

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการเปลี่ยนแปลงทางสัณฐานวิทยาและ การแสดงออกของตัวรับฮอร์โมนเพศเมียในท่อนำไข่ กระบือปลักตามวงรอบการเป็นสัด

โดย

ผศ.น.สพ.ดร. ไพศาล เทียนไทย และคณะ

มีนาคม 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาการเปลี่ยนแปลงทางสัณฐานวิทยาและการ แสดงออกของตัวรับฮอร์โมนเพศเมียในท่อนำไข่กระบือปลัก ตามวงรอบการเป็นสัด

คณะผู้วิจัย

- ผศ.น.สพ.ดร. ไพศาล เทียนไทย
- ศ.น.สพ.ดร. มงคล เตชะกำพุ

คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย รศ.น.สพ.ดร. เกรียงยศ สัจจเจริญพงษ์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สหับสนุนโดยสำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสหับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

รายงานวิจัยฉบับสมบูรณ์นี้สำเร็จลุล่วงอย่างดี เนื่องจากได้รับทุนสนับสนุนจากสำนักงานคณะ กรรมการอุดมศึกษา (สกอ.) และสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ปี พ.ศ. 2549 คณะผู้วิจัย ขอขอบพระคุณอย่างสูงมา ณ โอกาสนี้

กราบขอบพระคุณ รองศาสตราจารย์ สพ.ญ. นงลักษณ์ ตันติลีปิกร หัวหน้าภาควิชากายวิภาค ศาสตร์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่อำนวยความสะดวกและอนุญาตให้ใช้ ห้องปฏิบัติการของภาควิชากายวิภาคศาสตร์ในการทำวิจัยครั้งนี้

ขอบคุณ คุณศิลป์ชัย เพียรชอบ คุณวิฑูรย์ มะบุตร คุณปกรณ์ ประจำเมือง และคุณจันทิมา อินทรปัญญา เจ้าหน้าที่ห้องปฏิบัติการและนักวิทยาศาสตร์ของภาควิชากายวิภาคศาสตร์ คณะสัตว- แพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความช่วยเหลือในการเก็บตัวอย่าง การตัดชิ้นเนื้อ การ เตรียมสีย้อมต่างๆ การย้อมสีชิ้นเนื้อตัวอย่าง และการเตรียมสารเคมีในกระบวนการอิมมูโนฮีสโตเคมี

ขอบคุณ คุณบังอร วัฒนาอำไพ นักวิทยาศาสตร์ของศูนย์เครื่องมือวิจัยทางวิทยาศาสตร์และ เทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความช่วยเหลือในการเตรียมน้ำยาและกระบวนการต่างๆ ใน การศึกษาด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

บทคัดย่อ

รหัสโครงการ: MRG4980002

ชื่อโครงการ: การศึกษาการเปลี่ยนแปลงทางสัณฐานวิทยาและการแสดงออกของตัวรับ

ฮอร์โมนเพศเมียในท่อนำไข่กระบือปลักตามวงรอบการเป็นสัด

ชื่อนักวิจัย: ผศ.น.สพ.ดร. ไพศาล เทียนไทย

คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail address: Paisan.T@chula.ac.th

ระยะเวลาโครงการ: 1 กรกฎาคม พ.ศ. 2549 ถึง 30 มิถุนายน พ.ศ. 2551

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อตรวจสอบการเปลี่ยนแปลงทางสัณฐานวิทยา การกระจายตัว ของเซลล์ในระบบภูมิคุ้มกัน การแสดงออกของตัวรับฮอร์โมนเอสโตรเจนและโปรเจสเตอโรนในท่อนำไข่ ของกระบือปลักไทยระยะฟอลลิคูลาร์และลูเทียล เก็บตัวอย่างท่อนำไข่กระบือปลักจำนวน 40 ตัวจาก โดยคัดแยกระยะฟอลลิคูลาร์และลูเทียลจากการสังเกตลักษณะของคอร์ปัสลูเทียม โรงฆ่าสัตว์ท้องถิ่น และฟอลลิเคิลของรังไข่ ตัดแบ่งท่อนำไข่กระบือออกเป็นส่วนอินฟันดิบูลัม แอมพูลลา อิสธ์มัส และ รอยต่อระหว่างท่อนำไข่กับปีกมดลูก ศึกษาการเปลี่ยนแปลงทางจุลกายวิภาคศาสตร์ การติดสีพีเอเอส ความสูงของเซลล์และการกระจายของเซลล์ในระบบภูมิคุ้มกันในชั้นเยื่อบุ ภายใต้กล้องจุลทรรศน์แสง สว่าง นอกจากนี้ลักษณะของเยื่อบุท่อนำไข่ยังมีการศึกษาด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด รวมทั้งศึกษาการแสดงออกของตัวรับเอสโตรเจนและโปรเจสเตอโรนโดยวิธีอิมมูโนฮีสโตเคมี ศึกษาพบว่า ลักษณะทางจุลกายวิภาคและความสูงของเยื่อบุท่อนำไข่มีการเปลี่ยนแปลงเกิดขึ้นชัดเจน ในแอมพูลลาและอินฟันดิบูลัม เมื่อเปรียบเทียบกับอิสธ์มัสและรอยต่อระหว่างท่อนำไข่กับปีกมดลูก และ เปรียบเทียบทั้งระยะฟอลลิคูลาร์และระยะลูเทียล ความเข้มของปฏิกิริยาการติดสีพีเอเอสปรากฏให้เห็น ชัดเจนในท่อนำไข่ส่วนอิสธ์มัสและรอยต่อระหว่างท่อนำไข่กับปีกมดลูกระยะฟอลลิคูลาร์ เซลล์เยื่อบุลดลงอย่างมีนัยสำคัญในส่วนอินฟันดิบูลัมและแอมพูลลา เปรียบเทียบจากระยะฟอลลิคูลาร์ กับระยะลูเทียล การกระจายตัวของเซลล์ในระบบภูมิคุ้มกันในชั้นเยื่อบุมีความแตกต่างอย่างมีนัยสำคัญ ระหว่างส่วนต่างๆ ของท่อนำไข่ โดยพบปริมาณของเซลล์สูงที่สุดในอินฟันดิบูลัมระยะลูเทียล ขณะที่ เซลล์เยื่อบุของอินฟันดิบูลัมและแอมพูลลามีการเปลี่ยนแปลงเกิดขึ้นอย่างเด่นชัด เมื่อศึกษาด้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราด การแสดงออกของตัวรับเอสโตรเจนและโปรเจสเตอโรนปรากฏใน นิวเคลียสของเซลล์เยื่อบุท่อนำไข่ทุกส่วนโดยเฉพาะระยะฟอลลิคูลาร์ พบว่าความเข้มของปฏิกิริยาการ ติดสีและสัดส่วนการกระจายของการติดสีจะสูงขึ้นอย่างมีนัยสำคัญในอิสธ์มัส และรอยต่อระหว่างปีก มดลูกกับปีกมดลูกระยะฟอลลิคูลาร์ การศึกษาดังกล่าวนี้สรุปได้ว่า การเปลี่ยนแปลงทางจุลกายวิภาค ศาสตร์ ทางจุลทรรศน์อิเล็กตรอน รวมทั้งการแสดงออกของตัวรับเอสโตรเจนและโปรเจสเตอโรนในเยื่อ บุท่อนำไข่กระบือปลักไทย มีการเปลี่ยนแปลงในระดับของเซลล์เกิดขึ้นสัมพันธ์กับการทำหน้าที่อย่าง จำเพาะของท่อนำไข่แต่ละส่วนภายใต้กลไกการทำงานของฮอร์โมนเพศเมียตลอดวงรอบการเป็นสัด

คำสำคัญ: กระบือ วงรอบการเป็นสัด สัณฐานวิทยา ตัวรับฮอร์โมน ท่อนำไข่

Abstract

Project Code: MRG4980002

Project Title: The studies of morphological changes and expression of hormonal receptors

in uterine tube of swamp buffalo (Bubalus bubalis) during estrous cycle

Investigator: Assistant Professor Dr. Paisan Tienthai

Faculty of Veterinary Science, Chulalongkorn University

E-mail Address: Paisan.T@chula.ac.th

Project Period: July 1, 2006 – June 30, 2008

The purpose of this study was to investigate the morphological changes, the immune cell infiltration, the estrogen (ER) and progesterone receptor (PR) in the Thai swamp buffalo uterine tube at follicular and luteal phases. The uterine tubes from 40 buffalo cows were taken after slaughter at the abattoir, classified into follicular and luteal phases by the ovarian status and cut into infundibulum, ampulla, isthmus and uterotubal junction (UTJ). The histological changes, periodic acid-Schiff (PAS) staining, epithelial cell height and intraepithelial immune cell distribution were performed by light microscopy; the ultrastructural features of the epithelium were examined by scanning electron microscopy (SEM) whereas the localization of ER and PR was detected by use of immunohistochemistry. A higher degree of the histological and morphometric changes was found in the ampulla and infundibulum compared with the isthmus and UTJ at both follicular and luteal phases. However, a strong PAS intensity was obviously shown in the isthmus and UTJ during follicular phase. In the infundibulum and ampulla, cytoplasmic protrusions of the epithelial cells were prominent during luteal phase. The epithelial cell height significantly decreased in the infundibulum and ampulla from the follicular phase to luteal phase. The number of intraepithelial immune cells was significantly different between parts and highest in the infundibulum at the luteal phase. By SEM, noticeable cyclic changes were observed on the epithelial surface of the infundibulum and ampulla. Both ER and PR were present in the nuclei of the epithelial cells in all parts of buffalo uterine tube and the staining was very clear in the epithelium during follicular phase. The intensities and proportion of both receptors were significantly higher in the isthmus and UTJ at the follicular phase. In conclusion, the histological and ultrastructural changes including the expression of ER and PR receptors of Thai swamp buffalo uterine tube revealed marked changes in cellular differences associated with the main functions in segmental variations of the uterine tube under the influence of female steroid hormones throughout the estrous cycle.

Keywords: buffalo, estrous cycle, morphology, hormonal receptor, uterine tube (oviduct)

Executive Summary

ความสำคัญและที่มาของปัญหา

กระบือเป็นสัตว์ที่มีความสำคัญต่อเศรษฐกิจของประเทศเป็นอย่างมากชนิดหนึ่ง เกษตรกรไทย เลี้ยงกระบือคู่กับวัฒนธรรมการเกษตรมาตั้งแต่โบราณ กระบือนอกจากจะให้เนื้อบริโภคแล้ว ยังมีมูลค่า ที่ไม่สามารถประเมินได้ ประชากรกระบือของประเทศส่วนมากเป็นกระบือปลักไทย (swamp buffalo) ในรอบทศวรรษที่ผ่านมาปริมาณกระบือทั้งประเทศมีแนวโน้มลดลงอย่างมาก คือปี 2524 มีกระบือ 6.1 ล้านตัว แต่ในปี 2533 มีกระบือ 4.7 ล้านตัว และตามสถิติที่ได้สำรวจล่าสุดเมื่อปี 2545 มีจำนวนกระบือ ในประเทศไทยอยู่ประมาณ 2.1 ล้านตัว (FAO, 2003) สาเหตุที่ปริมาณกระบือทั้งประเทศลดลงมีหลาย ประการ เช่น การเปลี่ยนแปลงของระบบเศรษฐกิจของประเทศไทยจากภาคการเกษตรกรรมเข้าสู่ภาค อุตสาหกรรมมากขึ้น ซึ่งมีผลต่อการทำการเกษตรกรรมหลายประการ เกษตรกรนิยมใช้เครื่องจักรกล การเกษตรเพิ่มขึ้น (ผกาพรรณ และคณะ 2537) ทำเลเลี้ยงสัตว์ลดลง แรงงานเลี้ยงกระบือบางฤดูจะ ขาดแคลน เนื่องจากการอพยพแรงงานจากชนบทเข้าสู่เมืองมากขึ้น รวมทั้งปริมาณการชำแหละเนื้อ กระบือเพื่อบริโภคภาย ในประเทศคิดเป็น 30% ของปริมาณที่ใช้บริโภคทั้งประเทศ เนื่องจากประชากร เพิ่มขึ้นจึงมีความต้องการบริโภคเนื้อ สัตว์มากขึ้น (Nanda and Nakao, 2003) รวมทั้งปัญหาที่สำคัญ คือความรู้ทางด้านคุณลักษณะของระบบสืบพันธุ์ และผลตอบสนองทางด้านเทคโนโลยีชีวภาพ เช่น การ ผสมเทียม การย้ายฝากตัวอ่อน เป็นต้น ยังไม่มีประสิทธิภาพเพียงพอ (Nanda et al., 2003) จะเห็นได้ จากเกษตรกรในเขตชนบทห่างไกลมีพื้นที่ถือครองไม่มาก ยังมีความจำเป็นต้องใช้แรงงานจากกระบือ อยู่ แต่การเลี้ยงกระบือของเกษตรกรเหล่านี้ไม่ได้รับการพัฒนาเท่าที่ควรเมื่อเปรียบเทียบกับโค ไม่มี การปรับปรุงและพัฒนาการผลิตเนื่องจากขาดความรู้ความเข้าใจในเรื่องการปรับปรุงพันธุ์สัตว์ สำคัญคือความรู้พื้นฐานด้านระบบสืบพันธุ์ของกระบือ ซึ่งมีผลกระทบต่อการพัฒนาและการผลิตกระบือ ในระยะยาว ความรู้พื้นฐานเรื่องระบบสืบพันธุ์มีความเกี่ยวข้องตั้งแต่การเจริญพันธุ์กระบวนการต่างๆ ของเซลล์สืบพันธุ์ที่เกิดขึ้นในทางเดินอวัยวะสืบพันธุ์เพศเมีย รวมทั้งการผสมเทียม จะประสบความ สำเร็จมากในโค แต่พัฒนาได้ช้ามากในกระบือ เนื่องจากปัญหาที่สำคัญ เช่น การตรวจสัดในกระบือค่อน ข้างทำได้ยาก มีอาการที่แสดงออกและระยะเวลาการแสดงการเป็นสัดแตกต่างกันไป (Barile, 2005) ถึงแม้ว่าในช่วงที่ผ่านมาเกือบ 2 ทศวรรษ จะมีรายงานการวิจัยจำนวนหนึ่งที่ได้ศึกษาเกี่ยวกับระบบ ฮอร์โมนเพศเมียของกระบือที่สอดคล้องกับวงรอบการเป็นสัด (Kanai and Shimizu, 1983; Singh et al., 2000) เพื่อช่วยให้การตรวจสัดทำได้ง่ายขึ้นและเหมาะสมกับการผสมเทียม รวมทั้งงานวิจัยอื่นๆ อย่างไรก็ตาม การพัฒนางานวิจัยในด้านนี้ควรทำควบคู่ไปกับการศึกษาการเปลี่ยนแปลงทางด้านโครง สร้างและสรีรวิทยาของอวัยวะสืบพันธุ์กระบือ เพื่อให้ทราบถึงกระบวนการที่สำคัญที่เกิดขึ้นภายใน อวัยวะสืบพันธุ์ ตั้งแต่ตัวอสุจิเคลื่อนที่เข้าไปจนถึงปฏิสนธิกับโอโอไซต์ โดยความรู้ดังกล่าวข้างต้น เกี่ยวกับกระบือปลักของไทยยังมีอยู่น้อยมาก ดังนั้น การที่จะทำให้กระบือปลักไทยมีการผลิตที่มากขึ้น นอกจากความรู้ทางด้านการปรับปรุงพันธุ์ที่ดีแล้ว ยังต้องอาศัยข้อมูลพื้นฐานโดยทั่วไปเกี่ยวกับระบบ สืบพันธุ์เพศเมีย ซึ่งมีความจำเป็นอย่างยิ่งที่นักวิชาการ นักวิจัย หรือผู้ที่เกี่ยวข้องกับการผสมพันธุ์สัตว์

