

รายงานวิจัยฉบับสมบูรณ์

โครงการ วิวัฒนาการสภาพข้าในระดับนาโน และสมบัติทางไฟฟ้า ณ
บริเวณรอยต่อเฟสของสารเฟรโรอิเล็กทริกในระบบ PZT-PCoN

โดย

ดร. นราธิป วิทยากร

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

มิถุนายน 2551

รหัสสัญญา MRG4980013

รายงานวิจัยฉบับสมบูรณ์

โครงการ วิวัฒนาการสภาพข้าวในระดับนาโน และสมบัติทางไฟฟ้า ณ บริเวณรอยต่อเฟสของสารเฟริโอэล็กทริกในระบบ

PZT-PCoN

ดร. นราธิป วิทยากร

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

งานวิจัยนี้สำเร็จได้ด้วยดีเนื่องจากการสนับสนุนทุนวิจัยจาก สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และ สำนักงานคณะกรรมการอุดมศึกษา (สกอ.) ขอขอบคุณ คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ที่อำนวยความสะดวกในการใช้เครื่องมือ สถานที่ ขอขอบคุณ ห้องปฏิบัติการอิเล็กโทรเซรามิก คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่สนับสนุนเครื่องมือวิเคราะห์ รวมไปถึงการช่วยเหลือที่ดีจากผู้ร่วมวิจัย ผู้วิจัยขอขอบคุณ ศาสตราจารย์ เกียรติคุณ ดร.ทวี ตันทศิริ ที่รับเป็นที่ปรึกษา และ ให้คำปรึกษาที่ดีตลอดมา รองศาสตราจารย์ ดร. กอบวุฒิ รุจิจนาภุล และ ผู้ช่วยศาสตราจารย์ ดร. รัตติกร ยิ่มนิรัณ ที่เคยให้คำปรึกษา ชี้แนะ ตักเตือน และ สนับสนุนในทุกๆ ด้านด้วยดีเสมอมา ขอบคุณผู้ร่วมวิจัย ดร. ธีรชัย บังการณ์ คุณ รังสรรค์ เมืองเหลือ ดร. พิทักษ์ เหลารัตนกุล และ นักศึกษาที่ช่วยกันสร้างห้องวิจัยให้เป็นรูปเป็นร่าง สุดท้ายขอขอบคุณ ภรรยา พ่อแม่และ น้องสาวที่เป็นกำลังใจ และ ให้การสนับสนุนด้วยดีตลอดมา

(ดร.นราธิป วิทยากร)
หัวหน้าโครงการ

บทคัดย่อ

1. รหัสโครงการ: MRG4980013

2. ชื่อโครงการ วิจัยการสภาคัพขั้วในระดับนาโน และ สมบัติทางไฟฟ้า ณ บริเวณรอยต่อเฟสของสารเฟอร์โรอิเล็กทริกในระบบPZT-PCoN

3. ชื่อหัวหน้าโครงการ
ดร. นราธิป วิทยากร
ภาควิชา เคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ถนนลาดลูกกรุง เขตลาดกระบัง กรุงเทพฯ 10520
E-mail Address: naratipcmu@yahoo.com, kvnarati@kmitl.ac.th

4. ระยะเวลาดำเนินงาน 2 ปี (1 มิถุนายน 2549 ถึง 30 มิถุนายน 2551)

บทคัดย่อ

งานวิจัยนี้ได้ทำการศึกษาหาความสัมพันธ์ของโครงสร้างและสมบัติของเซรามิกเฟอร์โรอิเล็กทริกในระบบ $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; $x = 0.0-0.5$ โดยศึกษาเบรี่ยบเทียบผลที่ได้กับเซรามิกเฟอร์โรอิเล็กทริกในกลุ่มอื่นๆ เช่น $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$, $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$, $(\text{Pb},\text{Ba})\text{ZrO}_3$ และ $\text{PbZrO}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ผลการวิจัยพบว่าสามารถสังเคราะห์ผง $(1-x)\text{PZT}-x\text{PCoN}$ ในโครงสร้างเพอร์โพรอฟสไกด์ได้ในสัดส่วน ตั้งแต่ $x = 0.0$ ถึง 0.4 ในสัดส่วน $x = 0.5$ เกิดเฟสแผลกปลอมขึ้น ยิ่งไปกว่านั้น พบการเปลี่ยนเฟสจาก เทหะรโคนอล เป็นรомуโบอีดرون เมื่อสัดส่วน $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ เพิ่มสูงขึ้น และที่สัดส่วน $x = 0.3$ แสดง การอยู่ร่วมกันของเฟส เทหะรโคนอล และ รомуโบอีดرون ผลของการเติม $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ต่อการเปลี่ยนเฟสในเซรามิก $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ คล้ายกับเซรามิกในระบบ $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ และ $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ แต่แตกต่างอย่างสิ้นเชิงในเซรามิกกลุ่ม $(\text{Pb},\text{Ba})\text{ZrO}_3$ และ $\text{PbZrO}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$

และ เมื่อทำการปรับปรุงสมบัติได้อิเล็กทริกของเซรามิก $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; $x = 0.0-0.5$ ด้วยวิธี อบอุ่น (annealing) พบว่าเซรามิก PZT-PCoN มีค่าไดอิเล็กทริกเพิ่มสูงขึ้นประมาณ 200% โดยเฉพาะอย่างยิ่งในบริเวณใกล้ T_m พบการเปลี่ยนเฟสที่ชัดเจนจาก เทหะรโคนอล ไปเป็นรомуโบอีดرون เมื่อเพิ่มเวลาในการอบอุ่น ผลการทดลองนี้ชี้ให้เห็นว่าสัดส่วนที่ทำการอบอุ่นเลื่อนเข้าใกล้จุดแควรอบต่อเฟส การเพิ่มขึ้นของค่าไดอิเล็กทริกในเซรามิก $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ คล้ายกับเซรามิกในระบบ $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ และ $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$

Abstract

Project Code: MRG4980013

Project Title: The evolution of polar nano-region and electrical properties at the morphotropic phase boundaries of ferroelectric PZT-PCoN systems

Investigator: Dr. Naratip Vittayakorn

E-mail Address: naratipcmu@yahoo.com, kvnarati@kmitl.ac.th

Project Period: 2 years (1 June 2006 ถึง 30 June 2008)

The relationship between structure and properties of ferroelectric $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; $x = 0.0-0.5$ ceramics was studied. The results were compared with other ferroelectric systems such as $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$, $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$, $(\text{Pb},\text{Ba})\text{ZrO}_3$ and $\text{PbZrO}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$. The pure phase of perovskite structure was observed in the composition between $x = 0.0$ to 0.4 . At the composition $x = 0.5$, the pyrochlore phase was presented. Furthermore, a transition from tetragonal to rhombohedral phase was observed, as $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ increased and the co-existence of tetragonal – rhombohedral phases occurred at composition $x = 0.3$. The influence of a $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ addition on the phase transition of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ system was similar to that of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system. It is interesting to note that the phase transition in the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system showed a completely different mechanism from ceramics in the $(\text{Pb},\text{Ba})\text{ZrO}_3$ and $\text{PbZrO}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system.

The annealing process was selected to improve the dielectric properties of $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics. After annealing, a huge increase of up to 200% occurred in the dielectric constants, especially near the temperature of maximum dielectric constant. Transition from the tetragonal to rhombohedral phase was clearly seen from the XRD profile peak, splitting with increasing annealing time. From these results, it is clear that the composition of the annealed sample shifted very close to the MPB. The improvement in dielectric properties in $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics shows the same behavior as ceramics in the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system.

1. Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติจำนวนทั้งสิ้น 18 เรื่อง

1. **Naratip Vittayakorn** “Synthesis and a crystal structural study of microwave dielectric zirconium titanate ($ZrTiO_4$) powders via a mixed oxide synthesis route” *Journal of ceramic processing research Volume 7, Issue 4, Pages 288-291 2006*, Impact factor = 0.534
2. **Naratip Vittayakorn** “Structural, Phase Transition and Ferroelectric Properties of $Pb(Zr_{1/2}Ti_{1/2})O_3$ – $Pb(Co_{1/3}Nb_{2/3})O_3$ Ceramic Synthesized by High-temperature Solid-state Reaction Technique” *Journal of Applied Sciences Research, 3(1): 30-33, 2007*
3. **Naratip Vittayakorn**, Gobwute Rujijanagul and David P. Cann “Investigation of the influence of thermal treatment on the morphologies, dielectric and ferroelectric properties of PZT-based ceramics” *Journal of Alloys and Compounds, Volume 440, Issues 1-2, 16 August 2007, Pages 259-264*, Impact factor = 1.25
4. **Naratip Vittayakorn**, Gobwute Rujijanagul and David P. Cann “The improvement in dielectric and ferroelectric performance of PZT–PZN ceramics by thermal treatment” *Current Applied Physics, Volume 7, Issue 5, July 2007, Pages 582-585* Impact Factor 2006 = 1.184
5. **Naratip Vittayakorn**, Theerachai Bongkarn and Gobwute Rujijanagul “Phase transition, mechanical, dielectric and piezoelectric properties of perovskite $(Pb_{1-x}Ba_x)ZrO_3$ ceramics” *Physica B: Condensed Matter, Volume 387, Issues 1-2, 1 January 2007, Pages 415-420*, Impact Factor = 0.872
6. **Naratip Vittayakorn** and David P. Cann “Preparation and ferroelectric properties of pyrochlore-free $Pb(Ni_{1/3}Nb_{2/3})O_3$ -based solid solutions” *Applied physics A- Materials Science& processing 86 (3): 403-408 MAR 2007* Impact factor 2006 = 1.739
7. **Naratip Vittayakorn**, Gobwute Rujijanagul and David P. Cann “The effect of post-sintering annealing induced extrinsic dielectric properties in PZT-PZN ceramics” *Ferroelectrics 348: 496-507 2007* Impact factor = 0.459
8. **Naratip Vittayakorn** and Supamas Wirunchit “Perovskite formation, dielectric and ferroelectric properties of $PbZrO_3$ – $Pb(Ni_{1/3}Nb_{2/3})O_3$ ceramics via a columbite precursor synthetic route” *Smart Mater. Struct. 16 No 3 (June 2007) 851-857* Impact factor = 1.51

9. **Naratip Vittayakorn** "Effects of strontium on the characteristics of $Pb(Zr_{1/2}Ti_{1/2})O_3$ - $Pb(Zn_{1/3}Nb_{2/3})O_3$ ceramics" *Phase transitions*, Volume 80, Issue 8, August 2007, Page 813-821, Impact Factor 2006 : 0.830
10. **Naratip Vittayakorn**, Supamas Wirunchit Sakda Trisak, RangSan Muanglua and Susasak Niemcharoem "Perovskite phase formation, Phase transformations and electrical properties of lead nickel niobate-lead zirconate ceramics" *Ferroelectrics*, Volume 358, November 2007 , pages 42 – 48 Impact factor 0.459
11. **Naratip Vittayakorn** and Theerachai Bongkarn "Influence of Strontium Doping on the Ferroelectric and Piezoelectric Properties of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics" *Ferroelectrics*, Volume 358, November 2007 , pages 54 – 59 Impact factor 0.459
12. Chien-Chih Huang, David P. Cann, Xiaoli Tan and **Naratip Vittayakorn** "Phase transitions and ferroelectric properties in $BiScO_3$ - $Bi(Zn_{1/2}Ti_{1/2})O_3$ - $BaTiO_3$ solid solutions" *Journal of Applied Physics*, 102, 044103 (2007) Impact Factor 2.498
13. G. Rujijanagul and **N. Vittayakorn** "Influence of fabrication processing on phase transition and electrical properties of $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ - $0.2Pb(Ni_{1/3}Nb_{2/3})O_3$ ceramics" *Current Applied Physics*, Volume 8, Issue 1, January 2008, Pages 88-92, Impact Factor 2006 = 1.184
14. **Naratip Vittayakorn**, Supamas Wirunchit, Sakda Traisak, Rattikorn Yimnirun and Gobwut Rujijanagul "Development of Perovskite and Phase Transition in Lead Cobalt Niobate Modified Lead Zirconate Titanate System" *Current Applied Physics*, Volume 8, Issue 2, March 2008, Pages 128-133, Impact Factor 2006 = 1.184
15. **Naratip Vittayakorn** and Tawee Tunkasiri "Phase Transition and Dielectric Properties of Polycrystalline Lead Zirconate Titanate-Lead Cobalt Niobate" *Phys. Scr.* T129 199-204 doi:10.1088/0031-8949/2007/T129/045 Impact Factor 2006 = 1.161
16. Anurak Prasatkhetragarn, **Naratip Vittayakorn**, Supon Ananta, Rattikorn Yimnirun and David P. Cann, "Synthesis, dielectric and ferroelectric properties of ceramics in the $(1-x)Pb(Zr_{1/2}Ti_{1/2})O_3$ – $(x)Pb(Co_{1/3}Nb_{2/3})O_3$ system" *Japanese Journal of Applied Physics*, Part 1: Regular Papers, Short Notes & Review Papers -- February 25, 2008 - Volume 47, Issue 2, pp. 998-1002 Impact factor 1.22
17. Muangjai Unruan, **Naratip Vittayakorn**, Rewadee Wongmaneerung, Anurak Prasatkhetragarn, Supon Ananta and Rattikorn Yimnirun "Fabrication and Electrical Properties of $Pb(Co_{1/3}Nb_{2/3})O_3$ Ceramics" *Ceramic International*, In Press, Corrected Proof, Available online 23 February 2008, Impact Factor 2006 = 1.128

18. Muangjai Unruan, **Naratip Vittayakorn**, Rewadee Wongmaneeruang, Anurak Prasatkhetragarn, Supon Ananta and Rattikorn Yimnirun, "Synthesis and Properties of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Ceramics" *J. Alloys and Compounds In Press, Corrected Proof, Available online 22 November 2007* Impact Factor = 1.25

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์

โครงการวิจัยนี้ได้สร้างองค์ความรู้ใหม่เกี่ยวกับเซรามิกที่มี PZT เป็นองค์ประกอบหลัก โดยค้นพบสัดส่วนที่เหมาะสมอย่างสัดส่วนที่สามารถประยุกต์ใช้ในเชิงพาณิชย์ได้ เป็นองค์ความรู้ที่น่าสนใจของอุตสาหกรรมได้เป็นอย่างดี

- เชิงนโยบาย

ผลงานที่ได้จากโครงการวิจัยนี้ได้ ใช้เป็นตัวกำหนดทิศทางงานวิจัยที่จะทำต่ออยู่ในอนาคต และใช้เป็นส่วนช่วยในการกำหนดหัวข้อวิจัยในมุมมองอื่นๆ สำหรับนักศึกษา และผู้ร่วมวิจัยในสาขาอื่นๆ ซึ่งเป็นประโยชน์ในการเขื่อมโยงองค์ความรู้ให้เกิดหลากหลายมากขึ้น

- เชิงสาธารณะ

โครงการวิจัยนี้ได้เกิดเครือข่ายงานวิจัยกับหลากหลายภาคส่วนด้วยกันทั้งในองค์กรภายในมหาวิทยาลัยและองค์กรนอกรัฐวิทยาลัย เช่น คุณ รังสรรค์ เมืองเหลือ จาก ศูนย์วิจัยอิเล็กทรอนิกส์ คณะวิศวกรรมศาสตร์ สจล. รองศาสตราจารย์ ดร. กอบวุฒิ รุจิจนาภุล และผู้ช่วยศาสตราจารย์ ดร. รัตติกร ยิ่มนิรัณย์ จากห้องปฏิบัติการอิเล็กโทรเซรามิก จากภาควิชาพิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ความร่วมมือกับ ดร. พิทักษ์ เหลารัตนกุล นักวิจัยประจำศูนย์โลหะและวัสดุแห่งชาติ (MTEC) โดยผู้วิจัยได้ส่งนักศึกษาปริญญาโทร่วมโครงการทุนสถาบันบัณฑิตวิทยาศาสตร์และเทคโนโลยีไทย (Thailand Graduate Institute of Science and Technology, TGIST) ของสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ กระทรวงวิทยาศาสตร์และเทคโนโลยี ผู้วิจัยได้มีโครงการความร่วมมือกับนักวิจัยต่างประเทศหลายท่าน อาทิ เช่น Prof. Dr. David P. Cann จากห้องปฏิบัติการอิเล็กโทรเซรามิก มหาวิทยาลัยโอลรอกอน ประเทศสหรัฐอเมริกา Prof. Dr. Xiaoli Tan จากห้องปฏิบัติการเฟร์โรอิเล็กตริก มหาวิทยาลัยไอโวอา ประเทศสหรัฐอเมริกา รวมถึงงานวิจัยเกี่ยวกับเพียงโซ่อิเล็กตริกไร้สารตะกั่วกับ Prof. Dr. Tadashi Takenaka จาก Tokyo University of Science ประเทศญี่ปุ่น

- เชิงวิชาการ

ผลงานวิจัยที่เกิดขึ้นบางส่วนนำไปประยุกต์ใช้สอนในกระบวนวิชา วัสดุเพิ่โซ่อิเล็กทริก และเฟริโออิเล็กทริก ในระดับบัณฑิตศึกษา นอกจากนั้นประสบการณ์ที่ได้จากการวิจัยยังสามารถนำไปประยุกต์ อบรม เจ้าหน้าที่และ ผู้ช่วยวิจัยให้มีทักษะและความชำนาญมากยิ่งขึ้น ก่อให้เกิดองค์ความรู้ในองค์กร ผลงานวิจัยส่วนใหญ่สามารถตีพิมพ์ในวารสารระดับนานาชาติ รวมไปถึงการเสนอผลงานวิจัยในงานประชุมวิชาการที่เกี่ยวข้องทั้งในระดับชาติ และนานาชาติ อีกทั้งยังเกิดนักวิจัยรุ่นใหม่ขึ้น

3. อื่น ๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

ผลงานตีพิมพ์ในวารสารระดับชาติจำนวนทั้งสิ้น 4 เรื่อง

1. **Naratip Vittayakorn**, Theerachai Bongkarn “Preparation of Zirconium Titanate ($ZrTiO_4$) powders via mixed oxide synthesis route” *Journal of Electron Microscopy Society of Thailand* **20(1)**: 83-84 (2006)
2. **Naratip Vittayakorn**, Chompoonuch Puchmark, Theerachai Bongkarn “Phase and Morphology Investigation of PZT-based powders prepared by Columbite-(Wolframite) Precursor” *Journal of Electron Microscopy Society of Thailand* **20(1)**: 85-86 (2006)
3. Suwanna Somjaroen Wanwilai Chaisan, and **Naratip vittayakorn** “Synthesis of perovskite ceramics PZT-PCoN via high temperature solid state and their dielectric properties” *Journal of Microscopy of Thailand* 2007, 21(1): 346-350
4. **Naratip Vittayakorn** and Suwanna Somjaro “Phase transition, ferroelectric properties and morphology of PZT-PCoN ceramic synthesized by high temperature solid-state reaction technique” *Journal of Microscopy of Thailand* 2007, 21(1): 341-345

การนำเสนอผลงานวิจัยในงานประชุมวิชาการทั้งสิ้น 11 เรื่อง

1. Suwanna Somjaroen and **Naratip Vittayakorn** “Phase formation of microwave dielectric zirconium titanate powders via a mixed oxide synthesis route” Asian Symposium on Materials and Processing 2006 (ASMP 2006) Bangkok, Thailand, November 9-10 2006
2. **Naratip Vittayakorn** and Suwanna Somjaroen “Synthesis, Structural and Phase transition of Lead Cobalt Niobate modified Lead Zirconate Titanate System” the 5th Asian Meeting on Electroceramics (AMEC-5) Bangkok, Thailand, December 10-14 2006

3. **Naratip Vittayakorn** and Suwanna Somjaroen "Phase transition, ferroelectric properties and morphology of PZT-PCoN ceramic synthesized by high-temperature solid-state reaction technique" The 24th Annual Conference Microscopy Society of Thailand, Thailand Bangkok, Thailand, February 14-16 2007
4. Wanwilai Chaisan and **Naratip Vittayakorn** "Two-state sintering of PZT ceramic" The 24th Annual Conference Microscopy Society of Thailand, Thailand Bangkok, Thailand, February 14-16 2007
5. Suwanna Somjaroen, Wanwilai Chaisan and **Naratip Vittayakorn** "Synthesis of perovskite ceramics PZT-PCoN via high-temperature solid state reaction and their dielectric properties" The 24th Annual Conference Microscopy Society of Thailand, Thailand Bangkok, Thailand, February 14-16 2007
6. **Naratip Vittayakorn** and Suwanna Somjaroen "Phase transition and dielectric properties of polycrystalline lead cobalt niobate lead zirconate titanate" The 2nd International Symposium on Functional Materials. 16-19 May 2007, HNA Resort Huagang Hangzhou, Hangzhou, P.R. China
7. David P. Cann, Chien-Chih Huang, Anurak Prasatkhetragarn, and **Naratip Vittayakorn**, "Phase Transitions and Dielectric Properties in $\text{NaNbO}_3\text{-Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Perovskite Solid Solutions," *Proceedings of the 13th US-Japan Seminar on Dielectric and Piezoelectric Ceramics*, Awaji-shima, Japan, (2007).
8. M. Sutapun and **N. Vittayakorn** "Phase and Morphology Investigation of Lead-Free Potassium Sodium Niobium – Bismuth Zinc Titanate Ceramics" The 25th Annual Conference Microscopy Society of Thailand, Thailand, January 9-11 2008
9. W. Banlue R. Muanghlua and **N. Vittayakorn** "Microstructure and Dielectric Properties of Lead Zirconate Titanate – Lead Zinc Tantalate System" The 25th Annual Conference Microscopy Society of Thailand, Thailand, January 9-11 2008
10. W. Kunadirek, N. Chaiyo, R. Muanghlua, N. Phongphanchanthra, A. Ruangphanit and **N. Vittayakorn** "Microstructure and Microwave Dielectric Characteristics of $\text{Co}_4\text{Nb}_2\text{O}_9$ Powders" The 25th Annual Conference Microscopy Society of Thailand, Thailand, January 9-11 2008
11. N. Chaiyo, A. Ruangphanit and **N. Vittayakorn** "Synthesis, characterization and microwave dielectric properties of CoNb_2O_6 Powders" The 25th Annual Conference Microscopy Society of Thailand, Thailand, January 9-11 2008

Executive Summary

เซรามิกเพียโซอิเล็กทริกที่ใช้ในอุตสาหกรรมอิเล็กทรอนิกส์ขั้นสูงส่วนใหญ่นิยมใช้สารประกอบเลดเซอร์โคเนตไทเทเนตเป็นองค์ประกอบหลัก โดยมุ่งเน้นที่จะพัฒนาเซรามิกกลุ่มดังกล่าวให้มีสมบัติทางไฟฟ้าที่โดดเด่น โดยการเจือ หรือทำสารละลายของแข็งกับเซรามิกตัวอื่นๆ งานวิจัยนี้ได้ทำการศึกษาการทำสารละลายของแข็งของเซรามิก เลดเซอร์โคเนตไทเทเนต ($\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$; PZT) กับ เซรามิก เลดโคบอลไนโอบেต ($\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PCoN) ซึ่งมีโครงสร้างเพอร์รูบสไกร์ดเหมือนกัน โดยศึกษาหาอัตราส่วนที่เหมาะสม ในการเกิดสารละลายของแข็ง และศึกษากระบวนการเตรียมผงและประดิษฐ์เซรามิกให้มีความหนาแน่นสูง และมุ่งเน้นศึกษาหาอัตราส่วนที่เหมาะสมที่จะเกิดแนวรอยต่อเฟสในเซรามิกดังกล่าว และยืนยันแนวรอยต่อเฟสที่เกิดขึ้นจากการศึกษาสมบัติทางไฟฟ้าประกอบ โดยศึกษาเปรียบเทียบกับเซรามิกในระบบที่มีโครงสร้างเพอร์รูบสไกร์ดเหมือนกันหลายตัวเช่น PZT กับ เซรามิก เลดซิงค์ไนโอบেต ($\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PCoN) PZT กับ เซรามิก เลดนิกเกิลไนโอบেต ($\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PNN) เลดแบร์เยียมเซอร์โคเนต [$(\text{Pb},\text{Ba})\text{ZrO}_3$] เลดเซอร์โคเนต (PbZrO_3) กับ PNN เป็นต้น

โดยงานวิจัยเลือกศึกษากระบวนการเตรียมผง 2 วิธีด้วยกันคือ การเตรียมแบบปฏิกิริยาสถานะของแข็ง (solid state reaction method) และ การเตรียมแบบ โคลัมไบร์ (columbite methods) จากการวิจัยพบว่าเซรามิก PZT-PCoN นั้นมีการเปลี่ยนเฟสที่คล้ายกับเซรามิก PZT-PZN และ PZT-PNN โดยที่สัดส่วน PZT ที่สูงเซรามิกมีโครงสร้างแบบ เททระโภโนล และเปลี่ยนเป็น รอมโบฮีดโรล ที่สัดส่วน 0.7PZT-0.3PCoN ซึ่งเป็นสัดส่วนที่ใกล้เคียงกับเซรามิกในระบบ PZT-PZN และ PZT-PNN โดยสัดส่วนดังกล่าวผู้วิจัยพบว่าเป็นสัดส่วนของแนวรอยต่อเฟส โดยผู้วิจัยยืนยันจากการวัดสมบัติทางไฟฟ้า และเมื่อพิจารณาโครงสร้างพบว่า เมื่อสัดส่วน PCoN เพิ่มสูงขึ้นเซรามิกอุณหภูมิในการเปลี่ยนเฟสลดต่ำลงซึ่งข้อมูลสอดคล้องกับเซรามิกในระบบ PBZ และ PZ-PNN และพบว่าสมบัติทางไฟฟ้าของเซรามิกสามารถปรับปรุงได้ด้วยวิธีการอบอ่อน (annealing) โดยเซรามิกที่ผ่านการอบอ่อนมีค่าคงที่ไดอิเล็กทริกเพิ่มสูงขึ้นถึง 200% ซึ่งได้ผลเช่นเดียวกันในเซรามิก PZT-PZN และ PZT-PNN การเพิ่มขึ้นของค่าคงที่ไดอิเล็กทริกผู้วิจัยเชื่อว่าเกิดจากการเลื่อนของสัดส่วนเข้าใกล้แนวรอยต่อเฟส

สารบัญ

	หน้า
กิตติกรรมประกาศ	๑
บทคัดย่อภาษาไทย	๒
บทคัดย่อภาษาอังกฤษ	๓
Output จากโครงการ	๔
Executive Summary	๘
สารบัญ	๙
สารบัญตาราง	๑๒
สารบัญรูป	๑๓
บทนำ	
1.1 ความเป็นมา	1
1.2 วัตถุประสงค์	4
1.3 ขอบเขตของการวิจัย	4
1.4 ผลที่คาดว่าจะได้รับ	5
ทฤษฎีและหลักการ	
2.1 โครงสร้างเพอร์โฟสไกต์ (perovskite structure)	7
2.2 ความเสถียรของโครงสร้างเพอร์โฟสไกต์	9
2.3 พิโซอิเล็กทริก (piezoelectric)	12
2.4 เฟอร์โรอิเล็กทริก (ferroelectrics)	14
2.5 โครงสร้างเพอร์โฟสไกต์ในสารเฟอร์โรอิเล็กทริกแบบปกติ	15
2.6 โครงสร้างเพอร์โฟสไกต์ในสารเฟอร์โรอิเล็กทริกแบบบริแด็กซ์อร์	20
2.7 มอร์โฟทรอปิกเฟสบาวเดรี (morphotropic phase boundary; MPB)	25
2.8 เดดเซอร์โคเนต ไทด์เทเนต ($PbZr_{1-x}Ti_xO_3$)	28
2.9 เดดโคลบอลต์ไนโอดิบต ($Pb(Co_{1/3}Nb_{2/3})O_3$)	34
2.10 การเตรียมผงจากปฏิกิริยาสถานะของแข็ง	36
2.11 กระบวนการเผาชิ้นเตอร์เชรามิก	37
2.12 การปรับปรุงประสิทธิภาพเชรามิกด้วยการอบอ่อน (annealing)	39
วิธีดำเนินการวิจัย	
3.1 สารเคมี	43
3.2 อุปกรณ์	43

สารบัญ (ต่อ)

	หน้า
3.3 การเตรียมพงเลดเชอร์โโคเนตไทยเทเนต-เลดโคลบอลต์ในโอบেต	44
3.4 กระบวนการเตรียมเชรามิก	46
3.5 การอบอ่อน (annealing)	48
3.6 การตรวจสอบพงสารตัวอย่าง	49
3.7 การตรวจสอบเชรามิก	52
3.8 การตรวจสอบโครงสร้างจุลภาค	44
3.9 การตรวจสอบสมบัติโดยเล็กทริก	45
ผลการทดลองและอภิปรายผล	
4.1 การตรวจสอบพงสารตัวอย่าง	55
4.1.1 การตรวจสอบพฤติกรรมทางความร้อน	55
4.1.2 การตรวจสอบองค์ประกอบและโครงสร้างผลึก	56
4.2 การตรวจสอบเชรามิก	61
4.2.1 การตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก	61
4.2.2 การตรวจสอบทางสัณฐานวิทยา	64
4.2.3 การตรวจสอบสมบัติทางไฟฟ้า	67
4.3 การตรวจสอบเชรามิกหลังผ่านการอบอ่อน	74
4.3.1 การตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก	74
4.3.2 การตรวจสอบทางสัณฐานวิทยา	78
4.3.3 การตรวจสอบสมบัติทางไฟฟ้า	86
สรุปและข้อเสนอแนะ	
5.1 สรุปผลการทดลอง	104
5.2 ข้อเสนอแนะ	106
เอกสารอ้างอิง	108

สารบัญตาราง

หน้า

ตาราง 1.1 แสดงสมบัติทางกายภาพและสมบัติทั่วไปของ $Pb(Zr_{1/2}Ti_{1/2})O_3$ และ $Pb(Co_{1/3}Nb_{2/3})O_3$	3
ตาราง 2.1 ความแตกต่างระหว่างเฟอร์โรอิเล็กทริกแบบปกติกับแบบบรีแล็กเซอร์ [14]	22
ตาราง 4.1 แสดงค่าความหนาแน่นของเซรามิก $(1-x)PZT - xPCoN$	64
ตาราง 4.2 แสดงอุณหภูมิที่ให้ค่าคงที่ไดอิเล็กทริกสูงสุด (T_m) และค่าคงที่ไดอิเล็กทริกที่อุณหภูมิห้องและที่ T_m สำหรับทุกสัดส่วน	71
ตาราง 4.3 ค่าพารามิเตอร์ของการกระจายเทียบกับสัดส่วนของ PCoN	73
ตาราง 4.4 แสดงค่าความหนาแน่นและขนาดเกรนเฉลี่ยของเซรามิก 0.7PZT-0.3PCoN	78
ตาราง 4.5 แสดงพารามิเตอร์ต่างๆ ที่ความถี่ 100 kHz ของเซรามิก 0.7PZT-0.3PCoN	103

สารบัญรูป

	หน้า
รูป 2.1 โครงสร้างเพอร์อฟฟ์ไกต์แบบอุดมคติ SrTiO_3 [13]	8
รูป 2.2 โครงสร้างสี่เหลี่ยมลูกบาศก์แบบชิดกันของ SrTiO_3 [14]	8
รูป 2.3 โครงสร้างเพอร์อฟฟ์ไกต์ [7]	9
รูป 2.4 แผนภาพความสัมพันธ์ระหว่างความแตกต่างของค่าความสามารถในการดึงอิเล็กตรอนเฉลี่ยระหว่างไอออนบากและทอต้าเรนเซ่แฟคเตอร์ [6]	12
รูป 2.5 ก.) ปราภูภารณ์พิโซอิเล็กทริกโดยตรง	13
ข.) ปราภูภารณ์พิโซอิเล็กทริกโดยอ้อม	
รูป 2.6 ประโยชน์การใช้งานของวัสดุกุ่มพิโซอิเล็กทริก [9]	13
รูป 2.7 การจัดแบ่งกุ่มของวัสดุอิเล็กทรอนิคด้วยการใช้สมมาตรของวัสดุ [11]	15
รูป 2.8 โครงสร้างเพอร์อฟฟ์ไกต์ของสาร BaTiO_3 [11]	16
รูป 2.9 แผนภาพแสดง (ก) ตำแหน่งของไอออนภายในโครงสร้างของสาร BaTiO_3 ที่มีหน่วยเซลล์เป็นแบบเทหงะ โภนอล และ (ข) ลักษณะการเกิดโพลาไรเซชันขึ้นมาในหน่วยเซลล์ดังกล่าว [12]	18
รูป 2.10 ความสัมพันธ์ระหว่าง (ก) ขนาดของหน่วยเซลล์และ (ข) ค่าคงที่ไดอิเล็กทริกของสาร BaTiO_3 กับการเปลี่ยนแปลงอุณหภูมิ [12]	19
รูป 2.11 แสดงการเรียงองค์ประกอบทางเคมีในระดับนาโน (ก) $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ และ (ข) $\text{Pb}(\text{Sc}_{1/2}\text{Ta}_{1/2})\text{O}_3$ [13]	20
รูป 2.12 (a) พฤติกรรมไดอิเล็กทริกสำหรับรีเล็กเซอร์เฟอร์โรอิเล็กทริก ($0.93\text{PMN}:0.07\text{PT}$) ที่ 1 kHz , 10 kHz และ 100 kHz และเฟอร์โรอิเล็กทริกแบบปกติ (BaTiO_3) ที่ 1 kHz	21
(b) ฮิสเทอเรซิสใน PMN เทียบกับอุณหภูมิ	
(c) พฤติกรรมไดอิเล็กทริกและโพลาไรเซชันสำหรับ PMN เทียบกับอุณหภูมิ [13]	
รูป 2.13 การแบ่งกุ่มของเพอร์อฟฟ์ไกต์แบบบีรีเล็กเซอร์ [5]	23
รูป 2.14 การเรียงตัวขององค์ประกอบในตำแหน่ง B ของโครงสร้าง เพอร์อฟฟ์ไกต์ [5]	24
รูป 2.15 แสดงสมบัติทางไฟฟ้าที่แตกต่างกันของโครงสร้างเพอร์อฟฟ์ไกต์ที่ไอออนตำแหน่ง B ที่แตกต่างกัน [5]	25
รูป 2.16 แผนภาพวัสดุของสารละลายนองแข็งในระบบเซรามิก PMN-PT [15]	26
รูป 2.17 ผลของอุณหภูมิต่อค่าคงที่ไดอิเล็กทริกใน $0.9\text{PMN}-0.1\text{PT}$ [13]	27

สารบัญ (ต่อ)

	หน้า
รูป 2.18 การเปลี่ยนแปลงอิเล็กทรอสติกที่ F_x , เมื่อมีสนามในแนว E_3 ใน 0.9PMN-0.1PT [13]	27
รูป 2.19 ความสัมพันธ์ระหว่างความเครียดและสนามไฟฟ้าของวัสดุต่างๆ [13]	28
รูป 2.20 โครงสร้างแบบเพอร์อฟส์ไกต์สำหรับ PZT [7]	28
รูป 2.21 แผนภาพวัสดุภาคของสารละลายของแข็งระหว่าง PZ กับ PT [7]	29
รูป 2.22 แผนภาพวัสดุภาคสำหรับ 3 องค์ประกอบของ $PbO-TiO_2-ZrO_2$ ที่ $1100^{\circ}C$ [18]	30
รูป 2.23 รูปแบบการเลี้ยงเบนรังสีเอกซ์ของตัวอย่างเซรามิก $(1-x)PZN-xPZT$ ที่เผาชิ้นเตอร์ที่ $1100^{\circ}C$ (a) $x = 0.2$ (b) $x = 0.3$ (c) $x = 0.4$ (d) $x = 0.5$ (e) $x = 0.6$ (f) $x = 0.7$ [24]	32
รูป 2.24 ความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกกับอุณหภูมิของเซรามิก $(1-x)PZN-xPZT$ โดย $x = 0.4, 0.5, 0.6$ และ 0.7 [25]	32
รูป 2.25 ความสัมพันธ์ระหว่างเปอร์เซ็นต์เฟสเพอร์อฟส์ไกต์กับอุณหภูมิในการแคลไชน์สำหรับเซรามิกส์ $xPZN-(1-x)PZT$ โดย (a) วิธีโคลอมไบต์ (b) วิธีดึงดิม [3]	33
รูป 2.26 แผนภาพวัสดุภาคของ $xPZT-(1-x)PNN$ โดย $x = 0.4-0.9$ [3]	34
รูป 2.27 เฟสเปลกปломที่แทรกอยู่ในโครงสร้าง [24]	35
รูป 2.28 ความสัมพันธ์ระหว่างอุณหภูมิกับค่าคงที่ไดอิเล็กทริก (ϵ) และค่าการสูญเสียทางไดอิเล็กทริก ($\tan \delta$) สำหรับผลึกเชิงเดี่ยวของ PCNT64/36 ที่ความถี่ต่างๆ ในระหว่างการให้ความร้อน [2]	35
รูป 2.29 (ก) การซินเตอร์ช่วงเริ่มต้น ทรงกลมสัมผัสกัน (ข) ช่วงสุดท้ายของการซินเตอร์ช่วงเริ่มต้น ทรงกลมเริ่มเชื่อมติดกัน (ค) การซินเตอร์ช่วงกลาง เกรนเปลี่ยนรูปร่าง (ง) การซินเตอร์ช่วงสุดท้าย รูพรุนเป็นแบบเททระอีครอต [31]	37
รูป 2.30 (ก) การซินเตอร์ช่วงเริ่มต้น (ข) การซินเตอร์ช่วงกลาง (ค) การซินเตอร์ช่วงสุดท้ายเมื่อ (ก-1) อนุภาคผงเริ่มต้น (ก-2) มีการจัดเรียงตัวใหม่ (ก-3) การเกิดก่อ (ข-1) มีการเติบโตของก่อและเกิดการหดตัวเชิงปริมาตร (ข-2) ขอบของเกรนยาวขึ้น (ข-3) คงตัวมากขึ้น ขอบของเกรนยาวยิ่งขึ้น มีการหดตัวและขยายขนาดของเกรน (ค-1) เกรนโตขึ้นพร้อมทั้งมีรูพรุนเกิดขึ้น (ค-2) เกรนโตขึ้นแต่ความพรุนลดลง (ค-3) เกรนโตพร้อมทั้งรูพรุนถูกกำจัดออกไป [31]	39
รูป 2.31 แสดงความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกและค่าตัวประกอบสูญเสียทางไดอิเล็กทริก (dielectric loss) กับอุณหภูมิของ PZN-BT-PT ก่อนการอบอ่อน และหลังการอบอ่อนที่อุณหภูมิต่างๆ [33]	41

สารบัญ (ต่อ)

	หน้า
รูป 2.32 ค่าคงที่ไดอิเล็กทริกเทียบกับอุณหภูมิของ PBZT เมื่อเวลาในการอบอ่อนต่างกัน [35]	42
รูป 3.1 แผนผังการเตรียมผงเดคเซอร์โโคเนต ไทเทเนต-เดด โคลเบต ในโอดเบต	46
รูป 3.2 การจัดเรียงชั้นงานลงในครุชิเบล	47
รูป 3.3 แผนผังการเผาชินเตอร์	47
รูป 3.4 แผนภูมิแสดงการอบอ่อน (โดย T_c คืออุณหภูมิที่ใช้ในการอบอ่อน)	48
รูป 3.5 เครื่อง Perkin Elmer Differential Thermal Analyzer DTA 7 [37]	49
รูป 3.6 การเลี้ยวเบนของรังสีเอ็กซ์ [38]	50
รูป 3.7 เครื่อง X-ray diffractometer รุ่น D8 Advance [39]	51
รูป 3.8 กล้องจุลทรรศน์อิเล็กตรอนแบบส่อง粒粒 ผลิตโดยบริษัท LEO รุ่น LEO 1455 VP [40]	53
รูป 3.9 เครื่อง LCR meter [41]	54
รูป 4.1 กราฟ DTA-TG ของผงสารตัวอย่าง PZT-PCoN	55
รูป 4.2 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.7PZT-0.3PCoN ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	56
รูป 4.3 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง PZT ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	57
รูป 4.4 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.9PZT-0.1PCoN ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	58
รูป 4.5 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.8PZT-0.2PCoN ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	58
รูป 4.6 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.6PZT-0.4PCoN ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	59
รูป 4.7 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.5PZT-0.5PCoN ที่ผ่านการเผาเคลือบซึ่งที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง	59
รูป 4.8 ความสัมพันธ์ระหว่างปริมาณของเฟสเพอรอฟสไกต์และอุณหภูมิในการเผาเคลือบซึ่งของ $(1-x)$ PZT- x PCoN	60
รูป 4.9 ความสัมพันธ์ระหว่างอุณหภูมิที่เหมาะสมกับสัดส่วน	61
รูป 4.10 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของเซรามิก $(1-x)$ PZT- x PCoN ที่ค่า x ต่างๆ	62

