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Abstract

This research investigates force control techniques for flexible structure mounted

manipulators (FSMM) in contact tasks. The FSMM suffers from the dynamic

complexity due to the flexibility of the structure that the manipulator is mounted

to. These complications can get worse when the end-effector of the manipulator

is in contact with environment because instability can occur. Here, two types

of impedance control, force-based and position-based, for FSMM are investigated.

The environment is assumed to be static. The analysis was carried out by deriving

a one-dimensional contact model along the normal direction of the environment

surface. Robust controllers were designed based on Nyquist stability criteria so

that when in contact with static environment the system remains stable for all

possible environment stiffnesses. In order to test the controllers, a 2-DOF lab-

scale FSMM has been constructed. Experiments have been performed and the

results show that the robust controllers can resolve the stability problems that

occur under some conditions when non-robust controllers are used.
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บทคัดย่อ

งานวิจัยน้ีศึกษาการควบคุมแรงของแขนกลยึดติดกับฐานที่เป็นโครงสร้างยืดหยุ่นในขณะมีการสัมผัส

กับส่ิงแวดล้อม ระบบแขนกลนี้มีความยุ่งยากในการควบคุมเนื่องมาจากความยืดหยุ่นของฐาน และ

ความยุ่งยากนี้อาจเพิ่มมากขึ้นอีกเม่ือปลายของแขนกลสัมผัสกับสิ่งแวดล้อมเนื่องจากระบบอาจสูญเสีย

เสถียรภาพ งานวิจัยนี้ได้ศึกษาการควบคุมแบบอิมพีแดนซ์ (impedance control) 2 ชนิดคือ ชนิด

ที่อ้างอิงกับแรง (force-based) และ ชนิดที่อ้างอิงกับตำแหน่ง (position-based) โดยส่ิงแวดล้อมที่มี

การสัมผัสกับแขนกลถูกสมมุติให้ไม่มีการเคลื่อนไหว (static) พื้นฐานของการวิเคราะห์มาจากการ

สร้างแบบจำลองทางคณิตศาสตร์ของการสัมผัสแบบ 1 มิติตามแนวตั้งฉากพ้ืนผิวสัมผัส จากนั้นตัว

ควบคุมแบบ robust ถูกแบบโดยอ้างอิงกับเกณฑ์เสถียรภาพแบบ Nyquist ซึ่งตัวควบคุมนี้สามารถรักษา

เสถียรภาพของระบบได้ตลอดทุกค่าความยืดหยุ่นของสิ่งแวดล้อม เพื่อทดสอบการทำงานของตัวควบคุม

ที่ได้ออกแบบ แขนกลจำลองขนาดเล็กแบบ 2 องศาอิสระได้ถูกสร้างขึ้น และจากการทดสอบ ผลการ

ทดลองบ่งชี้ให้เห็นถึงความสามารถในการรักษาเสถียรภาพของระบบเมื่อควบคุมด้วยตัวควบคุมแบบ ro-

bust
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Executive Summary

Flexible structure mounted manipulator (FSMM) is a class of robot manipula-

tor system that consists of a rigid manipulator mounted on the structure that

is normally large and not rigid. The FSMM finds applications in the nuclear

waste remediation and has potentials for use in large structure inspection tasks

such as buildings, highways and bridges. In the course of manipulator motion,

reactive forces are transferred through the structure and vibrations occur. These

vibrations can cause further complication when the manipulator is in contact with

environment. This research studies force control for this type of manipulator when

in contact with static environment. The focus of the control methods is on the

impedance control where the relationship between the external force and the end-

effector displacement is defined and the robot is controlled accordingly. The goal is

for the system to perform according to the desired impedance while remain stable

when in contact with static environment such as wall. The study involves mod-

eling of the system in contact tasks as one dimension problem and based on the

one-dimensional model robust controllers are designed based on Nyquist criteria.

Two robust controllers have been derived: 1) position-based impedance control

and 2) force-based impedance control. In order to verify the control schemes, a

2-DOF lab-scale FSMM has been constructed. Tests have been performed and

the results show that the robust controllers can resolve the stability problems that

occur under some conditions when non-robust controllers are used. This research

can be studied further in a number of topics such as robust performance during

contact, joint flexibility, dynamic environment and friction.
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Chapter 1

Introduction

1.1 Statement of the Problem

Flexible structure mounted manipulator (FSMM) is a class of robot manipula-

tor system that consists of a rigid manipulator mounted on the structure that is

not rigid as shown in fig. 1.1. This system also includes a micro-macro manipu-

lator (MMM) system in which a smaller (micro) manipulator, considered rigid,

is mounted on the tip of a bigger (macro) manipulator, considered flexible. The

MMM is capable of operating in tasks that cover large working area. Here, the

macro manipulator has long arm and hence provides large working space. How-

ever, due to structural flexibility its end-point can not be positioned accurately.

During operation, the macro manipulator is employed for coarse positioning of the

micro manipulator which then operates in a narrower region with more accuracy.

In each coarse positioning, the macro manipulator holds its posture until the micro

manipulator finishes its tasks. Then the macro manipulator changes it posture to

relocate the micro manipulator, and the operation continues.

There has been much research work on various aspects of typical robot ma-

nipulators that are mounted on a rigid base. However, FSMM only attracts few

researchers. Much of the research in FSMM is carried out if not on an existing

systems then for the sake of individual interest. This is due to the particularity of

the system. Nevertheless, studying the behaviors of the FSMM can be beneficial

for understanding the effects of vibration exists in a robot system. So far the
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manipulator

rigidly mounted to 

ground

manipulator

mounted on 

deformable structure

a) typical robot manipulator b) FSMM

Figure 1.1: a) typical robot manipulator b) flexible structure mounted manipulator

FSMM finds applications in space robotics and nuclear waste remediation areas.

It also has potential for use in large structure inspection tasks such as buildings,

highways and bridges.

There are two aspects in terms of controlling a robot system, : 1) position

control and 2) forces control. Position control basically deals with the accuracy

of the end-effector while force control deals with controlling the forces exerted on

the end-effector and stability of the system. When the robot is in contact with

the environment its dynamics changes and with closed loop control, the system

can become unstable. Therefore in the tasks that require the robot to touch the

environment, the controllers must be designed such that stability is preserved.

This research aims to study force control of FSMM when it is in contact with

static environment.

