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Abstract

This research investigates force control techniques for flexible structure mounted
manipulators (FSMM) in contact tasks. The FSMM suffers from the dynamic
complexity due to the flexibility of the structure that the manipulator is mounted
to. These complications can get worse when the end-effector of the manipulator
is in contact with environment because instability can occur. Here, two types
of impedance control, force-based and position-based, for FSMM are investigated.
The environment is assumed to be static. The analysis was carried out by deriving
a one-dimensional contact model along the normal direction of the environment
surface. Robust controllers were designed based on Nyquist stability criteria so
that when in contact with static environment the system remains stable for all
possible environment stiffnesses. In order to test the controllers, a 2-DOF lab-
scale FSMM has been constructed. Experiments have been performed and the
results show that the robust controllers can resolve the stability problems that

occur under some conditions when non-robust controllers are used.
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Executive Summary

Flexible structure mounted manipulator (FSMM) is a class of robot manipula-
tor system that consists of a rigid manipulator mounted on the structure that
is normally large and not rigid. The FSMM finds applications in the nuclear
waste remediation and has potentials for use in large structure inspection tasks
such as buildings, highways and bridges. In the course of manipulator motion,
reactive forces are transferred through the structure and vibrations occur. These
vibrations can cause further complication when the manipulator is in contact with
environment. This research studies force control for this type of manipulator when
in contact with static environment. The focus of the control methods is on the
impedance control where the relationship between the external force and the end-
effector displacement is defined and the robot is controlled accordingly. The goal is
for the system to perform according to the desired impedance while remain stable
when in contact with static environment such as wall. The study involves mod-
eling of the system in contact tasks as one dimension problem and based on the
one-dimensional model robust controllers are designed based on Nyquist criteria.
Two robust controllers have been derived: 1) position-based impedance control
and 2) force-based impedance control. In order to verify the control schemes, a
2-DOF lab-scale FSMM has been constructed. Tests have been performed and
the results show that the robust controllers can resolve the stability problems that
occur under some conditions when non-robust controllers are used. This research
can be studied further in a number of topics such as robust performance during

contact, joint flexibility, dynamic environment and friction.



Chapter 1

Introduction

1.1 Statement of the Problem

Flexible structure mounted manipulator (FSMM) is a class of robot manipula-
tor system that consists of a rigid manipulator mounted on the structure that is
not rigid as shown in fig. 1.1. This system also includes a micro-macro manipu-
lator (MMM) system in which a smaller (micro) manipulator, considered rigid,
is mounted on the tip of a bigger (macro) manipulator, considered flexible. The
MMM is capable of operating in tasks that cover large working area. Here, the
macro manipulator has long arm and hence provides large working space. How-
ever, due to structural flexibility its end-point can not be positioned accurately.
During operation, the macro manipulator is employed for coarse positioning of the
micro manipulator which then operates in a narrower region with more accuracy.
In each coarse positioning, the macro manipulator holds its posture until the micro
manipulator finishes its tasks. Then the macro manipulator changes it posture to
relocate the micro manipulator, and the operation continues.

There has been much research work on various aspects of typical robot ma-
nipulators that are mounted on a rigid base. However, FSMM only attracts few
researchers. Much of the research in FSMM is carried out if not on an existing
systems then for the sake of individual interest. This is due to the particularity of
the system. Nevertheless, studying the behaviors of the FSMM can be beneficial

for understanding the effects of vibration exists in a robot system. So far the



manipulator

manipulator
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a) typical robot manipulator b) FSMM

Figure 1.1: a) typical robot manipulator b) flexible structure mounted manipulator

FSMM finds applications in space robotics and nuclear waste remediation areas.
It also has potential for use in large structure inspection tasks such as buildings,
highways and bridges.

There are two aspects in terms of controlling a robot system, : 1) position
control and 2) forces control. Position control basically deals with the accuracy
of the end-effector while force control deals with controlling the forces exerted on
the end-effector and stability of the system. When the robot is in contact with
the environment its dynamics changes and with closed loop control, the system
can become unstable. Therefore in the tasks that require the robot to touch the
environment, the controllers must be designed such that stability is preserved.
This research aims to study force control of FSMM when it is in contact with

static environment.

1.2 Reviews on Control of FSMM

There are basically two approaches for dealing with vibration in the FSMM: 1)
vibration avoidance and 2) vibration damping. In the first approach, the manip-
ulator is controlled such that little or no vibration occurs. Two main techniques
are within this category: path planning and input shaping. In path planning, the

goal is to plan the path for the manipulator to move so that the reaction force



transferred to the base is minimal. Sagli and Egeland [6] proposed the conser-
vation of coupling momentum that eliminates the dynamic coupling between the
end-effector and the structure in a redundant manipulator system. Nenchev and
Yoshida [5|proposed a similar scheme called the conservation of coupling momen-
tum. Torrest and Dubowsky [9] proposed a technique that controls strain energy
in the flexible structure which is presented in the form of manipulator motion by
contour mapping.

In input shaping, the idea is to filter the reference command so that the fre-
quency contents that match the natural frequencies of the system are eliminated.
Magee and Book [4]| have used this technique to reduce vibration in FSMM. Kwon
et al. [1] studied several filters in input shaping techniques for large-scale manip-
ulator used in nuclear waste management. In vibration damping approach, the
goal is to damp out vibrations that occur in the system quickly. Yoshida et al.
[11] proposed an inertial damping technique with is a vibration damping approach
for FSMM. Scott and Gilbert [7] used this technique for vibration control in space
manipulator.

As oppose to position control, the force control problem has not been widely
studied and so there are many topics to be explored. This study investigates
control schemes for FSMMs which performs tasks that require the end-effector to

be in contact with static environment.

1.3 Objectives of study

This research aims to study force control of the FSMM when performs tasks that
require contact with static environment. The goal is to design controllers such that

the system remains stable for a wide range of stiffness of the static environment.



