ e�iuQF sðdsÞ�;

ns
d

dx
F sðdsÞ ¼ c½eiuRF sð0Þ þ SF sðdsÞ�;

ð50Þ

where the functions P, Q, R, and S will be shown explicitly
later. The secular equations still have the forms like (28) or
(40) but the matrix elements Lmm0 are more complicated
than the bilayer case.

In the case of the perpendicular field, we have

Lsl
mm0? ¼ dmm0

n2s ðk2s? þ q2mÞ
� cXmm0?
ðds=nsÞY ?n

4
s ðk2s? þ q2mÞðk2s? þ q2m0 Þ

; ð51Þ

where

Xmm0? ¼ ½P? � ð�1Þmþm0
S?� þ ½ð�1Þm0

e�iuQ? � ð�1ÞmeiuR?�

þ c½1þ ð�1Þmþm0 �
ks?ns sinhðks?dsÞ ðcoshðks?dsÞ

� ð�1ÞmÞðQ?R? � P?S?Þ; ð52Þ

Y ? ¼ 1þ c
ks?ns sinhðks?dsÞ ððP? � S?Þ coshðks?dsÞ

þ e�iuQ? � eiuR?Þ þ c
ks?ns

� �2

ðQ?R? � P?S?Þ;

ð53Þ
P? ¼ �S? ¼ pfnf ½cothðpfd fÞ þ cbpfnf �=M?; ð54Þ
Q? ¼ �R? ¼ �pfnf=ðM? sinhðpfd fÞÞ; ð55Þ
M? ¼ 1þ 2cbpfnf cothðpfd fÞ þ c2bðpfnfÞ2. ð56Þ

In the parallel field case, we have

Lsl
mm0k ¼

dmm0

n2s ðk2sk þ q2mÞ

� cXmm0k
ðds=nsÞY kn

4
s ðk2sk þ q2mÞðk2sk þ q2m0 Þ

þ 2ch2c2k
ðds=nsÞY kn

2
s ðk2sk þ q2mÞ

�
X1
l¼�1

x0
ds

Zþ
ml þ 1� x0

ds

� �
ð�1ÞlZ�

ml

� �
Lsl
lm0k

� 2h2c2k
n2s ðk2sk þ q2mÞ

�
X
l 6¼m

x0
ds

þ 1� x0
ds

� �
ð�1Þmþl

� �
Lsl
lm0k

n2s ðqm � qlÞ2
;

ð57Þ
here, Xmm0k and Yk are obtained by making the substitution
the subscript ? by k in Xmm0? and Y?, respectively. The
remaining functions are therefore

Z	
ml ¼ ½P k � ð�1ÞmeiuRk�v	l þ ½e�iuQk � ð�1ÞmSk�v
l

þ c½v	l þ ð�1Þmv
l �
kkns sinhðkskdsÞ ðcoshðkskdsÞ

� ð�1ÞmÞ QkRk � P kSk
� �

; ð58Þ

P k ¼ ð½u2ðdsÞ � cbu
0
2ðdsÞ�u01ðds þ d fÞ

� ½u1ðdsÞ � cbu
0
1ðdsÞ�u02ðds þ d fÞÞ=Mk; ð59Þ

Qk ¼ u1ðds þ d fÞu02ðds þ d fÞ


�u01ðds þ d fÞu2ðds þ d fÞ

�
=Mk; ð60Þ

Rk ¼ ðu01ðdsÞu2ðdsÞ � u1ðdsÞu02ðdsÞÞ=Mk; ð61Þ
Sk ¼ ð½u1ðds þ d fÞ þ cbu

0
1ðds þ d fÞ�u02ðdsÞ

� ½u2ðds þ d fÞ þ cbu
0
2ðds þ d fÞ�u01ðdsÞÞ=Mk; ð62Þ

Mk ¼ ½u1ðds þ d fÞ þ cbu
0
1ðds þ d fÞ�½u2ðdsÞ � cbu

0
2ðdsÞ�

� ½u2ðds þ d fÞ þ cbu
0
2ðds þ d fÞ�½u1ðdsÞ � cbu

0
1ðdsÞ�.

ð63Þ
At this stage we would emphasize that (51)–(56) are the
generalizations of Refs. [35,48] for determining Tc and
Hc2? of S/F superlattices in the exact multimode calcula-
tion, while the set of the secular equations for the parallel
field orientation, (57)–(63), allows one to investigate the
existence of the unusual, u 5 0, ground state.