สารบัญ (ต่อ)

	หน้า
รูป 4.11 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของพีก (2 0 0) ของเซรามิก $(1-x)PZT - xPCoN$ โดยที่ $x = 0.0-0.5$	63
รูป 4.12 โครงสร้างจุลภาคจาก SEM ของพื้นผิวของตัวอย่างที่ $x = 0.1$	65
รูป 4.13 เฟสไฟโรคลอร์ที่พบนพื้นผิวของตัวอย่างที่สัดส่วน $x = 0.5$	66
รูป 4.14 ความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกของ $(1-x)PZT-xPCoN$ กับสัดส่วน	67
รูป 4.15 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.1$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz	68
รูป 4.16 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.2$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz	68
รูป 4.17 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.3$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz	69
รูป 4.18 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.4$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz	69
รูป 4.19 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.5$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz	70
รูป 4.20 ค่าอุณหภูมิในการเปลี่ยนเฟสที่วัดได้ (T_m), ค่า T_m ทางทฤษฎี และค่าคงที่ไดอิเล็กทริก สูงสุด เทียบกับสัดส่วน (x)	72
รูป 4.21 กราฟแสดงความสัมพันธ์ระหว่าง $\ln (K_m / K_{(f,T)})$ กับ $(T-T_m)^2$	73
รูป 4.22 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง	74
รูป 4.23 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของพีก (1 1 1) ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง	76
รูป 4.24 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของพีก (2 0 0) ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง	77
รูป 4.25 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่ไม่ผ่านการอบอ่อน	79
รูป 4.26 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส	80
รูป 4.27 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 900 องศาเซลเซียส	81
รูป 4.28 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 950 องศาเซลเซียส	82
รูป 4.29 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1000 องศาเซลเซียส	83

สารบัญ (ต่อ)

	หน้า
รูป 4.30 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1050 องศาเซลเซียส	84
รูป 4.31 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส	85
รูป 4.32 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz	87
รูป 4.33 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 900 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz	88
รูป 4.34 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 950 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz	89
รูป 4.35 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1000 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz	90
รูป 4.36 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz	91
รูป 4.37 ค่าคงที่ไดอิเล็กทริกและค่าตัวประจุคงการสูญเสียทางไดอิเล็กทริกของเซรามิก ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เทียบกับอุณหภูมิที่ความถี่ 100 Hz	94
รูป 4.38 ค่าคงที่ไดอิเล็กทริกและค่าตัวประจุคงการสูญเสียทางไดอิเล็กทริกของเซรามิก ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เทียบกับอุณหภูมิที่ความถี่ 1 kHz	95
รูป 4.39 ค่าคงที่ไดอิเล็กทริกและค่าตัวประจุคงการสูญเสียทางไดอิเล็กทริกของเซรามิก ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เทียบกับอุณหภูมิที่ความถี่ 10 kHz	96
รูป 4.40 ค่าคงที่ไดอิเล็กทริกและค่าตัวประจุคงการสูญเสียทางไดอิเล็กทริกของเซรามิก ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เทียบกับอุณหภูมิที่ความถี่ 100 kHz	97
รูป 4.41 ค่าคงที่ไดอิเล็กทริกและค่าตัวประจุคงการสูญเสียทางไดอิเล็กทริกของเซรามิก ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เทียบกับอุณหภูมิที่ความถี่ 500 kHz	98
รูป 4.42 ค่าอุณหภูมิในการเปลี่ยนเฟลทีวัล ได (T _m) เทียบกับอุณหภูมิการอบอ่อน ที่ความถี่ 100 kHz	100
รูป 4.43 กราฟความสัมพันธ์ระหว่าง log(T-T _m) กับ log[(ε _m /ε)-1] ตามกฎของ Curie-Weiss ที่ความถี่ 100 kHz	102

บทนำ

1.1 ความเป็นมา

การพัฒนาอุตสาหกรรมด้านต่างๆ ของประเทศไทยมีความยั่งยืนนั้น ควรที่จะพัฒนาให้เป็นไปในลักษณะแบบครบวงจร แต่ในปัจจุบันอุตสาหกรรมต่างๆ นำเข้าชิ้นส่วนมาจากประเทศผู้ผลิตหลัก ไม่ว่าจะเป็นอุตสาหกรรมอิเล็กทรอนิกส์ อุตสาหกรรมยานยนต์ อุตสาหกรรมการเกษตรและการแพทย์ เป็นผลให้การพัฒนาประเทศไทยไม่สามารถเป็นไปตามเป้าหมายได้ การพัฒนาอุตสาหกรรมด้านต่างๆ ที่ก่อรากมา นั้น ในความเป็นจริงแล้วอุตสาหกรรมบางประเภท ยกตัวอย่าง เช่น อุตสาหกรรมทางด้านชิ้นส่วน อิเล็กทรอนิกส์ เช่น ตัวต้านทานและตัวเก็บประจุที่ใช้ทั่วไปนี้ มีการแข่งขันสูงและมีโอกาสค่อนข้างต่ำ ที่ประเทศไทยจะประสบความสำเร็จในตลาดโลก ในขณะที่อุตสาหกรรมที่เน้นตลาดเฉพาะทางนั้นยังมีโอกาสที่เปิดกว้าง เช่น ตัวเก็บประจุ (capacitor) และตัวต้านทานที่ใช้ในวงจรควบคุมในรถยนต์ เช่นเซอร์ (sensor) และทัวเรอทอร์ (actuator) และทرانส์ดิวเซอร์ (transducer) สำหรับในทางการแพทย์ อุปกรณ์ทางการแพทย์นี้เป็นสิ่งที่ได้รับการออกแบบมาเป็นพิเศษ มีความพิถีพิถันในการเลือกใช้วัสดุและเทคโนโลยีในการผลิตที่ซับซ้อน จากที่ได้กล่าวมาทั้งหมด จะเห็นได้ว่าวัสดุที่ใช้ผลิตอุปกรณ์ต่างๆ นั้นมีบทบาทในการสร้างเสริมศักยภาพและขีดความสามารถของอุปกรณ์ ดังนั้น จึงควรพัฒนาสมบัติของวัสดุเหล่านี้ให้มีประสิทธิภาพมากยิ่งขึ้น ซึ่งวัสดุที่เป็นองค์ประกอบของอุปกรณ์ อิเล็กทรอนิกส์เหล่านี้ ส่วนใหญ่คือเซรามิกบริสุทธิ์ที่เป็นสารพิโซิเล็กทริกที่แสดงสมบัติเพอร์โโรอิเล็กทริกทั้งสิ้น เนื่องจากมีสมบัติทางไฟฟ้าที่เหมาะสม คือ มีค่าคงที่ไดอิเล็กทริกที่สูง (high dielectric constant) โดยค่าที่จะเป็นสมบัติเฉพาะตัวของสารแต่ละตัว ค่าคงที่ไดอิเล็กทริกนี้เป็นสมบัติหลักที่จะถูกพิจารณาเมื่อนำไปประยุกต์ใช้งาน เนื่องจากหากวัสดุให้ค่าคงที่ไดอิเล็กทริกที่สูงกว่าในขณะที่มีขนาดเท่ากันแล้ว จะสามารถนำไปประยุกต์ใช้งานได้หลากหลายมากกว่า อีกทั้งเป็นการลดขนาดของอุปกรณ์อิเล็กทรอนิกส์ให้เล็กลงได้ โดยที่มีประสิทธิภาพคงเดิมหรือมากกว่าเดิม

สารเฟอร์โรอิเล็กทริกสามารถแบ่งออกเป็น 3 กลุ่มหลัก คือ เฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) รีแลกเซอร์เฟอร์โรอิเล็กทริก (relaxor ferroelectric) และสารพิโซิเล็กทริกที่แสดงสมบัติแอนติเฟอร์โรอิเล็กทริก (anti ferroelectric) ซึ่งสารเฟอร์โรอิเล็กทริกเหล่านี้มีสมบัติแตกต่างกันไปขึ้นอยู่กับประเภทของสาร ซึ่งมีความโดยเด่นในแต่ละประเภท

เลดเซอร์โโคเนตไทเทเนต ($Pb(Zr_{1-x}Ti_x)O_3$; PZT) ถือได้ว่าเป็นวัสดุเฟอร์โรอิเล็กทริกที่ได้รับความนิยมอย่างสูง ทั้งในเรื่องของการศึกษาค้นคว้าเชิงวิชาการ และการประยุกต์ในการใช้งานเชิงอุตสาหกรรม โดยเฉพาะอย่างยิ่งในอุปกรณ์อิเล็กทรอนิกส์ประเภทต่างๆ เนื่องจาก PZT เป็นสารที่แสดงสมบัติพิโซิเล็กทริกที่โดยเด่น สามารถเปลี่ยนพลังงานกลไปเป็นพลังงานไฟฟ้าได้สูงถึงร้อยละ 45-55 โดยขึ้นกับประเภทของสารที่เลือกใช้ ทั้งนี้ PZT ยังมีอุณหภูมิคิวท์ที่สูง มากกว่า 230-490 องศา

เซลเซียส ขึ้นกับอัตราส่วน Zr:Ti โดยอัตราส่วนที่แสดงคุณสมบัติพิเศษอิเล็กทริกที่โดดเด่นได้แก่ อัตราส่วน Zr:Ti มีค่าเท่ากับ 0.52:0.48 ซึ่งเป็นบริเวณแนวรอยต่อเฟส (morphotropic phase boundary; MPB) ยิ่งไปกว่านั้นการเตรียมเซรามิก PZT ให้มีความบริสุทธิ์และความหนาแน่นสูงนั้นสามารถเตรียมได้ไม่ยุ่งยากและสารตั้งต้นในการเตรียมมีราคาถูกเหมาะสมใช้ในอุตสาหกรรมอย่างไรก็ตาม อุตสาหกรรมอิเล็กทรอนิกส์มีความพิเศษมาโดยตลอดที่จะคิดค้นหาวิธีการเพิ่มประสิทธิภาพของ อุปกรณ์อิเล็กทรอนิกส์ต่างๆ ให้ดียิ่งขึ้น ควบคู่ไปกับความพิเศษในการลดขนาดของอุปกรณ์เหล่านี้ ให้เล็กลงไปเรื่อยๆ โดยยังคงสามารถรักษาประสิทธิภาพไว้ให้ได้เท่าเดิมและหากสามารถเพิ่ม ประสิทธิภาพให้มากกว่าเดิมได้ก็ยิ่งดี ดังนั้นจึงมีความพิเศษอย่างสูงที่จะปรับปรุงสมบัติของ PZT ให้มีประสิทธิภาพสูงขึ้น จากงานวิจัยที่ผ่านมาพบว่า หากทำการผสมสารเฟอร์โรอิเล็กทริก PZT เข้า กับสารรีเล็กเซอร์เฟอร์โรอิเล็กทริก สมบัติของสารละลายของแข็งดังกล่าวที่ได้ออกมาจะมีสมบัติทาง ไฟฟ้าที่สูงกว่า PZT บริสุทธิ์ เช่น PZT-PZN PZT-PMN และ PZT-PNN เป็นต้น

เลด โคลเบต ใน โอลเบต ($Pb(Co_{1/3}Nb_{2/3})O_3$; PCoN) สารประกอบเพอร์โวฟไกต์เชิงซ้อนที่มี ตะกั่วเป็นองค์ประกอบ (lead-based complex perovskite) และเป็นสารเฟอร์โรอิเล็กทริกที่แสดง สมบัติรีแลกเซอร์ (relaxor ferroelectric) โดยแสดงค่าคงที่ไดอิเล็กทริกที่สูง และพฤติกรรมการ เปลี่ยนแปลงของค่าคงที่ไดอิเล็กทริกขึ้นกับอุณหภูมิไม่มากนัก ซึ่งหมายความว่า รับประยุกต์ทำตัวเก็บ ประจุ ประกอบกับลักษณะเฉพาะทางชุดภาคซึ่งส่งผลให้สาร PCoN มีการสูญเสียพลังงานต่ำ (low loss) และไม่มีไฮสเตอเรซิส (hysteresis) ซึ่งทำให้ประสิทธิภาพการส่งถ่ายพลังงานสูง แต่ข้อเสียหลัก ของสาร PCoN คือ การที่มีสัมประสิทธิ์ไฟฟ้าเชิงกลคู่ค่าน (electromechanical coupling coefficient) ค่อนข้างต่ำเมื่อเทียบกับสาร PZT ส่งผลให้การนำไปใช้ประโยชน์ในทาง actuator และ transducer ไม่ ประสบผลสำเร็จอย่างเต็มที่

ตลอดระยะเวลา 10 ปี ที่ผ่านมาพบว่าเมื่อทำการผสม สารเฟอร์โรอิเล็กทริกแบบปกติเข้ากับ แบบรีแลกเซอร์พบว่าสารละลายของแข็งดังกล่าวมีสมบัติทางไฟฟ้าที่โดดเด่นสูงมากกว่าเดิม หลายเท่าตัว เช่น PZN-PT [1] PMN-PT [2] PZT-PNN [3] PZT-PZN [4] เป็นต้น และเมื่อพิจารณา จากตาราง 1.1 พบว่ามีความเป็นไปได้ที่จะเตรียมสารละลายของแข็งของ PZT-PCoN แล้วให้สมบัติ ทางไฟฟ้าที่โดดเด่น

ตาราง 1.1 แสดงสมบัติทางกายภาพและสมบัติทั่วไปของ $Pb(Zr_{1/2}Ti_{1/2})O_3$ และ $Pb(Co_{1/3}Nb_{2/3})O_3$

คุณสมบัติ	$Pb(Zr_{1/2}Ti_{1/2})O_3$	$Pb(Co_{1/3}Nb_{2/3})O_3$
โครงสร้าง [5,6]	เททระ โภโนอล (tetragonal)	รอม โบชีดรออล (rhombohedral)
ค่าคงที่ไดโอลีติกทริก [5,7]	4,000	9,800
อุณหภูมิคูรี (Curie Temp) [5,7]	390 °ซ	-70 °ซ
การเตรียมเป็นเฟสนริสุทธิ์	ขั้นตอนการเตรียม ไม่มีผุ่งยาก	วิธีการเตรียมผุ่งยากและได้
สำหรับพหุผลึก [8]	แบบปกติ	เฟสนริสุทธิ์ยาก
สมบัติเฟอร์โรอิเล็กทริก [9]	(normal ferroelectric)	แบบรีแล็กเซอร์
โครงสร้าง โดเมนระดับ	ไมโครเมตร	นาโนเมตร
จุลภาค [9,10]		

หากพิจารณาโครงสร้างของสารทั้งสองพบว่าหากเตรียมสารละลายนองแข็งสัดส่วน $Pb(Zr_{1/2}Ti_{1/2})O_3:Pb(Co_{1/3}Nb_{2/3})O_3$ ที่เหมาะสมสามารถจะได้โครงสร้างที่มีห้องเฟสเทหะรูปโกลนด์ และร่องโบหีดรอต สารจะแสดงสมบัติทางไฟฟ้าที่โดดเด่นมาก เนื่องจากความหลากหลายของไดโอล เมื่อพิจารณาค่าคงที่ไดอิเล็กทริกพบว่า สามารถเปลี่ยนแปลงได้จาก 4,000 ถึง 9,800 ขึ้นกับสัดส่วน เมื่อพิจารณาถึงอุณหภูมิในการเปลี่ยนเฟส พบว่าสามารถควบคุมให้มีค่าได้ตั้งแต่ -70–390 องศาเซลเซียส โดยการเปลี่ยนแปลงอัตราส่วน สามารถปรับการใช้งานให้เหมาะสมกับอุณหภูมิท้องได้ และการเตรียมให้เกิดเฟสนบริสุทธิ์สามารถทำได้ง่ายขึ้น และจากการวิจัยที่เกี่ยวข้องพบว่ายังระบบนี้ยังมีข้อมูลทางวิชาการอยู่น้อยมาก ซึ่งหากทำการศึกษาโอกาสที่จะเกิดองค์ความรู้ใหม่จะมีความเป็นไปได้สูงและง่ายต่อการเผยแพร่ในระดับนานาชาติ เป็นการช่วยเชื่อมต่อทางในการวิจัยและพัฒนาใหม่ในอนาคต และในส่วนของการนำความรู้ที่ได้รับจากการวิจัยนี้ไปใช้ในภาคปฏิบัติ เพื่อพัฒนาการใช้งานของตัวขับเร้าและตัวแปลงไฟฟ้าแรงดันให้มีประสิทธิภาพสูงขึ้น นอกจากนั้นเทคนิคการอบอ่อน (annealing) ยังถูกพบว่ามีผลต่อสมบัติทางไฟฟ้าของเซรามิกและเป็นที่นิยมใช้กันอย่างแพร่หลายในการปรับปรุงสมบัติของวัสดุ ซึ่งเซรามิกที่ผ่านกระบวนการร้อนดังกล่าวจะแสดงสมบัติทางไฟฟ้าที่ดีขึ้นอย่างโดดเด่น มากกว่าเซรามิกที่ไม่ผ่านการอบอ่อน เช่น ค่าคงที่ไดอิเล็กทริกที่เพิ่มขึ้นหลายเท่าตัว เป็นต้น ดังนั้นงานวิจัยนี้จึงให้ความสำคัญต่อการศึกษาการเตรียมสารละลายนองแข็ง

ระหว่างสารเฟอร์โรอิเล็กทริก PZT กับ สารรีแล็กเซอร์เฟอร์โรอิเล็กทริก PCoN โดยศึกษาผลของอัตราส่วน กระบวนการเตรียม ความเป็นเนื้อเดียวของสารละลายของแข็ง PZT-PCoN และทำการปรับปรุงประสิทธิภาพของเซรามิก PZT-PCoN ให้สูงขึ้นด้วยกระบวนการอบอ่อน (annealing) โดยศึกษาปัจจัยต่างๆ ในกระบวนการอบอ่อนที่มีผลต่อสมบัติทางไฟฟ้า เพื่อเป็นการพัฒนาองค์ความรู้พื้นฐานเพิ่มประยุกต์ในการประยุกต์ใช้สารละลายของแข็งดังกล่าวต่อไป

1.2 วัตถุประสงค์

- เพื่อศึกษาพัฒนาองค์ความรู้และกระบวนการเตรียมสารเฟอร์โรอิเล็กทริกทั้งผงและเซรามิกในระบบ PZT-PCoN โดยให้มีความบริสุทธิ์และความหนาแน่นสูง
- เพื่อสร้างองค์ความรู้ใหม่ของแนวรออยต์เฟส (MPB) ในระบบ PZT-PCoN จากความสัมพันธ์ระหว่างอัตราส่วนองค์ประกอบของเซรามิกและสมบัติทางไฟฟ้า
- เพื่อศึกษาความสัมพันธ์ระหว่างลักษณะโครงสร้างทางจุลภาคของเซรามิกกับพฤติกรรมทางไฟฟ้า
- เพื่อศึกษาอิทธิพลของเงื่อนไขในการอบอ่อน (annealing) ต่อสมบัติโดยอิเล็กทริกและสมบัติพิโซอิเล็กทริกของเซรามิกในระบบ PZT-PCoN ในอัตราส่วนบริเวณแนวรออยต์เฟส

1.3 ขอบเขตของการวิจัย

- ทำการสังเคราะห์ผงบริสุทธิ์ของสารระบบ PZT-PCoN ด้วยเทคนิคปฏิกริยาสถานะของแข็ง
- เตรียมเซรามิกเฟอร์โรอิเล็กทริกในระบบ PZT-PCoN ความหนาแน่นสูง
- หาแนวรออยต์เฟสที่เกิดขึ้นในสารระบบ PZT-PCoN
- ตรวจสอบสมบัติทางไฟฟ้า สัมฐานวิทยา ของผงบริสุทธิ์และเซรามิกที่เตรียมได้
- ศึกษาถึงอิทธิพลของเงื่อนไขในการอบอ่อน (annealing) ที่มีต่อสมบัติโดยอิเล็กทริกของเซรามิกเฟอร์โรอิเล็กทริกในระบบ PZT-PCoN
- ตรวจสอบสมบัติทางกายภาพ ลักษณะโครงสร้างจุลภาค สมบัติโดยอิเล็กทริกและสมบัติพิโซอิเล็กทริกของเซรามิกเฟอร์โรอิเล็กทริกในระบบ PZT-PCoN หลังจากผ่านกระบวนการอบอ่อน

1.4 ขั้นตอนการวิจัยและวิธีการดำเนินงาน

- ศึกษาและค้นคว้าวรรณข้อมูล พร้อมทั้งทบทวนเอกสารทางวิชาการที่เกี่ยวข้อง
- จัดซื้อวัสดุอุปกรณ์
- ทำการเตรียมสารตั้งต้นซึ่งประกอบด้วย PbO ZrO_2 TiO_2 Nb_2O_5 , และ CoO ด้วยวิธี Mixed and Calcination Processes (MCP) เพื่อหาสภาวะที่เหมาะสมในการเกิดเฟสบริสุทธิ์

4. ทำการตรวจสอบความบริสุทธิ์ของผงสารตัวอย่างทั้งหมดที่เตรียมได้จากการเผาแคลไชน์ (calcination) ด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD)
5. เมื่อได้ผงสารตัวอย่างที่มีความบริสุทธิ์สูง นำผงที่ได้มาผ่านกระบวนการร่อนคัดขนาดและทำการขึ้นรูปใหม่เส้นผ่าศูนย์กลางประมาณ ~ 2 เซนติเมตร และทำการเผาซินเตอร์ (sintering) ในเตาไฟฟ้าอุณหภูมิสูง โดยใช้ผง $PbZrO_3$ กลบเพื่อลดการระเหยของตะกั่ว
6. ทำการหาความหนาแน่นของเซรามิกที่ได้โดยอาศัยหลักการแทนที่น้ำของ Archimedes และนำเซรามิกที่ได้มาตรวจสอบเฟสที่ปรากฏด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) พร้อมกับศึกษาขนาดของกรนด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องร้าด (SEM)
7. ทำการศึกษาโครงสร้างอะตอมและคำนวณค่าแลตทิซ (lattice) ของหน่วยเซลล์ของสารตัวอย่างอย่างละเอียดด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD)
8. ทำการวัดค่าความจุ (capacitance; C) และค่าการสูญเสียทางไดอิเล็กทริก ($\tan\delta$) ของสารตัวอย่างที่เตรียมเทียบกับการเปลี่ยนแปลงอุณหภูมิ นำผลจากค่าคงที่ไดอิเล็กทริกที่ได้มาวิเคราะห์หาอุณหภูมิการเปลี่ยนเฟสจากเฟอร์โรอิเล็กทริกไปเป็นพาราอิเล็กทริก และค่าสูงสุดทางไดอิเล็กทริกของสารตัวอย่าง
9. ทำการอบอ่อน (annealing) ชิ้นงานเซรามิกที่อุณหภูมิต่างๆ เพื่อหาอุณหภูมิที่ทำให้ได้ซึ่งสมบัติทางไฟฟ้าที่เหมาะสมที่สุด
10. ตรวจสอบเฟสด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ตรวจสอบสมบัติทางกายภาพโดยวัดค่าความหนาแน่น (density) ตรวจสอบลักษณะโครงสร้างจุลภาคของชิ้นงานเซรามิกโดยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องร้าด (SEM) และตรวจสอบสมบัติไดอิเล็กทริกของเซรามิก PZT-PCoN หลังการอบอ่อนด้วยเครื่อง LCR meter เพื่อยืนยันเงื่อนไขในการอบอ่อนที่เหมาะสม

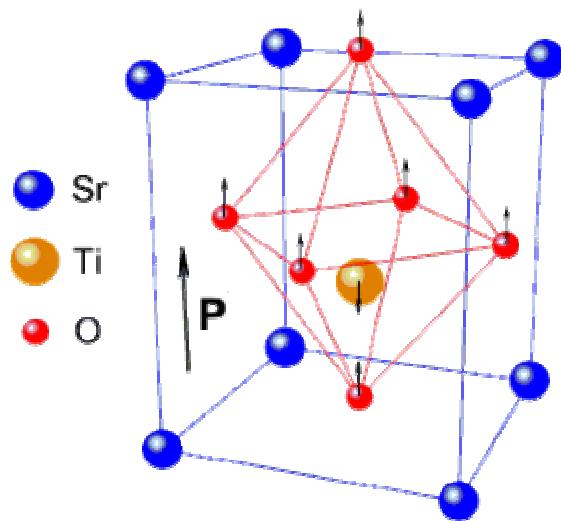
1.5 ผลที่คาดว่าจะได้รับ

1. ความเข้าใจและได้รับองค์ความรู้ใหม่ในการเตรียมผงบริสุทธิ์และเซรามิกในระบบ PZT-PCoN ตลอดจนอิทธิพลของสัดส่วนขององค์ประกอบ และอุณหภูมิเผาซินเตอร์ที่มีต่อลักษณะทางกายภาพและจุลภาคของสารเซรามิกองค์ความรู้ใหม่เรื่องสมบัติไฟฟ้าของเซรามิก และแนวร้อยต่อเฟส (MPB) ในระบบ PZT-PCoN ที่เตรียมได้
2. ได้เพิ่มพูนความรู้ความเข้าใจ อิทธิพลของลักษณะทางกายภาพ และจุลภาคของสารเซรามิกในระบบ ที่มีต่อสมบัติไฟฟ้า

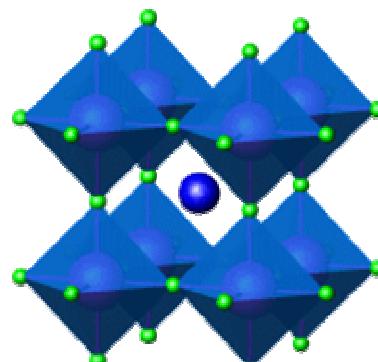
3. ทราบอุณหภูมิ เวลาและบรรยายการที่เหมาะสมที่สุดในการอบอ่อน ที่ทำให้ได้เซรามิกในระบบ $(0.7\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-0.3\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PZT-PCoN) ที่มีสมบัติไดอิเล็กทริกที่ดีที่สุด
4. ได้ต้นแบบของเซรามิกในระบบ $(0.7\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-0.3\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PZT-PCoN) เพื่อในไปประยุกต์ใช้ในงานอุตสาหกรรมอิเล็กทรอนิกส์ต่อไปในอนาคต
5. สามารถพัฒนาความรู้และเทคโนโลยีในการเตรียมสารเฟอร์โรอิเล็กทริกที่มีความบริสุทธิ์สูงเพื่อใช้เป็นวัตถุคิบสำหรับอุตสาหกรรม เพื่อลดการนำเข้าจากต่างประเทศ

ทฤษฎีและหลักการ

2.1 โครงสร้างเพอรอฟสไกต์ (perovskite structure)


สารประกอบในระบบไตรภาค (ternary) จำนวนมากที่มีสูตรโมเลกุลเป็น ABO_3 โดยมีไอออนบวกชนิด A และ B ที่มีขนาดแตกต่างกันมากและมักจะเกิดเป็นผลึกที่มีโครงสร้างเพอรอฟสไกต์ ซึ่งเป็นชื่อที่เรียกตามชื่อของแร่แคลเซียมไทเทเนต ($CaTiO_3$) ถึงแม้ว่าโครงสร้างชนิดนี้จะไม่มีแม่ແลตทิซ (lattice) ย่อยใดๆเลยที่มีการบรรจุชิดสุดอย่างแท้จริงก็ตาม แต่ยังสามารถที่จะทำการพิจารณาโครงสร้างเพอรอฟสไกต์ว่าเป็นอนุพันธ์ของโครงสร้างที่พัฒนามาจากโครงสร้างพื้นฐานแบบ FCC หรือที่เรียกว่า FCC-derivative structure ได้ โดยไอออนบวกที่มีขนาดโตกว่า (A) จะยึดเกาะอยู่กับอะตอมของออกซิเจนจนก่อรูปเป็นแม่ແลตทิซแบบ FCC ส่วนไอออนบวกที่มีขนาดเล็กกว่า (B) จะเข้าไปอาศัยอยู่ภายในช่องว่างทรงแปดเหลี่ยมที่เกิดขึ้นมาจากการจัดเรียงกันแบบ FCC ภายในโครงสร้างดังกล่าว โดยมีเพียงอะตอมของออกซิเจนเท่านั้นที่เป็นอะตอมข้างเคียงที่ล้อมรอบอยู่ใกล้ที่สุด สารประกอบที่มีโครงสร้างเพอรอฟสไกต์นี้จะรวมไปถึงพวกราประกอบในกลุ่มไทเทเนต (titanates) หلام ฯ ชนิด ที่นิยมนำไปประยุกต์ใช้ในงานทางด้านอิเล็กทรอเชรามิก (electroceramic) อย่างเช่น $BaTiO_3$ $SrTiO_3$ และ $PbTiO_3$ เป็นต้น สารประกอบในกลุ่มเซอร์โคเนต (zirconates) อย่างเช่น $PbZrO_3$ และ $BaZrO_3$ และสารประกอบในกลุ่มอื่น ๆ เช่น $LaGaO_3$ $LaAlO_3$ และ $KNbO_3$ เป็นต้น นอกจากนี้โครงสร้างเพอรอฟสไกต์ยังจัดเป็นส่วนประกอบย่อยของหน่วยโครงสร้างที่อยู่ภายในโครงสร้างที่มีความสลับซับซ้อนมากๆบางประเภท อย่างเช่น ในพวกราตัวนำยวดยิ่ง (superconductors) อีกด้วยโครงสร้างเพอรอฟสไกต์สามารถแบ่งออกเป็น 2 กลุ่ม ได้ดังนี้

2.1.1 โครงสร้างเพอรอฟสไกต์แบบอุดมคติ (ideal perovskite)


เป็นการจัดเรียงตัวอย่างง่ายของไอออนบวกและไอออนลบของออกซิเจน ดังแสดงในรูป 2.1 โดยอะตอมไทเทเนียม (titanium) จะอยู่ที่ศูนย์กลางของลูกบาศก์ และอะตอมสทรอนเทียม (strontium) อยู่ที่มุมของลูกบาศก์ ส่วนออกซิเจน (oxygen) อยู่ที่ขอบของลูกบาศก์ทั้ง 12 ด้าน เป็นออกตะเขิดรอด (octahedral) ของ TiO_6 โดยทำมุม 90 องศาอย่างสมบูรณ์ และความยาวพันธะของไทเทเนียม-ออกซิเจน เท่ากันทั้งหมดคือ 1.952 Å และอะตอมของสทรอนเทียม ลูกล้อมรอบด้วยออกซิเจนห่างกัน 2.761 Å เพอรอฟสไกต์แบบอุดมคติสามารถกล่าวได้ว่าเป็นโครงสร้างสี่เหลี่ยมลูกบาศก์แบบชิดสุด (cubic close-packed structure) [5] ดังแสดงในรูป 2.2 สำหรับสูตรโครงสร้างนั้นจะอ้างถึง

$$A^{(XII)} B^{(VII)} X_3^{(VI)} \quad (2.1)$$

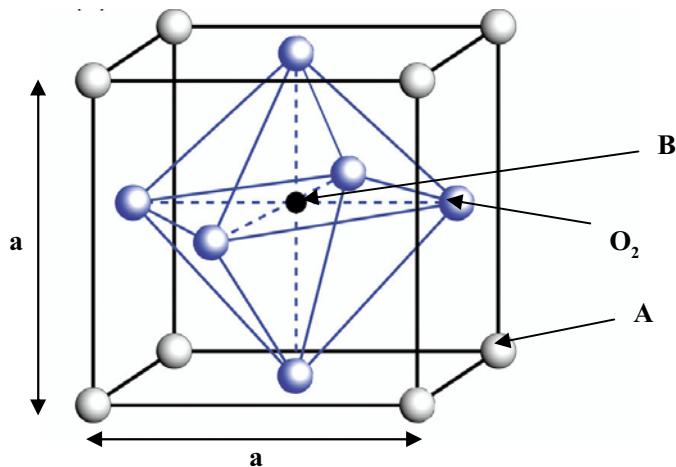
ໄໂອອນລົບແລະ ໄໂອອນນວກໃນໂຄຮງສຮ້າງເພວໂຮົມໄກຕ໌ສາມາຮັດແລກເປີ່ຍນກັບໄໂອອນອື່ນໄດ້ ໂດຍທີ່ປະຈຸບັນຄົງເປັນກລາງ ໂດຍສາມາຮັດຈັດກລຸ່ມ ໄໂອອນນວກແລະ ໄໂອອນລົບ ໄດ້ເປັນກລຸ່ມໜັກ ຈຳ 3 ກລຸ່ມ ກືອ ກລຸ່ມ $A^{1+}B^{5+}O_3$ ຕ້ວອຍ່າງເຊັ່ນ ໂພແທສເຊີຍມໃນໂອເບຕ ($KNbO_3$) ກລຸ່ມ $A^{2+}B^{4+}O_3$ ຜົ່ງປະກອບດ້ວຍ ເລດ ໄກທເທນຕ ($PbTiO_3$) ແລະ ແບເຮີຍມໄກທເທນຕ ສຸດທ້າຍກືອ ກລຸ່ມ $A^{3+}B^{3+}O_3$ ປະກອບດ້ວຍ $BiFeO_3$ ແລະ $BiScO_3$ [6]


ຮູບ 2.1 ໂຄຮງສຮ້າງເພວໂຮົມໄກຕ໌ແບນອຸດມຄຕີ $SrTiO_3$ [13]

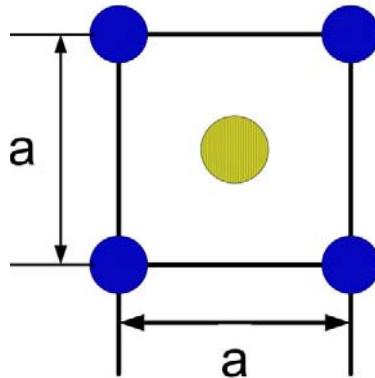
ຮູບ 2.2 ໂຄຮງສຮ້າງສື່ເໜື້ອນລູກບາສກີແບນບົດກັນຂອງ $SrTiO_3$ [14]

2.1.2 โครงสร้างเพอร์อฟส์ไกต์แบบเชิงช้อน (complex perovskite) [6]

รูปแบบของเพอร์อฟส์ไกต์แบบเชิงช้อนเป็นผลมาจากการแทนที่ด้วยไอออนหลายตัว วัสดุหลายตัวในกลุ่มเพอร์อฟส์ไกต์แบบเชิงช้อนนั้นแสดงสมบัติเฟอร์โรอิเล็กทริกแบบบริแล็กเซอร์ (relaxor ferroelectric) โดยมีสูตร โครงสร้างเป็น

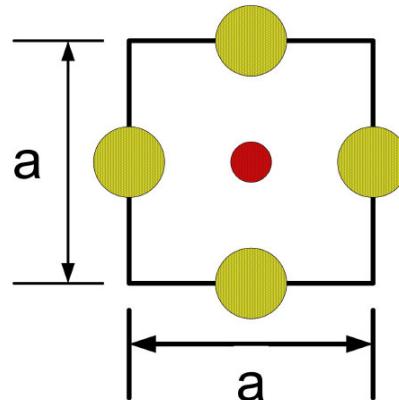


ที่ตำแหน่ง A คือ ไอออนบวกที่มีรัศมีอะตอมขนาดใหญ่ เช่น Pb^{2+} Ba^{2+} Sr^{2+} Bi^{3+} หรือ La^{3+} ตำแหน่ง X จะเป็นไอออนลบของออกซิเจน และตำแหน่ง B สามารถเป็นไอออนบวกได้หลากหลาย โดย B' จะเป็นไอออนบวกที่ประจุต่ำ เช่น Mg^{2+} Ni^{2+} Zn^{2+} Fe^{3+} และ Sc^{3+} ส่วน B'' จะเป็นไอออนที่มีประจุสูง เช่น Ti^{4+} Nb^{5+} Ta^{5+} และ W^{6+} ในที่นี่ออกล่าเวลภาวะการจัดเรียงตัวในตำแหน่ง B-side โดย A-side กำหนดเป็นไอออนเดี่ยวที่มีประจุ $2+$ การแทนที่นำไปสู่กลุ่มย่อยของเพอร์อฟส์ไกต์แบบเชิงช้อน 3 กลุ่มหลัก ได้แก่ $A^{2+}(B_{1/2}^{3+}B_{1/2}^{5+})O_3$ $A^{2+}(B_{1/2}^{2+}B_{1/2}^{6+})O_3$ และ $A^{2+}(B_{1/3}^{2+}B_{2/3}^{5+})O_3$


2.2 ความเสถียรของโครงสร้างเพอร์อฟส์ไกต์

2.2.1 ทอลาเรนซ์แฟกเตอร์ (tolerance factor) [6]

Goldschmidt ได้ทำการศึกษาเกี่ยวกับการสังเคราะห์เพอร์อฟส์ไกต์ด้วยสัดส่วนที่ต่างกันในปี ค.ศ. 1924-26 [5] และได้พัฒนาทอลาเรนซ์แฟกเตอร์ เพื่อบรรยายถึงความเสถียรของโครงสร้างในเพอร์อฟส์ไกต์แบบอุดมคติ โดยสามารถหาได้ดังนี้



รูป 2.3 โครงสร้างเพอร์อฟส์ไกต์ [7]

จากรูปภาคตัดขวาง

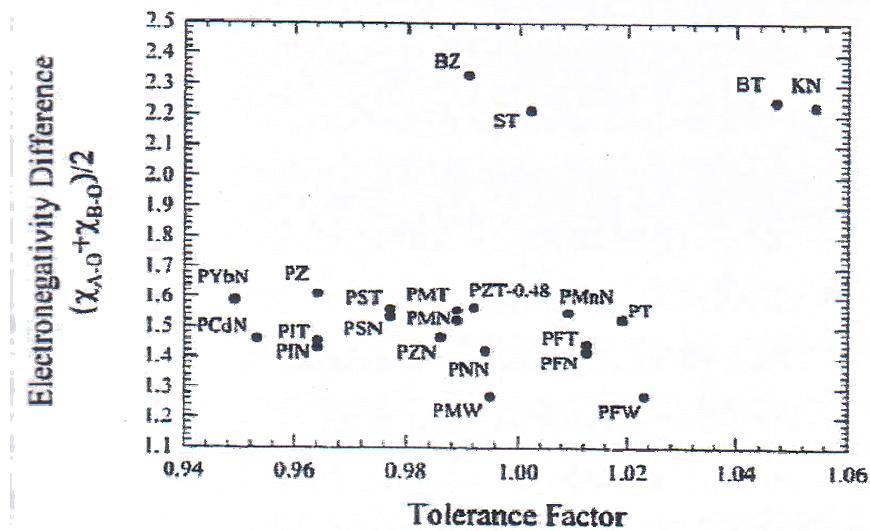
$$\begin{aligned}
 a^2 + a^2 &= (2r_A + 2r_O)^2 \\
 2a^2 &= (2r_A + 2r_O)^2 \\
 \sqrt{2}a &= (2r_A + 2r_O) \\
 a &= \frac{(2r_A + 2r_O)}{\sqrt{2}} \quad \text{-----[1]}
 \end{aligned}$$

$$a = 2r_B + 2r_O \quad \text{-----[2]}$$

จากสมการที่ 1 และ 2 สามารถหาค่า tolerance factor ได้ ดังนี้

$$\begin{aligned}
 a &= \frac{(2r_A + 2r_O)}{\sqrt{2}} = 2r_B + 2r_O \\
 r_A + r_O &= \sqrt{2}(r_B + 2r_O) \\
 \frac{r_A + r_O}{\sqrt{2}(r_B + 2r_O)} &= 1 \quad \text{Perfect Perovskite} \\
 t &= \frac{r_A + r_O}{\sqrt{2}(r_B + 2r_O)}
 \end{aligned}$$

ค่าทอลาเรนซ์แฟคเตอร์สามารถใช้เป็นตัววัดองค์ความของการบิดเบือนของโครงสร้างเปรียบเทียบกับโครงสร้างเพอรอฟลไกต์ในอุณหภูมิ สำหรับโครงสร้างเพอรอฟลไกต์ที่เสถียร ค่าทอลาเรนซ์แฟคเตอร์ ควรจะอยู่ในช่วงระหว่าง $0.8 < t < 1.05$ โดยปกติสำหรับเทหะระโภนอล (tetragonal) จะมีค่าทอลาเรนซ์แฟคเตอร์มากกว่า 0.98 และน้อยกว่า 0.97 สำหรับรูปโบหีดรออล (rhombohedral)