Chapter 2

Dynamics of a Flexible Structure
Mounted Manipulator in Contact

Tasks

2.1 Equations of Motion of Robot Manipulator

Let 6 € ™! denote the vector of containing the joint angles of the rigid manip-
ulator and X € R™*! denote the m (< 6)-dimensional task space vector of the
end-effector of the manipulator. #"*! represents n-dimensional Euclidean space.
X is called the “manipulation vector”.

The manipulation vector is related to the joint angles by

X = f(6) (2.1)

The first and second derivatives of X are

X =J(6)d (2.2)

and

X=Jb+J6 (2.3)

where J is the Jacobian matrix. The equation of motion of a robot manipulator



is given by

M@0 +N@®B,0)+G0O) =7+,

where 6 is the joint angles vector

M(0) is the mass matrix

N(8,6) is the Colioris and centrifugal forces vector

G(0) is the gravirational forces vector
T is the actuator torque vector
Te is a vector containing the external forces

2.2 Equations of Motion of FSMM

(2.4)

Let ¢ € RP)*1 denote the vector of containing the joint angles of the rigid

manipulator, § € R"*! and the states of the flexible structure ¢. The states of

the flexible structure, (, can be obtained from a finite dimension approximation

of the flexible modes of the structure.

The manipulation vector is related to the joint angles and the flexible structure

states by

X = flg) = f(6,¢)

The first and second derivatives of X are

X = J(g)g
= Jo(6,0)0 + J:(,¢)¢

and

X = Jj+Jg

= Jof + JeC+ Jef + JC

(2.5)

(2.6)

(2.7)

where Jy and J; are Jacobian matrices of appropriate dimension. Note that J(q) =

[Jo Jc]-



The equation of motion of a FSMM is given by
M(q)i+ N(q,q) +G(g) =7 + 7 (2.8)

where ¢ is a vector containing the states of the base vibration, (,
and the manipulator joint angles, 0
M(q) is the mass matrix

N(q,q) is a vector containing the Colioris forces

G(q) is the gravirational forces vector
T is the actuator forces vector
Te is the external forces vector

When the end-effector contacts the environment, the contact forces, f., are

related to the effective torque by
Te=J"f. (2.9)

During contact, the behaviors of the FSMM can change reasonably due to the
changes in boundary condition of the system. In general, the contact force is a
function of the joint angles, flexible structure states and the parameters of the
environment such as stiffness and damping. In a more complicated system, the
environment can itself be a dynamics system but this case is out of the scope of

this study.



Chapter 3

Impedance Control for Flexible
Structure Mounted Manipulators in

Contact Tasks

Impedance control is a unified position-force control approach that suits manipu-
lator performing contact tasks. In this control scheme, rather than regulating the
end-effector positions and/or forces, the impedance between the end-effector dis-
placement, dz., and acting forces, f., is defined. The manipulator is so controlled
such that the desired impedance is achieved. Normally, the desired impedance is

in the form of a spring-mass-damper system, i.e.,
fe = Mdi’e + Bd&te + Kdéxe (31)

where My, By and K, are the desired mass, damping coefficient and K, stiffness

matrices, respectively. The manipulator dynamic is represented by
M(6)0 + N(0,0) +G(q) =1+ JT(6)f. (3.2)
and the end-effector velocities are related to the manipulator joint velocities by
i = J(0)0 (3.3)

and

G = J(0)0+ J(0)6 (3.4)



There are two types of impedance controls: 1) force-based impedance control
and 2) position-based impedance control. In the force-based scheme, the control
force is calculated directly from the dynamic of the manipulator and the desired
impedance. In the position-based scheme, the main control is based on position
servo control. The desired impedance is achieved through adjustment of the posi-

tion reference.

3.1 Force-Based Impedance Control for Robot Ma-
nipulators

For brevity, a function y(#) or y(0,0) will be written as y. Substituting eqs. 3.1
and 3.2 into eq. 3.4 yields,

Md_l (fe_Bd(;j}e_Kd(sme) - JM_I (T+JTfe—N—G) +J0

or

JM™ 't = (M;' = JM™'IT) fo — My (Badie + Kgdze) + JM ™ (N +G) — J0
In terms of the effective forces from actuators seen at the end-effector, f,

JMYJ = (M7 = JM I fo — My (Badde + Kadze)

+JM Y (N +G) - Jb
or
fo = (WM =1) fo = NIM; (Badie + Kade.)
+MJM Y (N +G)— MJb
where M = (JJ\/[_IJT)_1 is the matrix called the “mobility tensor”. In turn,
the actuator torques are obtained from
ro= JT (MMd—l - I) fo — JTNIMY (Badic, + Kadz,)
+JTMIM™ (N +G) — JTM b (3.5)
With the control law in eq. 3.5, the manipulator considered at the end-effector will

behave exactly according to the desired impedance described in eq. 3.1.



Impedance Control for Manipulators in contact Tasks

In contact tasks, the manipulator is normally operating at slow speed. Then the
equations of motion can be represented in a much simple form by neglecting some
higher order terms such as the Coriolis and centrifugal forces. In this case, the

control law in eq. 3.5 may be approximated by

r=JT (MMd-l - 1) fo— JTNIM;Y (Badi, + Kadwo) + JTMIM™'G  (3.6)

3.2 Position-Based Impedance Control for Robot
Manipulators
From the equation of motion,
M(q)0+ N(9,0) + G(q) =7+ J"(0) .

We may write the control torque 7 = J? f, where f, is the control forces seen at

the end-effector. In this scheme, f, is given in the servo control form:
fo=Gy(X, — X))+ MJM YN +G) — M.jo (3.7)

where X, is the adjusted position reference command and G is the servo controller.

With this control forces, the equations of motion becomes
MX@ = Gs(Xr - Xe) + fe

or

X, =G'MX,.+ X, - G'f.