We now treat both field orientations in the SMA. It is
obvious that there is a need for only the exchange field con-
tribution to the pair-breaking parameter, .(tc), and after
the straightforward algebra, we obtain

.slðtc;uÞ ¼ 2c
ðds=nsÞ

ðP? � cosuR?Þ þ c2ðP 2
? � R2

?Þ
� 
				

T¼T c

;

ð64Þ
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where it is understood that at T = Tc, Hc2? = 0, and then
pf ! kf in the strong ferromagnetic field limit. We can see
that the phases u = 0, and p are the most stable ground
states with .sl(tc,u = 0) < .sl(tc,u = p), and so Tc(u = 0) <
Tc(u = p) in some parameter ranges due to the oscillatory
characteristic of Tc. There exist some domain stabilities
which compete against the two phases.

The numerical calculations are shown in Figs. 6–11. In
Fig. 6 the transition temperature variations tc vs. df/nf in
a zero-phase characterize various types of tc oscillations,
as well as in F/S/F trilayers [51], depend on the values of
cb. At a very low cb, superconductivity is rapidly destroyed
near boundary interfaces. The nonmonotonic decay of tc,
including the reentrant behavior, at a moderate cb, tc has
a minimum at some df/nf and it rises again. The region of
tc suppression is at 0.5 < df/nf < 1.5, i.e., about a monolayer

Fig. 6. The reduced superconducting transition temperature tc as a
function of the reduced ferromagnetic layer thickness df/nf with varying cb.
I/pTcs = 10, ds/ns = 3, c = 0.2, and u = 0 (zero-phase).

Fig. 7. tc(df/nf) curves between zero-phase (u = 0) and pi-phase (u = p)
for cb = 0.15, and 0.3. The values of other parameters are the same as in
Fig. 6.

Fig. 8. Reduced perpendicular upper critical field at zero temperature
hc2?(0) as a function of reduced ferromagnetic layer thickness df/nf
between zero-phase and pi-phase for two values of cb = 0, and 0.5. The
other parameters are I/pTcs = 10, ds/ns = 3, c = 0.1.

Fig. 9. hc2k(0) vs. df/nf between zero-phase and pi-phase for cb = 0, and
0.5. The other parameters are the same as in Fig. 8.

Fig. 10. The linear temperature dependence of reduced perpendicular
upper critical field hc2? with varying cb. df/nf = 1, and other parameters
are taken from Fig. 8.
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of F films. The interplay between the zero-phase (u = 0)
and the pi-phase (u = p) is drawn in Fig. 7, their stability
domain exists at some ranges of df/nf. The crossed-curves
indicate the possibility of pi-phases and is feasible when
df/nf < 2. The difference of tc between the two phases
decreases as cb increases and the maximum widths lie at
df/nf � 1, or the single F film.

Similar to tc oscillations, the critical fields at zero tem-
perature, hc2?(0) and hc2k(0), can exhibit oscillatory behav-
iors inside the F layers (Figs. 8 and 9). In the region of
strong oscillations the pi-phase state is energetically favor-
able at all temperature ranges (Figs. 10 and 11). Although,
the cross-section curves for each cb become broadened
when cb increases.

5. Conclusions

We have investigated the temperature dependence of the
upper critical fields, Hc2? and Hc2k, of F/S layered struc-
tures. The phase diagram (H,T) is obtained from the secu-
lar equation of the linearized self-consistent order
parameter equation which has been solved by the exact
multimode method. The reduction equations in the sin-
gle-mode approximation are given. Our attention mainly
involves the influence of the boundary resistivity cb on crit-
ical fields.

For the F/S bilayers the perpendicular upper critical
field shows the linear temperature dependence for any cb
whereas the parallel field reveals a 2D behavior indepen-
dent of the F layer thickness. The factors that decide the
dimensionality are the thickness of the S layer (ds/ns) and
the position of superconducting nucleation (x0/ds). We find
for the thicker S layer, there is no vortex regime at all tem-
perature ranges.

For the F/S superlattices, we have investigated the pos-
sibility of the pi-phase state. The obtained results show that
it is more energetically favorable than the zero-phase in a
certain region of df/nf. The oscillatory tc behavior in the
zero-phase is of the same feature as in F/S/F trilayers.

Also, the critical fields at zero temperature are predicted
to oscillate as a function of the F layer thickness.
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Abstract

The influence of magnetic and spin–orbit impurity scattering on the upper critical fields Hc2 in ferromagnet/superconductor (F/S)
hybrid structures is theoretically investigated. The generalized Usadel equations which are a pair of coupled equations containing addi-
tional spin–orbit and magnetic impurity scattering are shown to be decoupled in spite of the coupling interaction between the spin
exchange field and the spin–orbit interaction in the F layer. The temperature dependence of the parallel upper critical field in the F/S
bilayer is shown to be less prominent in the presence of the spin–orbit and the spin–flip scattering processes. The interplay between
the zero- and pi-phases is analyzed in the case of the F/S multilayers. The pi-phase formation is found to be feasible through the strong
oscillation of the zero temperature upper critical fields versus the thickness of the ferromagnetic layer. Our results which are valid in wide
range of parameters may be very important for comparison with experimental data.
� 2007 Elsevier B.V. All rights reserved.

