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Figure 3.9: Block diagram of the position-based impedance control scheme

From eq. 3.40 to ensure the desired impedance characteristics

Gf = G−1
p Gd − G−1

s (3.42)

For contact problem, without loss of generality, we may set the desired and

static environment nominal positions to zero., i.e., x0 = 0, xe = 0. With these

nominal values,

F = Gs(GfFe − Xe) (3.43)

Effect of Base Motion

s
G

m
G e

G
F e

F

bGb
x

fG

0x r
x

0x

w
x

e
x

Figure 3.10: Block diagram of the position-based impedance control scheme in the

FSMM

With the base motion, the measurement of the manipulator end-effector by

on-board sensors is not Xe but instead Xe−Xb. The block diagram of the position-
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based impedance control in the FSMM is shown in fig. 3.10. Here,

F = Gs(GfFe − Xe + Xb) (3.44)

= Gs(GfFe − Xe − GbF )

F = (1 + GsGb)
−1GsGfFe − (1 + GsGb)

−1GsXe (3.45)

Substituting into the equation of motion

F + Fe = G−1
m Xe

(1 + GsGb)
−1GsGfFe − (1 + GsGb)

−1GsXe + Fe = G−1
m Xe

GsGfFe + (1 + GsGb)Fe = GsX + (1 + GsGb)G
−1
m Xe

or

Tpb =
Xe

Fe

=
1 + GsGb + GsGf

(1 + GsGb)G−1
m + Gs

= Gm
1 + GsGb + GsGf

1 + GsGb + GsGm

(3.46)

Substituting eq. 3.42 into equation above and rearranging yields

Tpb = Gm
GsGb + GsGd + GdG

−1
m

1 + GsGb + GsGm

(3.47)

In the case where the transfer function between the force and end-effector

displacement is modeled as a simple mass, i.e.,

Gm =
1

ms2

the transfer function in eq. 3.47 is given by

Tpb =
1

ms2

GsGb + GsGd + ms2Gd

1 + GsGb + Gs

ms2

=
1

ms2

Gb + Gd + ms2G−1
s Gd

Gb + G−1
s + 1

ms2

=
1

ms2

Gb +
(
G−1

s + 1
ms2

)
ms2Gd

Gb +
(
G−1

s + 1
ms2

) (3.48)

Let

A =
1

ms2Gd

(3.49)

and

B =

(
G−1

s +
1

ms2

)−1

(3.50)
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Then,

Tpb =
Xe

Fe

=
1

ms2

Gb + B−1A−1

Gb + B−1

=
1

ms2

1 + BAGb

A + BAGb

(3.51)

This equation is in a similar form to eq. 3.27 in the force-based control. Actually,

for

Gd = Z−1
d =

1

mds2 + K

eq. 3.49 becomes

A =
mds

2 + K

ms2
=

md

m
+

K

ms2

which is the same as eq. 3.28. Thus,

BA =

(
G−1

s +
1

ms2

)−1 (
md

m
+

K

ms2

)

=
md

m
+ K

ms2

1
Gs

+ 1
ms2

=
ms2Gs

ms2 + Gs

mds
2 + K

ms2

=
Gs (mds

2 + K)

ms2 + Gs

(3.52)

In terms of K

BA = K

(
md

mK
+ 1

ms2

1
Gs

+ 1
ms2

)

Therefore, if Gs is selected such that

Gs =
m

md

K (3.53)

then BA → K. In this case, the position-based impedance controller is

equivalent to the force-based impedance controller.

Similar to the force-based case, contact stability requires that

∠ (A(jω) + B(jω)A(iω)Gb(jω)) �= ∠ (1 + B(jω)A(iω)Gb(jω)) , ∀ω > 0 (3.54)

or similar to ineq. 3.31

∠
(
A(jω) + ejφg(ω)

) �= (
1 + ejφg(ω)

)
, ∀ω > 0, φ (3.55)

for

|B(jω)A(jω)Gb(jω)| < g(ω) (3.56)

24



The uncertainty bound in this case is different from the one in the force-base case

(in ineq. 3.30):

force-based: |K(jω)Gb(jω)| = |K(jω)| |Gb(jω)|
position-based: |B(jω)A(jω)Gb(jω)| = |B(jω)A(jω)| |Gb(jω)|