1.2 Reviews on Control of FSMM

There are basically two approaches for dealing with vibration in the FSMM: 1)

vibration avoidance and 2) vibration damping. In the first approach, the manip-

ulator is controlled such that little or no vibration occurs. Two main techniques

are within this category: path planning and input shaping. In path planning, the

goal is to plan the path for the manipulator to move so that the reaction force
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transferred to the base is minimal. Sagli and Egeland [6] proposed the conser-

vation of coupling momentum that eliminates the dynamic coupling between the

end-effector and the structure in a redundant manipulator system. Nenchev and

Yoshida [5]proposed a similar scheme called the conservation of coupling momen-

tum. Torrest and Dubowsky [9] proposed a technique that controls strain energy

in the flexible structure which is presented in the form of manipulator motion by

contour mapping.

In input shaping, the idea is to filter the reference command so that the fre-

quency contents that match the natural frequencies of the system are eliminated.

Magee and Book [4] have used this technique to reduce vibration in FSMM. Kwon

et al. [1] studied several filters in input shaping techniques for large-scale manip-

ulator used in nuclear waste management. In vibration damping approach, the

goal is to damp out vibrations that occur in the system quickly. Yoshida et al.

[11] proposed an inertial damping technique with is a vibration damping approach

for FSMM. Scott and Gilbert [7] used this technique for vibration control in space

manipulator.

As oppose to position control, the force control problem has not been widely

studied and so there are many topics to be explored. This study investigates

control schemes for FSMMs which performs tasks that require the end-effector to

be in contact with static environment.

1.3 Objectives of study

This research aims to study force control of the FSMM when performs tasks that

require contact with static environment. The goal is to design controllers such that

the system remains stable for a wide range of stiffness of the static environment.
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Chapter 2

Dynamics of a Flexible Structure

Mounted Manipulator in Contact

Tasks

2.1 Equations of Motion of Robot Manipulator

Let θ ∈ �n×1 denote the vector of containing the joint angles of the rigid manip-

ulator and X ∈ �m×1 denote the m (≤ 6)-dimensional task space vector of the

end-effector of the manipulator. �n×1 represents n-dimensional Euclidean space.

X is called the “manipulation vector”.

The manipulation vector is related to the joint angles by

X = f(θ) (2.1)

The first and second derivatives of X are

Ẋ = J(θ)θ̇ (2.2)

and

Ẍ = Jθ̈ + J̇ θ̇ (2.3)

where J is the Jacobian matrix. The equation of motion of a robot manipulator
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is given by

M(θ)θ̈ + N(θ, θ̇) + G(θ) = τ + τe (2.4)

where θ is the joint angles vector

M(θ) is the mass matrix

N(θ, θ̇) is the Colioris and centrifugal forces vector

G(θ) is the gravirational forces vector

τ is the actuator torque vector

τe is a vector containing the external forces

2.2 Equations of Motion of FSMM

Let q ∈ �(n+p)×1 denote the vector of containing the joint angles of the rigid

manipulator, θ ∈ �r×1, and the states of the flexible structure ζ. The states of

the flexible structure, ζ, can be obtained from a finite dimension approximation

of the flexible modes of the structure.

The manipulation vector is related to the joint angles and the flexible structure

states by

X = f(q) = f(θ, ζ) (2.5)

The first and second derivatives of X are

Ẋ = J(q)q̇

= Jθ(θ, ζ)θ̇ + Jζ(θ, ζ)ζ̇ (2.6)

and

Ẍ = Jq̈ + J̇ q̇

= Jθθ̈ + Jζ ζ̈ + J̇θθ̇ + J̇ζ ζ̇ (2.7)

where Jθ and Jζ are Jacobian matrices of appropriate dimension. Note that J(q) =

[Jθ Jζ ].
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The equation of motion of a FSMM is given by

M(q)q̈ + N(q, q̇) + G(q) = τ + τe (2.8)

where q is a vector containing the states of the base vibration, ζ,

and the manipulator joint angles, θ

M(q) is the mass matrix

N(q, q̇) is a vector containing the Colioris forces

G(q) is the gravirational forces vector

τ is the actuator forces vector

τe is the external forces vector

When the end-effector contacts the environment, the contact forces, fe, are

related to the effective torque by

τe = JT fe (2.9)

During contact, the behaviors of the FSMM can change reasonably due to the

changes in boundary condition of the system. In general, the contact force is a

function of the joint angles, flexible structure states and the parameters of the

environment such as stiffness and damping. In a more complicated system, the

environment can itself be a dynamics system but this case is out of the scope of

this study.
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Chapter 3

Impedance Control for Flexible

Structure Mounted Manipulators in

Contact Tasks

Impedance control is a unified position-force control approach that suits manipu-

lator performing contact tasks. In this control scheme, rather than regulating the

end-effector positions and/or forces, the impedance between the end-effector dis-

placement, δxe, and acting forces, fe, is defined. The manipulator is so controlled

such that the desired impedance is achieved. Normally, the desired impedance is

in the form of a spring-mass-damper system, i.e.,

fe = Mdẍe + Bdδẋe + Kdδxe (3.1)

where Md, Bd and Kd are the desired mass, damping coefficient and Kd stiffness

matrices, respectively. The manipulator dynamic is represented by

M(θ)θ̈ + N(θ, θ̇) + G(q) = τ + JT (θ)fe (3.2)

and the end-effector velocities are related to the manipulator joint velocities by

ẋe = J(θ)θ̇ (3.3)

and

ẍe = J(θ)θ̈ + J̇(θ)θ̇ (3.4)
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There are two types of impedance controls: 1) force-based impedance control

and 2) position-based impedance control. In the force-based scheme, the control

force is calculated directly from the dynamic of the manipulator and the desired

impedance. In the position-based scheme, the main control is based on position

servo control. The desired impedance is achieved through adjustment of the posi-

tion reference.

3.1 Force-Based Impedance Control for Robot Ma-

nipulators

For brevity, a function y(θ) or y(θ, θ̇) will be written as y. Substituting eqs. 3.1

and 3.2 into eq. 3.4 yields,

M−1
d (fe − Bdδẋe − Kdδxe) = JM−1

(
τ + JT fe − N − G

)
+ J̇ θ̇

or

JM−1τ =
(
M−1

d − JM−1JT
)
fe − M−1

d (Bdδẋe + Kdδxe) + JM−1 (N + G) − J̇ θ̇

In terms of the effective forces from actuators seen at the end-effector, fa

JM−1JT fa =
(
M−1

d − JM−1JT
)
fe − M−1

d (Bdδẋe + Kdδxe)

+JM−1 (N + G) − J̇ θ̇

or

fa =
(
M̃M−1

d − I
)

fe − M̃M−1
d (Bdδẋe + Kdδxe)