หรือเทคโนโลยีทางชีวภาพในการผลิตกระบือได้ใช้เป็นข้อมูลหลัก โดยไม่ต้องอ้างอิงข้อมูลของโคซึ่งอาจ แตกต่างกัน

ในช่วงเวลาที่ผ่านมา ความสำเร็จของการปฏิสนธิของสัตว์ปศุสัตว์ขึ้นอยู่กับปัจจัยที่สำคัญหลาย อย่างด้วยกัน เช่น เวลาที่เหมาะสมในการผสม ทั้งผสมด้วยพ่อพันธุ์ และผสมเทียม เป็นต้น โดยการ ผสมเทียมยังคงเป็นปัจจัยที่สำคัญสำหรับการผลิตสัตว์ปศุสัตว์ รวมถึงกระบือด้วย (Barile, 2005) การ ผสมเทียมต้องอาศัยการกำหนดเวลาที่เหมาะสมสำหรับการตกไข่ การใช้น้ำเชื้อที่มีปริมาณมากเพียงพอ และมีคุณภาพที่เหมาะสม ทั้งสองประการนี้เป็นปัจจัยที่สำคัญอย่างยิ่ง การผสมเทียมในฟาร์มสุกรหรือ โค ถือได้ว่าเป็นอุตสาหกรรมที่มีการพัฒนาอย่างมาก โดยเป้าหมายที่สำคัญคือการเก็บรักษาตัวอสุจิให้ อยู่ในสภาพที่มีชีวิตอยู่รอด และมีประสิทธิภาพในการเคลื่อนที่ไปปฏิสนธิได้เป็นอย่างดีในน้ำยาหรือสาร ที่มีสภาพเหมาะสมสำหรับการการแช่เย็นหรือแช่แข็ง ซึ่งมีความจำเป็นมากในกรณีที่สัตว์เพศเมียอยู่ ห่างใกลจากศูนย์ผสมเทียม และยังช่วยในการเก็บรักษาพันธุกรรมของสัตว์ไว้ได้อีกทางหนึ่งด้วย ดังนั้น สารที่ช่วยเก็บรักษาคุณภาพน้ำเชื้อ จำเป็นต้องมีการพัฒนาปรับปรุงให้ใกล้เคียงกับธรรมชาติมากที่สุด เท่าที่ผ่านมาในกระบือนั้น การศึกษาวิจัยที่เกี่ยวกับการเก็บรักษาน้ำเชื้อของกระบือยังมีจำนวนน้อย และยังคงใช้สารที่ใช้สำหรับการเตรียมน้ำเชื้อของโคเป็นหลัก (Sansone et al., 2000) ซึ่งข้อมูลในการ พัฒนานี้จำเป็นต้องมีการศึกษาเพิ่มเติมเกี่ยวกับโครงสร้าง เยื่อบุ รวมทั้งของเหลวที่ปรากฏในท่อนำไข่ ของกระบือในระยะต่างๆ ของวงรอบการเป็นสัด ก่อนที่จะมีการนำข้อมูลที่ได้มาพัฒนาปรับปรุงในขั้น ตอนต่อไป นอกจากการผสมเทียมแล้ว การพัฒนาทางด้านเทคโนโลยีชีวภาพในการปรับ ปรุงพันธุ์ กระบือ ได้มีพัฒนากันอย่างกว้างขวาง เช่น การผลิตตัวอ่อนในห้องปฏิบัติการ การย้ายฝากตัวอ่อน หรือการโคลนนิ่งกระบือจากเซลล์ใบหูมีการวิจัยกันอย่างกว้างขวาง (Gasparrini, 2002) โดยขั้นตอน ต่างๆ ที่ใช้ในกระบวนการดังกล่าว ได้มีการนำเยื่อบุของท่อนำไข่และของเหลวที่ผลิตภายท่อนำไข่มาใช้ ในการเตรียมตัวอสุจิหลังการแช่แข็งให้พร้อมสำหรับการปฏิสนธิ (Kumaresan et al., 2005) การเตรียม โอโอไซต์และตัวอ่อนในระยะแรกที่ผลิตได้ในห้อง ปฏิบัติการ ให้มีความสมบูรณ์พร้อม (Nandi et al., 2003) สำหรับการย้ายฝากตัวอ่อน รวมทั้งการโคลนนิ่งเซลล์ตั้งต้น (Kitiyanant et al., 2001) ดังนั้น ความรู้ขั้นพื้นฐานเกี่ยวกับเซลล์เยื่อบุท่อและของเหลวที่ผลิตภายในท่อนำไข่ ซึ่งสัมพันธ์กับวงรอบการ เป็นสัดของกระบือปลักไทยจึงมีความสำคัญยิ่งที่จะต้องศึกษาวิจัย

วัตถุประสงค์

1. เพื่อศึกษาหน้าที่ของท่อนำไข่ส่วนต่างๆ โดยศึกษาถึงโครงสร้างของท่อนำไข่ตรงบริเวณรอยต่อ ของท่อนำไข่กับปีกมดลูก (ซึ่งทำหน้าที่พิเศษในการเก็บกักตัวอสุจิก่อนถึงระยะตกไข่) เปรียบ เทียบกับท่อนำไข่ส่วนอื่นๆ โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด นอกจากนี้ ท่อนำ ไข่แต่ละส่วนจะนำมาศึกษาถึงการเปลี่ยนแปลงความสูงของเซลล์เยื่อบุท่อนำไข่ การกระจายตัว ของเซลล์เม็ดเลือดในท่อนำไข่ตามระยะการเป็นสัดของกระบือปลัก สารและปริมาณของสารที่ คัดหลั่งที่พบภายในท่อนำไข่ ซึ่งข้อมูลดังกล่าวนี้มีความ สัมพันธ์กับการทำหน้าที่ของท่อนำไข่ ตามวงรอบของการเป็นสัดของกระบือปลัก

2. เพื่อศึกษาการแสดงออกของตัวรับของฮอร์โมนเอสโตรเจน และโปรเจสเตอโรนในท่อนำไข่ส่วน ต่างๆ ซึ่งเปลี่ยนแปลงไปตามวงรอบการเป็นสัด โดยวิธีอิมมูโนฮีสโตเคมี

ระเบียบวิธีวิจัย

แผนการทดลอง

เป็นการศึกษาลักษณะการเปลี่ยนแปลงทางสัณฐานวิทยา ซึ่งเกี่ยวข้องกับโครงสร้างและหน้าที่ ของท่อนำไข่ในแต่ละส่วน รวมทั้งศึกษาการแสดงออกของฮอร์โมนเพศเมียทั้งฮอร์โมนเอสโตรเจนและ โปรเจสเตอโรน ที่ปรากฏในท่อนำไข่กระบือปลัก ซึ่งมีการเปลี่ยนแปลงในระยะต่างๆ ของวงรอบการ เป็นสัด โดยเก็บท่อนำไข่ในระยะต่างๆ ซึ่งประเมินได้จากการปรากฏของคอร์ปัสลูเทียม และฟอลลิเคิล บนผิวของรังไข่ การทดลองทำโดยการเก็บรังไข่และท่อนำไข่ของกระบือปลักจากโรงฆ่าจำนวนประมาณ 40 ตัว เลือกเก็บท่อนำไข่ที่ไม่มีความผิดปกติทางพยาธิวิทยาเมื่อมองดูด้วยตาเปล่า ทำการศึกษาโดย การวัดความยาวและแยกเก็บส่วนต่างๆ ของท่อนำไข่ในน้ำยาดองที่เหมาะสม กระบือปลักที่ทำการ ศึกษานี้จะเป็นกระบือปลักเพศเมียที่โตเต็มที่แล้ว ซึ่งอาจมีอายุที่แตกต่างกันไป

การเก็บตัวอย่างและการตรวจสอบอวัยวะสืบพันธุ์

อวัยวะทางระบบสืบพันธุ์ประกอบด้วย ท่อนำไข่และรังไข่ ถูกเก็บจากกระบือเพศเมียที่ถูกส่งโรง ฆ่า โดยจะตรวจสอบประวัติของสัตว์ (ถ้ามี) เช่น อายุและการตั้งท้อง เป็นต้น รังไข่และท่อนำไข่ของแต่ ละตัวถูกแยกเก็บใส่ถุง พลาสติก ติดเบอร์ แล้วใส่กล่องโฟมที่มีน้ำแข็งปิดผนึกส่งห้องปฏิบัติการภายใน 30-45 นาที โดยอวัยวะของกระบือสุกรที่เก็บจะทำการตรวจสอบ ดังนี้ คือ <u>รั**งไข่**</u> ชั่งน้ำหนักแต่ละข้าง ตรวจดูว่าอยู่ระยะใดของวงรอบการเป็นสัดตามที่ระบุโดย Ali et al. (2003) ซึ่งสังเกตได้จากการปรากฏ ของฟอลลิเคิลและลักษณะของคอร์ปัสลูเทียม แบ่งออกเป็น 2 ระยะ คือ ระยะฟอลลิคูลาร์ และลูเทียล ของวงรอบการเป็นสัด <u>ท่อนำไข่</u> ตรวจดูว่าไม่มีความผิดปกติภายนอก เช่น ท่อนำไข่อักเสบ (salpingitis) หรือการยึดติดกันของท่อนำไข่กับรั้งไข่ (hydrosalpinx) adhesion) วัดความยาว และความกว้าง และแบ่งเป็นส่วนต่างๆ 4 ส่วนได้แก่ ส่วนรอยต่อของปีกมดลูก กับท่อนำไข่ (utero-tubal junction, UTJ) อิสมัส (isthmus) แอมพูลล่า (ampulla) และอินฟันดิบูลัม (infundibulum)

การศึกษาหน้าที่โดยทั่วไปของท่อนำไข่ส่วนต่าง ๆ

ศึกษาการเปลี่ยนแปลงของโครงสร้างโดยจุลทรรศน์อิเล็กตรอนแบบส่องกราด

ท่อนำไข่ส่วนส่วนอินฟันดิบูลัม แอมพูลลา อิสธ์มัส และรอยต่อระหว่างท่อนำไข่กับปีก มดลูก จะเก็บไว้ใน 2.5% Glutaraldehyde ใน 0.1 โมลาร์ PBS จะนำมาผ่านกระบวนการเพื่อศึกษาทาง จุลทรรศน์อิเล็กตรอนแบบส่องกราด เพื่อตรวจสอบการเปลี่ยนแปลงทางโครงสร้างของท่อนำไข่ส่วน ต่างๆ ซึ่งมีหน้าที่แตกต่างกันไปตามกระบวนการในการปฏิสนธิ เช่น บริเวณที่เป็นที่กักเก็บตัวอสุจิ (sperm reservoir) มีตำแหน่งอยู่บริเวณรอยต่อของท่อนำไข่และปีกมดลูก บริเวณที่รับโอโอไซต์คือ อิน ฟันดิบูลัม หรือบริเวณที่เกิดการปฏิสนธิคือ ส่วนแอมพูลล่าที่ต่อกับอิสธ์มัส เป็นต้น ซึ่งการเปลี่ยนแปลง ทางโครงสร้างภายในท่อนำไข่ส่วนต่างๆ ต้องมีลักษณะจำเพาะสำหรับการทำหน้าที่ของท่อนำไข่

