$\grave{\mathbf{A}}\check{\mathbf{C}}\check{\mathbf{C}}\check{\mathbf{A}}$ » $\tilde{\mathbf{A}}\check{\mathbf{D}}\hat{\mathbf{E}}\hat{\mathbf{O}}$, $\hat{\mathbf{A}}\check{\mathbf{O}}$ /4¢ $\acute{\mathbf{I}}$ § $\hat{\mathbf{C}}\hat{\mathbf{O}}\check{\mathbf{O}}\check{\mathbf{A}}\hat{\mathbf{O}}\tilde{\mathbf{a}}^1$; $\hat{\mathbf{O}}\check{\mathbf{A}}\check{\mathbf{A}}'$ \cong $\hat{\mathbf{C}}\check{\mathbf{O}}\check{\mathbf{A}}\check{\mathbf{a}}$ » $\mathring{\mathbf{S}}$ $\mathring{\mathbf{A}}\check{\mathbf{E}}\check{\mathbf{D}}\check{\mathbf{E}}$ $\mathring{\mathbf{D}}\check{\mathbf{E}}$ $\mathring{\mathbf{N}}\check{\mathbf{a}}$ $\mathring{\mathbf{A}}\check{\mathbf{E}}$ $\mathring{\mathbf{D}}\check{\mathbf{E}}$ $\mathring{\mathbf{E}}$ $\mathring{\mathbf{N}}\check{\mathbf{A}}$ $\mathring{\mathbf{E}}$ $\mathring{\mathbf{D}}\check{\mathbf{E}}$ $\mathring{\mathbf{E}}$ $\mathring{\mathbf{N}}\check{\mathbf{A}}$ $\mathring{\mathbf{E}}$ $\mathring{\mathbf{D}}\check{\mathbf{E}}$ $\mathring{\mathbf{E}}$ \mathring

ÀŒŒ ŠÃE Efficacy of vitamin in reducing heavy metals toxicity in fish

ABSTRACT

Objective: 1) Investigate the acute toxicity of heavy metal i.e., cadmium, lead and copper in fresh water i.e., Oreochromis niloticus, Puntius altus, and Poronotus triacanthu. 2) Investigate the effect of ascorbic acid on acute exposure at 50% 96h-LC₅₀ of each heavy metal at 24, 48, 72, and 96 hour. 3) Investigate the effect of ascorbic acid on chronic exposure at 25% 96h-LC₅₀ of each heavy metal at 1, 2, and 3 month. **Method:** 1) Determine LC₅₀ at 24, 48, 72, and 96 hour of each heavy metal by rangefinding test and definitive test. 2) and 3) Study the effect of ascorbic acid on acute and chronic exposure at 50% and 25% 96h-LC₅₀ of each heavy metal at 24, 48, 72, 96 hour and 1, 2, and 3 month, respectively, in the term of growth rate, hematology, biochemistry, micronuclei and nuclear abnormality studies, atomic absorption analysis, light microscope and scanning electron microscopic study. Result: 1) The lethal toxicity tests of cadmium at 24, 48, 72, 96 hour were 203.06, 197.31, 182.55, and 180.47 mg/L in tilapia; 170.65, 114.44, 99.08, and 97.58 mg/L in butterfish; 182.22, 170.46, 167.18 and 166.22 mg/L in barb. The lethal toxicity tests of copper at 24, 48, 72, 96 hour were 210.27, 213.34, 193.30, and 185.75 mg/L in tilapia; 129.72, 127.12, 108.36, and 104.78 mg/L in butterfish; 173.58, 180.86, 169.49 and 167.07 mg/L in barb. The lethal toxicity tests of lead at 24, 48, 72, 96 hour were 247.51, 197.47, 183.74, and 182.38 mg/L in tilapia; 139.72, 113.34, 103.91, and 102.31 mg/L in butterfish; 187.60, 172.19, 167.60 and 166.11 mg/L in barb, respectively. 2) and 3) NA shapes in erythrocytes were scored into micronucleus (MN), binuclei (BN), blebbed nuclei (BL), lobed nuclei (LB), and notched nuclei (NT). It was observed that, fish showed significant sensitivity to the different treatments. In general, the highest value of NA cells were significantly increased in the heavy metal treated group followed by the combination of heavy metal and ascorbic acid supplemented treated group. In the gills of heavy metal treatment, edema, lamellar fusion and aneurysm were observed. In the

liver, there were blood congestion in sinusoids, and necrosis. In the kidney, glomerulus atrophy, tubular swelling and also necrosis were seen. Fish fed with ascorbic acid supplement showed slightly alteration when compared the heavy metal treatment groups. **Conclusions:** The results indicated that ascorbic acid supplement will be protective in reducing heavy metal burdens in freshwater fish exposed to environments contaminated with waterborne heavy metal.