+M̃JM−1 (N + G) − M̃J̇ θ̇

where M̃ =
(
JM−1JT

)−1 is the matrix called the “mobility tensor”. In turn,

the actuator torques are obtained from

τ = JT
(
M̃M−1

d − I
)

fe − JT M̃M−1
d (Bdδẋe + Kdδxe)

+JT M̃JM−1 (N + G) − JT M̃J̇ θ̇ (3.5)

With the control law in eq. 3.5, the manipulator considered at the end-effector will

behave exactly according to the desired impedance described in eq. 3.1.
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Impedance Control for Manipulators in contact Tasks

In contact tasks, the manipulator is normally operating at slow speed. Then the

equations of motion can be represented in a much simple form by neglecting some

higher order terms such as the Coriolis and centrifugal forces. In this case, the

control law in eq. 3.5 may be approximated by

τ = JT
(
M̃M−1

d − I
)

fe − JT M̃M−1
d (Bdδẋe + Kdδxe) + JT M̃JM−1G (3.6)

3.2 Position-Based Impedance Control for Robot

Manipulators

From the equation of motion,

M(q)θ̈ + N(θ, θ̇) + G(q) = τ + JT (θ)fe

We may write the control torque τ = JT fa where fa is the control forces seen at

the end-effector. In this scheme, fa is given in the servo control form:

fa = Gs(Xr − Xe) + M̃JM−1(N + G) − M̃J̇ θ̇ (3.7)

where Xr is the adjusted position reference command and Gs is the servo controller.

With this control forces, the equations of motion becomes

M̃Ẍe = Gs(Xr − Xe) + fe

or

Xr = G−1
s M̃Ẍe + Xe − G−1

s fe

Let X0 be the position reference command. Then the position reference adjustment

is given by

ΔX = Xr − X0

= G−1
s M̃Ẍe + Xe − G−1

s fe − X0

or in Laplace domain

ΔX =
(
G−1

s M̃s2 + I
)

Xe − G−1
s fe − X0 (3.8)
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But from the desired impedance,

Mds
2Xe + (Bds + Kd) (Xe − X0) = Fe

Then

Xe =
(
Mds

2 + Bds + Kd

)−1
(Fe − (Bds + Kd) X0) (3.9)

Substituting eq. 3.9 into eq. 3.8 yields

ΔX =
[(

G−1
s M̃s2 + I

) (
Mds

2 + Bds + Kd

)−1 − G−1
s

]
Fe

−
[(

G−1
s M̃s2 + I

) (
Mds

2 + Bds + Kd

)−1
(Bds + Kd) + I

]
X0

Therefore, the force filter should take the form

ΔX = GfFe

where

Gf =
(
G−1

s M̃s2 + I
) (

Mds
2 + Bds + Kd

)−1 − G−1
s (3.10)

In eq. 3.7, Xr can be written as

Xr = X0 + ΔX = X0 + GfFe

By substituting eq. 3.10 into eq. 3.7 we obtain the force control law as seen at the

end-effector

Fa =
((

M̃s2 + Gs

) (
Mds

2 + Bds + Kd

)−1 − I
)

Fe − Gs(Xe − X0)

+M̃JM−1(N + G) − M̃J̇ θ̇

or in term of control torque

τ = JT
((

M̃s2 + Gs

) (
Mds

2 + Bds + Kd

)−1 − I
)

Fe − JT Gs(Xe − X0)

+JT M̃JM−1(N + G) − JT M̃J̇ θ̇

Similarly, for contact problem the Colioris and centrifugal force terms may be

dropped, i.e.,

τ = JT
((

M̃s2 + Gs

) (
Mds

2 + Bds + Kd

)−1 − I
)

Fe − JT Gs(Xe − X0)

10



When the manipulator is in contact with the environment, in respect to con-

tact forces the problem can be reduced to one dimension, namely, the surface

normal direction. In the following sections, the analysis will focus on developing

one dimensional contact model applicable to impedance control of the FSMM. In

the analysis, the model will not include the gravity terms as they do not have

influences on the dynamics of the system. For completeness, the gravity can be

easily included by following similar analysis presented below.

3.3 Impedance Control and One-Dimensional Con-

tact Model for a FSMM

m
f fe

xe

effective mass

Figure 3.1: A simple mass model

Consider the end-effector dynamics represented by a simple mass m, actuated

by an actuator with effective force f and interacts with the environment with

external force fe as shown in fig. 3.1. xe is the displacement of the mass. The

equation of motion of the mass is given by

mẍe = f + fe (3.11)

Suppose that we would like the system to behave according the desired impedance

described by

fe = mdẍe + bdδẋe + kdδxe (3.12)

or

ẍe =
1

md

(fe − bdδẋe − kdδxe) (3.13)
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Substituting eq. 3.13 into eq. 3.11 yields

m

md

(fe − bdδẋe − kdδxe) = f + fe

f = − m

md

(bdδẋe + kdδxe) +

(
m

md

− 1

)
fe (3.14)

or in Laplace domain;

F (s) = − m

md

(bds + kd) δXe(s) +

(
m

md

− 1

)
Fe(s) (3.15)

By substituting the force according to the control law in eq. 3.14, the mass will

behave according to the desired impedance in eq. 3.12.

m
f fe

xexb

manipulator 

base
effective mass

f

Figure 3.2: One-DOF model of FSMM

Effect of Base Motion

For the FSMM consider the 1-DOF model shown in fig. 3.2. The manipulator base

motion is described by xb(t). Here, the reactive force due to the actuator force

applied to the effective mass acting on the flexible base in the opposite direction.

This reactive force can cause vibration in the system. Let the relation between

the reactive force and the manipulator base be described by

Xb(s) = −Gb(s)F (s) (3.16)

To employ the impedance controller to the FSMM, consider the form of control

law similar to eq. 3.14:

F (s) = − m

md

(bds + kd) δXm(s) +

(
m

md

− 1

)
Fe(s) (3.17)
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Here the total displacement δXe(s) is replaced by the measured displacement

δXm(s). Typically, the position of the robot’s end-effector is calculated from the

joint sensor data with respect to the base. Therefore, when Xb �= 0 the measured

displacement is not the total displacement but instead a relative displacement:

δXm(s) = δXe(s) − Xb(s). Thus,

F (s) = − m

md

(bds + kd) (δXe(s) − Xb(s)) +

(
m

md

− 1

)
Fe(s) (3.18)

Let K(s) = bds + kd. With the base motion described in eq. 3.16

F (s) = − m

md

K(s) (δXe(s) + Gb(s)F (s)) +

(
m

md

− 1

)
Fe(s)(

1 +
m

md

K(s)Gb(s)