การศึกษาทางเนื้อเยื่อวิทยา (ความสูงของเยื่อบุ การกระจายตัวของเซลล์ใน ระบบภูมิคุ้มกัน การศึกษาชนิดของสาร และปริมาณสารจากเซลล์คัดหลั่งของ เซลล์เยื่อบุท่อนำไข่)

นอกจากนี้ หน้าที่ของท่อนำไข่ ยังสามารถศึกษาด้วยวิธีทางเนื้อเยื่อวิทยาอื่นๆ โดยท่อ นำไข่ส่วนต่างๆ ที่จะนำมาตรวจสภาพทางเนื้อเยื่อวิทยา จะเก็บไว้ใน 2.5% paraformaldehyde นำมา ใส่ในพาราฟินเหลว นำมาตัดวางลงบนแผ่นสไลด์ ย้อมสี Hemotoxylin and Eosin (H&E) ตรวจภายใต้ กล้องจุลทรรศน์แสงสว่าง โดยกลุ่มที่ย้อม H&E จะตรวจวัดความสูงของเยื่อบุและการกระจายตัวของ เซลล์เม็ดเลือดขาวที่ปรากฏในชั้นเยื่อบุท่อและชั้นใต้เยื่อบุ การเปลี่ยนแปลงดังกล่าวในวงรอบการเป็น สัดจะเป็นข้อมูลขั้นพื้นฐานสำคัญสำหรับกระบือปลักของไทย สามารถนำไปอ้างอิงได้เนื่องจากยังไม่มี ผู้วิจัยศึกษาเรื่องนี้มาก่อน โดยการศึกษาจะใช้ ocular reticule แบบตาราง 5X5 ซึ่งเป็นเลนส์กระจกที่ ติดไว้กับ eyepiece ของกล้องจุลทรรศน์แสงสว่าง ซึ่งใช้สำหรับการนับจำนวนเซลล์และการวัดความสูง ของเซลล์ได้ สำหรับการศึกษาชนิดสารและปริมารของสารคัดหลั่ง ซึ่งเป็นการศึกษาเบื้องตัน โดย การศึกษานี้จะนำชิ้นเนื้อที่ตัดไปย้อมด้วยสี Periodic acid's Schiff (PAS) เพื่อดูสารชนิดมิวโคโพลีซัค คาไรด์ ถ้ามีการติดสี PAS และดูความเข้มของการติดสีทั้งภายใน และภายนอกบนผิวของเซลล์เยื่อบุ เพื่อจะตรวจสอบปริมาณของสารชนิดนี้ที่คัดหลั่งในวงรอบการเป็นสัด

การศึกษาการแสดงออกของตัวรับฮอร์โมนเพศเมียในท่อนำไข่

ท่อนำไข่ของสัตว์เลี้ยงลูกด้วยนมโดยส่วนใหญ่ เป็นอวัยวะที่เกี่ยวข้องกับกลไกที่สำคัญ ของการสืบพันธุ์ นั่นคือ การขนส่งตัวอลุจิ การรับโอโอไซต์ การปฏิสนธิ การเจริญเบื้องตันของตัวอ่อน ซึ่งกระบวนการต่างๆ เหล่านี้ อยู่ภายใต้อิทธิพลของเสดียรอยด์ฮอร์โมนที่มาจากรังไข่ โดยมีผลในการ เปลี่ยนแปลงของเซลล์เยื่อบุ การผลิตสังเคราะห์สารคัดหลั่งชนิดต่างๆ กระบวนการคัดหลั่งและการ เปลี่ยนแปลงของเซลล์คัดหลั่ง การบีบตัวของกล้ามเนื้อเรียบ ซึ่งมีความจำเพาะต่อการทำหน้าที่ระหว่าง เซลล์สืบพันธุ์กับสิ่งแวดล้อมภายในท่อนำไข่ในแต่ละขั้นตอนของกระบวนการปฏิสนธิ ดังนั้น การศึกษา การแสดงออกของตัวรับฮอร์โมนทั้งสองชนิดในท่อนำไข่ของกระบือ จะเป็นข้อมูลขั้นพื้นฐานที่จะนำไป ใช้ประยุกต์ใช้ในการทดลองขั้นสูง และเป็นความรู้ขั้นพื้นฐานส่วนหนึ่งในการปรับปรุงการผสมพันธุ์ใน กระบือ โดยท่อนำไข่ส่วนส่วนอินฟันดิบูลัม แอมพูลลา อิสธ์มัส และรอยต่อระหว่างท่อนำไข่กับปึกมดลูก จะเก็บไว้ใน 10% neutral buffer formalin นำมาใส่ในพาราฟินเหลว ตัดชิ้นเนื้อวางลงบนแผ่นสไลด์ นำมามาย้อมทางอิมมูโนฮีสโตเคมี เพื่อศึกษาการปรากฏของตัวรับของฮอร์โมนเอสโตรเจนและโปรเจส เตอโรนโดยใช้ monoclonal mouse anti-progesterone receptor antibody และ pstrogen receptor-α mouse monoclonal antibody เป็น primary antibody ร่วมกับ ABC-complex และ DAB เพื่อดูการติด สีที่เซลล์เยื่อบุ

การวิเคราะห์ข้อมูลทางสถิติ

วิเคราะห์ข้อมูลโดยใช้โปรแกรม SAS (SAS Institute, Inc., 1998, Cary, NC, USA) ความสูงของเยื่อบุท่อนำไข่ จำนวนการกระจายของเซลล์เม็ดเลือดขาวต่อพื้นที่ที่ทำการวัด วิเคราะห์โดย analysis of variance (ANOVA) การปรากฏของการติดสีของ PAS จะนำมาวิเคราะห์และสรุปผลในรูปแบบสถิติเชิงพรรณนา (descriptive statistic) สำหรับความเข้มของการติดสีบวกและสัดส่วนการ

กระจายตัวของตัวรับเอสโตรเจนและโปรเจสเตอโรนในท่อนำไข่กระบือปลักส่วนต่างๆ ในระยะฟอลลิคู ลาร์และลูเทียลจะใช้การคำนวณและเปรียบเทียบด้วยวิธี NPAR1WAY (Wilcoxon rank sum test) โดย ความแตกต่างที่ *P*<0.05 ถือเป็นความแตกต่างอย่างมีนัยสำคัญทางสถิติ

เอกสารอ้างอิง

- ผกาพรรณ บุณยะเวชชีวิน สัตตรัตน์ แสงดิษฐ์ เกรียงศักดิ์ แก้วสมประสงค์ และจรัญ จันทลักขณา สภาวะและแนวโน้มการใช้กระบืองานและรถไถเดินตามในภาคตะวันออกเฉียงเหนือ วารสาร เทคโนโลยีสรนารี ปีที่ 1 ฉบับที่ 1 หน้า 15-16 (2537)
- Ali, A., Abdel-Razek, A.K., Abdel-Ghaffar, S. and Glatzel, P.S. 2003. Ovarian follicular dynamics in buffalo cows (*Bubalus bubalis*). Reprod. Domest. Anim. 38: 214—218.
- Barile, V.L. 2005. Improving reproductive efficiency in female buffaloes. Liv. Prod. Sci. 92:183-194.
- FAO (Food and Agriculture Organization of The United Nations), FAOSTAT Agriculture Data, 2003. http://apps.fao.org/default.
- Gasparrini, B. 2002. In vitro embryo production in buffalo species: State of art. Theriogenology 57: 237-256.
- Kanai, Y. and Shimizu, H. 1983. Characteristics of the estrous cycle of the swamp buffalo under temperate conditions. Theriogenology 19: 593-602.
- Kitiyanant, Y., Saikhun, J., Chaisalee, B., White, K.L and Pavasuthipaisit, K. 2001. Somatic cell cloning in buffalo (Bubalis bubalis): effects of interspecies cytoplasmic recipients and activation procedures. Cloning Stem Cells. 3: 97-104.
- Kumaresan, A., Ansari, M.R., Garg, a. and Kataria, M. 2005. Effect of oviductal proteins on sperm functions and lipid perioxidation levels during cryopreservation in buffalos. Anim. Reprod. Sci. 93(3-4): 246-257.
- Nanda, A.S. and Nakao, T. 2003. Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. Anim. Sci. J. 74: 443-455.
- Nanda, A.S., Brar, P.s. and Prabhakar, S. 2003. Enhancing reproductive performance in dairy buffalo: major constraints and achievements. Reprod. Suppl. 61: 1-10.
- Nandi, S., Ravindranatha, b.M., Gupta, P.s., Raghu, H.M. and sarma, P.V. 2003. Development competence and post-thaw survivability of buffalo embryos produced in vitro: effect of growth factors in oocyte maturation medium and of embryo culture system. Theriogenology 60: 1621-1631.
- Sansone, g., Nastri, M.J. and Fabbrocini, A. 2000. Storage of buffalo (Bubalus bubalis) semen.
- Singh, J., Nanda, A.S. and Adams, G.P. 2000. The reproductive efficiency of female buffaloes.

 Anim. Reprod. Sci. 60-61: 693-604.

เนื้อหางานวิจัย

Histological Changes in the Epithelium of Thai Swamp Buffalo Oviduct at Follicular and Luteal Phases

P Tienthai^{1*}, K Sajjarengpong¹ and M Techakumphu²

¹Department of Anatomy, ²Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

Abstract

The samples from the infundibulum, ampulla, isthmus and uterotubal junction (UTJ) of the Thai swamp buffalo oviduct were taken immediately after slaughter at the local abattoir. The histological changes of the epithelium including general characteristics, intensity of periodic acid-Schiff (PAS) staining, cell height and immune cell distribution were investigated by light microscopy. The degree of the histological and morphometric changes was shown to be high in the ampulla and infundibulum compared with that of the isthmus and UTJ at both follicular and luteal phases of the estrous cycle. In the infundibulum and ampulla, cytoplasmic protrusions of the epithelial cells with extruded nuclei were prominent at the luteal phase and disappeared during the follicular phase. However, a strong intensity of PAS reaction was obviously shown in the epithelium of isthmus and UTJ during the follicular phase. The epithelial cell height significantly decreased in the infundibulum and ampulla from the follicular to luteal phases, but not in other regions. The number of intraepithelial leukocytes was significantly different between the stages of the estrous cycle and highest in the infundibulum at the luteal phase. In conclusion, histological observations of Thai swamp oviductal epithelium revealed marked cyclic changes in cellular differences associated with functions of segmental variations.

Keywords: buffalo oviduct, epithelium, estrous cycle, light microscopy

*Corresponding author: Tel.: +66(0)22189658 Fax.: +66 (0) 22189657

E-mail address: Paisan.T@chula.ac.th

1. Introduction

It is clear that buffaloes play an essential role in rural livestock production, particularly in Asia, and factors affecting productivity are of paramount important to agricultural economics in this region (Singh et al., 2000). We have known that reproductive efficiency is the main factor influencing productivity and is hampered in the female buffalo (Madan and Raina, 1984). To improve the buffalo reproduction, better understanding of the cellular differences in relation to the functions that occur in the female reproductive tract, particularly in the oviduct, throughout the stages of estrous cycle in buffaloes is primarily required.

The oviduct is a considerable organ in mammalian reproduction because the reproductive processes of male and female gametes occur in the oviduct (Hunter, 1988; Ellington, 1991). The caudal isthmus and uterotubal junction (UTJ) of the bovine oviduct are involved in events of sperm transport, storage and capacitation that need preservation of the motility, viability and fertilizing ability of spermatozoa (Pollard et al., 1991; Lefebvre et al., 1995) whereas the infundibulum and ampulla are involved in the oocyte pick-up, transport,

maturation and fertilization (Hunter, 1988). The oviductal epithelium consists of two morphologically distinct cell types, ciliated and secretory or non-ciliated cells (Abe and Oikawa, 1993). The ciliated cells are implicated in the transportation of oocytes into the oviduct (Odor and Blandau, 1973), while the secretory cells synthesize secretory products composed of nutrients, specific compound proteins and glycoproteins into the lumen to form oviductal fluid for the reproductive process (Suarez et al., 1997; Leese et al., 2001). In ruminants, the pattern of oviductal secretion and ciliary activity also coincides with changes of the estrous cycle (Abe and Oikawa, 1993; Abe et al., 1993, 1999). Furthermore, there are several mechanisms for maintaining an aseptic micro-environment (Ellis et al., 1986) including the mucosal immune systems of intraepithelial lymphocytes (Morris et al., 1986; Jiwakanon et al., 2005) relating to the function of the oviduct.

To better understand the basic structure and physiology of the buffalo oviduct, more information is needed regarding the differences between the segments associated with the stages of estrous cycle. Therefore, the aim of the present study was to investigate the histological changes of the mucosal epithelium (infundibulum, ampulla, isthmus and UTJ) and the immune cell infiltration of Thai swamp buffalo oviduct with reference to the follicular and luteal phases of estrous cycle.