PACS: 74.80.Dm; 74.50.+r; 74.62.�c; 74.60.Ec

Keywords: Superconductivity; Ferromagnetism; Proximity effect; Transition temperature; Critical field; Impurity

1. Introduction

Nowadays it is known that the interplay between super-
conductor (S) and ferromagnet (F) provides several strik-
ing phenomena such as the nonmonotonic behaviors of
the critical temperature and the Josephson current as a
function of the ferromagnetic layer thickness [1–4].
Although they are two antagonistic orderings which sup-
press each other. Nevertheless when they are spatially sep-
arated, the coexistence may be realized in F/S layered
structures and this is the so-called proximity effect. The
main assumption of the proximity effect theory is charac-

terized by the existence of the pair amplitude inside F, even
though there is no pairing interaction and consequently the
vanishing of the order parameter. The presence of the fer-
romagnetic exchange field plays the role that provokes an
oscillation of the pair amplitude in F. Thus this system is
unlike an S/N proximity effect or a bulk impure supercon-
ductor in which the critical temperature decays monoto-
nously as the N layer thickness increases, because of the
impurity depairing effect.

The theoretical description of the proximity effect based
on the Usadel equations [5] is the simplified version of the
Eilenberger quasi-classical theory [6] when the electron
mean free path is shorter than the superconducting coher-
ence length, which is the so-called diffusive regime. Another
corresponding parameter is given by the condition when
the exchange field is much less than the inverse of the
momentum relaxation time.
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It is well known that in the vicinity of the second-order
phase transition, the nonlinear Usadel equations can be
retained up to the linear term and the order parameter is
obtained in a self-consistent way. The pair amplitudes in
each layer are related through the boundary conditions at
the F/S interfaces. One interesting feature is the occurrence
of the pi-phase state as the superconducting order parame-
ter changes its sign relative to the adjacent layers. The evi-
dence of the pi-phase state has recently been confirmed
experimentally [7]. Another remarkable feature is the
dimensional crossover behavior of the temperature depen-
dent upper critical field which indicates the coupling phe-
nomena via the proximity effect. In the previous paper
[8], we have shown that the dimensionality of the system
is determined by the thickness of the superconducting layer
and the position of the superconducting nucleation. We
have also shown that the upper critical fields are predicted
to oscillate spatially inside the F layers and the stability
domain of the zero-phase versus the pi-phase states is fea-
sible only for a monolayer.

Now in a dirty ferromagnet apart from the spin exchange
field and the orbital diamagnetism, other pair-breaking
mechanisms such as the spin–flip and spin–orbit interac-
tions are also important. The spin–orbit scattering has been
considered by Demler et al. [9] and Oh et al. [10] in an
attempt to resolve the contradicting results between theory
and experiment. They found that the oscillatory behavior of
the superconducting transition temperature is reduced by
the spin–orbit scattering and strongly depends on the mate-
rial parameters. However, the interfacial boundary resistiv-
ity had not been considered in their work. Very recently, the
influence of both the spin–flip and the spin–orbit scattering
on the nonmonotonic dependence of Tc has been investi-
gated by Fauré et al. [11] who showed that the spin–flip
scattering can modify the Tc significantly.

In all theoretical works mentioned above the underlying
physics of F/S proximity hybrids is mostly concerned with
the oscillations of the critical temperature and the critical
current for the variation of the ferromagnetic layer thick-
ness. There is, to the best of our knowledge, no study on
how the proximity effect the spin–flip and spin–orbit scat-
tering processes can influence the dimension dependent
behavior of the upper critical fields. In particular, the
dimensional crossover from 3D to 2D in the parallel upper
critical field is of very fundamental interest, theoretically
and experimentally. Therefore in this paper we will attack
this problem by extending the theoretical study of the
upper critical fields, Hc2? and Hc2k, of our previous work
so as to include the influence of various pair-breaking
effects, especially, the spin–orbit interaction. For the F/S
bilayers, attention will be paid to the dimensional crossover
phenomenon which can be seen through the (Hc2k,T) phase
diagram. For the F/S superlattices, we will focus on the
effect of pi-phase shift on the zero temperature critical
fields and the critical temperatures. As in Ref. [8], the
method used here is based on the exact multimode linear-
ized Usadel’s equations.