)
F (s) = − m

md

K(s)δXe(s) +

(
m

md

− 1

)
Fe(s)

or

F (s) =

(
1 +

m

md

K(s)Gb(s)

)−1 [
− m

md

K(s)δXe(s) +

(
m

md

− 1

)
Fe(s)

]
(3.19)

or

F (s) = Gx(s)δXe(s) + Gf (s)Fe(s) (3.20)

where

Gx(s) = −
(

1 +
m

md

K(s)Gb(s)

)−1
m

md

K(s) (3.21)

and Gf (s) =

(
1 +

m

md

K(s)Gb(s)

)−1 (
m

md

− 1

)
(3.22)

With this control law, the equation of motion becomes

ms2Xe(s) = Gx(s)δXe(s) + Gf (s)Fe(s) + Fe(s)(
ms2 − Gx(s)

)
δXe(s) = (1 + Gf (s)) Fe(s)

δXe(s)

Fe(s)
=

1 + Gf (s)

ms2 − Gx(s)

=
m
md

K(s)Gb(s) + m
md

ms2
(
1 + m

md
K(s)Gb(s)

)
+ m

md
K(s)

δXe(s)

Fe(s)
=

1

ms2

1 + K(s)Gb(s)
md

m
+ K(s)

ms2 + K(s)Gb(s)
(3.23)

Here, transfer function δXe(s)/Fe(s) , the admittance of the system, contains

function Gb(s). When Gb(s) = 0 the impedance of the system is exactly the

desired impedance.
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3.4 Impedance Control with Base Acceleration Mea-

surement

Consider the control low:

F (s) = − m

md

K(s)δXm(s) +

(
m

md

− 1

)
Fe(s) + D(s)s2Xb(s) (3.24)

This control is similar to the previous control law except the addition of the term

D(s)s2Xb(s). s2Xb(s) is the acceleration of the base and D(s) is the acceleration

filter to be designed. For Xb(s) = −Gb(s)F (s),

F (s) = − m

md

K(s) (δXe(s) − Xb(s)) +

(
m

md

− 1

)
Fe(s) + D(s)s2Xb(s)

= − m

md

K(s) (δXe(s) + Gb(s)F (s)) +

(
m

md

− 1

)
Fe(s) − D(s)s2Gb(s)F (s)

F (s) = −
(

1 +
m

md

K(s)Gb(s) + D(s)s2Gb(s)

)−1
m

md

K(s)δXe(s)

+

(
1 +

m

md

K(s)Gb(s) + D(s)s2Gb(s)

)−1 (
m

md

− 1

)
Fe(s)

Substituting into eq. 3.11 and rearranging yields

δXe(s)

Fe(s)
=

1

ms2

1 +
(
K(s) + md

m
D(s)s2

)
Gb(s)

md

m
+ K(s)

ms2 +
(
K(s) + md

m
D(s)s2

)
Gb(s)

Ideally, if the acceleration filter is designed such that

D(s) = − m

md

K(s)

s2
(3.25)

the resulting transfer function would be the ideal one, i.e.,

δXe(s)

Fe(s)
=

1
md

m
+ K(s)

ms2

The filter D(s) in eq. 3.25 actually compensates for the base motion by double

integrating the acceleration signal to obtain the base motion. However, in practice

such filter will have drift problem. To cope with the drift problem, the filter can

be modified to

D(s) = − m

md

K(s)

(s + a)2
(3.26)

where a is a small positive real value.
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3.5 Robust Force-Based Impedance Control for FSMM

in Contact Tasks

In this section we derive the robust solution in case that Gb(s) is not known. The

goal is to arrive at the controller that is robust against the base vibration with

certain bound on Gb(jω). From eq. 3.23:

Tfb(s) =
δXe(s)

Fe(s)
=

1

ms2

1 + K(s)Gb(s)
md

m
+ K(s)

ms2 + K(s)Gb(s)

=
1

ms2

1 + K(s)Gb(s)

A(s) + K(s)Gb(s)
(3.27)

where

A(s) =
md

m
+

K(s)

ms2
(3.28)

Assume that the system is stable in non-contact operation. When the end-effector

is in contact with wall (stiffness kw), the condition for global stability during

contact is that T (jω) must not cross the negative real axis for all ω. This will

happen when

T (jω) = − 1

mω2

1 + K(jω)Gb(jω)

A(jω) + K(jω)Gb(jω)
= −α

where α is a positive scalar. Equivalently, if there exists some ω > 0 such that

∠ (A(jω) + K(jω)Gb(jω)) = ∠ (1 + K(jω)Gb(jω))

Thus, contact stability requires that

∠ (A(jω) + K(jω)Gb(jω)) �= ∠ (1 + K(jω)Gb(jω)) , ∀ω > 0 (3.29)

Now let us suppose that K(jω)Gb(jω) is bounded by a frequency dependent scalar

g(ω) according to:

|K(jω)Gb(jω)| < g(ω) (3.30)

Then stability requires that

∠
(
A(jω) + ejφg(ω)

) �= (
1 + ejφg(ω)

)
, ∀ω > 0, φ (3.31)

For positive (dissipative) transfer function K(s) as ω → ∞
K(jω)

mω2
→ 0 and then A(jω) = −K(jω)

mω2
+

md

m
→ md

m

15
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Figure 3.3: Typical plot of A(jω)

An example plot of A(jω) over the range of ω for typical K(s) is shown in

fig. 3.3. At ω = ω0, consider circle with radius g(ω) which represents the bound

of the magnitude of K(jω)Gb(jω). From eq. 3.31, the stability condition can

be observed for 3 cases as shown in fig. 3.4 to fig 3.6. For θ = −∠A(jω0) −
∠ (1 − A(jω0))

Case 1 Re(A(jω)) < 1 and θ < 90◦

According to eq. 3.31, for Re(A(jω)) < 1 and θ < 90◦ the bound of uncertainty in

eq. 3.30 is given by

|K(jω)Gb(jω)| < g(ω) = min (|A(jω)| , 1) (3.32)

Case 2 Re(A(jω)) < 1 and θ > 90◦

In this case, the bound of uncertainty in eq. 3.30 is given by

|K(jω)Gb(jω)| < g(ω) = |A(jω)| sin θ (3.33)

16
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Figure 3.4: Bound on Gb(jω): Re(A(jω))<1 and θ < 90◦ (case 1)

Case 3 Re(A(jω)) > 1

Similar to case 2, the bound of uncertainty in this case is given by

|K(jω)Gb(jω)| < g(ω) = |A(jω)| sin θ (3.34)