2. Materials and Methods

2.1 Animals and tissue collection

The sexually mature female buffaloes (n = 27) at various ages (2-8 years) were slaughtered at the local abattoir and genital tracts were immediately collected and kept in a cool container (\sim 4°C) for 30 min until analysis in a laboratory. The reproductive organs were examined and the ovarian status of the estrous cycle, i.e. follicular and luteal phases, was determined by the morphological appearance of the corpus luteum (Ali et al., 2003). The samples from four different parts including the infundibulum, ampulla, isthmus and UTJ were fixed in 10% buffered formalin. The specimens were stored at 4°C until being embedded in paraffin using standard procedures, cut in 5 μ m thick sections and mounted on glass slides for hematoxylin and eosin (H&E) and PAS staining.

2.2 Cytomorphometric and immune cell evaluations

Samples of all collected buffalo oviducts were stained with H&E and PAS to evaluate the general morphological features, the epithelial cell height and intraepithelial immune cell distribution. A light microscope was used with a $\times 40$ objective and $\times 10$ eyepieces. The height of epithelium was determined by using Motic Image 2.0 Software and a Moticam digital microscopic camera (Motic Incorporation Ltd., Hong Kong). For this measurement, 150 cells in different locations from each region were selected only if the plane of section clearly passed through the cell nucleus, and the section was parallel to the longitudinal axis of the cell and the apex and base of the cell could be easily distinguished (Verhage et al., 1979). Cell counts were performed using an ocular reticule with 25 small squares placed in one eyepiece of the light microscope. At $400\times$ magnification, each length of 25 small squares of the reticule corresponded to 125 μ m of real tissue length; therefore, the area of 25 small squares of the reticule was equal to 15,625 μ m 2 of the real tissue area. The cells were counted on the non-overlapping epithelia of at least 50 small squares of all segments in 4 different sections.

2.3 Statistical analyses

Data were statistically analyzed using the SAS statistical package (version 8.0, SAS Institute, Inc., 1998, Cary, NC, USA). The normal distribution of residuals from the statistical models was tested using the UNIVARIATE procedure option NORMAL. Mean differences in numbers of immune cells and cell heights were tested using analysis of

variance (Proc MIXED). The statistical model included the fixed effects of the stage (follicular and luteal) and segment (infundibulum, ampulla, isthmus and UTJ), the interaction between stage and segment, and the random effect of buffalos nested within stage. The Bonferroni t-test was used to compare the least-square means between groups when overall significance for that was found. P value ≤ 0.05 was considered statistically significant.

3. Results

The morphology of the epithelial mucosa in four different segments of the buffalo oviduct regarding the follicular and luteal phases of the ovarian cycle is shown in Figure 1. Two distinct cell types, ciliated and secretory cells were clearly distinguished by light microscopy in the sections stained with PAS. In the follicular phase, ciliated cells were predominating in the infundibulum (Fig. 1a) and ampulla (Fig. 1c). Intense staining at the apical cytoplasm of the secretory cells in the isthmic (Fig. 1e) and UTJ epithelia (Fig. 1g) were displayed very intensely at the follicular phase, whereas the PAS positive cells in the epithelium of other oviductal regions in the follicular (Fig. 1a, c) and luteal phases (Fig. 1b,d,f,h) were not clear and showed individual variations (Table 1). In addition, the characteristics of secretory cells found in the infundibulum (Fig. 1b) and ampulla (Fig. 1d) were slender-shaped and various degrees of protrusion during luteal phase were found. The cytoplasmic protrusions of secretory cells with/without nuclei of these segments were usually extended beyond the tips of the cilia. Except for the PAS positive cells in the follicular phase, no difference in the morphology of the isthmic and UTJ epithelial cells was observed between the follicular and luteal phases.

The epithelial cell height and intraepithelial leukocyte distribution of the infundibulum, ampulla, isthmus and UTJ during the follicular and luteal phase are shown in Figs. 2 and 3. The height of epithelium in all segments significantly decreased from the follicular phase to luteal phase and was most dramatic in the infundibulum and ampulla (P < 0.05), while this reduction was not significant in the epithelium of the isthmus and UTJ (P > 0.05). The characteristics of intraepithelial leukocytes, usually close to basement membrane of the oviductal epithelium, found in the buffalo oviduct were presented as thin, light cytoplasm with large round-shaped nucleus (Fig. 1a,b,d). The numbers of intraepithelial immune cells significantly differed (P < 0.05) among segments (Fig. 3) and differed between stages only in the infundibulum (Fig. 4). However, a high variation in the numbers of intraepithelial leukocytes was found among individual buffaloes.

4. Discussion

The general histological changes in four different segments of buffalo oviducts during the follicular and luteal phases in this study were relatively similar to the previous observations in the bovine oviduct (Suarez et al., 1997; Bergqvist et al., 2005a,b). The secretory cells of the infundibulum and ampulla in the present study dramatically extended beyond the ciliated cells as the bulbous protrusions in the luteal phase, while this phenomenon was not found in the UTJ and isthmus. Murray (1995) and Hollis et al. (1984) who investigated the ewe oviduct suggested that shedding of extruded secretory cells into the oviductal lumen during the luteal phase was a process of cell death. Similar patterns have been seen in sows including the presence of macrophages which normally take care of dead cells in the oviductal epithelium (Jiwakanon et al., 2005). Moreover, the secretory cell in caprine ampullar epithelium showed entire atrophy, and apoptosis-like fragments were observed in the late luteal phase (Morita et al., 1995). Apoptosis in the oviductal epithelium of cats has been exhibited to be hormonally regulated, induced by a rise of progesterone coupled with a decline in serum estradiol (Bareither and Verhage, 1981). These findings indicate that the cytoplasmic protrusions might be a part of the process in which dead

epithelial cells are eliminated. However, it is very difficult to observe all details in the changes of secretory cells and the macrophage is not recognized in buffalo oviduct by routine histological techniques. Therefore, more special techniques, for example, the immunohistochemical staining of CD68 (Kar et al., 2004) and TUNEL (Gavrieli et al., 1992) might be used for differentiating macrophages and apoptosis along the oviductal epithelium in the near future.

The cytomorphometric data have revealed the tendency of epithelial cell height to be reduced in all segments during luteal phase but this reduction noticeably occurred in the infundibulum and ampulla. Our findings were not exactly similar to those of the previous study in cow oviducts (Abe and Oikawa, 1993) where both ciliated and secretory cells were measured. They reported that the height of ciliated cells significantly decreased in all regions at the luteal phase and were most dramatic in the fimbriae and ampulla as related to the low percentages of these cells in both segments, while the secretory cells decreased in the UTJ and isthmus at luteal phase. Although the present study did not use semi-thin sections stained with toluidine blue, the measurement of the entire epithelium in the buffalo oviduct can be representative of both ciliated and secretory cells. Therefore, the changes of epithelial cell height found in the buffalo oviduct could be mainly dependent on the presence (ciliation) of ciliated cells at the follicular phase and the loss of ciliated cells (deciliation) at the luteal phase, especially in the infundibulum and ampulla, as it occurs in the rat oviduct (Reeder and Shirley, 1999). Considering the UTJ and isthmus, the results have shown no difference in epithelial cell height between both phases of estrous cycle. As described earlier, the epithelial cell height of the oviduct is involved in the number of ciliated cells. Since the seeming proportion of epithelial cells in UTJ and isthmus showed a little change, the epithelial cell height in these regions did not differ as well. However, the question is why the epithelial cell height in the infundibulum and ampulla was higher than in the UTJ and isthmus. Reeder and Shirley (1999) suggested that epithelial cells in the rat oviduct may transform from one functional cell type to another, which is supported by the fact that ciliated and secretory cells alternately increase and decrease in number without evidence of much mitotic activity in either type. These mechanisms under the influence of steroid hormones of ciliated and secretory cells in the infundibulum and ampulla could be much more sensitive and functional than these cells in UTJ and isthmus. These findings strongly suggest the regular cycle of ciliogenesis and deciliation by epithelial cells of buffalo oviduct depends on the estrous cycle and reflects the functions in different regions.

The present study showed that the secretory cells in UTJ and isthmus intensely contained the PAS-positive reaction in the apical compartment at the follicular phase as it occurred in porcine (Walter and Bavdek, 1997; Johansson et al., 2000) and bovine (Suarez et al., 1997), while the other regions showed a variation of PAS-staining throughout estrous cycle. Generally, the PAS-positive material detected in the lumen and epithelial cells of the oviduct indicated the presence of mucopolysaccharides and acidic glycoproteins (Oliphant and Ross, 1982) and very high intensity of staining during follicular phase related to the changes in secretory activity under the influence of estrogen (Nayak et al., 1976; Buhi et al., 1996). However, Abe et al. (1993) reported that the intense labeling of oviductal glycoprotein in bovine was observed in the ampullar and fimbriae epithelia at the follicular phase, while the reaction was weaker in the isthmus at both phases. This finding with the variable PAS-positive reactions in infundibulum and ampulla suggested that there would be different in types of glycoprotein or mucopolysaccharide existing in each portion of the oviduct which is important in different functions and segments throughout estrous cycle. For instance, Bergqvist et al. (2005b) indicated that hyaluronan (HA) in the secretory fluid was at peak in the isthmus and UTJ at follicular phase and played a role in arresting sperm capacitation and preserving sperm viability. Thus, the appearance of PAS-reaction in these regions might be one of the important factors involved in the formation of functional sperm reservoir in bovine (Lefebvre et al., 1995) and could occur in buffalo.

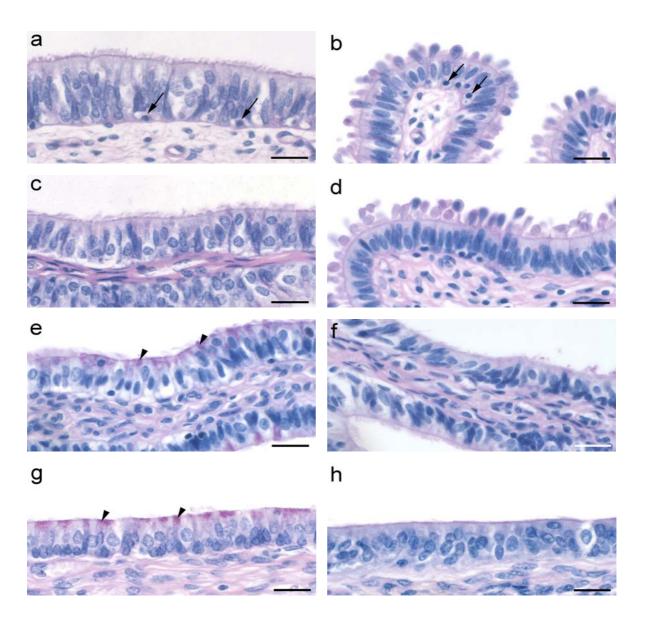
The intraepithelial leukocyte can be found in all regions of the oviduct in both phases of estrous cycle. The characteristics and position of intraepithelial immune cells in the buffalo oviduct have been related to 'type I basal cells' which are identified as the 'lymphocyte' and it was the most common immune cell type in the epithelium of the bovine oviduct (Abughrien et al., 2000). It is known that the oviduct of domestic animals has a mucosal immune system which is required for maintaining an aseptic intraluminal fluid (Ellis et al. 1986). Therefore, the presence of intraepithelial lymphocyte (IEL) in the buffalo oviduct might involve in the regulation of local immune response and production of antigenspecific antibodies (Ogra et al., 1994). Quantitative examination by light microscopy revealed that a significant difference in the number of IEL was found among segments of the buffalo oviduct corresponding to the previous study of the bovine oviduct (Abughrien et al., 2000), indicating different regulatory mechanisms of IEL within the oviduct. In the present study, the number of IEL in the UTJ and isthmus was less significantly than that in the infundibulum and ampulla. Although detailed knowledge of the IEL in ruminant oviducts is limited, there are several investigators studying in the sow oviduct. In cyclic sow, the number of IEL did not differ among segments and estrous stages. However, it was interesting to note that the number of lymphocytes in the subepithelial connective tissue of the infundibulum and ampulla was clearly higher than that in the isthmus (Jiwakanon et al., 2005). They indicated that the immune cell reaction had to be low in the isthmus because both spermatozoa, as stored before fertilization, and the semi-allogenic conceptuses could survive. This is exemplified by other immune cells, i.e., neutrophils, which are not present in the isthmic epithelia of cyclic sows (Jiwakanon et al., 2005) or inseminated gilts (Rodriguez-Martinez et al., 1990). The present results also show the tendency of IEL to increase in the luteal phase of all segments, particularly in the infundibulum, in contrast to the numbers of IEL in oviducts of sow (Jiwakanon et al., 2005) and heifer (Abughrien et al., 2000) that did not significantly differ between estrous stages. It was probably because of differences for technical reasons and individual animals. However, this increase could be explained by the appearance of estrogen and progesterone receptors in the IEL of the human oviduct which fluctuated depending on the menstrual cycle but tended to increase in a progesteronedependent manner mediating via membrane progesterone receptors (Ulziibat et al., 2006). For better understanding, further studies on the different types of immune cell distribution in different segments of the buffalo oviduct are needed.

