

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การเปลี่ยนแปลงการสร้างไซโตไคน์ที่ทำให้เกิด และต้านการอักเสบในผู้ติดเชื้อเอชไอวีที่มีภาวะอักเสบ เนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันภายหลังได้รับยา ต้านไวรัส

โดย ผศ. ดร. สาคร พรประเสริฐ

มิถุนายน 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การเปลี่ยนแปลงการสร้างไซโตไคน์ที่ทำให้เกิด และต้านการอักเสบในผู้ติดเชื้อเอชไอวีที่มีภาวะอักเสบ เนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันภายหลังได้รับยา ต้านไวรัส

ผศ. ดร. สาคร พรประเสริฐ ภาควิชาเทคนิคการแพทย์ คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: MRG4980007

ชื่อโครงการ : การเปลี่ยนแปลงการสร้างไซโตไคน์ที่ทำให้เกิดและต้านการอักเสบในผู้ติดเชื้อ เอชไอวีที่มีภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันภายหลังได้รับยาต้านไวรัส

ชื่อนักวิจัย: ผศ. คร. สาคร พรประเสริฐ

E-mail Address: sakornmi001@yahoo.com

ระยะเวลาโครงการ : 2 ปี (กรกฎาคม 2549 - กรกฎาคม 2551)

ภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันภายหลังได้รับยาต้านไวรัสชนิด highly active antiretroviral therapy (HAART) ในผู้ติดเชื้อเอชไอวีถือว่าเป็นปัญหาที่สำคัญที่ต้อง คำนึงถึงและต้องเฝ้าระวัง โดยสาเหตุเกิดจากการที่ระบบภูมิคุ้มกันที่เพิ่มขึ้นภายหลังจากที่ได้รับ ยาต้านไวรัสเกิดปฏิกิริยาตอบสนองต่อตัวเชื้อหรือแอนติเจนของเชื้อฉวยโอกาสที่มีอยู่ในร่างกาย ผู้ป่วย การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อประเมินประสิทธิภาพของการรักษาผู้ป่วยติดเชื้อเอชไอวี ตามที่กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) ต่อ การลดอัตราการเกิดภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกัน ได้ทำการศึกษาในผู้ติด เชื้อเอชไอวีที่เข้ารับการรักษาที่โรงพยาบาลสันป่าตองและนครพิงค์ จังหวัดเชียงใหม่ โดยมี ผู้เข้าร่วมโครงการทั้งสิ้น 67 ราย ในจำนวนนี้ 18 ราย มีการติดเชื้อฉวยโอกาส และ 2 รายมีการ ติดเชื้อไวรัสตับอักเสบบีและ/หรือซีชนิดเรื้อรัง ก่อนที่จะได้รับยาต้านไวรัสชนิด HAART ผู้ป่วยที่ ติดเชื้อฉวยโอกาสทั้ง 18 รายได้รับการรักษาด้วยด้วยยาต้านจุลชีพเพื่อรักษาโรคติดเชื้อฉวย โอกาสตามที่ระบุไว้ในหนังสือคู่มือ จากการเฝ้าติดตามประเมินอาการทางคลินิกและการตอบสนอง ทางภูมิคุ้มกันภายหลังจากที่ได้รับ HAART แล้วนาน 1, 3, 6, 9, และ 12 เดือน พบว่าในเดือนที่ 6 ของการการรักษาด้วย HAARTค่า CD4 cell count ของกลุ่มผู้ป่วยทั้งที่ติดและไม่ติดเชื้อฉวย โอกาสมีการเพิ่มขึ้นอย่างชัดเจน และตลอดระยะเวลา 1 ปีของการเฝ้าติดตามพบว่าไม่มีผู้ป่วยที่มี ประวัติติดเชื้อฉวยโอกาสในช่วงก่อนเริ่มรับ HAART พัฒนาไปสู่ภาวะภาวะอักเสบเนื่องจากการ ฟื้นกลับของระบบภูมิคุ้มกัน ขณะที่มีผู้ป่วยหนึ่งรายที่ไม่เคยมีประวัติติดเชื้อฉวยโอกาสมีการ พัฒนาไปสู่ภาวะภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันชนิดที่เกี่ยวเนื่องกับเชื้อวัณ โรค โดยการพัฒนาดังกล่าวเกิดขึ้นในเดือนที่สองของการได้รับ HAART ค่า CD4 cell count ของ ผู้ป่วยรายนี้เพิ่มจากเมื่อครั้งก่อนที่จะได้รับ HAART คือ 44 เซลล์/ไมโครลิตร เป็น 155 ไมโครลิตร ในเดือนที่ 6 นอกจากนี้ยังตรวจพบความไม่สมดุลของระดับไซโตไคน์คือ IFN-γ, TNF-α และ IL-10 ในน้ำเลือดของผู้ป่วยรายนี้ในช่วงสามเดือนแรกของการรักษาด้วย HARRT ดังนั้นการรักษาผู้ป่วยติดเชื้อเอชไอวีตามที่กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้าน ไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) อาจมีผลช่วยลดอัตราการพัฒนาไปสู่การมีภาวะอักเสบ เนื่องจากการฟื้นกลับของระบบภูมิคุ้มกันในผู้ป่วยที่มีประวัติติดเชื้อฉวยโอกาสก่อนเริ่มรักษาด้วย HAART ได้ อย่างไรก็ตามในผู้ป่วยที่ติดเชื้อฉวยโอกาสแฝงที่ไม่แสดงอาการทางคลินิกชัดเจน และ ไม่สามารถตรวจวินิจฉัยทางห้องปฏิบัติการได้ จำเป็นต้องได้รับการดูแลเอาใจใสอย่างใกล้ชิดเพื่อ ป้องกันการพัฒนาไปสู่การมีภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกัน

คำหลัก : ไซโตไคน์ การรักษาด้วย highly active antiretroviral การฟื้นกลับของระบบภูมิคุ้มกัน การติดเชื้อฉวยโอกาส

Abstract

Project Code: MRG4980007

Project Title: Modulation of pro- and anti-inflammatory cytokine production in HIV

infected patients with immune restoration disease after HAART

Investigator: Assist. Prof. Dr. Sakorn Pornprasert

E-mail Address : sakornmi001@yahoo.com

Project Period: 2 years (July 2006 – July 2008)

The immune restoration disease (IRD) is seriously concerned in HIV-infected patients receiving highly active antiretroviral therapy (HAART). The majority of antigens causing IRD are associated with infectious microorganisms. We analyzed the effects of Thai guidelines for clinical management and treatment of HIV-infected adults (2004) on IRD development. Prospective study was conducted at two hospitals in the Northern Thailand. Sixty-seven HIV-infected patients were enrolled. Eighteen patients had active opportunistic infections and two patients had chronic hepatitis B and/or C. All 18 patients with active opportunistic infections were treated with antimicrobial agents before HAART initiation under recommendations of Thai guidelines (2004). The follow-up were made at months 1, 3, 6, 9, and 12 of HAART. At month 6 of HAART, a dramatically increased in CD4 cell count was observed in both groups of patients with and without active opportunistic infections. During a year of follow-up, there were no patients with active opportunistic infections developed IRD. Where as, one of patients who had no previous history of opportunistic infections developed IRD with tuberculosis of intestines, peritoneum and mesenteric glands within 2 months of HAART. Her CD4 count was increased from 44 to155 cells/μL during 6 months of follow-up. The imbalance between IFN- γ , TNF- α and IL-10 cytokines was observed during the first three months of HAART. Therefore, Thai guidelines (2004) effective in decreasing incidence of IRD in HIV-infected patients with active opportunistic infections, however patients who had latently infected with certain pathogens and escape the routine screening of opportunistic infections should be aware.

Key words : Cytokines, HIV; Highly active antiretroviral therapy; Immune restoration disease; Opportunistic infections; Thai guidelines

หน้าสรุปโครงการ (Executive Summary)

ความสำคัญและที่มาของปัญหา

การอักเสบเนื่องจากการฟื้นกลับคืนของระบบภูมิคุ้มกัน (Immune restoration diseases; IRD) เป็นกลุ่มอาการที่คล้ายคลึงกับการติดเชื้อฉวยโอกาสซึ่งทำให้ผู้ป่วยบางราย (ประมาณร้อย ละ 25) เกิดการอักเสบที่รุนแรงภายหลังได้รับยาต้านไวรัสเอชไอวี ทั้งนี้เนื่องจากระบบภูมิคุ้มกัน โดยเฉพาะภูมิคุ้มกันชนิดเซลล์ซึ่งเคยเสียไปเริ่มกลับฟื้นคืนมาและเกิดการตอบสนองต่อเชื้อหรือ แอนติเจนของเชื้อฉวยโอกาสที่ยังหลงเหลืออยู่ภายในร่างกายแต่การตอบสนองดังกล่าวอาจเกิด มากเกินพอดีจึงทำให้แสดงอาการคล้ายผู้ป่วยที่มีภูมิคุ้มกันชนิดพึ่งเซลล์ไวเกินไป ขณะที่ผลการ ตรวจทางห้องปฏิบัติการแสดงผลสัมฤทธิ์ของการรักษาโดยผู้ป่วยมีจำนวนที่ลิมโฟไซต์เพิ่มสูงขึ้น ขณะที่ระดับเอชไอวีในเลือดลดลง ปัจจัยที่ส่งเสริมการเกิด IRD ได้แก่ตัวเชื้อหรือแอนติเจนของเชื้อ ฉวยโอกาส จำนวนที่ลิมโฟไซต์ขณะที่เริ่มให้ยาต้านไวรัสเอชไอวี และการมีกลุ่มยีนที่เอื้อต่อการ ติดเชื้อฉวยโอกาสและยีนที่ควบคุมการผลิตไซโตไคน์ ดังนั้นการตรวจปัจจัยเหล่านี้ก่อนที่ผู้ป่วยติด เชื้อเอชไอวีจะได้รับยาต้านไวรัสจึงอาจเป็นประโยชน์ต่อการคาดหมายโอกาสเสียงต่อการเกิด IRD ปัจจุบันการตรวจทางห้องปฏิบัติการเพื่อวินิจฉัยการดำเนินข้าสู่ภาวะ IRD ยังเป็นปัญหา ทั้งนี้ เนื่องจากยังไม่มีตัวบ่งชี้ที่ชัดเจน ขณะเดียวกันการเปลี่ยนแปลงระดับการสร้าง cytokines โดยเฉพาะ pro- และ anti- inflammatory cytokines ซึ่งอาจแตกต่างกันใน IRD ที่เกิดจากเชื้อจุล ชีพ (microorganism) ต่างชนิดกันยังคงเป็นปัญหาที่จะต้องได้รับการศึกษาอย่างจริงจัง

วัตถุประสงค์

- 1. ทราบถึงอัตราการเกิดภาวะ IRD ในผู้ติดเชื้อเอชไอวีภายหลังได้รับการดูแลรักษาโรคติดเชื้อ ฉวยโอกาสและการรักษาด้วยยาต้านไวรัสชนิด highly active antiretroviral therapy (HAART) ตามที่กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547)
- ศึกษาความสัมพันธ์ของการเปลี่ยนแปลงระดับการสร้าง pro- inflammatory (IFN-γ และ TNF-α) และ anti-inflammatory (IL-10) cytokines ต่อการเกิด IRD
- 3. ศึกษาการเปลี่ยนแปลงระดับการสร้าง pro- และ anti-inflammatory cytokines ในผู้ติดเชื้อ เอชไอวีทั้งระยะก่อน ระหว่าง และหลังการเกิด IRD พร้อมทั้งใช้การเปลี่ยนแปลงดังกล่าวมา เป็นดัชนีช่วยวินิจฉัยและป้องกันการดำเนินเข้าสู่ภาวะ IRD ภายหลังได้รับยาต้านไวรัสชนิด HAART ตลอดจนถึงใช้ติดตามประเมินผลการรักษาผู้ป่วยที่เกิดการอักเสบเนื่องจากการฟื้น กลับคืนของระบบภูมิคุ้มกัน

ระเบียบวิธีวิจัย

- 1. เก็บตัวอย่างเลือดผู้ติดเชื้อเอชไอวีที่เข้ารับการรักษาด้วยยาต้านไวรัสชนิด HAART ที่ โรงพยาบาลสันป่าตอง และ โรงพยาบาลนครพิงค์ จังหวัดเชียงใหม่ โดยเจาะเก็บครั้งแรก ก่อนการให้ยาต้านไวรัสชนิด HAART และเจาะเก็บทุกๆ 2-3 เดือนภายหลังได้รับยาต้าน ไวรัสจนกระทั่งถึงเดือนที่ 12
- 2. วิเคราะห์การตอบสนองทางภูมคุ้มกันวิทยาและอัตราการเกิดภาวะ IRD ในกลุ่มผู้ติดเชื้อเอช ไอวีที่มีประวัติติดเชื้อฉวยโอกาสก่อนการได้รับ HAART เปรียบเทียบกับกลุ่มผู้ป่วยที่ไม่มี ประวัติติดเชื้อฉวยโอกาส
- 3. ตรวจวัดระดับการเปลี่ยนแปลงสร้างไซโตไคน์ IFN-γ, TNF-α และ IL-10 ในผู้ป่วยผู้ป่วยที่มี ภาวะ IRD เปรียบเทียบกับกลุ่ม control

ผลงานวิจัยสามารถสรุปได้ดังนี้

- การให้ยาต้านไวรัสและการดูแลผู้ติดเชื้อเอชไอวี ตามที่กำหนดไว้ในหนังสือคู่มือการดูแล รักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) โดยได้กำหนดให้ต้องมีการรักษาโรค ติดเชื้อฉวยโอกาสก่อนที่จะเริ่มให้ HAART สามารถลดอัตราการพัฒนาไปสู่ภาวะ IRD ได้
- การพบภาวะ IRD ในผู้ป่วยที่ไม่มีประวัติติดเชื้อฉวยโอกาสก่อนที่จะได้รับ HAART ทำให้ ต้องคำนึงถึงเรื่องการติดเชื้อฉวยโอกาสแฝงที่ไม่แสดงอาการทางคลินิก หรือการมีแอนติเจน ของเชื้อโรคที่ไม่อาจตรวจพบได้อยู่ร่างกายของผู้ป่วย ดังนั้นการตรวจวินิจฉัยเพื่อดูระดับ การเปลี่ยนแปลงของไซโตไคน์ที่มีส่วนเกี่ยวข้องกับการทำให้เกิดภาวะอักเสบได้แก่ IFN-γ และ TNF-α และไซโตไคน์ที่มีฤทธิ์ตานการอักเสบได้แก่ IL-10 ในช่วงก่อนได้รับ HAART และภายในระยะ 3 เดือนแรกของการได้รับ HAART อาจใช้เป็นตัวบ่งชี้ที่สำคัญสำหรับบอก ถึงการที่ผู้ป่วยจะพัฒนาไปสู่การมีภาวะ IRD ได้

ผลที่ได้รับจากงานวิจัย

จากการศึกษาวิจัยในโครงการวิจัยนี้ ผู้วิจัยได้รับการตอบรับให้ตีพิมพ์ผลงานวิจัยใน วารสารวิชาการระดับนานาชาติแล้ว 1 เรื่อง และในระหว่าง submission 1 เรื่อง และอยู่ในระหว่าง เตรียม manuscript 1 เรื่อง

สารบัญ

	หน้า
บทคัดย่อ	Ш
Abstract	V
หน้าสรุปโครงการ (Executive Summary)	VII
เนื้อหางานวิจัย :	1-19
บทนำ	1
วัตถุประสงค์	3
วิธีทดลอง	3
ผลการทดลอง	6
สรุปผลและวิจารณ์ผลการทดลอง	13
ข้อเสนอแนะสำหรับงานวิจัยในอนาคต	15
เอกสารอ้างอิง	16
Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.	20
ภาคผนวก	21

บทนำ

เมื่อผู้ติดเชื้อเอชไอวีได้รับการรักษาด้วยยาต้านไวรัสแบบ highly active antiretroviral therapy (HAART) และผลการตรวจทางห้องปฏิบัติการแสดงผลสัมฤทธิ์ของการรักษาโดยผู้ป่วยมี จำนวน CD4-T cells เพิ่มสูงขึ้นขณะที่ระดับเอชไอวีในเลือด (Viral load) ลดต่ำ อย่างไรก็ตามพบ มีผู้ป่วยบางส่วน (ประมาณ 25 เปอร์เซ็นต์) แสดงอาการที่คล้ายคลึงกับการติดเชื้อฉวยโอกาสและ ในผู้ป่วยบางรายเกิดการอักเสบที่รุนแรงจนกระทั่งเสียชีวิตในเวลาต่อมา ในปี ค.ศ. 1999 French และคณะเป็นกลุ่มแรกที่ได้บัญญัติคำว่า "Immune Restoration Diseases; IRD" (1, 2) ในเวลา ใกล้เคียงกันได้มีการบัญญัติคำที่สื่อความหมายไปในทำนองเดียวกันได้แก่คำว่า "Immune Reconstitution Syndrome; IRS" และ "Immune Reconstitution Inflammatory Syndrome; IRIS" (3) ซึ่งทั้งหมดนี้จะหมายถึงกลุ่มอาการที่เกิดขึ้นอันเป็นผลสืบเนื่องมาจากการฟื้นกลับคืน ของระบบภูมิคุ้มกันภายหลังได้รับยาต้านไวรัสเอชไอวี โดยเฉพาะภูมิคุ้มกันชนิดเซลล์ (Cell mediated immunity; CMI) และเมื่อภูมิคุ้มกันนี้ตรวจพบเชื้อหรือแอนติเจนของเชื้อฉวยโอกาสที่ยัง หลงเหลืออยู่ภายในร่างกายจึงพยายามที่จะกำจัดให้หมดไปแต่ปฏิกิริยาตอบสนองดังกล่าวอาจเกิด มากเกินพอดีจึงทำให้แสดงอาการคล้ายผู้ป่วยที่มีภูมิคุ้มกันชนิดพึ่งเซลล์ไวเกินไป (Delayed type hypersensitivity; DTH) โดยทั่วไปจะเกิดขึ้นภายในระยะเวลาประมาณ 6 เดือนแรกของการรักษา (4) จากการศึกษาในกลุ่มเด็กติดเชื้อ เอชไอวี ประมาณ 100 รายที่จังหวดเชียงใหม่ที่ได้รับ HAART พบเด็กที่มีภาวะ IRD จำนวน 24 รายโดยจำแนกเป็น Mycobacterium avium complex-IRD 4 ราย Mycobacterium tuberculosis-IRD 3 ราย Cryptococus-IRD 3 ราย Herpes zoster-IRD และ Herpes simplex-IRD ชนิดละ 7 ราย โดยทุกรายเกิดภาวะ IRD ในช่วง 2-32 สัปดาห์ ภายหลังได้รับ HAART และในจำนวนนี้มีเด็กเสียชีวิตด้วยการเกิดภาวะดังกล่าวจำนวน 3 ราย (5)

เนื่องจาก IRD เกิดจากการฟื้นกลับคืนของระบบภูมิคุ้มกันดังนั้นปัจจัยที่ส่งเสริมการเกิด ภาวะดังกล่าวจึงเกี่ยวข้องกับระบบภูมิคุ้มกันข่องร่างกาย ปัจจัยแรกได้แก่ตัวเชื้อหรือแอนติเจน ของฉวยโอกาสที่จะเป็นเป้าหมายให้ระบบภูมิคุ้มกันที่จำเพาะและกำลังกลับฟื้นคืนมาภายหลังการ ได้รับยาต้านไวรัสเอชไอวีเกิดปฏิกิริยาตอบสนองทั้งทางภูมิคุ้มกันชนิดเซลล์ (cell mediated immunity) และทางด้านการผลิตแอนติบอดี (humeral immunity) นอกจากนี้ยังมีการผลิตไชโต ใคน์ (cytokines) เพื่อกระตุ้นระบบภูมิคุ้มกันที่ไม่จำเพาะ (Innate immunity) ซึ่งได้แก่การกระตุ้น ให้แมคโครฟาจ (macrophages) โมโนไซน์ (monocytes) และ นิวโตรฟิว (nutrophils) มาร่วมกัน ในบริเวณที่มีเชื้อหรือแอนติเจนของเชื้อพร้อมทั้งทำลายโดยการจับกิน การตอบสนองของระบบ ภูมิคุ้มกันดังกล่าวจึงทำให้เกิดการอักเสบขึ้นเฉพาะบริเวณที่มีเชื้อหรือแอนติเจนของเชื้อฉวยโอกาส ดังนั้นโอกาสและความรุนแรงของการเกิด IRD จึงมีความสัมพันธ์กับปริมาณเชื้อและ แอนติเจนของเชื้อที่มีอยู่ในร่างกายในขณะที่ผู้ป่วยเริ่มการรักษาด้วยยาต้านไวรัสเอชไอวี (6, 7) ปัจจัยที่สองได้แก่จำนวน CD4-T cells ของผู้ติดเชื้อเอชไอวีขณะที่เริ่มให้ยาต้านไวรัส โดยพบว่า