We are interested in the behavior of this bound at frequencies where we would

expect |K(jω)Gb(jω)| to be large due to natural modes of vibration of the system

base. If ωnd is the natural frequency/bandwidth of the impedance control law,

Then for ω 	 ωnd,

A(jω) = −K(jω)

mω2
+

md

m
≈ md

m

So, in the frequency range ω 	 ωnd, the robust stability condition is

|K(jω)Gb(jω)| <
∣∣∣md

m

∣∣∣ sin θ
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Robust controller design

Consider the control law:

F (s) = − m

md

Q(s)−1K(s) (δXe(s) − Xb(s)) +

(
m

md

Q−1(s) − 1

)
Fe(s) (3.35)

This control law is similar to the one expressed in eq. 3.18 except an extra term

Q−1(s) which multiplies m
md

. With this control law, one can obtain the same form

transfer function in eq. 3.27:

Tfb(s) =
δXe(s)

Fe(s)
=

1

ms2

1 + K(s)Gb(s)

A(s) + K(s)Gb(s)

except now

A(s) =
K(s)

ms2
+

md

m
Q(s) (3.36)

The filter Q(s) can be used to increase robustness of the system. It can be designed

such that the magnitude of its frequency response function is small in the range

where Gb is expected to be large, i.e. at the natural frequencies of Gb and also

to keep the angle θ = ∠ (1 − A(jω)Q(jω)) as close to 90◦ as possible of for wide

range of ω. Consider Q in the form of a lag-compensator

Q(s) =
τ1s + 1

τ2s + 1

18
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with τ1 < τ2. Here, |Q(jω)| will drops below 1 after the corner frequency ωa = 1/τ2

with the rate of −20 dB/decade and will remain constant after ωb = 1/τ1. We

can select τ2 such that ωa is less than the first natural frequency of the base. The

lag compensator Q will also help to keep the angle θ larger when ω increases, thus

providing robustness.

As an example, consider the system with m = 10,md = 1, bd = 1.4, kd = 1.

Figure 3.7 shows plots of A(jω) with and without filter Q = 0.01s+1
0.1s+1

over the

frequency range ω = [1,∞]. With the filter Q(s), A(jω) approaches the real axis

more slowly which will keep θ in ineq. 3.33 going to 180◦ more slowly. Figure 3.8

shows plot of Tfb(jω) for impedance control with and without Q(s) for Gb =

1
15s2+150s+37500

. Here without Q(s) the Nyquist plot of Tfb(s) crosses the negative

real axis. Therefore, the system can be unstable for some values of wall stiffness.

On the other hand, with Q(s) the Nyquist plot of Tfb(s) does not the negative real

axis and therefore the system will be stable throughout the range of wall stiffness.
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Figure 3.7: Plot of A(jω) (for m = 10,md = 1, bd = 1.4, kd = 1, Q = (0.01s +

1)/(0.1s + 1))

3.6 Robust Position-Based Impedance Control for

FSMM

Figure 3.9 shows the diagram of a position-based impedance control scheme for a

typical robot manipulator. Gm is the transfer function between the robot end-

effector position and the actuator force. Ge is transfer function representing the

dynamic of the environment. Gf is the force filter and Gs is the transfer function

of the servo controller.

From the block diagram

F = Gs(Xr − Xe)

= Gs(X0 + ΔX0 − Xe)

= Gs(X0 + GfFe − Xe) (3.37)

The desired impedance is given by

Xe − X0 = Z−1
d Fe = GdFe (3.38)

where Zd is the desired (target) impedance characteristic. Here Gf must be de-

signed to ensure the characteristics described by eq. 3.38. From the block diagram

X = GmGs(Xr − Xe) + GmFe

20
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Figure 3.8: Nyquist plot of Tfb(s): top–without Q(s); bottom–with Q(s) (for

m = 10,md = 1, bd = 1.4, kd = 1, Q = (0.01s + 1)/(0.1s + 1), Gb = 1/(15s2 +

150s + 37500))

or

Xr = (G−1
m G−1

s + 1)Xe − G−1
s Fe (3.39)

Substitute eq. 3.39 into

ΔX0 = Xr − Xe

to obtain

ΔX0 = (G−1
m G−1

s + 1)Xe − G−1
s Fe − X0

= (G−1
m G−1

s + 1)(GdFe + X0) − G−1
s Fe − X0

Rearranging the above equation yields

ΔX0 = G−1
m G−1

s X0 +
((

G−1
m G−1

s + 1
)
Gd − G−1

s

)
Fe

= G−1
m G−1

s X0 +
(
G−1

p Gd − G−1
s

)
Fe (3.40)

where

Gp =
GsGm

1 + GsGm

(3.41)
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Figure 3.9: Block diagram of the position-based impedance control scheme

From eq. 3.40 to ensure the desired impedance characteristics

Gf = G−1
p Gd − G−1

s (3.42)

For contact problem, without loss of generality, we may set the desired and

static environment nominal positions to zero., i.e., x0 = 0, xe = 0. With these

nominal values,

F = Gs(GfFe − Xe) (3.43)

Effect of Base Motion

s
G

m
G e

G
F e

F

bGb
x

fG

0x r
x

0x

w
x

e
x

Figure 3.10: Block diagram of the position-based impedance control scheme in the

FSMM

With the base motion, the measurement of the manipulator end-effector by

on-board sensors is not Xe but instead Xe−Xb. The block diagram of the position-
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based impedance control in the FSMM is shown in fig. 3.10. Here,

F = Gs(GfFe − Xe + Xb) (3.44)

= Gs(GfFe − Xe − GbF )

F = (1 + GsGb)
−1GsGfFe − (1 + GsGb)

−1GsXe (3.45)

Substituting into the equation of motion

F + Fe = G−1
m Xe

(1 + GsGb)
−1GsGfFe − (1 + GsGb)

−1GsXe + Fe = G−1
m Xe

GsGfFe + (1 + GsGb)Fe = GsX + (1 + GsGb)G
−1
m Xe

or

Tpb =
Xe

Fe

=
1 + GsGb + GsGf

(1 + GsGb)G−1
m + Gs

= Gm
1 + GsGb + GsGf

1 + GsGb + GsGm

(3.46)

Substituting eq. 3.42 into equation above and rearranging yields

Tpb = Gm
GsGb + GsGd + GdG

−1
m

1 + GsGb + GsGm

(3.47)

In the case where the transfer function between the force and end-effector

displacement is modeled as a simple mass, i.e.,

Gm =
1

ms2

the transfer function in eq. 3.47 is given by

Tpb =
1

ms2

GsGb + GsGd + ms2Gd

1 + GsGb + Gs

ms2

=
1

ms2

Gb + Gd + ms2G−1
s Gd

Gb + G−1
s + 1

ms2

=
1

ms2

Gb +
(
G−1

s + 1
ms2

)
ms2Gd

Gb +
(
G−1

s + 1
ms2

) (3.48)

