A

Figure 3.9: Block diagram of the position-based impedance control scheme
From eq. 3.40 to ensure the desired impedance characteristics
Gy =G, 'Gqs— G (3.42)

For contact problem, without loss of generality, we may set the desired and
static environment nominal positions to zero., i.e., o = 0,z, = 0. With these

nominal values,

F = G,(G;F. — X.) (3.43)

Effect of Base Motion

%, x F F, ~
—>Q—>O—> G, G, G, >
+ % + + .
N _
<« G
b
+
Ax(]

Figure 3.10: Block diagram of the position-based impedance control scheme in the

FSMM

With the base motion, the measurement of the manipulator end-effector by

on-board sensors is not X, but instead X, — X;,. The block diagram of the position-
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based impedance control in the FSMM is shown in fig. 3.10. Here,

F = G (G4F., — X.+X3) (3.44)
= G, (G4F, — X, — GyF)
F = (1+G,Gy) 'G.GsF. — (1+G,Gy) "G X, (3.45)

Substituting into the equation of motion

F+F,
(1+ GGy 'GGF, — (14 GGy)'G X, + F,
GsGiF. + (1 4+ GsGy)F.

G1X,
G 1X,
G X + (1 + GGG M X,

or

X, 1+ GGy + G,Gy
1+ GGy + GGy

= -4

Substituting eq. 3.42 into equation above and rearranging yields

GGy + GGy + GdG;ll

T:m
w=G 1+ G.Gy + G.G,,

(3.47)

In the case where the transfer function between the force and end-effector
displacement is modeled as a simple mass, i.e.,

1
G = —

ms?
the transfer function in eq. 3.47 is given by

1 GGy + GGy +ms*Gy
ms? 1+ GGy + 5

1 Gy+ Gg+ms*G;rGy
ms?  Gy+G7' + mISQ

1 Go+ (GJ1 + =L5) ms?Gy

Ty =

— ms? 3.48
Gt (G ) .
Let
P (3.49)
- ms2Gy )
and
1 —1
B=|Gl'l+— 3.50
(64 ) (3.50



Then,
X, 1 Gy+ B7tA-!

T et _— =
P F, ms?2 G+ B!
1 1+ BAG,
= 3.51
ms2 A+ BAG, ( )

This equation is in a similar form to eq.3.27 in the force-based control. Actually,

for
1

— -1 _
Ga =2, C omgs? + K

eq. 3.49 becomes

AT A K ma K

ms?2 m  ms?

which is the same as eq. 3.28. Thus,

1 -1 my K
BA = (G]'+ — — 4+ —
( s m32) ( m * m52)

mg 4 _K_
m + ms?
1 1
G + ms?

ms’Gy mgs® + K
2

ms?2+ G, ms
GS (md$2 + K)

= 3.52
ms? + G, ( )
In terms of K
mg oy 1 .
BA=K le n}s
G, T oms?
Therefore, if G is selected such that
Gy= LK (3.53)

mq
then BA — K. In this case, the position-based impedance controller is
equivalent to the force-based impedance controller.

Similar to the force-based case, contact stability requires that
Z(A(jw) + B(jw)A(iw)Gy(jw)) # £ (1 + B(jw) A(iw)Gp(jw)) ,  Yw >0 (3.54)
or similar to ineq. 3.31
£ (A(jw) +e%g(w)) # (14 e%g(w)), Yw>0,¢ (3.55)

for

| B(jw)A(jw)Gy(jw)] < g(w) (3.56)
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The uncertainty bound in this case is different from the one in the force-base case

(in ineq. 3.30):

force-based: |K(jw)Go(jw)| = [K(jw)] |Gy (jw)]
position-based: |B(jw)A(jw)Gy(jw)| = |B(jw)A(jw)| |Gy(jw)|

Designing G

With high gain servo controller the uncertainty term |B(jw)A(jw)Gy(jw)| can be
much larger than |K (jw)Gy(jw)| and will affect stability of the system. Consider

a servo controller of the form

Go=alK (3.57)
mq

where « is a scalar factor. For a passive function
K= de + k’d

the servo controller is actually a PD controller. The form of G(s) in eq. 3.57 deems
appropriate as normally K'(s) would be designed to have good impedance behavior
as would also be required for the servo controller. With this controller,