In conclusion, the present morphometric studies of the buffalo oviduct revealed a marked change in cellular differences related to the main functions of regional variations throughout the phases of estrous cycle. However, the physiological make-up of buffalo oviductal epithelial cells in the reproductive process needs to be further investigated, especially the localization of female steroid receptors and the presence of glycoproteins and glycosaminoglycans.

Acknowledgements

The authors would like to thank Mr. Silpchai Pienchop and Mr. Witoon Mabutr, Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, for their excellent technical assistance. The present study was supported by grants from the Thailand Research Fund (TRF) and the Commission on Higher Education of the Minister of Education (2006).

References


Abe, H. and Oikawa, T. 1993. Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat. Rec. 235: 399–410.

- Abe, H., Onodera, M. and Sugawara, S. 1993. Scanning electron microscopy of goat epithelial cells at the follicular and luteal phases of the oestrous cycle. J. Anat. 183: 415–421.
- Abe, H., Onodera, M., Sugawara, S., Satoh, T. and Hoshi, H. 1999. Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle. J. Anat. 195: 515–521.
- Abughrien, B.M., Dore, M.A., McGeady, T.A. and Fitzpatrick, E. 2000. Intraepithelial leukocytes in the bovine uterine tube. Cells Tissues Organs 166: 20–30.
- Ali, A., Abdel-Razek, A.K., Abdel-Ghaffar, S. and Glatzel, P.S. 2003. Ovarian follicular dynamics in buffalo cows (*Bubalus bubalis*). Reprod. Domest. Anim. 38: 214–218.
- Bareither, M.L. and Verhage, H.G. 1981. Control of the secretory cell cycle in cat oviduct by estradiol and progesterone. Am. J. Anat. 162: 107–118.
- Bergqvist, A.S., Yokoo, M., Bage, R., Sato, E. and Rodriguez-Martinez, H. 2005a. Detection of the hyaluronan receptor CD44 in the bovine oviductal epithelium. J. Reprod. Dev. 51: 445–453.
- Bergqvist, A.S., Yokoo, M., Heldin, P., Frendin, J., Sato, E. and Rodriguez-Martinez, H. 2005b. Hyaluronan and its binding proteins in the epithelium and intraluminal fluid of the bovine oviduct. Zygote. 13: 207–218.
- Buhi, W.C., Alvarez, I.M., Choi, I., Cleaver, B.D. and Simmen, F.A. 1996. Molecular cloning and characterization of an estrogen-dependent porcine oviductal secretory glycoproteins. Biol. Reprod. 55: 1305–1314.
- Ellington, J. 1991. The bovine oviduct and its role in reproduction: a review of a literature. Cornell Vet. 81: 313–328.
- Ellis, W.A., McParland, P.J., Bryson, D.G., Thiermann, A.B. and Montgomery, J. 1986. Isolation of leptospires from the genital tract and kidneys of aborted sows. Vet. Rec. 118: 294–295.
- Gavrieli, Y., Sherman, Y. and Ben-Sasson, S.A. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119: 493–501.
- Hollis, D.E., Frith, P.A., Vaughan J.D., Chapman, R.E. and Nancarrow, C.D. 1984. Ultrastructural changes in the oviductal epithelium of Merino ewes during the estrous cycle. Am. J. Anat. 171: 441–456.
- Hunter, R.H. 1988. The Fallopian Tube: Their Role in Fertility and Infertility, Springer-Verlag, New York, USA, pp. 30–52.
- Jiwakanon, J., Persson, E. and Dalin, D.-M. 2005. The sow endosalpinx at different stages of the oestrous cycle and at anoestrus: studies on morphological changes and infiltration by cells of the immune system. Reprod. Domest. Anim. 40: 28–39.
- Johansson, M., Tienthai, P. and Rodriguez-Martinez, H. 2000. Histochemistry and ultrastructure of the intraluminal mucus in the sperm reservoir of the pig oviduct. J. Reprod. Dev. 46: 183–192.
- Kar, M., Sengupta, J., Kumar, S., Bhargava, V.L. and Ghosh, D. 2004. Immunohistochimical localization of macrophage CD68+, HLA-DR+, L1+ and CD44+ subsets in uterine endometrium during different phases of menstrual cycle. Indian J. Physiol. Pharmacol. 48: 293–303.
- Leese, H.J., Tay, J.I., Reischi, J. and Downing. S.J. 2001. Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction. 121: 339–346.
- Lefebvre, R., Chenoweth, P.J., Drost, M., LeClear, C.T., MacCubbin, M., Dutton, J.T. and Suarez, S.S. 1995. Characterization of the oviductal sperm reservoir in cattle. Biol. Reprod. 53: 1066–1074.

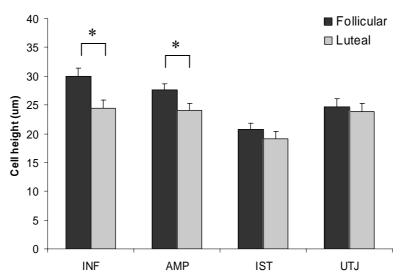
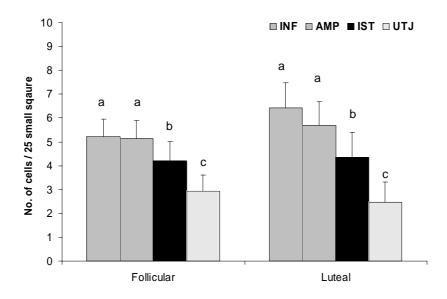

- Madan, M.L. and Raina, V.S. 1984. Fertility and performance of buffaloes under tropical conditions. Proceedin of 10th International Congress on Animal Reproduction and Artificial Insemination, Illinois, USA. vol. 2, pp. 142.1–142.4.
- Morita, M., Miyamoto, H., Ishii, T. and Sugimoto, M. 1995. The secretory cells of the goat epithelium: An ultrastructural study. J. Reprod. Dev. 41: 123–128.
- Morris, H., Emms, M., Visser, T. and Timme, A. 1986. Lymphoid tissue of the normal fallopian tube-a form mucosal-associated lymphoid tissue (MALT)? Int. J. Gynecol. Pathol. 5: 11–22.
- Murray, M.K. 1995. Epithelial lining of the sheep ampulla oviduct undergoes pregnancy-associated morphological changes in secretory status and cell height. Biol. Reprod. 53: 653–663.
- Nayak, R.K., Zimmerman, D.R. and Albert, E.N. 1976. Electron microscopic study of estrogen-induced ciliogenesis and secretion in uterine tube of the gilt. Am. J. Vet. Res. 37: 189–197.
- Odor, D.L. and Blandau, R.J. 1973. Egg transport over the fimbrial surface of the rabbit oviduct under experimental conditions. Fertil. Steril. 24: 292–300.
- Ogra, P.L., Mestecky, J., Lamm, M.E., Strober, W., McGhee, J.R. and Bienenstock, J. 1994. Handbook of Mucosal Immunology. Academic Press, Inc., California, USA, pp. 766.
- Oliphant, G. and Ross, P.R. 1982. Demonstration of production and isolation of three sulfated glycoproteins from the rabbit oviduct. Biol. Reprod. 26: 537–544.
- Pollard, J.W., Plante, C., King, W.A., Hansen, P.J., Betteridge, K.J. and Suarez, S.S. 1991. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol. Reprod. 44: 102–107.
- Reeder, R.L. and Shirley, B. 1999. Deciliation in the ampulla of the rat oviduct and effects of estrogen on the process. J. Exp. Zool. 283: 71–80.
- Rodriguez-Martinez, H., Nicander, L., Viring, S., Einarsson, S. and Larsson, K. 1990. Ultrastructural of the uterotubal junction in preovulatory pigs. Anat. Histol. Embryol. 19: 16–36.
- Singh, J., Nanda, A.S. and Adams, G.P. 2000. The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci. 60–61: 563–604.
- Suarez, S.S., Blockman, K. and Lefebvre, R. 1997. Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol. Reprod. 56: 447–453.
- Ulziibat, S., Ejima, K., Shibata, Y., Hishikawa, Y., Kitajima, M., Fujishita, A., Ishimaru, T. and Koji, T. 2006. Identification of estrogen receptor beta-positive intraepithelial lymphocytes and their possible roles in normal and tubal pregnancy oviducts. Hum. Reprod. 21: 2281–2289.
- Verhage, H.G., Bareither, R.C., Jaffe, R.C. and Akbar, M. 1979. Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am. J. Anat. 156: 505–522
- Walter, I. and Bavdek, S. 1997. Lectin binding patterns of porcine oviductal mucosa and endometrium during the oestrous cycle. J. Anat. 190: 299–307.

Table 1. PAS staining in the epithelial cells of the infundibulum (INF), ampulla (AMP), isthmus (IST) and uterotubal junction (UTJ) at the follicular and luteal phases (+; weak, ++; moderate, +++; intense)


Estrous Phases	INF	AMP	IST	UTJ
Follicular	+/+ +	+/+ +	+++	+++
Luteal	+	+	+/+ +	+/+ +

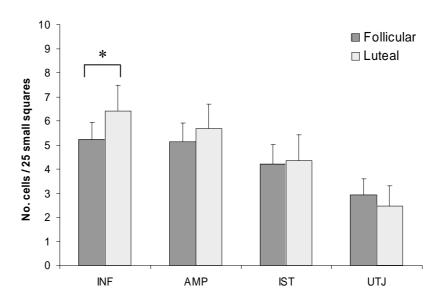

Fig. 1. Light microscopic photographs of the buffalo oviduct in cross-section stained by PAS showing the infundibulum (a, b), ampulla (c, d), isthmus (e, f), and uterotubal junction (UTJ) (g, h) at the follicular phase (a, c, e, g) and the luteal phase (b, d, f, h). The apical compartment and surface of non-ciliated secretory cells in the isthmus (e) and UTJ (g) at the follicular phase react with the PAS staining (arrowheads). Notice the lymphocyte-like cells (arrows) are located at the basal compartment of the epithelium. Bars = $20 \, \mu m$.

Fig. 2. The mean percentages of epithelial cell height (μ m) in the infundibulum (INF), ampulla (AMP), isthmus (IST) and uterotubal junction (UTJ) of the buffalo oviduct at the follicular and luteal phases. Values are presented as means \pm SEM. '*' means significant different between follicular phase and luteal phase with P < 0.05.

Fig. 3. Distribution of intraepithelial immune cells (number of cells/25 small squares) in different segments of the buffalo oviduct. Values are presented as means \pm SEM. Bars within the same stage of estrous cycle marked by different letters are significantly different (P<0.05). (INF, infundibulum; AMP, ampulla; IST, isthmus; UTJ, uterotubal junction)

Fig. 4. Distribution of intraepithelial immune cells (number of cells/25 small squares) in the buffalo oviduct at the follicular and luteal phases. Values are presented as means \pm SEM. '*' means significant difference between follicular and luteal phases with P<0.05. (INF, infundibulum; AMP, ampulla; IST, isthmus; UTJ, uterotubal junction)

Light and Scanning Electron Microscopic Studies of Oviductal Epithelium in Thai Swamp Buffalo (*Bubalus bubalis*) at the Follicular and Luteal Phases

P Tienthai¹, K Sajjarengpong¹ and M Techakumphu²

¹Department of Anatomy, ²Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

Contents

The purpose of this study was to investigate the morphological changes in the epithelium of Thai swamp buffalo oviducts at the follicular and luteal phases by histological technique and scanning electron microscopy (SEM). The samples from the infundibulum, ampulla, isthmus and uterotubal junction (UTJ) of the oviduct were taken immediately after slaughter at the local abattoir. Noticeable cyclic changes were observed on the epithelial surface of the infundibulum and ampulla, but few changes were present in the isthmus and UTJ. At the follicular phase, the epithelium of infundibulum and ampulla were densely covered with ciliated cells whose cilia concealed the apical processes of the secretory cells. In contrast, the secretory cells dominated in the epithelium at the luteal phase and most of the ciliated cells were hidden by the bulbous processes of these cells. In the isthmus and UTJ at the follicular and luteal phases, the secretory cells were almost flat or gently rounded and covered with numerous microvilli at their apical surface. In conclusion, the histological and ultrastructural observation of Thai swamp oviduct epithelium revealed marked cyclic changes in the cellular differences associated with the main functions of segmental variations.

*Corresponding author: Tel.: +66(0)22189658; Fax.: +66(0)22189657

E-mail address: Paisan.T@chula.ac.th

Introduction

Because reproduction is a critical factor in maintaining and improving the efficacy of animal reproduction, better understanding of the cellular differences and functions that occur in the female reproductive tract in domestic animals is of primary importance. The oviducts play an important role before fertilization, transporting the oocyte from the ovulated follicle in the ovary through the infundibulum and ampulla to the site of fertilization (Ellington 1991). The caudal isthmus and uterotubal junction (UTJ) of the bovine oviduct are involved in events such as sperm transport, storage and capacitation that require preservation of the motility, viability and fertilizing ability of spermatozoa (Pollard et al. 1991; Lefebvre et al. 1995). The oviductal epithelium consists of two morphologically distinct types of cell, ciliated and secretory or non-ciliated cell (Abe and Oikawa 1993). The ciliated cells are implicated in the transportation of oocytes into the oviduct (Odor and Blandau 1973), while the secretory cells synthesize secretory products composed of nutrients, specific compound proteins and glycoproteins into the lumen to form oviductal fluid (Suarez et al. 1997; Leese et al. 2001) which is essential for the reproductive process. In ruminants, the pattern of oviductal secretion and ciliary activity also coincides with changes of the estrous cycle (Abe and Oikawa 1993; Abe et al. 1993, 1999).