Let

A =
1

ms2Gd

(3.49)

and

B =

(
G−1

s +
1

ms2

)−1

(3.50)
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Then,

Tpb =
Xe

Fe

=
1

ms2

Gb + B−1A−1

Gb + B−1

=
1

ms2

1 + BAGb

A + BAGb

(3.51)

This equation is in a similar form to eq. 3.27 in the force-based control. Actually,

for

Gd = Z−1
d =

1

mds2 + K

eq. 3.49 becomes

A =
mds

2 + K

ms2
=

md

m
+

K

ms2

which is the same as eq. 3.28. Thus,

BA =

(
G−1

s +
1

ms2

)−1 (
md

m
+

K

ms2

)

=
md

m
+ K

ms2

1
Gs

+ 1
ms2

=
ms2Gs

ms2 + Gs

mds
2 + K

ms2

=
Gs (mds

2 + K)

ms2 + Gs

(3.52)

In terms of K

BA = K

(
md

mK
+ 1

ms2

1
Gs

+ 1
ms2

)

Therefore, if Gs is selected such that

Gs =
m

md

K (3.53)

then BA → K. In this case, the position-based impedance controller is

equivalent to the force-based impedance controller.

Similar to the force-based case, contact stability requires that

∠ (A(jω) + B(jω)A(iω)Gb(jω)) �= ∠ (1 + B(jω)A(iω)Gb(jω)) , ∀ω > 0 (3.54)

or similar to ineq. 3.31

∠
(
A(jω) + ejφg(ω)

) �= (
1 + ejφg(ω)

)
, ∀ω > 0, φ (3.55)

for

|B(jω)A(jω)Gb(jω)| < g(ω) (3.56)
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The uncertainty bound in this case is different from the one in the force-base case

(in ineq. 3.30):

force-based: |K(jω)Gb(jω)| = |K(jω)| |Gb(jω)|
position-based: |B(jω)A(jω)Gb(jω)| = |B(jω)A(jω)| |Gb(jω)|

Designing Gs

With high gain servo controller the uncertainty term |B(jω)A(jω)Gb(jω)| can be

much larger than |K(jω)Gb(jω)| and will affect stability of the system. Consider

a servo controller of the form

Gs = α
m

md

K (3.57)

where α is a scalar factor. For a passive function

K = bds + kd

the servo controller is actually a PD controller. The form of G(s) in eq. 3.57 deems

appropriate as normally K(s) would be designed to have good impedance behavior

as would also be required for the servo controller. With this controller,

BA =
Gs (mds

2 + K)

ms2 + Gs

=
α m

md
K (mds

2 + K)

ms2 + α m
md

K

= K
α (mds

2 + K)

mds2 + αK

Then with K(s) = bds + kd,

BA(jω) = K(jω)
(−αmdω

2 + αkd) + jαbdω

(−mdω2 + αkd) + jαbdω

|BA(jω)| = |K(jω)|
∣∣∣∣(−αmdω

2 + αkd) + jαbdω

(−mdω2 + αkd) + jαbdω

∣∣∣∣
The uncertainty bound of the position-based impedance controller will be greater than

the uncertainty bound of the force-based impedance controller when

(−αmdω
2 + αkd

)2
>

(−mdω
2 + αkd

)2

α2m2
dω

4 − 2α2kdmdω
2 > m2

dω
4 − 2αmdkdω

2

mdω
2
(
1 − α2

) − 2αkd (1 − α) < 0

mdω
2 (1 + α) (1 − α) − 2αkd (1 − α) < 0
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which can be divided into two cases according to the value of α:

• α < 1 ⇒ ω <

√
2

kd

md

α

α + 1

• α > 1 ⇒ ω >

√
2

kd

md

α

α + 1

Figure 3.11 shows plots comparing the magnitudes |K(jω)| and |B(jω)A(jω)| for

several values of α. In general, for the servo controller we would expect to have

α larger than 1. Therefore, in high frequency range the uncertainty bound of the

position-based controller is expected to be larger than the uncertainty bound of

the force-based controller. This will be critical if |B(jω)A(jω)| is large in the

frequency range close to natural frequencies of Gb.
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Figure 3.11: Plots of |B(jω)A(jω)| (for K(s) = 1.4s + 1,md = 1,m = 10, Gs =

α m
md

K )

Figure 3.11 shows plots of |B(jω)A(jω)Gb(jω)| for several values of α . The

base is assumed to be a simple spring-mass-damper system with mb = 15 kg, bb =
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300 N.s/m, kb = 37500 N/m which corresponds to a second order system with

natural frequency 50 rad/s and damping ratio 0.2. The plot shows the magnitude

of the bounds in which the greatest bound is at the natural frequency of the base.

It is clearly seen that the larger the value of α the greater the uncertainty bound.
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Figure 3.12: plots of |B(jω)A(jω)Gb(jω)| (for K(s) = 1.4s + 1,md = 1,m =

10, Gs = α m
md

K,Gb = 1
15s2+300s+37500

)

Robust controller design

Consider the control law

F = Gs(GfFe − X + Xb)

with

Gf = G−1
p GdQ

−1 − G−1
s =

1 + GsGm

GsGm

GdQ
−1 − 1

Gs

(3.58)
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where Q is an additional filter to be designed. With this control law, eq. 3.46

yields

Tpb = Gm
1 + GsGb + GsGf

1 + GsGb + GsGm

= Gm

GsGb + Gd

Gm
Q−1 + GsGdQ

−1

1 + GsGb + GsGm

=
1

ms2

GsGb + ms2GdQ
−1 + GsGdQ

−1

1 + GsGb + Gs

ms2

=
1

ms2

Gb + GdQ
−1 + ms2G−1

s GdQ
−1

Gb + G−1
s + 1

ms2

=
1

ms2

Gb +
(
G−1

s + 1
ms2

)
ms2GdQ

−1

Gb +
(
G−1

s + 1
ms2

)
=

1

ms2

Gb + B−1A−1Q−1

Gb + B−1

Tpb =
1

ms2

1 + BAQGb

AQ + BAQGb

(3.59)

The filter Q can be designed such that the magnitude of its frequency response

function is small in the range where BAGb is expected to be large, i.e. at the

natural frequencies of Gb and also to keep the angle θ = ∠ (1 − A(jω)Q(jω))

as close to 90◦ as possible of for wide range of ω. Consider Q in the form of a

lag-compensator

Q(s) =
τ1s + 1

τ2s + 1

with τ1 < τ2. Here, |Q(jω)| will drops below 1 after the corner frequency ωa = 1/τ2

with the rate of −20 dB/decade and will remain constant after ωb = 1/τ1. We

can select τ2 such that ωa is less than the first natural frequency of the base. The

lag compensator Q will also help to keep the angle θ larger when ω increases, thus

providing robustness. Figure 3.13 shows the comparison of the uncertainty bound

with and without the filter at α = 20. As seen in the figure, the uncertainty bound

can be reduced substantially with Q.