โอกาสเกิด IRD มีสูงขึ้นหากขณะก่อนได้รับยาต้านไวรัสเอชไอวีผู้ป่วยมีปริมาณ CD4-T cells ต่ำ กว่า 50 cells/mm³ ทั้งนี้เพราะปริมาณ CD4-T cells ที่เพิ่มขึ้นเป็นจำนวนมากทำให้เกิดการฟื้น กลับคืนของระบบภูมิคุ้มกันอย่างรวดเร็วจึงเกิดปฏิกิริยาที่รุนแรงต่อแอนติเจนของเชื้อฉวยโอกาส จนเป็นเหตุให้เกิดการอักเสบที่รุนแรงตามมา (2) ปัจจัยสุดท้ายที่ส่งเสริมให้เกิดภาวะ IRD คือ กลุ่มยืนที่เกี่ยวข้องกับระบบภูมิคุ้มกัน ซึ่งได้แก่ยืนที่ควบคุมการสร้างไซโตไคน์ และยืนที่กำหนด แอนติเจนบนผิวเซลล์เม็ดเลือดขาว (human leukocyte antigen; HLA) เป็นต้น ตลอดระยะเวลา 12 ปีที่ผ่านมายืนเหล่านี้ได้ถูกนำมาศึกษาเพื่อหาความสัมพันธ์กับการเกิด IRD และพบว่าผู้ป่วย ติดเชื้อเอชไอวีที่ได้รับยาต้านไวรัสชนิด HAART ที่มี HLA-A2, -B44, และ DR4 (8) หรือมียืนที่ ควบคุมการสร้าง IL-12p40 ชนิด IL-12B-3' UTR*1 (allele 1; นิวคลีโอไทด์ตำแหน่ง 1188 เปลี่ยน จาก C เป็น A) (9) มีโอกาสเสี่ยงสูงต่อการเกิด herpes virus-IRD ทั้งนี้เพราะ HLA-A2, -B44, และ DR4 เอื้อต่อการติดเชื้อไวรัส Herpes (8) ขณะที่ IL-12B-3' UTR*1 จะควบคุมให้ร่างกายมี การสร้าง IL-12p40 ซึ่งเป็น proinflamatory cytokine ที่ทำหน้าที่ควบคุมการผลิต Th1 cytokines ้ดังนั้นเมื่อมีการเพิ่มขึ้นของ IL-12p40 สมดุลระหว่าง Th1/Th2 cytokines จึงเสียไปและเกิดภาวะ IRD ตามมา (9) ในทำนองเดียวกันพบว่าผู้ป่วยที่มียืนที่ควบคุมการสร้าง TNF-lpha ชนิด TNFA-308*1 (allele 1; นิวคลีโอไทด์ตำแหน่ง -308 เปลี่ยนจาก A เป็น G) หรือ มียืนที่ควบคุมการสร้าง IL-6 ชนิด IL6-174*G (G allele; นิวคลีโอไทด์ตำแหน่ง -174 เปลี่ยนจาก C เป็น G) มีโอกาสสูง ต่อการเกิด mycobacterial-IRD (6) เพราะ TNFA-308*1 จะส่งผลให้ร่างกายมีการสร้าง TNF-lpha(10) จนไม่สามารถทำลายเซลล์ที่ติดเชื้อไมโครแบคทีเรียมได้จึงทำให้มีตัวเชื้อหรือ แอนติเจนของเชื้อหลงเหลืออยู่ในร่างกายเป็นจำนวนมากซึ่งจะเป็นเป้าหมายในการโจมตีของ ระบบภูมิคุ้มกันที่ฟื้นกลับคืนมาภายหลังผู้ป่วยได้รับ HAART สำหรับการมียืนที่กำหนดการสร้าง IL-6 ชนิด IL6-174*G นั้นพบว่าจะทำให้การสร้าง IL-6 ซึ่งเป็น proinflamatory cytokine เพิ่ม ัสูงขึ้น (11) จนทำให้เกิดภาวะ IRD (12)

การตรวจวินิจฉัยเพื่อบ่งชี้การดำเนินเข้าสู่ภาวะ IRD ในปัจจุบันยังเป็นปัญหาทั้งนี้ เนื่องจากยังไม่มีตัวชี้วัดที่ชัดเจน อย่างไรก็ตามการตรวจหาปัจจัยที่สนับสนุนให้เกิด IRD เช่นที่ กล่าวแล้วในข้างต้นก่อนที่ผู้ป่วยติดเชื้อเอชไอวีจะได้รับยาต้านไวรัสอาจพอที่จะคาดเดาได้ว่า ผู้ป่วยมีโอกาสเสียงต่อการเกิด IRD มากน้อยเพียงใด ตัวอย่างเช่นการให้ยาต้านไวรัสในผู้ติดเชื้อ เอชไอวีที่มี HLA-A2, -B44, และ DR4 หรือมียืนที่ควบคุมการสร้าง IL-12B ชนิด IL-12B-3' UTR*1 และมีประวัติว่าเคยติดเชื้อฉวยโอกาสกลุ่ม Herpesviridae มาก่อน ภายหลังจากผู้ป่วย ได้รับยาต้านไวรัสเอชไอวีแพทย์ควรเฝ้าระวังการพัฒนาไปสู่ภาวะ Hepesviral-IRD เช่นเดียวกับผู้ ติดเชื้อเอชไอวีที่มียืนที่ควบคุมการสร้าง TNF-α ชนิด TNFA-308*1 หรือ มียืนที่ควบคุมการสร้าง IL-6 ชนิด IL6-174*G และมีประวัติเคยติดเชื้อ mycobacterium มาก่อนภายหลังจากผู้ป่วยได้รับ ยาต้านไวรัสเอชไอวีแพทย์ควรติดตามอย่างใกล้ชิดถึงการพัฒนาไปสู่ภาวะ micobacterial-IRD นอกจากนี้การตรวจหาระดับการเปลี่ยนแปลงของ proinflamatory cytokine ได้แก่ IL-12, IL6 และ

TNF-α อาจมีประโยชน์ในการใช้เป็นตัวบ่งชี้ว่าผู้ป่วยเริ่มมีการพัฒนาเข้าสู่ภาวะ IRD จาก การศึกษาที่ผ่านมาพบว่าผู้ติดเชื้อเอชไอวีที่ได้รับ HAART และเกิดภาวะ IRD มีระดับ IL-6 และ soluble IL-6R ในพลาสมาสูงกว่าอย่างมีนัยสำคัญเมื่อเปรียบเทียบในพลาสมาของผู้ที่ได้รับ HAART แต่ไม่มีภาวะ IRD (13) นอกจากนี้ยังพบว่าระดับของ IL-6 เพิ่มขึ้นในช่วง 1 สัปดาห์ ก่อนที่ผู้ป่วยจะแสดงอาการ mycobacterial-IRD และลดลงภายหลังจากได้รับการรักษาด้วย antituberculous drugs (rifampicin, ethambutol, isoniazid, และ pyrazinamide) โดยไม่ได้หยุด ให้ HAART (14) สำหรับการวัดระดับการเปลี่ยนแปลงของ IL-12 (9) และ TNF-α (10, 15) ตลอดจน immune marker อื่นๆ เช่นการเพิ่มขึ้นของระดับแอนติบอดีชนิด IgG ซึ่งจำเพาะต่อเชื้อ ฉวยโอกาสแต่ละชนิด (12) หรือการเพิ่มขึ้นของ soluble CD30 และ soluble CD26 (Dipeptidyl Peptidase IV) (7, 16) ยังมีข้อมูลที่ไม่ชัดเจนมากนัก

วัตถุประสงค์

- 1. เพื่อศึกษาอัตราการเกิดภาวะ IRD ในผู้ติดเชื้อเอชไอวีภายหลังได้รับการดูแลรักษาโรคติด เชื้อฉวยโอกาสและการรักษาด้วยยาต้านไวรัสชนิด highly active antiretroviral therapy (HAART) ตามที่กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547)
- 2. เพื่อศึกษาถึงการเปลี่ยนแปลงระดับการสร้าง pro-inflammatory cytokine (IFN-γ และ TNF-α) และ anti-inflammatory cytokine (IL-10) ในผู้ติดเชื้อเอชไอวี ทั้งระยะก่อน ระหว่าง และหลังการเกิด IRD ภายหลังได้รับยาต้านไวรัสชนิด HAART ซึ่งผลการ เปลี่ยนแปลงดังกล่าวอาจมีประโยชน์ในการใช้เป็นดัชนีชี้วัดว่าผู้ป่วยเริ่มมีการพัฒนาเข้าสู่ ภาวะ IRD ตลอดจนใช้ติดตามประเมินผลการรักษาต่อไป

วิธีทดลอง

อาสาสมัครผู้ป่วยติดเชื้อเอชไอวี

อาสาสมัครที่เข้าร่วมโครงการเป็นผู้ติดเชื้อเอชไอวีที่เข้ารับการรักษาด้วยยาต้านไวรัสชนิด HAART ที่โรงพยาบาลสันป่าตอง และโรงพยาบาลนครพิงค์ จังหวัดเชียงใหม่ ตั้งแต่เดือนกันยายน พศ. 2549 ถึง ธันวาคม พศ. 2550 จำนวนทั้งสิ้น 67 ราย โดยหลักเกณฑ์ในการรับผู้ติดเชื้อเข้า ร่วมโครงการต้อง (1) เป็นผู้ที่มีอายุมากกว่า 15 ปี (2) ไม่เคยได้รับยาต้านไวรัสมาเอชไอวีมาก่อน (3) ต้องไม่มีภาวะติดเชื้อฉวยโอกาสขณะที่เริ่มรักษาด้วยยาต้านไวรัส (4) ผู้ป่วยที่มีภาวะติดเชื้อฉวยโอกาส ต้องได้รับการรักษาด้วยยาต้านเชื้อจุลชีพฉวยโอกาสนั้น ๆ ตามที่กำหนดไว้ในหนังสือ คู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) ก่อนที่จะได้รับยาต้านไวรัส นอกจากนี้ผู้ป่วยทุกรายที่เข้าร่วมโครงการต้องลงลายมือชื่อในเอกสารแสดงความยินยอมเข้าร่วม

โครงการ การศึกษาวิจัยครั้งนี้ได้รับการรับรองจากคณะกรรมการพิทักษ์สิทธิ์ สวัสดิภาพและป้องกัน ภยันตรายแก่ผู้ถูกวิจัยคณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

การเก็บตัวย่างเลือดข้อมูลอาสาสมัคร

การเจาะเก็บตัวอย่างเลือดผู้ป่วยทำทั้งหมด 6 ครั้งโดยเจาะเก็บครั้งแรกก่อนการให้ยาต้าน ไวรัสชนิด HAART และเจาะเก็บในเดือนที่ 1, 3, 6, 9 และเดือนที่ 12 ของการได้รับยาต้านไวรัส ภายหลังได้รับยาต้านไวรัส โดยการเจาะเก็บเลือดแต่ละครั้งและแต่ละคนจะเจาะประมาณ 3-5 ml ใส่ลงในหลอดเก็บเลือดที่มี EDTA เป็นสารกันเลือดแข็งตัว นอกจากนี้ในแต่ละครั้งที่มาทำการเจาะ เก็บตัวอย่างเลือด อาสาสมัครต้องจะได้รับการตรวจสังเกตอาการจากแพทย์เพื่อดูว่ามีการพัฒนา ไปสู่ภาวะ IRD หรือไม่หรือมีการติดเชื้อฉวยโอกาสชนิดใหม่หรือไม่ สำหรับการพิจารณาว่าผู้ป่วย มีภาวะ IRD หรือไม่จะอาศัยหลักเกณฑ์ที่ได้กำหนดไว้ก่อนหน้านี้ (6, 12, 17, 18) การตรวจวัดค่า CD4 cell count ของผู้ป่วยทำทั้งหมดสามครั้งโดยครั้งแรกเป็นการตรวจก่อนได้รับยาต้านไวรัส ครั้งที่สองและสามตรวจเมื่อได้รับยาต้านไวรัส ในกระแสเลือด (plasma HIV RNA) ตรวจหนึ่งครั้งในเดือนที่ 12 ของการได้รับยาต้านไวรัส

การแยกเก็บ PBMCs และพลาสมา

ตัวอย่างเลือดที่เก็บได้จะถูกส่งมาทันทียังห้องปฏิบัติการแขนงวิชาจุลทรรศนศาสตร์คลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่ จากนั้นทำการปั่นแยกเก็บพลาสมาที่ความเร็ว 2500 รอบต่อนาที เป็นเวลานาน 15 นาที เก็บพลาสมาที่ใน 1.5 ml microcentrifuge tube ที่ -20 °C จนกว่าจะใช้งาน ตะกอนเซลล์ที่ได้นำมาละลายใน sterile phosphate buffer saline solution (PBS) ปริมาตรเท่ากับจำนวนพลาสมาที่ดูดออก จากนั้นจึงนำมาปั่นแยก Peripheral Blood Mononuclear Cells (PBMCs) ด้วย IsoPrep (Robbins Scientific Corporation, Sunnyvale, CA, Norway) ที่ความเร็ว 1300 rpm นาน 30 นาที ปั่นล้าง PBMCs ที่เตรียมได้ด้วย sterile PBS จำนวน 2 ครั้ง โดยครั้งสุดท้ายดูด PBS ออกเกือบหมด และเติม 0.5 ml RNA Stabilization Reagent (RNA later, Germany) และเก็บที่ −70 °C จนกว่าจะนำมาใช้งาน

การสกัด total RNA จาก PBMCs

PBMCs ของผู้ติดเชื้อเอชไอวีที่มีการพัฒนาสู่ภาวะ IRD และ PBMCs ของผู้ป่วยติดเชื้อ เอชวีที่ไม่พัฒนาสู่ภาวะ IRD ซึ่งจะใช้เป็น control จะถูกนำมาปั่นที่ความเร็ว 5,000 รอบต่อนาที นาน 10 นาที เพื่อกำจัด RNA Stabilization Reagent ทิ้งให้มากที่สุด จากนั้นจึงสกัด total RNA ด้วยกรรมวิธีและน้ำยา RNA extraction Kit (Rneasy® Mini Kit; Qiagen, Japan) วัดปริมาณ RNA สกัดได้ด้วย UV spectrophotometer ที่ความยาวคลื่น 260 และ 280 nm พร้อมทั้งเก็บใน

สภาวะที่มี 1 unit/μl RNase inhibitor (Amersham Phamacia Biotech Inc., USA) ที่ −70 ^oC จนกว่าจะใช้งาน

การเตรียม cDNA

เตรียม cDNA ด้วยน้ำยา Taqman Revrse transcription kit (Applied Biosystems, New Jersey, USA) โดยในปฏิกิริยา 100 ml จะประกอบด้วย 90 μl reaction mix (1X RT Buffer, 5.5 mM MgCl2, 500 μM dNTP, 2.5 μM Random Hexamer, 0.4 U/μl RNase Ihibitor และ 1.25 U/μl Multiscribe RT enzyme) และ 10 μl RNA ความเข้มข้นระหว่าง 0.1-1.0 μg ขั้นตอนการ สร้าง cDNA จะประกอบด้วย Incubation 25 °C 10 นาที Reverse transcription 48 °C 30 นาที และ Reverse transcriptase inactivation 95 °C 5 นาที cDNA ที่สังเคราะห์ได้จะแบ่งเก็บใน microcentrifuge tube หลอดละ 20 ml และเก็บที่ –20 °C จนกว่าจะนำมาใช้งาน

การวัดปริมาณสร้าง cytokine mRNA โดยวิธี Real-time PCR

ทดสอบปริมาณการสร้าง IL-10 และ TNF-lpha mRNA โดยใช้ primers และ probe ที่ถูก ออกแบบให้ทำปฏิกิริยาได้อย่างจำเพาะกับ cytokines แต่ละชนิด และในปริมาตรทั้งหมด 25 ุ่มเ ของปฏิกิริยาสำหรับตรวจวัดระดับการสร้าง IL-10 mRNA จะประกอบไปด้วย 2x Tagman® ชนิดละ 300 Universal Master forward และ reverse (5'TTGCTGGAGGACTTTAAGGGTTAC3' และ 5'TCAGCTTGGGGCATCACC3' ตามลำดับ), 200 nM Tagman probe set (FAM-5'TTGCCAAGCCTTGTCTGAGATGATCCA3'-TAMRA), 18S RNA 20X mixture (primers and probe; Ribosomal RNA control reagents Tagman® PE Applied Biosystem, California) และ 5 μl cDNA ที่สังเคราะห์ได้ สำหรับการตรวจปริมาณ TNF-α mRNA ใน 25 μl ของปฏิกิริยาจะประกอบไปด้วย 2x Tagman® Universal Master mix, 20X TNF-α corresponding target primer และ probe ที่ติดฉลากด้วย FAM และ TEMRA ทางด้าน 5' และ 3' ตามลำดับ (Human TNF-α reagents Tagman® PE Biosystems, California), 18S RNA 20X mixture (primers and probe; Ribosomal RNA control reagents Tagman® PE Applied Biosystem, California) และ 5 µl cDNA ที่สังเคราะห์ได้ probe สำหรับ 18S RNA ใช้เป็น Endogenous reference จะติดฉลากด้าน 5' ด้วย VIC และ 3' ด้วย TEMRA การทดสอบในแต่ละชนิดของ cytokineจะทำ 2 หลุมซ้ำ (duplicate) โดยปฏิกิริยาถูกทำบนเครื่อง Sequence Detection System ABI PRISM 7000 (PE Applied Biosystems, Foster City, California) ในสภาวะ hold ที่ 50 °C 2 นาที และ denaturation ที่ 95 °C 2 นาทีจากนั้นจึงตาม ด้วยขั้นตอนของ real-time PCR จำนวน 40 รอบซึ่งในแต่ละรอบจะประกอบด้วยขั้นตอน denaturation ที่ 95 °C 15 วินาที และ annealing/extension ที่ 62 °C 1 นาที ผลบวกของ ปฏิกิริยาดูได้จากกราฟที่ปรากฏบนหน้าจอคอมพิวเตอร์และอ่านผลเป็น cycle threshold (C_T)

การวัดปริมาณ plasma cytokines โดยวิธี ELISA

การหาระดับการสร้าง TNF-α, IFN-γ และ IL-10 จะทดสอบด้วยวิธี Sandwich ELISA ตากรรมวิธีของน้ำยาตรวจในแต่ละชุด kit โดย TNF-α และ IL-10 จะใช้ของบริษัท Immunotech, Becman Coulter, Marseille, France ซึ่งมีความไว 10 และ 0.5 pg/ml ตามลำดับ สำหรับ IFN-γ ใช้ของบริษัท BioSource Europe SA, Nivelles, Belgium ซึ่งมีความไว 0.03 IU/ml การทดสอบ ในแต่ละตัวอย่าง plasma และแต่ละชนิดของ cytokine จะทำ 2 หลุมซ้ำ (duplicate)

สถิติวิเคราะห์

ผลการทดลองจะนำเสนอโดย ค่าเฉลี่ย ± ค่าเบี่ยงเบนมาตรฐาน การวิเคราะห์ข้อมูลทาง สถิติใช้โปรแกรม SPSS for Windows (SPSS version 11.5, Chicago, IL) การเปรียบเทียบ ข้อมูลระหว่างกลุ่มทดลองใช้ non-parametric tests (Mann-Whitney test) ค่า p value ที่น้อยกว่า 0.05 ถือว่ามีความแตกต่างอย่างมีนัยสำคัญทางสถิต

ผลการทดลอง

ข้อมูลของอาสาสมัครผู้ป่วยติดเชื้อเอชไอวีก่อนได้รับยาต้านไวรัส

ตลอดช่วงการศึกษามีอาสาสมัครเข้าร่วมโครงการเป็นจำนวนทั้งสิ้น 67 ราย และจากการ อาศัยประวัติข้อมูลการติดเชื้อฉวยโอกาสก่อนเริ่มรับยาต้านไวรัสสามารถจำแนกกลุ่มอาสาสมัคร ได้เป็นสองกลุ่ม (ตารางที่ 1) คือ กลุ่มที่ไม่มีประวัติการติดเชื้อฉวยโอกาสก่อนการได้รับยาต้าน ไวรัสจำนวนทั้งสิ้น 47 ราย และกลุ่มที่มีประวัติการติดเชื้อฉวยโอกาสก่อนการได้รับยาต้านไวรัส จำนวนทั้งสิ้น 20 ราย ในจำนวนนี้แบ่งเป็นผู้ติดเชื้อ Pneumocystis jiroveci pneumonia จำนวน 6 ราย Mycobacterium tuberculosis จำนวน 5 ราย Candidiasis 4 ราย Cryptococcosis 3 ราย และ chronic hepatitis B และ/หรือ C 2 ราย ก่อนเริ่มให้ยาต้านไวรัสเอชไอวีผู้ป่วยที่ติดเชื้อฉวย โอกาสทุกราย ยกเว้น 2 รายที่เป็น chronic hepatitis ได้รับการรักษาด้วยยาต้านจุลชีพตามที่ กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) (ตารางที่ 2)