Gs (mds2 + K)
ms? + G

K (mas* + K)
ms? + amﬂdK

K (md;2 + K)
mgs? + aK

BA =

Then with K(s) = bgs + kq,

(—amgw? + aky) + jabgw

BA(jw) = K(jw) (—maw? + aky) + jabgw

(—amqw? + akq) + jabgw

BA(jw)| = |K(j
|BA(jw)| K (jw)| e ———

The uncertainty bound of the position-based impedance controller will be greater than

the uncertainty bound of the force-based impedance controller when

(—amgw® + akd)2 > (—mgw® + ozkd)2
a2m§w4 — 202 kgmaw® > m§w4 — 2amgkqw?®
maw? (1 - a2) —2aks(1—a) < 0O

maw? (1+a) (1 —a) —2ak;(1—a) < 0

25



which can be divided into two cases according to the value of a:

k
e a<l=w< 2—d a
mga+1
e a>1=w> Q—d a
mgoa+1

Figure 3.11 shows plots comparing the magnitudes |K (jw)| and |B(jw)A(jw)| for
several values of a. In general, for the servo controller we would expect to have
a larger than 1. Therefore, in high frequency range the uncertainty bound of the
position-based controller is expected to be larger than the uncertainty bound of
the force-based controller. This will be critical if |B(jw)A(jw)| is large in the

frequency range close to natural frequencies of G,

1 0 E T T T T T

10 ¢

N
o

N

T ——r

Magnitude
>
w

—_
o
N

T T

10 10 10 10 10 10 10
w (rad/s)

Figure 3.11: Plots of |B(jw)A(jw)| (for K(s) = 1.4s + 1,my = 1,m = 10,G, =
a™K)
mgq

Figure 3.11 shows plots of |B(jw)A(jw)Gs(jw)| for several values of o . The

base is assumed to be a simple spring-mass-damper system with m;, = 15 kg, b, =
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300 N.s/m, k, = 37500 N/m which corresponds to a second order system with
natural frequency 50 rad/s and damping ratio 0.2. The plot shows the magnitude
of the bounds in which the greatest bound is at the natural frequency of the base.

It is clearly seen that the larger the value of a the greater the uncertainty bound.

0.2
0.15¢

%; a=10

.go a=>H
= 01r

a=1= BAGb(jw) = KGb(jw)
a=0.5
0.05r
0 4 n —
0 20 40 60 80 100 120

w (rad/s)

Figure 3.12: plots of |B(jw)A(jw)Gy(jw)| (for K(s) = 1.4s + 1,mg = 1,m =
10,G, = ™ K, G, =

1
15524-300s+37500 )
Robust controller design

Consider the control law
F=G,(GsF. — X + X3)

with
1+ GG, 1

GiQ ' — = (3.58)

Gr=G,'GsQ ' — G, = aa o
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where () is an additional filter to be designed. With this control law, eq.3.46

yields

1+ GGy + GGy
"1+ GGy + GG,
GGy + Q7 + G.GaQ ™!
" 1+ GGy + GGy
1 G,Gp+ms*GiQ~ ' + G,G,Q7!

T, = G

ms? 1+ GGy + S5
- 1 Gy + GdQ_l + ms2GS‘1GdQ‘1
 ms? Gy + G+ m182

1 Go+ (G + 75) ms?GaQ ™!
ms’ Gb + (G;l + m152)

1 Gy+B 1A 1Q™!
ms?2 Gy + B!

1 1+ BAQG,

T = ms? AQ + BAQG, (3.59)

The filter ) can be designed such that the magnitude of its frequency response
function is small in the range where BAG, is expected to be large, i.e. at the
natural frequencies of G} and also to keep the angle § = Z(1 — A(jw)Q(jw))
as close to 90° as possible of for wide range of w. Consider @) in the form of a

lag-compensator
T1s+1
s+ 1

Q(s) =

with 7 < 7. Here, |Q(jw)| will drops below 1 after the corner frequency w, = 1/7
with the rate of —20 dB/decade and will remain constant after w, = 1/7. We
can select 75 such that w, is less than the first natural frequency of the base. The
lag compensator () will also help to keep the angle 6 larger when w increases, thus
providing robustness. Figure 3.13 shows the comparison of the uncertainty bound
with and without the filter at & = 20. As seen in the figure, the uncertainty bound
can be reduced substantially with Q.