Detailed morphological observations of the oviductal epithelium have been reported in ruminants, for instance goats (Abe et al. 1993), ewes (Hollis et al. 1984) and cows (Nayak and Ellington 1977; Abe and Oikawa 1993) but not in buffalo. To better understand the structure and physiology of the buffalo oviduct, more information is needed regarding the differences between the segments associated with the stages of estrous cycle. Therefore, the objective of the present study was to examine the histological and ultrastructural changes of the mucosal epithelium (infundibulum, ampulla, isthmus and UTJ) and the immune cell

infiltration of Thai swamp buffalo oviduct with reference to the follicular and luteal phases of the estrous cycle.

Materials and Methods

Animals and tissue collection

The sexually mature female buffaloes (n = 28) at various ages (2-8 years) were slaughtered at the local abattoir and the genital tracts were immediately collected and kept in a cool container (\sim 4°C) for 30-45 min until analysis in a laboratory. The reproductive organs were examined for normality and the ovarian statuses of the estrous cycle (the follicular and luteal phases) were determined as described by Ali et al. (2003). The samples from four different segments, i.e. the infundibulum, ampulla, isthmus and UTJ were fixed in 2.5% glutaraldehyde in phosphate-buffered saline (PBS; pH 7.4) at 4°C for 24 h for SEM. and in 10% buffered formalin for PAS staining.

Scanning electron microscopy

After fixing, the tissues were rinsed in distilled water, post-fixed for 1 h in 1% osmium tetroxide (Merk, Darmstadt, Germany) in PBS (pH 7.4) and washed again. Fixation and washing were carried out at 4°C and the specimens were dehydrated in graded ethanol (30-100%) and substituted with acetone. Tissue samples were then subjected to critical point drying using liquid CO₂ substitution. Dehydrated samples were mounted on stubs, coated with gold-palladium in a sputter coater, and examined using a JEOL 5800 LV (JEOL, Tokyo, Japan) SEM at an accelerating voltage of 15 kV.

Results

General histological investigation

The morphology of the epithelial mucosa in four different segments of the buffalo oviduct at the follicular and luteal phases of the estrous cycle is shown in Figure 1. Two distinct cell types, ciliated and secretory cells were distinguished by light microscopy in the sections stained with PAS. In the follicular phase, ciliated cells were predominating in the infundibulum (Fig. 1a) and ampulla (Fig. 1c). In the luteal phase, the secretory cells were predominated in the infundibulum (Fig. 1b) and ampulla (Fig. 1d) and the features of these cells were shown various degrees of cytoplasmic protrusion. No difference in the morphology of the isthmic and UTJ epithelial cells was observed between the follicular (Fig. 1e,g) and luteal phases (Fig. 1f,h).

Scanning electron microscopy

Infundibulum

Under the scanning electron microscope, the epithelium of the infundibulum in the follicular phase samples appeared to be densely ciliated (Fig. 2a). The cilia of ciliated cells usually extended beyond the apical parts of the secretory cells which were partially concealed by the surrounding cilia and they were increased in the crypts within basal areas between folds. The secretory cells were rounded and numerous stubby microvilli protruded from the apical surface (Fig. 2b). The cilia were fairly uniform in length and quite evenly distributed. In the luteal phase samples, the secretory cells became extended as the bulbous processes predominated throughout all areas of the epithelial surface (Fig. 2b). The majority of the bulbous processes was elliptical in shape and varied in sizes. The microvilli on the surface of secretory cells were short and some lacking was often observed. Some of apical protrusions were long and tenuously attached to the underlying cells. The population of ciliated cells dramatically decreased compared to the follicular phase and exhibited to be hidden by the bulbous processes of secretory cells.

Ampulla

The epithelium of the ampulla in both the follicular and luteal phase oviducts was similar in appearance to that described in the infundibulum. At the follicular phase, the epithelium showed extensive ciliation, where the ciliated cells were evenly distributed on the epithelial surface (Fig. 3a). The secretory cells appeared gently rounded on their apical surfaces and were covered with microvilli. At the luteal phase, the cilia were concealed by the numbers of bulbous protrusions of secretory cells (Fig. 3b). Most of the processes were elliptical in shape, uniform in size and lacked microvilli on the apical surface.

Isthmus

The epithelium of buffalo isthmus demonstrated little change in the degree of ciliation and cellular dedifferentiation along the tube between the follicular (Fig. 4a) and luteal (Fig. 4b) phases. The ciliated cells of both estrous stages were irregularly distributed on the epithelium and their cilia had a variety of lengths and orientations. The apical surfaces of the secretory cells, however, were gently rounded in follicular samples and were almost flat in luteal samples. The short microvilli on the surface of secretory cells were noticeably increased in number compared to the secretory cells of the infundibulum and ampulla. In addition, groups of secretory droplets were observed on the follicular epithelial surface.

Utero-tubal junction (UTJ)

The UTJ showed little difference in ultrastructural features between the follicular (Fig. 5a) and luteal (Fig. 5b) as described in the isthmic epithelium. The ciliated cells were evenly distributed on the epithelium and the cilia were projected with random orientations into the lumen. The apical surfaces of the secretory cells were gently rounded in the follicular phase and almost flat in the luteal phase. Note the dense copious microvilli protruding from the apical surfaces of the secretory cells. The secretory droplets were also presented on the UTJ epithelium during follicular phase.

Discussion

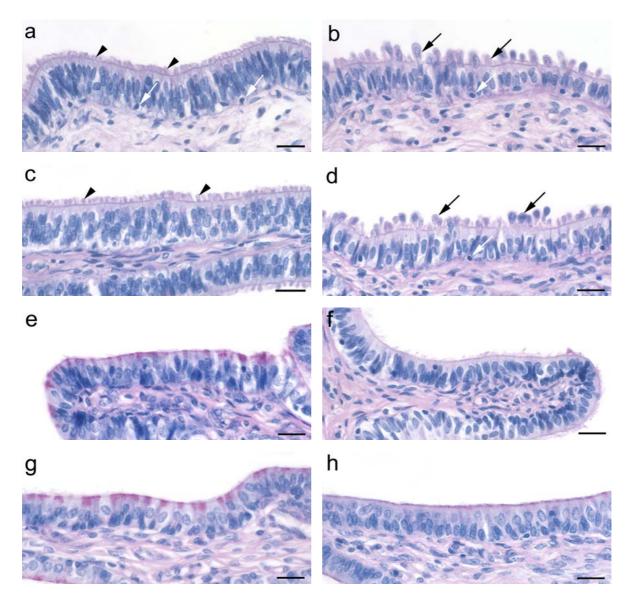
The general histological changes in four different segments of buffalo oviducts during both the follicular and luteal phases in this study were similar to the previous observations in the bovine oviduct (Suarez et al. 1997; Bergqvist et al., 2005a, b). The secretory cells of the infundibulum and ampulla in the present study were changed by extending beyond the ciliated cells as the bulbous protrusions in the luteal phase and the change was obviously confirmed by SEM micrographs, while this phenomenon was not found in the UTJ and isthmus. Murray (1995) and Hollis et al. (1984) investigated the ewe oviduct suggesting that shedding of extruded secretory cells into the oviductal lumen during the luteal phase was a process of cell death. Moreover, the secretory cell in goats' ampullar epithelium showed entire atrophy and apoptosis-like fragments were observed in the late luteal phase (Morita et al. 1995). Taken together, the apoptosis in the oviductal epithelium of cats has been exhibited to be hormonally regulated, induced by a rise of progesterone coupled with a decline in serum estradiol (Bareither and Verhage 1981). These findings indicate that the cytoplasmic protrusions might be a part of the process in which dead epithelial cells are eliminated. However, it is very difficult to observe all details in the changes of secretory cells by SEM and also the macrophage is not recognized in buffalo oviduct by routine histological technique. Thus, more transmission electron microscopy (TEM) along with some specific staining for differentiating macrophages and apoptosis might be tried in the future. Importantly, the presence of microvilli on the apical surface of secretory cells found in the infundibular and ampulla epithelium during luteal phase by SEM showed more numerous than those of secretory cells in cow (Abe and Oikawa, 1993). These differences might be involved in the regulation in the production and absorption system during oocyte transport or oocyte maturation in these regions. Indeed, the TEM and specific molecular biological techniques were needed to investigate the structures of buffalo oviductal cells.

The SEM micrographs in this study emphasize the cyclic changes of buffalo oviductal epithelium and reveal the structural characteristics of ciliated and secretory cells. The related observations have been described in other ruminants such as sheep (Hollis et al. 1984), goat (Abe et al. 1993) and cow (Abe and Oikawa 1993). In the infundibulum, the cilia are considered to be primarily responsible for the pickup, transportation of ovulated oocytes, the movement of ovulated follicle and tubal fluid, and the cilia of the ampulla have almost the same function. An intensively ciliated epithelium at ovulation is important and the cyclic changes noticeably affect the functions of the cilia in the infundibulum and ampulla of the buffalo oviduct. Most previous studies indicate that the ciliogenesis of ciliated cells is related to estrogen influence (Brenner 1969; Nayak et al. 1976). The numbers of cilia on the surface of the buffalo oviductal epithelium increase at the follicular phase and decrease at the luteal phase in these regions corresponding to the study in cows (Abe and Oikawa 1993). Large numbers of cilia in the oviduct are formed during the follicular phase by the pattern of cilia formation appearing as daisy-like structures (Dirksen 1974) and extensive atrophy and deciliation take place during the luteal phase (Brenner 1969). Moreover, Reeder and Shirley (1999) suggested that the ciliated cells in the ampulla deciliate rapidly by shedding their cilia in the lumen of the oviduct. Taken together with these finding and the SEM results in this study, the patterns of ciliogenesis or deciliation were not illustrated in the buffalo oviduct throughout the cycle. Thus, it remains to be determined clearly whether the ciliated cells are actually lost from the epithelium of buffalo oviduct and transmission electron microscopy (TEM) need be done in the near future.

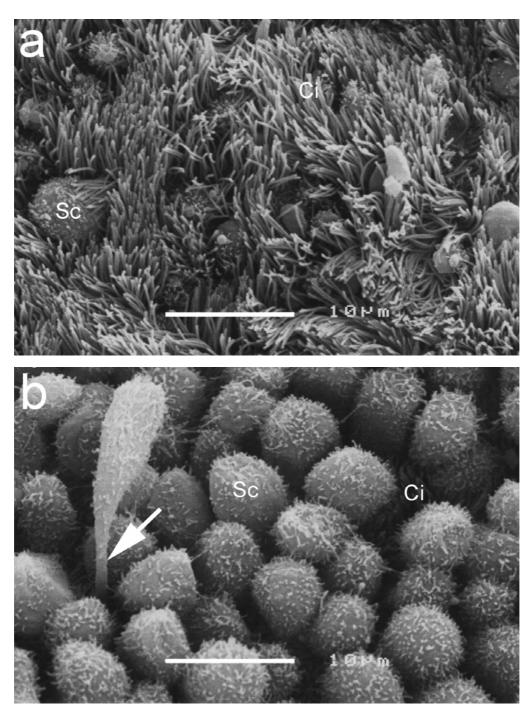
In the UTJ and isthmus, the results showed little change in ciliation or deciliation between the follicular and luteal phases. Although the exact function of the ciliated cells in these segments has not been clarified, Hunter et al. (1991) observed that sperm usually bind to the epithelial cell of cow isthmus, mainly ciliated cells, and specific interactions between the cilia and the sperm flagella may regulate the progression of capacitated spermatozoa. In addition, the UTJ and isthmus of the bovine oviduct also serves as a functional sperm reservoir (Lefebvre et al. 1995) which is the maintenance of sperm fertilizing ability, regulation of sperm capacitation and the control of sperm release towards ampulla (Pollard et al. 1991; Suarez 2002). These regulations of sperm preservation and capacitation are precisely dependent on several factors, e.g. the component of oviductal fluid which is produced by secretory cells and transudation from subepithelial layer of connective tissue (Leese et al., 2001), and perhaps the variety receptors or molecular adhesions present on the ciliated cells. Therefore, the functions of ciliated cells in the UTJ and isthmus need to be discovered. Considering the secretory cells, they were covered with numerous short microvilli and predominated in the oviductal epithelium during the luteal phase. It is known that the secretory cells of domestic animal oviducts secrete a variety of essential substances for the reproductive process (Leese et al. 2001). Recently, the presence of hyaluronan, syndecans and sulphated glycosaminoglycans in bovine oviductal epithelium and intraluminal fluid, especially in the sperm reservoir, has been studied by Bergqvist et al. (2005b) and Bergqvist and Rodriguez-Martinez (2006) suggesting the specific activities of secretory cells in the UTJ and caudal isthmus to support the viability and fertilizing capacity of spermatozoa during their storage at pre-ovulation period. Considering the appearance of microvilli in the UTJ and isthmus, the main function of microvilli is normally absorption, which is involved in the retention of oviductal fluid throughout the cycle (Hunter 1988). Therefore, it is possible that microvilli in these regions regulate the fluid in a suitable quantity to maintain the ability of spermatozoa and fertilized oocytes. The less number and instinct of microvilli on secretory cells in the bovine oviduct might influence the tubal micro-environment by the insufficiency of tubal absorption which is usually found in the

repeat-breeder heifers (Bage et al. 2002). These observations reflect the functional differences of secretory cells in the events of oviductal segments. However, the information in the secretory cells including covered microvilli of the oviduct needs further investigation.