Figure 3.14 shows the plots of AQ(jω) compared to A(jω) for ω = [1, 120]

rad/s. Here the magnitude and phase of A(jω) is reduced by the effect of the

filter Q. The phase of AQ(jω) approaches 0◦ less quickly as ω increases and

therefore the system is more robust. Figure 3.15 shows the Nyquist plots of Tpb

with and without the filter Q. Note that the plot shown in the figure is an expanded
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Figure 3.13: Comparison between the uncertainty bound with and without Q

(for K(s) = 1.4s + 1,md = 1,m = 10, Gs = 20 m
md

K,Gb = 1
15s2+300s+37500

, τ1 =

0.01, τ2 = 0.1)

view only in high frequency range. Without the filter Q, the Nyquist plot crosses

the negative real axis and therefore in contact with wall, the system can become

unstable. With the filter Q, the Nyquist plot does not cross the negative real

axis for the entire frequency range and therefore, provided that Tpb is stable, the

system is always stable in contact.

Although the filter Q can be used to increase the robustness, it can effect the

performance of the system. Therefore it should be designed taking in mind this

aspect as well. As in the example above, the design of such Q also gives good

performance as shown fig. 3.16.
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, τ1 = 0.01, τ2 = 0.1)
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Chapter 4

Experimental Setup and Results

4.1 Experimental setup

4.1.1 A 2-DOF FSMM Test Rig

Figure 4.1 shows the drawing of a 2-DOF FSMM used for testing the control

scheme. It composes of a rigid manipulator with two arms sitting on a platform

which is made of a steel rectangular plate mounted, at its corners, to four long

stainless poles. The first natural mode of vibration of the flexible structure is

around 7 Hz. The arms of the manipulator travel on the horizontal plane and

so is the vibration of the base. The manipulator arms are driven by d.c. motors

through harmonic gear units. The angles of arm movement are measured by

incremental encoders. Arm 1 has a counter mass attached to the opposite end to

bring the center of mass closer to the arm joint. At the tip of arm 2, a six-axis

force/torque sensor is installed to measure the force exerted by the wall during

contact. Under the base, a two axis-accelerometer is installed to measure the base

acceleration. The manipulator is installed near the wall so that the contact test

can be performed. Figure 4.2 shows the picture of the 2-DOF FSMM that has

been constructed and Table 4.1 lists the parameters of the system. The details

and specifications of the sensors and motors are given in Appendix.
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Counter

weight

Force/torque

sensor

Motor 2

Motor 1

Encoder 2

Encoder 1

Accelerometer

installed under the base

Fixed to rigid 

ground

Stainless rods

Arm 2

Arm 1

Figure 4.1: Drawing of a 2-DOF lab-scale FSMM

Figure 4.2: The 2-DOF lab-scale FSMM
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Table 4.1: Parameters of the lab-scale FSMM
Item Parameter

mass of arm 1 6.97 kg

mass of arm 2 2.76 kg

moment of inertia of arm 1 (reference to c.m.) 0.2262 kg.m2

moment of inertia of arm 2 (reference to c.m.) 0.0098 kg.m2

mass of the base 11.97 kg

length of arm 1 0.202 m

length of arm 2 0.1625 m

center of mass of arm 1 (measured from arm joint) 0.0524 m

center of mass of arm 2 (measured from arm joint) 0.1288 m

Host PC

Target PC

(Encoder Board NI-PCI6602, 

I/O board, NI-PCI6024E)

Servo amplifier

Copley 412

Force sensor

ATI-Delta

Accelerometer

ADXL203EB

Motor+Encoder

Hi-T Drive

Figure 4.3: Experimental setup
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1

2

Figure 4.4: Coordinates of the FSMM

4.1.2 Experimental Setup

of

Figure 4.3 shows the diagram of the experimental setup. The control signal

voltages are sent to the amplifiers which then supply the current proportional

to the control signal to the motors. The sensors installed are as follows: 1) the

encoders measure the angles of of rotation of the arms and send the signal to

the encoder board installed in the computer 2) the force sensor measures the

force exerted on the end-effector and sends the force signal to the I/O board also

installed in the computer 3) the accelerometer measures the acceleration of the

manipulator base and sends acceleration signals to the I/O board. The real-time

signal is generated by the xPc Target system with MATLAB, Simulink and Real-

Time-Workshops. The coordinates of manipulator base and the end-effector are

defined corresponding to the diagram in fig. 4.4. Note that the wall has the surface

normal vector in the direction opposite to the positive X axis.

4.1.3 Test Procedure

In order to test the performance of the control system, contact tests were per-

formed. In the test, the end-effector of the manipulator was set up to initially

touch the wall by giving an end-point reference command slightly inside the wall.

The contact force and acceleration signals in the X-direction were then observed.
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4.2 Results

4.2.1 Force-based control

In this experiment, many tests were performed for various sets of desired impedance

parameters. The aim was to look for the conditions where unstable contacts can be

observed and see how the robust controller can improve the stability. In some cases,

the impedance controller could provide stable contact without Q(s). And in other

cases, the system were unstable. An example of the case where unstable contact

occurs is when the desired impedance is set to md = 50, bd = 439.8, kd = 1974.0.

Figure 4.5 shows the acceleration and contact force signals when the end-effector

made contact with the wall. Here, mild vibrations in the system could be visually

observed but the end-effector was still in contact with the wall. These vibrations

can also be observed from the contact force signal with the amplitude fluctuating

around ±2.5N. In this case the system is unstable. Figure 4.6 shows the acceler-

ation and contact force signals of another set up where the system was initially

unstable as can be seen from fluctuation in the contact force signal. At time t = 1

second, Q(s) = 0.1s+1
0.01s+1

was added to the controller. With Q(s), the vibration

in the system died out quickly and after a few second, the system settled down.

Figure 4.7 shows the step responses of the system with impedance controller with

Q(s). The end-effector was initially set to contact the wall and had stable contact.

At time t = 1 second, a step command was given so that the end-effector moved

further into the wall. After the step command, the end-effector firstly reacted as if

it would move out of the wall, but quickly it moved back into the wall and settled

down with no vibration. From these plots, it is clear that Q(s) improves stability

of the system.