2. Model and formulation

Assuming that the dirty-limit conditions are fulfilled, the
F/S proximity effect problems are well described by the
Usadel equations [5] or equivalently, by the Takahashi–
Tachiki formalism [12]. The latter theory was extended
by Auvil et al. [13] to include the effects of the spin–orbit
and magnetic impurity scattering. Because the spin–orbit
scattering mixes the up- and down-electron spins and the
magnetic impurity scattering flips electron’s spin states.
This lead to the condition that the superconducting kernels
Qx(r, r

0), and Rx(r, r
0) are coupled together. The resulting

set of coupled differential equations reads

jxj�1

2
DðrÞP2þ 1

sm

� �
F þðr;xÞþ iIðrÞsgnðxÞF �ðr;xÞ¼DðrÞ;

ð1Þ

jxj�1

2
DðrÞP2þ 1

sm
þ 1

sso

� �
F �ðr;xÞþ iIðrÞsgnðxÞF þðr;xÞ¼ 0;

ð2Þ
DðrÞ¼ pTNðrÞV ðrÞ

X
x

F þðr;xÞ; ð3Þ

where x = (2n + 1)pT, with an integer n, D(r) is the diffu-
sion coefficient, P = $ � (2pi//0)A the gauge-invariant
operator which is expressed in terms of a fluxoid /0 and
a magnetic vector potential A, I(r) is the spin exchange
field, sm is the spin–flip scattering time and sso is the
spin–orbit scattering time. N(r) and V(r) are the position-
dependent electronic density of states and pairing inter-
action, respectively. The anomalous Usadel functions
F+(r,x) and F�(r,x) are introduced as the integral equa-
tions of the kernels Qx(r, r

0) and Rx(r ,r
0);

F þðr;xÞ ¼
Z

d3r0Qxðr; r0ÞDðr0Þ; ð4Þ

F �ðr;xÞ ¼
Z

d3r0Rxðr; r0ÞDðr0Þ: ð5Þ

The scattering rates can be related to an averaging the tem-
perature Green functions over impurity configurations in
the Born approximation and are defined as [14]

1

sm
¼ 2p

3
Nð0ÞnimpSðS þ 1Þ

Z
dX
4p

jumj2; ð6Þ
1

sso
¼ p

3
Nð0Þnimp

Z
dX
4p

jusoj2 sin2 h; ð7Þ

where nimp is the impurity concentration, S denotes the iso-
tropic spin of the localized magnetic moment, um and uso
are the magnetic impurity and the spin–orbit scattering
potentials, respectively.

To deal with the problems of F/S proximity effects, the
parameter values are specified individually in each layer.
According to the Radović model [15], the pair amplitude
F±(r,x) exists even the order parameter D(r) vanishes
inside the ferromagnet which is the result of the proximity
of the superconductor. Let us observe that when we take
D(r) = 0 in (1), the pair functions in the F layer F+(r,x)
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and F�(r,x) are proportional to each other. Then by intro-
ducing a new parameter ax via a relation F �

f ðr;xÞ ¼
axF þ

f ðr;xÞ [10], and doing some simple manipulations of
(1) and (2), we find

ðP2 � ekf 2ÞF fðr;xÞ ¼ 0; ð8Þ
with

ekf ¼ 1

nf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj þ 1=sm þ iIax

pT cs

s
; ð9Þ

where

ax ¼ sgnðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ðIssoÞ2
s

� i
1

Isso
; ð10Þ

is the coupling parameter which comes from the fact that
the spin–orbit interaction dissipates the exchange field in
such a way that it reduces the pair-breaking effect. Mean-
while, the set of the Usadel equations for the S layer that
needs to be considered is

ðP2 � k2s ÞF sðr;xÞ ¼ � 1

pT csn
2
s

DðrÞ; ð11Þ

DðrÞ ¼ pTk
X
x

F sðr;xÞ; ð12Þ

where

ks ¼ 1

ns

ffiffiffiffiffiffiffiffiffi
jxj
pT cs

s
: ð13Þ

ks and ekf are the frequency-dependent wave vectors in each
layer, and the corresponding coherence length given by
nsðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DsðfÞ=2pT cs

p
, with Tcs is the bulk critical tempera-

ture. k denotes a dimensionless BCS coupling constant.
Note that the superscript ‘‘+’’ has been dropped out of
the pair amplitude Fs,f(r,x). As was first pointed out by
Demler et al. [9], the oscillation of the pair amplitude is re-
stricted in the range 0 < 1/sso < I. In the limit where both
1/sm, and 1/sso tend to zero we recover the standard Usadel
equations as expected.