Designing Gs

With high gain servo controller the uncertainty term |B(jω)A(jω)Gb(jω)| can be

much larger than |K(jω)Gb(jω)| and will affect stability of the system. Consider

a servo controller of the form

Gs = α
m

md

K (3.57)

where α is a scalar factor. For a passive function

K = bds + kd

the servo controller is actually a PD controller. The form of G(s) in eq. 3.57 deems

appropriate as normally K(s) would be designed to have good impedance behavior

as would also be required for the servo controller. With this controller,

BA =
Gs (mds

2 + K)

ms2 + Gs

=
α m

md
K (mds

2 + K)

ms2 + α m
md

K

= K
α (mds

2 + K)

mds2 + αK

Then with K(s) = bds + kd,

BA(jω) = K(jω)
(−αmdω

2 + αkd) + jαbdω

(−mdω2 + αkd) + jαbdω

|BA(jω)| = |K(jω)|
∣∣∣∣(−αmdω

2 + αkd) + jαbdω

(−mdω2 + αkd) + jαbdω

∣∣∣∣
The uncertainty bound of the position-based impedance controller will be greater than

the uncertainty bound of the force-based impedance controller when

(−αmdω
2 + αkd

)2
>

(−mdω
2 + αkd

)2

α2m2
dω

4 − 2α2kdmdω
2 > m2

dω
4 − 2αmdkdω

2

mdω
2
(
1 − α2

) − 2αkd (1 − α) < 0

mdω
2 (1 + α) (1 − α) − 2αkd (1 − α) < 0
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which can be divided into two cases according to the value of α:

• α < 1 ⇒ ω <

√
2

kd

md

α

α + 1

• α > 1 ⇒ ω >

√
2

kd

md

α

α + 1

Figure 3.11 shows plots comparing the magnitudes |K(jω)| and |B(jω)A(jω)| for

several values of α. In general, for the servo controller we would expect to have

α larger than 1. Therefore, in high frequency range the uncertainty bound of the

position-based controller is expected to be larger than the uncertainty bound of

the force-based controller. This will be critical if |B(jω)A(jω)| is large in the

frequency range close to natural frequencies of Gb.
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Figure 3.11: Plots of |B(jω)A(jω)| (for K(s) = 1.4s + 1,md = 1,m = 10, Gs =

α m
md

K )

Figure 3.11 shows plots of |B(jω)A(jω)Gb(jω)| for several values of α . The

base is assumed to be a simple spring-mass-damper system with mb = 15 kg, bb =
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300 N.s/m, kb = 37500 N/m which corresponds to a second order system with

natural frequency 50 rad/s and damping ratio 0.2. The plot shows the magnitude

of the bounds in which the greatest bound is at the natural frequency of the base.

It is clearly seen that the larger the value of α the greater the uncertainty bound.
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Figure 3.12: plots of |B(jω)A(jω)Gb(jω)| (for K(s) = 1.4s + 1,md = 1,m =

10, Gs = α m
md

K,Gb = 1
15s2+300s+37500

)

Robust controller design

Consider the control law

F = Gs(GfFe − X + Xb)

with

Gf = G−1
p GdQ

−1 − G−1
s =

1 + GsGm

GsGm

GdQ
−1 − 1

Gs

(3.58)
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where Q is an additional filter to be designed. With this control law, eq. 3.46

yields

Tpb = Gm
1 + GsGb + GsGf

1 + GsGb + GsGm

= Gm

GsGb + Gd

Gm
Q−1 + GsGdQ

−1

1 + GsGb + GsGm

=
1

ms2

GsGb + ms2GdQ
−1 + GsGdQ

−1

1 + GsGb + Gs

ms2

=
1

ms2

Gb + GdQ
−1 + ms2G−1

s GdQ
−1

Gb + G−1
s + 1

ms2

=
1

ms2

Gb +
(
G−1

s + 1
ms2

)
ms2GdQ

−1

Gb +
(
G−1

s + 1
ms2

)
=

1

ms2

Gb + B−1A−1Q−1

Gb + B−1

Tpb =
1

ms2

1 + BAQGb

AQ + BAQGb

(3.59)

The filter Q can be designed such that the magnitude of its frequency response

function is small in the range where BAGb is expected to be large, i.e. at the

natural frequencies of Gb and also to keep the angle θ = ∠ (1 − A(jω)Q(jω))

as close to 90◦ as possible of for wide range of ω. Consider Q in the form of a

lag-compensator

Q(s) =
τ1s + 1

τ2s + 1

with τ1 < τ2. Here, |Q(jω)| will drops below 1 after the corner frequency ωa = 1/τ2

with the rate of −20 dB/decade and will remain constant after ωb = 1/τ1. We

can select τ2 such that ωa is less than the first natural frequency of the base. The

lag compensator Q will also help to keep the angle θ larger when ω increases, thus

providing robustness. Figure 3.13 shows the comparison of the uncertainty bound

with and without the filter at α = 20. As seen in the figure, the uncertainty bound

can be reduced substantially with Q.