4.2.2 Position-based control

In this experiment, many tests were performed for various sets of desired impedance

parameters and servo control parameters. In some cases, the impedance controller

could provide stable contact without Q(s). And in other cases, the system were

unstable. An example of the case where unstable contact occurred is shown be-
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Figure 4.5: The plots of acceleration and contact force for the system with force-

based impedance control shows unstable contact (no Q(s) applied): md = 50, bd =

439.8, kd = 1974.0

low. Here, the desired impedance parameters were set to md = 20, bd =, kd =

439.82, kd = 3947.8 which correspond to the spring-mass-damper system with

natural frequency 2 Hz and damping ratio 0.7. The servo controller is a PD con-

troller with bs = 560.3, ks = 25148 which correspond to α in eq. 3.57 being about

25. In the test, the manipulator’s end-effector was set to initially touch the wall

with some contact force. Then, at time t = 1 second the manipulator was given

a step command on the end-effector position. The end-effector new set-point po-

sition was further inside the wall to create more contact force. Figure 4.8 shows

the plots of the base acceleration and contact force signals. Initially, the contact

force acting on the end-effector is about 17 N. After the step command, large

vibration (visibly observable) occurred in the system as can be observed in the

base acceleration and the contact force signals. At time t = 6.2 second, the filter

Q(s) = 0.1s+1
0.01s+1

was added to the controller. With Q(s), the vibration disappeared

quickly.

Figure 4.9 shows the step response for the case where Q(s) was included from
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Figure 4.6: The plots of acceleration and contact force for the system with force-

based impedance control shows stable contact after Q(s) is applied : md = 50, bd =

439.8, kd = 1974.0, Q = (0.01s + 1)/(0.1s + 1)

the beginning. As can be observed, no vibration occurred in this case. Clearly,

with Q(s) the stability of the system is improved.
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Figure 4.7: Step responses of the system with force-based impedance control with

Q(s) : md = 50, bd = 439.8, kd = 1974.0, Q = (0.01s + 1)/(0.1s + 1)
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Figure 4.8: Step responses of the system with position-based impedance controller:

md = 25, bd = 439.82, kd = 3947.8, Gs = 560.3s+25148, Q(s) = (0.01s+1)/(0.1s+

1)

39



0 2 4 6 8 10
−0.05

0

0.05

0 2 4 6 8 10
−80

−60

−40

−20

0

step command

Figure 4.9: Step responses of the system with robust position-based impedance

controller: md = 25, bd = 439.82, kd = 3947.8, Gs = 560.3s + 25148, Q(s) =

(0.01s + of1)/(0.1s + 1)
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Chapter 5

Conclusions

This research investigates force control techniques for flexible structure mounted

manipulators performing contact tasks. Impedance control is the main subject

of investigation. Two types of impedance control are studied: 1) force-based

impedance control and 2) position-based impedance control. One-DOF contact

model, along the surface normal direction, has been established. Based on the

one-DOF model, the robust control schemes for both types of impedance con-

trol are derived. The goal is for the system to perform according to the desired

impedance while remain stable when in contact with static environment such as

wall. Based on the Nyquist stability criteria, the controllers are derived by en-

suring that the Nyquist plots of the admittance of the controlled system do not

cross the negative real axis. In order to verify the control schemes, a 2-DOF lab-

scale flexible structure mounted manipulator has been constructed. Tests have

been performed and the results show that the robust controllers can resolve the

stability problems that occur under some conditions when non-robust controller

are employed.

Although the controllers derived in this study can provide stable contact, the

criteria employed are still conservative and therefore the contact performance may

not be at its best. For further work, the robust performance during contact should

be the main subject of study. Other issues such as joint flexibility, dynamic envi-

ronment and friction should also be explored.
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Outputs

The results of this research work help to understand the theory outlining the

impedance control of a flexible structure mounted manipulator performing contact

tasks. The author has been writing an article to submit to an academic journal.

The title of the article will be “Robust impedance controls for flexible structure

mounted manipulator performing contact tasks”. The writing of the article should

be finished within two months from the date posted in this report.
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Appendix A

Specifications of Sensors and

Actuators
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Table A.1: Specifications of Force Sensors

Item Details

Made ATI INDUSTRIAL AUTOMATION

Model Delta US-150-600

Sensing ranges

Fx, Fy (±N) 660

Fz (±N) 1, 980

Tx, Ty (±N-m) 60

Tz (±N-m) 60

Resolution Controller F/T System 16 bit DAQ F/T System

Fx, Fy (±N) 1/2 1/32

Fz (±N) 1 1/16

Tx, Ty (±N-m) 3/100 3/1, 600

Tz (±N-m) 3/100 3/1, 600

Single-axis overload

Fx, Fy (±N) 3, 400

Fz (±N) 12, 000

Tx, Ty (±N-m) 220

Tz (±N-m) 420

Resonant frequency

Fx, Fy, Tz 1, 500 Hz

Fz, Tx, Ty 1, 700 Hz

Physical specifications

Weight 910 g

Diameter 94.5 mm

Height 33.3 mm

Temperature Error (from 22◦C) Typical gain error

±5◦C 0.1%

±15◦C 0.5%

±25◦C 1%

±50◦C 5%
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Table A.2: Motor Specifications

Item Motor 1 Motor 2

Made Harmonic Drive Harmonic Drive

System Inc. System Inc.

Model RH-20-3004-OEM RH-14GH11OEM

Rate output power (W) 90 20.3

Rate current (A) 3 1.8

Peak current (A) 15 5.4

Torque constant (Nm/A) 18.121 2.602

Moment of inertia (kg.m2) 0.000026 (armature) 0.0021

Weight with encoder (kg) 3.02 0.78

Gear ratio 1/100 1/50

Encoder

Resolution (ppr) 1,000 1,000

Output signal A, A/, B, B/, Z, Z/ A, B, Z,

Power supply (VDC) +5V TTL open collector +5V TTL open collector

Max.output current (mA) 20 20

Max. signal freq. (kHz) 100 100
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Table A.3: Specifications of accelerometer

Item Specification

Made Analog Devices

Model ADXL203EB

No. of Axis 2

Range ±1.7g

Sensitivity 1000 mV/g

Sensitivity accuracy ±6

Output type Analog

Bandwidth 2.5 kHz

Noise density 110

Supply current 0.7 mA

Supply voltage 3 to 6 VDC

Temp range -40◦C to 125◦C

Package E-8

48


	MRG4880198_s1
	MRG4880198_s2