Figure 3.14 shows the plots of AQ(jw) compared to A(jw) for w = [1,120]
rad/s. Here the magnitude and phase of A(jw) is reduced by the effect of the
filter ). The phase of AQ(jw) approaches 0° less quickly as w increases and
therefore the system is more robust. Figure3.15 shows the Nyquist plots of T,
with and without the filter (). Note that the plot shown in the figure is an expanded
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Figure 3.13: Comparison between the uncertainty bound with and without @

(fOI' K(S) = 1l4s+ 1,md = 1,m = 10,Gs = QO%K,G(, = m,Tl =
0.01, 7 = 0.1)

view only in high frequency range. Without the filter (), the Nyquist plot crosses
the negative real axis and therefore in contact with wall, the system can become
unstable. With the filter (), the Nyquist plot does not cross the negative real
axis for the entire frequency range and therefore, provided that T} is stable, the
system is always stable in contact.

Although the filter () can be used to increase the robustness, it can effect the
performance of the system. Therefore it should be designed taking in mind this
aspect as well. As in the example above, the design of such ) also gives good

performance as shown fig. 3.16.
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Figure 3.14: Plots of A(jw) and AQ(jw) (for K(s) = 1.4s+ 1,my = 1,m =
10,71 = 0.01,7 = 0.1)

x 10 Nyquist Diagram
2 T T T

Imaginary Axis
o
1

_2 l l l l l l l |
8 -7 -6 -5 4 -3 -2 -1 0 1
(@) x107°
x10°
2
(2]
o 1k i
2
>
5 of 1
=)
©
E 4L i
_2 | l l
s -7 -6 -5 1
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Step Response
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Figure 3.16: Step responses of: (solid) desired admittance G, (dash-dot) T}, with

Q (fOI‘ K(S) = 1.4s + 1,md = 1,m = 1O,GS = ZO%K,G[, = m,Tl =

0.01,7 = 0.1)
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Chapter 4

Experimental Setup and Results

4.1 Experimental setup

4.1.1 A 2-DOF FSMM Test Rig

Figure4.1 shows the drawing of a 2-DOF FSMM used for testing the control
scheme. It composes of a rigid manipulator with two arms sitting on a platform
which is made of a steel rectangular plate mounted, at its corners, to four long
stainless poles. The first natural mode of vibration of the flexible structure is
around 7 Hz. The arms of the manipulator travel on the horizontal plane and
so is the vibration of the base. The manipulator arms are driven by d.c. motors
through harmonic gear units. The angles of arm movement are measured by
incremental encoders. Arm 1 has a counter mass attached to the opposite end to
bring the center of mass closer to the arm joint. At the tip of arm 2, a six-axis
force/torque sensor is installed to measure the force exerted by the wall during
contact. Under the base, a two axis-accelerometer is installed to measure the base
acceleration. The manipulator is installed near the wall so that the contact test
can be performed. Figure4.2 shows the picture of the 2-DOF FSMM that has
been constructed and Table4.1 lists the parameters of the system. The details

and specifications of the sensors and motors are given in Appendix.
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Force/torque
sensor

Encoder 2

_ Motor 1
/ \ Encoder 1

Accelerometer
installed under the base

Stainless rods

_5_____—-“?‘?

= - || - _ =|Fixed to rigid
%L-:/—/M_J ground

Figure 4.1: Drawing of a 2-DOF lab-scale FSMM

Figure 4.2: The 2-DOF lab-scale FSMM
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Table 4.1: Parameters of the lab-scale FSMM

Item Parameter
mass of arm 1 6.97 kg
mass of arm 2 2.76 kg
moment of inertia of arm 1 (reference to c.m.) 0.2262 kg.m?
moment of inertia of arm 2 (reference to c.m.) 0.0098 kg.m?
mass of the base 11.97 kg
length of arm 1 0.202 m
length of arm 2 0.1625 m
center of mass of arm 1 (measured from arm joint) | 0.0524 m
center of mass of arm 2 (measured from arm joint) 0.1288 m

Force sensor
- ATI-Delta

Host PC

Motor+Encoder
Hi-T Drive

Target PC
(Encoder Board NI-PCI6602,
I/0 board, NI-PCI6024E)

Accelerometer

)

sl Servo amplifier
=l Copley 412

ADXIL203EB

Figure 4.3: Experimental setup
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wall