An explicit form of the gauge-invariant operator depends
on an orientation of an external magnetic field. Given a lay-
ered film lying on the y–z plane, the gauge choices,
A = (0,0,Hy) for the perpendicular applied magnetic field
and A = (0,Hx, 0) for the parallel one, may be chosen,
where H is the strength of the applied field. Then we have

P? ¼ o
ox

;
o
oy

;
o
oz

� 2piHy

/0

� �
:

and

Pk ¼ o
ox

;
o
oy

� 2piHx

/0

;
o
oz

� �
:

The structures of F/S proximity systems under our con-
sideration occupy the regions �df 6 x 6 0 for F and
0 6 x 6 ds for S. In the case of the perpendicular upper
critical field, only the lowest Landau level is needed [16]
then (11) takes the form

d2

dx2
F sðx;xÞ � k2s?F sðx;xÞ ¼ � DðxÞ

pT csn
2
s

; ð14Þ

where ks? ¼ ðk2s þ hc2?=n
2
s Þ1=2, and hc2? ¼ ð2p=/0ÞH c2?n

2
s is

the dimensionless magnetic field. While the parallel field ori-
entation causes all states coupled together, thus by intro-
ducing an extra parameter x0 as the position of
superconducting nucleation (11) can be written as

d2

dx2
F sðx;xÞ � k2s þ

2pH
/0

� �2

ðx� x0Þ2
" #

F sðx;xÞ ¼ � DðxÞ
pT csn

2
s

:

ð15Þ
In both field orientations the orbital field effect in F lay-

ers may be omitted from (8) since we have assumed that the
vortex nucleation is confined only in the S layer so that the
general solution is immediately given by

F fðx;xÞ ¼ C1 coshð ekf xÞ þ C2 sinhð ekf xÞ; ð16Þ
where the unknown coefficients C1 and C2 can be elimi-
nated by means of the boundary conditions that connect
the pair amplitudes Fs and Ff.

For the bilayered structure Fs and Ff satisfy

d

dx
F fð�d fÞ ¼ 0 ¼ d

dx
F sðdsÞ; ð17Þ

ns
d

dx
F sð0Þ ¼ cnf

d

dx
F fð0Þ; ð18Þ

F sð0Þ ¼ F fð0Þ þ cbnf
d

dx
F fð0Þ: ð19Þ

Putting (16) into (17)–(19), we arrive at the boundary con-
ditions of the S film

ns
d

dx
F sðdsÞ ¼ 0; ð20Þ

ns
d

dx
F sð0Þ ¼ W ðxÞF sð0Þ; ð21Þ

W ðxÞ ¼ c

cb þ cothð ekf d fÞ= ekf nf : ð22Þ

For the superlattice system, we have two pairs of boundary
conditions

F sð0Þ ¼ e�iu F fðds þ d fÞ þ cbnf
d

dx
F fðds þ d fÞ

� �
; ð23Þ

F sðdsÞ ¼ F fðdsÞ � cbnf
d

dx
F fðdsÞ; ð24Þ

and

ns
d

dx
F sð0Þ ¼ e�iucnf

d

dx
F fðds þ d fÞ; ð25Þ

ns
d

dx
F sðdsÞ ¼ cnf

d

dx
F fðdsÞ: ð26Þ

Applying (16) to the first pair of the boundary conditions,
(23) and (24), to determine the constants C1 and C2, and
then inserting them back to the second pair, (25) and
(26), the equations are recast in the form
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ns
d

dx
F sð0Þ ¼ c½PF sð0Þ � e�iuRF sðdsÞ�; ð27Þ

ns
d

dx
F sðdsÞ ¼ c½eiuRF sð0Þ � PF sðdsÞ�; ð28Þ

with

P ¼ ekf nf ½cothð ekf d fÞ þ cb ekf nf �=M ; ð29Þ
R ¼ ekf nf=ðM sinhð ekf d fÞÞ; ð30Þ
M ¼ 1þ 2cb ekf nf cothð ekf d fÞ þ c2bð ekf nfÞ2; ð31Þ
are the material functions of the F layers. The parameters c
and cb represent a leakage of paired electrons from S to F,
and a jump at the interfaces due to the transparency of
materials, respectively [17]. The phase shift u has been
introduced to account for the pi-phase state.