Figure 3.14 shows the plots of AQ(jω) compared to A(jω) for ω = [1, 120]

rad/s. Here the magnitude and phase of A(jω) is reduced by the effect of the

filter Q. The phase of AQ(jω) approaches 0◦ less quickly as ω increases and

therefore the system is more robust. Figure 3.15 shows the Nyquist plots of Tpb

with and without the filter Q. Note that the plot shown in the figure is an expanded
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(for K(s) = 1.4s + 1,md = 1,m = 10, Gs = 20 m
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, τ1 =

0.01, τ2 = 0.1)

view only in high frequency range. Without the filter Q, the Nyquist plot crosses

the negative real axis and therefore in contact with wall, the system can become

unstable. With the filter Q, the Nyquist plot does not cross the negative real

axis for the entire frequency range and therefore, provided that Tpb is stable, the

system is always stable in contact.

Although the filter Q can be used to increase the robustness, it can effect the

performance of the system. Therefore it should be designed taking in mind this

aspect as well. As in the example above, the design of such Q also gives good

performance as shown fig. 3.16.
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Chapter 4

Experimental Setup and Results

4.1 Experimental setup

4.1.1 A 2-DOF FSMM Test Rig

Figure 4.1 shows the drawing of a 2-DOF FSMM used for testing the control

scheme. It composes of a rigid manipulator with two arms sitting on a platform

which is made of a steel rectangular plate mounted, at its corners, to four long

stainless poles. The first natural mode of vibration of the flexible structure is

around 7 Hz. The arms of the manipulator travel on the horizontal plane and

so is the vibration of the base. The manipulator arms are driven by d.c. motors

through harmonic gear units. The angles of arm movement are measured by

incremental encoders. Arm 1 has a counter mass attached to the opposite end to

bring the center of mass closer to the arm joint. At the tip of arm 2, a six-axis

force/torque sensor is installed to measure the force exerted by the wall during

contact. Under the base, a two axis-accelerometer is installed to measure the base

acceleration. The manipulator is installed near the wall so that the contact test

can be performed. Figure 4.2 shows the picture of the 2-DOF FSMM that has

been constructed and Table 4.1 lists the parameters of the system. The details

and specifications of the sensors and motors are given in Appendix.
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Counter

weight

Force/torque

sensor

Motor 2

Motor 1

Encoder 2

Encoder 1

Accelerometer

installed under the base

Fixed to rigid 

ground

Stainless rods

Arm 2

Arm 1

Figure 4.1: Drawing of a 2-DOF lab-scale FSMM

Figure 4.2: The 2-DOF lab-scale FSMM
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Table 4.1: Parameters of the lab-scale FSMM
Item Parameter

mass of arm 1 6.97 kg

mass of arm 2 2.76 kg

moment of inertia of arm 1 (reference to c.m.) 0.2262 kg.m2

moment of inertia of arm 2 (reference to c.m.) 0.0098 kg.m2

mass of the base 11.97 kg

length of arm 1 0.202 m

length of arm 2 0.1625 m

center of mass of arm 1 (measured from arm joint) 0.0524 m

center of mass of arm 2 (measured from arm joint) 0.1288 m

Host PC

Target PC

(Encoder Board NI-PCI6602, 

I/O board, NI-PCI6024E)

Servo amplifier

Copley 412

Force sensor

ATI-Delta

Accelerometer

ADXL203EB

Motor+Encoder

Hi-T Drive

Figure 4.3: Experimental setup
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Figure 4.4: Coordinates of the FSMM

4.1.2 Experimental Setup

of

Figure 4.3 shows the diagram of the experimental setup. The control signal

voltages are sent to the amplifiers which then supply the current proportional

to the control signal to the motors. The sensors installed are as follows: 1) the

encoders measure the angles of of rotation of the arms and send the signal to

the encoder board installed in the computer 2) the force sensor measures the

force exerted on the end-effector and sends the force signal to the I/O board also

installed in the computer 3) the accelerometer measures the acceleration of the

manipulator base and sends acceleration signals to the I/O board. The real-time

signal is generated by the xPc Target system with MATLAB, Simulink and Real-

Time-Workshops. The coordinates of manipulator base and the end-effector are

defined corresponding to the diagram in fig. 4.4. Note that the wall has the surface

normal vector in the direction opposite to the positive X axis.