Figure 4.4: Coordinates of the FSMM

4.1.2 Experimental Setup

of

Figure 4.3 shows the diagram of the experimental setup. The control signal
voltages are sent to the amplifiers which then supply the current proportional
to the control signal to the motors. The sensors installed are as follows: 1) the
encoders measure the angles of of rotation of the arms and send the signal to
the encoder board installed in the computer 2) the force sensor measures the
force exerted on the end-effector and sends the force signal to the I/O board also
installed in the computer 3) the accelerometer measures the acceleration of the
manipulator base and sends acceleration signals to the /O board. The real-time
signal is generated by the xPc Target system with MATLAB, Simulink and Real-
Time-Workshops. The coordinates of manipulator base and the end-effector are
defined corresponding to the diagram in fig. 4.4. Note that the wall has the surface

normal vector in the direction opposite to the positive X axis.

4.1.3 Test Procedure

In order to test the performance of the control system, contact tests were per-
formed. In the test, the end-effector of the manipulator was set up to initially
touch the wall by giving an end-point reference command slightly inside the wall.

The contact force and acceleration signals in the X-direction were then observed.
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4.2 Results

4.2.1 Force-based control

In this experiment, many tests were performed for various sets of desired impedance
parameters. The aim was to look for the conditions where unstable contacts can be
observed and see how the robust controller can improve the stability. In some cases,
the impedance controller could provide stable contact without (s). And in other
cases, the system were unstable. An example of the case where unstable contact
occurs is when the desired impedance is set to my = 50,b; = 439.8, k; = 1974.0.
Figure 4.5 shows the acceleration and contact force signals when the end-effector
made contact with the wall. Here, mild vibrations in the system could be visually
observed but the end-effector was still in contact with the wall. These vibrations
can also be observed from the contact force signal with the amplitude fluctuating
around +2.5N. In this case the system is unstable. Figure4.6 shows the acceler-
ation and contact force signals of another set up where the system was initially
unstable as can be seen from fluctuation in the contact force signal. At time t =1

second, Q(s) = i was added to the controller. With Q(s), the vibration

in the system died out quickly and after a few second, the system settled down.
Figure 4.7 shows the step responses of the system with impedance controller with
Q(s). The end-effector was initially set to contact the wall and had stable contact.
At time t = 1 second, a step command was given so that the end-effector moved
further into the wall. After the step command, the end-effector firstly reacted as if
it would move out of the wall, but quickly it moved back into the wall and settled
down with no vibration. From these plots, it is clear that Q(s) improves stability

of the system.

4.2.2 Position-based control

In this experiment, many tests were performed for various sets of desired impedance
parameters and servo control parameters. In some cases, the impedance controller
could provide stable contact without ((s). And in other cases, the system were

unstable. An example of the case where unstable contact occurred is shown be-
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Figure 4.5: The plots of acceleration and contact force for the system with force-
based impedance control shows unstable contact (no Q(s) applied): mg = 50, bq =

439.8, ky = 1974.0

low. Here, the desired impedance parameters were set to my = 20,b; =,kq =
439.82, ky = 3947.8 which correspond to the spring-mass-damper system with
natural frequency 2 Hz and damping ratio 0.7. The servo controller is a PD con-
troller with b, = 560.3, ks = 25148 which correspond to « in eq.3.57 being about
25. In the test, the manipulator’s end-effector was set to initially touch the wall
with some contact force. Then, at time ¢ = 1 second the manipulator was given
a step command on the end-effector position. The end-effector new set-point po-
sition was further inside the wall to create more contact force. Figure4.8 shows
the plots of the base acceleration and contact force signals. Initially, the contact
force acting on the end-effector is about 17 N. After the step command, large
vibration (visibly observable) occurred in the system as can be observed in the

base acceleration and the contact force signals. At time ¢ = 6.2 second, the filter

Q(s) = (%15;11 was added to the controller. With Q(s), the vibration disappeared
quickly.