In order to determine the upper critical fields and the
superconducting critical temperatures, we have to solve
the above equations for Fs(x,x) and D(x) self-consistently
subject to the boundary conditions. Instead of Fs(x,x),
let us consider the diffusive kernel Qx(x,x

0) for the S layer,
and its differential equations. The exact multimode solution
can be found by employing the method of eigenfunction
expansion, that is

Qxðx; x0Þ ¼
X1

m¼�1
Qxðqm; x0Þ cosðqmxÞ; ð32Þ

with qm = mp/ds. The nontrivial solution of the trans-
formed D(x) equation obeys the secular equation

det

				dmm0 � k
T
T cs

X
x

Lmm0 ðxÞ
				 ¼ 0; ð33Þ

where we have denoted

Lmm0 ðxÞ ¼ pT cs

Z ds

0

dx0Qxðqm; x0Þ cosðqm0x0Þ: ð34Þ

Having obtained Qx(qm,x
0), by the Fourier transformation

of the differential equation of Qx(x,x
0), Lmm 0(x) is easily

evaluated and it final form depends on the field orienta-
tions and the boundary conditions of the layered struc-
tures. The straightforward calculations of the matrix
element Lmm 0(x) in the parallel field orientation yield

Lbi
mm0kðxÞ ¼

dmm0

n2s ðk2sk þ q2mÞ
� XkðxÞ
n4s ðk2sk þ q2mÞðk2sk þ q2m0 Þ

þ 2XkðxÞh2c2k
n2s ðk2sk þ q2mÞ

�
X1
l¼�1

x0
ds

vþl þ 1� x0
ds

� �
ð�1Þlv�l

� �
Lbi
lm0k

� 2h2c2k
n2s ðk2sk þ q2mÞ

�
X
l 6¼m

x0
ds

þ 1� x0
ds

� �
ð�1Þmþl

� �
Lbi
lm0k

n2s ðqm � qlÞ2
;

ð35Þ

for the bilayer, where

XkðxÞ ¼ W ðxÞ
ðds=nsÞ 1þ W ðxÞ

kskns
cothðkskdsÞ

� � ; ð36Þ

v	l ¼
X1

m6¼l;m¼�1

ð	1Þm
n4s ðqm � qlÞ2ðk2sk þ q2mÞ

; ð37Þ

k2sk ¼ k2s þ
hc2kds

n2s

 !2
1

3
� x0
ds

þ x0
ds

� �2
 !

; ð38Þ

with hc2k ¼ 2pHn2s=/0 is the dimensionless parallel orbital
magnetic field, and

Lsl
mm0k ¼

dmm0

n2s ðk2sk þ q2mÞ

� cXmm0k
ðds=nsÞY kn

4
s ðk2sk þ q2mÞðk2sk þ q2m0 Þ

þ 2ch2c2k
ðds=nsÞY kn

2
s ðk2sk þ q2mÞ

�
X1
l¼�1

x0
ds

Zþ
ml þ 1� x0

ds

� �
ð�1ÞlZ�

ml

� �
Lsl
lm0k

� 2h2c2k
n2s ðk2sk þ q2mÞ

�
X
l 6¼m

x0
ds

þ 1� x0
ds

� �
ð�1Þmþl

� �
Lsl
lm0k

n2s ðqm � qlÞ2
;

ð39Þ
for the superlattice, where

Xmm0k ¼ ½1þ ð�1Þmþm0 �P � ½ð�1Þm0
e�iu þ ð�1Þmeiu�R

þ c½1þ ð�1Þmþm0 �
kskns sinhðkskdsÞ coshðkskdsÞ � ð�1Þm
 �

P 2 � R2

 �

;

ð40Þ
Y k ¼ 1þ 2c

kskns sinhðkskdsÞ ðP coshðkskdsÞ � cosuRÞ

þ c
kskns

� �2

ðP 2 � R2Þ; ð41Þ

Z	
ml ¼ ðv	l þ ð�1Þmv
l ÞP � ðð�1Þmeiuv	l þ e�iuv
l ÞR

þ c½v	l þ ð�1Þmv
l �
kkns sinhðkskdsÞ ðcoshðkskdsÞ � ð�1ÞmÞðP 2 � R2Þ:

ð42Þ

The analogous formulae for the perpendicular field ori-
entation are easily obtained by the following procedure: (i)
replace kk by k?, (ii) change the subscript k in Xk, Xmm 0k,
and Yk, to ?, and (iii) take Llm0(x) to be zero.