Let X be the position reference command. Then the position reference adjustment

is given by

AX = X, — Xy
= GJ'MX,.+X.—-G'f. — X,

or in Laplace domain

AX = (G;lMSQ + 1) X, — GI'f — X, (3.8)



But from the desired impedance,
MdS2Xe + (BdS + Kd) (Xe - X(]) = Fe

Then
X, = (Mys® + Bys + Kq) ™ (F. — (Bas + K4) Xo) (3.9)

Substituting eq. 3.9 into eq. 3.8 yields

AX = [(Gs_lMSQWL]) (Md82+Bds+Kd)71 - Gs—l} F,
- [(G;1M52 + I) (Mds2 + Bgs + Kd)_1 (Bgs + Kg) + ]] X

Therefore, the force filter should take the form
AX = GyF,

where

G = (G;1M32 + I) (Mys® + Bys + K,) ' — G (3.10)
In eq. 3.7, X, can be written as
XT :X0+AX:X0+GfFe

By substituting eq. 3.10 into eq. 3.7 we obtain the force control law as seen at the

end-effector

Fo = (M2 +G,) (Mas® + Bas + Ka) ™' = T) Fo = Gil(X. = Xo)
+MJM~ YN +G)— MJ§

or in term of control torque

o= (M4 GL) (Mas® + Bas + Ka) ™' = 1) Fo = JTGo (X, = Xo)
+JTMIM™ (N +G) — J'M.JI

Similarly, for contact problem the Colioris and centrifugal force terms may be

dropped, i.e.,

r=J" <<Ms2 + Gs> (Mys® + Bys + Kd)il - I) Fo— JTG(Xe — X)

10



When the manipulator is in contact with the environment, in respect to con-
tact forces the problem can be reduced to one dimension, namely, the surface
normal direction. In the following sections, the analysis will focus on developing
one dimensional contact model applicable to impedance control of the FSMM. In
the analysis, the model will not include the gravity terms as they do not have
influences on the dynamics of the system. For completeness, the gravity can be

easily included by following similar analysis presented below.

3.3 Impedance Control and One-Dimensional Con-

tact Model for a FSMM

Xe

f Je

effective mass

Figure 3.1: A simple mass model

Consider the end-effector dynamics represented by a simple mass m, actuated
by an actuator with effective force f and interacts with the environment with
external force f, as shown in fig.3.1. x. is the displacement of the mass. The

equation of motion of the mass is given by
mi, = f+ f. (3.11)

Suppose that we would like the system to behave according the desired impedance

described by
fe = md'fe + bd(sx:e + kddxe (312)

or

1
@y = — (f. — bydz, — kgb,) (3.13)

mq

11



Substituting eq. 3.13 into eq. 3.11 yields

" (f = badde — kadz) = f+ Lo
mq
f o= —ﬂ(bd5¢e+kdaxe)+(ﬂ—1) £, (3.14)
mq mq
or in Laplace domain;
m m
Fs) = - X ™ 1) E 1
©) =~ s+ k)X + (1) B B9

By substituting the force according to the control law in eq. 3.14, the mass will

behave according to the desired impedance in eq. 3.12.

Xp Xe
e I

f f Jfe

< > m —
manipulator effective mass
base

Figure 3.2: One-DOF model of FSMM

Effect of Base Motion

For the FSMM consider the 1-DOF model shown in fig. 3.2. The manipulator base
motion is described by x(t). Here, the reactive force due to the actuator force
applied to the effective mass acting on the flexible base in the opposite direction.
This reactive force can cause vibration in the system. Let the relation between

the reactive force and the manipulator base be described by
Xp(s) = —Gp(s)F(s) (3.16)

To employ the impedance controller to the FSMM, consider the form of control

law similar to eq. 3.14:

F(s) = —mﬂd (bas + kq) 0 Xm(s) + (mﬁd - 1) Fu(s) (3.17)

12



Here the total displacement §X,(s) is replaced by the measured displacement
0 X, (s). Typically, the position of the robot’s end-effector is calculated from the
joint sensor data with respect to the base. Therefore, when X}, # 0 the measured

displacement is not the total displacement but instead a relative displacement:

0Xn(s) = 0Xe(s) — Xp(s). Thus,

F(s) = = (bas + ha) (0Xe(s) = Xi(s)) + (mﬁ - 1) F.(s) (3.18)
Let K(s) = bgs + kq. With the base motion described in eq. 3.16
FO) =~ IR 0X6) + G F) + (2 1) o)
<1 + mﬁdl{(s)ab(s)> F(s) = —mﬂdK(s)éXe(s) + <mﬁd - 1> F.(s)
F(s) = <1 + m—dK(s)Gb(s)) {—m—dK(s)éXe(s) + (m—d - 1) Fe(s)} (3.19)
F(s) = G4(5)0Xc(s) + Gf(s)F.(s) (3.20)
where
Go(s) = — (1+ %K(S)Gb(s))_ %K(s) (3.21)
and Gy(s) = (1 + %K(S)Gb(s)) (mﬂd - 1) (3.22)
With this control law, the equation of motion becomes
ms*Xe(s) = Ga(s)0Xc(s) + Grs)Fe(s) + Fe(s)
(ms® = Ga(s)) 0Xe(s) = (14 Gy(s)) Fe(s)
0Xe(s) 14 Gy(s)
F.(s) ms? — G,(s)
) R ()Gals) + 2
ms? (1 +m (S)Gb(8)> + K (s)
0Xe(s) 1 14+ K(5)G(s)
Fo(s)  ms?ma g B0 4 K (s)Ga(s) (323)

Here, transfer function 0X.(s)/F.(s) , the admittance of the system, contains
function Gy(s). When Gy(s) = 0 the impedance of the system is exactly the

desired impedance.