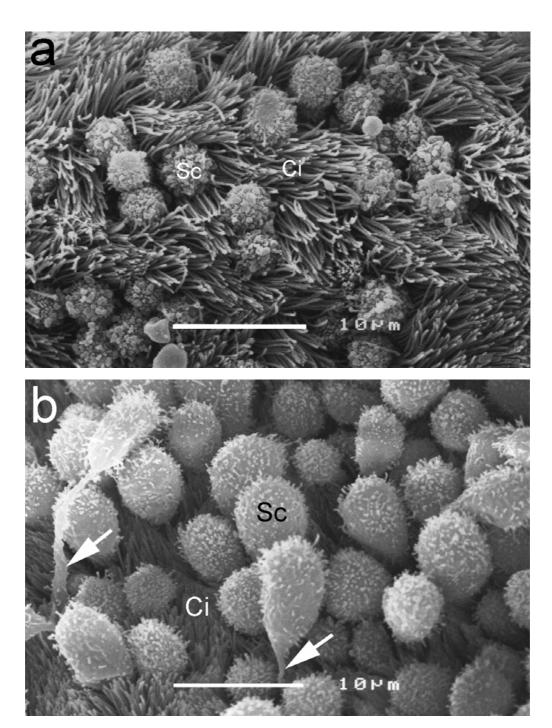
In conclusion, the present histological and ultrastructural studies of the buffalo oviduct revealed a marked change in cellular differences related to the main functions of regional variations throughout the phases of estrous cycle. However, the physiological make-up of buffalo oviductal epithelial cells in the reproductive process needs to be further investigated, especially the localization of female steroid receptors and the presence of glycoproteins or glycosaminoglycans.


Acknowledgements

The authors would like to thank Silpchai Pienchop, Witoon Mabutr, Department of Anatomy, Faculty of Veterinary Science and Bung-orn Watta-umpai, Scientific and Technological Research Equipment Centre (STREC), Chulalongkorn University, for their excellent technical assistance. The present study was supported by grants from the Thailand Research Fund (TRF) and the Commission on Higher Education of the Minister of Education.


References

- Abe H, Oikawa T, 1993: Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec **235**, 399–410.
- Abe H, Onodera M, Sugawara S, Satoh T, Hoshi H, 1999: Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle. J Anat **195**, 515–521.
- Ali A, Abdel-Razek AK, Abdel-Ghaffar S, Glatzel PS, 2003: Ovarian follicular dynamics in buffalo cows (*Bubalus bubalis*). Reprod Domest Anim **38**, 214–218.
- Bage R, Masironi B, Sahlin L, Rodriguez-Martinez H, 2002: Deviant peri-oestrual hormone patterns affect the epithelium of the uterine tube in repeat-breeder heifers. Reprod Fertil Dev 14, 461–469.
- Bareither ML, Verhage HG, 1981: Control of the secretory cell cycle in cat oviduct by estradiol and progesterone. Am J Anat **162**, 107–118.
- Bergqvist AS, Yokoo M, Bage R, Sato E, Rodriguez-Martinez H, 2005a: Detection of the hyaluronan receptor CD44 in the bovine oviductal epithelium. J Reprod Dev **51**, 445–453.
- Bergqvist AS, Yokoo M, Heldin P, Frendin J, Sato E, Rodriguez-Martinez H, 2005b: Hyaluronan and its binding proteins in the epithelium and intraluminal fluid of the bovine oviduct. Zygote **13**, 207–218.
- Bergqvist AS, Rodriguez-Martinez H, 2006: Sulphated glycosaminoglycans (S-GAGs) and syndecans in the bovine oviduct. Anim Reprod Sci **93**, 46–60.
- Brenner RM, 1969: Renewal of oviduct cilia during the menstrual cycle of the rhesus monkey. Fertil Steril **20**, 599–611.
- Dirksen ER, 1974: Ciliogenesis in the mouse oviduct: A scanning electron microscopic study. J Cell Biol **62**, 899–904.
- Ellington J. 1991: The bovine oviduct and its role in reproduction: a review of a literature. Cornell Vet **81**, 313–328.
- Hollis DE, Frith PA, Vaughan JD, Chapman RE, Nancarrow CD, 1984: Ultrastructural changes in the oviductal epithelium of Merino ewes during the estrous cycle. Am J Anat 171, 441–456.
- Hunter RH, 1988: The Fallopian Tube: Their Role in Fertility and Infertility, Springer-Verlag, NY, USA, pp. 30–52.


- Hunter RH, Flechon B, Flechon JE, 1991: Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: a scanning electron microscope study. Tissue cell **23**, 641–656.
- Leese HJ, Tay JI, Reischi J, Downing SJ, 2001: Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction **121**, 339–346.
- Morita M, Miyamoto H, Ishii T, Sugimoto M, 1995: The secretory cells of the goat epithelium: An ultrastructural study. J Reprod Dev **41**, 123–128.
- Murray MK, 1995: Epithelial lining of the sheep ampulla oviduct undergoes pregnancy-associated morphological changes in secretory status and cell height. Biol Reprod 53, 653–663.
- Nayak RK, Ellington EF, 1977: Ultrastructural and ultracytochemical cyclic changes in the bovine uterine tube (oviduct) epithelium. Am J Vet Res **38**, 157–168.
- Odor DL, Blandau RJ, 1973: Egg transport over the fimbrial surface of the rabbit oviduct under experimental conditions. Fertil Steril **24**, 292–300.
- Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS, 1991: Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod 44, 102–107.

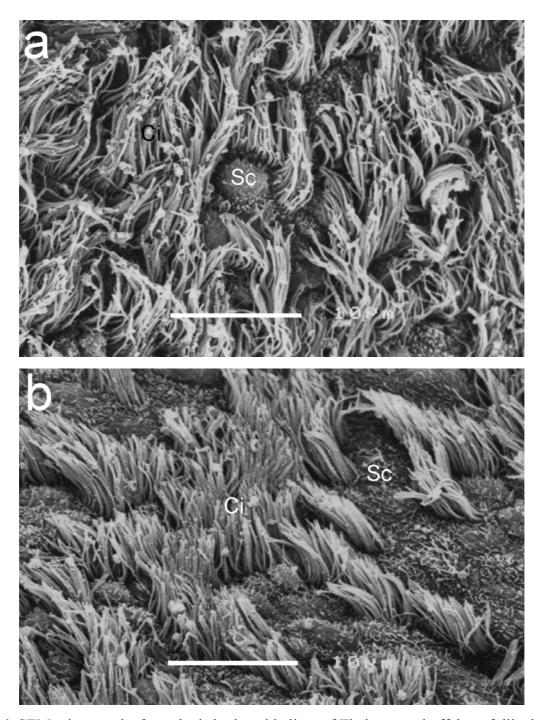

Fig. 1. Light microscopic photographs of the buffalo oviduct in cross-section stained by PAS showing the infundibulum (a, b), ampulla (c, d), isthmus (e, f), and UTJ (g, h) at the follicular phase (a, c, e, g) and the luteal phase (b, d, f, h). The apical compartment and surface of secretory cells in the isthmus (e) and UTJ (g) at the follicular phase react with the PAS staining (asterisks). The cytoplasmic protrusions with some extruded nuclei (arrows) were obviously noticed in infundibulum (b) and ampulla (d) at the luteal phase whereas both segments at the follicular phase were present in secretory droplets (arrowheads). Notice the lymphocyte-like cells (white arrows) are located at the basal compartment of the epithelium. Bars $20~\mu m$.

Fig. 2. SEM micrographs from the infundibular epithelium of Thai swamp buffalo at follicular (a) and luteal (b) phases. Notice some bulbous process of secretory cells extended beyond the most of the apical part of secretory cells but tenuously attached to the underlying cell (arrow). Sc; secretory cell, Ci; ciliated cell. Bars $10 \, \mu m$.

Fig. 3. SEM micrographs from the ampullar epithelium of Thai swamp buffalo at follicular (a) and luteal (b) phases. Notice some bulbous process of secretory cells extended beyond the most of the apical part of secretory cells (arrow) and the presence of microvilli on the apical surface of secretory cells. Sc; secretory cell, Ci; ciliated cell. Bars $10 \, \mu m$.

Fig. 4. SEM micrographs from the isthmic epithelium of Thai swamp buffalo at follicular (a) and luteal (b) phases. Sc; secretory cell, Ci; ciliated cell. Bars $10~\mu m$.

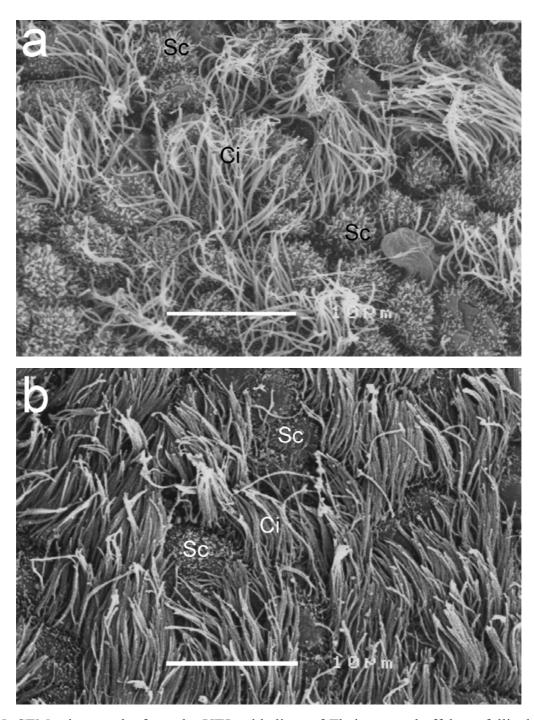


Fig. 5. SEM micrographs from the UTJ epithelium of Thai swamp buffalo at follicular (a) and luteal (b) phases. Sc; secretory cell, Ci; ciliated cell. Bars $10~\mu m$.

Immunohistochemical Study of Estrogen and Progesterone Receptor in Thai Swamp Buffalo Oviductal Epithelium at Follicular and Luteal Phase

P Tienthai^{1*}, K Sajjarengpong¹ and M Techakumphu²

¹Department of Anatomy, ²Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand *Corresponding author

Keywords: buffalo, oviduct, estrous cycle, estrogen, progesterone

Introduction

Swamp buffaloes play a prominent role in rural livestock production, particularly in Thailand, and factors affecting productivity are important to agricultural economics in this region (1). Reproductive efficiency is the primary factor influencing productivity and is hampered in female buffalo by delayed maturation, silent estrus, low conception rates and prolonged intercalving intervals (2). Improvement of reproductive efficiency in female Thai swamp buffaloes requires a better understanding of their reproductive physiology under steroid hormonal control, especially in the oviduct, during estrous cycle. Several critical events have to take place under optimal conditions in the cattle oviduct before the final establishment of pregnancy in the uterus (3). Gamete transport, sperm capacitation, oocyte maturation, fertilization and early embryo development occur in direct contact with the lining epithelium and its secretions, mainly regulated by female steroid hormones, i.e. estrogen and progesterone (4, 5). Both hormone actions are mediated through intracellular receptors that are members of the nuclear receptor family, namely estrogen receptor (ER) and progesterone receptor (PR) (6, 7). ER and PR are expressed in the ruminant oviduct and the complexity of physiological effects on gametes and early embryos can be explained by segmental differences in the regulation of steroid hormone receptor expression (8, 9, 10, 11). To our knowledge no comprehensive investigation is published on the localization of steroid receptors in the buffalo oviduct. Therefore, the aim of the present study was to investigate the epithelial localization of ER and PR in different parts of oviducts collected from Thai swamp buffalo during follicular and luteal phase of estrous cycle.

Materials and Methods

Animals and tissue collection: The sexually mature female swamp buffaloes (n=20) at various ages (2–8 years) were slaughtered at the local abattoir. The genital tracts were immediately collected and kept in the container at ~4°C for 30 min until analyzing. The reproductive organs were examined for normality and the ovarian features of estrous cycle (follicular and luteal phase) were determined as described by Ali et al. (12). Buffalo oviducts were cut into four parts composed of infundibulum, ampulla, isthmus and uterotubal junction (UTJ), fixed in 10% neutral buffer formalin. The samples were embedded in paraffin blocks, cut in 5 µm thick sections and placed on Superfrost Plus glass slides (Menzel-Glaser, Freiburg, Germany).