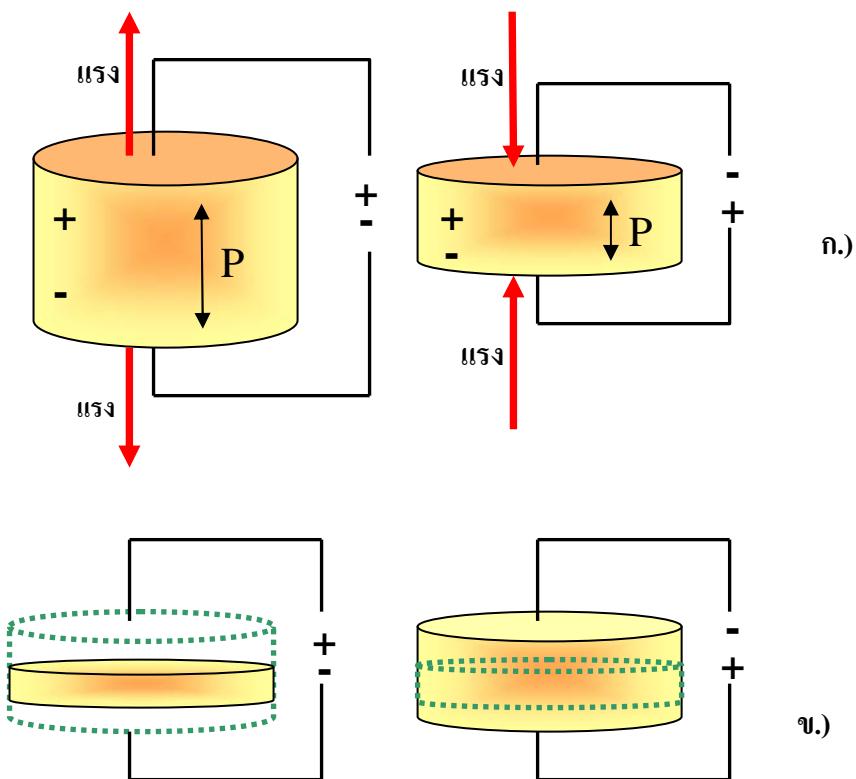

2.2.2 ค่าความสามารถในการดึงอิเล็กตรอน (electronegativity)

เนื่องจากเพอรอฟลไกต์ส่วนใหญ่จะประกอบด้วยลิเดียม (lead) และแบบารีียม (barium) จึงมีความโน้มเอียงที่พันธะระหว่าง A-O จะเป็นพันธะโโคเวเลนต์ที่แรง ปัจจัยที่ควรคำนึงถึงในการพิจารณาความเสถียรของโครงสร้างคือความแตกต่างของค่าความสามารถในการดึงอิเล็กตรอน (electronegativity) ระหว่างไอออนบวกและไอออนลบ โดยค่าความสามารถในการดึงอิเล็กตรอน (ΔEN) หาได้จาก

$$\Delta EN = \frac{(X_{A-O} + X_{B-O})}{2} \quad (2.3)$$

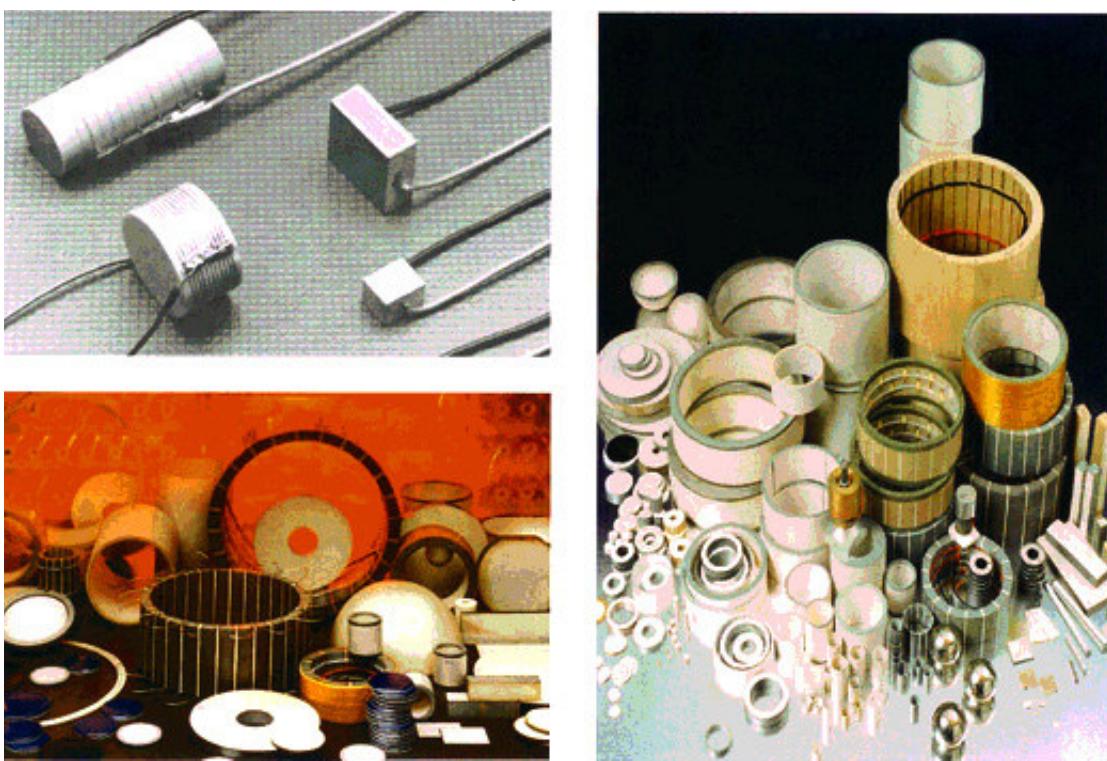
เมื่อ X_{A-O} และ X_{B-O} คือ ความแตกต่างระหว่างค่าความสามารถในการดึงอิเล็กตรอนของไอออนบวก A กับออกซิเจน และไอออนบวก B กับออกซิเจน ตามลำดับ

รูป 2.4 แสดงแผนภาพความสัมพันธ์ระหว่างความแตกต่างของค่าความสามารถในการดึงอิเล็กตรอนเฉลี่ยระหว่างไอออนบวกและทอลาเรนซ์แฟคเตอร์ แผนภาพทำให้ทราบว่าเหตุใดวัสดุอย่างเช่น เลดแมกนีเซียม ในโอบเดต จึงเกิดโครงสร้างเพอรอฟลไกต์ได้ยากกว่าสหะอนเทียม ไทเทเนตแม้ว่ามันจะมีค่าทอลาเรนซ์แฟคเตอร์ใกล้เคียงกัน แบบารีียม ไทเทเนตและโพแทสเซียม ในโอบเดต มีทั้งค่าทอลาเรนซ์แฟคเตอร์และค่าความสามารถในการดึงอิเล็กตรอนที่สูง ดังนั้นสารประกอบนี้สามารถเกิดเป็นโครงสร้างเพอรอฟลไกต์ที่เสถียรได้


รูป 2.4 แผนภาพความสัมพันธ์ระหว่างความแตกต่างของค่าความสามารถในการดึงอิเล็กตรอนเฉลี่ยระหว่างไอออนบวกและทอลาแรนซ์แฟคเตอร์ [6]

สำหรับ lead-based complex perovskite จะมีค่าความสามารถในการดึงอิเล็กตรอนต่ำ และในสารประกอบเชิงซ้อนส่วนใหญ่ ค่าทอลาแรนซ์แฟคเตอร์จะต่ำกว่า ดังนั้นสารประกอบเชิงซ้อนจึงมีความเสถียรน้อยเมื่อเปรียบเทียบกับเพอรอฟสไกค์อื่น ๆ จากการทดลอง พบว่าความง่ายในการเตรียมเพอรอฟสไกค์ที่มีตะกั่วเป็นองค์ประกอบเรียงได้ดังนี้

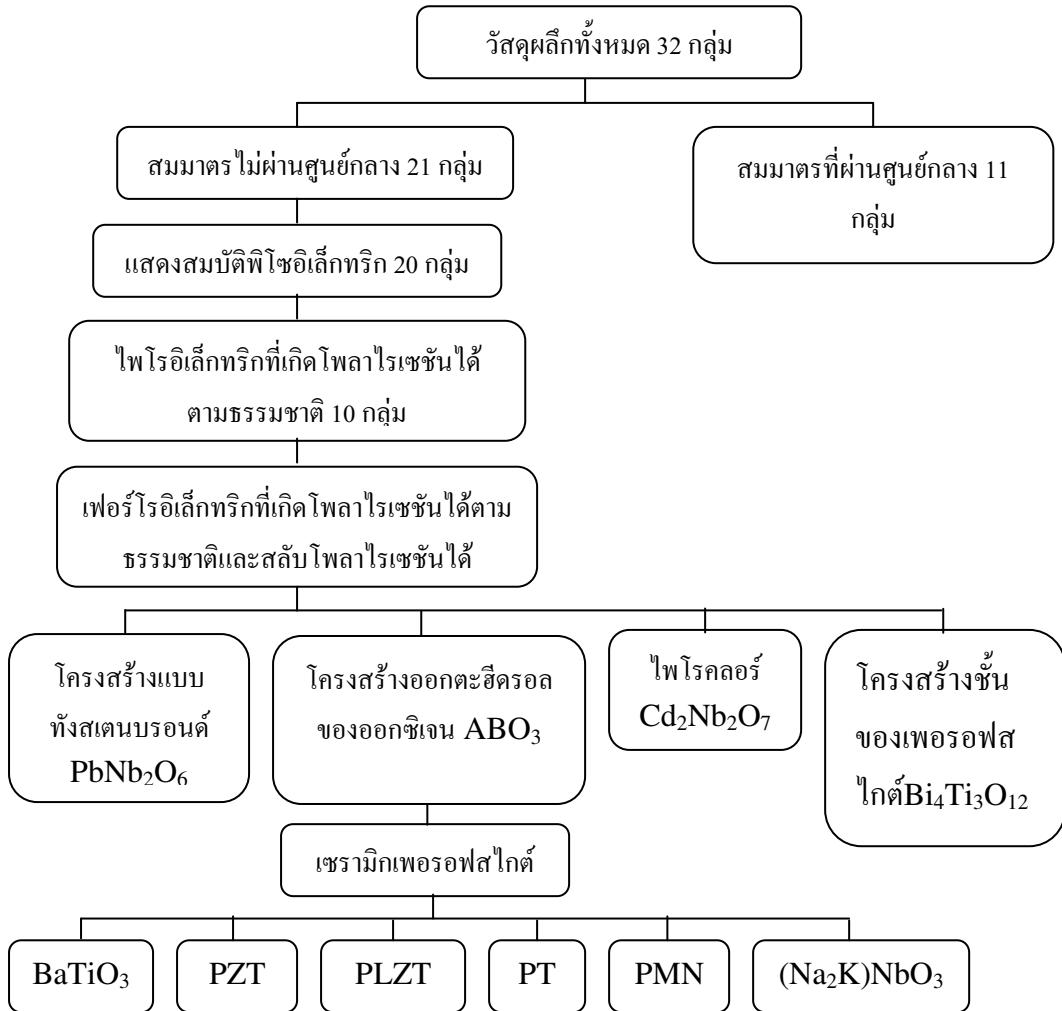
$$\text{PZN} < \text{PCN} < \text{PIN} < \text{PSN} < \text{PNN} < \text{PMN} < \text{PFN} < \text{PFW} < \text{PZ} < \text{PT}$$


2.3 พิโซอิเล็กทริก (piezoelectric) [8, 9]

ปรากฏการณ์พิโซอิเล็กทริก (piezoelectricity) ถูกค้นพบโดย Pierre และ Jacques Curries ในปี ค.ศ.1880 [9, 10] ระหว่างการศึกษาความสัมพันธ์ระหว่างสมบัติไฟฟ้าอันเนื่องมาจากการได้รับแรงทางกล ซึ่งเรียกว่า ปรากฏการณ์พิโซอิเล็กทริกโดยตรง (direct piezoelectric effect) และปรากฏการณ์พิโซอิเล็กทริกโดยอ้อม (converse piezoelectric effect) คือปรากฏการณ์ที่เกิดขึ้นเมื่อให้สนาณไฟฟ้าแก่วัสดุจะทำให้เกิดความเครียดในวัสดุ ดังแสดงในรูป 2.5 และประโยชน์การใช้งานของวัสดุพิโซอิเล็กทริกมีหลากหลาย อาทิ เช่น เซนเซอร์ (sensor) และตัวขับเร้า (actuator) เป็นต้น ดังแสดงในรูป 2.6

รูป 2.5 ก.) ปรากฏการณ์พิโซอิเล็กทริกโดยตรง

ข.) ปรากฏการณ์พิโซอิเล็กทริกโดยอ้อม

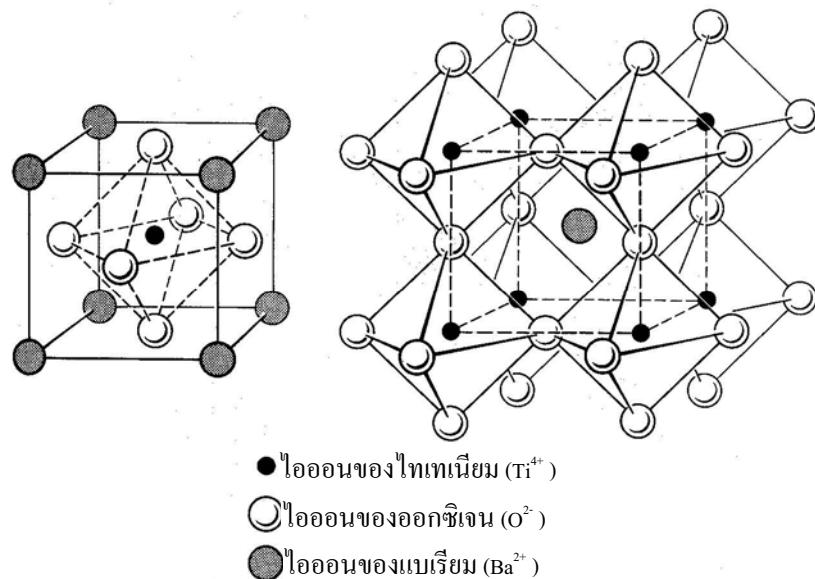


รูป 2.6 ประโยชน์การใช้งานของวัสดุกลุ่มพิโซอิเล็กทริก [9]

2.4 เฟอร์โรอิเล็กทริก (ferroelectrics)

สมบัติเฟอร์โรอิเล็กทริกเป็นปรากฏการณ์ที่ถูกค้นพบในปี 1921 วัสดุเฟอร์โรอิเล็กทริกคือ วัสดุที่สามารถเกิดโพลาไรเซชันได้เองแม้ว่าไม่มีอยู่ในสนามไฟฟ้าภายนอกและเมื่อวัสดุรับสนามไฟฟ้าจากภายนอก โพลาไรเซชันภายในวัสดุสามารถกลับหิศได้ตามสนามภายนอกที่ให้ ซึ่งตรวจสอบจาก เฟอร์โรอิเล็กทริกไฮสเทอเรซิสลูป (ferroelectric hysteresis loop) จากสมบัตินี้ส่งผลให้สาร เฟอร์โรอิเล็กทริกได้รับความสนใจในทางอุตสาหกรรมอิเล็กทรอนิกส์ ซึ่งเป็นผลทำให้เกิดความสนใจ ในการค้นคว้าวัสดุเฟอร์โรอิเล็กทริกเพิ่มสูงขึ้น เป็นผลให้มีการค้นพบสารที่มีสมบัติทางไฟฟ้าที่โดดเด่นเพิ่มขึ้นอีกมากมาย เช่น เลดไทเทเนต ($PbTiO_3$) เลดเชอร์โคเนตไทเทเนต (PZT) เลดแคนทานัม เชอร์โคเนตไทเทเนต (PLZT) เลดแมกนีเซียม ไนโอบิท (PMN) เป็นต้น

จากรูป 2.7 แสดงการจัดกลุ่มสารเฟอร์โรอิเล็กทริกตามสมมาตรของผลึก โดยหากพิจารณา สมมาตรของผลึกสามารถแบ่งผลึกออกได้เป็น 32 กลุ่ม และในสมมาตรของผลึกทั้ง 32 กลุ่มนี้สามารถ แบ่งเป็น 2 กลุ่มคือ มี 11 กลุ่มที่มีสมมาตรผ่านศูนย์กลาง (centrosymmetry) และ 21 กลุ่มที่มีสมมาตร ไม่ผ่านศูนย์กลาง (non-centrosymmetry) โดยมีเพียง 20 กลุ่มในกลุ่มสมมาตรไม่ผ่านศูนย์กลางที่เป็น ผลึกพิโซอิเล็กทริก และจาก 20 กลุ่มนี้มีเพียง 10 กลุ่มที่ โพลาไรเซชันขึ้นกับอุณหภูมิ ซึ่งให้นิยาม กลุ่มนี้ว่า ผลึกไฟฟ้าอิเล็กทริก และในกลุ่มของผลึกไฟฟ้าอิเล็กทริกนี้ หากโพลาไรเซชันในผลึกเกิดขึ้น ได้เองโดยไม่มีสนามไฟฟ้าภายนอกเหนี่ยวนำ และ โพลาไรเซชันนี้สามารถกลับขึ้นกลับลงได้ตาม สนามไฟฟ้าภายนอกที่ให้ เรียกกลุ่มนี้ว่า ผลึกเฟอร์โรอิเล็กทริก ซึ่งจากรูป 2.7 ในกลุ่มของ ผลึกเฟอร์โรอิเล็กทริกนี้อย่างสามารถแบ่งย่อยได้ออกเป็นกลุ่มย่อยตามโครงสร้าง เช่น โครงสร้าง แบบหังสแตนบอรอนซ์ โครงสร้างเพอร์อฟสไกต์ (ออกตะหีดรอลของออกซิเจน) โครงสร้างชั้นของเพอร์อฟสไกต์ เป็นต้น

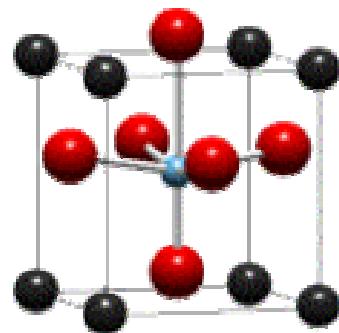


รูป 2.7 การจัดแบ่งกลุ่มของวัสดุอิเล็กทรอนเซรามิกด้วยการใช้สมมาตรของวัสดุ [11]

2.5 โครงสร้างเพอรอฟส์ไกต์ในสารไฟโรอิเล็กทริกแบบปกติ

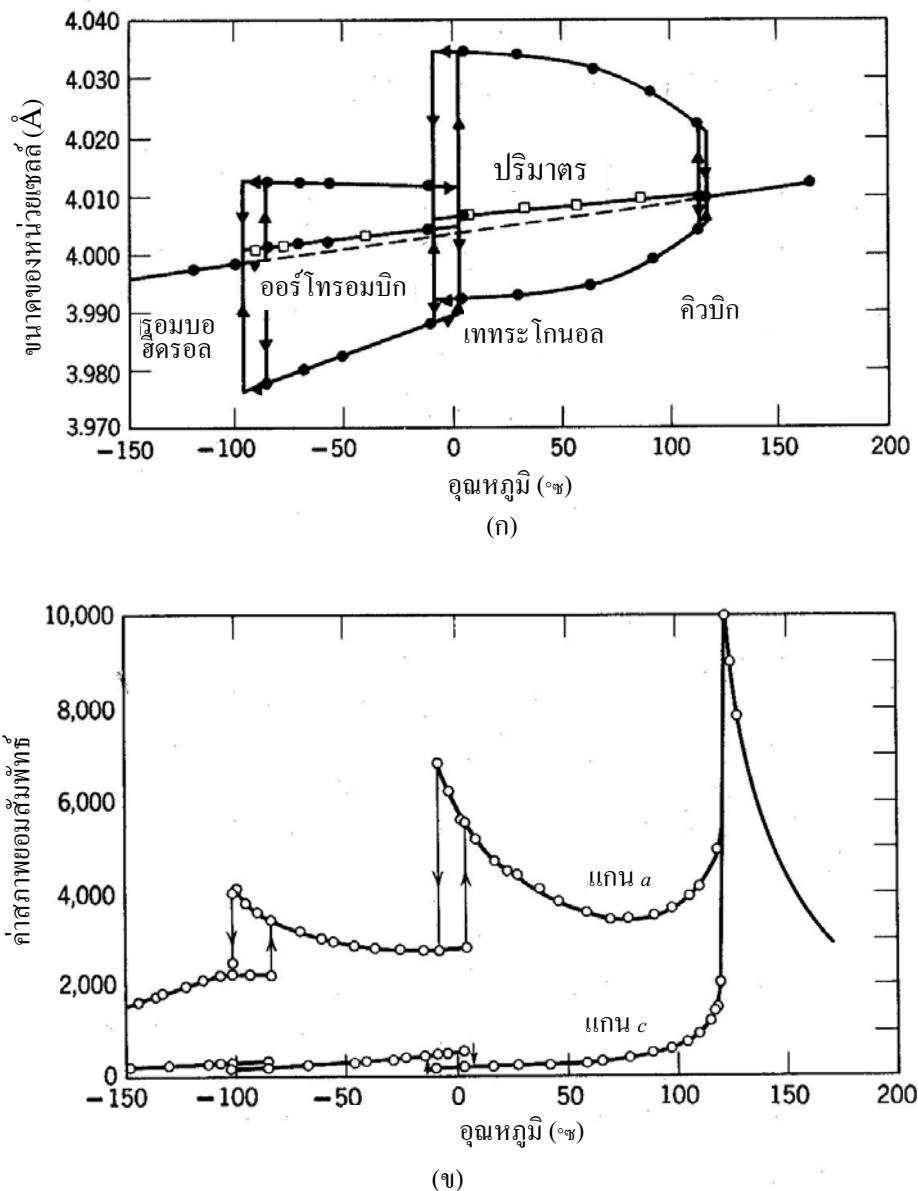
เมื่อพิจารณาโครงสร้างผลึกของสารแบบเรียบไบทเนต (BaTiO_3) ที่อุณหภูมิสูงซึ่งมีหน่วยเซลล์เป็นคิวบิก (cubic) เพื่อเป็นตัวแทนของโครงสร้างเพอรอฟส์ไกต์ อัตราส่วนรัศมีของ Ba^{2+} ต่อ O^{2-} มีค่าสูงมาก โดยจะอยู่ในช่วงระหว่าง 0.96 ถึง 1.15 ทั้งนี้ขึ้นอยู่กับเลขโකออร์ดิเนชัน (CN) ที่เลือกใช้ ถึงแม้ว่าอัตราส่วนเหล่านี้จะมีค่าสูงมากเกินกว่าที่ควรจะเกิดมีการยึดเกาะกันเป็นทรงแปดเหลี่ยมได้ แต่สารประกอบในระบบทวิภาคอย่าง BaO สามารถที่จะก่อรูปเป็นโครงสร้างเกลือหินที่มีปริมาณสัมพันธ์ของค่าอัตราส่วนระหว่างจำนวนช่องว่างต่อจำนวนอะตอมเป็น 1:1 ได้ อย่างไรก็ตาม การพิจารณาไอออน Ba^{2+} ที่อยู่ใน BaTiO_3 โดยการเลือกใช้เลขโโคออร์ดิเนชันเป็น 12 ($\text{CN} = 12$) ก็จะมีความเหมาะสมมากกว่า ซึ่งกรณีดังกล่าวจะเกิดขึ้นได้ก็ต่อเมื่อหนึ่งไอออนของแบบเรียบมีความกับสามไอออนของออกซิเจน มีการจัดเรียงกันเป็นແลตทิชแบบ FCC โดยมีไอออนของแบบเรียบเข้าไปขึด

ครองตำแหน่งที่อยู่ตรงมุมของโครงสร้างเอาไว้ทั้งหมด ในขณะที่ไอออนของ Ti^{4+} นั้นเข้าไปยึดครองช่องว่างตรงแปดหน้าที่อยู่ตรงตำแหน่งกลางของโครงสร้างเอาไว้ เพื่อทำให้ระบบเกิดมีสภาพความเป็นกลางทางไฟฟ้า รูป 2.8 ได้แสดงถึงหน่วยเซลล์แบบคิวบิกของสาร $BaTiO_3$ สังเกตว่าในการยึดเกาะกันแบบนี้ไอออนของ Ti และ Ba จะถูกบดบังจากกันและกันด้วยการใช้ไอออนของออกซิเจนโดยมีค่าความแข็งแรงพันธะของ Ba และ Ti เป็น $2/12$ และ $4/6$ ตามลำดับ แต่ละไอออนของออกซิเจน (ที่อยู่ตรงกลางผิวน้ำของหน่วยเซลล์) จะถูกถือมารองเอาไว้ด้วยสี่ไอออนของ Ba (ซึ่งอยู่ที่มุมของหน่วยเซลล์) และสองไอออนของ Ti ทำให้สามารถหากำลังรวมของพันธะได้เป็น $4(2/12)+2(4/6)=2$ ซึ่งสอดคล้องกับกฎข้อสองของพอลิง โดยที่แต่ละหน่วยเซลล์ที่เกิดจากการยึดเกาะกันของออกซิเจน และมีไทดิเมียมอยู่ข้างใน โครงนี้จะมีการเชื่อมต่อกันไปโดยใช้มุมของทรงแปดหน้าเป็นจุดเชื่อมต่อ กัน และก็จำเป็นต้องใช้ผิวน้ำของทรงแปดหน้าเป็นจุดเชื่อมต่อกับทรงสิบสองหน้า (dodecahedron) ของ Ba อย่างหลีกเลี่ยงไม่ได้ สารประกอบในกลุ่มเพอร์อฟสไกค์นั้นจะมีปริมาณสัมพันธ์เป็นแบบ $A^{2+}B^{4+}O_3$ เช่น $BaTiO_3$ และ $PbZrO_3$ หรือเป็นแบบ $A^{3+}B^{3+}O_3$ เช่น $LaGaO_3$ และ $LaAlO_3$ ก็ได้ นอกจากนี้ยังมีกรณีของสารประกอบที่เกิดจากการผสมกันเป็นแบบ $A(B_{1/3}^{2+}B_{2/3}^{5+})O_3$ หรือแบบ $A^{2+}(B_{1/2}^{3+}B_{1/2}^{5+})O_3$ ดังเช่นในกรณีของ $Pb(Mg_{1/3}Nb_{2/3}O_3)$ หรือ $Pb(Sc_{1/2}Ta_{1/2})O_3$ เป็นต้น ซึ่งในกรณีของสารประกอบเหล่านี้ไอออนของ Ti^{4+} ที่อยู่ตรงตำแหน่ง A จะมีขนาดโตกว่าที่ตำแหน่ง B เสมอ



รูป 2.8 โครงสร้างเพอร์อฟสไกค์ของสาร $BaTiO_3$ [11]

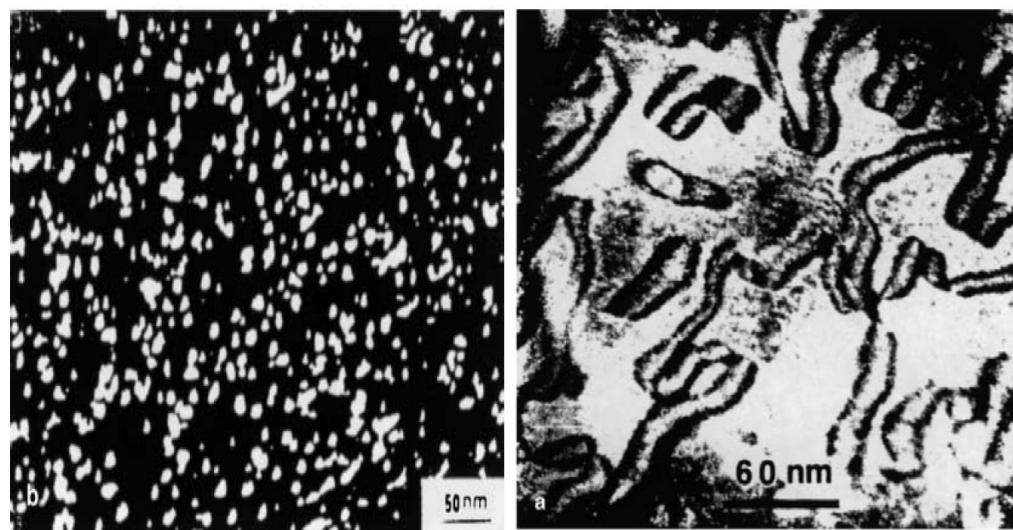
มีสารประกอบในกลุ่มเพอร์อฟสไกท์อยู่หลายชนิดที่มีภาวะรูปร่างหลายแบบ เช่นเดียวกับในกรณีของสาร ZrO_2 โดยที่การเปลี่ยนแปลงของสมม�性ของผลึกในสารเพอร์อฟสไกท์เหล่านี้ เกิดจากการเลื่อนตำแหน่งของไอออนภายในโครงสร้างแบบง่าย ซึ่งการเปลี่ยนรูปที่ถือได้ว่ามีความสำคัญมากที่สุดสำหรับกรณีของสาร $BaTiO_3$ ก็คือ การเปลี่ยนรูปของหน่วยเซลล์ระหว่างแบบที่เป็นคิวบิกกับเททราไดออก โดยจะต้องของออกซิเจนที่มีการยึดเกาะกันเป็นทรงแปดเหลี่ยมล้อมรอบอะตอมของ Ti อยู่นั้น จะมีช่องว่างที่มีขนาดโดยกว้างขนาดของอะตอม Ti หากและช่องว่างดังกล่าวในที่นี่ก็ยังถูกอะตอมของ Ba (ซึ่งมีขนาดใหญ่) ช่วยดึงให้ขยายออกไปจากปกติอีก ทำให้ไอออนของ Ti ที่อยู่ภายในโครงสร้างล้ำหน้าขาดเสถียรภาพตามที่กฎหมายของพอลิ่งได้ทำนายไว้ และการที่ไอออนของ Ti มีการแกว่งไปแกว่งมาอยู่ภายในโครงสร้างล่าวนี้เองที่ส่งผลทำให้อะตอมที่อยู่ตรงกลางของหน่วยเซลล์เกิดการเลื่อนตำแหน่งได้ และทำให้ระบบสมม�性ของผลึกเกิดการเปลี่ยนแปลงได้จ่างนั่นเอง ที่อุณหภูมิห้องสาร $BaTiO_3$ มีสมม�性ของผลึกเป็นแบบเททราไดออก มีไอออนของ Ti^{4+} เข้าไปครอบครองตำแหน่งที่มีพลังงานต่ำสุด เลื่อนออกไปจากจุดศูนย์กลางของเซลล์ประมาณ 0.12 อังสตروم โดยเลื่อนเข้าไปใกล้กับบริเวณหน้าไดหน้าหนึ่งของหน่วยเซลล์ และส่งผลทำให้โครงสร้างผลึกเกิดมีความไม่สมมติขึ้นตามรูป 2.9 ลักษณะดังกล่าวจะทำให้เกิดขั้วคู่ (dipoles) ทางไฟฟ้าแบบถาวรขึ้น และหนึ่งยวนำให้บริเวณข้างเคียงเกิดมีการจัดเรียงตัวกันเป็นขั้วคู่ไฟฟ้าตามมา ส่งผลทำให้มีการเกิดขั้วหรือโพลาไรเซชันที่แผ่ขยายอาณาเขตออกไปยังหน่วยเซลล์ข้างเคียงในผลึกอีกหลายๆเซลล์ โดยเรียกอุณหภูมิที่สาร $BaTiO_3$ เกิดมีการเปลี่ยนรูปร่างของหน่วยเซลล์จากคิวบิกไปเป็นเททราไดออกว่า จุดคูรี (Curie point) ซึ่งจะมีค่าประมาณ 130°C สำหรับกรณีของสาร $BaTiO_3$ ที่บริสุทธิ์ และนอกจากนี้ยังพบอีกว่าสาร $BaTiO_3$ นั้น จะมีการเปลี่ยนรูปของหน่วยเซลล์จากเททราไดออกไปเป็นออร์โทรอมบิก (orthorhombic) และเป็นรูปโรบิอีดรอยด์ (rhombohedral) ตามลำดับ เมื่ออุณหภูมนั้นลดต่ำลงไปอีก ดังแสดงในรูป 2.10



(ก)

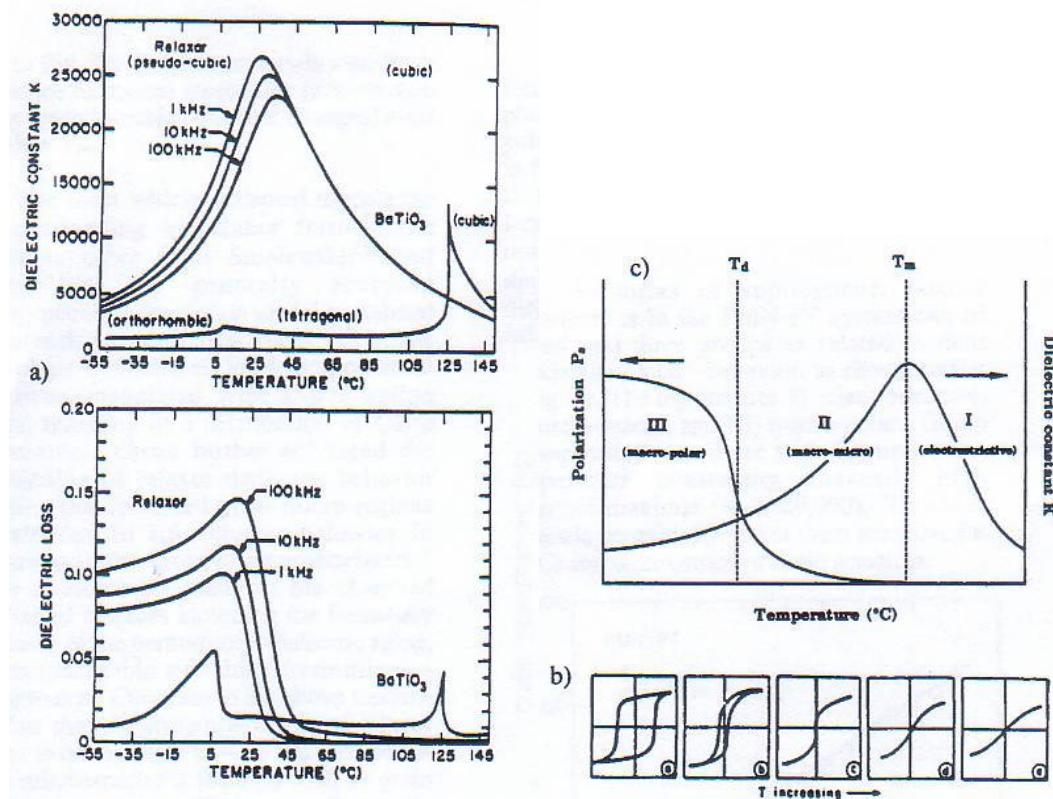
(ข)

รูป 2.9 แผนภาพแสดง (ก) ตำแหน่งของไอออนภายในโครงสร้างของสาร BaTiO_3 ที่มีหน่วยเซลล์เป็นแบบเทหระ โภนอล และ (ข) ลักษณะการเกิดโพลาไรเซชันขึ้นมาในหน่วยเซลล์ดังกล่าว [12]


รูป 2.10 ความสัมพันธ์ระหว่าง (ก) ขนาดของหน่วยเซลล์และ (ข) ค่าคงที่ไดอีเล็กทริกของสาร BaTiO_3 กับการเปลี่ยนแปลงอุณหภูมิ [12]

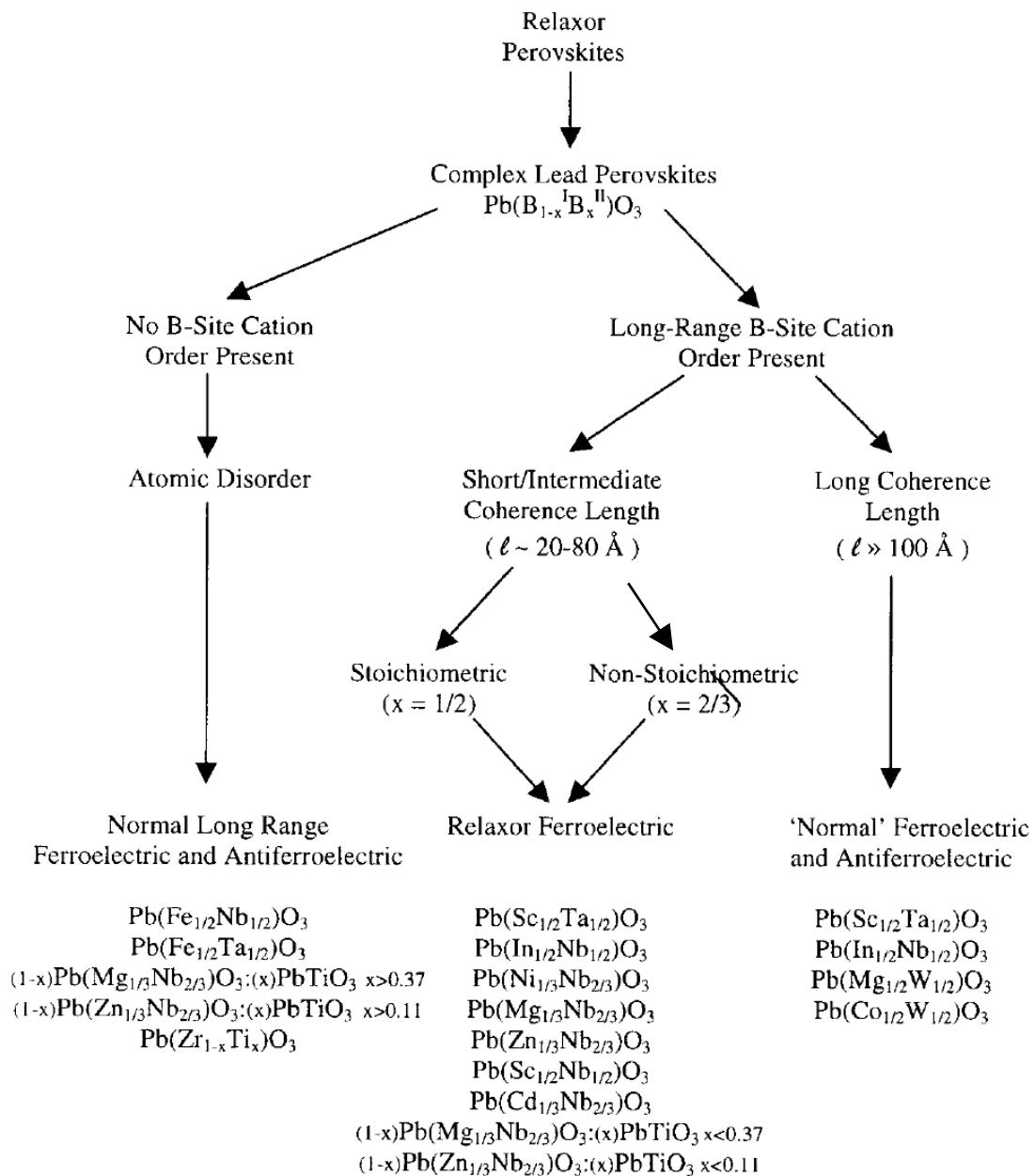
ส่วนในกรณีของสารเลดไทเทเนต (PbTiO_3) ซึ่งมีไอออนของ Pb^{2+} ที่โตกว่าของ Ba^{2+} ในสาร BaTiO_3 ไอออนของ Ti^{4+} ในสาร PbTiO_3 จึงมีความไม่เสถียรมากยิ่งขึ้นไปอีก ทำให้มีอุณหภูมิที่สารเกิดการเปลี่ยนรูประว่างคิวบิกกับเทแทร์โนโนลสูงมากกว่า (490 องศาเซลเซียส) กรณีของ BaTiO_3 และในทางกลับกันสาร SrTiO_3 ที่มีจุดคู่รืออยู่ที่อุณหภูมิต่ำกว่าของสาร BaTiO_3 มาก (ประมาณ -55 องศาเซลเซียส) เนื่องจากไอออนของ Sr^{2+} นั้นมีขนาดที่เล็กกว่า Ba^{2+} และ Pb^{2+} จึงทำให้โครงสร้าง