13



3.4 Impedance Control with Base Acceleration Mea-
surement

Consider the control low:

F(s) = —mﬁdK(s)cSXm(s) + (mﬂd - 1) F,(s) + D(s)s*X,(s) (3.24)

This control is similar to the previous control law except the addition of the term
D(s)s*Xy(s). s*Xp(s) is the acceleration of the base and D(s) is the acceleration
filter to be designed. For X,(s) = —Gy(s)F(s),

F(s) = —mﬁdK(s) (0Xc(s) — Xp(s)) + (mﬂd - 1) F,(s) 4+ D(s)s*X,(s)
= —EK(S) (0Xc(s) + Gu(s)F(s)) + (ﬁ - 1) F,(s) — D(s)s*Gy(s)F(s)
mgq mq
F(s) = — (1 + %K(S)Gb(s) + D(S)SQGb(s)) mﬁdms)axe(s)
v (1 + %K(S)Gb(s) + D(S)SQGb(5)>_ (mﬁd - 1> Fu(s)

Substituting into eq. 3.11 and rearranging yields

0Xc(s) 1 L+ (K(s) + 54D(s)s) Go(s)

Fo(s) — ms?ma KO 4 (¢ (s) 4 ™4 D(s)52) Gy(s)

ms?

Ideally, if the acceleration filter is designed such that

D(s) = _m K(s) (3.25)

my 82

the resulting transfer function would be the ideal one, i.e.,

dX.(s) 1

Fi(s)  ma KG)

ms?

The filter D(s) in eq.3.25 actually compensates for the base motion by double
integrating the acceleration signal to obtain the base motion. However, in practice
such filter will have drift problem. To cope with the drift problem, the filter can

be modified to
~m K(s)

Dls) = ma (s + a)?

(3.26)

where a is a small positive real value.

14



3.5 Robust Force-Based Impedance Control for FSMM
in Contact Tasks

In this section we derive the robust solution in case that Gy(s) is not known. The
goal is to arrive at the controller that is robust against the base vibration with

certain bound on Gp(jw). From eq. 3.23:

Tpo(s) = 0Xc(s) _ 1 1+ K(s)Gy(s)
T F.(s) ms? ma g KO e (5)Gy(s)
1 14 K(s)Gy(s)
 ms? A(s) + K(5)Gy(s) (3.27)
where
A(s) = % + l;(j (3.28)

Assume that the system is stable in non-contact operation. When the end-effector
is in contact with wall (stiffness k, ), the condition for global stability during
contact is that T'(jw) must not cross the negative real axis for all w. This will

happen when
L EGOGGY)
mw? A(jw) + K (jw)Gy(jw)

where « is a positive scalar. Equivalently, if there exists some w > 0 such that

T(jw) = —
L (A(jw) + K (j0)Gy(jw)) = £ (1 + K (jw)Ghljw)
Thus, contact stability requires that
L(A(jw) + K(jw)Gy(jw)) # £ (1 4+ K(jw)Ge(jw)), VYw >0 (3.29)

Now let us suppose that K (jw)Gp(jw) is bounded by a frequency dependent scalar
g(w) according to:

K (jw)Go(jw)| < g(w) (3.30)
Then stability requires that
£ (A(jw) + ej¢g(w)) #(1+ ej¢g(w)) , Yw>0,0 (3.31)

For positive (dissipative) transfer function K(s) as w — oo

K(jw)
mw?

K(jw) mg mg

— 0 and then A(jw)=—

mw? m m

15
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Figure 3.3: Typical plot of A(jw)

An example plot of A(jw) over the range of w for typical K(s) is shown in
fig. 3.3. At w = wy, consider circle with radius g(w) which represents the bound
of the magnitude of K(jw)Gy(jw). From eq.3.31, the stability condition can
be observed for 3 cases as shown in fig.3.4 to fig3.6. For § = —ZA(jwy) —
£ (1= Afjun))

Case 1 Re(A(jw)) < 1 and 0 < 90°

According to eq. 3.31, for Re(A(jw)) < 1 and 6 < 90° the bound of uncertainty in

eq. 3.30 is given by

[K(jw)Gh(jw)| < g(w) = min (JA(jw)], 1) (3.32)

Case 2 Re(A(jw)) < 1 and 0 > 90°

In this case, the bound of uncertainty in eq. 3.30 is given by

K (jw)Gh(jw)| < g(w) = |A(jw)]|sin 0 (3.33)

16



circles with
radius g(@,)

Figure 3.4: Bound on Gy(jw): Re(A(jw))<1 and 6 < 90° (case 1)
Case 3 Re(A(jw)) > 1

Similar to case 2, the bound of uncertainty in this case is given by

K (jw)Gy(jw)| < g(w) = |A(jw)]| sin 0 (3.34)

We are interested in the behavior of this bound at frequencies where we would
expect | K (jw)Gy(jw)| to be large due to natural modes of vibration of the system

base. If w,q is the natural frequency/bandwidth of the impedance control law,
Then for w > wy,q,
K(i
A(]u)) - (]w> mq mq

7 TN
mw m m

So, in the frequency range w > w,q, the robust stability condition is

. . my| .
|K (jw)Ghy(jw)| < ‘Wd sin @

17
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Figure 3.5: Bound on Gy(jw): Re(A(jw))<1 and 6 > 90° (case 2)

Robust controller design

Consider the control law:

m

F(s) = —mﬂdQ(s)lK(s) (0Xc(s) — Xp(s)) + (—Ql(s) — 1) F.(s) (3.35)

mq
This control law is similar to the one expressed in eq. 3.18 except an extra term
Q~'(s) which multiplies . With this control law, one can obtain the same form

transfer function in eq. 3.27:

_0X(s) 1 1+ K(s)Gy(s)

Tyo(s) = F.(s)  ms?A(s) + K(s)Gy(s)

except now
K(s)

ms?

A(s) = + %Q(s) (3.36)

The filter () can be used to increase robustness of the system. It can be designed
such that the magnitude of its frequency response function is small in the range
where G}, is expected to be large, i.e. at the natural frequencies of G, and also
to keep the angle § = £ (1 — A(jw)Q(jw)) as close to 90° as possible of for wide

range of w. Consider () in the form of a lag-compensator

7'18—|—1
TS + 1

Q(s) =
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Figure 3.6: Bound on Gy(jw): Re(A(jw))>1 (case 3)

with 77 < 7. Here, |Q(jw)| will drops below 1 after the corner frequency w, = 1/7
with the rate of —20 dB/decade and will remain constant after w, = 1/7. We
can select 75 such that w, is less than the first natural frequency of the base. The
lag compensator () will also help to keep the angle 6 larger when w increases, thus
providing robustness.