สำหรับข้อมูลเบื้องต้นเช่น อายุ จำนวน CD4 cell counts และชนิดของยาต้านไวรัส (HAART regimens) ของผู้ป่วยแต่ละกลุ่ม และการรักษาด้วยยาต้านจุลชีพในผู้ป่วยที่ติดเชื้อฉวยโอกาส แสดงไว้ในตารางที่ 1 และ 2 ตามลำดับ ค่าเฉลี่ยอายุของผู้ป่วยทั้งสองกลุ่มมีค่าใกล้เคียงกัน ถึงแม้ว่าค่าเฉลี่ย CD4 cell count ของกลุ่มผู้ป่วยที่ไม่มีประวัติติดเชื้อฉวยโอกาสมีค่าสูงกว่าของ กลุ่มที่มีประวัติติดเชื้อฉวยโอกาส แต่ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (ตารางที่ 1)

การตอบสนองทางภูมิคุ้มกันวิทยาและการพัฒนาไปสู่ภาวะ IRD

ในเดือนที่ 6 ของการรักษาด้วยยาต้านไวรัสชนิด HAART พบว่าระดับ CD4 cell count ของผู้ป่วยทั้งสองกลุ่มเพิ่มขึ้น โดยค่าดังกล่าวของกลุ่มผู้ป่วยที่ไม่มีประวัติติดเชื้อฉวยโอกาสมีค่า สูงกว่าอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับของกลุ่มที่มีประวัติติดเชื้อฉวยโอกาส (ตาราง ที่ 1) ขณะที่ค่าเฉลี่ย CD4 cell count ของผู้ป่วยทั้งสองกลุ่มในเดือนที่ 12 ของการรักษาด้วย HAART มีค่าใกล้เคียงกัน นอกจากนี้มากกว่าร้อยละ 90 ของจำนวนผู้ป่วยในแต่ละกลุ่มมีค่า plasma HIV RNA น้อยกว่า 50 coppies/ml (ตารางที่ 1)

เมื่อศึกษาถึงการพัฒนาไปสู่ภาวะ IRD พบว่าไม่มีผู้ป่วยที่อยู่ในกลุ่มที่มีประวัติติดเชื้อฉวย โอกาสมีการพัฒนาไปสู่ภาวะ IRD ขณะที่มีผู้ป่วย 1 รายที่อยู่ในกลุ่มที่ไม่มีประวัติติดเชื้อฉวย โอกาส มีการพัฒนาไปเป็น M. tuberculosis-IRD ภายในเดือนที่ 2 ของการรักษาด้วย HAART โดยผู้ป่วยมาพบแพทยืด้วยอาการมีไข้ และ dyspnea ผู้ป่วยไม่เคยมีประวัติติดเชื้อ tuberculosis มาก่อน การตรวจ acid-fast bacilli เสหะให้ผลลบ ผลการตรวจร่างกายพบลักษณะ คล้ายมี tuberculosis ของ intestines, peritoneum และ mesenteric glands แพทย์จึงตัดสิ้นใจให้ ยารักษา M. tuberculosis ชนิด isoniazid, rifampicin, pyrazinamide และ ethambutol สองเดือน ต่อมาผู้ป่วยมาพบแพทย์ด้วยอาการปวดบริเวณท้องและข้อ พร้อมทั้งมีอาการคลื่นเหียน ตอม น้ำเหลืองที่คออักเสบ (cervical lymphadenitis) แพทย์ดูดหนองที่คอเพื่อส่งเลี้ยงเชื้อ tuberculosis และเจาะเลือดเพื่อส่งส่งเลี้ยงเชื้อ M. avium complex ผลการเพาะเลี้ยงทั้งสองชนิด ้ดังกล่าวให้ผลลบ จากการศึกษาค่า CD4 cell count ของผู้ป่วยรายนี้พบว่าเพิ่มขึ้นจากเดิม 44 cells/µl ในช่วงก่อนได้รับยาไปเป็น 155 cells/µl ในเดือนที่ 6 ของการรักษาด้วย HAART ดังนั้น แพทย์จึงวินิจฉัยว่าผู้ป่วยรายนี้เป็น M. tuberculosis-IRD และเริ่มรักษาด้วยยา prednisolone ควบคู่ไปกับการรักษาด้วยยาฆ่าเชื้อ M. tuberculosis และ HAART ผู้ป่วยมีอาการดีขึ้นเป็นลำดับ และหายเป็นปกติในระยะเวลา 7 เดือนถัดมา

ตารางที่ 1. ข้อมูลของผู้ป่วยติดเชื้อเอชไอวีที่เข้าร่วมโครงการทั้งก่อนและหลังการได้รับ HAART

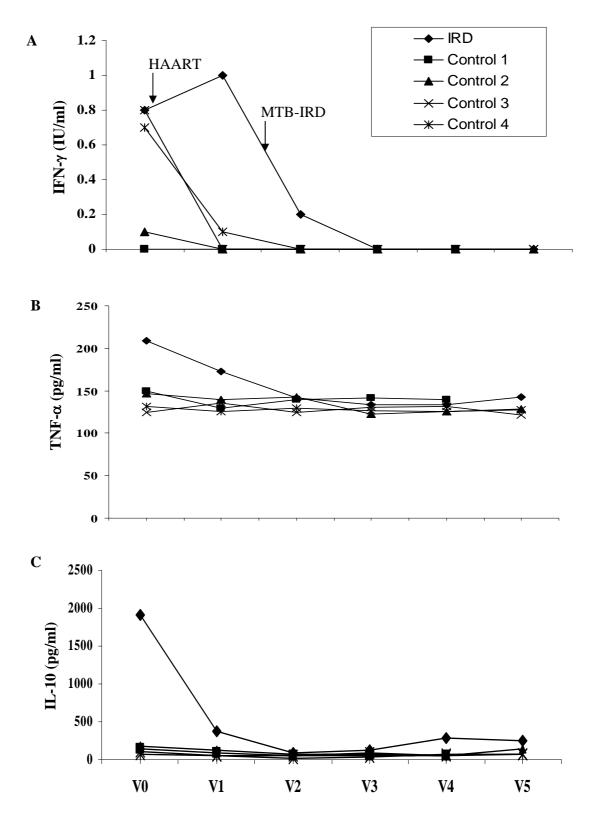
Characteristics	HIV-infected patients			
	Without	With	P	
	opportunistic	opportunistic		
	infection	infection*		
	(n = 47)	(n = 20)		
Age (years)	37.94 ± 7.69	40.10 ± 8.17	0.33	
	(23-53)	(25-58)		
Gender : Male/Female	29/18	12/8		
Baseline CD4 ⁺ cell counts (cells/μL)	102 ± 82	77 ± 75	0.45	
	(0-268)	(7-283)		
CD4 cell counts at month 6 (cells/μL)	242 ± 120	175 ± 76	0.04	
	(47-514)	(58-309)		
CD4 cell counts at month 12 (cells/μL)	267 ± 127	233 ± 81	0.49	
	(52-647)	(113-439)		
Proportion of patients with plasma HIV load	93% (n = 27)	94% (n = 16)		
<47 copies/mL at month 12				
HAART regimens :				
GPO-VIR (d4T + 3TC + NVP)	27	10		
d4T + 3TC + NVP or EFV	4	4		
Truvada (TDF + FTC) + NVP or EFV	15	1		
EFV + TDF + FTC or 3TC	-	2		
ZDV + EFV + DDI or 3TC	-	3		
ZDV + 3TC + IDV	1	-		

included 2 HIV-1 infected patients with chronic hepatitis B and/or C

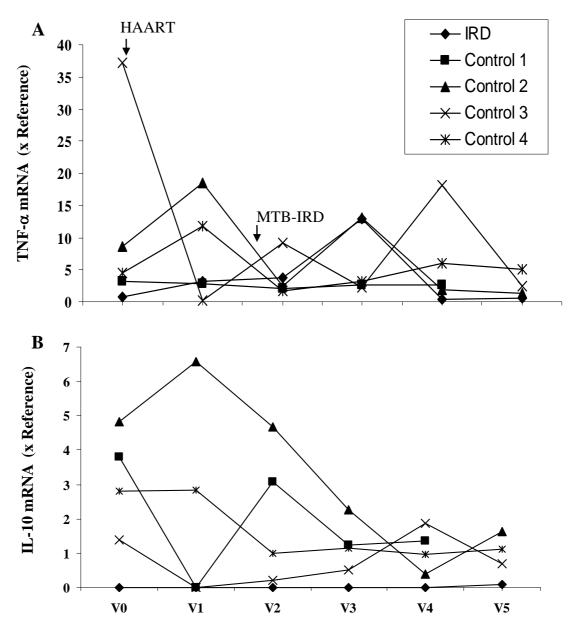
ddl, didanosine; d4T, stavudine; EFV, efavirenz; FTC, emtricitabine; HAART, highly active antitretroviral therapy; IDV, indinavir; NVP, nevirapine; TDF, tenofovir disoproxil fumarate; 3TC, lamivudine; ZDV, zidovudine.

ตารางที่ 2. การติดเชื้อฉวยโอกาสและการรักษาด้วยยาต้านจุลชีพ HAART initiation.

Opportunistic infections	Antimicrobial agents	Duration of antimicrobial	
		prophylaxis prior to HAART	
		initiation (days)	
PCP (n =6)	Cotrimoxazole or Dapsone	24.5 ± 6.25 (16-30)	
M. tuberculosis (n = 5)	Isoniazid + Rifampicin +	108 ± 94 (30-270)	
	Pyrazinamide + Ethambutol.		
Candidiasis (n = 4)	Fluconazole or Ketoconazole or	13.67 ± 2.52 (11-16)	
	Cotrimazole		
Cryptococcosis (n = 3)	Amphotericin B and/or	19.33 ± 1.15 (18-20)	
	Fluconazole		


การตรวจวัดระดับ plasma pro-inflammatory และ anti-inflammatory cytokines ของ ผู้ป่วย *M. tuberculosis*-IRD

จากการตรวจวัดระดับ plasma pro-inflammatory (IFN-γ และ TNF-α) และ anti-inflammatory (IL-10) cytokines ของผู้ป่วย *M. tuberculosis*-IRD เปรียบเทียบกับของกลุ่ม control ซึ่งผู้ป่วยติดเชื้อเอชไอวีที่มีประวัติติดเชื้อ *M. tuberculosis* แต่ไม่พัฒนาไปสู่ภาวะ IRD ภายหลังรับการรักษาด้วย HAART โดยเป็นการศึกษาแบบ retrospective พบว่า ระดับ IFN-γ ใน ระยะก่อนได้รับ HAART ของผู้ป่วยที่เป็น *M. tuberculosis*-IRD สูงกว่าของกลุ่ม control นอกจากนี้ในระยะหนึ่งเดือนหลังจากได้รับ HAART ระดับ IFN-γ ยังเพิ่มสูงขึ้นมากกว่าระดับที่ ตรวจพบได้ในคนปกติ (0-0.89 IU/ml) (รูปที่ 1A) ขณะที่ในช่วงดังกล่าวระดับ IFN-γ ของกลุ่ม control มีการลดลง ระดับ IFN-γ ของผู้ป่วย *M. tuberculosis*-IRD ลดลงจนเกือบถึงระดับที่ตรวจ พบในกลุ่ม control ในช่วงเดือนที่ 3 ของการรักษาด้วย HAART และลดลงจนกระทั่งถึงระดับที่ เท่ากับกลุ่ม control คือเป็น 0 IU/ml ในเดือนที่ 6 และคงที่ไปจนกระทั้งเดือนที่ 12 (รูปที่ 1A)


ระดับของ TNF- α และ IL-10 ในระยะก่อนได้รับ HAART ของผู้ป่วยที่เป็น M. tuberculosis-IRD สูงกว่าของกลุ่ม control และมีการลดลงอย่างรวดเร็วในช่วงเดือนแรกของการ รักษาด้วย HAART ภายหลังได้รับการรักษาด้วยยา prednisolone พบว่าระดับ TNF- α , IL-10, เพิ่มขึ้นเล็กน้อย (รูปที่ 1B-C)

การตรวจวัดระดับ TNF-α และ IL-10 mRNA ของผู้ป่วย *M. tuberculosis*-IRD

จากการตรวจวัดระดับ TNF- α และ IL-10 mRNA ของผู้ป่วย *M. tuberculosis*-IRD เปรียบเทียบกับของกลุ่ม control ซึ่งผู้ป่วยติดเชื้อเอชไอวีที่มีประวัติติดเชื้อ *M. tuberculosis* แต่ไม่ พัฒนาไปสู่ภาวะ IRD ภายหลังรับการรักษาด้วย HAART พบว่าระดับของ TNF- α mRNA ในช่วง ก่อนได้รับ HAART ของผู้ป่วย *M. tuberculosis*-IRD ต่ำกว่าของกลุ่ม control และมีการเพิ่มขึ้น จนกระทั่งสูงสุดในเดือนที่ 6 ของการรักษาด้วย HAART จากนั้นจึงลดลงและมีระดับต่ำกว่าที่ตรวจ พบได้ในกลุ่ม control (รูปที่ 2A) สำหรับระดับของ IL-10 mRNA พบว่าต่ำกว่าในกลุ่ม control ตลอดระยะเวลาที่ทำการศึกษา โดยในระยะตั้งแต่ก่อนได้รับ HAART ไปจนกระทั้งเดือนที่ 9 ของ การได้รับ HAART ไม่สามารถตรวจวัดระดับ IL-10 mRNA และมีการเพิ่มขึ้นเล็กน้อยในเดือนที่ 12 (รูปที่ 2B)

ร**ูปที่ 1.** ระดับ plasma cytokines ของผู้ป่วย MTB-IRD และผู้ป่วยที่มีประวัติติดเชื้อวัณโรคแต่ไม่ เป็น IRD หลังได้รับ HAART

ร**ูปที่ 2.** ระดับ cytokine mRNA ของผู้ป่วย MTB-IRD และผู้ป่วยที่มีประวัติติดเชื้อวัณโรคแต่ไม่ เป็น IRD หลังได้รับ HAART

สรุปและวิจารณ์วิจารณ์ผลการทดลอง

การติดเชื้อฉวยโอกาสที่พบได้บ่อยในผู้ติดเชื้อเอชไอวีที่อาศัยอยู่ในประเทศที่กำลังพัฒนา ได้แก่ M. tuberculosis, P. jiroveci pneumonia และ C. neoformans และการติดเชื้อเหล่านี้ยัง เป็นสาเหตุสำคัญที่ทำให้ผู้ป่วยที่ได้การรักษาด้วย HAART พัฒนาไปสู่การมีภาวะ IRD การศึกษาก่อนหน้านี้พบว่าร้อยละ 25-30 ของผู้ติดเชื้อเอชไอวีมีการพัฒนาไปสู่ภาวะ IRD โดยที่ ผู้ป่วยส่วนใหญ่มีประวัติติดเชื้อฉวยโอกาสชนิด M. tuberculosis, M. avium complex, C. neoformans, and T. gondii ก่อนที่จะได้รับ HAART (2, 12, 19-21) การศึกษาครั้งนี้มี วัตถุประสงค์หลักเพื่อที่จะประเมินประสิทธิภาพของการรักษาผู้ป่วยติดเชื้อเอชไอวีตามที่กำหนด ไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) ต่อการลดอัตราการ เกิดภาวะอักเสบเนื่องจากการฟื้นกลับของระบบภูมิคุ้มกัน ได้ทำการศึกษาในผู้ติดเชื้อเอชไอวี โดยเฉพาะอย่างยิ่งผู้ที่ติดเชื้อเอชไอวีที่มีประวัติติดเชื้อฉวยโอกาสอยู่ก่อนที่จะได้รับ HAART เนื่องจากการดูแลรักษาผู้ป่วยติดเชื้อเอชไอวีตามที่กำหนดไว้ในหนังสือคู่มือ ผู้ป่วยที่ติดเชื้อฉวย โอกาสจะได้รับการรักษาด้วยยาต้านจุลชีพก่อนที่จะเริ่มให้ยาต้านไวรัสชนิด HAART การศึกษาพบว่าไม่มีผู้ป่วยที่มีประวัติติดเชื้อฉวยโอกาสมีการพัฒนาไปสู่ภาวะ IRD ผู้ป่วยที่ติดเชื้อฉวยโอกาสเหล่านี้จะได้รับ HAART ในภายจากที่ได้รับยาต้านจุลชีพแล้วเป็น ระยะเวลานานน้อยกว่า 30 วัน โดยมีค่าเฉลี่ยช่วงระยะเวลาของการได้รับยาต้านเชื้อจุลชีพฉวย โอกาสคือ 13.67-24.50 วัน (ตารางที่ 2) ซึ่งต่างจากการศึกษาก่อนหน้านี้ที่พบว่า การเริ่มให้ HAART ในช่วงก่อน 30 วันภายหลังจากเริ่มให้ยาต้านจุลชีพทำให้ผู้ป่วยมีโอกาสเสี่ยงสูงที่จะ พัฒนาไปสู่ภาวะ IRD เมื่อเปรียบเทียบกับผู้ป่วยที่ได้รับ HAART หลังจากที่รักษาโรคติดเชื้อฉวย ฉวยโอกาสแล้วป็นเวลานานมากกว่า 30 วัน (20) โดยทั่วไปการเกิดภาวะ MTD-IRD มักพบใน ผู้ป่วยที่เริ่มได้รับ HAART ภายในช่วงระยะเวลา 2 เดือนหลังจากที่รักษาด้วยยาฆ่าเชื้อวัณโรค (22) ดังนั้นการเริ่มให้ HAART หลัง2 เดือนของการรักษาด้วยยาฆ่าเชื้อวัณโรค จะทำให้โอกาสใน กาสในการพัฒนาไปสู่ภาวะ MTB-IRDลดลง ทั้งนี้เนื่องจากจำนวนเชื้อและแอนติเจนของเชื้อวัณ โรคที่มีอยู่ในร่างกายผู้ป่วยจะลดลงจนถึงระดับที่ไม่ทำให้เกิดปฏิกิริยาที่รุนแรงกับระบบภูมิคุ้มกันที่ เพิ่มขึ้นภายหลังจากที่ผู้ป่วยได้รับ HAART (23) จากการศึกษาครั้งนี้พบว่าผู้ป่วยส่วนใหญ่ที่มี ประวัติติดเชื้อวัณโรคได้รับ HAART ในภายหลังจากที่ได้รับยาฆ่าเชื้อวัณโรคแล้วนานมากกว่า 2 เดือน ดังนั้นจึงอาจช่วยอธิบายได้ว่าทำไมถึงไม่พบว่ามีผู้ป่วย MTB-IRD ในกลุ่มผู้ป่วยที่มีประวัติ ติดเชื้อวัณโรค

ที่เดือนที่ 6 ของการักษาด้วย HAART พบว่าระดับ CD4 cell count ของกลุ่มผู้ป่วยที่ไม่มี ประวัติติดเชื้อฉวยโอกาสมีการเพิ่มขึ้นสูงกว่าอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบกับของ กลุ่มผู้ป่วยที่มีประวัติติดเชื้อฉวยโอกาส (242 & 175; p =0.04) นอกจากนี้มีผู้ป่วหนึ่งรายที่ไม่มี ประวัติติดเชื้อฉวยได้พัฒนาไปสู่ภาวะ MTB-RID ภายหลังจากได้รับ HAART แล้วเป็นเวลานาน 2 เดือน ค่า CD4 cell count ของผู้ป่วยรายนี้เพิ่มขึ้นภายหลังได้รับ HAART คือจากเดิม 44 เซลล์/ ไมโครลิตร เพิ่มขึ้นเป็น 155 เซลล์/ไมโครลิตรในเดือนที่ 6 ของการรักษาด้วย HAART การเพิ่มขึ้น อย่างรวดเร็วของระดับ CD4 cell count ภายหลังได้รับ HAART ร่วมกับการติดเชื้อฉวยโอกาสอยู่ ก่อนได้รับ HAART ถือว่าเป็นปัจจัยสำคัญที่ช่วยส่งเสริมให้เกิดภาวะ IRD นอกจากนี้การศึกษา ก่อนหน้านี้ได้แสดงให้เห็นว่าการเพิ่มขึ้นจากเดิมหลายเท่าตัวของระดับ CD4 cell count มี ความสัมพันธ์กับการพัฒนาไปสู่ภาวะ IRD (24) ถึงแม้ผู้ป่วย MTB-IRD ที่พบในการศึกษาครั้งนี้ไม่ มีประวัติการติดเชื้อวัณโรคที่ปอด อย่างไรก็ตามผู้ป่วยอาจติดเชื้อวัณโรคแฝงอยู่ในระบบอื่นของ ร่างกาย ดังนั้นการศึกษาการเปลี่ยนแปลงพลาสมาไซโตไคน์ที่มีส่วนทำให้เกิดการอักเสบเช่น IFN-γ และ TNF-α ควบคู่กับการเปลี่ยนแปลงไซโตไคน์ที่มีฤทธิ์ต้านการอักเสบเช่น IL-10 อาจช่วยบ่งชี้ การพัฒนาไปสู่ภาวะ IRD ได้