แปดหน้าที่เกิดจาก การยึดเกาะกันของออกซิเจนในโครงสร้างผลึกมีขนาดที่เล็กกว่า BaTiO_3 และ PbTiO_3 ตามไปด้วย ส่งผลทำให้ไอออนของ Ti^{4+} ที่อยู่ตรงกลางของหน่วยเซลล์นั้นมีเสถียรภาพมากกว่า ในทางปฏิบัติสามารถที่จะทำการปรับลดหรือเพิ่มจุดคู่รีของสาร BaTiO_3 ได้อย่างต่อเนื่องโดยอาศัยวิธีการทำให้อุ่นในรูปของสารละลายของแข็ง (solid solution) อย่างเช่น ถ้าทำการผสมสาร BaTiO_3 กับสาร PbTiO_3 ก็จะทำให้จุดคู่รีของระบบเพิ่มสูงขึ้นไปเรื่อยๆ ตามปริมาณของสาร PbTiO_3 ที่เพิ่มเข้าไป แต่ถ้าทำการผสมสาร BaTiO_3 ด้วยการใช้ SrTiO_3 ก็สามารถจะทำให้จุดคู่รีของระบบนั้นลดลงไปเรื่อยๆ ได้ตามปริมาณของสาร SrTiO_3 ที่เพิ่มขึ้นเช่นกัน

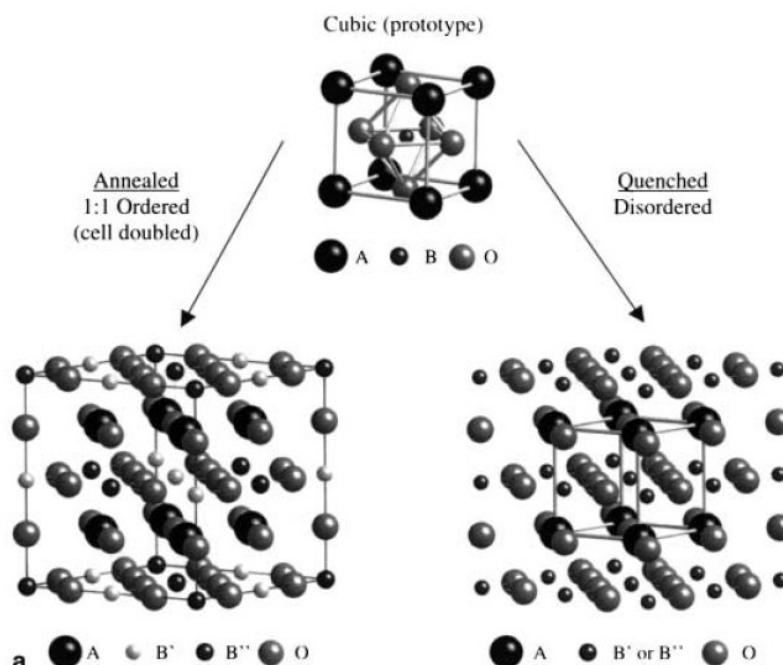

2.6 โครงสร้างเพอร์อิเล็กทริกแบบบีแล็กเซอร์

สารเฟอร์โรอิเล็กทริกแบบบีแล็กเซอร์เป็นกลุ่มย่อยของเพอร์อิเล็กทริกที่มีค่าคงที่ไดอิเล็กทริกที่สูง (high dielectric constant) และลักษณะของรูปแบบค่าคงที่ไดอิเล็กทริกเทียบกับอุณหภูมิจะเป็นรูประฆังกว้างมาก (broadens dielectric peak) และแสดงให้เห็นถึงลักษณะของการเกิดการเปลี่ยนแปลงสถานะของเฟสที่แพร่กระจาย (diffused phase transition) ทำให้วัสดุนี้ประยุกต์ใช้เป็นตัวเก็บประจุที่ดีได้ หลายกลุ่มวิจัยที่เชื่อว่าสาเหตุการเกิดเปลี่ยนแปลงสถานะของเฟสที่แพร่กระจายเนื่องจากการมีองค์ประกอบทางเคมีที่ไม่สม่ำเสมอเป็นเนื้อดิบกันในระดับนาโน ดังแสดงรูป 2.11

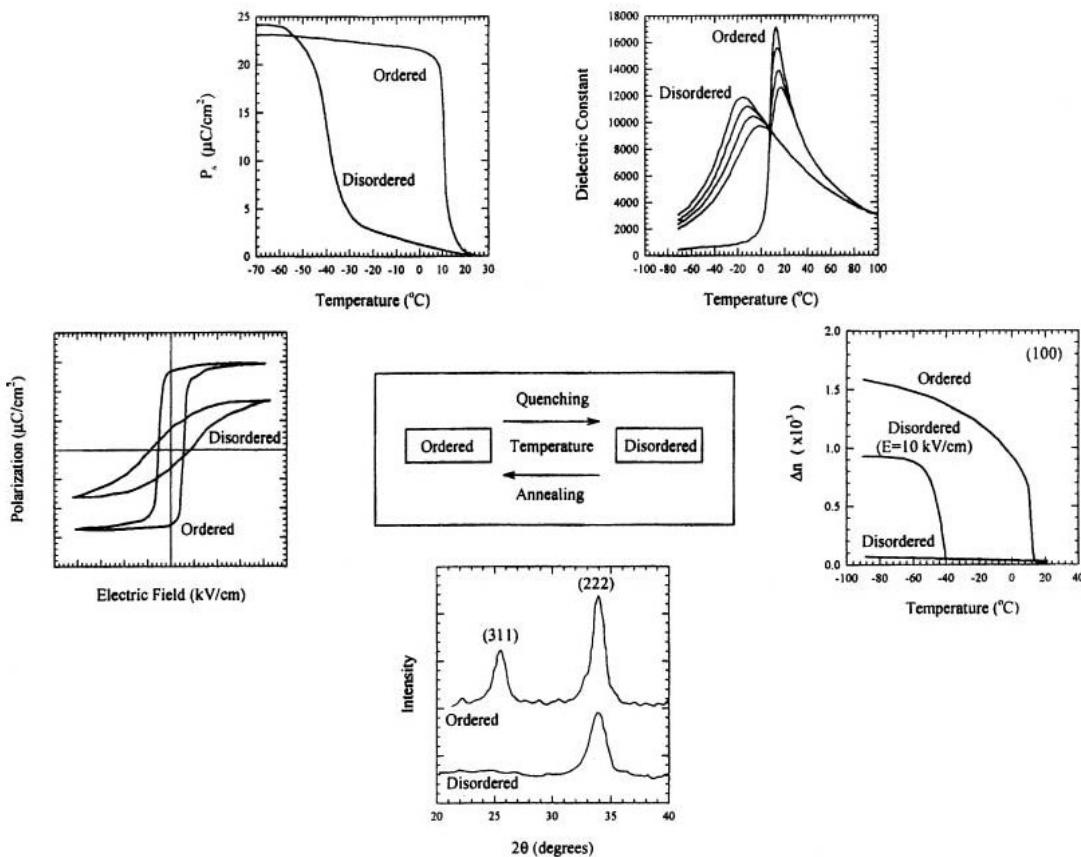
รูป 2.11 แสดงการเรียงองค์ประกอบทางเคมีในระดับนาโน (ก) $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ และ (ข) $\text{Pb}(\text{Sc}_{1/2}\text{Ta}_{1/2})\text{O}_3$ [13]


ลักษณะเฉพาะของเฟอร์โรอิเล็กทริกแบบบริเล็กเซอร์แสดงดังรูป 2.12 โดยการใช้สารรีแล็กเซอร์ที่รู้จักกันดีคือ เลดแมกนีเซียมไนโอลูบต ตาราง 2.1 แสดงความแตกต่างระหว่างเฟอร์โรอิเล็กทริกแบบปกติกับเฟอร์โรอิเล็กทริกแบบบริเล็กเซอร์ รีแล็กเซอร์แยกออกได้จากเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) ได้ เช่น ST และ BT โดยแสดงช่วงการเปลี่ยนเฟส (phase transition) ที่กว้าง ดังรูป 2.12 (a) พีคค่าคงที่ไดอิเล็กทริกอยู่ที่ T_m แต่ค่าโพลาไรเซชัน (P_r) จะลดลงจนถึงศูนย์ด้วยการเพิ่มอุณหภูมิจนสูงกว่า T_m และสำคัญมากที่จะสนใจว่าอุณหภูมิของการลดโพลาไรเซชัน (temperature of depolarization; T_d) มีค่าต่ำกว่า T_m [13] ดังรูป 2.12 (c)

รูป 2.12 (a) พฤติกรรมไดอิเล็กทริกสำหรับบริเล็กเซอร์ เฟอร์โรอิเล็กทริก (0.93PMN:0.07PT) ที่ 1 kHz, 10 kHz และ 100 kHz และเฟอร์โรอิเล็กทริกแบบปกติ (BaTiO_3) ที่ 1 kHz
 (b) อิสเทอเรซิสใน PMN เทียบกับอุณหภูมิ
 (c) พฤติกรรมไดอิเล็กทริกและโพลาไรเซชันสำหรับ PMN เทียบกับอุณหภูมิ [13]


ตาราง 2.1 ความแตกต่างระหว่างเฟอร์โรอิเล็กทริกแบบปกติกับแบบบรีแล็ก-เชอร์ [14]

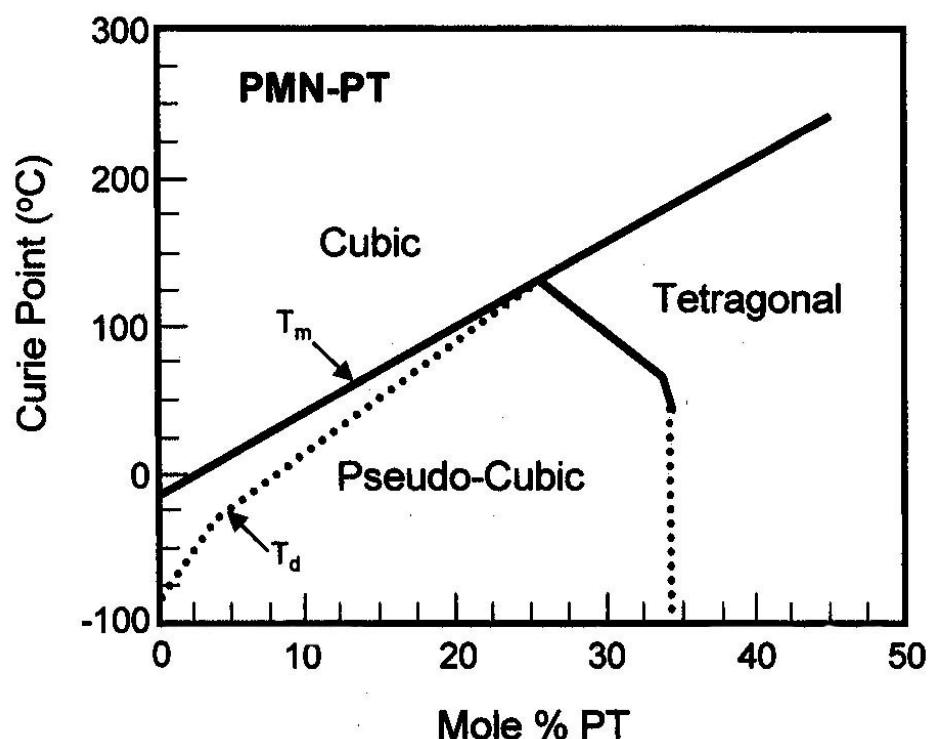
สมบัติของสาร เฟอร์โรอิเล็กทริก	ชนิดธรรมชาติ	ชนิดรีแลกเซอร์
ค่าคงที่ไคอิเล็กทริกกับอุณหภูมิ	มีพิคค่าดับที่ 1 และที่ 2	มีพิคค่าดับขณะก้าวเกิดขึ้นที่
ค่าคงที่ไคอิเล็กทริกกับความถี่	ลักษณะเป็นพิคแحملฐานแคบ	อุณหภูมิคูรี
ความสามารถการเก็บประจุในช่วงสภาวะพาราอิเล็กทริก	ขึ้นกับความถี่เพียงเล็กน้อย	ขึ้นกับความถี่มาก
$T > T_c$	เป็นไปตามกฎของคูรี-ไวส์ (Curie-Weiss law)	เป็นไปตามกฎของคูรี-ไวส์ กำลังสอง (Curie-Weiss square law)
การโพลาไรเซชันคงเหลือ (P_R)	มีค่าโพลาไรเซชันคงเหลือมาก	มีค่าโพลาไรเซชันคงเหลือน้อย
การกระเจิงของแสง	มีการกระเจิงของแสงที่แตกต่างกันมากในแต่ละทิศทาง	มีการกระเจิงของแสงที่แตกต่างกันในแต่ละทิศทางน้อย
การเลี้ยวแบบของรังสีเอกซ์	พบการแยกออกของสเปกตรัมรังสีเอกซ์เกิดขึ้นเมื่อมีการเปลี่ยนเฟสจากพาราอิเล็กทริกไปเป็นเฟอร์โรอิเล็กทริก	ไม่สามารถตรวจพบการแยกออกของสเปกตรัมรังสีเอกซ์ที่เกิดขึ้นเมื่อมีการเปลี่ยนเฟสจากพาราอิเล็กทริกไปเป็นเฟอร์โรอิเล็กทริก
ค่าอุณหภูมิคูรี (T_c)	มีได้ค่าเดียว	มีได้หลายค่าขึ้นอยู่กับความถี่ที่ใช้



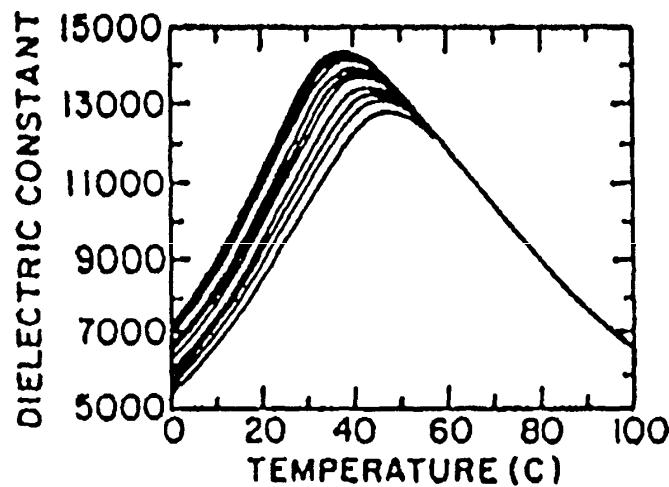
รูป 2.13 การแบ่งกลุ่มของเพอร์อฟส์ไกต์แบบรีแล็กเซอร์ [5]

หากพิจารณาโครงสร้างของเพอร์รอฟสไกต์ที่แสดงสมบัติ รีแล็กเซอร์ส่วนใหญ่พบว่าจะอยู่ในกลุ่มของสารประกอบที่มีตะกั่วเป็นองค์ประกอบหลัก เช่น $PbA'BO_3$ $PbB'B''O_3$ และ $PbA'B'B''O_3$ โดยที่ A' คือ La^{3+} B' คือ Fe^{2+} Mg^{2+} Zn^{2+} Co^{2+} In^{3+} Sc^{3+} และ B'' คือ Nb^{5+} Ta^{5+} W^{6+} ซึ่งการเรียงตัวของไอออนในโครงสร้างระดับนาโนส่งผลต่อสมบัติความเป็นรีแล็กเซอร์ รูป 2.13 แสดงให้เห็นว่าโครงสร้างเพอร์รอฟสไกต์สามารถรับการแทนที่ด้วยไอออนนิวเคลียร์หลากหลายเพื่อสร้างสารประกอบใหม่ จากรูป 2.14 จะเห็นว่าหากการเรียงตัวของไอออนในตำแหน่ง B มีความเป็นระเบียบแตกต่างกัน โครงสร้างเพอร์รอฟสไกต์แสดงสมบัติความเป็นเพอร์ริโออิเล็กทริกที่แตกต่างกัน และ องศาของความเป็นระเบียบ (degree of ordering) ในวัสดุประเภทนี้บางตัวสามารถปรับได้โดยกระบวนการเตรียมและการแอนนิล (annealing) ดังแสดงดังรูป 2.14 และ 2.15 แต่ทว่าในวัสดุส่วนใหญ่ โครงสร้างจะยังคงอยู่ในสภาพไม่เป็นระเบียบสูง (disordered state) วัสดุประเภทนี้มีลักษณะเฉพาะบางลักษณะที่เพอร์ริโออิเล็กทริกแบบปกติไม่มี ดังตารางที่ 2.1

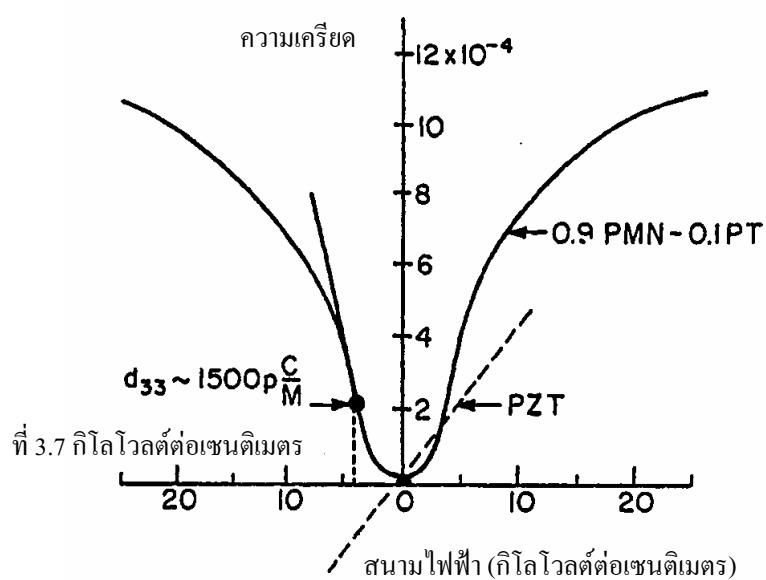
รูป 2.14 การเรียงตัวขององค์ประกอบในตำแหน่ง B ของโครงสร้าง เพอร์รอฟสไกต์ [5]



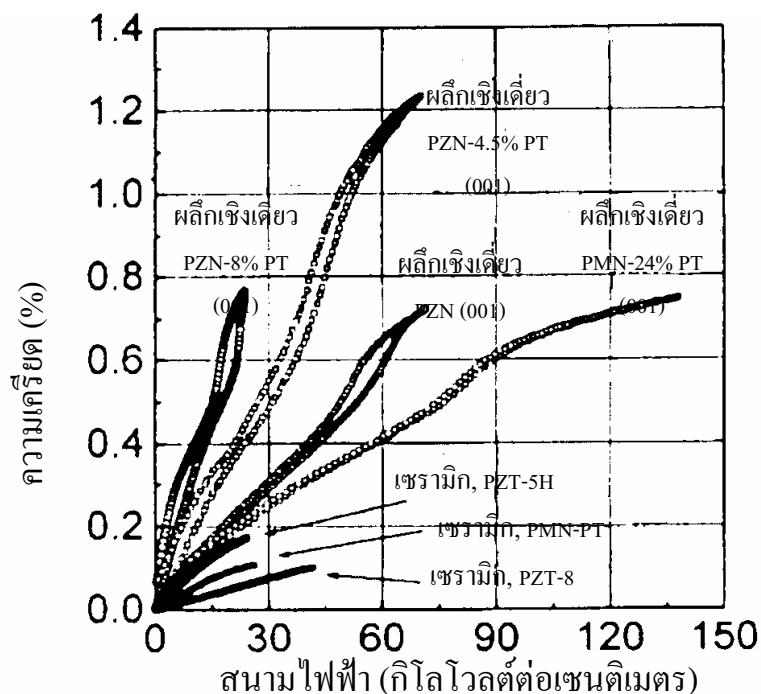
รูป 2.15 แสดงสมบัติทางไฟฟ้าที่แตกต่างกันของโครงสร้างเพอร์โพร์ฟสไกค์ที่จัดเรียงไอออน ตามแน่น B ที่แตกต่างกัน [5]


2.7 มอร์ฟอปิคเฟสบาวเดรี (morphotropic phase boundary; MPB)

สารประกอบเฟอร์โรอิเล็กทริกที่มีโครงสร้างเพอร์โพร์ฟสไกค์ โดยมีโครงสร้างผลึกที่แตกต่างกัน มากสมเข้าด้วยกันเป็นสารละลายของแข็งส่วนใหญ่พบว่า โครงสร้างผลึกจะขึ้นอยู่กับอัตราส่วนขององค์ประกอบของเฟลที่นำมาผสมกัน พบว่าเมื่อเปลี่ยนแปลงอัตราส่วนที่เหมาะสมสารประกอบที่ได้สามารถเกิดโครงสร้างผลึกได้มากกว่า 1 โครงสร้างผลึก ตัวอย่างเช่น เมื่อนำ PZ ซึ่งมีอุณหภูมิห้องมีโครงสร้างเป็นออร์โทรมนิก ผสมเข้ากับโครงสร้างเทหะระ โภนอลของ PT เพื่อให้เกิดสารละลายของแข็ง PZT พบว่า เมื่ออัตราส่วน PZ:PT เท่ากับ 52:48 สารละลายของแข็ง PZT เกิดโครงสร้างผลึกที่สมดุลของ เทหะระ โภนอลและรอบ โบสีดรอต สัดส่วนนี้สารละลายของแข็ง PZT แสดงสมบัติทางไฟฟ้าที่โดดเด่นมากกว่า สารละลายบริสุทธิ์ PZ และ PT จากการค้นพบดังกล่าวจึงนิยมเรียกอัตราส่วนดังกล่าวว่า มอร์ฟอปิคเฟสบาวเดรี (Morphotropic phase boundary; MPB) และจากสมบัตินี้เองส่งผลให้ PZT ได้รับความสนใจในเชิงอุตสาหกรรมจนกลายเป็นวัสดุตัวหลักที่ใช้กันอย่างแพร่หลายในปัจจุบัน ในเวลาต่อมาการค้นพบ MPB ในผลึกเฟอร์โรอิเล็กทริกอีกมากมาย เช่น ระบบสารละลายของแข็งของ $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - PbTiO_3 (PMN-PT) ซึ่งแผนภูมิวัสดุภาคของระบบนี้แสดงในรูป 2.16 การเพิ่ม PT (ซึ่งมีจุดคู่รีที่ 490 องศาเซลเซียส) เข้าไปในระบบมากขึ้นจะทำให้ T_c มี

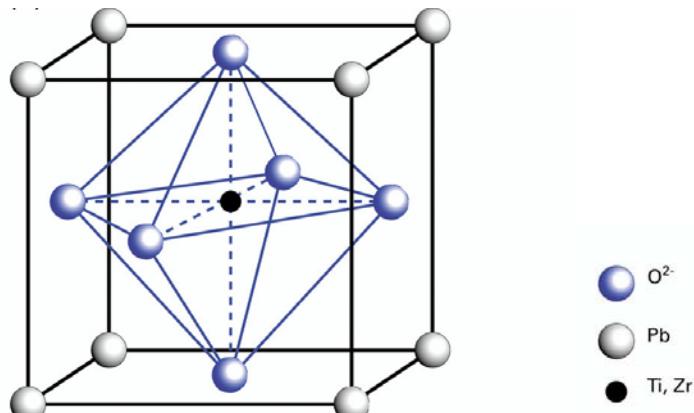

ค่าสูงขึ้น และสมบัติทางไฟฟ้าของระบบดังกล่าวจะเปลี่ยนจากพฤติกรรมแบบบริ隈รูปเป็นแบบพิโซอิเล็กทริกแบบอ่อน (soft piezoelectric) โดยที่ส่วนผสมที่ตำแหน่ง MPB (0.65PMN-0.35PT) นั้นจะมีสมบัติพิโซอิเล็กทริกซึ่งถูกนำมาใช้ประโยชน์ในทรานส์ดิวเซอร์พิโซอิเล็กทริก (piezoelectric transducers) ส่วนผสมที่ได้รับความสนใจมากที่สุดสำหรับระบบนี้คือ 0.9PMN-0.1PT ซึ่งมีคุณสมบัติอุณหภูมิห้องทำให้มีค่าคงที่ไดอิเล็กทริก (ε_r) สูงมาก (รูป 2.17) และยังสามารถให้ความเครียดอิเล็กโทรสตริกทีฟ (electrostrictive strain) ถึง 0.1% (รูป 2.18) ทำให้ถูกนำไปใช้ในตัวเก็บประจุแบบหลายชั้น (multiplayer capacitors) และ ตัวขับเร้า (actuators)

รูป 2.16 แผนภูมิวัฏภากของสารละลายของเย็บในระบบเซรามิก PMN-PT [15]

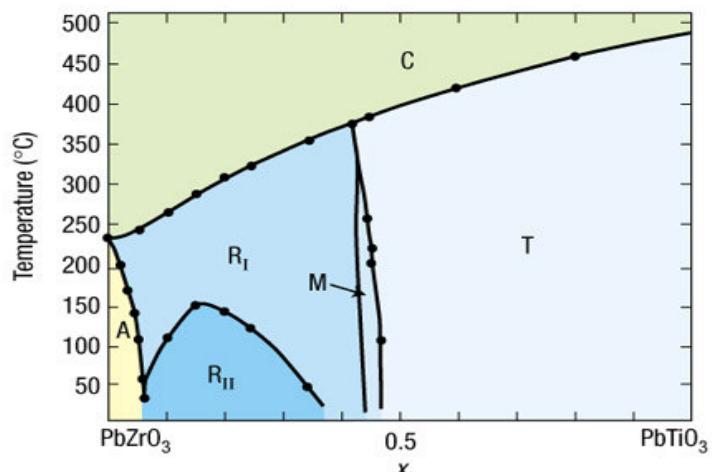


รูป 2.17 ผลของอุณหภูมิต่อค่าคงที่ไดอิเล็กทริกใน 0.9PMN-0.1PT [13]

รูป 2.18 การเปลี่ยนแปลงอิเล็กโทรสตริกทีฟ x_3 เมื่อมีสนามในแนว E_3 ใน 0.9PMN-0.1PT [13]

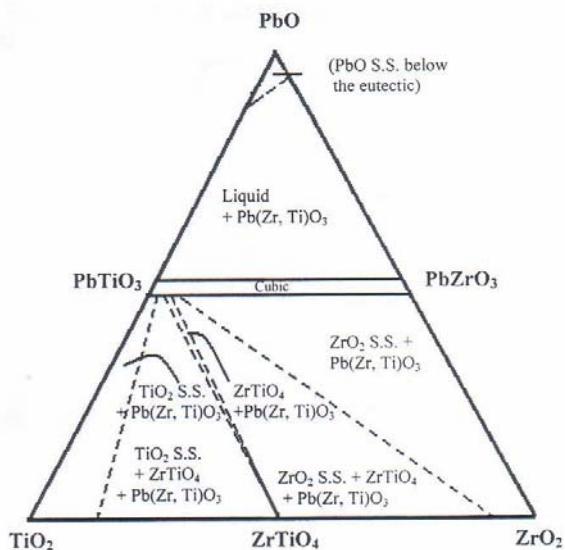

นอกจากนี้แล้วก็ยังได้มีการค้นพบว่าในผลึกเชิงเดี่ยวของวัสดุรีแลกเซอร์ที่มีโครงสร้างแบบ เพอร์ร์อฟไกต์ เช่น $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - PbTiO_3 (PMN-PT) และ $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - PbTiO_3 (PZN-PT) นั้นสามารถแสดงสมบัติพิเศษอิเล็กทริก (เช่น d_{33}) ที่สูงมากรวมถึงการมีความเครียด (strains) ที่สูงมากๆ เช่นกัน (ดังแสดงในรูป 2.19) ทำให้เกิดความตื่นตัวในการศึกษาผลึกเชิงเดี่ยวเหล่านี้เป็นอย่างมากในช่วงทศวรรษที่ผ่านมานี้ โดยมีความหวังในการนำวัสดุเหล่านี้ไปใช้ประโยชน์เป็นทรานสิสเตอร์ที่มีประสิทธิภาพสูงมาก

รูป 2.19 ความสัมพันธ์ระหว่างความเครียดและสนามไฟฟ้าของวัสดุต่าง ๆ [13]


2.8 เลดเซอร์โคงเนตไทเทเนต ($\text{PbZr}_{1-x}\text{Ti}_x\text{O}_3$)

เลดเซอร์โคงเนตไทเทเนต ($\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$; PZT) เป็นสารเฟอร์โรอิเล็กทริกแบบปกติ ซึ่งถูกค้นพบโดย Jaffee และคณะ [16] และจากที่กล่าวมาแล้วข้างต้น PZT จึงถูกนิยามเป็นเซรามิกที่มีความสำคัญในอุตสาหกรรม PZT จะมีโครงสร้างเป็นแบบเพอโรฟสไกต์ (ABO_3) โดยที่ไอออน Ti^{4+} และ Zr^{4+} บรรจุอยู่ในตำแหน่ง B โดยเรียงตัวกันแบบสุ่ม (Random) และมีไอออน Pb^{2+} อยู่ที่ตำแหน่ง A ของหน่วยเซลล์ [11] ดังรูปที่ 2.20

รูป 2.20 โครงสร้างแบบเพอโรฟสไกต์สำหรับ PZT [7]

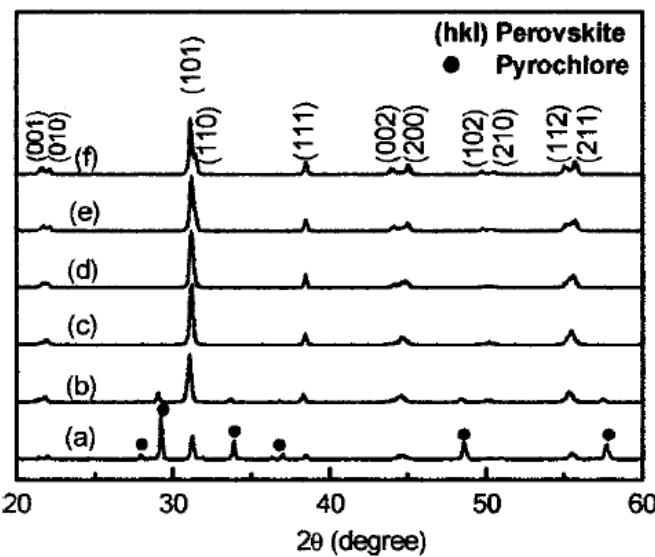

เนื่องจาก PZT เป็นเซรามิกที่แสดงสมบัติเฟอร์โรอิเล็กทริกที่โดดเด่น สามารถเปลี่ยนพลังงานกลไปเป็นพลังงานไฟฟ้าได้สูงและสามารถปรับปรุงให้สูงขึ้นอีกหากเลือกสารอีอิที่เหมาะสม [2] ยิ่งไปกว่านั้น PZT ยังมีอุณหภูมิคูรีที่สูง ขึ้นกับอัตราส่วน Zr:Ti ในที่อุณหภูมิสูงกว่าอุณหภูมิคูรี PZT จะมีโครงสร้างผลึกเป็นแบบเพอร์อฟส์ไกค์ที่มีหน่วยเซลล์แบบลูกบาศก์ ซึ่งมีสมบัติเป็นพาราอิเล็กทริก และเมื่อลดอุณหภูมิลงมาต่ำกว่าอุณหภูมิคูรี ลักษณะหน่วยเซลล์จะเปลี่ยนไปเป็นแบบเททระ โภนอล หรือรอมโนบิอีค์รอลขึ้นกับอัตราส่วนของ Zr:Ti ซึ่งมีสมบัติเป็นเฟอร์โรอิเล็กทริก [p] โดยสมบัติทางด้านไคโอิเล็กทริกและเฟอร์โรอิเล็กทริกมีความโดดเด่นมากใน PZT ที่มีองค์ประกอบของอุํย์ที่บริเวณที่เรียกว่า แนวรอยต่อเฟส (MPB) [11] ดังรูปที่ 2.21

รูป 2.21 แผนภาพวัฏภากของสารละลายของแข็งระหว่าง PZ กับ PT [7]

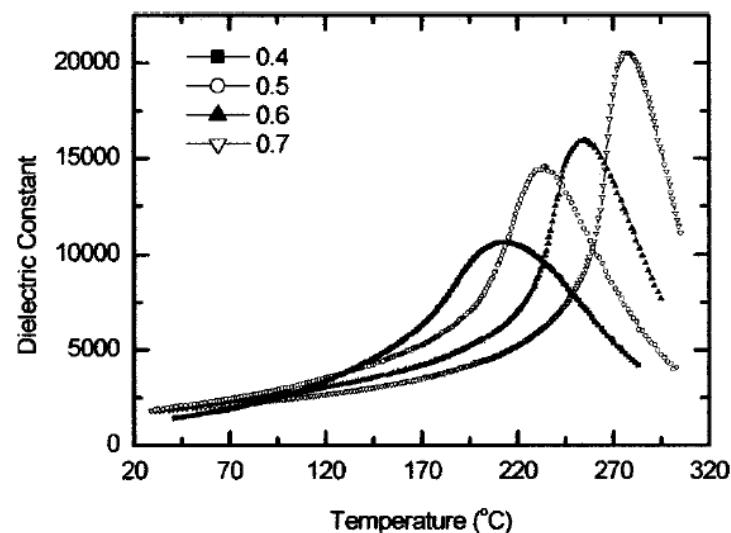
จากรูปที่ 2.21 แสดงแผนภาพวัฏภากของสารละลายของแข็งระหว่าง PZ กับ PT โดยจะเห็นได้ว่าอุณหภูมิคูรีจะเพิ่มขึ้นเป็นสัดส่วนโดยตรงกับอัตราส่วนของ PT โดยบริเวณที่มีอัตราส่วนของ PZ สูง โครงสร้างผลึกของ PZT ณ อุณหภูมิต่ำกว่าอุณหภูมิคูรีจะมีโครงสร้างเป็นรอมโนบิอีค์รอล และจะมีโครงสร้างเป็นเททระ โภนอลในบริเวณที่มีอัตราส่วนของ PT สูง และพบว่าบริเวณ MPB ของสารละลายของแข็ง PZT อยู่ ณ บริเวณอัตราส่วน Zr:Ti ; 52:48 ซึ่งเป็นอัตราส่วนที่โครงสร้างผลึกแบบรอมโนบิอีค์รอลและเททระ โภนอลอยู่ร่วมกันอย่างสมดุล โดยที่ ณ สัดส่วนนี้เองที่ PZT แสดงสมบัติทางไฟฟ้าที่โดดเด่น เนื่องจากความเป็นไปได้ของการเคลื่อนที่ของโคลเมนในโครงสร้าง ซึ่งโครงสร้างรอมโนบิอีค์รอลมีความเป็นไปได้ของการเคลื่อนที่ของโคลเมนเท่ากับ 8 ในขณะที่โครงสร้างเททระ โภนอลมีความเป็นไปได้เท่ากับ 6 ส่วนใหญ่ ณ สัดส่วน MPB ของ PZT มีความเป็นไปได้ของการเคลื่อนที่ของโคลเมนเท่ากับ 14

นอกจากนี้ PZT ยังมีค่าสัมประสิทธิ์คู่ควบไฟฟ้าเชิงกลที่สูง ทำการจัดเรียงข้าไฟฟ้าได้ง่าย มีค่าคงที่ไดอิเล็กทริกสูงในช่วงที่กว้าง และง่ายต่อการเผาเซ็นเตอร์ (sinter) เพราะใช้อุณหภูมิไม่สูงมาก นัก [16] สำหรับการเตรียมเซรามิก PZT ให้มีความบริสุทธิ์สูงและความหนาแน่นสูงนั้นสามารถเตรียมได้ไม่ยุ่งยาก [17] หมายความว่าสามารถใช้ในอุตสาหกรรม แต่เมื่อเสีย คือ มีการสูญเสียพลังงานค่อนข้างสูง มีสมบัติอิสเทอเรชิส มีความล้าสูงทำให้อายุการใช้งานสั้น ซึ่งในอนาคตแล้ว สมบัติทางไฟฟ้าของ PZT ยังต้องถูกปรับปรุงและพัฒนาให้มีประสิทธิภาพมากขึ้น จากแผนภาพวัสดุภาคสำหรับ 3 องค์ประกอบของ $\text{PbO}-\text{TiO}_2-\text{ZrO}_2$ ที่ 1100°C โดย Jaffe et al. ดังรูปที่ 2.22 สารละลายสถานะของแข็งของ PZT จะเกิดขึ้นระหว่าง 48 ถึง 51 เปอร์เซ็นต์โดยไม่ลดของ PbO และที่สัดส่วน PbO สูง ๆ (> 51 เปอร์เซ็นต์โดยไม่ลด) จะได้ PZT รวมกับของเหลว [18]

รูป 2.22 แผนภาพวัสดุภาคสำหรับ 3 องค์ประกอบของ $\text{PbO}-\text{TiO}_2-\text{ZrO}_2$ ที่ 1100°C โดย Jaffe et al. [18]

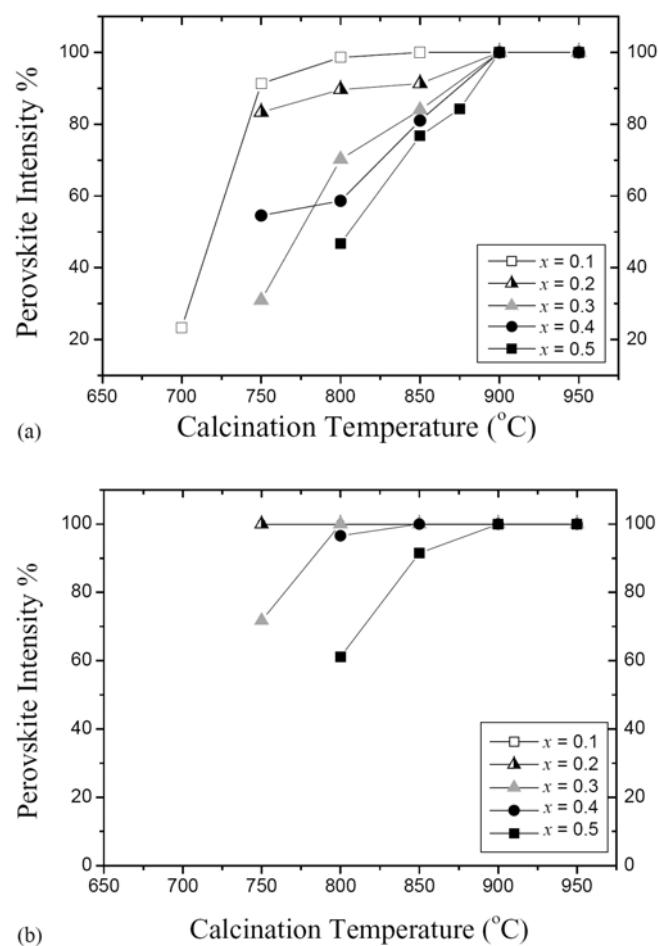

นับแต่เมื่อคืนพับประภากลการผลิตไฟฟ้าอิเล็กทริก ได้มีกลุ่มนักวิจัยหลายกลุ่มพยายามศึกษาหารือการเตรียมสาร PZT ที่มีคุณภาพสูง ที่สามารถแสดงสมบัติทางไฟฟ้าอิเล็กทริกได้ดีที่สุด โดยมีการพัฒนาและปรับปรุงมาเป็นลำดับ ดังนี้