As an example, consider the system with m = 10,my = 1,05 = 1.4,k = 1.
Figure 3.7 shows plots of A(jw) with and without filter @@ = % over the
frequency range w = [1, 00]. With the filter Q(s), A(jw) approaches the real axis
more slowly which will keep 6 in ineq. 3.33 going to 180° more slowly. Figure 3.8
shows plot of T (jw) for impedance control with and without Q(s) for G, =
m. Here without Q(s) the Nyquist plot of T (s) crosses the negative
real axis. Therefore, the system can be unstable for some values of wall stiffness.

On the other hand, with Q(s) the Nyquist plot of T's(s) does not the negative real

axis and therefore the system will be stable throughout the range of wall stiffness.
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Figure 3.7: Plot of A(jw) (for m = 10,mgq = 1,by = 1.4,ky = 1,Q = (0.01s +
1)/(0.1s 4+ 1))

3.6 Robust Position-Based Impedance Control for
FSMM

Figure 3.9 shows the diagram of a position-based impedance control scheme for a
typical robot manipulator. G, is the transfer function between the robot end-
effector position and the actuator force. G, is transfer function representing the
dynamic of the environment. G is the force filter and G is the transfer function
of the servo controller.

From the block diagram

F = GiX,—X.)
— GS(XO —I— AXO — Xe)
= G.(Xo+GsF. - X.) (3.37)

The desired impedance is given by
X, — Xo=Z;'F, = G,F. (3.38)

where Z; is the desired (target) impedance characteristic. Here Gy must be de-

signed to ensure the characteristics described by eq. 3.38. From the block diagram

X = GnGy(X, — X.) + G F.
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Nyquist Diagram
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Figure 3.8: Nyquist plot of T(s): top-without Q(s); bottom-with Q(s) (for
m = 10,md = 1,bd = 14, ]{Zd = 17Q = (0018 + 1)/(018 + 1),Gb = 1/(1582 +
1505 + 37500))

or

X, =(G,'G;' +1)X, - G,'F, (3.39)

Substitute eq. 3.39 into
AXy= X, — X,

to obtain

AXy, = (G'G;'+1)X.—G;'F. — X,
(GIG7P+ 1)(GyF, + Xo) — GIUF, — X

Rearranging the above equation yields

AXy = G,'G'Xo+ ((G,)G;'+1) Gy — G .

= G,'G;'Xo+ (G,'Ga— G.") F. (3.40)
where
GG,
P GG (3:41)
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A

Figure 3.9: Block diagram of the position-based impedance control scheme
From eq. 3.40 to ensure the desired impedance characteristics
Gy =G, 'Gqs— G (3.42)

For contact problem, without loss of generality, we may set the desired and
static environment nominal positions to zero., i.e., o = 0,z, = 0. With these

nominal values,

F = G,(G;F. — X.) (3.43)

Effect of Base Motion

%, x F F, ~
—>Q—>O—> G, G, G, >
+ % + + .
N _
<« G
b
+
Ax(]

Figure 3.10: Block diagram of the position-based impedance control scheme in the

FSMM

With the base motion, the measurement of the manipulator end-effector by

on-board sensors is not X, but instead X, — X;,. The block diagram of the position-
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based impedance control in the FSMM is shown in fig. 3.10. Here,

F = G (G4F., — X.+X3) (3.44)
= G, (G4F, — X, — GyF)
F = (1+G,Gy) 'G.GsF. — (1+G,Gy) "G X, (3.45)

Substituting into the equation of motion

F+F,
(1+ GGy 'GGF, — (14 GGy)'G X, + F,
GsGiF. + (1 4+ GsGy)F.

G1X,
G 1X,
G X + (1 + GGG M X,

or

X, 1+ GGy + G,Gy
1+ GGy + GGy

= -4

Substituting eq. 3.42 into equation above and rearranging yields

GGy + GGy + GdG;ll

T:m
w=G 1+ G.Gy + G.G,,

(3.47)

In the case where the transfer function between the force and end-effector
displacement is modeled as a simple mass, i.e.,

1
G = —

ms?
the transfer function in eq. 3.47 is given by

1 GGy + GGy +ms*Gy
ms? 1+ GGy + 5

1 Gy+ Gg+ms*G;rGy
ms?  Gy+G7' + mISQ

1 Go+ (GJ1 + =L5) ms?Gy

Ty =

— ms? 3.48
Gt (G ) .
Let
P (3.49)
- ms2Gy )
and
1 —1
B=|Gl'l+— 3.50
(64 ) (3.50



Then,
X, 1 Gy+ B7tA-!

T et _— =
P F, ms?2 G+ B!
1 1+ BAG,
= 3.51
ms2 A+ BAG, ( )

This equation is in a similar form to eq.3.27 in the force-based control. Actually,

for
1

— -1 _
Ga =2, C omgs? + K

eq. 3.49 becomes

AT A K ma K

ms?2 m  ms?

which is the same as eq. 3.28. Thus,

1 -1 my K
BA = (G]'+ — — 4+ —
( s m32) ( m * m52)

mg 4 _K_
m + ms?
1 1
G + ms?

ms’Gy mgs® + K
2

ms?2+ G, ms
GS (md$2 + K)

= 3.52
ms? + G, ( )
In terms of K
mg oy 1 .
BA=K le n}s
G, T oms?
Therefore, if G is selected such that
Gy= LK (3.53)

mq
then BA — K. In this case, the position-based impedance controller is
equivalent to the force-based impedance controller.