IFN-γ เป็นไซน์โตไคน์ที่ผลิตจาก CD4+ และ CD8+ T lymphocyte ที่ทำหน้าที่หลักใน การต่อต้านการติดเชื้อวัณโรค (25) โดยจะกระตุ้นการทำงานของ macrophage ได้หลายทาง ร่วม ถึงกระตุ้นให้ macrophage สร้าง reactive oxygen และ reactive nitrogen species ซึ่งเป็นสารที่ มีฤทธิ์ฆ่าและยับยั้งการเจริญของเชื้อวัณโรคที่อยู่ภายในเซลล์ macrophage ได้ หลายการศึกษา ก่อนหน้านี้ที่แสดงให้เห็นว่ามีการ transcription ของ IFN-γ อยู่ในระดับที่สูงก่อนที่ผู้ป่วยติดเชื้อ เอชไอวีจะได้รับ HAART และลดลงในขณะที่ได้รับ HAART (26-30) ดังนั้นการตรวจพบระดับการ เพิ่มขึ้นของ IFN- γ ในเดือนแรกหลังจากได้รับ HAART ในผู้ป่วย MTB-IRD อาจบ่งชี้ถึงการติดเชื้อ วัณโรคแฝงในผู้ป่วยรายนี้ นอกจากนี้ยังมีรายงานการตรวจพบการเสียสมดุลระหว่าง IFN-γ และ IL-10 ในผู้ป่วย MTB-IRD ซึ่งการเสียสมดุลดังกล่าวอาจมีส่วนช่วยสนับสนุนการพัฒนาเข้าสู้ภาวะ IRD (31) IL-10 เป็นไซโตไคน์ที่มีฤทธิ์ต้านการอักเสบ นอกจากนี้ยังสามารถยับยั้งการแสดงออก (expression) ของ TNF-α ซึ่งเป็นไซโตไคน์อีกชนิดหนึ่งที่มีฤทธิ์ทำให้เกิดการอักเสบ การรักษา สมดุลระหว่าง IL-10 และ TNF-lpha จะพบได้ในคนปกติทั่วไป และสมดุลนี้จะเสียไปในผู้ที่มีการติด เชื้อ (32, 33) จากการศึกษาในครั้งนี้พบว่าผู้ป่วยที่เป็น MTB-IRD มีระดับ IL-10 ในช่วงก่อนได้รับ HAART สูงกว่ากลุ่ม control ถึงประมาณ 15 เท่า และในช่วงหนึ่งเดือนแรกของการได้รับ HAART พบว่าระดับ IL-10 ของผู้ป่วยรายนี้ลดลงอย่างรวดเร็ว ในขณะที่ระดับของ TNF-lpha ค่อย ๆ ลดลง อย่างช้าๆ และยังคงสูงกว่าในกลุ่ม control ภายหลังเดือนที่หนึ่งของการได้รับ HAART ดังนั้นการ เสียสมดุลระหว่าง IL-10 และ TNF-lpha อาจมีส่วนเกี่ยวข้องกับการเกิด IRD อย่างไรก็ตามการศึกษา ครั้งนี้ไม่พบความสัมพันธ์ของการเปลี่ยนแปลงระดับ IL-10 และ TNF-α mRNA กับระดับ plasma IL-10 และ TNF-lpha ทั้งนี้อาจเนื่องมาจากอัตราการสร้าง IL-10 และ TNF-lpha mRNA (transcription) และ

การสร้างโปรตีน และการปลดปล่อยไซโตไคน์ทั้งสองชนิดออกมานอกเซลล์ในผู้ป่วย MTB-IRD เป็นไปอย่างรวดเร็วและมีการสะสมอยู่ในการแสเลือดตลอดเวลาโดยเฉพาะในช่วงก่อนได้รับ HAART และในช่วง 3 เดือนแรกของการได้รับ HAART ขณะเดียวกันการสลายตัวของ IL-10 และ TNF-α mRNA ในช่วงเวลาดังกล่าวเป็นไปอย่างรวดเร็วมากกว่ากลุ่ม control ดังนั้นจึงทำให้ระดับ IL-10 และ TNF-α mRNA ที่ตรวจพบในผู้ป่วย MTB-IRD ต่ำกว่าในกลุ่ม control

ข้อจำกัดของการศึกษาครั้งนี้คือการตรวจวัดระดับ CD4 cell count และปริมาณไวรัสใน กระแสเลือดไม่ได้ตรวจทุก visit ดังนั้นจึงไม่สามารถวิเคราะห์ค่าดังกล่าวทั้งสองชนิด ณ เวลาที่ ผู้ป่วยเริ่มแสดงอาการ IRD และถึงแม้ได้มีการให้คำจำกัดความและคำอธิบายลักษณะอาการทาง คลินิกของภาวะ IRD ไว้อย่างชัดเจน เนื่องจากการเกิดภาวะนี้สัมพันธ์การการติดเชื้อโรคฉวย โอกาสหลากหลายชนิด ดังนั้นการที่ผู้ป่วยบางรายไม่แสดงอาการ IRD ที่ชัดเจนอาจทำให้การ ตรวจนิจฉัยคลาดเคลื่อนได้

จากการศึกษาวิจัยในครั้งนี้แสดงให้เห็นว่าการให้ยาต้านไวรัสและการดูแลผู้ดิดเชื้อเอชไอวี ตามที่กำหนดไว้ในหนังสือคู่มือการดูแลรักษาด้วยยาต้านไวรัสเอดส์ในผู้ใหญ่ (ปี พศ. 2547) โดย ได้กำหนดให้ต้องมีการรักษาโรคติดเชื้อฉวยโอกาสก่อนที่จะเริ่มให้ HAART สามารถลดอัตราการ พัฒนาไปสู่ภาวะ IRD ได้ นอกจากการที่พบภาวะ IRD ในผู้ป่วยที่ไม่มีประวัติติดเชื้อฉวยโอกาส ก่อนที่จะได้รับ HAART ทำให้ต้องคำนึงถึงเรื่องการติดเชื้อฉวยโอกาสแฝงที่ไม่แสดงอาการทาง คลินิก หรือการมีแอนติเจนของเชื้อโรคที่ไม่อาจตรวจพบได้อยู่ร่างกายของผู้ป่วย ดังนั้นการตรวจ วินิจฉัยเพื่อดูระดับการเปลี่ยนแปลงของไซโตไคน์ที่มีส่วนเกี่ยวข้องกับการทำให้เกิดภาวะอักเสบได้แก่ IFN-γ และ TNF-α และไซโตไคน์ที่มีฤทธิ์ตานการอักเสบได้แก่ IL-10 ในช่วงก่อนได้รับ HAART และภายในระยะ 3 เดือนแรกของการได้รับ HAART อาจใช้เป็นตัวบ่งชี้ที่สำคัญสำหรับ บอกถึงการที่ผู้ป่วยจะพัฒนาไปสู้การมีภาวะ IRD

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

เนื่องจากพบผู้ป่วย MTB-IRD เพียง 1 ราย ดังนั้นลักษณะการเปลี่ยนแปลงของไซโตไคน์ ที่ทำการศึกษาอาจไม่สามารถใช้เป็นตัวแทนของผู้ป่วย MTB-IRD ทุกรายได้ เพื่อให้ได้ผลการ ทดลองที่ชัดเจนจึงควรมีการเก็บตัวอย่างผู้ป่วย MTB-IRD ในจำนวนที่มากขึ้น พร้อมกันนี้อาจต้อง ทำการศึกษาการเปลี่ยนแปลงระดับไซโตไคน์ IFN-γ TNF-α และ IL-10 ในผู้ป่วย IRD ชนิดอื่น ๆ ร่วมด้วย การตรวจวัดระดับการเปลี่ยนแปลงของ IL-6 ที่มีรายงานก่อนหน้านี้ว่ามีความสัมพันธ์กับ การเกิดภาวะ MTB-IRD ที่ยังไม่ได้ทำการศึกษาในครั้งนี้ อาจจำเป็นที่จะต้องดำเนินการทดสอบใน อนาคต ทั้งนี้เพื่อให้ได้ข้อมูลที่ครบถ้วนสมบูรณ์ยิ่งขึ้น ซึ่งผลการตรวจระดับ IL-6 อาจไม่สัมพันธ์ กับการศึกษาก่อนหน้านี้ก็ได้ เนื่องจากกลุ่มประชากรศึกษาต่างเชื้อชาติกัน ดังนั้นอาจมียีนที่ ควบคุมการสร้าง IL-6 ที่แตกต่างกัน

เอกสารอ้างอิง

- 1. French MA. Antiretroviral therapy. Immune restoration disease in HIV-infected patients on HAART. AIDS Read 1999;9(8):548-9, 554-5, 559-62.
- 2. French MA, Lenzo N, John M, Mallal SA, McKinnon EJ, James IR, et al. Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med 2000;1(2):107-15.
- 3. Stoll M, Heiken H, Weber K, Hundt M, Behrens G, Schmidt RE. [Immune reconstituted inflammatory syndrome. Pitfalls of antiretroviral therapy]. MMW Fortschr Med 2003;145 Spec No 1:42-7.
- 4. Price P, Mathiot N, Krueger R, Stone S, Keane NM, French MA. Immune dysfunction and immune restoration disease in HIV patients given highly active antiretroviral therapy. J Clin Virol 2001;22(3):279-87.
- 5. Virat. 2004.
- 6. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. Aids 2004;18(12):1615-27.
- 7. Stoll M, Schmidt RE. Adverse events of desirable gain in immunocompetence: the Immune Restoration Inflammatory Syndromes. Autoimmun Rev 2004;3(4):243-9.
- 8. Price P, Keane NM, Stone SF, Cheong KY, French MA. MHC haplotypes affect the expression of opportunistic infections in HIV patients. Hum Immunol 2001;62(2):157-64.
- 9. Price P, Morahan G, Huang D, Stone E, Cheong KY, Castley A, et al. Polymorphisms in cytokine genes define subpopulations of HIV-1 patients who experienced immune restoration diseases. Aids 2002;16(15):2043-7.
- Kroeger KM, Steer JH, Joyce DA, Abraham LJ. Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 2000;12(2):110-9.
- 11. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998;102(7):1369-76.
- 12. Stone SF, Price P, French MA. Immune restoration disease: a consequence of dysregulated immune responses after HAART. Curr HIV Res 2004;2(3):235-42.

- 13. Stone SF, Price P, Keane NM, Murray RJ, French MA. Levels of IL-6 and soluble IL-6 receptor are increased in HIV patients with a history of immune restoration disease after HAART. HIV Med 2002;3(1):21-7.
- 14. Morlese JF, Orkin CM, Abbas R, Burton C, Qazi NA, Nelson MR, et al. Plasma IL-6 as a marker of mycobacterial immune restoration disease in HIV-1 infection. Aids 2003;17(9):1411-3.
- 15. Aukrust P, Muller F, Lien E, Nordoy I, Liabakk NB, Kvale D, et al. Tumor necrosis factor (TNF) system levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy: persistent TNF activation is associated with virologic and immunologic treatment failure. J Infect Dis 1999;179(1):74-82.
- 16. Keane NM, Price P, Lee S, Stone SF, French MA. An evaluation of serum soluble CD30 levels and serum CD26 (DPPIV) enzyme activity as markers of type 2 and type 1 cytokines in HIV patients receiving highly active antiretroviral therapy. Clin Exp Immunol 2001;126(1):111-6.
- 17. Shelburne SA, 3rd, Hamill RJ, Rodriguez-Barradas MC, Greenberg SB, Atmar RL, Musher DW, et al. Immune reconstitution inflammatory syndrome: emergence of a unique syndrome during highly active antiretroviral therapy. Medicine (Baltimore) 2002;81(3):213-27.
- 18. Shelburne SA, 3rd, Hamill RJ. The immune reconstitution inflammatory syndrome. AIDS Rev 2003;5(2):67-79.
- 19. Shelburne SA, 3rd, Darcourt J, White AC, Jr., Greenberg SB, Hamill RJ, Atmar RL, et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40(7):1049-52.
- 20. Shelburne SA, Visnegarwala F, Darcourt J, Graviss EA, Giordano TP, White AC, Jr., et al. Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. Aids 2005;19(4):399-406.
- 21. Subsai K, Kanoksri S, Siwaporn C, Helen L, Kanokporn O, Wantana P. Neurological complications in AIDS patients receiving HAART: a 2-year retrospective study. Eur J Neurol 2006;13(3):233-9.
- 22. Navas E, Martin-Davila P, Moreno L, Pintado V, Casado JL, Fortun J, et al. Paradoxical reactions of tuberculosis in patients with the acquired

- immunodeficiency syndrome who are treated with highly active antiretroviral therapy. Arch Intern Med 2002;162(1):97-9.
- 23. Manosuthi W, Kiertiburanakul S, Phoorisri T, Sungkanuparph S. Immune reconstitution inflammatory syndrome of tuberculosis among HIV-infected patients receiving antituberculous and antiretroviral therapy. J Infect 2006;53(6):357-63.
- 24. de Boer MG, Kroon FP, Kauffmann RH, Vriesendorp R, Zwinderman K, van Dissel JT. Immune restoration disease in HIV-infected individuals receiving highly active antiretroviral therapy: clinical and immunological characteristics. Neth J Med 2003;61(12):408-12.
- 25. Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998;157(3 Pt 1):679-91.
- 26. Brazille P, Dereuddre-Bosquet N, Leport C, Clayette P, Boyer O, Vilde JL, et al. Decreases in plasma TNF-alpha level and IFN-gamma mRNA level in peripheral blood mononuclear cells (PBMC) and an increase in IL-2 mRNA level in PBMC are associated with effective highly active antiretroviral therapy in HIV-infected patients. Clin Exp Immunol 2003;131(2):304-11.
- 27. Breen EC, Salazar-Gonzalez JF, Shen LP, Kolberg JA, Urdea MS, Martinez-Maza O, et al. Circulating CD8 T cells show increased interferon-gamma mRNA expression in HIV infection. Cell Immunol 1997;178(1):91-8.
- 28. Fan J, Bass HZ, Fahey JL. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 1993;151(9):5031-40.
- 29. Giovannetti A, Pierdominici M, Mazzetta F, Salemi S, Marziali M, Kuonen D, et al. T cell responses to highly active antiretroviral therapy defined by chemokine receptors expression, cytokine production, T cell receptor repertoire and anti-HIV T-lymphocyte activity. Clin Exp Immunol 2001;124(1):21-31.
- 30. Westby M, Marriott JB, Guckian M, Cookson S, Hay P, Dalgleish AG. Abnormal intracellular IL-2 and interferon-gamma (IFN-gamma) production as HIV-1-assocated markers of immune dysfunction. Clin Exp Immunol 1998;111(2):257-63.
- 31. Lim A, D'Orsogna L, Price P, French MA. Imbalanced effector and regulatory cytokine responses may underlie mycobacterial immune restoration disease. AIDS Res Ther 2008;5:9.
- 32. Clerici M, Shearer GM. A TH1-->TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 1993;14(3):107-11.

33. Weissman D, Poli G, Fauci AS. Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of tumor necrosis factor alpha and interleukin 6 induction of virus. AIDS Res Hum Retroviruses 1994;10(10):1199-206.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- 1.1 **Pornprasert S**, Leechanachai P, Klinbuayaem V, Leenasirikul P, Sukunthamala K, Thunjai B, Phusua A, Saetang R, Sanguansermsri T. Effect of hematological alterations on thalassemia investigation in HIV-1 infected Thai patients receiving antiretroviral treatment. HIV Med 2008 (Inpress)
- 1.2 **Sakorn Pornprasert**, Pakhaporn Sonboon, Virat Klinbuayaem, Prattana Leenasirimakul, Channat Promping, Prasit Inta, Siraporn Ajhan, Pranee Leechanachai. Evolution of haematological parameters in HIV-1 infected patients with and without thalassaemia carriages during highly active antiretroviral therapy. **Manuscript was submitted to HIV Medicine** (On 17th June 2008)
- 1.3 **Sakorn Pornprasert**, Pranee Leechanachai, Virat Klinbuayaem, Prattana Leenasirimakul, Channat Promping, Prasit Inta, Siraporn Ajhan. Prospective analysis of incidence of immune restoration disease in HIV- infected patients receiving HAART following Thai guidelines for clinical management and treatment of HIV-infected adults (2004). **Manuscript is preparing and will be submitted to AIDS Patient Care and STDs**

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงวิชาการ :

- ได้นำตัวอย่างกรณีศึกษาผู้ป่วย micobacterial-IRD ซึ่งเป็นผู้ป่วยในโครงการไปใช้ สอนนักศึกษาระดับบัณฑิตศึกษา ในกระบวนวิชา Conferences in Hematology and Clinical Microscopy
- 2. ได้นำความรู้จากการศึกษาถึงผลกระทบของยาต้านไวรัสต่อการตรวจวินิจฉัย พาหะธาลัสซีเมีย ซึ่งเป็นข้อมูลที่ได้จากการตรวจผู้ป่วยที่เข้าร่วมโครงการ ไปบรรยาย เผยแพร่ให้บุคลากรการแพทย์รับทราบ ในงานประชุมเชิงปฏิบัติการเรื่อง "การให้ การศึกษาโรคธาลัสซีเมียในหญิงตั้งครรภ์ และการพัฒนาเครือข่ายห้องปฏิบัติการ ธาลัสซีเมีย" ในวันที่ 20 ธันวาคม 2550 ณ โรงแรมเชียงใหม่ฮิลล์

ภาคผนวก

ORIGINAL RESEARCH

Effect of haematological alterations on thalassaemia investigation in HIV-1 infected Thai patients receiving antiretroviral therapy

S Pornprasert, ¹ P Leechanachai, ¹ V Klinbuayaem, ² P Leenasirimakul, ³ K Sukunthamala, ⁴ B Thunjai, ¹ A Phusua, ⁵ R Saetung ⁵ and T Sanguansermsri ⁵

¹Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand, ²Sanpatong Hospital, Chiang Mai, Thailand, ³Nakornping Hospital, Chiang Mai, Thailand, ⁴Health-Promoting Hospital Chiang Mai, Thailand, and ⁵Division of Haematology, Department of Paediatrics, Faculty of Medicine, Chiang Mai University, Thailand

Objectives

To evaluate the effect of haematological alterations resulting from antiretroviral therapy (ART) on the diagnosis of thalassaemia carriers in HIV-1 infected Thai patients.

Methods

Complete blood cell counts, osmotic fragility (OF) test and haemoglobin (Hb)-A₂ values were measured in blood samples of 52 antiretroviral-treated and 14 untreated HIV-1 infected patients. Data were analysed according to thalassaemia type and ART.

Results

Sixteen patients carried at least one of the investigated thalassaemia types and most of them (87.5%) received ART. Their red cell indices [mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC) and red blood cell distribution width (RDW)], OF test and Hb-A₂ values were observed within the critical criteria of each thalassaemia type. Normocytic red cells were observed in α -thalassaemia and Hb-E trait. Among HIV-1 infected patients who are non-thalassaemia carriers, higher values of Hb-A₂, MCH, macrocytosis and lower red cell counts were observed in the treated group. Values of RDW, MCHC and OF test for treated and untreated groups were in the normal range. Five treated patients had Hb-A₂ values within the critical criteria of β -thalassaemia carriers but β -thalassaemia gene mutations were not observed by polymerase chain reaction analysis.

Conclusions

ART can alter many haematological figures. Therefore, diagnosis of thalassaemia should be evaluated carefully in combination with those parameters.

Keywords: antiretrovirals, haematological alterations, haemoglobin-A2, HIV-1, thalassaemia

Received: 14 February 2008, accepted 29 April 2008

Introduction

Normal adult haemoglobins are formed as tetramers consisting of two α chains and two non- α globin chains, which are predominantly haemoglobin (Hb)-A ($\alpha_2\beta_2$; 95–97%) and small amounts of Hb-A₂ ($\alpha_2\delta_2$; 1.5–3.5%) and Hb-F ($\alpha_2\gamma_2$; 1–2%) [1,2]. Thalassaemia is the most common

Correspondence: Dr Sakorn Pornprasert, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intawaroros Road, Chiang Mai 50200, Thailand. Tel: +66 53 945078; fax: +66 53 946042; e-mail: sakornmi001@yahoo.com

world-wide genetic disorder. Defects in the globin genes result in impaired globin chain synthesis leading to reduced normal Hb content of red cells and consequent red cell pathology. In Thailand, α -thalassaemia, β -thalassaemia and Hb-E are common. Incidence levels are 20–30% for α -thalassaemia and 3.5% for α -thalassaemia-1 with south-east Asian (SEA) type deletion, 3–9% for β -thalassaemia and up to 54% for Hb-E [3,4]. In order to provide a rapid method for identifying thalassaemia in a region with massive population and limited resources, the preliminary screening of thalassaemia was performed by using a modified one-tube osmotic fragility test (OF test)

HIV 617

Journal Name Manuscript No.