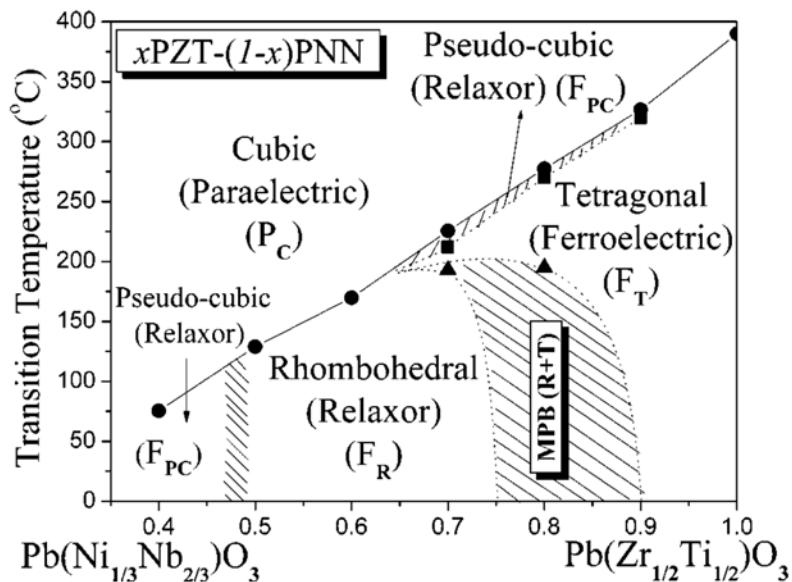
ประมาณปี ค.ศ. 1981 Hankey และ Biggers [19] ได้ศึกษาถึงอุณหภูมิแคลนซ์ (calcination) ที่เหมาะสมต่อการเกิดเฟสของ PZT ที่เตรียมด้วยวิธีปฏิกิริยาสถานะของแข็ง (solid state reaction) และพบว่า PZT จะเกิดขึ้นมาอย่างสมบูรณ์ที่อุณหภูมิประมาณ 775 องศาเซลเซียส ก่อนที่จะมีการระเหยของตะกั่วออกไประดับ Cho และ Biggers [20] ได้ทดลองเตรียม PZT ด้วยวิธีการผสมออกไซด์ (mixed oxide) และวิธีเกลือหลอมเหลว (molten salt) เตรียมเพียงกันในปี ค.ศ. 1983 พบว่า ขนาดและการกระจายตัวของอนุภาค PZT ที่เตรียมได้จากการผสมออกไซด์จะมากกว่าในกรณีที่ได้จากการเตรียมโดยวิธีเกลือหลอมเหลว ในปี ค.ศ. 1989 Zhilun และคณะ [21] ได้รายงานว่า การเติมสารผสม


ระหว่าง โบรอนออกไซด์ (boron oxide), บิสมัทออกไซด์ (bismuth oxide) และแคนดเมียมออกไซด์ (cadmium oxide) (B_2O_3 - Bi_2O_3 - CdO) ลงไปจะช่วยลดอุณหภูมิในการเผาเพื่อเตรียมเซรามิก PZT ลงมาอยู่ที่ช่วง $960^{\circ}C$ - $1250^{\circ}C$ และในช่วงต่อมา ได้มีผู้ทำการศึกษาเกี่ยวกับวิธีการเตรียม PZT ด้วยการใช้สารช่วยลดอุณหภูมิการเผาให้ต่ำลงมาโดยตลอด เช่น ปี ค.ศ. 1999 Tas [22] ได้ศึกษาการเตรียมผง $Pb(Zr_{0.52}Ti_{0.48})O_3$ ด้วยวิธีการตกตะกอน โดยเริ่มจากการใช้สารละลายนเลดคลอไรด์ (lead chloride; $PbCl_2$) เชอร์โโคเนียมคลอไรด์ (zirconium chloride octahydrate; $ZrCl_2 \cdot 8H_2O$) และไทเทเนียมคลอไรด์ (titanium chloride; $TiCl_4$) เป็นสารตั้งต้น โดยการนำไปตกตะกอนในสารละลายน้ำที่ประกอบด้วยยูเรีย (urea) และนำไปเผาแคลไชน์ พบว่า เมื่อทำการเผาแคลไชน์ที่อุณหภูมิ $500^{\circ}C$ เป็นเวลานาน 6 ชั่วโมง จะสามารถเตรียม PZT ที่มีความบริสุทธิ์สูงได้

มีความพยายามที่จะพัฒนาสาร PZT ให้มีประสิทธิภาพสูงมากขึ้นเพื่อตอบสนองความต้องการในเชิงอุตสาหกรรม โดยการเลือก เช่น Mn_2O_3 และ Nb_2O_5 $SrCO_3$ และอื่นๆ โดยเฉพาะอย่างยิ่งการทำเป็นสารละลายนองแข็งกับสารรีแลกเซอร์ เช่น เลตนิกเกิล ในโอบีต ($Pb(Ni_{1/3}Nb_{2/3})O_3$; PNN) เลตแมกนีเซียม ในโอบีต ($Pb(Mg_{1/3}Nb_{2/3})O_3$; PMN) และเลดซิงค์ในโอบีต ($Pb(Zn_{1/3}Nb_{2/3})O_3$; PZN) โดยเริ่มจากนักวิทยาศาสตร์ของบริษัท Matsusita Electric ในประเทศญี่ปุ่น ได้ศึกษาเซรามิกที่เกิดการผสมกันระหว่าง PZT และ สารรีแลกเซอร์ PMN โดยได้ผลิตออกมานิ่ือทางการค้าว่า PCM [23] ในเวลาต่อมานักวิทยาศาสตร์ชาวจีน ได้ศึกษา PZT-PMS โดยใช้ชื่อทางการค้าว่า PMS และในทศวรรษที่ 70 สารรีแลกเซอร์ที่มีโครงสร้างแบบเพอรอฟส์ไกต์เชิงช้อนได้ถูกให้ความสนใจอย่างกว้างขวาง และถูกศึกษาโดยการผสมกับ PZT อย่างไรก็ตาม สัดส่วนและวิธีการเตรียมส่วนใหญ่จะถูกจดสิทธิบัตร และไม่ได้รับการเผยแพร่

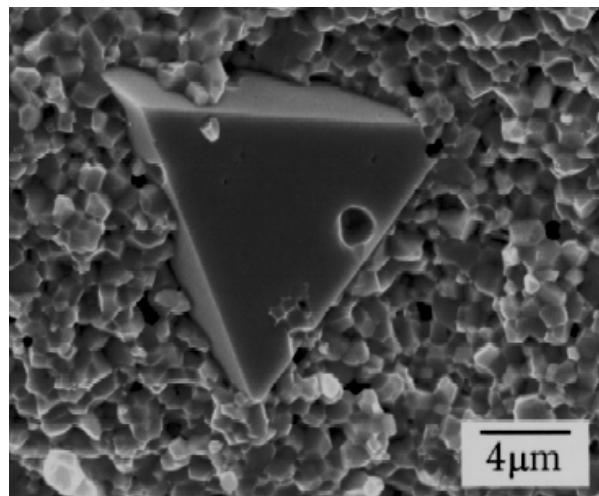
ในปี ค.ศ. 2002 Fan [24] และคณะซึ่งเป็นนักวิจัยชาวเกาหลี ได้ทำการศึกษาสารละลายนองแข็งระหว่าง PZT และ PZN พบว่าสามารถเตรียมสารโครงสร้างเพอรอฟส์ไกต์ของสารละลายนองแข็งนี้ให้มีความบริสุทธิ์สูง ดังแสดงในรูป 2.23 โดยอัตราส่วนที่ PZN เข้าไปละลายอยู่ในโครงสร้าง PZT ได้มากที่สุดที่ $x = 0.5$ และเป็นอัตราส่วนที่เซรามิกแสดงสมบัติได้อย่างสูงถึง 20,000 ดังรูป 2.24 นอกจากนี้ Fan [25] ยังพบอีกว่าสารละลายนองแข็งนี้สามารถปรับปรุงสมบัติทางไฟฟ้าได้โดยการเผาอบอ่อน


รูป 2.23 รูปแบบการเลี้ยวเบนรังสีเอ็กซ์ของตัวอย่างเซรามิก $(1-x)$ PZN- x PZT ที่เผาชินเตอร์ที่ 1100°C (a) $x = 0.2$ (b) $x = 0.3$ (c) $x = 0.4$ (d) $x = 0.5$ (e) $x = 0.6$ (f) $x = 0.7$ [24]

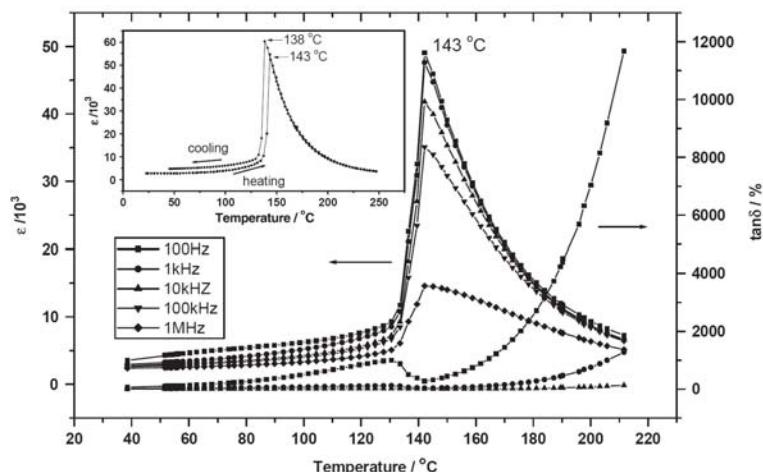

รูป 2.24 ความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกกับอุณหภูมิของเซรามิก $(1-x)$ PZN- x PZT โดย $x = 0.4, 0.5, 0.6$ และ 0.7 [25]

นอกจากนั้นแล้ว ดร. รัตติกร [26] จากมหาวิทยาลัยเชียงใหม่ ได้ทำการศึกษา สมบัติไดอิเล็กทริกของเซรามิก PMN-PZT ที่มีผลต่อความเกิน โดยทำการเปลี่ยนแปลงสัดส่วนของ PZT พบว่า ค่าไดอิเล็กทริกมีค่าเพิ่มสูงขึ้นในสัดส่วนของ PZT ที่สูง และมีค่าลดต่ำลงเมื่อสัดส่วนของ PMN สูง และในปี ค.ศ. 2004 ดร. นราธิป [3] และคณะจากมหาวิทยาลัยเชียงใหม่ ได้ทำการเปรียบเทียบวิธีการเตรียมเซรามิก PZT-PZN จากสองวิธีการเตรียมคือ วิธีดึงเคลิน (Conventional method) และวิธีโคลัมไบต์ (Columbite method) ดังรูป 2.25 ซึ่งพบแนวรอยต่อเฟสสองรอยคือ $x \sim 0.2$ และ $x \sim 0.5$ ในเซรา

มิก $(1-x)$ PZT- x PZN และยังพบว่า เชรามิกที่เตรียมจากวิธีโคลัมไบต์นั้นให้สมบัติที่ดีกว่าเชรามิกที่เตรียมจากวิธีดังเดิม ต่อมานะคร. นราธิป [3] ยังได้ทำการศึกษาเชรามิก PZT-PNN โดยวิธีการเตรียมแบบโคลัมไบต์ พบว่า สามารถเตรียมให้มีความบริสุทธิ์สูงได้ และบริเวณแนวรอยต่อเฟสจะแสดงสภาพยอมสัมพัทธ์ที่สูง งานวิจัยนี้ยังชี้ให้เห็นถึงการเปลี่ยนแปลงจากสารเฟอร์โรอิเล็กทริกแบบปกติไปเป็นสารเฟอร์โรอิเล็กทริกแบบบริแล็กเซอร์อิกด้วย ดังรูป 2.26

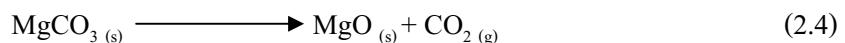

รูป 2.25 ความสัมพันธ์ระหว่างเปอร์เซ็นต์เฟสเพอร์อฟส์ไกต์กับอุณหภูมิในการแคลไชน์สำหรับเชรามิกส์ x PZN- $(1-x)$ PZT โดย (a) วิธีโคลัมไบต์ (b) วิธีดังเดิม [3]

รูป 2.26 แผนภาพวัสดุภาคของ x PZT-(1- x)PNN โดย $x = 0.4-0.9$ [3]


2.9 เลดโคลเบตไนโอลเบต ($\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$)

เลดโคลเบตไนโอลเบต ($\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$; PCoN) เป็นสารประกอบเพอโรฟสไกต์เชิงช้อนที่มีตัวกั่วเป็นองค์ประกอบ [27] และเป็นสารเฟอร์โรอิเล็กทริกที่แสดงสมบัติรีแลกเซอร์ โดยแสดงค่าขอมสัมพัทธ์สูง และพฤติกรรมการเปลี่ยนแปลงของค่าสภาพขอมสัมพัทธ์ไม่เข้ากับอุณหภูมิ (Diffuse phase transition) มากนัก ซึ่งหมายความว่าการประยุกต์ใช้ทำเป็นตัวเก็บประจุประกอบกับลักษณะเฉพาะทางจุลภาคซึ่งส่งผลให้สาร PCoN มีการสูญเสียพลังงานต่ำ และไม่มีอิสเทอเรชิส ซึ่งทำให้ประสิทธิภาพการส่งถ่ายพลังงานสูง สำหรับข้อเสีย คือ การที่มีสัมประสิทธิ์ไฟฟ้าเชิงกลคู่ความค่อนข้างต่ำเมื่อเทียบกับสาร PZT ส่งผลให้การนำไปใช้ประโยชน์ในทางแยกทั่วไปเทอเรอร์ และทรายสติวเซอร์ไม่ประสบผลสำเร็จได้อย่างเต็มที่ อย่างไรก็ตามการเตรียมสารรีแลกเซอร์เฟอร์โร-อิเล็กทริก ส่วนใหญ่ให้เป็นเฟสเดียว และความหนาแน่นสูงนั้น ค่อนข้างเตรียมได้ยาก [28, 29] เนื่องจากจะเกิดเฟสแบลกปลอมแทรกอยู่ในโครงสร้าง ดังรูป 2.27

รูป 2.27 เฟสเปลกปломที่แทรกอยู่ในโครงสร้าง [24]


อย่างไรก็ตาม มีความพยายามในการเตรียมและการศึกษาสมบัติของ PCoN เช่น ในปี ค.ศ. 1969 Toshiyuki Kudo [30] และคณะได้ศึกษาสมบัติโดยอิเล็กทริกและพิโซอิเล็กทริกของเซรามิก PCoN-PT-PZ ดังรูป 2.28 พบว่า ที่บริเวณไกล์เคียงแนวรอยต่อเฟสนั้นจะแสดงค่าคงที่โดยอิเล็กทริกเท่ากับ 75-1500 และในปี ค.ศ. 2005 Guisheng Xu [2] ศึกษาการเตรียมผลึกและสมบัติทางไฟฟ้าของ PCoN-PT โดยวิธีบริดจ์แมน (Bridgman method) หลังจากการศึกษาระบบที่ PCNT64/36 นั้นพบว่า ที่บริเวณไกล์เคียงแนวรอยต่อเฟสจะได้อุณหภูมิคือรูที่ 143 องศาเซลเซียส ซึ่งต่ำกว่าอุณหภูมิคือรูของเซรามิก PCNT62/38 และพบว่าผลึก PCNT64/36 ที่ได้มีการสูญเสียทางโดยอิเล็กทริกสูงและการตอบสนองทางพิโซอิเล็กทริกต่ำ

รูป 2.28 ความสัมพันธ์ระหว่างอุณหภูมิกับค่าคงที่โดยอิเล็กทริก (ϵ) และค่าการสูญเสียทางโดยอิเล็กทริก ($\tan \delta$) สำหรับผลึกเชิงเดียวของ PCNT64/36 ที่ความถี่ต่าง ๆ ในระหว่างการให้ความร้อน [2]

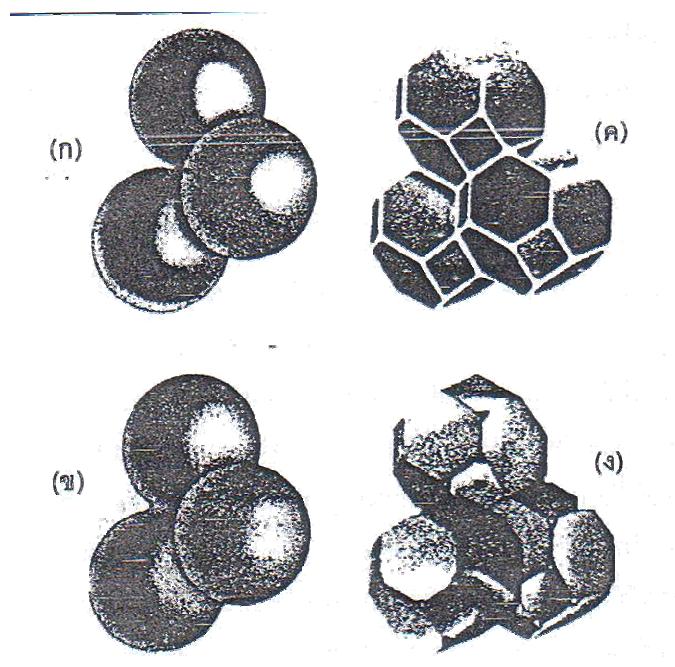
2.10 การเตรียมผงจากปูนก็อชีด์

วิธีการนี้จะอาศัยการเกิดปูนก็อชีด์ที่มีการถลายตัวของตัวทำปูนก็อชีด์ที่มีสถานะเป็นของแข็ง ด้วยความร้อน แล้วได้เป็นของแข็งชนิดใหม่กับแก๊ส เช่น การเตรียมผงแมกนีเซียมออกไซด์ (MgO) โดยอาศัยการถลายตัวด้วยความร้อนของแมกนีเซียมคาร์บอนेट ($MgCO_3$) พร้อมกับมีแก๊สคาร์บอนไดออกไซด์ (CO_2) เกิดขึ้นตามสมการ

ส่วนการเตรียมผงจากปูนก็อชีด์จะมีระหว่างสารตั้งต้นที่มีสถานะเป็นของแข็งที่สมกันอยู่นั้น เป็นอีกวิธีการหนึ่งที่นิยมใช้กันมากในการเตรียมผงเซรามิกของสารประกอบของออกไซด์เชิงซ้อน ซึ่งโดยปกติจะใช้ตัวทำปูนก็อชีด์ที่เป็นสารพาการ์บอนेट ในเครื่องชัลเฟต ออกไซเดต หรือแօซิเดต ดังตัวอย่างของการเตรียมแบบเริ่มไทยเทเนตจากปูนก็อชีด์ระหว่างแบบเริ่มคาร์บอนेट ($BaCO_3$) กับไทยเทเนียมออกไซด์ (TiO_2) ตามสมการ

การให้ความร้อนแก่สารตั้งต้นที่มีสถานะเป็นของแข็ง เพื่อให้เกิดการถลายตัว หรือเกิดการทำปูนก็อชีด์กับระหว่างสารตั้งต้นต่างชนิดกัน และเกิดเป็นของแข็งชนิดใหม่ขึ้นมาในทางด้านเซรามิกจะเรียกกระบวนการดังกล่าวว่า การแคลคิเนชัน (calcination)

พิจารณาการเตรียมผงแมกนีเซียมออกไซด์ จากการถลายตัวของแมกนีเซียมคาร์บอนे�ตด้วยความร้อนตามสมการที่ 2.4 เป็นปูนก็อชีด์ดูดความร้อน (endothermic) อย่างรุนแรง ซึ่งเป็นลักษณะปกติของปูนก็อชีด์การถลายตัวด้วยความร้อนทั่วไป จึงต้องอาศัยการให้พลังงานความร้อนแก่ตัวทำปูนก็อชีด์เพียงพอต่อการทำให้เกิดการถลายตัว นอกจากนี้ยังต้องพิจารณาถึงเรื่องของสมดุลความดันเนื่องจากในระบบจะมีแก๊สคาร์บอนไดออกไซด์เกิดขึ้น ทำให้ต้องคำนึงถึงค่าความดันส่วนย่อยที่มีอิทธิพลโดยตรงต่อการถลายตัวของแมกนีเซียมคาร์บอนे�ตในทุกค่าของอุณหภูมิ


การเตรียมผงจากปูนก็อชีด์สถานะของแข็งมีค่าใช้จ่ายค่อนข้างน้อย แต่ผงที่เตรียมได้มักจะมีปัญหาเรื่องการเกาะกันกันเป็นก้อนโต ทำให้ต้องมีการบดย่อยลดขนาดอยู่เสมอ เนื่องจากการบดย่อยมีการใช้ลูกบด จึงมีโอกาสทำให้ผงที่เตรียมได้มีสารแปรปนปนมาด้วยและเมื่อนำไปใช้อาจจะทำให้เกิดเฟสที่ไม่ต้องการเกิดขึ้นในผลิตภัณฑ์ได้ และนอกจากนี้การบดย่อยลดขนาดยังทำให้ไม่สามารถควบคุมรูปร่างของอนุภาคที่เตรียมได้อีกด้วย

2.11 กระบวนการเผาซินเตอร์เซรามิก [31]

กระบวนการซินเตอร์นั้นมีความสำคัญเป็นอย่างยิ่งต่อกระบวนการผลิตเซรามิก เซรามิกจะต้องถูกเผาที่อุณหภูมิสูงเพื่อให้ได้โครงสร้างทางจุลภาค (microstructure) ตามที่ต้องการ ซึ่งจะส่งผลให้ได้เซรามิกที่มีคุณสมบัติต่างๆตามที่ต้องการด้วย

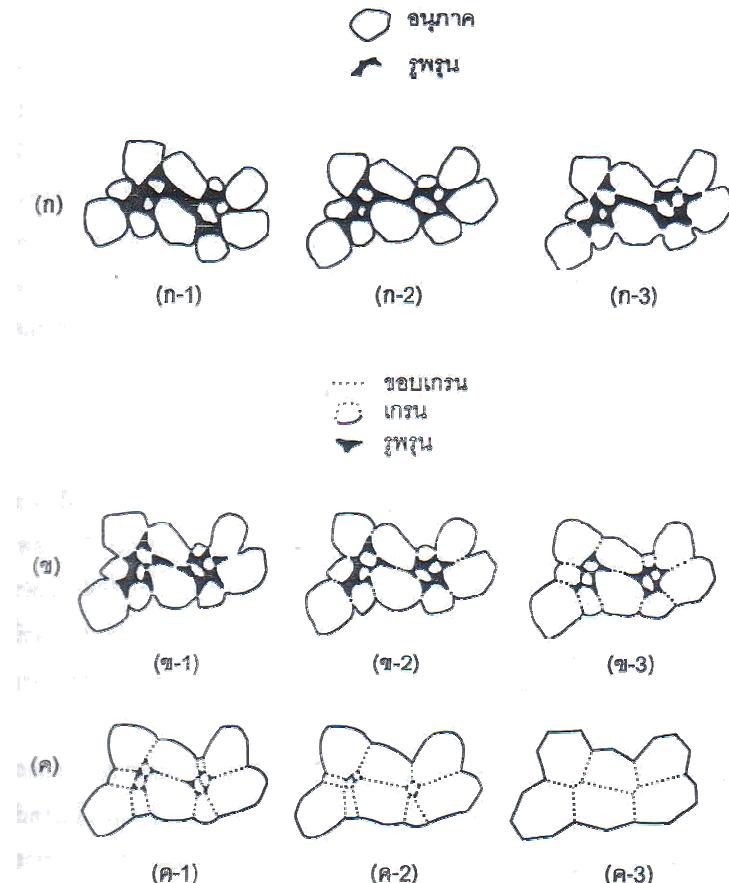
2.10.1 ขั้นตอนการซินเตอร์

การแบ่งช่วงการซินเตอร์นั้นจะพิจารณาจากการเปลี่ยนแปลงทางกายภาพของอนุภาคที่มาเข้ามต่อ กันและการหายไปของรูพรุน สำหรับวัสดุที่มีโครงสร้างผลึกเชิงช้อน แสดงดังรูป 2.29 ซึ่งแสดงโครงสร้างรูปทรงเรขาคณิตในอุดมคติที่ผ่านกระบวนการซินเตอร์

รูป 2.29 (ก) การซินเตอร์ช่วงเริ่มต้น ทรงกลมสัมผัสกัน (ข) ช่วงสุดท้ายของการซินเตอร์ช่วงเริ่มต้น ทรงกลมเริ่มเข้ามติดกัน (ค) การซินเตอร์ช่วงกลาง เกรนเปลี่ยนรูปร่าง (ง) การซินเตอร์ช่วงสุดท้าย รูพรุนเป็นแบบเททระฮีดรอล [31]

กระบวนการเผาซินเตอร์สามารถแบ่งออกเป็น 3 ช่วง ได้ดังนี้

1. การซินเตอร์ช่วงเริ่มต้น (initial stage of sintering)


การซินเตอร์ช่วงต้นจะประกอบด้วยการจัดเรียงตัวใหม่ของอนุภาค (rearrangement of particles) และเกิดการเดินทางของบริเวณระหว่างแต่ละอนุภาค หรือที่รู้จักกันว่า คอ อย่างรวดเร็วในเบื้องต้น แสดงดังรูป 2.30 (ก) การซินเตอร์ช่วงนี้จะเกิดขึ้นจนกระทั่งรัศมีของคอมีค่าประมาณ 0.4-0.5 เท่าของรัศมีอนุภาค

2. การซินเตอร์ช่วงกลาง (intermediate stage of sintering)

การซินเตอร์ช่วงกลางจะเริ่มต้นเมื่อรูพรุนมีรูปร่างสมดุล (equilibrium shape) ซึ่งจะพิจารณาได้จากแรงตึงผิวและแรงระหว่างผิว ส่วนเฟสของรูพรุนก็ยังมีความต่อเนื่องกันอยู่ การเปลี่ยนแปลงทางกายภาพของอนุภาคในการซินเตอร์ช่วงกลางนี้แสดงดังรูป 2.30 (ข) จะเห็นว่าขนาดของ孔จะใหญ่ขึ้น ปริมาณรูพรุนน้อยลง และจุดศูนย์กลางของอนุภาคจะเข้ามาใกล้กันมากขึ้นจึงส่งผลให้การหดตัวสัมพันธ์กับปริมาณของรูพรุนที่น้อยลง ส่วนของกรนจะเริ่มเคลื่อน ทำให้กรนเริ่มโตและกรนที่อยู่ข้างเคียงหายไปในกรนดังกล่าว ดังนั้นจะทำให้เกิดการเปลี่ยนแปลงรูปทรงเรขาคณิตของกรน คือ และรูพรุนต่อไป การซินเตอร์ช่วงกลางนี้จะเกิดจนกว่ารูพรุนจะมาซึ่อมต่อกันและสิ้นสุดเมื่อรูพรุนเริ่มแยกตัวออกจากกันเป็นรูพรุนเดี่ยว ๆ (isolated pores) การหดตัวในช่วงนี้จึงมากกว่าช่วงอื่นๆ

3. การซินเตอร์ช่วงสุดท้าย (final stage of sintering)

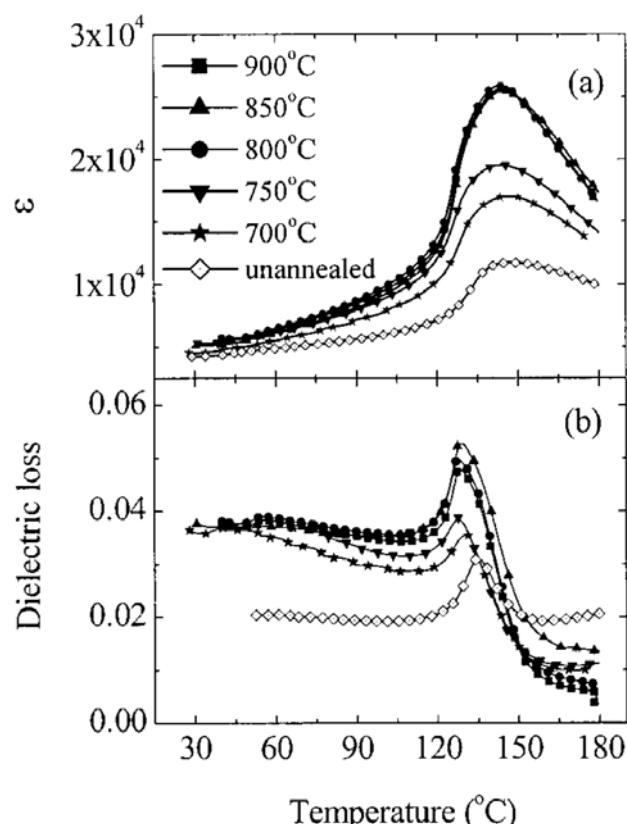
การพัฒนาโครงสร้างทางจุลภาคของการซินเตอร์ช่วงสุดท้ายนี้ มีได้หลากหลายรูปแบบรูพรุนจะถูกกำจัดออกจากระบบโดยยังคงอยู่ใกล้กับขอบกรน อย่างไรก็ตามถ้าการเติบโตของขอบกรนเร็วเกินไป ขอบกรนจะเคลื่อนที่เร็วกว่ารูพรุน ส่งผลให้รูพรุนแยกตัวไปอยู่ในกรน เมื่อกรนเติบโตต่อไปจะทำให้รูพรุนถูกแยกออกจากขอบกรน ซึ่งจะทำให้ลดโอกาสการถูกกำจัดออกไปได้ ดังนั้นการเติบโตของกรนควรได้รับการควบคุมเป็นอย่างดี เพื่อทำให้การกำจัดรูพรุนเป็นไปได้มากที่สุด การเปลี่ยนแปลงทางกายภาพของอนุภาคในการซินเตอร์ช่วงสุดท้ายนี้แสดงดังรูป 2.30 (ค)

รูป 2.30 (ก) การซินเตอร์ช่วงเริ่มต้น (ข) การซินเตอร์ช่วงกลาง (ค) การซินเตอร์ช่วงสุดท้าย เมื่อ (ก-1) อนุภาคผงเริ่มต้น (ก-2) มีการจัดเรียงตัวใหม่ (ก-3) การเกิดคอ (ข-1) มีการเติบ โตกองคอและ เกิดการหดตัวเชิงปริมาตร (ข-2) ขอบของเกรนยาวขึ้น (ข-3) คอโตกามากขึ้น ขอบของเกรนยาว ยิ่งขึ้น มีการหดตัวและขยายขนาดของเกรน (ค-1) เกรน โตขึ้นพร้อมทั้งมีรูพรุนเกิดขึ้น (ค-2) เกรน โตขึ้นแต่ความพรุนลดลง (ค-3) เกรน โตพร้อมทั้งรูพรุนถูกกำจัดออกไป [31]

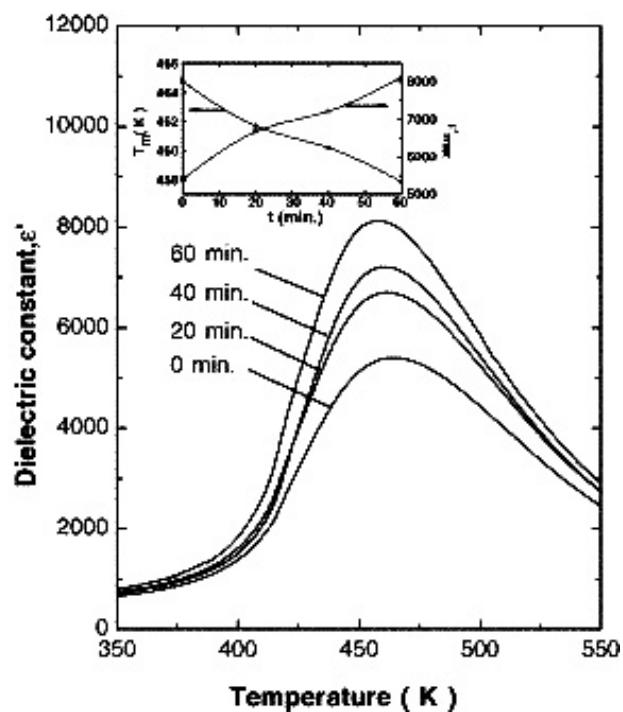
2.12 การปรับปรุงประสิทธิภาพเชรามิกด้วยการอบอ่อน (annealing)

การอบอ่อน (annealing) เป็นกรรมวิธีในการคลายความเครียด อันเนื่องมาจากการเก็บ ตกค้างที่คงเหลือแม้ไม่ถูกแรงภายนอกมากระทำ นิยมใช้ปรับปรุงสมบัติของโลหะหรืออัลลอยด์ต่างๆ ซึ่งวัสดุเหล่านี้มีความเก็บตกค้างซึ่งคงเหลือจากการกระบวนการรีดขึ้นรูป การอบอ่อนทำได้โดยการนำวัสดุ ไปอบที่อุณหภูมิสูงเป็นระยะเวลาหนึ่ง จนกว่าจะให้เย็นตัวลงอย่างช้าๆ ซึ่งนอกเหนือจากการคลาย ความเครียดแล้ว ยังเป็นการทำให้เกิดโครงสร้างจุลภาคเฉพาะขึ้น อันเป็นผลทำให้เกิดการเปลี่ยนแปลง สมบัติต่างๆ ของวัสดุ

กระบวนการอบอ่อนแบ่งเป็น 3 ช่วง คือ


- การให้ความร้อนจนถึงอุณหภูมิที่ต้องการ
- การที่อุณหภูมิกองที่ที่อุณหภูมิที่ต้องการเป็นระยะเวลาหนึ่ง
- การเย็นตัวลงจนถึงอุณหภูมิห้อง โดยมีเวลาเป็นตัวแปรสำคัญ

อัตราในการขึ้น-ลงของอุณหภูมิที่ใช้ในการอบอ่อนนั้นมีความสำคัญ เนื่องจากเมื่อเกิดความแตกต่างของอุณหภูมิระหว่างผิวน้ำของชิ้นงานและภายในชิ้นงานมากเกินไป จะทำให้เกิดการแตกหักได้ เนื่องจากที่ผิวน้ำของชิ้นงานจะมีอุณหภูมิที่ต่ำกว่าภายในเมื่อมีการลดอุณหภูมิลง ทำให้เกิดความเครียดได้ ดังนั้น ในอัตราการขึ้น-ลงของอุณหภูมิต้องอยู่ในช่วงที่เหมาะสม และเวลาที่ใช้ในการอบอ่อนต้องเป็นเวลานานพอที่จะทำให้เกิดการเปลี่ยนแปลงของโครงสร้างจุลภาค เพื่อให้เกิดการเปลี่ยนแปลงของสมบัติของวัสดุอย่างสมบูรณ์


เนื่องจากเทคนิคการอบอ่อนนั้นสามารถลดความเค็นคงเหลือ และทำให้เกิดการเปลี่ยนแปลงโครงสร้างจุลภาคได้ ทำให้มีการนำเทคนิคนี้มาประยุกต์ใช้ทางด้านวัสดุศาสตร์อย่างแพร่หลาย เพื่อศึกษาการเปลี่ยนแปลงสมบัติของเซรามิก ที่เกิดขึ้นหลังจากการอบอ่อน และเป็นแนวทางในการปรับปรุงสมบัติของวัสดุต่างๆ ให้ดีขึ้นอีกด้วย

ในปี ค.ศ.2001 Huiqing Fan และคณะ [32] ได้ทำการเตรียมเซรามิกในระบบ PZN-PZT พบว่าที่อัตราส่วน 0.5PZN-0.5PZT มีสมบัติพิโซอิเล็กทริกที่ดีที่สุด เป็นบริเวณแนวรอยต่อเฟส (MPB) และทำการอบอ่อน (annealing) ในบรรยายกาศออกซิเจน ที่อุณหภูมิ 960 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง ซึ่งทำให้สมบัติของเซรามิกนั้นดีขึ้นมากกว่าเดิม มีค่าสัมประสิทธิ์ทางไฟฟ้าเชิงกล (electromechanical coupling coefficient) สูงถึง 0.73 ในปีต่อมา Feng Xia และคณะ [33] ได้ทำการอบอ่อนเซรามิกในระบบ PZN-BT-PT โดยศึกษาถึงปัจจัยที่มีผลต่อการอบอ่อน คือ อุณหภูมิ เวลา และบรรยายกาศในการอบอ่อน พบว่า เมื่อทำการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส เป็นเวลา 4-8 ชั่วโมง เซรามิกจะมีสมบัติโดยอิเล็กทริกที่ดีขึ้น ดังแสดงในรูป 2.31 อีกทั้งนักวิทยาศาสตร์ชาวจีนอีกกลุ่มหนึ่ง [34] ก็พบว่าเมื่อเซรามิกดังกล่าวผ่านการปรับปรุงคุณสมบัติด้วยการอบอ่อนที่อุณหภูมิ 880 องศาเซลเซียส เป็นเวลา 16 ชั่วโมงแล้ว จะแสดงสมบัติเพอร์โටอิเล็กทริกแบบปกติมากกว่าแสดงสมบัติเรโซร์เฟอร์โටอิเล็กทริก จากนั้น M. Adamczyk และคณะ [35] ได้ศึกษาอิทธิพลของการอบอ่อนต่อสมบัติของ PBZT ที่อัตราส่วน Ba/Zr/Ti เท่ากับ 25/70/30 โดยพบว่าเมื่อทำการอบอ่อนที่อุณหภูมิ 1000 องศาเซลเซียส ในอากาศ ที่เวลา 20 40 และ 60 นาที พบว่าจะมีการเพิ่มขึ้นของค่าคงที่ไดอิเล็กทริก ดังแสดงในรูป 2.32 เมื่อปี ค.ศ. 2006 N.Vittayakorn [36] ได้ศึกษาการอบอ่อนที่มีอิทธิพลต่อเซรามิกในระบบ PZT-PZN โดยเตรียมสารด้วยวิธีโคลัม ไบต์ โดยเตรียม $ZnNb_2O_6$ ก่อน พบว่าเซรามิกที่มีอัตราส่วน 0.9PZT-0.1PZN ที่ไม่ผ่านการอบอ่อนแสดงสมบัติเพอร์โටอิเล็กทริกแบบปกติ มีค่าคงที่ไดอิเล็กทริกสูงสุดเท่ากับ 14000 ที่ความถี่ 1 kHz เมื่อเซรามิกผ่านการอบอ่อนที่อุณหภูมิ

900 องศาเซลเซียส เป็นเวลา 1 วัน ค่าคงที่ไดอิเล็กทริกสูงสุดเปลี่ยนจากที่ 360 องศาเซลเซียส เป็น 350 องศาเซลเซียส และค่าคงที่ไดอิเล็กทริกมีค่าเพิ่มขึ้นมากจนเท่ากับ 35000

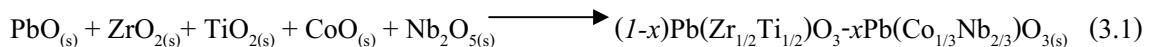
รูป 2.31 แสดงความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกและค่าตัวประกอนสูญเสียทางไดอิเล็กทริก (dielectric loss) กับอุณหภูมิ ของ PZN-BT-PT ก่อนการอบอ่อน และหลังการอบอ่อนที่อุณหภูมิต่างๆ [33]

รูป 2.32 ค่าคงที่ไดอิเล็กทริกที่เทียบกับอุณหภูมิของ PBZT เมื่อเวลาในการอบอ่อนต่างกัน [35]

วิธีการทดลอง

3.1 สารเคมี

- 3.1.1 เลดออกไซด์ (lead oxide ; PbO) ความบริสุทธิ์อย่าง ≥99.0 ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์
- 3.1.2 เชอร์โโคเนียมออกไซด์ (zirconium oxide ; ZrO₂) ความบริสุทธิ์อย่าง 99 ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์
- 3.1.3 ไทเทเนียมไดออกไซด์ (titanium dioxide ; TiO₂) ความบริสุทธิ์อย่าง ≥99.0 ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์
- 3.1.4 โคลบัลต์ออกไซด์ (cobalt oxide ; CoO) ความบริสุทธิ์อย่าง 99.99 ผลิตโดยบริษัท Aldrich ประเทศสหรัฐอเมริกา
- 3.1.5 ไนโอลิเมียมออกไซด์ (niobium oxide ; Nb₂O₅) ความบริสุทธิ์อย่าง 99.9 ผลิตโดยบริษัท Aldrich ประเทศสหรัฐอเมริกา
- 3.1.6 โพลิไวนิลแอลกอฮอล์ (polyvinylalcohol ; PVA) ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์
- 3.1.7 อะลูมินา (Alumina; Al₂O₃)
- 3.1.8 ผงขัดอะลูมินาขนาดอนุภาค 1 ไมโครเมตร
- 3.1.9 เอทานอล (ethanol) ความบริสุทธิ์อย่าง 99.9 ผลิตโดยบริษัท Merck ประเทศเยอรมัน
- 3.1.10 กาวเงิน (silver paste)
- 3.1.10 น้ำกึ่น