Similar to the force-based case, contact stability requires that
Z(A(jw) + B(jw)A(iw)Gy(jw)) # £ (1 + B(jw) A(iw)Gp(jw)) ,  Yw >0 (3.54)
or similar to ineq. 3.31
£ (A(jw) +e%g(w)) # (14 e%g(w)), Yw>0,¢ (3.55)

for

| B(jw)A(jw)Gy(jw)] < g(w) (3.56)
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The uncertainty bound in this case is different from the one in the force-base case

(in ineq. 3.30):

force-based: |K(jw)Go(jw)| = [K(jw)] |Gy (jw)]
position-based: |B(jw)A(jw)Gy(jw)| = |B(jw)A(jw)| |Gy(jw)|

Designing G

With high gain servo controller the uncertainty term |B(jw)A(jw)Gy(jw)| can be
much larger than |K (jw)Gy(jw)| and will affect stability of the system. Consider

a servo controller of the form

Go=alK (3.57)
mq

where « is a scalar factor. For a passive function
K= de + k’d

the servo controller is actually a PD controller. The form of G(s) in eq. 3.57 deems
appropriate as normally K'(s) would be designed to have good impedance behavior
as would also be required for the servo controller. With this controller,

Gs (mds2 + K)
ms? + G

K (mas* + K)
ms? + amﬂdK

K (md;2 + K)
mgs? + aK

BA =

Then with K(s) = bgs + kq,

(—amgw? + aky) + jabgw

BA(jw) = K(jw) (—maw? + aky) + jabgw

(—amqw? + akq) + jabgw

BA(jw)| = |K(j
|BA(jw)| K (jw)| e ———

The uncertainty bound of the position-based impedance controller will be greater than

the uncertainty bound of the force-based impedance controller when

(—amgw® + akd)2 > (—mgw® + ozkd)2
a2m§w4 — 202 kgmaw® > m§w4 — 2amgkqw?®
maw? (1 - a2) —2aks(1—a) < 0O

maw? (1+a) (1 —a) —2ak;(1—a) < 0
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which can be divided into two cases according to the value of a:

k
e a<l=w< 2—d a
mga+1
e a>1=w> Q—d a
mgoa+1

Figure 3.11 shows plots comparing the magnitudes |K (jw)| and |B(jw)A(jw)| for
several values of a. In general, for the servo controller we would expect to have
a larger than 1. Therefore, in high frequency range the uncertainty bound of the
position-based controller is expected to be larger than the uncertainty bound of
the force-based controller. This will be critical if |B(jw)A(jw)| is large in the

frequency range close to natural frequencies of G,

1 0 E T T T T T

10 ¢

N
o

N

T ——r

Magnitude
>
w

—_
o
N

T T

10 10 10 10 10 10 10
w (rad/s)

Figure 3.11: Plots of |B(jw)A(jw)| (for K(s) = 1.4s + 1,my = 1,m = 10,G, =
a™K)
mgq

Figure 3.11 shows plots of |B(jw)A(jw)Gs(jw)| for several values of o . The

base is assumed to be a simple spring-mass-damper system with m;, = 15 kg, b, =
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300 N.s/m, k, = 37500 N/m which corresponds to a second order system with
natural frequency 50 rad/s and damping ratio 0.2. The plot shows the magnitude
of the bounds in which the greatest bound is at the natural frequency of the base.

It is clearly seen that the larger the value of a the greater the uncertainty bound.

0.2
0.15¢

%; a=10

.go a=>H
= 01r

a=1= BAGb(jw) = KGb(jw)
a=0.5
0.05r
0 4 n —
0 20 40 60 80 100 120

w (rad/s)

Figure 3.12: plots of |B(jw)A(jw)Gy(jw)| (for K(s) = 1.4s + 1,mg = 1,m =
10,G, = ™ K, G, =

1
15524-300s+37500 )
Robust controller design

Consider the control law
F=G,(GsF. — X + X3)

with
1+ GG, 1

GiQ ' — = (3.58)

Gr=G,'GsQ ' — G, = aa o
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where () is an additional filter to be designed. With this control law, eq.3.46

yields

1+ GGy + GGy
"1+ GGy + GG,
GGy + Q7 + G.GaQ ™!
" 1+ GGy + GGy
1 G,Gp+ms*GiQ~ ' + G,G,Q7!

T, = G

ms? 1+ GGy + S5
- 1 Gy + GdQ_l + ms2GS‘1GdQ‘1
 ms? Gy + G+ m182

1 Go+ (G + 75) ms?GaQ ™!
ms’ Gb + (G;l + m152)

1 Gy+B 1A 1Q™!
ms?2 Gy + B!

1 1+ BAQG,

T = ms? AQ + BAQG, (3.59)

The filter ) can be designed such that the magnitude of its frequency response
function is small in the range where BAG, is expected to be large, i.e. at the
natural frequencies of G} and also to keep the angle § = Z(1 — A(jw)Q(jw))
as close to 90° as possible of for wide range of w. Consider @) in the form of a

lag-compensator
T1s+1
s+ 1

Q(s) =

with 7 < 7. Here, |Q(jw)| will drops below 1 after the corner frequency w, = 1/7
with the rate of —20 dB/decade and will remain constant after w, = 1/7. We
can select 75 such that w, is less than the first natural frequency of the base. The
lag compensator () will also help to keep the angle 6 larger when w increases, thus
providing robustness. Figure 3.13 shows the comparison of the uncertainty bound
with and without the filter at & = 20. As seen in the figure, the uncertainty bound
can be reduced substantially with Q.

Figure 3.14 shows the plots of AQ(jw) compared to A(jw) for w = [1,120]
rad/s. Here the magnitude and phase of A(jw) is reduced by the effect of the
filter ). The phase of AQ(jw) approaches 0° less quickly as w increases and
therefore the system is more robust. Figure3.15 shows the Nyquist plots of T,
with and without the filter (). Note that the plot shown in the figure is an expanded
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Figure 3.13: Comparison between the uncertainty bound with and without @

(fOI' K(S) = 1l4s+ 1,md = 1,m = 10,Gs = QO%K,G(, = m,Tl =
0.01, 7 = 0.1)

view only in high frequency range. Without the filter (), the Nyquist plot crosses
the negative real axis and therefore in contact with wall, the system can become
unstable. With the filter (), the Nyquist plot does not cross the negative real
axis for the entire frequency range and therefore, provided that T} is stable, the
system is always stable in contact.