ภาษาไทย ประสิทธิภาพของวิตามินในการลดความเป็นพิษของโลหะหนักในปลา

ภาษาอังกฤษ Efficacy of vitamin in reducing heavy metals toxicity in fish

บทคัดย่อ

วัตถุประสงค์: 1) ศึกษาระดับความเป็นพิษเฉียบพลันของโลหะหนัก ได้แก่ แคดเมี่ยม ตะกั่ว และ ทองแดง ในปลาน้ำจืด ได้แก่ ปลานิล ปลาตะเพียน และปลาจะระเม็ด; 2) ศึกษาถึงประสิทธิผลของ วิตามินซีในระดับความเข้มข้นต่างๆ ต่อการลดความเป็นพิษของโลหะหนักที่ระดับ 50% ของค่าความ เข้มข้นที่ทำให้ปลาตายจำนวนครึ่งหนึ่งในเวลา 96 ชั่วโมง; 3) ศึกษาถึงความเป็นพิษเรื้อรังของโลหะ หนักชนิดต่างๆ และประสิทธิผลของวิตามินซีในระดับความเข้มข้นต่างๆ ต่อการลดความเป็นพิษของ โลหะหนักที่ระดับ 25% ของค่าความเข้มข้นที่ทำให้ปลาตายจำนวนครึ่งหนึ่ง ในช่วงเวลา 3 เดือน **วิธีการวิจัย:** 1) หาค่าความเป็นพิษเฉียบพลันของโลหะหนักชนิดต่างๆในปลาทั้ง 3 ชนิดที่ 24, 48, 72 และ 96 ชั่วโมง: 2)และ 3) ทคสอบความเป็นพิษแบบเฉียบพลันและเรื้อรังโคยใช้ค่า 50% และ 25% ของ ${
m LC}_{so}$ ที่ 96 ชั่วโมงของโลหะชนิดต่างๆ และให้วิตามินซีพร้อมกับอาหารที่เลี้ยงปลาในระดับความ เข้มข้น 500 และ 1000 มก/กก น้ำหนักตัว ในช่วงเวลา 24, 48, 72, 96 ชั่วโมง และในช่วงเวลา 1, 2, และ 3 เดือนเจาะเลือด เก็บตัวอย่างเนื้อเยื่อ เพื่อตรวจหาความผิดปกติต่อไป **ผลการศึกษา:** 1) ค่าความ เป็นพิษเฉียบพลันของแคดเมี่ยมที่ 24, 48, 72 และ 96 ชั่วโมง เท่ากับ 203.06, 197.31, 182.55, และ 180.47 มก/ล ในปลานิล 170.65, 114.44, 99.08, และ 97.58 มก/ล ในปลาจะระเม็ด 182.22, 170.46, 167.18 และ 166.22 มก/ล ในปลาตะเพียน; ค่าความเป็นพิษเฉียบพลันของทองแคงที่ 24, 48, 72 และ 96 ชั่วโมง เท่ากับ 210.27, 213.34, 193.30, และ 185.75 มก/ล ในปลานิล 129.72, 127.12, 108.36, และ 104.78 มก/ล ในปลาจะระเม็ด 173.58, 180.86, 169.49 และ 167.07 มก/ล ในปลาตะเพียน; ค่าความ

เป็นพิษเฉียบพลันของตะกั่วที่ 24, 48, 72 และ 96 ชั่วโมง เท่ากับ 247.51, 197.47, 183.74, และ 182.38 มก/ล ในปลานิล 139.72, 113.34, 103.91, และ 102.31 มก/ล ในปลาจะระเม็ค 187.60, 172.19, 167.60 และ 166.11 มก/ล ในปลาตะเพียน ตามลำคับ; 2) และ 3) ผลจากการใช้ค่า 50 และ 25% ของ LC_{50} ที่ 96 ชั่วโมงของโลหะชนิดต่างๆ พบว่ารูปร่างของนิวเคลียสเม็คเลือดแดงสามารถแบ่งเป็น micronuclei, binuclei, blebbed, lobed, และ notched nuclei โดยพบจำนวนสูงสุดในกลุ่มที่ใช้โลหะ และลดลงใน กลุ่มที่ให้อาหารเสริม พยาธิสภาพที่พบในเหงือกได้แก่ การบวมและการเชื่อมรวมกันของเหงือกแต่ละ ซี่ ตับพบมีการคั่งของเลือด และการตายของเซลล์ ไดมีการฝ่อของกรวยไต บวมและการตายของ เซลล์ท่อไต ในกลุ่มที่ให้อาหารเสริมกีพบพยาธิสภาพเช่นเดียวกันแต่ความรุนแรงน้อยกว่า สรุป: ผล การศึกษาชี้ให้เห็นว่าอาหารเสริมวิตามินซี สามารถเป็นปัจจัยหนึ่งในการช่วยลดความเป็นพิษของ โลหะหนักในปลาเมื่อมีการปนเปื้อนในสิ่งแวดล้อม