Figure 4.9 shows the step response for the case where Q(s) was included from
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Figure 4.6: The plots of acceleration and contact force for the system with force-
based impedance control shows stable contact after Q(s) is applied : mg = 50, bg =

439.8, kg = 1974.0,Q = (0.01s 4+ 1)/(0.1s 4 1)

the beginning. As can be observed, no vibration occurred in this case. Clearly,

with Q(s) the stability of the system is improved.
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Figure 4.7: Step responses of the system with force-based impedance control with

Q(s) : mg =50,bg = 439.8, kg = 1974.0,Q = (0.01s + 1)/(0.1s + 1)
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Figure 4.8: Step responses of the system with position-based impedance controller:

mg = 25,bg = 439.82, kg = 3947.8, G, = 560.35425148, Q(s) = (0.015+1)/(0.1s+
1)
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Figure 4.9: Step responses of the system with robust position-based impedance
controller: my = 25,b; = 439.82k; = 3947.8,G; = 560.3s + 25148, Q(s) =
(0.01s 4+ 0f1)/(0.1s 4+ 1)
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Chapter 5

Conclusions

This research investigates force control techniques for flexible structure mounted
manipulators performing contact tasks. Impedance control is the main subject
of investigation. Two types of impedance control are studied: 1) force-based
impedance control and 2) position-based impedance control. One-DOF contact
model, along the surface normal direction, has been established. Based on the
one-DOF model, the robust control schemes for both types of impedance con-
trol are derived. The goal is for the system to perform according to the desired
impedance while remain stable when in contact with static environment such as
wall. Based on the Nyquist stability criteria, the controllers are derived by en-
suring that the Nyquist plots of the admittance of the controlled system do not
cross the negative real axis. In order to verify the control schemes, a 2-DOF lab-
scale flexible structure mounted manipulator has been constructed. Tests have
been performed and the results show that the robust controllers can resolve the
stability problems that occur under some conditions when non-robust controller
are employed.

Although the controllers derived in this study can provide stable contact, the
criteria employed are still conservative and therefore the contact performance may
not be at its best. For further work, the robust performance during contact should
be the main subject of study. Other issues such as joint flexibility, dynamic envi-

ronment and friction should also be explored.
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Outputs

The results of this research work help to understand the theory outlining the
impedance control of a flexible structure mounted manipulator performing contact
tasks. The author has been writing an article to submit to an academic journal.
The title of the article will be “Robust impedance controls for flexible structure
mounted manipulator performing contact tasks”. The writing of the article should

be finished within two months from the date posted in this report.
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Appendix A

Specifications of Sensors and

Actuators
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Table A.1: Specifications of Force Sensors

Item Details
Made ATI INDUSTRIAL AUTOMATION
Model Delta US-150-600

Sensing ranges

F,, F, (£N) 660
F, (£N) 1,980
T,, T, (-N-m) 60
T. (+N-m) 60
Resolution Controller F/T System | 16 bit DAQ F/T System
Fy, F, (£N) 1/2 1/32
F, (£N) 1 1/16
Ty, Ty (£N-m) 3/100 3/1,600
T, (+N-m) 3/100 3/1,600

Single-axis overload

F., F, (£N) 3,400
F, (£N) 12,000
Ty, T,y (£N-m) 220
T, (£N-m) 420
Resonant frequency
F,, F,,T, 1,500 Hz
F.,T,,T, 1,700 Hz
Physical specifications
Weight 910 g
Diameter 94.5 mm
Height 33.3 mm

Temperature Error (from 22°C)
+5°C
+15°C
+£25°C
£50°C

Typical gain error
0.1%
0.5%
1%
5%
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Table A.2: Motor Specifications

Item

Motor 1

Motor 2

Made

Model
Rate output power (W)
Rate current (A)
Peak current (A)
Torque constant (Nm/A)
Moment of inertia (kg.m?)
Weight with encoder (kg)
Gear ratio
Encoder
Resolution (ppr)
Output signal
Power supply (VDC)
Max.output current (mA)

Max. signal freq. (kHz)

Harmonic Drive
System Inc.
RH-20-3004-OEM
90
3
15
18.121
0.000026 (armature)
3.02
1/100

1,000
AA/,B,B/,Z,7Z/
+5V TTL open collector
20
100

Harmonic Drive
System Inc.
RH-14GH110EM
20.3
1.8
5.4
2.602
0.0021
0.78
1/50

1,000
A, B, Z,
+5V TTL open collector
20
100
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Table A.3: Specifications of accelerometer

Item Specification
Made Analog Devices
Model ADXL203EB
No. of Axis 2
Range +1.7g
Sensitivity 1000 mV /g
Sensitivity accuracy +6
Output type Analog
Bandwidth 2.5 kHz
Noise density 110
Supply current 0.7 mA
Supply voltage 3 to 6 VDC

Temp range

Package

-40°C to 125°C
E-8

48