Although the filter () can be used to increase the robustness, it can effect the
performance of the system. Therefore it should be designed taking in mind this
aspect as well. As in the example above, the design of such ) also gives good

performance as shown fig. 3.16.
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Figure 3.14: Plots of A(jw) and AQ(jw) (for K(s) = 1.4s+ 1,my = 1,m =
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Step Response

10

T T T
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
P> = g
=
T i
0.8} pb , i
V4
/
O 06 / -
3 /)
g i \
<
/! Gd
0.4} / i
/
/
0.2} / -
/)
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9
Time (sec)

Figure 3.16: Step responses of: (solid) desired admittance G, (dash-dot) T}, with

Q (fOI‘ K(S) = 1.4s + 1,md = 1,m = 1O,GS = ZO%K,G[, = m,Tl =

0.01,7 = 0.1)
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Chapter 4

Experimental Setup and Results

4.1 Experimental setup

4.1.1 A 2-DOF FSMM Test Rig

Figure4.1 shows the drawing of a 2-DOF FSMM used for testing the control
scheme. It composes of a rigid manipulator with two arms sitting on a platform
which is made of a steel rectangular plate mounted, at its corners, to four long
stainless poles. The first natural mode of vibration of the flexible structure is
around 7 Hz. The arms of the manipulator travel on the horizontal plane and
so is the vibration of the base. The manipulator arms are driven by d.c. motors
through harmonic gear units. The angles of arm movement are measured by
incremental encoders. Arm 1 has a counter mass attached to the opposite end to
bring the center of mass closer to the arm joint. At the tip of arm 2, a six-axis
force/torque sensor is installed to measure the force exerted by the wall during
contact. Under the base, a two axis-accelerometer is installed to measure the base
acceleration. The manipulator is installed near the wall so that the contact test
can be performed. Figure4.2 shows the picture of the 2-DOF FSMM that has
been constructed and Table4.1 lists the parameters of the system. The details

and specifications of the sensors and motors are given in Appendix.
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Force/torque
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Encoder 2
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Accelerometer
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Stainless rods
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%L-:/—/M_J ground

Figure 4.1: Drawing of a 2-DOF lab-scale FSMM

Figure 4.2: The 2-DOF lab-scale FSMM
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Table 4.1: Parameters of the lab-scale FSMM

Item Parameter
mass of arm 1 6.97 kg
mass of arm 2 2.76 kg
moment of inertia of arm 1 (reference to c.m.) 0.2262 kg.m?
moment of inertia of arm 2 (reference to c.m.) 0.0098 kg.m?
mass of the base 11.97 kg
length of arm 1 0.202 m
length of arm 2 0.1625 m
center of mass of arm 1 (measured from arm joint) | 0.0524 m
center of mass of arm 2 (measured from arm joint) 0.1288 m

Force sensor
- ATI-Delta

Host PC

Motor+Encoder
Hi-T Drive

Target PC
(Encoder Board NI-PCI6602,
I/0 board, NI-PCI6024E)

Accelerometer

)

sl Servo amplifier
=l Copley 412

ADXIL203EB

Figure 4.3: Experimental setup
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wall

Figure 4.4: Coordinates of the FSMM

4.1.2 Experimental Setup

of

Figure 4.3 shows the diagram of the experimental setup. The control signal
voltages are sent to the amplifiers which then supply the current proportional
to the control signal to the motors. The sensors installed are as follows: 1) the
encoders measure the angles of of rotation of the arms and send the signal to
the encoder board installed in the computer 2) the force sensor measures the
force exerted on the end-effector and sends the force signal to the I/O board also
installed in the computer 3) the accelerometer measures the acceleration of the
manipulator base and sends acceleration signals to the /O board. The real-time
signal is generated by the xPc Target system with MATLAB, Simulink and Real-
Time-Workshops. The coordinates of manipulator base and the end-effector are
defined corresponding to the diagram in fig. 4.4. Note that the wall has the surface

normal vector in the direction opposite to the positive X axis.

4.1.3 Test Procedure

In order to test the performance of the control system, contact tests were per-
formed. In the test, the end-effector of the manipulator was set up to initially
touch the wall by giving an end-point reference command slightly inside the wall.

The contact force and acceleration signals in the X-direction were then observed.
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4.2 Results

4.2.1 Force-based control

In this experiment, many tests were performed for various sets of desired impedance
parameters. The aim was to look for the conditions where unstable contacts can be
observed and see how the robust controller can improve the stability. In some cases,
the impedance controller could provide stable contact without (s). And in other
cases, the system were unstable. An example of the case where unstable contact
occurs is when the desired impedance is set to my = 50,b; = 439.8, k; = 1974.0.
Figure 4.5 shows the acceleration and contact force signals when the end-effector
made contact with the wall. Here, mild vibrations in the system could be visually
observed but the end-effector was still in contact with the wall. These vibrations
can also be observed from the contact force signal with the amplitude fluctuating
around +2.5N. In this case the system is unstable. Figure4.6 shows the acceler-
ation and contact force signals of another set up where the system was initially
unstable as can be seen from fluctuation in the contact force signal. At time t =1

second, Q(s) = i was added to the controller. With Q(s), the vibration

in the system died out quickly and after a few second, the system settled down.
Figure 4.7 shows the step responses of the system with impedance controller with
Q(s). The end-effector was initially set to contact the wall and had stable contact.
At time t = 1 second, a step command was given so that the end-effector moved
further into the wall. After the step command, the end-effector firstly reacted as if
it would move out of the wall, but quickly it moved back into the wall and settled
down with no vibration. From these plots, it is clear that Q(s) improves stability

of the system.