Immunohistochemistry: The sections were deparaffinized in xylene and rehydrated in graded alcohol. The immunohistochemical protocol was modified after Bage et al. (8). Briefly, antigen retrieval technique was performed in order to enhance the reaction between antigen and antibody by boiling the sections in 0.01 M sodium citrate buffer (pH 6.0), 2×5 min, in a microwave oven at 750 W. A standard avidin-biotin immunoperoxidase technique was applied to detect the ER and PR proteins. The primary antibodies used were a monoclonal

mouse anti-human antibody (C-311) for detection of ERα (Santa Cruz Technology Inc., Santa Cruz, CA, USA) at a dilution of 1:50 for 1 h at room temperature and a monoclonal mouse anti-chicken PRB antibody (MAI-411, Affinity Bioreagents, Inc., Golden, CO, USA) for detection of PRB at a dilution of 1:250 at 4°C overnight. Negative controls were obtained by replacing the primary antibody with mouse IgG on an equivalent concentration. Normal bovine uterus known to express ER and PR was served as positive controls. After primary antibody binding, the sections were washed in PBS and incubated with secondary antibody. The site of bound enzyme was visualized by the application of 3,3'-diaminobenzidine in hydrogen peroxide (DAB kit; Vector Laboratories). Stained sections were observed using a light microscope (BX50, Olympus, Tokyo, Japan). The intensity of nuclear staining for the primary antibodies in the epithelium was blindly analyzed by the same person, according to the following staining score criteria: weak, 1; moderate, 2 and strong, 3. Since not all cells stained positively in the surface epithelium, the proportions were also estimated into four different levels (marked 1-4): low proportion (<30% of positive cells, 1); moderate proportion (30–60% of positive cells, 2); high proportion (>60–90% of positive cells, 3) and almost all cells positive (more than 90%, 4).

Statistical analyses: Data were handled and analyzed using SAS software (Statistics version 9.1 Cary, NC. USA). Descriptive statistics including the means and the standard deviations (SD) of all parameters were calculated. The score of intensities and proportions were compared between segments and phases using NPAR1WAY procedure of SAS (Wilcoxon rank sum test). Differences with P < 0.05 were regarded as statistically significant.

Results

Thai swamp buffalo oviduct were classified by the ovarian status into follicular phase (n=12) and luteal phase (n=8). Both immunoreactive ER α and PRB were present in the nuclei of the epithelial cells in all parts of Thai swamp buffalo oviduct and the staining was very clear in the lining epithelium of oviduct at the follicular phase as depicted in Fig. 1 (a, c, e) and Fig. 2 (a, c). The differences in the ER α and PRB intensity and proportion were shown in Table 1 and 2. The intensities and proportion of both receptors were significantly higher in UTJ and isthmus at the follicular phase compared with the luteal phase (P<0.05) while the significantly differences in ampulla and infundibulum at both phases were not observed (P>0.05).

Discussions

To our knowledge the present study is the first to access the presence of ER α and PR in the lining epithelium of Thai swamp buffalo oviduct during the follicular and luteal phase. The results indicate that the oviductal ER α and PR in Thai swamp buffalo oviduct vary according to the phase of ovarian activity and the regional function of the oviduct. The intensity and proportion of ER α and PR staining was very intense in UTJ and isthmus of swamp buffalo oviduct during follicular phase and less intense during luteal phase corresponding to the earlier reports in heifers and cows (8, 11). The present data were also correlated to the previous report indicating that estrogen stimulated the expression of ER α and PR mRNA, whereas progesterone stimulation resulted in a reduction of both ER α and PR transcripts in the bovine oviduct (9). It is speculated that the presence of ER α and PR during the estrogen-dominated follicular phase might account for specific composition changes of the oviductal fluid, particularly in the sperm reservoir, i.e. UTJ and caudal isthmus of the ruminant (13). In summary, the results of this study demonstrated that ER α and PRB localization are greater in UTJ and isthmus during follicular phase that the other regions during luteal phase in Thai swamp buffalo oviduct. Additionally, this study support

the hypothesis that the swamp buffalo oviduct is considered to be under the regulation of female steroid receptors.

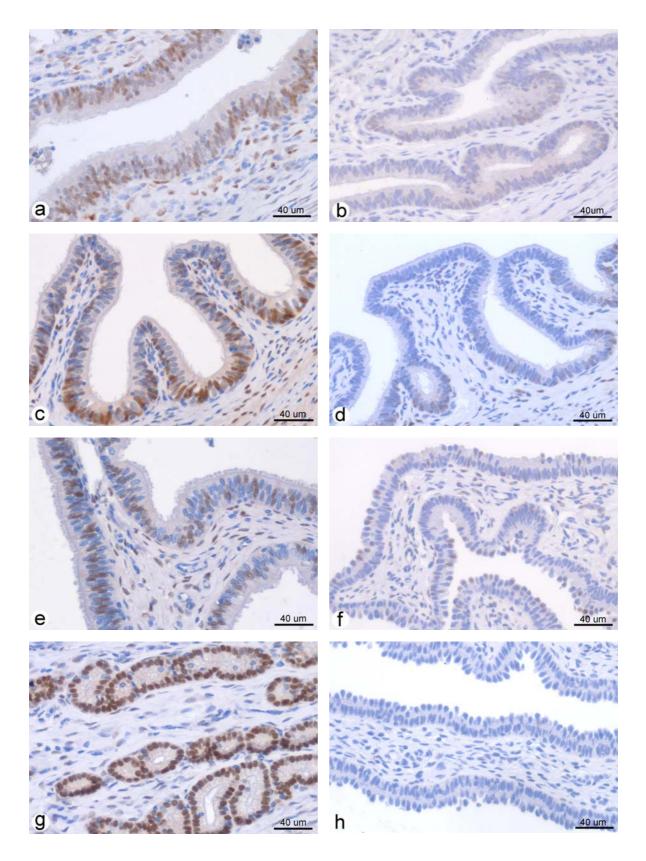
Acknowledgements

This work was supported by grants from the Thailand Research Fund (TRF) and the Commission on Higher Education of the Minister of Education.

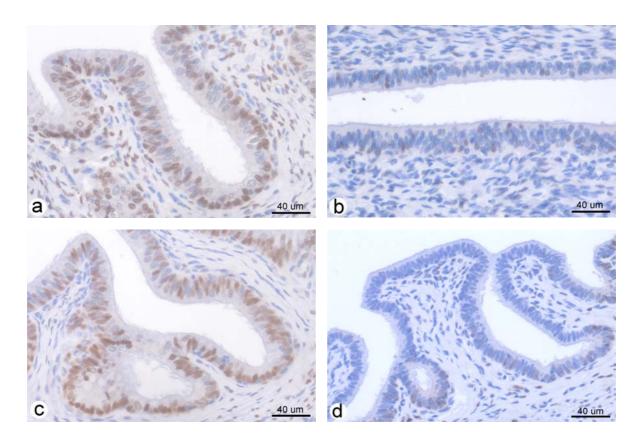
References

- 1. Singh et al., 2000. Anim Reprod Sci 60-61: 593-604.
- 2. Oswin Perera, 1999. J Reprod Fertil Suppl 54: 157-168.
- 3. Ellington, 1991. Cornell Vet 81: 313-328.
- 4. Hawk, 1983. Am J Anat 171: 441-456.
- 5. Thatcher et al., 2003. Reprod Suppl 61: 253-266.
- 6. King and Greene, 1984. Nature 307: 745-747.
- 7. Perrot-Applanat et al., 1985. Endocrinology 116: 1473-1484.
- 8. Bage et al., 2002. Reprod Fertil Dev 14: 461-469.
- 9. Ulbrich et al., 2003. J Steroid Biochem Mol Biol 84: 279-289.
- 10. Garcia-Palencia et al., 2007. Anim Reprod Sci 97: 25-35
- 11. Valle et al., 2007. Anim Reprod Sci 101: 28-37.
- 12. Ali et al., 2003. Reprod Domest Anim 38: 214-218.
- 13. Bergqvist et al., 2005. Zygote 13: 207-218.

Table 1 Immunohistochemical staining of $ER\alpha$ presented as manual scoring (intensity and proportion) in surface epithelium of buffalo oviduct


Estrous phases	UTJ	IST	AMP	INF
Follicular	2.6 ^a /2.7 ^A	2.5 ^a /2.7 ^A	2.2 ^a /2.6 ^A	2.2 ^a /2.7 ^A
Luteal	$1.5^{b}/1.4^{B}$	$1.8^{b}/2.1^{A}$	$1.9^{a}/2.0^{A}$	$1.9^{a}/2.2^{A}$

The different superscript letters between rows are significantly different (P<0.05).


Table 2 Immunohistochemical staining of PRB presented as manual scoring (intensity and proportion) in surface epithelium of buffalo oviduct

Estrous phases	UTJ	IST	AMP	INF
Follicular	$2.7^{a}/3.5^{A}$	$2.5^{a}/3.2^{A}$	$1.6^{\text{ a}}/1.8^{\text{ A}}$	1.5 ^a /1.7 ^A
Luteal	$1.5^{\text{ b}}/1.5^{\text{ B}}$	$1.4^{\rm b}\!/1.5^{\rm B}$	1.1 ^a /1.3 ^A	1.1 ^a /1.1 ^A

The different superscript letters between rows are significantly different (P < 0.05).

Figure 1: Immunohistochemical localization of ER α in the swamp buffalo oviduct during follicular (a, c, e) and luteal (b, d, f) phase. (a, b), UTJ; (c,d), isthmus, (e, f), ampulla; (g) positive control; (h), negative control.

Figure 2: Immunohistochemical localization of PRB in the swamp buffalo oviduct during follicular (a, c) and luteal (b, d) phase. (a, b), UTJ; (c,d), isthmus.

Output ที่ได้จากโครงการที่ได้รับทุน สกว.

- 1. ผลงานวิจัยเพื่อส่งตีพิมพ์ในวารสารวิชาการระดับนานาชาติ 1 เรื่อง ในวารสาร ระดับชาติ 1 เรื่อง และเรื่องเต็มสำหรับงานประชุมวิชาการนานาชาติ จำนวน 1 เรื่อง
 - 1.1 Tienthai, P., Sajjarengpong, K., Techakumphu, M. 2008. Light and scanning electron microscopic studies of oviductal epithelium in Thai swamp buffalo (*Bubalus bubalis*) at the follicular and luteal phases. Reproduction in Domestic Animals (Accepted for publication).
 - 1.2 **Tienthai, P.**, Sajjarengpong, K., Techakumphu, M. 2008. Histological changes in the epithelium of Thai swamp buffalo oviduct at follicular and luteal phases. (Manuscript submitted)
 - 1.3 Tienthai, P., Sajjarengpong, K., Techakumphu, M. 2008. Immunohistochemical study of estrogen and progesterone receptor in Thai swamp buffalo oviductal epithelium at follicular and luteal phases. Proc. of the 15th Congress of the Federation of Asian Veterinary Association, FAVA & OIE Symposium. October, 27-29, Bangkok, Thailand. (Manuscript submitted)

2. การนำผลงานวิจัยไปใช้ประโยชน์

เชิงพาณิชย์ ความรู้ขั้นพื้นฐานที่ได้จากการวิจัยดังกล่าวนี้ จะใช้เป็นข้อมูลในการปรับปรุง
กระบวนการในการผลิตกระบือปลักไทยในห้องปฏิบัติการ สำคัญคือการเตรียม
หรือผลิตน้ำยา และสารสื่อต่างๆ ที่เหมาะสมกับตัวอสุจิ โอโอไซต์ และตัวอ่อน
ในระยะแรก สำหรับขั้นตอนต่างๆ ของเทคโนโลยีในการทำให้โอโอไซต์
สมบูรณ์พร้อม การปฏิสนธินอกร่างกาย และการเลี้ยงตัวอ่อนในระยะแรกของ
กระบือปลักไทยให้เจริญพัฒนาในห้องปฏิบัติการ โดยมีความจำเป็นต้องใช้สิ่ง
คัดหลั่งหรือเซลล์ที่ได้จากท่อนำไข่กระบือปลักเป็นส่วนประกอบ

เชิงนโยบาย เกิดแนวทางในการพัฒนาทางด้านการอนุรักษ์ และการปรับปรุงทางระบบสืบ พันธุ์ของกระบือปลักไทย เพื่อให้มีผลผลิตที่ดีและไม่ให้สูญพันธุ์ไปในอนาคต

เชิงสาธารณะ การนำผลการวิจัยไปขยายผลในศาสตร์อื่นๆ นอกเหนือจากทางด้านกายวิภาค ศาสตร์และสูติศาสตร์ เช่น พยาธิวิทยา อายุรศาสตร์ และสัตวบาล เป็นตัน

เชิงวิชาการ ทำให้มีแนวทางการทำวิจัยในแนวลึกอย่างต่อเนื่อง รวมทั้งผลการวิจัยที่ได้ใน ขณะนี้ได้นำไปประกอบเป็นส่วนหนึ่งของตำราเรื่องกายวิภาคศาสตร์และหน้าที่ ระบบสืบพันธุ์เพศเมียในสัตว์เลี้ยง โดย ไพศาล เทียนไทย ซึ่งขณะนี้ได้วาง จำหน่ายทั่วไป ซึ่งแนวทางดังกล่าวนี้ก่อให้เกิดประโยชน์แก่วิชาชีพสัตวแพทย์ ของประเทศไทย

3. อื่นๆ

เตรียมนำเสนอผลงานวิจัยในรูปแบบโปสเตอร์ ในงานประชุมวิชาการระดับนานาชาติ The 15th Congress of the Federation of Asian Veterinary Association, FAVA & OIE Symposium กรุงเทพฯ ประเทศไทย ระหว่างวันที่ 27-29 ตุลาคม 2551 จำนวน 1 เรื่อง ภาคผนวก

เอกสารฉบับที่ 1 : Letter from Reproduction in Domestic Animals' Editor

เอกสารฉบับที่ 2 : Manuscript Accepted (in revising process)

เอกสารฉบับที่ 3 : Manuscript submitted to The 15th Congress of the Federation

of Asian Veterinary Association, FAVA & OIE Symposium