3.2 อุปกรณ์

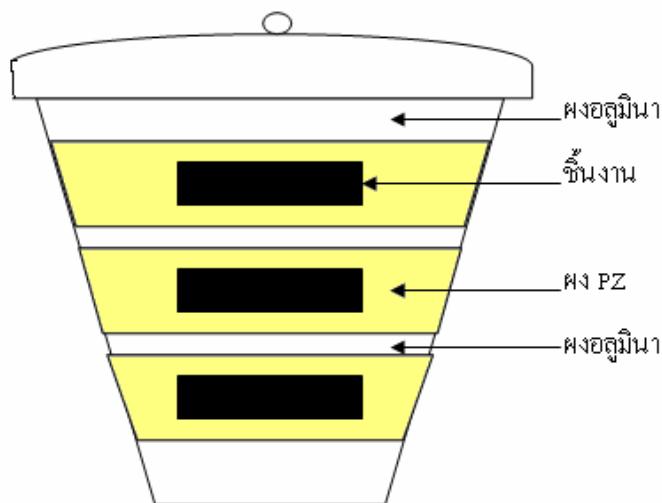
- 3.2.1 เครื่องชั่งดิจิตอลความละเอียด 0.0001 กรัม ผลิตโดยบริษัท Sartorius
- 3.2.2 กระดาษฟอยล์
- 3.2.3 ช้อนตักสารทำด้วยสแตนเลส
- 3.2.4 กระปุ่งพลาสติกพร้อมฝาปิด ใช้สำหรับดยถอย
- 3.2.5 เทปพันท่อ


- 3.2.6 ยางในรดยนต์
- 3.2.7 ลูกบดเซอร์โคเนีย (zirconia)
- 3.2.8 เครื่องบดย่อย
- 3.2.9 เตาแพ่นความร้อน (hot plate) พร้อมตัวพสมสารแบบแม่เหล็ก (magnetic stirrer)
- 3.2.10 แท่งแม่เหล็กสำหรับการวนสาร (magnetic bar)
- 3.2.11 ตู้อบสารอุณหภูมิ 200 องศาเซลเซียส ผลิตโดยบริษัท Memmert
- 3.2.12 เตาไฟฟ้าอุณหภูมิสูง ผลิตโดยบริษัท Nabertherm
- 3.2.13 เป้าเผา (crucible) พร้อมฝาปิด
- 3.2.14 ครกบดสาร
- 3.2.15 แม่พิมพ์โลหะสำหรับอัดขึ้นรูป
- 3.2.16 เครื่องอัด
- 3.2.17 คิมหนีบ
- 3.2.18 บีกเกอร์ขนาดต่าง ๆ
- 3.2.19 กระดาษทรายน้ำเบอร์ 400 600 800 1000 และ 1200
- 3.2.20 กระชอน
- 3.2.21 เครื่องคิดไฟอเรนเทียลเทอร์มอลอจนาไอลซิส (differential thermal analysis ; DTA)
ผลิตโดยบริษัท Perkin Elmer รุ่น DTA 7
- 3.2.22 เครื่องตรวจสอบการเลี้ยวเบนของรังสีเอ็กซ์ (X-ray diffractometer) รุ่น D8 Advance
- 3.2.23 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope ; SEM)
ผลิตโดยบริษัท LEO รุ่น LEO 1455 VP
- 3.2.24 เครื่อง LCR meter

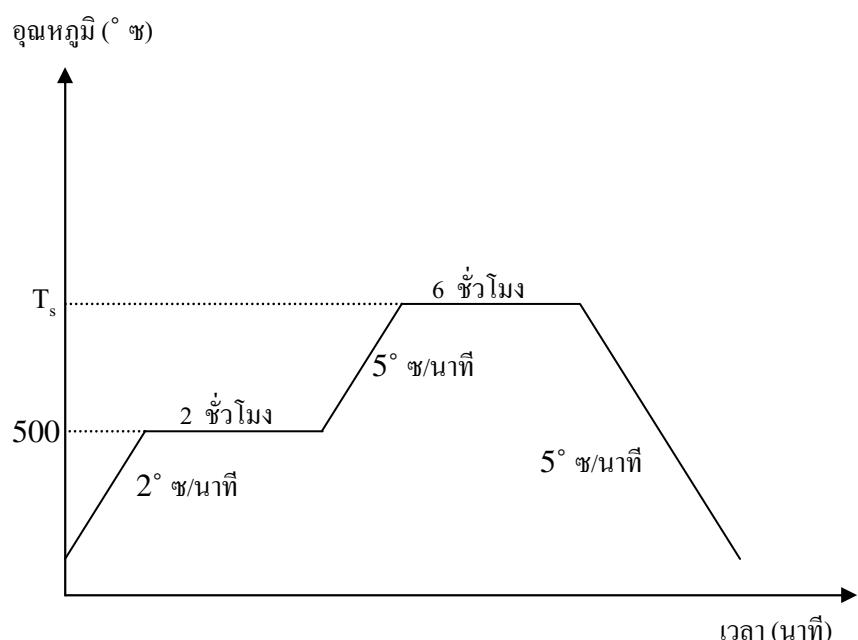
3.3 การเตรียมผงเดดเซอร์โคเนตไทเทนต์-เดดโคลบอลต์ในโอบেต

เตรียมผงในระบบ $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ที่อัตราส่วนผสมโดย $x = 0.0 - 0.5$
ซึ่งสามารถเตรียมได้ดังสมการที่ 3.1 โดยวิธีการผสมอุกไชค์

- 3.3.1 ชั้งสารตั้งต้นทั้งหมดใส่กระดาษฟอยล์ในปริมาณที่ได้จากการคำนวณ
- 3.3.2 ผสมสารตั้งต้นที่ชั่งไว้เข้าด้วยกันในกระป๋องพลาสติกที่บรรจุลูกบดเซอร์โคเนียแล้ว เติมเอทานอลลงไปจนท่วมลูกบด จากนั้นปิดฝาให้แน่นพร้อมกับพันเทปเพื่อป้องกันการรั่ว
- 3.3.3 นำไปทำการบดย่อยด้วยเครื่องบดย่อยเป็นเวลา 18 ชั่วโมง
- 3.3.4 แยกสารตั้งต้นที่ผ่านการบดย่อยแล้วออกจากลูกบดลงในบีกเกอร์ด้วยกระชอน แล้วถางด้วยเอทานอล
- 3.3.5 นำสารตั้งต้นที่ได้ไประเหยเอทานอลออก โดยการให้ความร้อนด้วยเตาแผ่นความร้อนพร้อมกับการปั่นกวนด้วยแท่งแม่เหล็กตลอดเวลา ทิ้งไว้จนเอทานอลระเหยออกหมด และนำไปอบที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 16 ชั่วโมง
- 3.3.6 นำสารที่อบแล้วมาดัดด้วยกรอบสาร
- 3.3.7 แบ่งสารที่บดแล้วไปวิเคราะห์อุณหภูมิที่เหมาะสมแก่การเผาแคลใจน์ผงสารตัวอย่างด้วยเทคนิคเทอร์โมกราวิเมทริกและดิฟเฟอเรนเชียลเทอร์มอโลจนาไลซิส (TG-DTA)
- 3.3.8 นำข้อมูล TG-DTA ที่ได้มาประกอบการออกแบบการทดลองในขั้นตอนการเผาแคลใจน์
- 3.3.9 นำสารจากข้อ 3.3.6 ใส่ลงในเบ้าเผาพร้อมปิดฝาแล้วนำไปเผาแคลใจน์ โดยแบ่งเผาที่อุณหภูมิต่างๆ คือ 650-900 องศาเซลเซียส โดยเพิ่มอุณหภูมิทุก 50 องศาเซลเซียส ใช้อัตราการเพิ่มอุณหภูมิที่ 20 องศาเซลเซียสต่อนาที เผาเช้าวันที่ 4 ชั่วโมง
- 3.3.10 แบ่งสารที่เผาแคลใจน์แล้วไปตรวจสอบความบริสุทธิ์ของสารตัวอย่างด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) และคำนวณหาความบริสุทธิ์ โดยจะกล่าวในรายละเอียดต่อไป

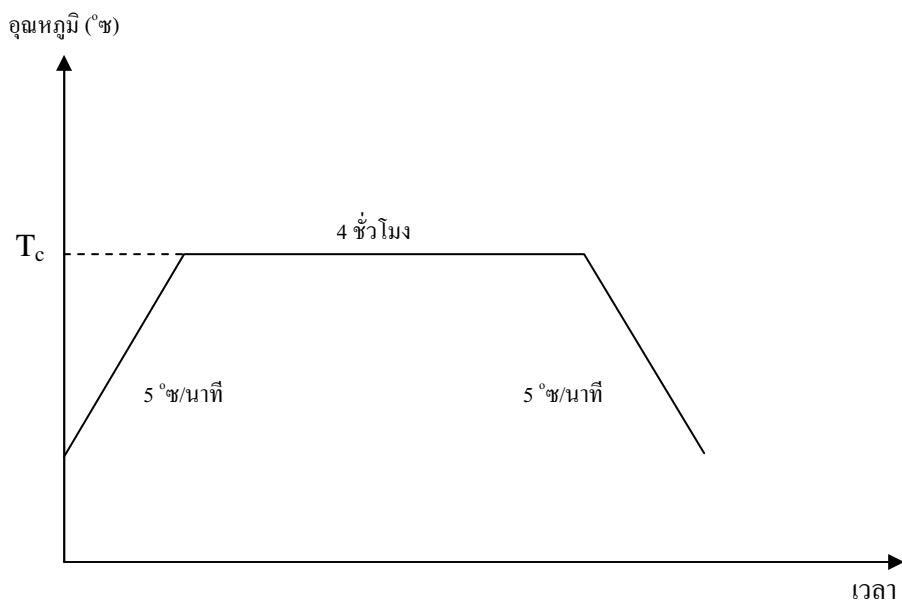


รูป 3.1 แผนผังการเตรียมผงเดดเซอร์โคเนตไทเทเนต-เดดโคลเบตในโอบต


3.4 กระบวนการเตรียมเซรามิก

เมื่อได้ผงที่ผ่านการเคล๊ใจน์และตรวจสอบความบริสุทธิ์แล้ว นำผงดังกล่าวมาขึ้นรูปเพื่อทำการเตรียมเป็นเซรามิก

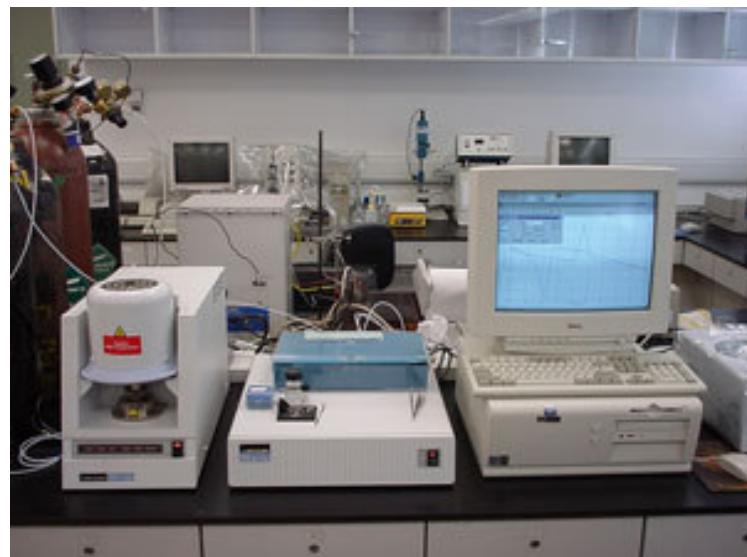
- 3.4.1 ชั่งผงสารตัวอย่างประมาณ 1.5 กรัม ลงในกระดาษฟอยล์
- 3.4.2 นำผงสารที่ชั่งแล้วมาบดให้ละเอียดด้วยครกบดสาร แล้วหยด PVA 5 เปอร์เซ็นต์โดยไม่ลงไปประมาณ 1 หยด เพื่อเป็นตัวช่วยประสาน จากนั้นบดให้เข้ากันแล้วเทลงในแม่พิมพ์โลหะ
- 3.4.3 นำสารตัวอย่างที่ผสมกับ PVA และไว้ในรูปเป็นแผ่นกลม โดยใช้เครื่องอัดระบบไฮดรอลิก ด้วยแรงดัน 3 ตัน
- 3.4.4 จัดเรียงชิ้นงานลงในเบ้าเผาดังรูปที่ 3.2 โดยรองพื้นด้วยอะลูมินาและกลบด้วย PZ แล้วปิดฝา จากนั้นแบ่งไว้ทำการเผาเซนเตอร์ที่อุณหภูมิต่างๆ จาก 1100-1250 องศาเซลเซียส โดยเพิ่มขึ้นทุกๆ 50 องศาเซลเซียส และจะต้องทำการเผาเช่ที่อุณหภูมิ 500 องศาเซลเซียส เป็นเวลากัน 2 ชั่วโมงก่อน เพื่อกำจัด PVA ออกไป ดังแผนผังการเผาเซนเตอร์ที่แสดงในรูป 3.3


รูป 3.2 การขัดเรียงชิ้นงานลงในครูซิเบิล

รูป 3.3 แผนผังการเผาชิ้นเตอร์
(โดย T_s คือ อุณหภูมิที่ใช้ในการเผาชิ้นเตอร์)

3.5 การอบอ่อน (annealing)

- 3.1.1 นำชิ้นงานที่ผ่านการเผาชิ้นเตอร์แล้ว มาจัดเรียงในถ้วยอลูมินาดังรูปที่ 3.2
- 3.1.2 ทำการเผาอบอ่อนที่อุณหภูมิต่างๆ ดังนี้ 800 850 900 950 1000 และ 1100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง โดยใช้อัตราการขึ้น-ลงของอุณหภูมิเท่ากับ 5 องศาเซลเซียสต่อนาที ดังแผนผังที่แสดงในรูปที่ 3.4
- 3.1.3 แบ่งชิ้นงานที่ได้ไปตรวจสอบเอกลักษณ์เฉพาะตัวของผงด้วยเทคนิคการเลี้ยงเบนของรังสีเอกซ์ (XRD) และตรวจสอบลักษณะโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กทรอนแบบส่องกราด (SEM)
- 3.1.4 นำชิ้นงานไปตรวจสอบสมบัติทางไดอิเล็กทริกเพื่อหาอุณหภูมิที่ทำให้ได้สมบัติที่ดีที่สุด


รูป 3.4 แผนภูมิแสดงการอบอ่อน (โดย T_c คืออุณหภูมิที่ใช้ในการอบอ่อน)

3.6 การตรวจสอบสารตัวอย่าง

3.6.1 การตรวจสอบพฤติกรรมทางความร้อน

การตรวจสอบพฤติกรรมทางความร้อนของผงสารตัวอย่างนั้นสามารถทำได้โดยการใช้เครื่องดิฟเฟอเรนเชียลเทอร์มอโลจนาไอลซีส หรือ DTA ซึ่งเป็นเทคนิคที่ใช้ในการวิเคราะห์สารจากการเปรียบเทียบความแตกต่างของอุณหภูมิของสารตัวอย่างกับสารอ้างอิง โดยที่สารอ้างอิงนี้ต้องมีความเสื่อมต่อการเปลี่ยนแปลงของอุณหภูมิในย่านที่จะทำการศึกษา ในขณะที่มีการเปลี่ยนแปลงอุณหภูมิโดยมีการควบคุมสารตัวอย่างและสารอ้างอิงให้อยู่ในสิ่งแวดล้อมเดียวกัน เช่น การเพิ่มอุณหภูมิของสารตัวอย่างการใช้อัตราการเพิ่มของอุณหภูมิที่แน่นอนแล้วค่อยตรวจสอบความแตกต่างของอุณหภูมิที่เพิ่มขึ้นหรือลดลงของสารตัวอย่างเทียบกับสารอ้างอิงที่อาจจะเกิดขึ้น ได้จากการเปลี่ยนแปลงพลังงานของสารตัวอย่าง โดยปรากฏออกมารูปของการดูดหรือความร้อนที่เป็นผลของการเปลี่ยนเฟสหรือการเกิดปฏิกิริยาทางเคมี แต่ย่างไรก็ตาม การตรวจสอบด้วยวิธี DTA เพียงอย่างเดียวนั้น ไม่สามารถบอกถึงรายละเอียดได้ว่าการเปลี่ยนแปลงที่ปรากฏขึ้นนั้นเป็นการเปลี่ยนแปลงเนื่องมาจากสาเหตุใดอย่างชัดเจน

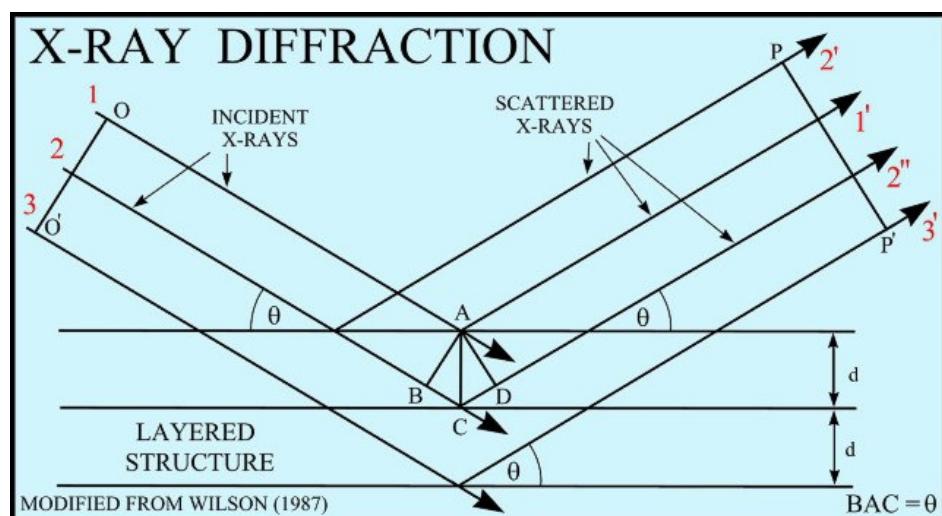
เครื่อง DTA จะแสดงผลดังกล่าวออกมารูปグラฟแสดงความสัมพันธ์ระหว่างความแตกต่างของอุณหภูมิกับช่วงอุณหภูมิที่ทำการศึกษา และอัตราการเปลี่ยนแปลงของอุณหภูมิกับช่วงอุณหภูมิที่ทำการศึกษา

รูป 3.5 เครื่อง Perkin Elmer Differential Thermal Analyzer DTA 7 [37]

3.6.2 การตรวจสอบองค์ประกอบและโครงสร้างผลึก

เมื่อทำการเผาแคลไชน์ผงสารตัวอย่างที่เงื่อนไขต่าง ๆ ดังที่ได้กล่าวมาแล้วนั้น นำผงที่ได้มาทำการตรวจสอบองค์ประกอบทางเคมี และโครงสร้างผลึกด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) โดยแสดงผลลูกอมเป็นรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ (XRD pattern)

โดยปกติผลึกจะมีลักษณะการเรียงตัวของอะตอมเป็นชั้น ซึ่งลักษณะการเรียงตัวนี้จะแตกต่างกันไปในผลึกแต่ละชนิดซึ่งเป็นค่าเฉพาะตัว เมื่อรังสีเอ็กซ์ตกกระทบผลึกจะทำให้เกิดการกระเจิงของรังสีเอ็กซ์จากชั้นระนาบเหล่านี้ โดยเป็นไปตามกฎของแบร์ก (Bragg's law) ซึ่งจะสามารถหาระยะห่างระหว่างระนาบได้


$$2d\sin\theta = n\lambda \quad (3.2)$$

เมื่อ d คือ ระยะห่างระหว่างระนาบของผลึก (hkl)

θ คือ มุมกระทบ

λ คือ ความยาวคลื่นของรังสีเอ็กซ์ ($\lambda=1.54\text{\AA}$)

n คือ เลขใด ๆ $n = 1, 2, 3, \dots$

รูป 3.6 การเลี้ยวเบนของรังสีเอ็กซ์ [38]

การตรวจสอบค์ประกอบทางเคมี และโครงสร้างผลึกของสารตัวอย่าง สามารถทำได้โดย การนำข้อมูลที่ได้จากรูปแบบการเลี้ยวเบนของรังสีอีกซ์ไปเทียบกับข้อมูลในไฟล์ JCPDS ซึ่งเป็น ฐานข้อมูล XRD โดยจะทำควบคู่ไปกับการเปรียบเทียบเชิงปริมาณของเฟสที่เกิดขึ้นด้วยการใช้สมการ ที่ดัดแปลงมาจากสมการดั้งเดิมที่เสนอโดย Swartz และ Shrout ในการคำนวณหาปริมาณเฟสที่เกิดขึ้น ในกรณีที่มีเฟสปรากฏไม่เกิน 2 เฟส ซึ่งจะทำให้ได้ความสัมพันธ์ของเงื่อนไขที่ใช้ในการเผาแคลไชน์ กับพฤติกรรมการเกิดเฟสของสารตัวอย่างได้ โดยสมการดังกล่าว คือ

$$\text{เปอร์เซ็นต์เพอรอฟล์ไกต์ (\%)} = \frac{I_{\text{perov.}} \times 100}{I_{\text{perov.}} + I_{\text{pyro.}}} \quad (3.3)$$

เมื่อ $I_{\text{perov.}}$ คือ ความเข้มสูงสุดของพิครังสีอีกซ์ของเฟสเพอรอฟล์ไกต์
 $I_{\text{pyro.}}$ คือ ความเข้มสูงสุดของพิครังสีอีกซ์ของเฟสไฟโรคลอร์

รูป 3.7 เครื่อง X-ray diffractometer รุ่น D8 Advance [39]

3.7 การตรวจสอบเซรามิก

3.7.1 การตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก

เมื่อทำการเผาเซินเตอร์ผงสารตัวอย่างที่ทำการขึ้นรูปเป็นแผ่นกลมแล้วตามเงื่อนไขที่กำหนด นำเซรามิกที่ได้มาทำการตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึกด้วยเทคนิคการเลี้ยว เบน ของรังสีเอ็กซ์ ซึ่งมีหลักการเช่นเดียวกันกับข้อ 3.6.2 โดยทำการวิเคราะห์ข้อมูลที่ได้เช่นเดียวกัน จากนั้นจึงนำข้อมูลที่ได้มาทำการเปรียบเทียบกับข้อมูลในไฟล์ JCPDS และทำความคู่ไปกับการคำนวณหาปรอทเซ็นต์เพอร์เซนต์ของสไกต์ด้วยสมการที่ 3.3 เช่นกัน

3.7.2 การตรวจสอบสมบัติทางกายภาพ

3.7.2.1 การหาค่าความหนาแน่น (density)

ในการหาค่าความหนาแน่นของชิ้นงานเซรามิกตัวอย่างนั้น อาศัยหลักการแทนที่น้ำของอาร์คิมิดิส (Archimedes) ทำได้โดยการนำเซรามิกที่เตรียมได้มาต้มในน้ำกลั่นเป็นเวลา 2 ชั่วโมง ทิ้งไว้ให้เย็นในอากาศแล้วจึงนำมาซึ่ง โดยซึ่งในน้ำและซึ่งในอากาศจะมีน้ำหนักต่างกัน หลังจากนั้นนำเซรามิกดังกล่าวไปป้อนในตู้อบที่อุณหภูมิประมาณ 100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมงให้แห้ง ก่อนนำมาซึ่งในอากาศอีกครั้งหนึ่ง คำนวณหาค่าความหนาแน่นของชิ้นงานจากสมการที่ 3.4

$$\rho_c = \frac{w_1}{(w_2 - w_3)} \times \rho_{H_2O} \quad (3.4)$$

เมื่อ	ρ_c	คือ ความหนาแน่นของเซรามิกที่อุณหภูมิบดคล่อง
	ρ_{H_2O}	คือ ความหนาแน่นของน้ำที่อุณหภูมิบดคล่อง
	w_1	คือ น้ำหนักของเซรามิกที่ซึ่งในอากาศ
	w_2	คือ น้ำหนักของเซรามิกที่ซึ่งในอากาศจะมีน้ำหนักต่างกัน
	w_3	คือ น้ำหนักของเซรามิกที่ซึ่งในน้ำ

3.7.3 การตรวจสอบโครงสร้างจุลภาค

การตรวจสอบโครงสร้างจุลภาคของเซรามิก ทำได้โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ข้อมูลที่ได้จะบอกถึงลักษณะรูปร่างและขนาดของกราน (grain) ของเซรามิกได้ nokjanney ยังสามารถบอกถึงขนาดและรูปร่างของสิ่งแผลกปุ่มที่เกิดขึ้นได้ด้วย ซึ่งเป็นประโยชน์อย่างมากสำหรับการศึกษาถึงความสัมพันธ์ระหว่างลักษณะโครงสร้างจุลภาคกับเงื่อนไขในการเผาเซินเตอร์ เช่น ความสัมพันธ์ระหว่างอุณหภูมิในการเผาเซินเตอร์กับขนาดของกรานที่ปรากฏ เป็นต้น

รูป 3.8 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ผลิตโดยบริษัท LEO รุ่น LEO 1455 VP [40]

3.7.4 การตรวจสอบสมบัติทางไฟฟ้า

3.7.4.1 สมบัติไดอิเล็กทริก

ในการตรวจสอบสมบัติไดอิเล็กทริกด้วยการวัดค่าสภาพย้อมสัมพัทธ์ (ε_r) และค่าตัวประกอบการสูญเสียทางไดอิเล็กทริก ($\tan \delta$) ของสารตัวอย่าง ใช้วิธีการวัดค่าความสามารถในการเก็บกักประจุของเซรามิกแล้วคำนวณหาค่าสภาพย้อมสัมพัทธ์ดังสมการ 3.5 โดยเริ่มการนำเซรามิกที่เตรียมได้มาทำการขัดผิวของชิ้นงานให้เรียบข่านกันทั้งสองหน้าด้วยกระดาษทรายเบอร์ 400 600 800 1000 และ 1200 ตามลำดับ แล้วทำการขัดด้วยผงอลูมินาอิกครั้ง นำชิ้นงานที่ทำการขัดเสร็จแล้วไปปอกใบเตาอบเพื่อไล่ไนโตรออกจากชิ้นงานให้หมด จากนั้นนำเซรามิกมาทำข้าไฟฟ้า โดยเคลือบด้วยทองคำด้วยเทคนิค sputtering และวิจัยนำชิ้นงานไปตรวจวัดค่าความจุไฟฟ้าและค่าตัวประกอบการสูญเสียทางไดอิเล็กทริก

$$\varepsilon_r = \frac{tC}{\varepsilon_0 A} \quad (3.5)$$

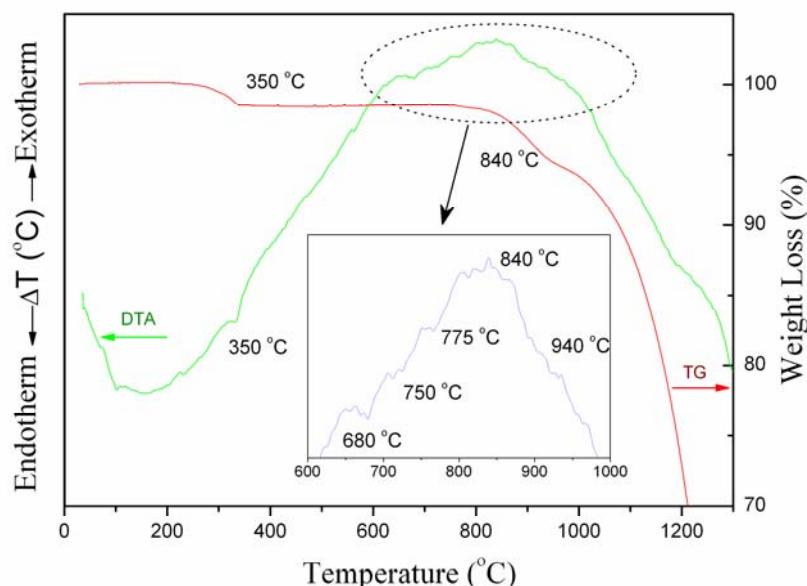

เมื่อ ε_r คือ ค่าสภาพย้อมสัมพัทธ์ของสารตัวอย่าง

ε_0 คือ ค่าสภาพย้อมของสูญญากาศ มีค่าประมาณ 8.854×10^{-15} F/mm

t คือ ความหนาของสารตัวอย่าง

C คือ ค่าที่ได้จากการวัดค่าความจุไฟฟ้า (Capacitance) ของสารตัวอย่าง

A คือ พื้นที่ข้าไฟฟ้าบนผิวของสารตัวอย่าง


រូប 3.9 តម្លៃង LCR meter [41]

ผลการทดลองและอภิปรายผล

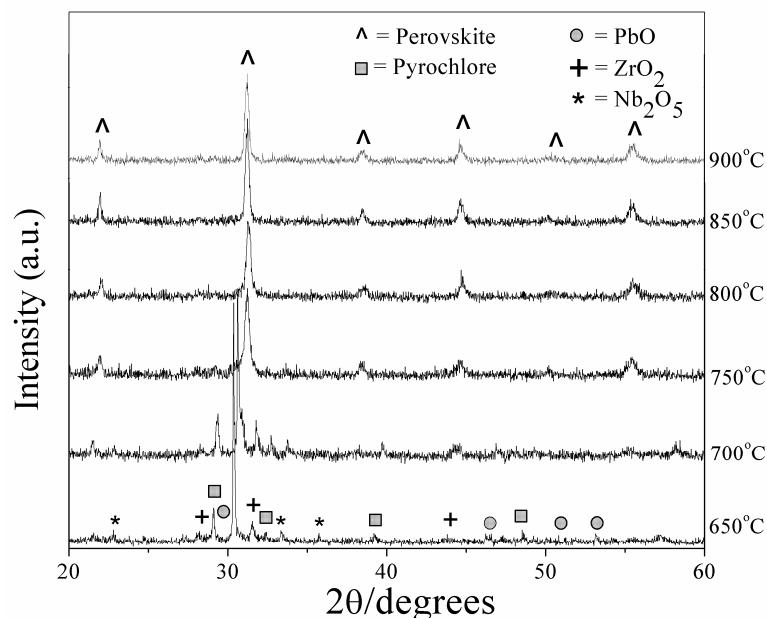
4.1 การตรวจสอบผงสารตัวอย่าง

4.1.1 การตรวจสอบพฤติกรรมทางความร้อน

รูป 4.1 แสดงการตรวจสอบพฤติกรรมทางความร้อนของผงสารตัวอย่างในสัดส่วนของ PZT-PCoN

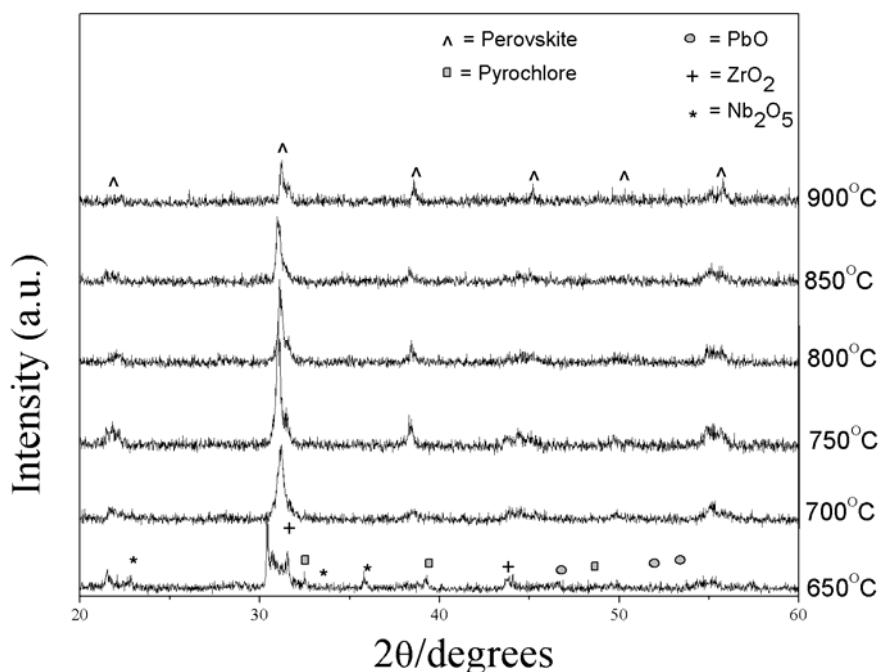
รูป 4.1 กราฟ DTA-TG ของผงสารตัวอย่าง PZT-PCoN

ช่วงของอุณหภูมิจากอุณหภูมิห้องจนถึง 350 องศาเซลเซียส สารตัวอย่างจะแสดงพีคในกราฟ DTA ทั้งแบบคายความร้อนและดูดความร้อน รวมถึงการลดลงเล็กน้อยของน้ำหนักที่หายไปที่ช่วงอุณหภูมิเดียวกัน พฤติกรรมนี้สามารถอ้างได้ว่าเป็นการถลายตัวของสารอินทรีจากกระบวนการบด ย่อย ซึ่งอุณหภูมิที่แตกต่างกัน ความเข้ม และรูปร่างของพีคจะสัมพันธ์กันกับธรรมชาติที่แตกต่างกันของสารอินทรีแต่ละตัว โดยสารอินทรีเหล่านี้มีที่มาได้จากหลายสาเหตุ เช่น เศษพลาสติกจากขวดที่ใช้บดย่อย หรือชิ้นส่วนอุปกรณ์ เป็นต้น โดยสารอินทรีที่เป็นพลาสติกเหล่านี้ จะมีอุณหภูมิในการถลายตัวอยู่ในช่วงอุณหภูมิดังกล่าว [42]

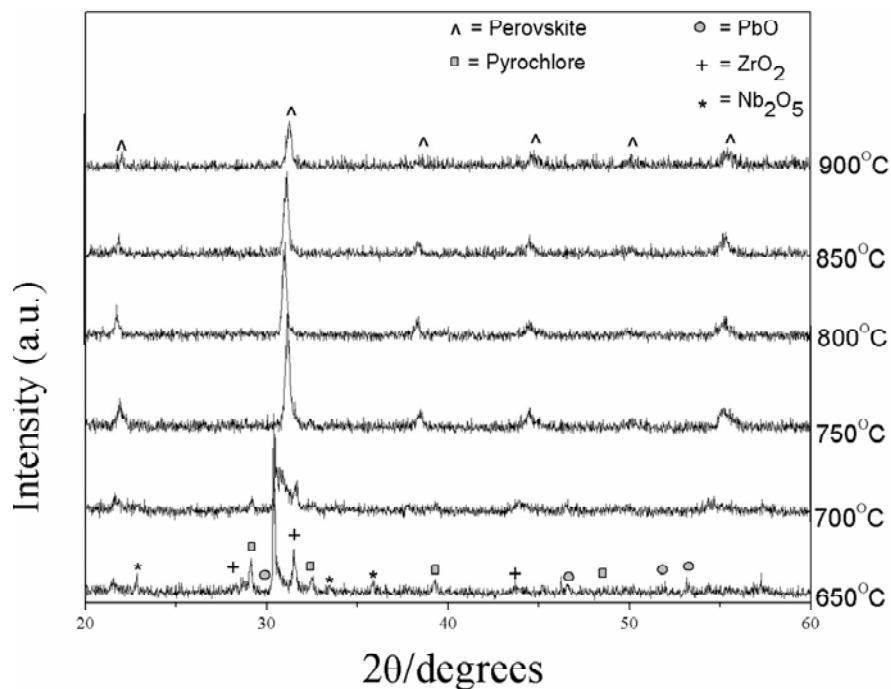

ในช่วงอุณหภูมิ 650-900 องศาเซลเซียส จะพบทั้งพีคการคายความร้อนและดูดความร้อนในกราฟ DTA จากรูป 4.1 ในส่วนขยายของกราฟ DTA นั้นแสดงให้เห็นถึงพีคการดูดความร้อนที่ประมาณ 750 องศาเซลเซียส ซึ่งไม่พบการหายไปของน้ำหนักในกราฟ TG ดังนั้นจะเป็นช่วงที่สาร

ตั้งต้นเข้าทำปฏิกริยา กัน เกิดเป็นโครงสร้างเพอร์อฟส์ไกต์ แสดงว่าช่วงอุณหภูมิดังกล่าวเกี่ยวพันกับ การเปลี่ยนเฟสของโครงสร้างเพอร์อฟส์ไกต์ ซึ่งจะอธิบายเพิ่มเติมในส่วนของการวิเคราะห์ด้วย เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ สำหรับพิคการคายความร้อนสุดท้ายนั้นอยู่ที่ 840 องศาเซลเซียส โดยอาจจะมีسانเหตุมาจากการสลายตัวของเลด-ออกไซด์ [43] ความเป็นผลึกของผง PZT-PCoN นั้น เกิดที่อุณหภูมิสูงกว่า 750 องศาเซลเซียส การเพิ่มอุณหภูมิหรือเวลาในการให้ความร้อนจะช่วยในการ เกิดผลึกของผงสารตัวอย่าง

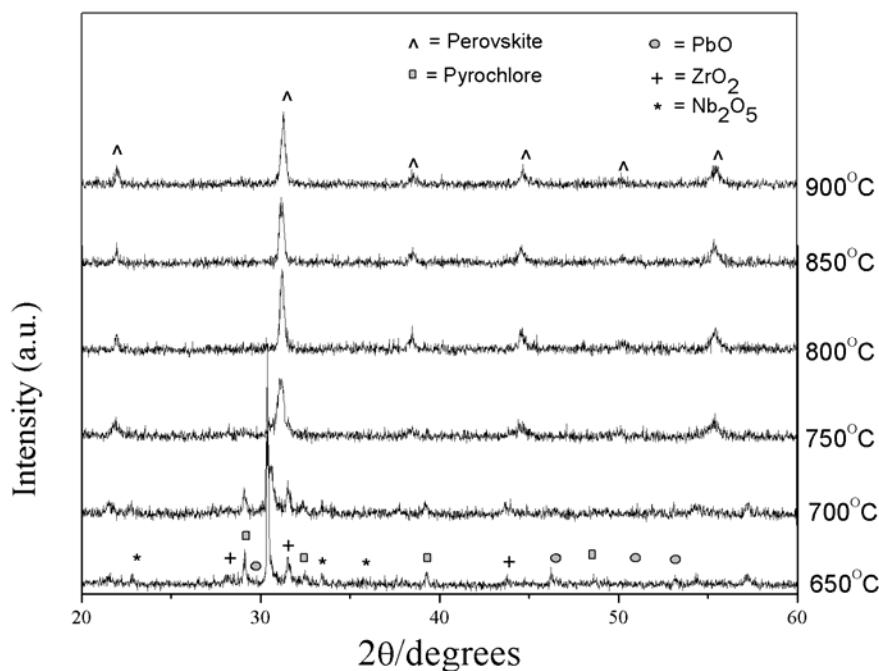
ข้อมูลจากการตรวจสอบพฤติกรรมทางความร้อนนี้ ใช้ในการประมาณการช่วงอุณหภูมิที่ใช้ ในการเผาแคลไชน์เพื่อการตรวจสอบองค์ประกอบและโครงสร้างผลึกด้วยเทคนิคการเลี้ยวเบนของ รังสีเอ็กซ์ การศึกษาการเปลี่ยนแปลงเฟสด้วยการเพิ่มอุณหภูมิในการเผาแคลไชน์นั้นทุกสัดส่วน จะต้องเผาแคลไชน์ที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง ด้วยอัตรา 20 องศาเซลเซียสต่อนาที [44] เพื่อป้องกันการสูญเสียของเลดออกไซด์มากเกินไป ตามด้วยการวิเคราะห์เฟสด้วยเทคนิคการเลี้ยวเบน ของรังสีเอ็กซ์