4.1.3 Test Procedure

In order to test the performance of the control system, contact tests were per-

formed. In the test, the end-effector of the manipulator was set up to initially

touch the wall by giving an end-point reference command slightly inside the wall.

The contact force and acceleration signals in the X-direction were then observed.
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4.2 Results

4.2.1 Force-based control

In this experiment, many tests were performed for various sets of desired impedance

parameters. The aim was to look for the conditions where unstable contacts can be

observed and see how the robust controller can improve the stability. In some cases,

the impedance controller could provide stable contact without Q(s). And in other

cases, the system were unstable. An example of the case where unstable contact

occurs is when the desired impedance is set to md = 50, bd = 439.8, kd = 1974.0.

Figure 4.5 shows the acceleration and contact force signals when the end-effector

made contact with the wall. Here, mild vibrations in the system could be visually

observed but the end-effector was still in contact with the wall. These vibrations

can also be observed from the contact force signal with the amplitude fluctuating

around ±2.5N. In this case the system is unstable. Figure 4.6 shows the acceler-

ation and contact force signals of another set up where the system was initially

unstable as can be seen from fluctuation in the contact force signal. At time t = 1

second, Q(s) = 0.1s+1
0.01s+1

was added to the controller. With Q(s), the vibration

in the system died out quickly and after a few second, the system settled down.

Figure 4.7 shows the step responses of the system with impedance controller with

Q(s). The end-effector was initially set to contact the wall and had stable contact.

At time t = 1 second, a step command was given so that the end-effector moved

further into the wall. After the step command, the end-effector firstly reacted as if

it would move out of the wall, but quickly it moved back into the wall and settled

down with no vibration. From these plots, it is clear that Q(s) improves stability

of the system.

4.2.2 Position-based control

In this experiment, many tests were performed for various sets of desired impedance

parameters and servo control parameters. In some cases, the impedance controller

could provide stable contact without Q(s). And in other cases, the system were

unstable. An example of the case where unstable contact occurred is shown be-
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Figure 4.5: The plots of acceleration and contact force for the system with force-

based impedance control shows unstable contact (no Q(s) applied): md = 50, bd =

439.8, kd = 1974.0

low. Here, the desired impedance parameters were set to md = 20, bd =, kd =

439.82, kd = 3947.8 which correspond to the spring-mass-damper system with

natural frequency 2 Hz and damping ratio 0.7. The servo controller is a PD con-

troller with bs = 560.3, ks = 25148 which correspond to α in eq. 3.57 being about

25. In the test, the manipulator’s end-effector was set to initially touch the wall

with some contact force. Then, at time t = 1 second the manipulator was given

a step command on the end-effector position. The end-effector new set-point po-

sition was further inside the wall to create more contact force. Figure 4.8 shows

the plots of the base acceleration and contact force signals. Initially, the contact

force acting on the end-effector is about 17 N. After the step command, large

vibration (visibly observable) occurred in the system as can be observed in the

base acceleration and the contact force signals. At time t = 6.2 second, the filter

Q(s) = 0.1s+1
0.01s+1

was added to the controller. With Q(s), the vibration disappeared

quickly.