B Dispatch: 27.5.08 Journal: HIV CE: Blackwell Author Received: No. of pages: 7 PE: Basha

1

Q2

[5] followed by RBC indices [6-8]. Then, specific Hb was analysed by using high-performance liquid chromatography (HPLC) for β-thalassaemia and Hb-E [9] and Gappolymerase chain reaction (PCR) for α -thalassaemia-1 SEA type deletion [10,11].

Treatment with antiretroviral (ARV) drugs was found to decrease morbidity and mortality caused by AIDS dramatically and also lowered the rate of perinatal HIV-1 transmission. However, ARV drugs such as zidovudine (ZDV) have been reported in association with a transient macrocytic anaemia [12] and a lower concentration of erythrocytic adenosine triphosphate (ATP) [13]. ZDV has also been reported to inhibit β-globin gene expression in human erythroid progenitor cells [14]. Moreover, an elevation of Hb-A2 value was observed in HIV-infected patients receiving highly active ARV therapy (HAART) or ZDV [15-17]. Therefore, unawareness of the effect of ARV therapy (ART) on increased Hb-A2 values may lead to unnecessary investigations and anxiety over the presence of thalassaemia. The aims of this study are to determine whether ARV drugs used frequently in HIV-infected Thai patients induce haematological alterations and affect the thalassaemia investigation.

Patients and methods

Study population

The study was conducted at three hospitals: Health-Promoting Hospital Chiang Mai, Sanpatong and Nakornping Hospital, in northern Thailand. Sixty-six HIV-1 infected patients were enrolled to receive ART. Patients with active opportunistic infection by clinical features and laboratory diagnosis were cured before starting ART. All practices followed the Thai guidelines for the clinical management and treatment of HIV-infected adults (2004). Patients who were alcoholic and had liver disease were excluded. This study was approved by the Ethics Committee of the Faculty of Associated Medical Sciences, Chiang Mai University.

Haematological laboratory methods

The blood samples were collected in EDTA anti-coagulation tube (BD Vacutainer™, Franklin Lakes, NJ, USA). Haematological parameters including Hb, haematocrit, red and white blood cell counts, absolute neutrophil counts, absolute lymphocyte counts and red cell indices (mean corpuscular volume, MCV; mean corpuscular Hb, MCH; mean corpuscular Hb concentration, MCHC; red blood cell distribution width, RDW) were estimated with an automated blood counter (Sysmex KX-21; Sysmex Corporation,

Kobe, Japan). OF test was conducted using 0.45% glycerin saline solution (GSS), as described previously [5]. The value of Hb-A2 was determined by HPLC (Bio-Rad, Hercules, CA,

Molecular analysis of thalassaemia

Genomic DNA was extracted using Chelex method (Chelex 100 Resin: Bio-Rad) [18] and investigated for α thalassaemia-1 SEA type deletion and β-thalassaemia mutations. Identification of α -thalassaemia-1 SEA type deletion was performed in all HIV-1 infected patients by using gap-PCR [19,20]. β-Thalassaemia mutations were analysed only in patients who had Hb-A2 values that rose to the range of β-thalassaemia trait (3.5-7%) using multiplex amplification refractory mutation system (MARMS)-PCR at codons 41/42 (-TTCT), codon 17 (A>T), IVS1 nt1 (G > T) and codons 71/72 (+ A) [21,22].

Statistical analysis

Continuous measures are described by mean and/or median, standard deviation (SD) and ranges. Among HIV-1 infected patients who are non-thalassaemia carriers. haematological data of treated and untreated groups were compared by using unpaired t-test. The level of significance for all analyses was set at 0.05.

Results

Characteristics of the study population

Haematological parameters and thalassaemia status were studied in 66 HIV-1 infected patients (33 men and 33 women). Their characteristics are shown in Table 1. Fifty-two

Table 1 Characteristics of the study population

Characteristics	Untreated group (n = 14)	Treated group (n = 52)
Age (years)	28.69 ± 5.22 (20–37)	38.71 ± 7.92 (23–58)
Antiretroviral drugs:		
GPO-Vir (d4T + 3TC + NVP)	_	28
Truvada (TDF + FTC) + EFV or NVP	_	11
d4T + 3TC + EFV	_	6
TDF + EFV + 3TC or FTC	_	2
ZDV + ddI + EFV	_	1
ZDV + d4T + 3TC + NVP	_	4
Duration of ART (months)	_	$8.69 \pm 2.75 (2-12)$
CD4 cell count (cells/μL)	447.75 ± 177.38 (235–864)	101.25 ± 84.57 (1–356)

Data are shown as mean \pm standard deviation (range) or n. ART, antiretroviral therapy; ddl, didanosine; d4T, stavudine; EFV, efavirenz; Q4 FTC, xxxxx; NVP, nevirapine; TDF, xxxxx; 3TC, lamivudine; ZDV, zidovudine.

patients received ART with mean duration of treatment of 8.69 ± 2.75 months. Twenty-eight (53.8%) patients received GPO-Vir [a cocktail pill of stavudine (d4T), lamivudine (3TC) and nevirapine (NVP)] and 24 (46.2%) received different combinations of ARV drugs (Table 1). Among 14 untreated patients, four had never received ART and 10 had discontinued ART at least 2 months prior to enrolment.

Haematological parameters in thalassaemia carrier HIV-1 infected patients receiving ART

Among the 66 patients, 16 (24.2%) carried one of the investigated thalassaemia types including four (6.1%) with α -thalassaemia-1 SEA type, four (6.1%) with β -thalassaemia (three patients had mutations at codons 41/42 and another one had mutations at codon 17), seven (10.6%) with Hb-E trait and one (1.5%) with a combination of α thalassaemia and β -thalassaemia (codons 41/42 mutation). All except two patients with Hb-E trait received ART. The haematological parameters of patients who are thalassaemia carriers were classified into three groups according to thalassaemia types, as shown in Table 2 and Fig. 1. The ranges of Hb-A2 values among the three groups did not overlap each other. HIV-1 infected patients with βthalassaemia trait had a higher Hb-A2 value than patients with α -thalassaemia-1 SEA type, but this value was lower than that of patients with Hb-E trait (Fig. 1a). Moreover, Hb-A2 values of two patients with Hb-E trait who did not receive ART (26.9% and 28.5%, respectively) were similar to those of patients who received ART.

The mean value of OF test in patients with α - and β -thalassaemia carrier was lower than the cut-off (60%) (Fig. 1b). The patients with α - and β -thalassaemia trait also had mean values of MCH and MCHC that were lower than the normal range (27–31 pg and 320–360 g/L, respectively) (Fig. 1d and Table 2). Microcytosis, MCV less than 80 fL and a lower level of Hb were found only in patients with β -thalassaemia trait (Fig. 1c and Table 2). The mean RDW of patients with α - and β -thalassaemia trait was higher than the normal range (11.5–14.5%) (Fig. 1e), whereas the mean values of other investigated haematological parameters of the three groups were found to be in the normal range (Table 2).

Haematological alterations in non-thalassaemia carrier HIV-1 infected patients receiving ART

The remaining 50 patients who were non-thalassaemia carriers were divided into two groups: ARV-treated and untreated groups. The haematological parameters among the two groups are shown in Fig. 1 and Table 2. Mean Hb-A $_2$ value was significantly higher in the ARV-treated group (3.11% vs. 2.64%; P < 0.001) (Fig. 1a). Two of thirty-eight (5.3%) treated patients had Hb-A $_2$ values (3.7% and 3.8%) higher than the normal range (1.5–3.5%) and three (7.9%) treated patients had Hb-A $_2$ values raised to 3.5%. However, all of these patients showed negative results for β -thalassaemia MARMS-PCR analysis.

The mean values of OF test in the ARV-treated and untreated groups were not significantly different (84.66%)

Table 2 Haematological parameters of HIV-1 infected patients who are thalassaemia carriers and non-thalassaemia carriers

	Thalassaemia carriers			Non-thalassaemia carriers		
Haematological parameters	α -thal-1 SEA type $(n=4)$	β-thal trait* (n = 5)	Hb-E trait (<i>n</i> = 7)	Untreated group (n = 12)	Treated group (n = 38)	<i>P</i> -value [†]
Haemoglobin (g/L)	121 ± 4.9 (115–127)	112.6 ± 20.4 (99–112)	125 ± 19.2 (107–148)	126.3 ± 9.8 (111–141)	131.4 ± 28.7 (81–163)	0.25
Haematocrit (L/L)	0.39 ± 0.01 (0.38-0.40)	0.37 ± 0.05 (0.34-0.46)	0.37 ± 0.05 (0.32-0.45)	0.38 ± 0.02 (0.36-0.43)	0.39 ± 0.08 (0.24-0.46)	0.53
MCHC (g/L)	306.5 ± 6.4 (300–315)	301.2 ± 10.6 (295–320)	334.3 ± 31.5 (309–403)	328.8 ± 15.1 (293–351)	336.3 ± 56.5 (304–374)	0.16
WBC (× 10 ⁹ /L)	6.03 ± 1.64 (4.2–8.0)	5.80 ± 0.75 (4.6-6.4)	5.73 ± 0.84 (4.2-6.7)	6.43 ± 1.50 (3.9-8.2)	6.32 ± 2.58 (2.9–12.6)	0.86
Neutrophils (× $10\frac{9}{4}$ L)	2.58 ± 0.76 (1.7–3.5)	2.88 ± 1.48 (1.9- 3.8)	2.94 ± 1.55 (1.8–3.7)	3.23 ± 1.51 (1.9-4.5)	2.53 ± 1.49 (0.9–8.6)	0.07
Lymphocytes (\times 10 $^{9}/_{L}$)	1.88 ± 0.68 (0.9–1.9)	1.82 \pm 0.73 (1.3–3.1)	1.59 ± 0.50 (1.2–2.3)	2.26 ± 0.64 (1.2–3.3)	2.09 ± 0.83 (0.8-4.7)	0.46
Platelets (× $10\frac{9}{\Lambda}$ /L)	230 ± 76 (185–341)	325 ± 189 (171–643)	259 ± 73 (147–40.3)	192.9 ± 44.3 (124–279)	210.5 ± 79.5 (33–345)	0.32

Data are shown as mean \pm standard deviation (range). Normal ranges for the measurements elaborated in the table are as follows: haemoglobin 120–180 g/L; haematocrit 0.37–0.52 L/L; MCHC 320–360 g/L; WBC 4.8–10.8 \times 10 $^{9}_{\Lambda}$ cells/L; neutrophils 2.3–7.6 \times 10 $^{9}_{\Lambda}$ cells/L; lymphocytes 0.8–4.0 \times 10 $^{9}_{\Lambda}$ cells/L; platelets 150–450 \times 10 $^{9}_{\Lambda}$ L

MCHC, mean corpuscular haemoglobin concentration; SEA, south-east Asian; WBC, xxxxx,

Q6

Included an HIV-1 infected carrier with a combination of α - and β -thalassaemia.

 $^{^\}dagger P$ -value of the comparison among non-thalassaemia carriers according to antiretroviral therapy.

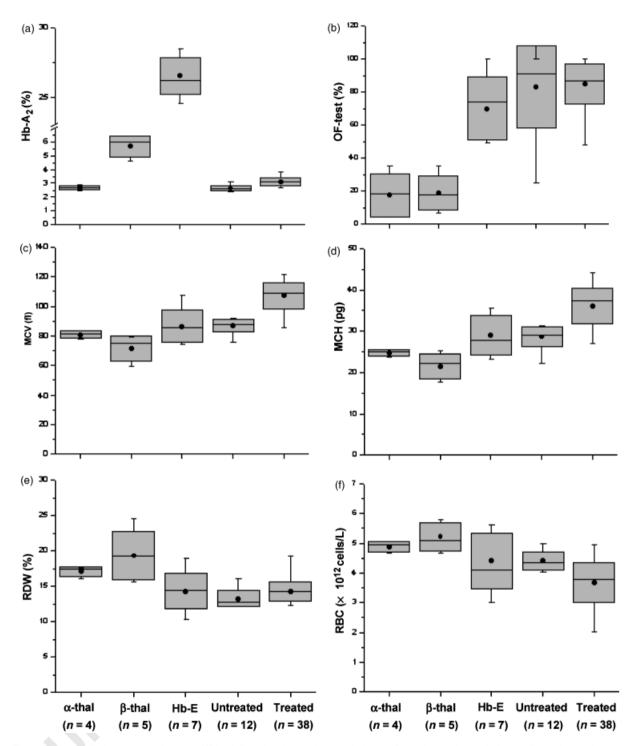


Fig. 1 Hematological parameters between HIV-1 infected patients who are thalassaemia carriers and non-thalassaemia carriers and among non-thalassaemia carriers treated and untreated with antiretroviral drugs. Data are presented as median (horizontal line), mean (dot), standard deviation (box), and 1st and 99th percentile (whisker lines).

vs. 82.93%; P = 0.82) and was higher than the cut-off value (60%) (Fig. 1b). Macrocytosis – MCV higher than 100 fL – was observed only in the ARV-treated group (107.26 vs.

87.1 fL; P<0.001) (Fig. 1c). Moreover, the mean MCH in the treated group was significantly higher than that in the untreated group (36.13 vs. 28.70 pg; P<0.001) and also

Q7

higher than the normal range (27–31 pg) (Fig. 1d). Even though the mean RDW in the treated group was higher than that in the untreated group (14.31% vs. 13.23%; P=0.01), it was in the normal range (11.5–14.5%) (Fig. 1e). Furthermore, a lower mean red cell count was observed in the group of ARV-treated patients (3.68 × 10^{12} vs. 4.41 × 10^{12} cells/L; P<0.001) and was also less than the normal range (4.2–6.1 × 10^{12} cells/L) (Fig. 1f). The mean values of other investigated haematological parameters were not significantly different between ARV-treated and untreated groups and were in the normal range (Table 2).

Discussion

Q3

This study showed that ART including multiple drugs or a cocktail pill (GPO-Vir) caused a haematological alteration by increasing the value of Hb-A₂, MCV, MCH and RDW. An increase of Hb-A2 value is an important diagnostic criterion for β-thalassaemia trait. Moreover, nearly all βthalassaemia traits have a higher value of RDW [23]. Therefore, the increased value of Hb-A2 and RDW may lead to unnecessary further investigation and anxiety in getting β -thalassaemia [15–17]. In the present study, a high value of Hb-A2 was observed in the group of ART patients. Two of thirty-eight (5.3%) treated patients had Hb-A2 values higher (3.7% and 3.8%, respectively) than the normal range (1.5-3.5%). The patient with Hb-A₂ value 3.7% had OF test of 95%, MCV of 104 fL, MCH of 33.7 pg and RDW of 13.5%. These haematological parameters were different from those observed in patients with β-thalassaemia trait. Another patient with Hb-A2 value 3.8% had OF test of 45% and RDW of 16.5%; these values were similar to those of βthalassaemia trait. However, he had MCV of 96% and MCH of 30 pg, which were higher than the β-thalassaemia diagnostic criteria. Moreover, both patients showed negative results for MARMS-PCR, the analysis for β-thalassaemia mutations at codons 41/42 (-TTCT), codon 17 (A>T), IVS1 nt1 (G > T) and codons 71/72 (+ A). These mutations are the most frequently found (96%) in β-thalassaemia in the Thai population [24]. Our results are consistent with previous studies, which showed that the elevation of Hb-A₂ and macrocytosis were associated with ART while no evidence of β-thalassaemia was observed by genetic analysis [15,16].

ART did not affect the OF test. Patients who were non-thalassaemia carriers and received ART had a per cent haemolysis higher than the cut-off values (60%). The treated patients who were carriers with α -thalassaemia-1 SEA type and β -thalassaemia had a per cent haemolysis less than the cut-off values and it was similar to those

usually observed in the α -thalassaemia-1 SEA type and β -thalassaemia carrier [5].

The thalassaemia carriers with α -thalassaemia, β -thalassaemia and Hb-E trait usually have values of MCV and MCH that are below the normal range (80-100 fL and 27-31 pg, respectively) [6-8,25,26]. ART has been reported to cause a rise in MCV and MCH [27,28]. The present study showed that the normal value of MCV was observed in HIV-1 infected patients who are carriers with α-thalassaemia-1 SEA type and Hb-E trait. Moreover, the normal value of MCH was observed in patients who were carriers with Hb-E trait. These results suggest that ART could raise the size of microerythrocytes and lower MCH values of thalassaemia carriers to normal values. However, a lower value of MCV and MCH was still observed in ART patients who were carriers with β -thalassaemia. Alcoholism, folic acid or vitamin B12 deficiency, liver disease, concomitant drug use other than ART and hepatitis co-infection can be the cause of macrocytosis. However, in the present study patients with alcoholism and patients with liver disease were excluded. Patients with hepatitis co-infection or with active opportunistic infection by clinical features and laboratory diagnosis were cured before starting ART by following Thai guidelines for the clinical management and treatment of HIV-infected adults (2004). Moreover, the macrocytic anaemia at baseline was not found in all enrolled patients. Therefore, the increased value of MCV was the result of ART. An increase of MCV has been reported in association with the use of nucleoside reverse transcriptase inhibitors (NRTIs) such as ZDV, d4T and 3TC [27-31]. In our study, we found that HIV-1 infected non-thalassaemia carriers receiving d4T plus 3TC had mean values of MCV that were significantly higher than those of patients receiving other regimens without d4T and 3TC [Truvada + efavirenz (EFV) or NVP] (110.55 vs. 95.09 fL; P < 0.001). It was confirmed that an ART regimen containing d4T and 3TC is mainly associated with an increase in MCV. Moreover, the use of a regimen containing a combination of ZDV, d4T and 3TC might have a synergistic effect in the induction of macrocytosis. Therefore, HIV-1 infected thalassaemia carriers who are treated with ZDV, d4T and 3TC may have a normal value of MCV.

ART has been reported as the cause of haematological complications. Cytopenia – particularly anaemia and leukopaenia – are more common and result from both bone marrow failure and peripheral destruction [32]. In our study, a lower mean value of red blood cell counts was found in ARV-treated non-thalassaemia carriers only, while mean value of red blood cell counts of ARV-treated patients who are thalassaemia carriers was found to be in the normal range. These results could be explained by the

compensatory erythropoietic response in thalassaemia carriers.

In conclusion, our results indicate that ART increases the Hb- A_2 value and alters some haematological parameters that might affect the diagnosis of thalassaemia carriers, especially the investigation of β -thalassaemia trait. Therefore, without molecular testing, in order to provide accurate diagnosis of thalassaemia in HIV-1 infected patients receiving ART all haematological parameters – including OF test, MCV, MCH, MCHC, RDW and the cut-off value of Hb- A_2 at 4% – should be considered carefully together.

Acknowledgements

The authors thank all the HIV-1 infected patients who participated in this study. We gratefully acknowledge the help and assistance of technicians of the Health-Promoting Hospital Chiang Mai, Sanpatong and Nakornping Hospital, Chiang Mai, Thailand, as well as Gerald W. Rock for his help in editing this manuscript.

This study was supported by grants from the Thailand Research Fund, the Commission on Higher Education and the Department of Health Ministry of Public Health, Thailand.

References

- 1 Ingram VM, Stretton AO. Human haemoglobin A2: chemistry, genetics and evolution. *Nature* 1961; 190: 1079–1084.
- 2 Kunkel HG, Wallenius G. New hemoglobin in normal adult blood. *Science* 1955; 122: 288.
- 3 Fucharoen S, Winichagoon P, Thonglairuam V. Betathalassemia associated with alpha-thalassemia in Thailand. *Hemoglobin* 1988; 12: 581–592.
- 4 Tanphaichitr VS, Mahasandana C, Suvatte V, Yodthong S, Pung-amritt P, Seeloem J. Prevalence of hemoglobin E, alphathalassemia and glucose-6-phosphate dehydrogenase deficiency in 1,000 cord bloods studied in Bangkok. *Southeast Asian J Trop Med Public Health* 1995; 26 (Suppl. 1): 271–274.
- 5 Sirichotiyakul S, Tantipalakorn C, Sanguansermsri T, Wanapirak C, Tongsong T. Erythrocyte osmotic fragility test for screening of alpha-thalassemia-1 and beta-thalassemia trait in pregnancy. *Int J Gynaecol Obstet* 2004; 86: 347–350.
- 6 Nathalang O, Nillakupt K, Arnutti P, Boonsiri T, Panichkul S, Areekul W. Screening for thalassemia and hemoglobinopathy in a rural area of Thailand: a preliminary study. *J Med Assoc Thai* 2005; 88 (Suppl. 3): 35–42.
- 7 Tatsumi N, Tsuda I, Funahara Y, Bunyaratvej A, Fucharoen S. Automatic measurement of hemoglobin F in blood obtained from patients with hemoglobin E/E and beta-thalassemia/

- hemoglobin/E. Southeast Asian J Trop Med Public Health 1992; 23 (Suppl. 2): 91–94.
- 8 Tatsumi N, Tsuda I, Funahara Y, Bunyaratvej A, Pootrakul P, Fucharoen S. Analysis of hematological data of thalassemia cases in Thailand. *Nippon Ketsueki Gakkai Zasshi* 1989; 52: 792–795.
- 9 Sanguansermsri T, Thanarattanakorn P, Steger HF et al. Prenatal diagnosis of beta-thalassemia major by highperformance liquid chromatography analysis of hemoglobins in fetal blood samples. Hemoglobin 2001; 25: 19–27.
- 10 Panyasai S, Sringam P, Fucharoen G, Sanchaisuriya K, Fucharoen S. A simplified screening for alpha-thalassemia 1 (SEA type) using a combination of a modified osmotic fragility test and a direct PCR on whole blood cell lysates. *Acta Haematol* 2002; 108: 74–78.
- 11 Sanguansermsri T, Phumyu N, Chomchuen S, Steger HF.

