โครงการวิจัย: โครงสร้าง พลังงาน และกลไกปฏิกิริยาของอะซิโทรไนไตรล์ในตัวเร่ง โครงสร้างนาโน

บทคัดย่อ

งานวิจัยนี้ได้นำวิธีการคำนวณทางกลศาสตร์ควอนตัม มาใช้ในการจำลองแบบของตัวเร่งซีโอไลต์ ชนิด faujasite และ silicalite เพื่อใช้ในการศึกษาเปรียบเทียบผลจากการทดลองของปฏิกิริยา ระหว่าง acetonitrile กับ methanol และ formaldehyde เพื่อให้ได้สารผลิตภัณฑ์ propionitrie และ acrylonitrile ตามลำดับ

ผลจากการคำนวณจากการใช้แบบจำลองขนาด 12T และ 10T เพื่อแทนซีโอไลต์ชนิด faujasite และ silicalite ตามลำดับ พบว่าผลจากการคำนวณเปอร์เซ็นต์การเกิดสารผลิตภัณฑ์สอดคล้องกับผลที่ได้ จากการทดลองเป็นอย่างดี โดยที่ทั้งสองปฏิกิริยามีกลไกการเกิดปฏิกิริยาในลักษณะ concerted

นอกจากนี้ยังได้นำโครงสร้างที่ได้จากการศึกษากลไกการเกิดปฏิกิริยาของซีโอไลต์ทั้งสองชนิด มา วิเคราะห์ด้วยวิธีการทางสถิติโดยใช้เทคนิคที่เรียกว่า principal components analysis เพื่อเป็นการ ยืนยันอีกทางหนึ่งว่าความสัมพันธ์ระหว่างธรรมชาติของโครงสร้างและการเปลี่ยนแปลงที่เกิดขึ้นนั้น มีแนวโน้มสอดคล้องกับผลที่ได้จากการทดลอง

Project title: Structures, Energetics and Reaction Mechanisms of Acetonitrile in Nanostructured Catalysts.

ABSTRACT

Quantum mechanical calculations have been performed on faujasite and silicalite models to investigate reported experimental differences in yields of two key catalytic products (propionitrile and acrylonitrile) formed from the reaction of acetonitrile with either methanol or formaldehyde respectively.

The calculations were performed using 12T and 10T cluster representations of faujasite and silicalite respectively and the results are in good overall agreement with experimental observations. Both reactions are predicted to proceed in a concerted manner.

The stationary points found on the reaction surface in both zeolites have been systematically assessed using principal components analysis to give us an insight into the correlated nature of the structural/electronic changes that occur on the reaction surfaces.

Keywords — Zeolite catalysis, quantum mechanics, acetonitrile, acrylonitrile, propionitrile, ONIOM.