An analytical approach using the secular Eq. (33) in the
single mode approximation leads to the Abrikosov–Gor-
kov like-formula [18] and to the determination of the phase
diagram (H,T) under the assumptions that (i) the S layer is
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thin ds/ns � 1, and (ii) the propagating momentum in F
can be approximated to be frequency independent, so

ekf � 1

nf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=sm þ 1=sso þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � ð1=ssoÞ2

q
pT cs

vuut
:

Then the (0,0) element of (33) yields the simple formula

ln t ¼ w
1

2

� �
�Rew

1

2
þ .ðtÞ

2t

� �
; ð43Þ

where t = T/Tcs is the reduced temperature, w(x) is the dig-
amma function, and the complex pair-breaking parameters

.ðtÞ ¼ .ðtcÞ þ hc2?ðtÞ; ð44Þ

.ðtÞ ¼ .ðtcÞ þ h2c2kðtÞ
ds

ns

� �2 1

3
� x0
ds

þ x0
ds

� �2
 !

; ð45Þ

for the perpendicular and the parallel magnetic fields,
respectively. Eqs. (44) and (45) contain both contributions
from the strong ferromagnetic exchange field .(tc) and the
orbital field effects depending on the orientations of applied
magnetic fields either perpendicular or parallel to the lay-
ered planes. The orbital field completely vanishes at a tran-
sition point t = tc so (43) implies the equation for the
variation of the superconducting transition temperature
as a function of material parameters,

.biðtcÞ ¼ cðn=dsÞ
cb þ cothð ekf d fÞ= ekf nf ; ð46Þ

.slðtc;uÞ ¼ 2c
ðds=nsÞ

ðP � cosuRÞ þ c2ðP 2 � R2Þ: ð47Þ

Near Tc, we find that the universal ratio h2c2k=hc2? does
not depend on temperature, material parameters of the F
film, pair-breaking scattering rate, number of layers, and
phase shift angle, i.e.

h2c2k
hc2?

¼ 1

ðds=nsÞ2 1
3
� x0

ds
þ x0

ds

� �2� � : ð48Þ

By taking the nucleation center at the mid S film, x0/ds =
1/2, which corresponds to the decoupled regime, we reob-
tain the result of Radović et al. [19].

3. Numerical results

We present the numerical calculations of the upper crit-
ical fields and critical temperatures of F/S bilayers (Figs. 1
and 2) and F/S multilayers (Figs. 3–6). For the bilayered
structure the (hc2k,t) phase diagrams are drawn to investi-
gate the dimensional crossover behavior by varying the
parameters associated with the spin–orbit scattering 1/Isso,
and the spin–flip scattering 1/Ism, in Figs. 1 and 2, respec-
tively. We consider the case of weak ferromagnet (I/p
Tcs = 10), weak proximity effect (c = 0.2), and low bound-
ary resistivity (cb = 0.1). The position of superconducting
nucleus x0/ds = 0.55 corresponds to the highest field hc2k(t),

Fig. 1. Reduced parallel upper critical field hc2jj ¼ 2pHn2s=/0 as a function
of reduced temperature t = T/Tcs for several values of 1/Isso. I/pTcs = 10,
ds/ns = 4, df/nf = 2, c = 0.2, cb = 0.1, x0/ds = 0.55, and 1/Ism = 0.

Fig. 2. Reduced parallel upper critical field hc2k versus reduced temper-
ature t with varying 1/Ism. 1/Isso = 0, and other parameters are the same
as in Fig. 1.

Fig. 3. The reduced superconducting transition temperature tc = Tc/Tcs as
a function of the reduced ferromagnetic layer thickness df/nf with varying
1/Isso, and 1/Ism. I/pTcs = 30, ds/ns = 3, c = 0.2, cb = 0.3, and u = 0 (zero-
phase).
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when the film thicknesses are ds/ns = 4 for S and df/nf = 2
for F. Since for the thicker S layer the parallel upper critical
field hc2k(t) displays a 2D feature independent of the
exchange field strength and the F layer thickness, we find
that a 2D behavior is still retained for any values of the
scattering rates either spin–orbit or spin–flip. Both pair-
breaking scatterers provide identical results, and in general,
hc2k(t) decreases as 1/sso or 1/sm increases and becomes
saturated when 1/sso, 1/sm � 0.2I. This means we cannot
distinguish which pair-breaking mechanism is responsible
for the reduction of the parallel critical field hc2k(t). Though
the spin–orbit term is coupled to the exchange field through
the coupling parameter ax which suppresses the oscillations
of the pair amplitude in F as defined by the imaginary part
of ekf , whereas its real part which also contains the spin–flip
term implies an extra decay of the pair amplitude. As
already mentioned above, a 2D behavior is not altered in

any way when the exchange field changes, therefore the
only important factor which causes the effect will come
from the real part of ekf which in turn makes the Cooper
pair amplitude decay spatially and becomes conduction
electrons in the F region and consequently this results in
the reduction of hc2k(t).