 Screening for alpha-thalassemia-1 heterozygotes in expecting couples by the combination of a simple erythrocyte osmotic fragility test and a PCR-based method. *Commun Genet* 1999; 2: 26–29.
- 12 Moyle G, Sawyer W, Law M, Amin J, Hill A. Changes in hematologic parameters and efficacy of thymidine analoguebased, highly active antiretroviral therapy: a meta-analysis of six prospective, randomized, comparative studies. *Clin Ther* 2004; 26: 92–97.
- 13 Casoli C, Magnani G, Schianchi C, Barchi E, Bertazzoni U. Enhancement of erythrocytic adenosine deaminase following treatment of AIDS-related complex/AIDS patients with zidovudine. *AIDS* 1990; 4: 799–802.
- 14 Spiga MG, Weidner DA, Trentesaux C, LeBoeuf RD, Sommadossi JP. Inhibition of beta-globin gene expression by 3'-azido-3'-deoxythymidine in human erythroid progenitor cells. *Antiviral Res* 1999; 44: 167–177.
- 15 Howard J, Henthorn JS, Murphy S, Davies SC. Implications of increased haemoglobin A2 values in HIV positive women in the antenatal clinic. *J Clin Pathol* 2005; 58: 556–558.
- 16 Routy JP, Monte M, Beaulieu R, Toma E, St-Pierre L, Dumont M. Increase of hemoglobin A2 in human immunodeficiency virus-1-infected patients treated with zidovudine. Am J Hematol 1993; 43: 86–90.
- 17 Wilkinson MJ, Bain BJ, Phelan L, Benzie A. Increased haemoglobin A2 percentage in HIV infection: disease or treatment? *AIDS* 2007; 21: 1207–1208.
- 18 Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. *Biotechniques* 1991; 10: 506–513.
- 19 Chanprapaph P, Tongsong T, Wanapirak C, Sirichotiyakul S, Sanguansermsri T. Prenatal diagnosis of alpha-thalassemia-1 (SEA type) by chorionic villus sampling. *J Med Assoc Thai* 2002; 85: 1049–1053.
- 20 Winichagoon P, Fucharoen S, Kanokpongsakdi S, Fukumaki Y. Detection of alpha-thalassemia-1 (Southeast Asian type) and

- its application for prenatal diagnosis. *Clin Genet* 1995; **47**: 318–320
- 21 Newton CR, Graham A, Heptinstall LE *et al.* Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). *Nucleic Acids Res* 1989; 17: 2503–2516.
- 22 Old J, Traeger-Synodinos J, Galanello R, Petrou M, Angastiniotis M. Prevention of Thalassemias and Other Haemoglobin Disorders. Volume 2: Laboratory Methods, (1st edn). Nicosia: Team Up Creations, 2005.
- 23 Aslan D, Gumruk F, Gurgey A, Altay C. Importance of RDW value in differential diagnosis of hypochrome anemias. *Am J Hematol* 2002; **69**: 31–33.
- 24 Sirichotiyakul S, Saetung R, Sanguansermsri T. Analysis of beta-thalassemia mutations in northern Thailand using an automated fluorescence DNA sequencing technique. *Hemoglobin* 2003; 27: 89–95.
- 25 Bencaiova G, Burkhardt T, Krafft A, Zimmermann R. Screening for beta-thalassaemia trait in anaemic pregnant women. *Gynecol Obstet Invest* 2006; 62: 20–27.
- 26 Rathod DA, Kaur A, Patel V *et al.* Usefulness of cell counterbased parameters and formulas in detection of beta-

- thalassemia trait in areas of high prevalence. *Am J Clin Pathol* 2007; 128: 585–589.
- Eyer-Silva WA, Arabe J, Pinto JF, Morais-De-Sa CA.
 Macrocytosis in patients on stavudine. *Scand J Infect Dis* 2001;
 33: 239–240.
- 28 Steele RH, Keogh GL, Quin J, Fernando SL, Stojkova V. Mean cell volume (MCV) changes in HIV-positive patients taking nucleoside reverse transcriptase inhibitors (NRTIs): a surrogate marker for adherence. *Int J STD AIDS* 2002; 13: 748–754.
- 29 Geene D, Sudre P, Anwar D, Goehring C, Saaidia A, Hirschel B. Causes of macrocytosis in HIV-infected patients not treated with zidovudine. Swiss HIV Cohort Study. *J Infect* 2000; 40: 160–163.
- 30 Khawcharoenporn T, Shikuma CM, Williams AE, Chow DC. Lamivudine-associated macrocytosis in HIV-infected patients. *Int J STD AIDS* 2007; 18: 39–40.
- 31 Romanelli F, Empey K, Pomeroy C. Macrocytosis as an indicator of medication (zidovudine) adherence in patients with HIV infection. *AIDS Patient Care STDS* 2002; 16: 405–411.
- 32 Sloand E. Hematologic complications of HIV infection. *AIDS Rev* 2005: 7: 187–196.

Author Query Form

Journal	HIV
Article	617

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Query No.	Description	Author Response
Q1	please give RBC in full	
Q2	please give EDTA in full	<u></u>
Q3	Journal style is for values to be given in cells/ μ L. Please convert all cells/L values to cells/ μ L.	
Q4	Please add definitions of TDF and FTC to the table footnote.	
Q5	Journal style is for values to be given in cells/μL. Please convert all cells/L values to cells/μL.	=
Q6	Please add a definition of WBC to the table footnote.	
Q7	AU: Please provide good print quality images for figure 1.	

MARKED PROOF

Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

Instruction to printer	Textual mark	Marginal mark
Leave unchanged Insert in text the matter indicated in the margin	··· under matter to remain k	New matter followed by k or k
Delete	/ through single character, rule or underline or through all characters to be deleted	6) or 6/20
Substitute character or substitute part of one or more word(s)	/ through letter or through characters	new character / or new characters /
Change to italics	— under matter to be changed	
Change to capitals	under matter to be changed	=
Change to small capitals	= under matter to be changed	_
Change to bold type	under matter to be changed o	~
Change to bold italic	under matter to be changed	***
Change to lower case	Encircle matter to be changed	≢
Change italic to upright type	(As above)	4
Change bold to non-bold type	(As above)	
Insert 'superior' character	/ through character or k where required	y or \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Insert 'inferior' character	(As above)	over character e.g. $\frac{1}{2}$
Insert full stop	(As above)	·
Insert comma	(As above)	,
Insert single quotation marks	(As above)	ý or ý and/or ý or ý
Insert double quotation marks	(As above)	y or y and/or y or y
Insert hyphen	(As above)	H
Start new paragraph	_	
No new paragraph	ے	رے
Transpose	ப	ш
Close up	linking characters	
Insert or substitute space between characters or words	/ through character or k where required	Y
Reduce space between characters or words	between characters or words affected	个

Evolution of haematological parameters in HIV-1 infected patients with and without thalassaemia carriages during highly active antiretroviral therapy

Journal:	HIV Medicine			
Manuscript ID:	HIV-OA-06-2008-0419			
Manuscript Type:	Original Article			
Date Submitted by the Author:	17-Jun-2008			
Complete List of Authors:	Pornprasert, Sakorn; Chiang-Mai University, Medical Technology Sonboon, Pakhaporn; Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai Klinbuayaem, Virat; Sanpatong Hospital Leenasirimakul, Prattana; Nakornping Hospital Promping, Channat; Nakornping Hospital Inta, Prasit; Sanpatong Hospital Ajhan, Siraporn; Sanpatong Hospital Leechanachai, Pranee; Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai			
Keywords:	Anaemia, Haematological parameters, Highly active antiretroviral therapy, HIV-1, Thalassaemia			

Title page

Title: Evolution of haematological parameters in HIV-1 infected patients with and without thalassaemia carriages during highly active antiretroviral therapy

Authors: Sakorn Pornprasert¹, Pakhaporn Sonboon¹, Virat Klinbuayaem², Prattana Leenasirimakul³, Channat Promping³, Prasit Inta², Siraporn Ajhan², Pranee Leechanachai¹

¹Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand

²Sanpatong Hospital, Chiang Mai, Thailand

³Nakornping Hospital, Chiang Mai, Thailand

Short Title: Haematological parameters evolution during HAART

Corresponding author:

Dr. Sakorn Pornprasert

Department of Medical Technology, Faculty of Associated Medical Sciences,

Chiang Mai University, 110 Intawaroros Road, Chiang Mai, Thailand, 50200

Tel: 66-53-945078

Fax: 66-53-946042

E-mail: sakornmi001@yahoo.com

Abstract

Objectives: To assess the effects of highly active antiretroviral therapy (HAART) on haematological parameters in HIV-1-infected patients with and without thalassaemia carriages.

Methods: Prospective study of HIV-1-infected patients receiving different HAART regiments. Haematological parameters were measured at baseline and at month 6 of HAART. β -thalassaemia and haemoglobin-E trait were diagnosed using a high performance liquid chromatography (HPLC). PCR-genotyping techniques were used to investigate α-thalassaemia-1 Southeast Asian type deletion and β-thalassaemia mutation. The changing of haematological parameters at baseline and at month 6 was compared according to thalassaemia carriage and HAART regimen.

Results: After HAART initiation, increased values of CD4 counts, haemoglobin, haematocrit, mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) were observed in both groups of patients. Moreover, independent of haemoglobin abnormalities, patients who received HAART regimens containing at least one of zidovudine, stavudine and lamivudine had significantly higher absolute increased mean values of haemoglobin, haematocrit, MCV, MCH and absolute lymphocyte counts than those who received Truvada plus efavirenz or nevirapine.

Conclusion: HAART regiments containing at least one of zidovudine, stavudine and lamivudine did not induce worsening anaemia. They increased the value of haemoglobin, which benefits in the treatment of anaemia in HIV-1-infected patients with and without thalassaemia carriages.

Key words: Anaemia; Haematological parameters; Highly active antiretroviral therapy; HIV-1; Thalassaemia

Introduction

Highly active antiretroviral therapy (HAART) dramatically reduces the morbidity and mortality of HIV-1 infected patients in developed and developing countries, including Thailand. Concerning first-line HAART in resource-limited countries, the World Health organization (WHO) guideline recommend a combination of two nucleoside reverse transcriptase inhibitors (NRTI) and one nonnucleoside reverse transcriptase inhibitor (NNRTI). However, different regimens of triple therapy have been shown to lead to adverse events. For examples, HIV-1 infected patients treated with zidovudine (ZDV)-containing HAART had greater risk in developing new anaemia or worsening anaemia than patients treated with non-ZDV-containing HAART [1-3]. Even though stavudine (d4T)- and lamivudine (3TC)-containing HAART rarely result in anaemia, they induce a metabolic defect in developing red blood cell (RBC) precursor, which can be identified through the presence of an elevated mean corpuscular volume (MCV) [4-6].

Anaemia, neutropenia, lymphopenia and thrombocytopenia in HIV-1 infected patients are all associated with not only antiretroviral regimens but also opportunistic infections, genders, ethnographies and genetic disorders [7-9]. Previous studies showed dramatically decreased haemoglobin (Hb) and elevated MCV of RBC in two patients with α - or β -thalassaemia and treated with ZDV. These observations make clinicians reconsider about potential increasing toxicity of ZDV in patients with haemoglobin abnormalities [10, 11].

Thalassaemia is one of the most common inherited disorders of haemoglobin throughout all tropical and subtropical regions of the world. In Thailand, there are three types of thalassaemia carriers, α -thalassaemia-1 Souteast Asian (SEA) type, β -thalassaemia and Hb-E and all are associated with severe anaemia. Their incidences are 3.5% for α -thalassaemia-1 SEA type deletion, 3-9% for β -thalassaemia, and up to 54% for Hb-E [12, 13]. These incidences were similarly observed in HIV-1 infected patients [14]. Whether HAART

regimens commonly used in Thai HIV-1 infected patients induce worsening anaemia and other haematologic toxicities in patients with thalassaemia carriage is unclear. We report here a comparison of the haematological evolution in HIV-1 infected Thai patients exposed to HAART, according to their haemoglobin genotype.

Materials and methods

Study population

The study was conducted at 2 hospitals in Chiang Mai province located in the Northern part of Thailand, Sanpatong and Nakornping Hospital. Fifty-eight HIV-1 infected patients were enrolled to receive HAART during September 2006 to December 2007. Inclusion criteria were as follows: (1) HIV-1 infected patients >15 years of age; (2) no previous treatment with antiretroviral drugs; (3) no active opportunistic infections at the time of HAART initiation; (4) patients with active opportunistic infections by clinical features and laboratory diagnosis were treated before starting HAART by following Thai guidelines for clinical management and treatment of HIV infected adults (2004). An iron supplementation was provided for all anaemia patients who had haemoglobin levels of less than 100 g/L. Any patients who have the condition of alcoholism, liver disease, hypothyroidism and history of IV drug use were excluded. All HIV-1 infected patients participating in this study provided written informed consent before enrolment. This study was approved by the Ethics Committee of the Faculty of Associated Medical Sciences, Chiang Mai University.

Haematological laboratory

The blood samples were collected in ethylenediamine tetraacetic acid anticoagulation tube (BD VacutainerTM, Franklin Lakes, NJ, USA) at baseline and at month 6 of HAART. Haematological parameters including haemoglobin, haematocrit, red- and white- blood cell

counts, absolute neutrophil counts, absolute lymphocyte counts and red cell indices (the mean corpuscular volume; MCV, the mean corpuscular haemoglobin; MCH, the mean corpuscular haemoglobin concentration; MCHC, and the red blood cell distribution width; RDW) were estimated with an automated blood counter (Sysmex KX-21, Sysmex Corporation, Kobe, Japan).

Thalassaemia investigation

Three types of thalassaemia were investigated: α -thalassaemia-1 SEA type deletion, β -thalassaemia and Hb-E trait. Hb-A₂ value was used for diagnosis of β -thalassaemia and Hb-E trait and it was measured by using a high performance liquid chromatography (HPLC). Patients with Hb-A₂ values from 4 to 9.9% and 10 to 30% are diagnosed as having β -thalassaemia and Hb-E trait, respectively. Moreover, the β -thalassaemia was further investigated for mutations at codons 41/42 (-TTCT), codon 17 (A>T), IVS1 nt1 (G>T) and codons 71/72 (+A) using multiplex amplification refractory mutation system (MARMS)-PCR, described previously [15, 16]. Identification of α -thalassaemia-1 SEA type deletion was performed using Gap-PCR, as previously described [17-19].

Statistical analysis

Haematological parameters at baseline and at month 6 were compared between HIV-1 infected patients with at least one type of thalassaemia and patients without thalassaemia carriage. The observed mean values were compared using Mann-Whitney U. Furthermore, the evolutions of haematological parameters during HAART prophylaxis were compared within the same patients using Paired-Sample T-Test. All analyses were performed with SPSS for Windows (SPSS version 11.5, Chicago, IL). A *p* value less than 0.05 was considered statistically significant.

Results

Participants and baseline characteristics

Among the 58 patients, 34 males and 24 females, included in the analysis, 13 (22.4%) carried one of the investigated thalassaemia type including 4 (6.9%) α -thalassaemia-1 SEA type, 2 (3.5%) β -thalassaemia with codons 41/42 and codon 17 mutation, 7 (12.1%) Hb-E trait. The baseline characteristics of patients with and without thalassaemia are shown in Table 1. They were not significantly different, mean (standard deviation) ages were 41.0 (5.93) and 38.6 (7.81) years, respectively (p = 0.24), mean CD4 cell counts were 118 (91.65) and 80 (74.66) cells/ μ L (p = 0.19). HAART regiments used in both groups are shown in Table 1.

(Table 1 should be inserted at this point)

Patients with thalassaemia had a significantly lower MCV and MCH than patients without thalassaemia (Figure 1 D and E). Moreover, their RDW were observed higher than the cut-off value (14.5%) (Table 2). Except the red blood cell counts of patients without thalassaemia, mean values of other investigated haematological parameters of the two groups were found in the normal range (Table 2).

(Table 2 should be inserted at this point)

Changes in haematological parameters from baseline to the end of first six months after HAART initiation

After HAART initiation, the changes in mean values of CD4 cell counts, haemoglobin, haematocrit, MCV and MCH were increased in both groups of HIV-1 infected patients with and without thalassaemia carriage (Figure 1). Moreover, the mean values of haemoglobin,

MCV and MCH of patients without thalassaemia were significantly higher than those of patients with thalassaemia (Figure 1 B, D and E). Even though, the red blood cell counts and platelet counts were decreased in both groups, the significant differences were observed in platelets counts only (Table 2). Moreover, the absolute lymphocyte counts were significantly increased only in the group of patients without thalassaemia carriages (Table 2).

(Figure 1 should be inserted at this point)

Changes in haematological parameters were associated with HAART regimens

Among the two groups of patients with and without thalassaemia, patients who received HAART regimens containing at least one of ZDV, stavudine (d4T) and lamivudine (3TC) had significantly higher absolute increased mean values of haemoglobin, haematocrit, MCV, MCH (Figure 2 A-D, respectively) and absolute lymphocyte counts (Table 3) than patients who received HAART regimens without ZDV, d4T and/or 3TC [Truvada plus efavirenz (EFV) or nevirapine (NVP)]. The absolute mean values of other haematological evolutions were not significantly different between patients treated with ZDV, d4T, and/or 3TC-containing HAART regimens and with Truvada plus EFV or NVP (Table 3).

(Figure 2 and Table 3 should be inserted at this point)

Discussion

This study showed that HAART prophylaxis induced haematological changes in HIV-1 infected patients. However, these changes did not cause worsening anaemia and other haematologic toxicities in patients with thalassaemia carriages. An increased haemoglobin and haematocrit at the end of month 6 after HAART initiation were found in both groups of

patients with and without thalassaemia carriages. Moreover, when compared to the HAART regimens without ZDV, d4T, and 3TC (Truvada plus EFV or NVP), the regimens containing of ZDV, d4T, and/or 3TC had a higher effect on the increased values of haemoglobin, haematocrit, MCV and MCH in the two groups of patients. On the contrary, previous studies showed that a poor tolerance of ZDV treatment in HIV-1 infected patient with heterozygous α - and β -thalassaemia has been reported by observing the rapid decrease of haemoglobin and increase of MCV [10, 11]. Curkendall et al. [1] reported that patients receiving ZDVcontaining HAART were at greater risk of developing new anaemia or worsening anaemia than patients with non-ZDV-containing HAART and the incidence of anaemia in both groups was significantly higher during the first 6 months. Furthermore, HAART regimens containing ZDV led to net decrease in the haemoglobin level whereas d4T based regimens led to a net increase [1]. In present study, most patients with and without thalassaemia (62 and 69%, respectively) received HAART regimens containing of d4T. Therefore, the increased haemoglobin might result from d4T. However, the increase of haemoglobin was also observed in the patients receiving ZDV and/or 3TC containing HAART regimens. Since there was a limited number of patient receiving ZDV and 3TC, we did not compare the evolution of the haematological parameters for each regimen. Increased haemoglobin in these patients might have resulted from iron supplementation however, HAART itself had been reported by several studies in prevention of severe anaemia [20-23]. Moreover, Moore et al. [20] demonstrated that an increase of haemoglobin level in patients who received ZDV-containing HAART regiment was not significantly different from those who were treated with alternate HAART regiments without ZDV.

Since both group of patients with and without thalassaemia who were treated with HAART regimens containing of ZDV, d4T, and/or 3TC had higher values of MCV and MCH than those who were treated with Truvada plus EFV or NVP, it was confirmed that HAART

regimens containing ZDV, d4T and/or 3TC are mainly associated with an increase in MCV and MCH [4-6, 24, 25]. Even though, the increased value of MCV and MCH was not associated with the severe anaemia, these might affect the thalassaemia screening. Therefore, unawareness of the effect of HAART regiments on increased MCV and MCH values may lead to misinterpretation of thalassaemia diagnosis.