4.2.2 Position-based control

In this experiment, many tests were performed for various sets of desired impedance
parameters and servo control parameters. In some cases, the impedance controller
could provide stable contact without ((s). And in other cases, the system were

unstable. An example of the case where unstable contact occurred is shown be-
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Figure 4.5: The plots of acceleration and contact force for the system with force-
based impedance control shows unstable contact (no Q(s) applied): mg = 50, bq =

439.8, ky = 1974.0

low. Here, the desired impedance parameters were set to my = 20,b; =,kq =
439.82, ky = 3947.8 which correspond to the spring-mass-damper system with
natural frequency 2 Hz and damping ratio 0.7. The servo controller is a PD con-
troller with b, = 560.3, ks = 25148 which correspond to « in eq.3.57 being about
25. In the test, the manipulator’s end-effector was set to initially touch the wall
with some contact force. Then, at time ¢ = 1 second the manipulator was given
a step command on the end-effector position. The end-effector new set-point po-
sition was further inside the wall to create more contact force. Figure4.8 shows
the plots of the base acceleration and contact force signals. Initially, the contact
force acting on the end-effector is about 17 N. After the step command, large
vibration (visibly observable) occurred in the system as can be observed in the

base acceleration and the contact force signals. At time ¢ = 6.2 second, the filter

Q(s) = (%15;11 was added to the controller. With Q(s), the vibration disappeared
quickly.

Figure 4.9 shows the step response for the case where Q(s) was included from
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Figure 4.6: The plots of acceleration and contact force for the system with force-
based impedance control shows stable contact after Q(s) is applied : mg = 50, bg =

439.8, kg = 1974.0,Q = (0.01s 4+ 1)/(0.1s 4 1)

the beginning. As can be observed, no vibration occurred in this case. Clearly,

with Q(s) the stability of the system is improved.
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Figure 4.7: Step responses of the system with force-based impedance control with

Q(s) : mg =50,bg = 439.8, kg = 1974.0,Q = (0.01s + 1)/(0.1s + 1)
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Figure 4.8: Step responses of the system with position-based impedance controller:

mg = 25,bg = 439.82, kg = 3947.8, G, = 560.35425148, Q(s) = (0.015+1)/(0.1s+
1)
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Figure 4.9: Step responses of the system with robust position-based impedance
controller: my = 25,b; = 439.82k; = 3947.8,G; = 560.3s + 25148, Q(s) =
(0.01s 4+ 0f1)/(0.1s 4+ 1)
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Chapter 5

Conclusions

This research investigates force control techniques for flexible structure mounted
manipulators performing contact tasks. Impedance control is the main subject
of investigation. Two types of impedance control are studied: 1) force-based
impedance control and 2) position-based impedance control. One-DOF contact
model, along the surface normal direction, has been established. Based on the
one-DOF model, the robust control schemes for both types of impedance con-
trol are derived. The goal is for the system to perform according to the desired
impedance while remain stable when in contact with static environment such as
wall. Based on the Nyquist stability criteria, the controllers are derived by en-
suring that the Nyquist plots of the admittance of the controlled system do not
cross the negative real axis. In order to verify the control schemes, a 2-DOF lab-
scale flexible structure mounted manipulator has been constructed. Tests have
been performed and the results show that the robust controllers can resolve the
stability problems that occur under some conditions when non-robust controller
are employed.

Although the controllers derived in this study can provide stable contact, the
criteria employed are still conservative and therefore the contact performance may
not be at its best. For further work, the robust performance during contact should
be the main subject of study. Other issues such as joint flexibility, dynamic envi-

ronment and friction should also be explored.
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Outputs

The results of this research work help to understand the theory outlining the
impedance control of a flexible structure mounted manipulator performing contact
tasks. The author has been writing an article to submit to an academic journal.
The title of the article will be “Robust impedance controls for flexible structure
mounted manipulator performing contact tasks”. The writing of the article should

be finished within two months from the date posted in this report.
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Appendix A

Specifications of Sensors and

Actuators

45



Table A.1: Specifications of Force Sensors

Item Details
Made ATI INDUSTRIAL AUTOMATION
Model Delta US-150-600

Sensing ranges

F,, F, (£N) 660
F, (£N) 1,980
T,, T, (-N-m) 60
T. (+N-m) 60
Resolution Controller F/T System | 16 bit DAQ F/T System
Fy, F, (£N) 1/2 1/32
F, (£N) 1 1/16
Ty, Ty (£N-m) 3/100 3/1,600
T, (+N-m) 3/100 3/1,600

Single-axis overload

F., F, (£N) 3,400
F, (£N) 12,000
Ty, T,y (£N-m) 220
T, (£N-m) 420
Resonant frequency
F,, F,,T, 1,500 Hz
F.,T,,T, 1,700 Hz
Physical specifications
Weight 910 g
Diameter 94.5 mm
Height 33.3 mm

Temperature Error (from 22°C)
+5°C
+15°C
+£25°C
£50°C

Typical gain error
0.1%
0.5%
1%
5%
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Table A.2: Motor Specifications

Item

Motor 1

Motor 2

Made

Model
Rate output power (W)
Rate current (A)
Peak current (A)
Torque constant (Nm/A)
Moment of inertia (kg.m?)
Weight with encoder (kg)
Gear ratio
Encoder
Resolution (ppr)
Output signal
Power supply (VDC)
Max.output current (mA)

Max. signal freq. (kHz)

Harmonic Drive
System Inc.
RH-20-3004-OEM
90
3
15
18.121
0.000026 (armature)
3.02
1/100

1,000
AA/,B,B/,Z,7Z/
+5V TTL open collector
20
100

Harmonic Drive
System Inc.
RH-14GH110EM
20.3
1.8
5.4
2.602
0.0021
0.78
1/50

1,000
A, B, Z,
+5V TTL open collector
20
100
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Table A.3: Specifications of accelerometer

Item Specification
Made Analog Devices
Model ADXL203EB
No. of Axis 2
Range +1.7g
Sensitivity 1000 mV /g
Sensitivity accuracy +6
Output type Analog
Bandwidth 2.5 kHz
Noise density 110
Supply current 0.7 mA
Supply voltage 3 to 6 VDC

Temp range

Package

-40°C to 125°C
E-8
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