For multilayer systems, we examine the influence of the
spin-dependent scattering on both the critical temperature
and the zero temperature upper critical fields as a function
of the ferromagnetic layer thickness. In Fig. 3, we show the
variations of tc(df) in a zero-phase (u = 0) for several values
of the pair-breaking parameters 1/Isso, and 1/Ism. The
influence of the scattering processes emerge when the
exchange field is sufficiently strong (I/pTcs = 30). Therefore
the S layer thickness is not supposed to be thin (ds/ns = 3).
In the absence of scattering processes with a perfect trans-
parency (cb = 0), tc(df) exhibits the nonmonotonic decay
within a single F layer. Upon the introduction of the
spin–orbit and the spin–flip scattering, tc decreases at first
near the interface. An enhancement of tc occurs later inside
F with less pronounced nonmonotonicity. As is well known
[9], the spin–orbit interaction produces a smaller exchange
field and gives a higher critical temperature resulting from
an increase of the oscillation period of the pair amplitude.
However, the spin–flip scattering plays the same role as the
spin–orbit does. Furthermore, Fig. 4 demonstrates the
competition between a zero-phase and a pi-phase. Unfortu-
nately, the highest critical temperature in the pi-phase state
is most probable in the absence of the pair-breaking pro-
cesses. Our obtained result is therefore in contrast to the
previous study by Oh et al. [10] who argued that the pi-
phase shift solution yields higher critical temperatures as
the spin–orbit scattering increases. We would like to point
out here that our solutions for tc and hc2? are the correct
ones because our formulae are found to agree perfectly
with the case of an ordinary ferromagnet i.e., without the
spin-dependent scattering process [15,16].

Fig. 4. tc(df/nf) curves between zero-phase (u = 0) and pi-phase (u = p)
for several values of 1/Isso, and 1/Ism. The values of other parameters are
the same as in Fig. 3.

Fig. 5. Reduced perpendicular upper critical field at zero temperature
hc2?(0) as a function of reduced ferromagnetic layer thickness df/nf
between zero-phase and pi-phase for two values of 1/Isso = 0, and 0.2. The
other parameters are I/pTcs = 10, ds/ns = 3, c = 0.1, and cb = 0.

Fig. 6. Reduced parallel upper critical field at zero temperature hc2k(0) as
a function of reduced ferromagnetic layer thickness df/nf between zero-
phase and pi-phase for two values of 1/Isso = 0, and 0.2. The other
parameters are the same as in Fig. 5.
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We next consider the reduced upper critical fields at zero
temperature hc2?(0), and hc2k(0) as a function of the nor-
malized F layer thickness (df/nf) with varying values of
the spin–orbit scattering rate 1/Isso. Unlike the tc oscilla-
tions, both perpendicular and parallel critical fields reveal
an interesting interplay between the zero-and pi-phases,
Figs. 5 and 6. The physical solution corresponds of course
to the maximum field. Thus the pi-phase state is predicted
to be most pronounced for certain values of ferromagnetic
layer thicknesses. We note also that the difference between
the critical fields for each parameter set becomes less when
1/sso increases.

4. Conclusion

We have investigated the influence of the pair-breaking
effects on the superconducting critical temperature and
the upper critical fields in F/S hybrid structures. The gener-
alized Usadel equations which include the spin–orbit and
spin–flip interactions are solved in closed forms. The secu-
lar equations for the determination of the (H,T) phase dia-
grams are obtained.

For the F/S bilayers, the parallel upper critical field
shows a 2D behavior as the S layer thickness increases
and the critical field is lowered as the scattering rate
increases. This feature is caused by the decrease of the
decay length. Therefore the spin–orbit and the spin–flip
interactions play exactly the same role in reducing the par-
allel upper critical field and they do not affect the dimen-
sionality of the system in any way.

For the F/S multilayers attention is paid to the interplay
between the zero-phase and the pi-phase. We have found
that the evolution of tc in the presence of the pair-breaking
scattering processes is suitable for sufficiently strong ferro-
magnets. In the zero-phase the tc is enhanced with the
increase of the pair-breaking scattering rates in which the
nonmonotonic character tends toward the monotonic
decay. For a certain value of df, the pi-phase state is feasi-
ble only when the scattering processes are absent. Con-

versely, the zero temperature upper critical fields hc2?(0),
and hc2k(0) are found to exhibit the oscillatory behavior
inside F. We predict that the pi-phase can exist within some
ranges of df/nf. This suggests the influence of the pair-
breaking scattering effects which provokes the transition
from the zero- to pi-state can be seen through hc2(0).
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