Figure 4.9 shows the step response for the case where Q(s) was included from
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Figure 4.6: The plots of acceleration and contact force for the system with force-

based impedance control shows stable contact after Q(s) is applied : md = 50, bd =

439.8, kd = 1974.0, Q = (0.01s + 1)/(0.1s + 1)

the beginning. As can be observed, no vibration occurred in this case. Clearly,

with Q(s) the stability of the system is improved.
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Figure 4.7: Step responses of the system with force-based impedance control with

Q(s) : md = 50, bd = 439.8, kd = 1974.0, Q = (0.01s + 1)/(0.1s + 1)
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Figure 4.8: Step responses of the system with position-based impedance controller:

md = 25, bd = 439.82, kd = 3947.8, Gs = 560.3s+25148, Q(s) = (0.01s+1)/(0.1s+

1)
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Figure 4.9: Step responses of the system with robust position-based impedance

controller: md = 25, bd = 439.82, kd = 3947.8, Gs = 560.3s + 25148, Q(s) =

(0.01s + of1)/(0.1s + 1)
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Chapter 5

Conclusions

This research investigates force control techniques for flexible structure mounted

manipulators performing contact tasks. Impedance control is the main subject

of investigation. Two types of impedance control are studied: 1) force-based

impedance control and 2) position-based impedance control. One-DOF contact

model, along the surface normal direction, has been established. Based on the

one-DOF model, the robust control schemes for both types of impedance con-

trol are derived. The goal is for the system to perform according to the desired

impedance while remain stable when in contact with static environment such as

wall. Based on the Nyquist stability criteria, the controllers are derived by en-

suring that the Nyquist plots of the admittance of the controlled system do not

cross the negative real axis. In order to verify the control schemes, a 2-DOF lab-

scale flexible structure mounted manipulator has been constructed. Tests have

been performed and the results show that the robust controllers can resolve the

stability problems that occur under some conditions when non-robust controller

are employed.

Although the controllers derived in this study can provide stable contact, the

criteria employed are still conservative and therefore the contact performance may

not be at its best. For further work, the robust performance during contact should

be the main subject of study. Other issues such as joint flexibility, dynamic envi-

ronment and friction should also be explored.
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Outputs

The results of this research work help to understand the theory outlining the

impedance control of a flexible structure mounted manipulator performing contact

tasks. The author has been writing an article to submit to an academic journal.

The title of the article will be “Robust impedance controls for flexible structure

mounted manipulator performing contact tasks”. The writing of the article should

be finished within two months from the date posted in this report.
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Appendix A

Specifications of Sensors and

Actuators
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Table A.1: Specifications of Force Sensors

Item Details

Made ATI INDUSTRIAL AUTOMATION

Model Delta US-150-600

Sensing ranges

Fx, Fy (±N) 660

Fz (±N) 1, 980

Tx, Ty (±N-m) 60

Tz (±N-m) 60

Resolution Controller F/T System 16 bit DAQ F/T System

Fx, Fy (±N) 1/2 1/32

Fz (±N) 1 1/16

Tx, Ty (±N-m) 3/100 3/1, 600

Tz (±N-m) 3/100 3/1, 600

Single-axis overload

Fx, Fy (±N) 3, 400

Fz (±N) 12, 000

Tx, Ty (±N-m) 220

Tz (±N-m) 420

Resonant frequency

Fx, Fy, Tz 1, 500 Hz

Fz, Tx, Ty 1, 700 Hz

Physical specifications

Weight 910 g

Diameter 94.5 mm

Height 33.3 mm

Temperature Error (from 22◦C) Typical gain error

±5◦C 0.1%

±15◦C 0.5%

±25◦C 1%

±50◦C 5%
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Table A.2: Motor Specifications

Item Motor 1 Motor 2

Made Harmonic Drive Harmonic Drive

System Inc. System Inc.

Model RH-20-3004-OEM RH-14GH11OEM

Rate output power (W) 90 20.3

Rate current (A) 3 1.8

Peak current (A) 15 5.4

Torque constant (Nm/A) 18.121 2.602

Moment of inertia (kg.m2) 0.000026 (armature) 0.0021

Weight with encoder (kg) 3.02 0.78

Gear ratio 1/100 1/50

Encoder

Resolution (ppr) 1,000 1,000

Output signal A, A/, B, B/, Z, Z/ A, B, Z,

Power supply (VDC) +5V TTL open collector +5V TTL open collector

Max.output current (mA) 20 20

Max. signal freq. (kHz) 100 100
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Table A.3: Specifications of accelerometer

Item Specification

Made Analog Devices

Model ADXL203EB

No. of Axis 2

Range ±1.7g

Sensitivity 1000 mV/g

Sensitivity accuracy ±6

Output type Analog

Bandwidth 2.5 kHz

Noise density 110

Supply current 0.7 mA

Supply voltage 3 to 6 VDC

Temp range -40◦C to 125◦C

Package E-8
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