Lower platelet counts were frequently observed in HIV-1 infected patients receiving antiretroviral therapy [26]. In the present study, platelet counts were decreased in both groups of patients with and without thalassaemia carriages receiving HAART regimens containing with and without ZDV, d4T, and/or 3TC. However, the thrombocytopenia was not observed. Moreover, the neutropenia and lymphopenia were not found. This is consistent with Nacoulma *et al.* [27] finding that HAART regimens did not cause neutropenia. Furthermore, HAART regimens were found to be effective in reducing of haematological anomalies [27]. The thrombocytopenia, neutropenia and lymphopenia in HIV-1 infected patients might result from many effects including the antiretroviral regimens, opportunistic infections, genders and ethnographies [7-9].

In summary, HAART affected neither worsening anaemia nor other haematologic toxicities in patients with thalassaemia carriages. On the other hand, the effective use of HAART is associated with improvement in haemoglobin and haematocrit levels in both groups of patients with and without thalassaemia carriages. Moreover, these improvement including increased values of MCV and MCH predominantly occurred in the use of HAART regimens containing AZD, d4T and/or 3TC. These results are reassuring for regions of high prevalence of both thalassaemia and HIV-1, especially in Southeast Asia. Although HAART prophylaxis can be provided to HIV-1 infected patents regardless of their haemoglobin type, using appropriate HAART regimens and monitoring haemoglobin levels during HAART

prophylaxis remains important to ensure their safety. Moreover, consideration in the use of different HAART regimens might rule out the misinterpretation of thalassaemia screening.

Acknowledgements

The authors thank all HIV-1 infected patients who participated in this study. We gratefully appreciate the help and assistance of technicians of Sanpatong and Nakornping Hospital, Chiang Mai, Thailand, and Gerald W. Rock for editing this manuscript.

Chiang Mai, Thatland, and Gerare

This study was supported by grants from the Thailand Research Fund and the Commission on Higher Education.

References

- Curkendall SM, Richardson JT, Emons MF, Fisher AE, Everhard F. Incidence of anaemia among HIV-infected patients treated with highly active antiretroviral therapy. *HIV Med* 2007; 8: 483-490.
- 2. Kumarasamy N, Venkatesh KK, Cecelia AJ, et al. Spectrum of adverse events after generic HAART in southern Indian HIV-infected patients. AIDS Patient Care STDS 2008; 22: 337-344.
- 3. Moyle G, Sawyer W, Law M, Amin J, Hill A. Changes in hematologic parameters and efficacy of thymidine analogue-based, highly active antiretroviral therapy: a meta-analysis of six prospective, randomized, comparative studies. *Clin Ther* 2004; **26**: 92-97.
- 4. Eyer-Silva WA, Arabe J, Pinto JF, Morais-De-Sa CA. Macrocytosis in patients on stavudine. *Scand J Infect Dis* 2001; **33**: 239-240.
- 5. Geene D, Sudre P, Anwar D, Goehring C, Saaidia A, Hirschel B. Causes of macrocytosis in HIV-infected patients not treated with zidovudine. Swiss HIV Cohort Study. *J Infect* 2000; **40**: 160-163.
- 6. Khawcharoenporn T, Shikuma CM, Williams AE, Chow DC. Lamivudine-associated macrocytosis in HIV-infected patients. *Int J STD AIDS* 2007; **18**: 39-40.
- 7. Levine AM, Berhane K, Masri-Lavine L, et al. Prevalence and correlates of anemia in a large cohort of HIV-infected women: Women's Interagency HIV Study. J Acquir Immune Defic Syndr 2001; 26: 28-35.
- 8. Moyle G. Anaemia in persons with HIV infection: prognostic marker and contributor to morbidity. *AIDS Rev* 2002; **4**: 13-20.
- 9. Semba RD, Shah N, Klein RS, Mayer KH, Schuman P, Vlahov D. Prevalence and cumulative incidence of and risk factors for anemia in a multicenter cohort study of

- human immunodeficiency virus-infected and -uninfected women. *Clin Infect Dis* 2002; **34**: 260-266.
- 10. Boudes P, Balloul E, Sobel A. [Tolerance of zidovudine in patients with beta-thalassemia]. *Presse Med* 1989; **18**: 777.
- Vittecoq D, Delabesse E, Bary M, Girot R, Maier Redelsperger N, Bach JF. Poor tolerance of zidovudine in an HIV-asymptomatic patient with alpha-thalassemia. *Am J Med* 1991; 91: 100-102.
- 12. Fucharoen S, Winichagoon P, Thonglairuam V. Beta-thalassemia associated with alphathalassemia in Thailand. *Hemoglobin* 1988; **12**: 581-592.
- 13. Tanphaichitr VS, Mahasandana C, Suvatte V, Yodthong S, Pung-amritt P, Seeloem J. Prevalence of hemoglobin E, alpha-thalassemia and glucose-6-phosphate dehydrogenase deficiency in 1,000 cord bloods studied in Bangkok. Southeast Asian J Trop Med Public Health 1995; 1: 271-274.
- 14. Pornprasert S, Leechanachai P, Klinbuayaem V, *et al.* Effect of hematological alterations on thalassemia investigation in HIV-1 infected Thai patients receiving antiretroviral treatment. *HIV Med*, In press.
- 15. Newton CR, Graham A, Heptinstall LE, *et al.* Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). *Nucleic Acids Res* 1989,17:2503-2516.
- Old J, Traeger-Synodinos J, Galanello R, Petrou M, Angastiniotis M. Prevention of thalassemias and other haemoglobin disorders. Volume 2: Laboratory methods. 1 ed. Nicosia Team up Creations; 2005.
- 17. Bowden DK, Vickers MA, Higgs DR. A PCR-based strategy to detect the common severe determinants of alpha thalassaemia. *Br J Haematol* 1992; **81**: 104-108.

- Chanprapaph P, Tongsong T, Wanapirak C, Sirichotiyakul S, Sanguansermsri T.
 Prenatal diagnosis of alpha-thalassemia-1 (SEA type) by chorionic villus sampling. J
 Med Assoc Thai 2002; 85: 1049-1053.
- 19. Liu YT, Old JM, Miles K, Fisher CA, Weatherall DJ, Clegg JB. Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. *Br J Haematol* 2000; **108**: 295-299.
- 20. Moore RD, Forney D. Anemia in HIV-infected patients receiving highly active antiretroviral therapy. *J Acquir Immune Defic Syndr* 2002; **29**: 54-57.
- 21. Mylonakis E, Dickinson B, Feller A, *et al.* Combination antiretroviral therapy including a protease inhibitor eliminated the transfusion requirements of HIV-infected individuals with anemia of chronic disease. *J Acquir Immune Defic Syndr Hum Retrovirol* 1998; **19**: 306-307.
- 22. Semba RD, Shah N, Klein RS, *et al.* Highly active antiretroviral therapy associated with improved anemia among HIV-infected women. *AIDS Patient Care STDS* 2001; **15**: 473-480.
- 23. Semba RD, Shah N, Vlahov D. Improvement of anemia among HIV-infected injection drug users receiving highly active antiretroviral therapy. *J Acquir Immune Defic Syndr* 2001; **26**: 315-319.
- 24. Romanelli F, Empey K, Pomeroy C. Macrocytosis as an indicator of medication (zidovudine) adherence in patients with HIV infection. *AIDS Patient Care STDS* 2002; **16**: 405-411.
- 25. Steele RH, Keogh GL, Quin J, Fernando SL, Stojkova V. Mean cell volume (MCV) changes in HIV-positive patients taking nucleoside reverse transcriptase inhibitors (NRTIs): a surrogate marker for adherence. *Int J STD AIDS* 2002; **13**: 748-754.

- 26. Nuesch R, Srasuebkul P, Ananworanich J, Ruxrungtham K, Phanuphak P, Duncombe C. Monitoring the toxicity of antiretroviral therapy in resource limited settings: a prospective clinical trial cohort in Thailand. *J Antimicrob Chemother* 2006; 58: 637-644.
- 27. Nacoulma EW, Some Y, Tieno H, *et al.* [Haematological parameters evolution during the antiretroviral therapy of HIV infected patients in Burkina-Faso]. *Bull Soc Pathol Exot* 2007; **100**: 271-274.

Figure legend:

Fig. 1 Changing of haematological parameters in HIV-1 infected patients with and without thallasemia carriages during HAART. The results are shown by Mean \pm SD and p value of the comparison between HIV-1 infected patients with and without thalassaemia carriages.

Fig. 2 The absolute haematological parameter changing in HIV-1 infected patients with and without thalassaemia carriages during receiving different HAART regimens. The absolute haematological parameter changes were obtained by subtracting the values at month 6 from those at baseline. Data are presented as median (horizontal line), mean (dot), SD (box), and 1st and 99th percentile (whisker lines). (1) and (3); patients without and with thalassaemia carriages receiving ZDV/d4T/3TC-containing HAART regimens (n = 33 and 8, respectively), (2) and (4); patients without and with thalassaemia carriages receiving Truvada plus EFV or NVP (n = 12 and 5, respectively).

Table 1 Characteristics and baseline data of the study population

Characteristics	Nonthalassaemia carriages	Thalassaemia carriages	
	(n = 45)	(n = 13)	
Age (years)	$38.60 \pm 7.81 (23-58)$	41.00 ± 5.93 (31-53)	
HAART regimens			
GPO-Vir $(d4T + 3TC + NVP)$	25	7	
d4T + 3TC + EFV or NVP	6	1	
Truvada (TDF + FTC) + EFV or NVP	11	5	
TDF + EFV + 3TC or FTC	2	-	
ZDV + ddI + EFV	1	-	
CD4 cell count (cells/μL)	80 ± 74.66 (2-268)	$118.00 \pm 91.65 (13-283)$	

The results are shown by Mean \pm SD (range) or n.

ddI, didanosine; d4T, stavudine; EFV, efavirenz; FTC, emtricitabine; HAART, highly active antitretroviral therapy; NVP, nevirapine; TDF, tenofovir disoproxil fumarate; 3TC, lamivudine; ZDV, zidovudine.

Table 2 Changing of haematological parameters in HIV-1 infected patients with and without thallasemia receiving HAART

Haematological parameters	Nonthalassaemia carriages (n = 45)			Thalassaemia carriages (n = 13)		
_	At baseline	At month 6	P	At baseline	At month 6	P
RBC (x 10 ⁶ cells/μL)	4.02 ± 0.63	3.87 ± 0.61	0.12	4.76 ± 0.97	4.54 ± 0.78	0.42
	(2.45-5.46)	(2.19-4.95)		(2.64-5.99)	(3-5.62)	
MCHC (g/L)	333 ± 0.92	333 ± 1.76	1.00	326 ± 1.12	315 ± 1.56	0.90
	(314-362)	(304-374)		(310-345)	(295-345)	
RDW (%)	14.25 ± 3.07	14.38 ± 1.47	0.77	16.15 ± 3.24	15.97 ± 2.56	0.83
	(10.3-25.3)	(11.1-19.2)		(11.9-23.6)	(10.3-19.5)	
WBC (x 10^3 cells/ μ L)	5.73 ± 2.04	6.45 ± 2.30	0.07	5.20 ± 2.15	5.82 ± 0.95	0.34
	(3.12-12.5)	(2.9-12.6)		(2.39-8.70)	(4.50-8.00)	
Neutrophils (x 10 ³ cells/μL)	3.26 ± 1.86	2.69 ± 1.30	0.08	2.89 ± 1.23	2.86 ± 0.70	0.93
	(1.42-10.7)	(0.9-8.6)		(1.35-5.88)	(1.8-3.7)	
Lymphocytes (x 10^3 cells/ μ L)	1.51 ± 0.79	2.09 ± 0.76	<0.001	1.36 ± 0.89	1.62 ± 0.52	0.28
	(0.29-3.22)	(0.8-4.7)		(0.30-2.92)	(0.90-2.4)	

Platelets (x $10^3 / \mu L$)	283.80 ± 120.24	205.44 ± 73.07	<0.001	320.77 ± 124.15	251.08 ± 60.32	0.02
	(114-631)	(10-345)		(153-552)	(180-352)	

The results are shown by Mean \pm SD (range). Normal ranges for the measurements elaborated in the table are as follows: RBC 4.5-6.0 x 10^6 cells/ μ L, MCHC 320-360 g/L, RDW 11.5-14.5%, WBC 4.8-10.8 x 10^3 cells/ μ L, Neutrophils 2.3-7.6 x 10^3 cells/ μ L, Lymphocytes 0.8-4.0 x 10^3 cells/ μ L, Platelets 150-450 x 10^3 / μ L.

MCHC, mean corpuscular haemoglobin concentration; RBC, red blood cells; RDW, red blood cell distribution width; WBC, white blood cells.

Table 3 The absolute haematological parameter changes in HIV-1 infected patients with and without thalassaemia carriages during receiving ZDV/d4T/3TC-containing HAART regimens and non-ZDV/d4T/3TC-containing HAART regimens (Truvada plus EFV or NVP)

Haematological parameters	Nonthalassaemia carriages			Thalassaemia carriages		
	ZDV/d4T/3TC-	Non-ZDV/d4T/3TC-	P	ZDV/d4T/3TC-	Non-ZDV/d4T/3TC-	P
	containing HAART	containing HAART		containing HAART	containing HAART	
	(n = 33)	(n = 12)		(n = 8)	(n=5)	
CD4 cell counts (cells/μL)	167 ± 65.56	133 ± 88.54	0.85	102 ± 96.25	106 ± 71.67	0.94
	(21-280)	(35-298)		(-105-195)	(20-185)	
RBC (x 10 ⁶ cells/μL)	-0.15 ± 0.64	-0.12 ± 0.48	0.89	-0.07 ± 1.13	-4.46± 0.56	0.72
	(-1.35-2.01)	(-0.82-0.77)		(-1.17-2.18)	(-1.02-0.36)	
MCHC (g/L)	33 ± 20.89	-4.67 ± 13.57	0.18	-12.88 ±25.53	-297.14 ± 11.23	0.72
	(-48-47)	(-23-30)		(-44-28)	(-18-4)	
RDW (%)	0.28 ± 3.45	-0.28 ± 1.69	0.34	0.09 ± 3.42	-0.62 ± 2.83	0.52
	(-10.6-8.8)	(-2.7-2.62)		(-6.3-4.4)	(-2.9-4.2)	
WBC (x 10^3 cells/ μ L)	0.95 ± 2.87	0.08 ± 1.72	0.17	1.29 ± 1.94	1.01 ± 2.31	0.83

				_
				20
(-2.4-2.68)		(-1.7-3.7)	(-3.03-2.5)	
0.02 ± 1.12	0.38	0.05 ± 1.09	-0.15 ± 1.59	1.00
(-1.33-2.65)		(-2.1-1.13)	(-2.28-1.38)	

 0.64 ± 0.48

(-0.12-1.51)

 -87.13 ± 103.32

(-295-53)

 -3.73 ± 1.14

(-5.11-(-2.22))

 -41.8 ± 63.95

(-113-27)

Page 20 of 22

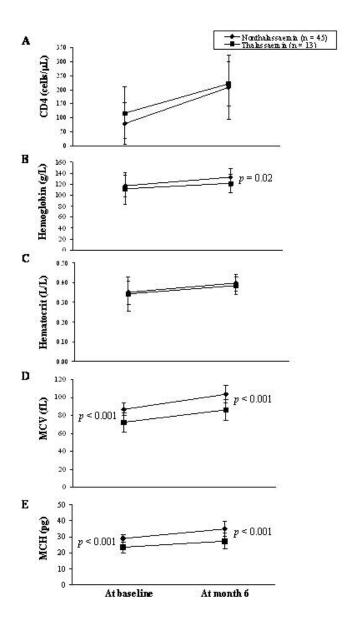
0.002

0.52

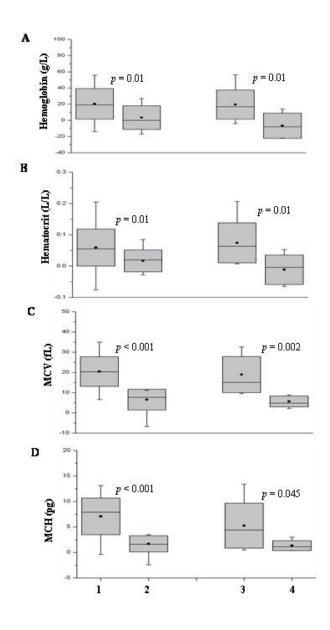
The absolute haematological parameter evolutions were obtained by subtracting the values at month 6 from those at baseline. The results are

 0.12 ± 0.7

(-1.09-1.5)


-60.92 ±126.26

(-387-166)


0.02

0.71

HIV Medicine

190x254mm (72 x 72 DPI)

190x254mm (72 x 72 DPI)

TITLE PAGE

Title: Prospective analysis of incidence of immune restoration disease in HIV-

infected patients receiving HAART following Thai guidelines for clinical

management and treatment of HIV-infected adults (2004)

Authors: Sakorn Pornprasert Ph.D., Pranee Leechanachai, Ph.D., Virat

Klinbuayaem, M.D.,² Prattana Leenasirimakul, M.D.,³ Channat Promping, M.Sc.,³

Prasit Inta, B.Sc., ² Siraporn Ajhan, B.Sc. ²

¹Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai,

Thailand

²Sanpatong Hospital, Chiang Mai, Thailand

³Nakornping Hospital, Chiang Mai, Thailand

Short title: Thai guidelines and incidence of IRD

Corresponding author:

Dr. Sakorn Pornprasert

Department of Medical Technology, Faculty of Associated Medical Sciences,

Chiang-Mai University, 110 Intawaroros Road, Chiang Mai, Thailand, 50200

Tel: 66-53-945078

Fax: 66-53-946042

E-mail: sakornmi001@yahoo.com

ABSTRACT

The immune restoration disease (IRD) is seriously concerned in HIV-infected patients receiving highly active antiretroviral therapy (HAART). The majority of antigens causing IRD are associated with infectious microorganisms. We analyzed the effects of Thai guidelines for clinical management and treatment of HIV-infected adults (2004) on IRD development. Prospective study was conducted at two hospitals in the Northern Thailand. Sixty-seven HIV-infected patients were enrolled. Eighteen patients had active opportunistic infections and two patients had chronic hepatitis B and/or C. All 18 patients with active opportunistic infections were treated with antimicrobial agents before HAART initiation under recommendations of Thai guidelines (2004). The follow-up were made at months 1, 3, 6, 9, and 12 of HAART. At month 6 of HAART, a dramatically increased in CD4 cell count was observed in both groups of patients with and without active opportunistic infections. During a year of follow-up, there were no patients with active opportunistic infections developed IRD. Where as, one of patients who had no previous history of opportunistic infections developed IRD with tuberculosis of intestines, peritoneum and mesenteric glands within 2 months of HAART. Her CD4 count was increased from 44 to 155 cells/ μ L during 6 months of follow-up. The imbalance between IFN- γ , TNF- α and IL-10 cytokines was observed during the first three months of HAART. Therefore, Thai guidelines (2004) effective in decreasing incidence of IRD in HIV-infected patients with active opportunistic infections, however patients who had latently infected with certain pathogens and escape the routine screening of opportunistic infections should be aware.

Key words: Cytokines, HIV; Highly active antiretroviral therapy; Immune restoration disease; Opportunistic infections; Thai guidelines

INTRODUCTION

The use of highly active antiretroviral therapy (HAART) has dramatically changed the prognosis of HIV disease by improving immune function and decreasing mortality, morbidity, and opportunistic infection¹⁻³. Despite satisfactory control of viral replication and improvements in CD4 cell counts, up to 25% of HIV-infected patients with HAART exhibit paradoxical deterioration in their clinical status. This clinical deterioration, known as the immune restoration disease (IRD) or immune reconstitution inflammatory syndrome (IRIS), is a result of an exuberant inflammatory response to several active or quiescent opportunist infections and antigens of non-viable pathogens and usually occurs during the first six months of antiviral (ARV) treatment⁴⁻⁷. A variety of manifestations of IRD have been described, most prominently including Mycobacterium avium complex lymphadenitis, paradoxical exacerbations of pulmonary and central nervous system Mycobacterium tuberculosis (MTB) infection, paradoxical exacerbations of Cryptococcus neoformans meningitis and cytomegalovirus uveitis⁸. A retrospective study between 1997 and 2000 by Shelburne et al. showed that 30.5% of HIV-infected patients who were coinfected with M. tuberculosis, M. avium complex, and C. neoformans developed IRD within 46 days of the median time between starting HAART and diagnosing IRD. Furthermore, the patients with IRD were more likely to have initiated HAART nearer to the time of diagnosis of their opportunistic infection⁹. In Thailand, a retrospective study between 2003 and 2004 by Manosuthi and et al. showed that 12.6% of HIVinfected patients coinfected with M. tuberculosis develop MTB-IRD with in the first two months of HAART (stavudine, lamivudine and either efavirenz or nevirapine), despite the HAART was initiated at more than 2 months after initiation of MTB treatment¹⁰. Moreover, the incidence of IRD in HIV-infected Thai children has been

report at 19% that caused by mycobacterial organisms, varicella-zoster virus, herpes simplex virus, *Crytococcus neoformans* and Guillain-Barr'e syndrome¹¹.

The majority of antigens causing IRD are known to be associated with infectious microorganisms. Furthermore, an increased risk for IRD development has been shown in patients who started HAART in closer proximity to the diagnosis of their underlying⁹. After May 2004, Thai guidelines for clinical management and treatment of HIV-infected adults are used as a guideline for ARV treatment since it recommends for a treatment of opportunistic infections that should be implemented before ARV initiation. There are no prospective therapeutic trials concerning the prevention and management of IRD. Therefore, the goals of this study were to determine whether HAART initiation following Thai guidelines for clinical management and treatment of HIV-infected adults (2004) decrease the incidence of IRD even in high-risk patients.

The increased level of plasma pro-inflammatory cytokines like interleukin (IL)-6 has been reported as the exuberant Th1 immune response to mycobacterial antigens in patients with MTB-IRD¹²⁻¹⁴. However, the predominance of Th2 over Th1 immune response was found in patients with IRD due to Cytomegalovirus (CMV) and Epstein-Barr virus (EBV)^{15, 16}. Therefore, analysis of plasma pro-inflammatory {interferon (IFN)- γ and tumour necrosis factor (TNF)- α } and anti-inflammatory (IL-10) cytokine profiles may provides new evidence valuable for the diagnosis and treatment of IRD.

METHODS

Patients

The study was conducted at 2 hospitals, Sanpatong and Nakornping Hospital, in the Northern Thailand. From September 2006 to December 2007, we prospectively

enrolled 67 HIV-infected patients to receive HAART. Inclusion criteria were as follows: (1) HIV-infected patients >15 years of age; (2) no previous treatment with antiretroviral drugs; (3) no active opportunistic infection at the time of HAART initiation; (4) patients with active opportunistic infection by clinical features and laboratory diagnosis were treated with antimicrobial agents before starting HAART by following Thai guidelines for clinical management and treatment of HIV-infected adults (2004). All HIV-infected patients participating in this study provided written informed consent before enrollment. This study was approved by the Ethics Committee of the Faculty of Associated Medical Sciences, Chiang Mai University.

Procedures

All patients were followed at baseline (before HAART initiation) and at month 1, 3, 6, 9, and 12 of HAART. During each visit, the patient's medical history review and physical examination was done. Patients and caregivers were counseled initially and at each visit to adhere closely to HAART, to recognize signs and symptoms indicative of opportunistic infection or an IRD, and to seek appropriate care. Data collected included patient demographics, pre- and post-HAART CD4 cell counts and plasma HIV load, specifics regarding diagnosis and treatment of the opportunistic infection, and clinical outcome, including development of IRD. The diagnosis of IRD was based on a previously published definition⁶. Briefly, the patients with HAART have clinical evidence of an inflammatory process that was not consistent with the usual course of an established infection or a new infectious process, and to have a rising CD4 cell counts and a falling plasma HIV load. Moreover, the specifically clinical manifestations of IRD of each opportunistic infection were analyzed based a previously described^{6, 8, 17, 18}.

Quantification of plasma cytokines

Quantification of plasma cytokines were performed using enzyme-linked immunosorbent assay (ELISA) kits: IFN- γ (BioSource Europe SA, Nivelles, Belgium) with a sensitivity of 0.03 IU/ml; IL-10 and TNF- α (Immunotech, Beckman Coulter, Marseille, France) with a sensitivity of 10 and 5 pg/ml, respectively. All kits were used according to manufacturer's instructions.

Statistical Analysis

All analyses were performed with SPSS for Windows (SPSS version 11.5, Chicago, IL). Comparisons between groups were made using non-parametric tests (Mann-Whitney test) as appropriate. A p value less than 0.05 was considered statistically significant.

RESULTS

Participants and baseline characteristics

From September 2006 to December 2007, 67 HIV-infected patients were enrolled for receiving HAART regimens as shown in Table 1. Eighteen patients (26.87%) had active opportunistic infections including 6 *Pneumocystis jiroveci pneumonia*, 5 *Mycobacterium tuberculosis*, 4 Candidiasis and 3 Cryptococcosis while 2 patients had chronic hepatitis B and/or C. Following, the Thai guidelines for clinical management and treatment of HIV-infected adults (2004), all patients with active opportunistic infections were treated with antimicrobial agents as shown in Table 2. The mean number of months between beginning treatment for *M. tuberculosis* and commencing HAART was 3.6 (range 1-9) months. Whereas, the mean number of days between

beginning treatment for others opportunistic microorganisms and commencing HAART was 21 (range 11-31) days (Table 2). Two patients with chronic hepatitis B and/or C did not receive any anti-hepatitis treatment before starting HAART.

The mean of age and baseline CD4 cell counts measured at the day of HAART initiation between patient with and without active opportunistic infections did not differ significantly (Table 1).

Immune response and IRD development after HAART initiation

During a year follow-up period, CD4 cell counts were increased in both groups of patients with and without active opportunistic infections (Table 1). At month 6 but not at month 12, an increasing of mean CD4 cell counts in the group of patients without opportunistic infections was significantly higher than those with opportunistic infections (Table 1). Moreover, at month12, more than 90% of patients with and without opportunistic infections had plasma HIV load less than 50 coppies/mL.

There were no patients with active opportunistic infection developed IRD symptoms. One of forty-seven (2%) patients without opportunistic infection had tuberculosis of intestines, peritoneum and mesenteric glands at month 2 of HAART. She had fever, dyspnea and no previous history of mycobacterial infection. In addition, her sputum acid-fast bacilli were negative during her appearance clinical symptoms. Without termination of HAART, she was commenced on antituberculous therapy with isoniazid, rifampicin, pyrazinamide and ethambutol. Two months later, she was admitted with abdominal and joint pain, nausea and cervical lymphadenitis. Pus was aspirated from the cervical lymph node and cultured for *M. tuberculosis*. Moreover, her blood was also cultured for *M.* avium *complex*. Both cultures were sterile on week 8 and 6 of incubation, respectively. Her CD4 cell count was increased from 46

cells/µL at baseline to 155 cells/µL at month 6 of HAART. Therefore, the diagnosis of developing MTB-IRD was made. The patient was treated with prednisolone in addition to the antituberculous agents and HAART. Her clinical symptoms were gradually improved and complete recover in 7 months.

Cytokines assessment in a patient who developed MTB-IRD

The plasma IFN- γ , IL-10, and TNF- α was measured retrospectively using ELISA kits in patient with MTB-IRD compared to four patients with previous history of M. *tuberculosis* infection without IRD as a control.

Before starting HAART or at the base line, the levels of plasma IFN- γ , TNF- α and IL-10 in patient with MTB-RID were higher than those in the controls (Fig. 1A-C). During a month of follow-up, TNF- α and IL-10 cytokines except IFN- γ were decreased and reached the levels found in those controls at month 3 (Fig. 1A-C).

IFN- γ , a major effector cytokine in immune response to various pathogens was increased beyond the normal range of healthy persons (0-0.89 IU/ml) in the first month of HAART and rapidly decreased near the control level in the third month then slowly decreased to the control level (0 IU/ml) at month 6 (Fig. 1A). After administration of prednisolone, the levels of TNF- α and IL-10 were a little bit increased (Fig. 1B-C) while the level of IFN- γ remained constant at 0 IU/ml (Fig. 1A). These results suggested that a rapid change in plasma pro-inflammatory (IFN- γ and TNF- α) and anti-inflammatory (IL-10) cytokines during the first three months of HAART may be a marker of MTB-IRD.

DISCUSSION

In developing countries where endemic area of opportunistic microorganisms such as, M. tuberculosis, P. jiroveci pneumonia, and C. neoformans are usually found as a coinfection of HIV-infected patients. They were also associated with the development of IRD after HAART initiation. Previous studies showed that the incidence of IRD in HIV-infected patients who receiving HAART was approximately 25-35%. Most of the patients were coinfected with M. tuberculosis, M. avium complex, C. neoformans, and T. gondii^{5, 9, 18-20}. The goal of this study was to evaluate an efficiency of Thai guidelines for clinical management and treatment of HIV-infected adults (2004) in decreasing the incidence of IRD especially in HIV-infected patients who had active opportunistic infections before HAART. Following the guideline, infectious microorganisms have to be cured before initiation of HAART. In present study, there were no patients with opportunistic infections developed IRD, even thought all, except 5 patients with M. tuberculosis and 2 patients with chronic hepatitis B and/or C, receiving HAART within 30 (13.67 - 24.50) days after treatment of opportunistic infections. It was discrepancy to the previous study that patients who receiving HAART before 30 days after treatment of opportunistic infections had higher risk in developing IRD than those who receiving HAART after that⁹. In general MTB-IRD usually occurred in patients receiving HAART before two months of antituberculous therapy²¹. Therefore, a longer duration (>2 months) of antituberculous therapy may lower bacterial load and its antigen that lead to decreasing the risk of MTB-IRD development10. Fortunately, in our study, most M. tuberculosis HIV-infected patients were receiving HAART after two months of antituberculous therapy, thus no MTB-RID was observed in those patients.

At month 6 of HAART, a significantly higher CD4 cell count was observed in the group of patients without opportunistic infections. One of them developed MTB-IRD in 2 month of HAART. Her CD4 cell count was increased from 46 to 155 cells/ μ L (3.4 times) during 6 months. The rapidly increasing of CD4 cell count with some microbial infections is a major factor in development of IRD. Moreover, the previous study showing that a high-fold increase in CD4 cell counts was correlation to the risk of IRD development²². Although, the patient had no previous history of active pulmonary *M. tuberculosis* infection, the extrapulmonary latent infection was not ruled out. Additional monitoring assay such as measurement the level of some plasma cytokines especially pro-inflammatory (IFN- γ and TNF- α) and anti-inflammatory (IL-10) should be included.

IFN-γ has been demonstrated to be a major effector cytokine in human host responses against tuberculosis²³. It is produced mainly by T lymphocytes of both CD4+ and CD8+ cells, and it stimulates macrophage function in a variety of ways including increasing production of both reactive oxygen and reactive nitrogen species which implicated in intracellular killing or growth inhibition of *M. tuberculosis*. A number of studies showed that high level of IFN-γ transcription was observed before HAART and decreased during HAART²⁴⁻²⁸. Thus, the increased level IFN-γ at the first month of HAART in the patient who developed MTB-IRD may indicate the presence of latently *M. tuberculosis* infection. An imbalance between pro-inflammatory (IFN-γ) and anti-inflammatory (IL-10) cytokine production may also play a role in development of MTB-IRD, since the imbalance of those has been observed in peripheral blood mononuclear cells (PBMCs) of MTB-IRD patients²⁹. IL-10 is an anti-inflammatory cytokine which inhibits the expression of TNF-α known as a pro-inflammatory cytokine to keep a balance in immune response in normal human being

 $^{30, 31}$. In the presents study, we found that the IL-10 level of the patient with IRD at baseline was almost fifteen times higher than the controls and then dramatically decreased close to the control level with in first month. In the same period of time, the level of TNF- α was slowly decreased and remained higher level than the control after the first month of HAART. Thus, the imbalance between IL-10 and TNF- α may involve in developing IRD.

The limitations of the present study include the CD4 cell counts and plasma HIV load could not be monitor in every visit. Therefore, the level of CD4 cell counts and plasma HIV load could not be demonstrated exactly at the IRD development. Although, there are numerous descriptions of the manifestations of IRD, its pathogenesis remains largely speculative. Thus, patients with subclinical manifestations of IRD maybe underestimate.

In conclusion, this study has demonstrated HAART initiation following Thai guidelines for clinical management and treatment of HIV-infected adults (2004) which regards to the treatment of opportunistic infections before initiation HAART can decrease the incidence of IRD. The IRD can be developed also in patient who had no previous history of opportunistic infections sine the restoration immune might response to the subclinical opportunistic infection or other yet undefined antigens. Therefore, the changes in balance of plasma pro-inflammatory (IFN- γ and TNF- α) and anti-inflammatory (IL-10) cytokines during the first three months of HAART may be an importance marker of developing IRD.

ACKNOWLEDGMENTS

The authors thank all HIV-1 infected patients who participated in this study. We gratefully appreciate the help and assistance of technicians and nurses of Sanpatong and Nakornping Hospital, Chiang-Mai, Thailand, and Gerald W. Rock for his help in editing this manuscript.

This study was supported by grants from the Thailand Research Fund and the Commission on Higher Education.

REFFERRENCES

- 1. Mocroft A, Ledergerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003;362:22-29.
- Palella FJ, Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998;338:853-860.
- 3. Sepkowitz KA. Effect of HAART on natural history of AIDS-related opportunistic disorders. Lancet 1998;351:228-230.
- 4. French MA. Antiretroviral therapy. Immune restoration disease in HIV-infected patients on HAART. AIDS Read 1999;9:548-549, 554-545, 559-562.
- 5. French MA, Lenzo N, John M, et al. Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med 2000;1:107-115.
- 6. Shelburne SA, 3rd, Hamill RJ, Rodriguez-Barradas MC, et al. Immune reconstitution inflammatory syndrome: emergence of a unique syndrome

- during highly active antiretroviral therapy. Medicine (Baltimore) 2002;81:213-227.
- 7. Stoll M, Heiken H, Weber K, Hundt M, Behrens G, Schmidt RE. [Immune reconstituted inflammatory syndrome. Pitfalls of antiretroviral therapy].

 MMW Fortschr Med 2003;145 Spec No 1:42-47.
- 8. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. Aids 2004;18:1615-1627.
- 9. Shelburne SA, Visnegarwala F, Darcourt J, et al. Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. Aids 2005;19:399-406.
- 10. Manosuthi W, Kiertiburanakul S, Phoorisri T, Sungkanuparph S. Immune reconstitution inflammatory syndrome of tuberculosis among HIV-infected patients receiving antituberculous and antiretroviral therapy. J Infect 2006;53:357-363.
- 11. Puthanakit T, Oberdorfer P, Akarathum N, Wannarit P, Sirisanthana T, Sirisanthana V. Immune reconstitution syndrome after highly active antiretroviral therapy in human immunodeficiency virus-infected thai children. Pediatr Infect Dis J 2006;25:53-58.
- 12. Bourgarit A, Carcelain G, Martinez V, et al. Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. Aids 2006;20:F1-7.
- 13. Morlese JF, Orkin CM, Abbas R, et al. Plasma IL-6 as a marker of mycobacterial immune restoration disease in HIV-1 infection. Aids 2003;17:1411-1413.

- 14. Stone SF, Price P, Keane NM, Murray RJ, French MA. Levels of IL-6 and soluble IL-6 receptor are increased in HIV patients with a history of immune restoration disease after HAART. HIV Med 2002;3:21-27.
- 15. Keane NM, Price P, Lee S, Stone SF, French MA. An evaluation of serum soluble CD30 levels and serum CD26 (DPPIV) enzyme activity as markers of type 2 and type 1 cytokines in HIV patients receiving highly active antiretroviral therapy. Clin Exp Immunol 2001;126:111-116.
- 16. Righetti E, Ballon G, Ometto L, et al. Dynamics of Epstein-Barr virus in HIV1-infected subjects on highly active antiretroviral therapy. Aids 2002;16:6373.
- 17. Shelburne SA, 3rd, Hamill RJ. The immune reconstitution inflammatory syndrome. AIDS Rev 2003;5:67-79.
- 18. Stone SF, Price P, French MA. Immune restoration disease: a consequence of dysregulated immune responses after HAART. Curr HIV Res 2004;2:235-242.
- 19. Shelburne SA, 3rd, Darcourt J, White AC, Jr., et al. The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40:1049-1052.
- Subsai K, Kanoksri S, Siwaporn C, Helen L, Kanokporn O, Wantana P.
 Neurological complications in AIDS patients receiving HAART: a 2-year retrospective study. Eur J Neurol 2006;13:233-239.
- 21. Navas E, Martin-Davila P, Moreno L, et al. Paradoxical reactions of tuberculosis in patients with the acquired immunodeficiency syndrome who are treated with highly active antiretroviral therapy. Arch Intern Med 2002;162:97-99.

- 22. de Boer MG, Kroon FP, Kauffmann RH, Vriesendorp R, Zwinderman K, van Dissel JT. Immune restoration disease in HIV-infected individuals receiving highly active antiretroviral therapy: clinical and immunological characteristics. Neth J Med 2003;61:408-412.
- Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998;157:679-691.
- 24. Brazille P, Dereuddre-Bosquet N, Leport C, et al. Decreases in plasma TNF-alpha level and IFN-gamma mRNA level in peripheral blood mononuclear cells (PBMC) and an increase in IL-2 mRNA level in PBMC are associated with effective highly active antiretroviral therapy in HIV-infected patients. Clin Exp Immunol 2003;131:304-311.
- 25. Breen EC, Salazar-Gonzalez JF, Shen LP, et al. Circulating CD8 T cells show increased interferon-gamma mRNA expression in HIV infection. Cell Immunol 1997;178:91-98.
- 26. Fan J, Bass HZ, Fahey JL. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 1993;151:5031-5040.
- 27. Giovannetti A, Pierdominici M, Mazzetta F, et al. T cell responses to highly active antiretroviral therapy defined by chemokine receptors expression, cytokine production, T cell receptor repertoire and anti-HIV T-lymphocyte activity. Clin Exp Immunol 2001;124:21-31.
- 28. Westby M, Marriott JB, Guckian M, Cookson S, Hay P, Dalgleish AG. Abnormal intracellular IL-2 and interferon-gamma (IFN-gamma) production as HIV-1-assocated markers of immune dysfunction. Clin Exp Immunol 1998;111:257-263.

- 29. Lim A, D'Orsogna L, Price P, French MA. Imbalanced effector and regulatory cytokine responses may underlie mycobacterial immune restoration disease.

 AIDS Res Ther 2008,5:9.
- 30. Clerici M, Shearer GM. A TH1-->TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 1993,14:107-111.
- 31. Weissman D, Poli G, Fauci AS. Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of tumor necrosis factor alpha and interleukin 6 induction of virus. AIDS Res Hum Retroviruses 1994,10:1199-1206.

Table 1. Characteristics of HIV-infected patients. The data are expressed as mean \pm SD (range) or n.

Characteristics	HIV-infected patients		
<u> </u>	Without opportunistic infection	With opportunistic infection*	P
	(n = 47)	(n = 20)	
Age (years)	37.94 ± 7.69 (23-53)	40.10 ± 8.17 (25-58)	0.33
Gender : Male/Female	29/18	12/8	
Baseline $CD4^+$ cell counts (cells/ μL)	$102 \pm 82 \ (0-268)$	$77 \pm 75 \ (7-283)$	0.45
CD4 cell counts at month 6 (cells/µL)	$242 \pm 120 \ (47-514)$	$175 \pm 76 \ (58-309)$	0.04
CD4 cell counts at month 12 (cells/µL)	$267 \pm 127 (52-647)$	$233 \pm 81 \ (113-439)$	0.49
Proportion of patients with plasma HIV load	93% (n = 27)	94% (n = 16)	
<47 copies/mL at month 12			
HAART regimens:			
GPO-VIR $(d4T + 3TC + NVP)$	27	10	
d4T + 3TC + NVP or EFV	4	4	

Truvada (TDF + FTC) + NVP or EFV	15	1	
EFV + TDF + FTC or 3TC	-	2	
ZDV + EFV + ddI or $3TC$	-	3	
ZDV + 3TC + IDV	1	-	

 $^{^{\}ast}$ included 2 HIV-1 infected patients with chronic hepatitis B and/or C

ddI, didanosine; d4T, stavudine; EFV, efavirenz; FTC, emtricitabine; HAART, highly active antitretroviral therapy; IDV, indinavir; NVP, nevirapine; TDF, tenofovir disoproxil fumarate; 3TC, lamivudine; ZDV, zidovudine.

Table 2. Active opportunistic infections and antimicrobial prophylaxis prior to HAART initiation.

Opportunistic infections	Antimicrobial agents	Duration of antimicrobial prophylaxis prior to
		HAART initiation (days)
PCP (n =6)	Cotrimoxazole or Dapsone	$24.5 \pm 6.25 \ (16-30)$
M. tuberculosis $(n = 5)$	Isoniazid + Rifampicin + Pyrazinamide + Ethambutol.	$108 \pm 94 \ (30-270)$
Candidiasis $(n = 4)$	Fluconazole or Ketoconazole or Cotrimazole	$13.67 \pm 2.52 \ (11-16)$
Cryptococcosis $(n = 3)$	Amphotericin B and/or Fluconazole	$19.33 \pm 1.15 \ (18-20)$

Figure legend:

Fig. 1. The plasma pro-inflammatory IFN- γ (A) and TNF- α (B) and anti-inflammatory IL-10 (C) cytokine profiles in a patient who developed MTB-IRD and controls after HAART initiation.

V0 = baseline, V1 - V5 = visit at month 1, 3, 6, 9, and 12 of HAART, respectively.