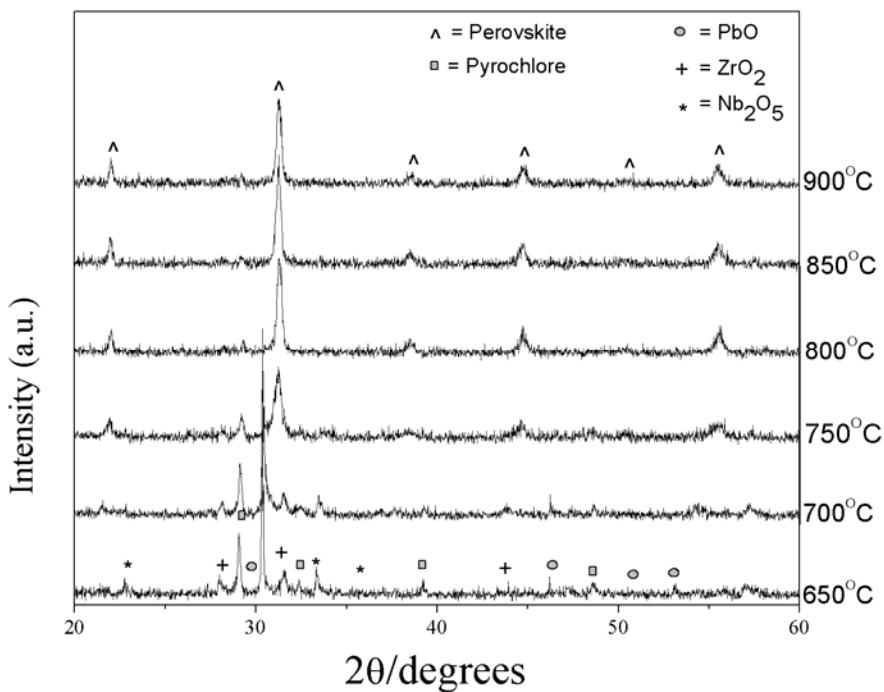

4.1.2 การตรวจสอบองค์ประกอบและโครงสร้างผลึก

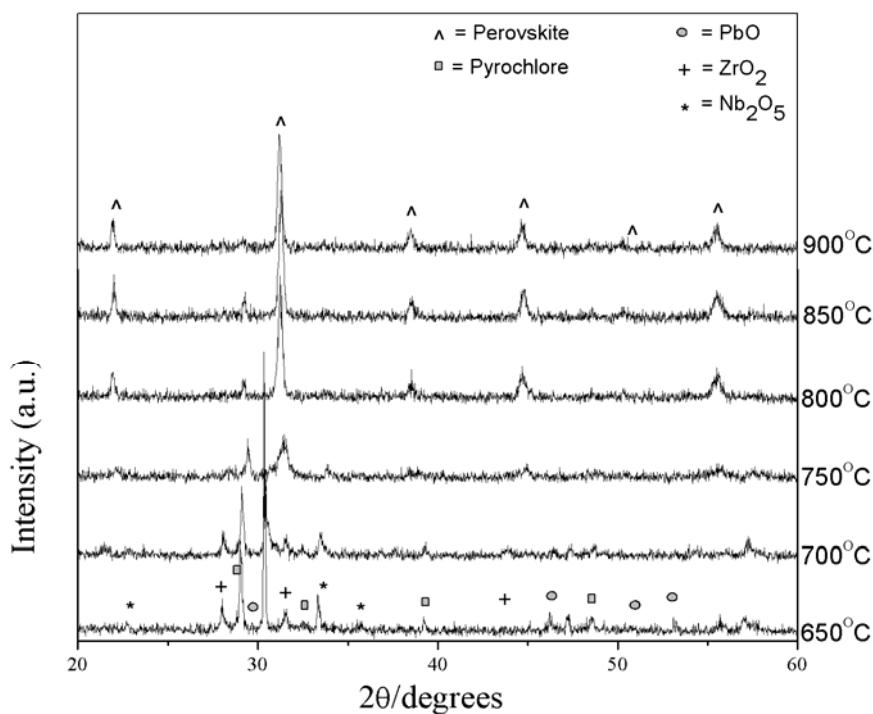
รูป 4.2 แสดงรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.7PZT-0.3PCoN ที่ผ่าน การเผาแคลไชน์ที่อุณหภูมิต่างๆ กัน



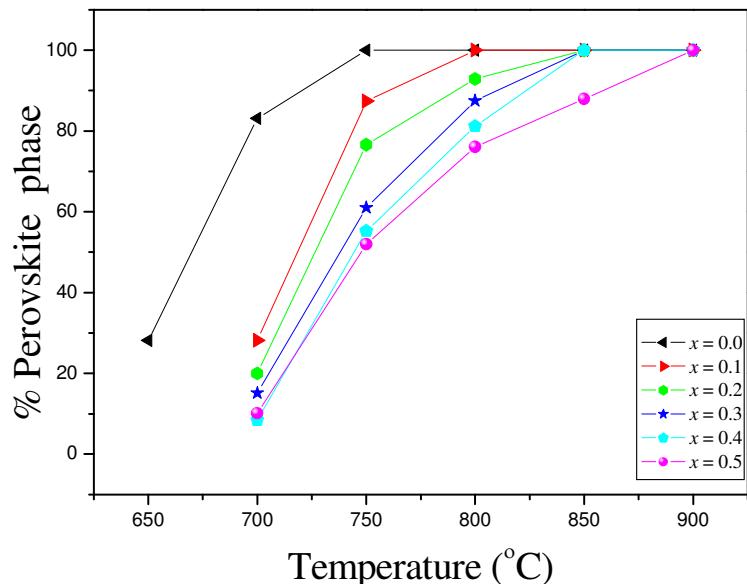
รูป 4.2 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผงสารตัวอย่าง 0.7PZT-0.3PCoN ที่ผ่านการเผาแคล- ไชน์ที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง

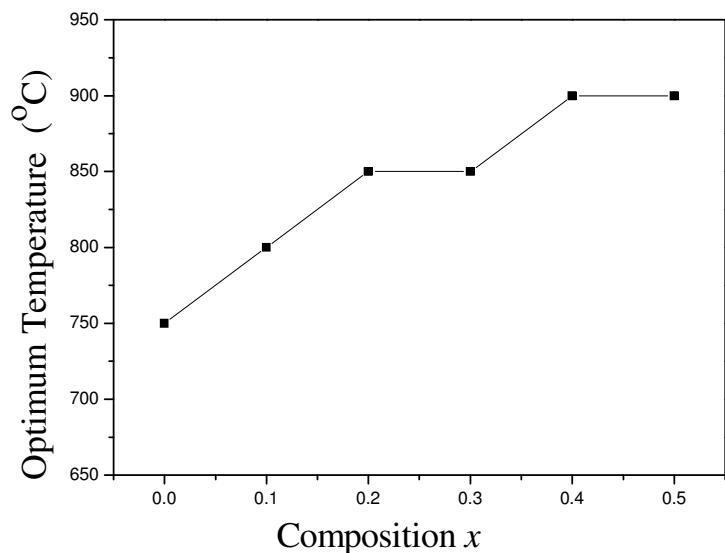

จากรูป 4.2 ผลการเลี้ยวเบนของรังสีเอ็กซ์แสดงให้เห็นว่า ที่อุณหภูมิ 650 องศาเซลเซียส พบปริมาณของสารตั้งต้นเหลืออยู่ ได้แก่ PbO ZrO_2 และ Nb_2O_5 โดยไม่พบร่องรอยของเฟสเพอรอฟสไกต์ นอกจากนี้ยังพบเฟสไพรโคลอร์เกิดขึ้นด้วย โดยที่ 700 องศาเซลเซียส เฟสไพรโคลอร์จะเริ่มลดลง และหายไปอย่างสมบูรณ์ที่อุณหภูมิ 750 องศาเซลเซียส ปริมาณของเฟสเพอรอฟสไกต์จะเพิ่มขึ้นจนถึง 750 องศาเซลเซียส เฟสเดิมของเฟสเพอรอฟสไกต์จะเกิดขึ้น การศึกษานี้ยังแสดงให้เห็นถึงการเจริญเติบโตของผลึกในพัสดุตัวอย่างเมื่อมีการเพิ่มอุณหภูมิ ผลจากการวัดการเลี้ยวเบนของรังสีเอ็กซ์นั้นสัมพันธ์กับผลจากการ DTA (รูป 4.1) ซึ่งแสดงให้เห็นว่าเฟสเพอรอฟสไกต์จะเกิดขึ้นที่อุณหภูมิประมาณ 750 องศาเซลเซียส สำหรับรูป 4.3-4.7 แสดงรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของพัสดุตัวอย่างที่ $x = 0.0$ 0.1 0.2 0.4 และ 0.5 ที่ผ่านการเผาแคลไนซ์ที่อุณหภูมิต่างๆ กัน


รูป 4.3 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของพัสดุตัวอย่าง PZT ที่ผ่านการเผาแคลไนซ์ที่อุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง


รูป 4.4 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผลสารตัวอย่าง 0.9PZT-0.1PCoN ที่ผ่านการเผาเคลือบในอุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง

รูป 4.5 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผลสารตัวอย่าง 0.8PZT-0.2PCoN ที่ผ่านการเผาเคลือบในอุณหภูมิต่างๆ กัน เป็นเวลา 4 ชั่วโมง


รูป 4.6 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผลสารตัวอย่าง 0.6PZT-0.4PCoN ที่ผ่านการเผาแคล-ไชน์ที่อุณหภูมิต่างๆกัน เป็นเวลา 4 ชั่วโมง

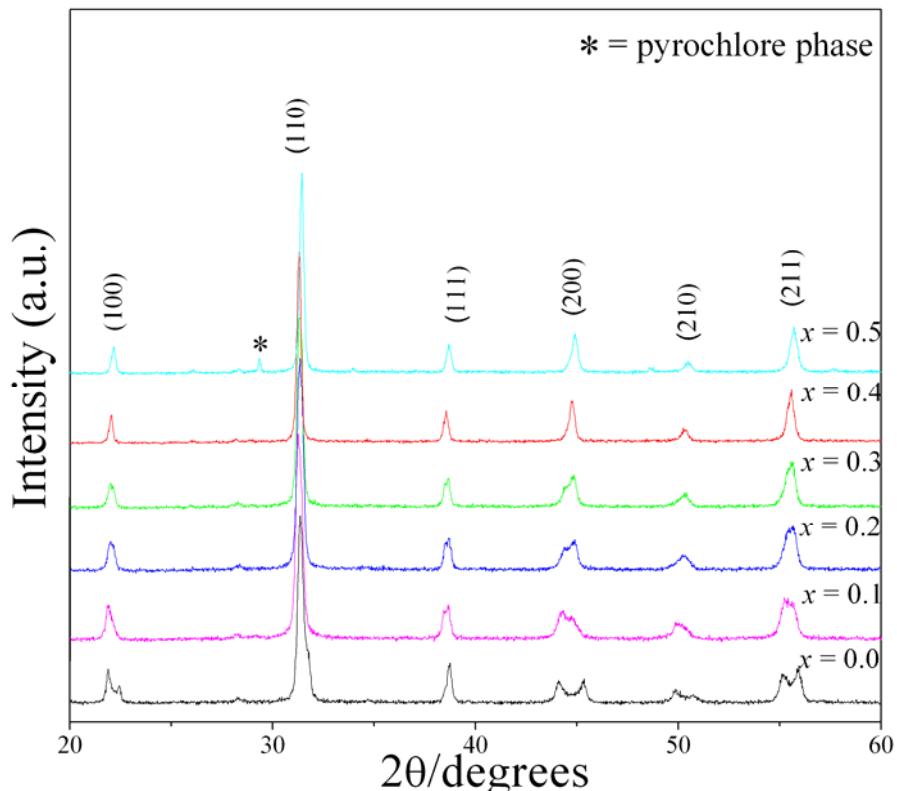

รูป 4.7 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของผลสารตัวอย่าง 0.5PZT-0.5PCoN ที่ผ่านการเผาแคล-ไชน์ที่อุณหภูมิต่างๆกัน เป็นเวลา 4 ชั่วโมง

จากรูป 4.3-4.7 ผลของการเลี้ยงแบบการเลี้ยงแบบของรังสีอิเล็กซ์เกิดขึ้นในลักษณะเดียวกันกับรูปแบบการเลี้ยงแบบของรังสีอิเล็กซ์ของผงสารตัวอย่างที่สัดส่วน $x = 0.3$ (รูป 4.2) คือ เมื่ออุณหภูมิเพิ่มสูงขึ้น เฟสไฟroclosrจะลดลงและหายไปอย่างสมบูรณ์ โดยมีเฟสเพอรอฟสไกต์เกิดขึ้น แต่สิ่งที่สังเกตได้ คือ เฟสไฟroclosrจะหายไปอย่างสมบูรณ์ที่อุณหภูมิสูงขึ้น เมื่อสัดส่วนของ PCoN เพิ่มสูงขึ้น ที่สัดส่วน PCoN (x) เท่ากับ 0.0-0.3 เฟสไฟroclosrจะหายไปอย่างสมบูรณ์ที่อุณหภูมิประมาณ 750 องศาเซลเซียส แต่ที่ $x = 0.4$ (รูป 4.6) เฟสไฟroclosrจะหายไปอย่างสมบูรณ์ที่อุณหภูมิประมาณ 850 องศาเซลเซียสและที่อุณหภูมิประมาณ 900 องศาเซลเซียส สำหรับผงสารตัวอย่างที่สัดส่วน $x = 0.5$ (รูป 4.7)

รูป 4.8 แสดงความสัมพันธ์ระหว่างปริมาณของเฟสเพอรอฟสไกต์และอุณหภูมิในการเผาแคลไชน์

รูป 4.8 ความสัมพันธ์ระหว่างปริมาณของเฟสเพอรอฟสไกต์และอุณหภูมิในการเผาแคลไชน์ของ $(1-x)\text{PZT}-x\text{PCoN}$

รูป 4.9 ความสัมพันธ์ระหว่างอุณหภูมิที่เหมาะสมกับสัดส่วน

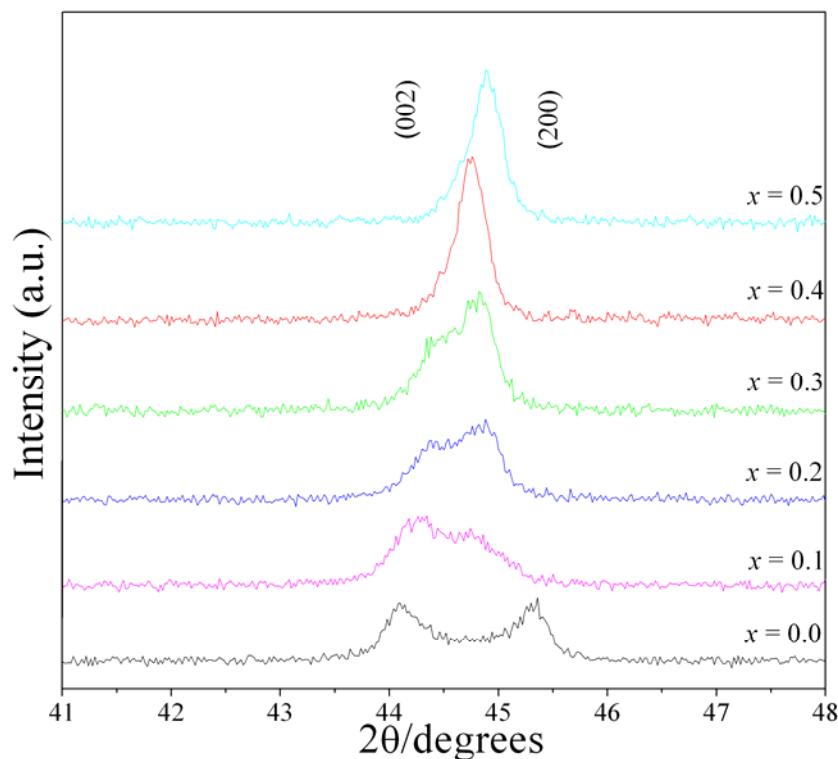

สืบเนื่องจากข้อมูลจากการเลี้ยวเบนของรังสีเอกซ์จะได้ปริมาณเฟสเพอรอฟไกต์ (รูป 4.8) ซึ่งสามารถสรุปได้ว่าการเปลี่ยนแปลงอุณหภูมิในการเผาแคลไชน์มีความสัมพันธ์เชิงเส้นกับปริมาณ PCoN ในช่วง $x = 0.0-0.5$ ด้วยการเพิ่มของ x อุณหภูมิในการเผาแคลไชน์จะเพิ่มสูงขึ้น ดังรูป 4.9 ซึ่งพบว่าการเพิ่มปริมาณของ PCoN (x) ทำให้อุณหภูมิที่ใช้ในการเผาแคลไชน์เพิ่มสูงขึ้น เนื่องจาก PZT ใช้อุณหภูมิในการเผาแคลไชน์ประมาณ 750-800 องศาเซลเซียส [45] และ PCoN ซึ่งเป็นสารรีแล็กเซอร์ จะใช้อุณหภูมิในการเผาแคลไชน์ประมาณ 900 องศาเซลเซียส ดังนั้น เมื่อเพิ่มปริมาณ PCoN เข้าไปในสารละลายนองแข็ง PZT จะทำให้อุณหภูมิในการเผาแคลไชน์ของระบบเพิ่มสูงขึ้น

4.2 การตรวจสอบเชรามิก

4.2.1 การตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก

เมื่อทำการเผาแคลไชน์ผงสารตัวอย่างแล้ว ขั้นตอนต่อไป คือ การอัดขึ้นรูปและเผาเซนเตอร์ที่อุณหภูมิ 1100–1250 องศาเซลเซียส จะได้เชรามิก $(1-x)PZT-xPCoN$ จากนั้นทำการตรวจสอบองค์ประกอบและโครงสร้างผลึกด้วยเทคนิคการเลี้ยวเบนรังสีเอกซ์

รูป 4.10 แสดงรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเชรามิก $(1-x)PZT-xPCoN$ ที่ค่า x ต่างๆ

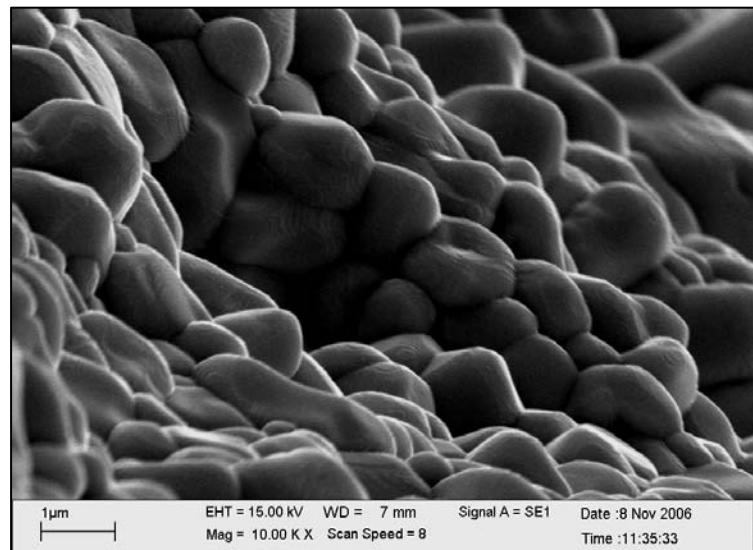
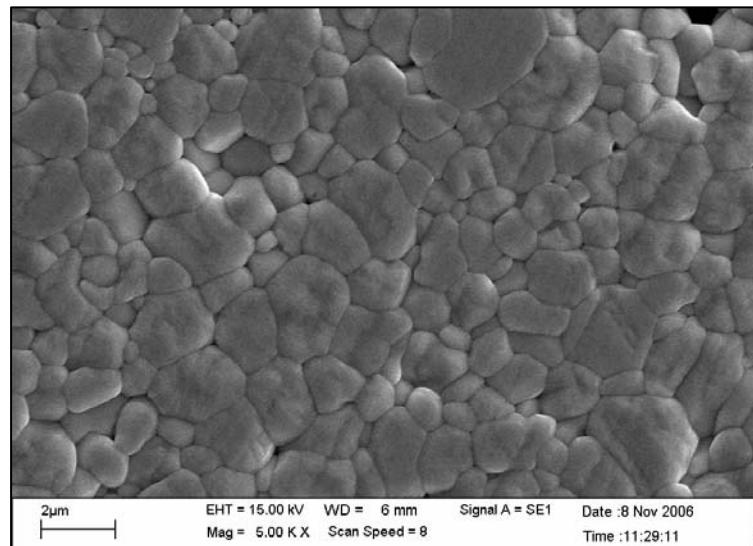


รูป 4.10 รูปแบบการเลี้ยวเบนของรังสีอิเล็กซ์ของเซรามิก $(1-x)PZT-xPCoN$ ที่ค่า x ต่างๆ

จากรูป 4.10 จะเห็นเฟสเดี่ยวของโครงสร้างเพอรอฟส์ไกต์ของเซรามิก ที่ $x \leq 0.4$ ซึ่งจะไม่พบเฟสไไฟโรคลอร์หรือเฟสอื่นๆ สำหรับพีคของไไฟโรคลอร์แสดงด้วยเครื่องหมาย “*” โดยพบในตัวอย่างที่ $x = 0.5$ ซึ่งอาจเป็นผลมาจากการเพิ่มปริมาณของ PCoN ลงในสารละลายของแข็ง PZT เนื่องจาก PCoN เป็นสารรีแล็กเซอร์ มีปัญหาอย่างมากในการเตรียมเนื่องจากเกิดเฟสไไฟโรคลอร์ขึ้นจากการเข้าทำปฏิกิริยา กันก่อนของ PbO และ Nb_2O_5 เป็นผลให้ที่สัดส่วนของ PCoN สูงขึ้น โอกาสที่จะพบเฟสไไฟโรคลอร์นั้นมากขึ้นด้วย ผลการทดลองนี้แสดงให้เห็นว่าการเติม PCoN ลงในสารละลายของแข็งจะลดความเสถียรทางโครงสร้างของ PZT ด้วยค่าทอลาเรนซ์เฟกเตอร์และค่าความสามารถในการดึงอิเล็กตรอน เนื่องจาก PCoN มีค่าทอลาเรนซ์เฟกเตอร์และค่าความสามารถในการดึงอิเล็กตรอนต่ำ ซึ่งทั้ง 2 ค่านี้เป็นปัจจัยที่บ่งบอกถึงความสามารถในการเกิดเฟสเพอรอฟส์ไกต์ ดังนั้นเมื่อเติม PCoN ลงใน PZT ทำให้ไปลดความเสถียรทางโครงสร้างของ PZT ลง

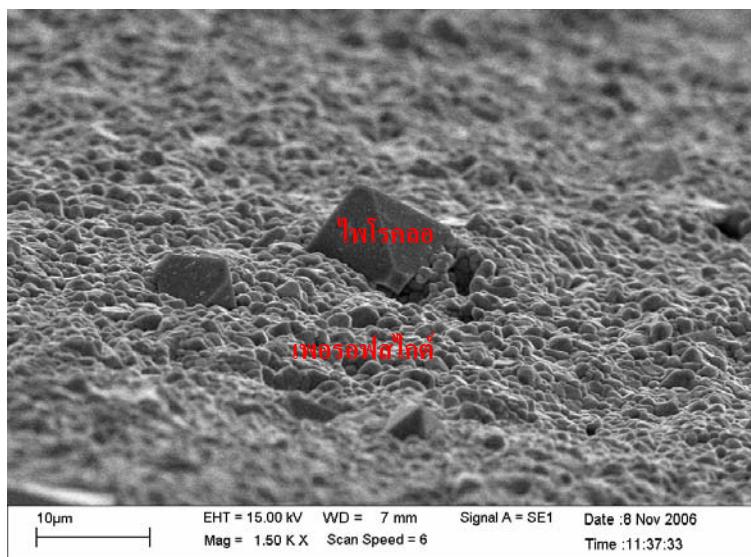
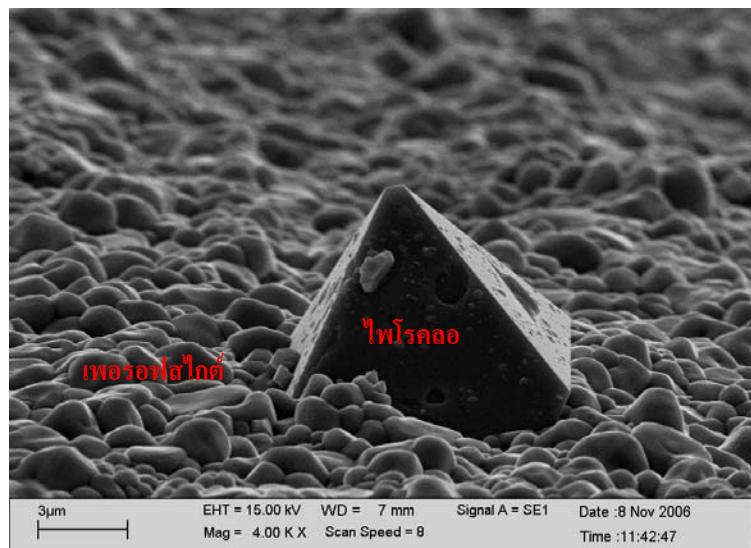
จากแผนภาพวัสดุภาคของ $PbZrO_3$ - $PbTiO_3$ พบว่าที่อุณหภูมิห้อง $Pb(Zr_{1/2}Ti_{1/2})O_3$ จะเป็นเฟสเททระโภนอล สมมาร์ทของผลึกของ PCoN เป็นคิวบิกที่อุณหภูมิห้อง ที่อุณหภูมิต่ำกว่า -70 องศาเซลเซียส สมมาร์ทจะเปลี่ยนไปเป็นรูมโนวีครออล ดังนั้น ด้วยการเพิ่ม x สมมาร์ทของผลึกจะมีการเปลี่ยนแปลง เนื่องจากผลของการเพิ่มสัดส่วน PCoN และการลดลงของ T_c

รูป 4.11 แสดงการเปลี่ยนแปลงของพีค (2 0 0) เทียบกับสัดส่วน รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ที่ความเข้มข้นของ PCoN เท่ากับ 0.0 นั้น พบร่วมกับการแยกของพีค (2 0 0) อย่างมาก ซึ่งแสดงว่าเป็นเฟสเทหะระโภโนล เนื่องจากเฟสเทหะระโภโนลมีระนาบ (2 0 0) และ (0 0 2) ไม่เท่ากัน จึงเบี่ยงเบนรังสีเอ็กซ์ได้ไม่เท่ากัน เกิดเป็น 2 พีค ในขณะที่เมื่อเพิ่มความเข้มข้นของ PCoN พีค (2 0 0) จะเปลี่ยนเป็นพีคเดียว ซึ่งคาดเดาได้ว่าเป็นสมมาตรแบบคิวบิกสมมูล เนื่องจากทุกระนาบของ [46] ของเฟสคิวบิกสมมูลมีแลตทิซพารามิเตอร์เท่ากัน จึงเบี่ยงเบนรังสีเอ็กซ์ได้เท่ากัน เกิดเป็นพีคเดียว สรุปได้ว่าการเพิ่ม PCoN มีอิทธิพลในการเปลี่ยนเฟสของระบบ PZT โดยบริเวณสัดส่วน $x = 0.2$ หรือ $x = 0.3$ น่าจะเป็นบริเวณที่มีทั้งเฟสเทหะระโภโนลและเฟสคิวบิกสมมูลทั้ง 2 เฟส อยู่ร่วมกัน ซึ่งนั่นคือมอร์โฟโฟรอกซิฟเฟสบาร์เดรี (Morphotropic phase boundary; MPB) โดยสามารถสรุปได้ว่าจะเกิดขึ้นเมื่อนำสารตัวอย่างไปตรวจสอบสมบัติทางไฟฟ้า ซึ่งจะกล่าวต่อไป



รูป 4.11 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของพีค (2 0 0) ของเซรามิก $(1-x)PZT - xPCoN$ โดยที่ $x = 0.0-0.5$

4.2.2 การตรวจสอบทางสัมฐานวิทยา

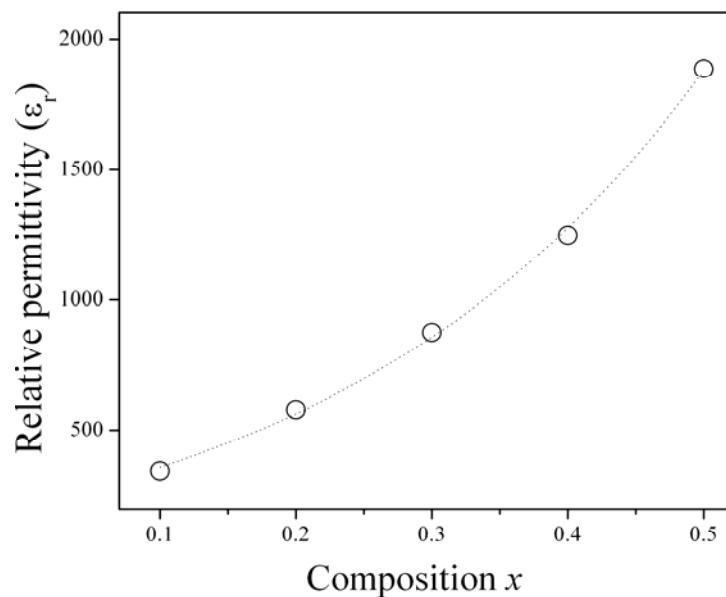
รูป 4.12 แสดงโครงสร้างจุลภาคที่ได้จากการถอดรหัสอิเล็กตรอนแบบส่องการดูของพื้นผิวของเม็ดตัวอย่างที่ผ่านการเผาชิ้นเตอร์แล้ว พบว่าเซรามิกมีโครงสร้างจุลภาคที่มีรูพรุนต่ำ และลักษณะของเกรนมีขนาดใกล้เคียงกัน เรียงตัวชิดกัน โดยขนาดของเกรนอยู่ในช่วง 0.5-4 ไมครอน ซึ่งจากการที่โครงสร้างมีรูพรุนต่ำ และขนาดของเกรนใกล้เคียงกันทำให้ตัวอย่างมีความหนาแน่นสูง โดยมีค่าประมาณ 7.3-7.7 ดังตารางที่ 4.1



ตาราง 4.1 แสดงค่าความหนาแน่นของเซรามิก $(1-x)PZT - xPCoN$

สัดส่วน (x)	ค่าความหนาแน่น
$x = 0.1$	7.3
$x = 0.2$	7.3
$x = 0.3$	7.5
$x = 0.4$	7.6
$x = 0.5$	7.5

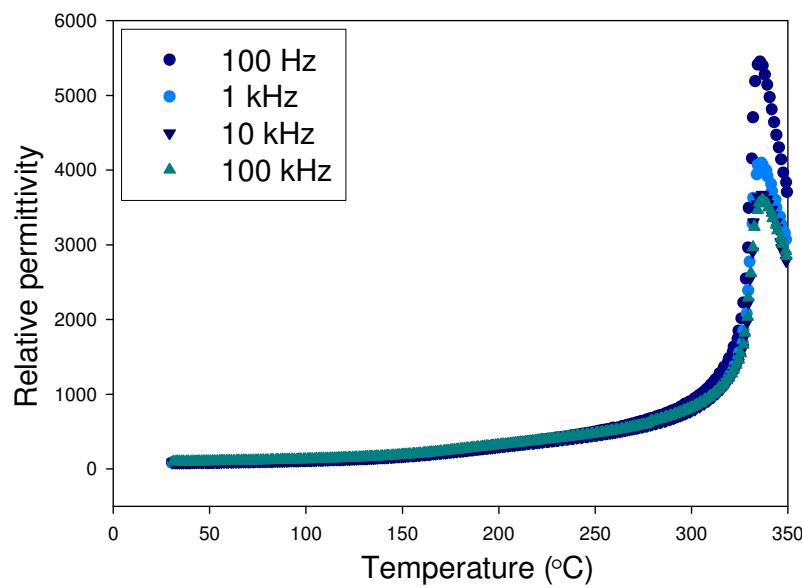
รูป 4.12 โครงสร้างจุดภาคจาก SEM ของพื้นผิวของตัวอย่างที่ $x = 0.1$

สิ่งที่น่าสนใจ คือ พิมพ์ไฟโรคลอร์บนพื้นผิวของตัวอย่างที่ $x = 0.5$ ดังแสดงในรูป 4.13 โดยไฟโรคลอร์ที่พับนั้นมีลักษณะรูปทรงเป็นปริมิด อยู่ท่ามกลางไฟเซอร์ฟลีกต์ โดยมีขนาดที่ใหญ่มากเมื่อเทียบกับไฟเซอร์ฟลีกต์ข้างเคียง โดยมีขนาดประมาณ 9 ไมครอน

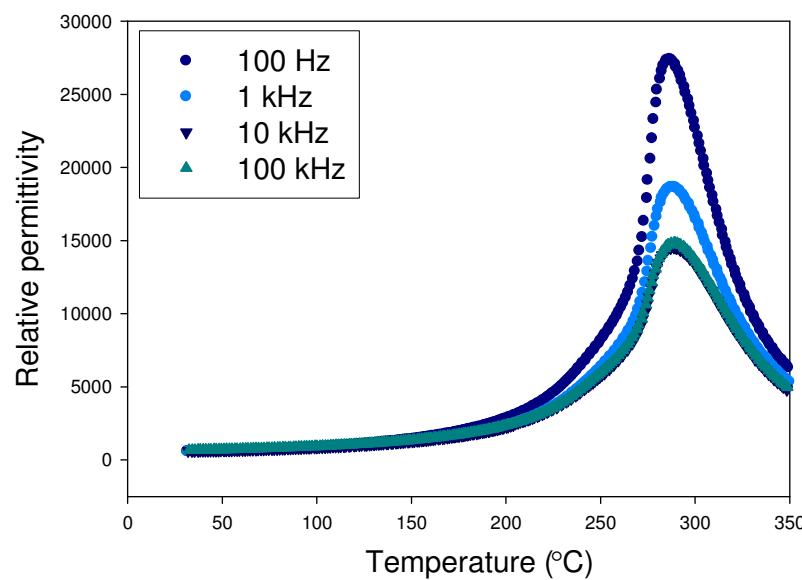


รูป 4.13 เฟสไฟโรคลอร์ที่พับบนพื้นผิวของตัวอย่างที่สัดส่วน $x = 0.5$

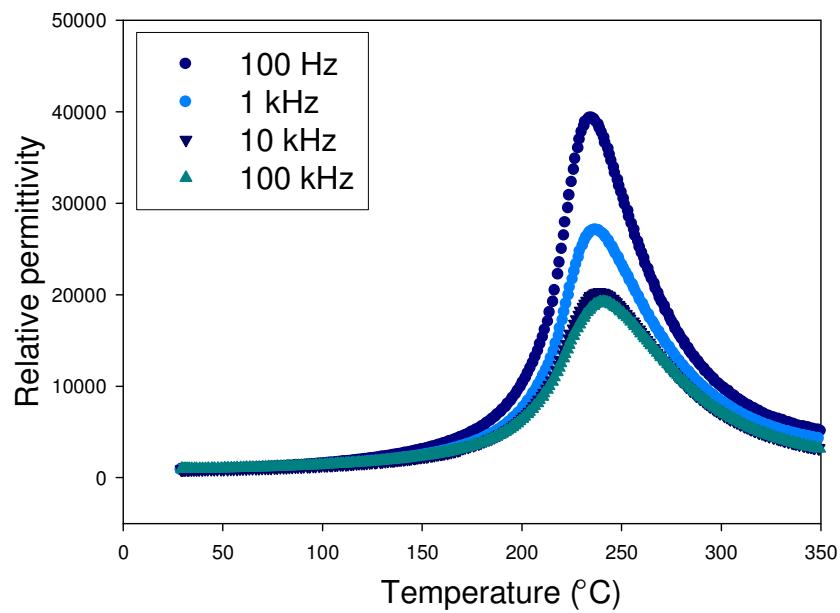
4.2.3 การตรวจสอบสมบัติทางไฟฟ้า

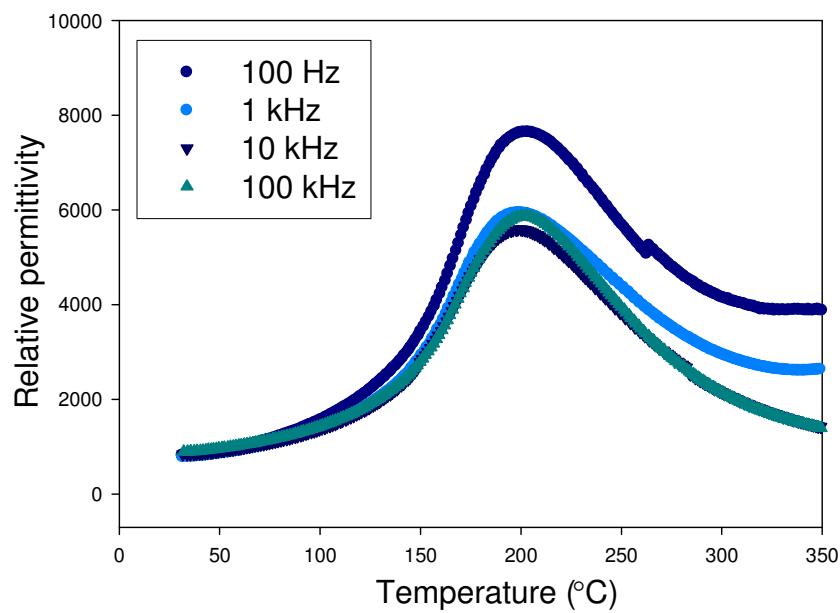

4.2.3.1 สมบัติไดอิเล็กทริก

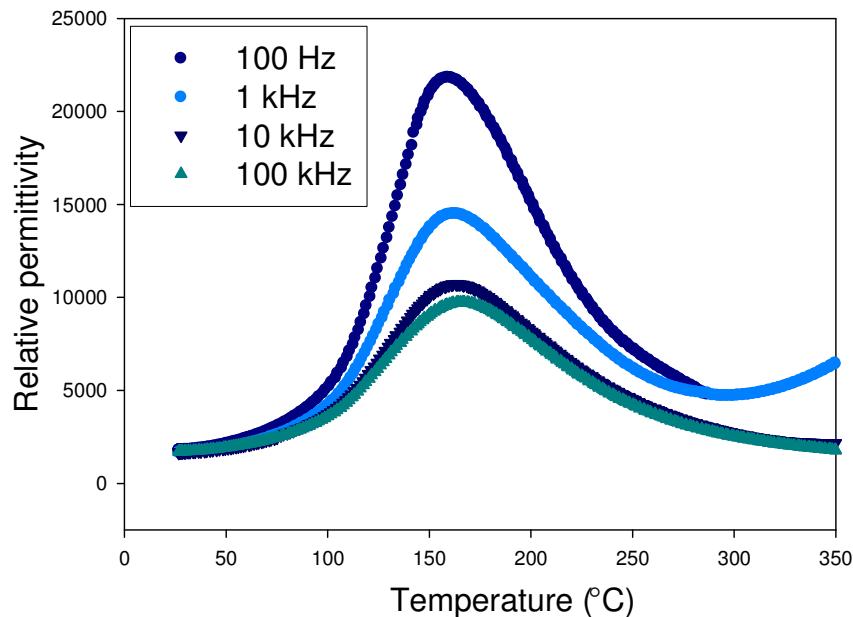
รูป 4.14 แสดงความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกของ $(1-x)$ PZT- x PCoN กับสัดส่วนพบร่วมเมื่อสัดส่วนของ PCoN (x) เพิ่มสูงขึ้น ทำให้ค่าคงที่ไดอิเล็กทริกมีแนวโน้มเพิ่มขึ้น ผลของการเพิ่มของค่าคงที่ไดอิเล็กทริกที่อุณหภูมิห้องด้วยการเพิ่มปริมาณ PCoN นั้นสามารถชี้แจงได้ว่านี้อาจมาจากการลดลงของอุณหภูมิในการเปลี่ยนเฟสมาใกล้อุณหภูมิห้อง เนื่องจากเมื่อเติม PCoN ลงใน PZT อุณหภูมิในการเปลี่ยนเฟสของเซรามิก PZT-PCoN จะเคลื่อนเข้าสู่อุณหภูมิห้อง ดังนั้นค่าคงที่ไดอิเล็กทริกที่วัดที่อุณหภูมิห้องจึงเพิ่มขึ้น



รูป 4.14 ความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริกของ $(1-x)$ PZT- x PCoN กับสัดส่วน


รูป 4.15-4.19 แสดงค่าคงที่ไดอิเล็กทริกของ $(1-x)$ PZT- x PCoN ที่ $x = 0.1-0.5$ เทียบกับอุณหภูมิที่ความถี่ต่างๆ จากรูป 4.15 แสดงค่าคงที่ไดอิเล็กทริกที่สัดส่วน $x = 0.1$ จะเห็นได้ว่าที่อุณหภูมิห้องจะถึง 300 องศาเซลเซียสค่าคงที่ไดอิเล็กทริกไม่เปลี่ยนแปลงมากนัก เมื่ออุณหภูมิมากกว่า 300 องศาเซลเซียส พบว่าค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นอย่างชัดเจน และจะลดลงทันทีเมื่ออุณหภูมิมากกว่า 330 องศาเซลเซียส โดยที่สัดส่วนอื่นจะแสดงลักษณะการเปลี่ยนแปลงในลักษณะเดียวกันนี้ ดังนั้น บริเวณของอุณหภูมิที่เกิดการเปลี่ยนแปลงของค่าคงที่ไดอิเล็กทริกอย่างชัดเจนแสดงว่าเป็นอุณหภูมิในการเปลี่ยนเฟส ในที่นี้เป็นการเปลี่ยนสมบัติจากเฟอร์โรอิเล็กทริกไปเป็นพาราอิเล็กทริก


รูป 4.15 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.1$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz


รูป 4.16 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.2$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz

รูป 4.17 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.3$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz

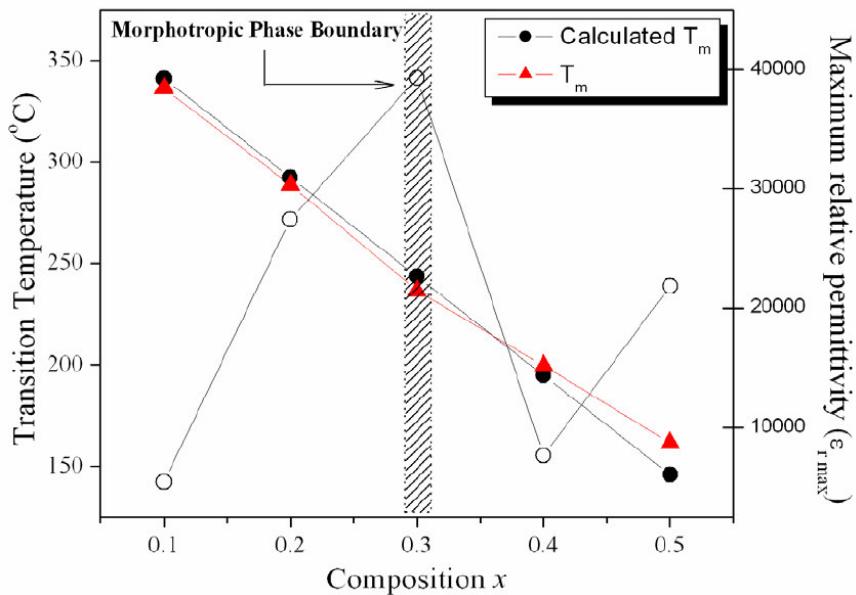
รูป 4.18 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.4$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz

รูป 4.19 ค่าคงที่ไดอิเล็กทริกที่ $x = 0.5$ เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-100 kHz

จากค่าคงที่ไดอิเล็กทริกที่สัดส่วน $x = 0.1-0.3$ (รูป 4.15-4.17) พบว่าค่าคงที่ไดอิเล็กทริกของเซรามิก PZT-PCoN จะเปลี่ยนตามอุณหภูมิ แต่เป็นอิสระต่อกำลังถี่ ยกเว้นบริเวณใกล้เคียงกับอุณหภูมิในการเปลี่ยนเฟส ค่าคงที่ไดอิเล็กทริกจะเปลี่ยนแปลงโดยขึ้นกับความถี่ แต่เป็นที่น่าสังเกตว่าค่าคงที่ไดอิเล็กทริกที่สัดส่วน $x = 0.4$ และ $x = 0.5$ (รูป 4.18-4.19) ค่าคงที่ไดอิเล็กทริกจะเปลี่ยนแปลงโดยขึ้นกับความถี่ตั้งแต่บริเวณใกล้เคียงกับอุณหภูมิในการเปลี่ยนเฟสขึ้นไป ทั้งนี้อาจเนื่องมาจากการที่ Co เป็นโลหะทรานซิชัน ซึ่งมีประจุ $2+$ และ $3+$ จึงเกิดการเปลี่ยนแปลงจาก Co^{2+} เป็น Co^{3+} ดังนั้น ที่สัดส่วนของ PCoN (x) เพิ่มสูงขึ้นซึ่งมีจำนวนประจุอิสระเพิ่มมากขึ้นตามไปด้วย ทำให้ที่สัดส่วนของ PCoN (x) สูง เกิดการเปลี่ยนแปลงของค่าคงที่ไดอิเล็กทริกขึ้นกับความถี่ที่อุณหภูมิสูงกว่าอุณหภูมิในการเปลี่ยนเฟส ซึ่งการควบคุมจำนวนประจุอิสระและอิทธิพลของประจุอิสระนี้จำเป็นต้องทำการศึกษาให้ละเอียดต่อไป

นอกจากนี้ยังพบว่า ในระบบสององค์ประกอบของ PZT-PCoN เมื่อเพิ่ม PCoN จะเกิดการเคลื่อนที่ของอุณหภูมิในการเปลี่ยนเฟสไปในทิศทางของอุณหภูมิที่ต่ำลง ซึ่งค่าคงที่ไดอิเล็กทริกสูงสุดจะลดลงเมื่อค่า x เพิ่มขึ้น นอกจากนี้พีคไดอิเล็กทริกจะกว้างขึ้นเมื่อปริมาณของ PCoN เพิ่มขึ้น ซึ่งเป็นที่น่าสนใจว่าทุกสัดส่วนแสดงการกระจายของค่าคงที่ไดอิเล็กทริกโดยสัมพันธ์กับความถี่ การเปลี่ยนสมบัติจากเฟอร์โรอิเล็กทริกแบบปกติเป็นแบบบริสแล็กเซอร์นั้น สามารถพบได้เมื่อเพิ่มเปอร์เซ็นต์โดยไม่ลดของ PZT จาก $x = 0.1-0.5$

ตาราง 4.2 แสดงอุณหภูมิที่ให้ค่าคงที่ไดอิเล็กทริกสูงสุด (T_m) และค่าคงที่ไดอิเล็กทริกที่อุณหภูมิห้อง และที่ T_m สำหรับทุกสัดส่วน


สัดส่วน (x)	โครงสร้างพลีก	T_m (°C)	ค่าคงที่ไดอิเล็กทริกที่	ค่าคงที่ไดอิเล็กทริกที่
			25°C	T_m
$x = 0.1$	T	336	350	5500
$x = 0.2$	T	288	580	27500
$x = 0.3$	PC+T	236	875	39500
$x = 0.4$	PC	199	1250	7700
$x = 0.5$	PC	161	1900	22000

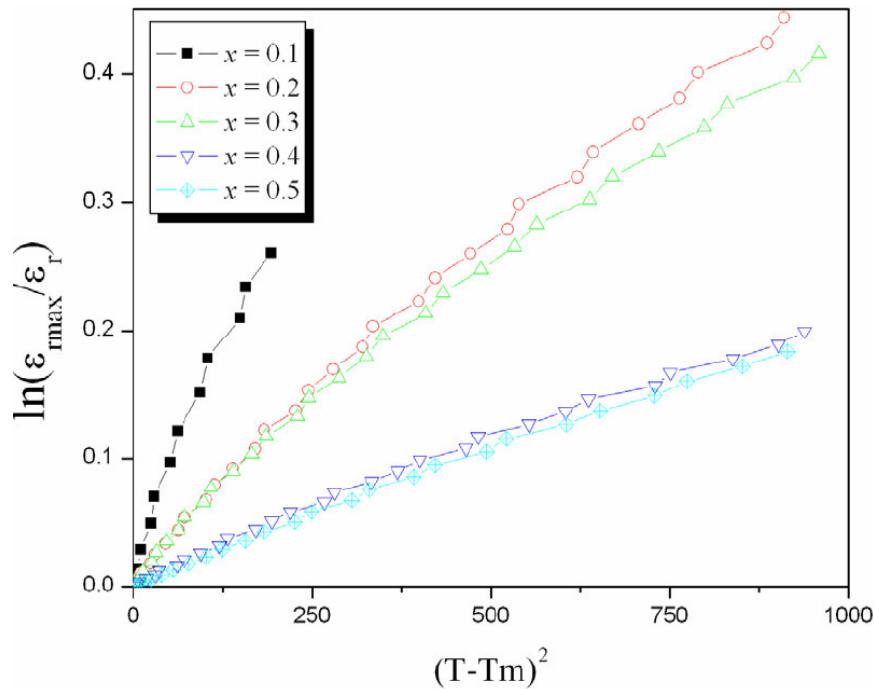
T = เฟสเทหะ โภนอล, PC = เฟสคิวบิกเสมีอน

จากรูป 4.15-4.19 และจากตาราง 4.2 แสดงให้เห็นว่าที่สัดส่วน 0.7PZT-0.3PCoN แสดงค่าคงที่ไดอิเล็กทริกสูงสุดประมาณ 39,000 (ที่ 1 kHz) ด้วย T_m ประมาณ 236 องศาเซลเซียส ดังนั้น MPB ซึ่งแยกระหว่างเฟสเทหะ โภนอลกับเฟสคิวบิกเสมีอนนั้นอยู่ที่สัดส่วน $x = 0.3$ เนื่องจากที่สัดส่วนนี้แสดงค่าคงที่ไดอิเล็กทริกสูงที่สุด และจากข้อมูลการเลี้ยวเบนของรังสีเอกซ์ของเชรามิก (1- x)PZT- x PCoN (รูป 4.11)

ค่าคงที่ไดอิเล็กทริกสูงสุดและอุณหภูมิในการเปลี่ยนเฟสเทียบกับสัดส่วน โน้มของ PCoN (x) แสดงดังรูป 4.20 พบว่ามีความสัมพันธ์เป็นเส้นตรงระหว่างค่าอุณหภูมิในการเปลี่ยนเฟสกับค่า x ซึ่งแสดงให้เห็นว่าระบบนี้เป็นสารละลายของแข็งที่สมบูรณ์ เนื่องจากเกิดการเข้ากันได้ดีระหว่าง PCoN ในสารละลายของแข็ง PZT ค่าอุณหภูมิในการเปลี่ยนเฟสของสารประกอบ PCoN และ PZT เท่ากับ -70 องศาเซลเซียส และ 390 องศาเซลเซียส ตามลำดับ ซึ่งสามารถใช้คำนวณหาค่าอุณหภูมิในการเปลี่ยนเฟสทางทฤษฎีได้ดังสมการ

$$T_m = x (-70) + (1-x)(390) \quad (4.1)$$

รูป 4.20 ค่าอุณหภูมิในการเปลี่ยนเฟสที่วัดได้ (T_m), ค่า T_m ทางทฤษฎี และค่าคงที่ไอดิลลิกทริกสูงสุด เทียบกับสัดส่วน (x)


จากรูป 4.20 ค่าคงที่ไอดิลลิกสูงสุดที่มีค่ามากที่สุดอยู่ที่ 39,000 ที่ 236 องศาเซลเซียส ที่ 1 kHz ซึ่งคาดว่าจะเป็นบริเวณของ MPB ที่สัดส่วน 0.7PZT-0.3PCoN จากผลที่ได้นี้คาดได้ว่าโดยการควบคุมปริมาณของ PCoN ในระบบ จะทำให้อุณหภูมิในการเปลี่ยนเฟสของระบบ $(1-x)$ PZT- x PCoN สามารถเปลี่ยนแปลงภายในช่วงจาก -70 -390 องศาเซลเซียส ได้

จากรูป 4.15-4.19 พบว่าสารตัวอย่างที่สัดส่วนของ PCoN (x) มีค่าน้อย พีกของค่าคงที่ไอดิลลิกจะมีลักษณะแคบ และพีกของค่าคงที่ไอดิลลิกจะมีลักษณะกว้าง เมื่อสัดส่วนของ PCoN (x) มีค่าสูง ซึ่งจากการสังเกตพบว่าพีกที่ได้มีความกว้างมากขึ้นตามสัดส่วนของ PCoN ที่เพิ่มขึ้น ซึ่งตัวแปรที่บ่งบอกความกว้างของพีกคือ พารามิเตอร์ของการกระจาย (diffusiveness parameter ; δ) โดยสามารถคำนวณได้จากสมการดังต่อไปนี้

$$\frac{K_m}{K(f, T)} = \exp\left(\frac{(T - T_m(f))^2}{2\delta^2}\right) \quad (4.2)$$

เมื่อ K_m คือ ค่าคงที่ไอดิลลิกสูงสุดที่ $T = T_m(f)$
 $K(f, T)$ คือ ค่าคงที่ไอดิลลิกที่แท้จริงของตัวอย่าง

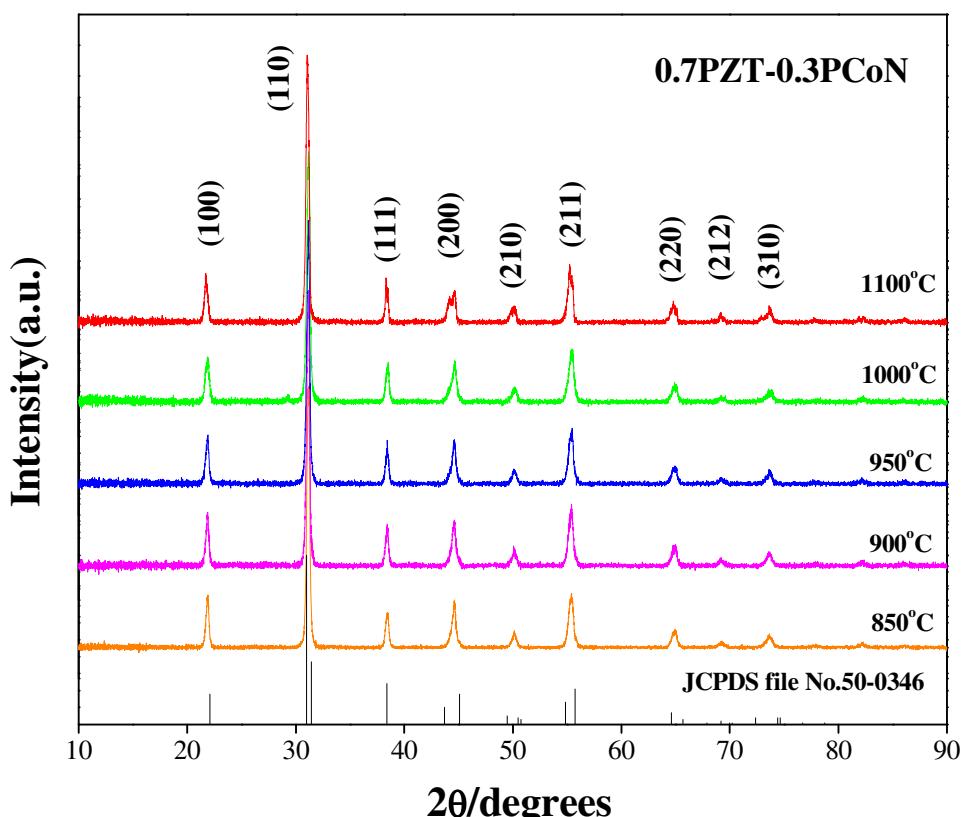
จากรูป 4.21 แสดงความสัมพันธ์ระหว่าง $\ln (K_m / K_{f,T})$ กับ $(T-T_m)^2$ ภายใต้สภาวะของ $K_m / K_{f,T} < 1.5$ โดยที่ $1/(2\delta^2)$ คือ ความชันของกราฟ ซึ่งจะให้ค่าพารามิเตอร์ของการกระจาย

รูป 4.21 กราฟแสดงความสัมพันธ์ระหว่าง $\ln (K_m / K_{f,T})$ กับ $(T-T_m)^2$

ค่าพารามิเตอร์ของการกระจายมีค่าเพิ่มขึ้นเมื่อปริมาณ PCoN เพิ่มขึ้น ดังตาราง 4.3 และว่า เมื่อสัดส่วนโมลของ PCoN เพิ่มมากขึ้น สารละลายของแข็งนี้จะแสดงลักษณะการเปลี่ยนเฟสเพิ่มขึ้น

ตาราง 4.3 ค่าพารามิเตอร์ของการกระจายเทียบกับสัดส่วนของ PCoN

สัดส่วน (x)	พารามิเตอร์ของการกระจาย (δ)
$x = 0.1$	10.1
$x = 0.2$	32.4
$x = 0.3$	33.9
$x = 0.4$	48.6
$x = 0.5$	49.6

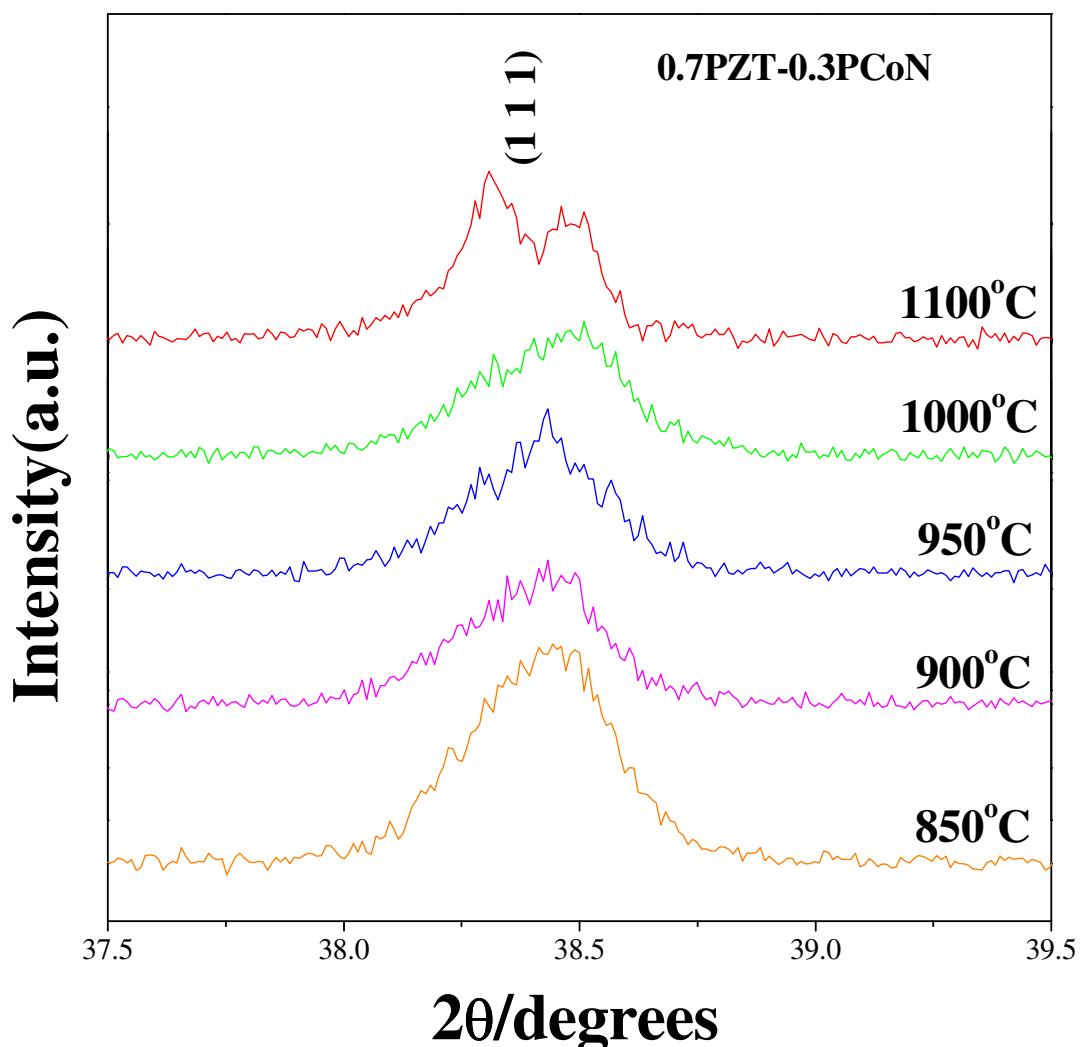

นอกจากนี้ ยังพบว่าค่าพารามิเตอร์ของการกระจายนั้น ไม่เพิ่มขึ้นอย่างเป็นเส้นตรง ทั้งนี้อาจมีสาเหตุมาจากการเกิดการเปลี่ยนแปลงจาก Co^{2+} ไปเป็น Co^{3+} ซึ่งยังต้องทำการศึกษาในรายละเอียดต่อไป

4.3 การตรวจสอบเซรามิกหลังผ่านการอบอ่อน

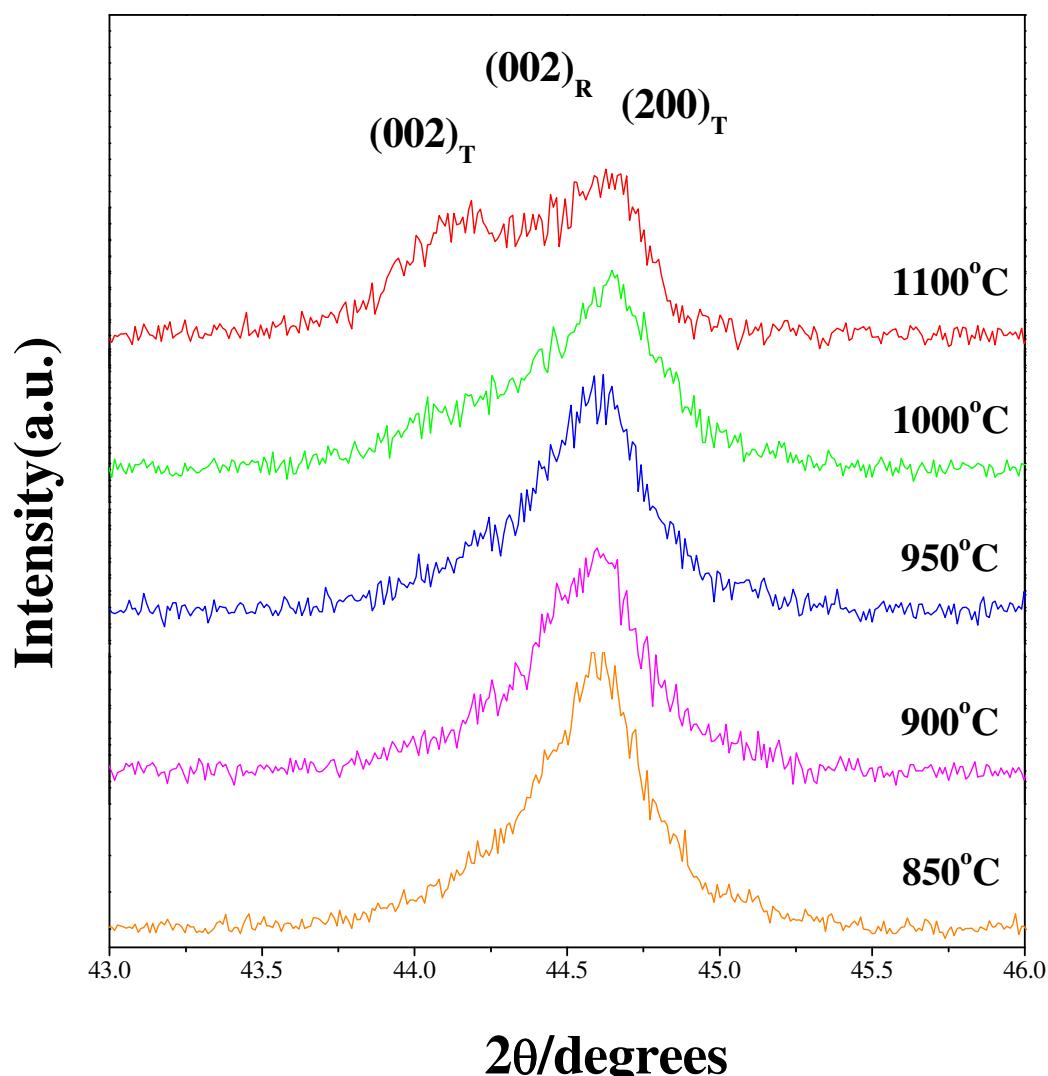
4.3.1 การตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก

เมื่อทำการอัดขึ้นรูปและเผาชินเตอร์สารตัวอย่างในอัตราส่วนบริเวณแนวรอยต่อเฟส (MPB) และทำการอบอ่อนเซรามิกที่เตรียมได้ที่อุณหภูมิ 850-1100 องศาเซลเซียสเป็นเวลา 4 ชั่วโมงโดยใช้อัตราการขึ้น-ลงของอุณหภูมิเท่ากัน 5 องศาเซลเซียสต่อนาที จากนั้นทำการตรวจสอบองค์ประกอบและโครงสร้างผลึกด้วยเทคนิคการเลือบเน้นของรังสีเอกซ์

รูปที่ 4.22 แสดงรูปแบบการเลือบเน้นของรังสีเอกซ์ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง


รูป 4.22 รูปแบบการเลือบเน้นของรังสีเอกซ์ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง

จากรูปที่ 4.22 แสดงรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก $0.7\text{PZT}-0.3\text{PCoN}$ ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง ซึ่งเมื่อนำไปประยุกต์กับฐานข้อมูลมาตรฐาน JCPDS พบว่ามีลักษณะใกล้เคียงกับรูปแบบการเลี้ยวเบนของโครงสร้างเพอร์อฟส์ไกต์ของระบบ $\text{Pb}(\text{Zr}_{0.44}\text{Ti}_{0.56})\text{O}_3$ ที่เป็นฐานข้อมูลมาตรฐาน JCPDS file No.50-0346 โดยผลการทดลองแสดงถึงเฟสเชิงเดียว ไม่พบเฟสไฟโรคลอร์หรือเฟสอื่นๆ ไม่ว่าเซรามิกนั้นจะผ่านการอบอ่อนที่อุณหภูมิใดๆ ซึ่งจากการวิจัยที่ผ่านมาพบว่า เฟสไฟโรคลอร์มักจะถูกพบบริเวณ มุม 2θ มีค่าระหว่าง 20-30 องศา ซึ่งปรากฏอยู่ระหว่างพีก $(1\ 0\ 0)$ และ $(1\ 1\ 0)$ ซึ่งพบว่าเมื่อสัดส่วนของ PCoN ในระบบ $(1-x)\text{PZT}-x\text{PCoN}$ มากขึ้นเท่ากับ 0.5 จะพบเฟสไฟโรคลอร์ของ $\text{Pb}_3\text{Nb}_4\text{O}_{13}$ เนื่องจากการเพิ่มสัดส่วน PCoN ในสารละลายของเงินนั้น เป็นการลดความเสถียรในโครงสร้างเพอร์อฟส์ไกต์ ของ PZT เพราะ PCoN มีค่าทอลาเรนซ์เฟลกเตอร์ (tolerance factor) และค่าความสามารถในการดึงอิเล็กตรอน (electron affinity) ที่ต่ำ ซึ่งปัจจัย 2 ปัจจัยนี้จะบ่งบอกถึงความสามารถในการเกิดเฟสเพอร์อฟส์ไกต์ นอกจากนั้น ยังพบว่า อุณหภูมิ เวลาและบรรยายกาศในการอบอ่อนก็มีผลต่อการเกิดเฟสไฟโรคลอร์ จากการวิจัยของ Feng Xia และคณะ [33] พบว่าเมื่อเซรามิกในระบบ PZN-BT-PT ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียสเป็นเวลามากกว่า 4 ชั่วโมง จะพบเฟสไฟโรคลอร์ โดยปริมาณเฟสไฟโรคลอร์นี้จะเพิ่มมากขึ้นตามเวลาการอบอ่อนที่มากขึ้น โดยเฉพาะอย่างยิ่งการอบอ่อนในบรรยายกาศที่มีการไหลด่าน ของแก๊สออกซิเจน พบปริมาณเฟสไฟโรคลอร์ถึงร้อยละ 5 เนื่องการแก๊สออกซิเจนมีผลทำให้อัตราการระเหยของ PbO ออกจากระบบมีมากยิ่งขึ้น

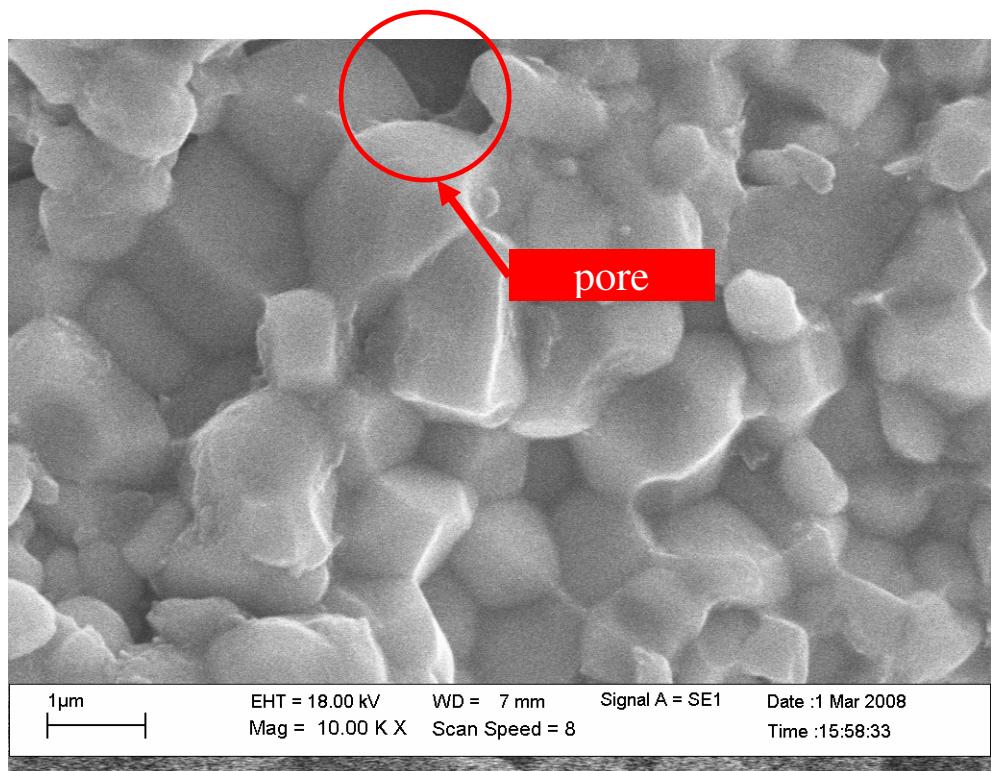
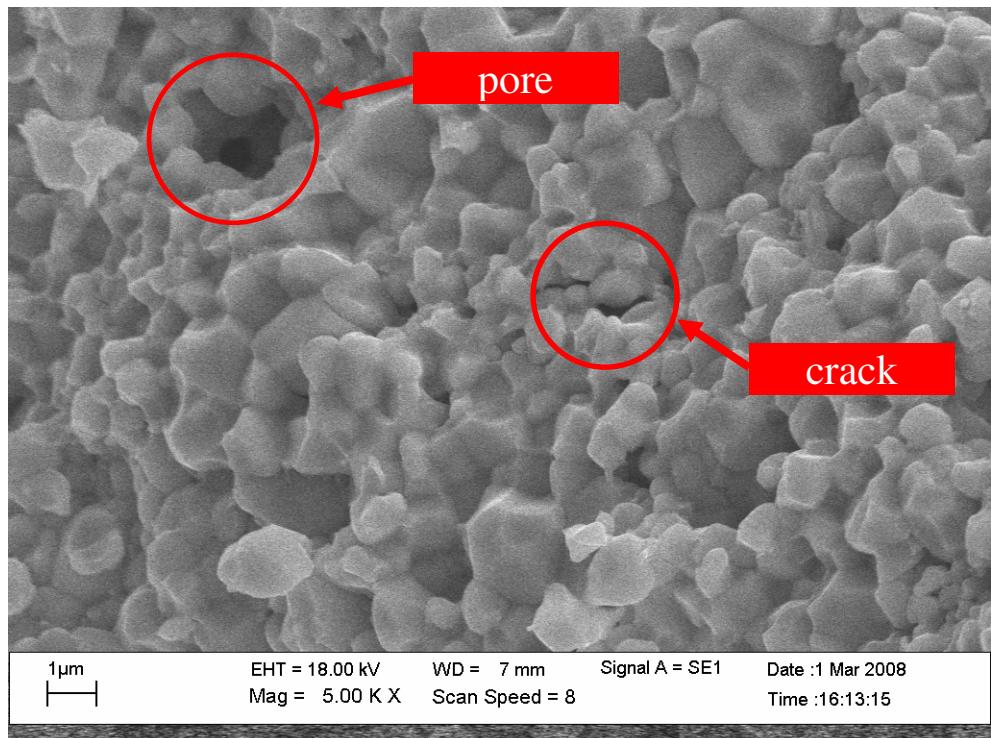

ทั้งนี้รูปแบบการเลี้ยวเบนที่แสดงเฟสเชิงเดียวดังกล่าว จึงเป็นการยืนยันความเหมาะสมของสภาวะที่ใช้ในการสังเคราะห์ผงและเซรามิกของสารตัวอย่างในระบบ $0.7\text{PZT}-0.3\text{PCoN}$ ว่าเป็นสภาวะที่สามารถเตรียมตัวอย่างให้มีความบริสุทธิ์ได้เป็นอย่างดี อีกทั้งกระบวนการอบอ่อนที่ช่วงอุณหภูมิ 850-1100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมงนั้น ไม่ก่อให้เกิดการสูญเสียของ PbO ออกจากระบบ เนื่องจากไม่พบเฟสไฟโรคลอร์นั้นเอง [36]

รูปที่ 4.23 และ 4.24 แสดงการเปลี่ยนแปลงของพีก $(1\ 1\ 1)$ และพีก $(2\ 0\ 0)$ เทียบกับอุณหภูมิที่ใช้ในการอบอ่อน เมื่อพิจารณารูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส พบว่าพีก $(1\ 1\ 1)$ และพีก $(2\ 0\ 0)$ มีลักษณะเป็นพีกเดียว ซึ่งคาดเดาว่าเป็นเฟสคิวบิกสมิเน่น เนื่องจากเมื่อพิจารณาพีก $(2\ 0\ 0)$ ทุกรอบของ [46] ของเฟสคิวบิกสมิเน่นมีแลตทิซพารามิเตอร์เท่ากัน มีการเบี่ยงเบนรังสีเอกซ์ได้เท่ากัน จึงแสดงรูปแบบการเลี้ยวเบนของพีก $(2\ 0\ 0)$ เป็นพีกเดียว ซึ่งในขณะที่อุณหภูมิในการอบอ่อนเพิ่มมากขึ้น พบว่าเกิดการแยกของพีกมากขึ้น ทั้งพีก $(1\ 1\ 1)$ และ พีก $(2\ 0\ 0)$ อันเนื่องมาจากการเปลี่ยนแปลงเฟสจากเฟสคิวบิกสมิเน่นกลายเป็นเฟสรอมโนบีดรอลและเฟสเททระ โภนอลพร้อมๆกัน โดยเฟสรอมโนบีดรอลจะแสดงพีก $(1\ 1\ 1)$ ที่มีลักษณะแยกเป็น 2 พีก และเฟสเททระ โภนอลจะแสดงพีก $(2\ 0\ 0)$ ที่มีลักษณะแยกเป็น 2 พีก เนื่องจากกระบวนการ

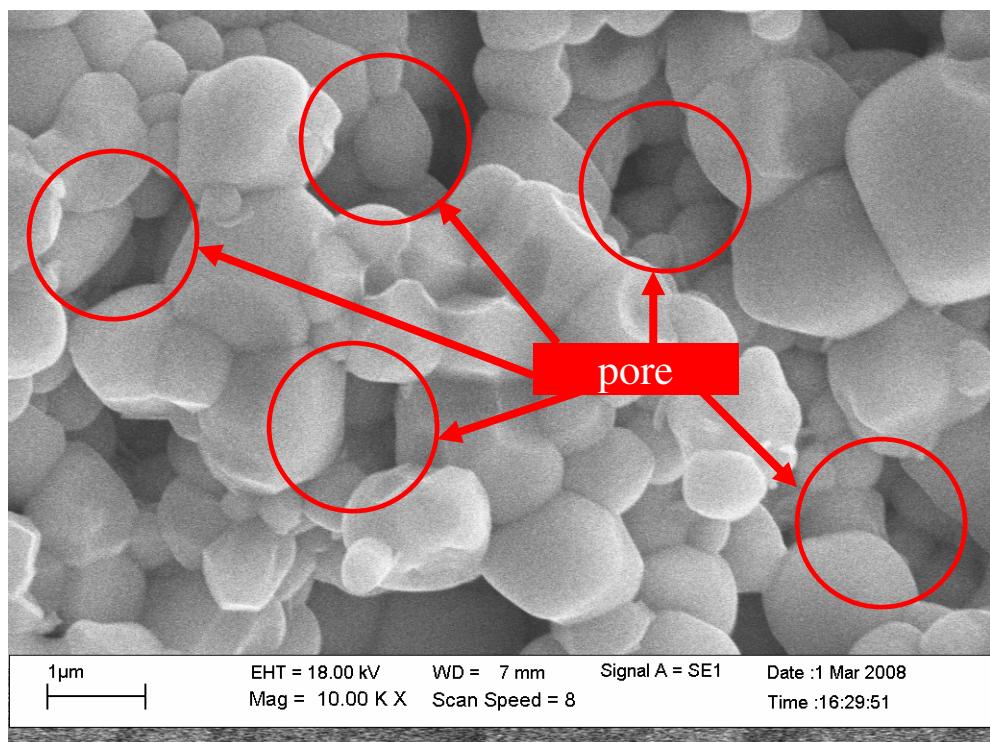
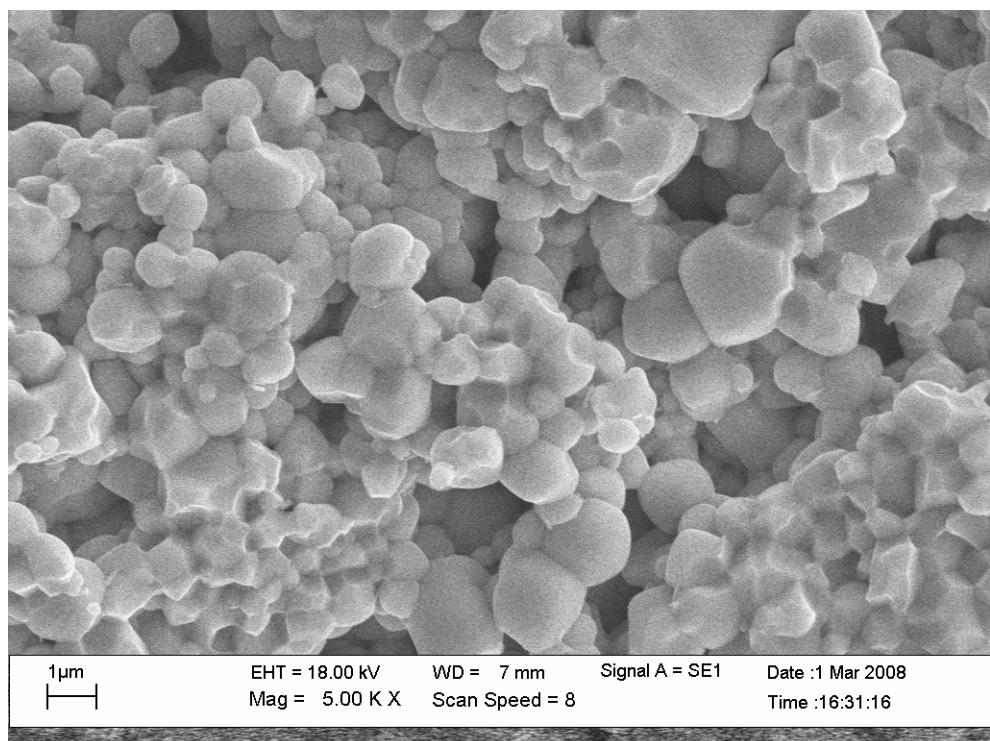
(2 0 0) และ (0 0 2) ของเฟสเททระ โภนอล ไม่เท่ากัน จึงเบี่ยงเบนรังสีเอกซ์ได้ไม่เท่ากัน ทำให้เกิดการแยกของพีก [3, 33-36, 47, 48] ซึ่งการแยกของพีกทั้ง 2 พีก เห็นได้ชัดในเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส อันเป็นการแสดงว่าจะมีเฟสรอง โบสิครอลอยู่ร่วมกับเฟสเททระ โภนอลในระบบ ซึ่งนั้นคือ مور์โฟโทรปิกเฟสนาวดรี (morphotropic phase boundary; MPB) จากผลการตรวจสอบการเบี่ยงเบนของรังสีเอกซ์สามารถสรุปได้ว่า การเพิ่มขึ้นของอุณหภูมิที่ใช้ในการอบอ่อน มีอิทธิพลต่อการเปลี่ยนเฟสของสารในระบบ 0.7PZT-0.3PCoN ซึ่งเกิดการเปลี่ยนเฟสจากเฟส คิวบิกเสมีอนกลายเป็นเฟสเททระ โภนอล และรอง โบสิครอล และการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียสเป็นสภาวะที่ทำให้ได้เซรามิกที่ใกล้เคียงกับ MPB มากที่สุด ซึ่งจะสามารถสรุปได้ชัดเจนมาก ยิ่งขึ้นเมื่อพิจารณาร่วมกับผลจากการทดสอบสมบัติทางไฟฟ้า

รูป 4.23 รูปแบบการเลี้ยงเบนของรังสีเอกซ์ของพีก (1 1 1) ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง

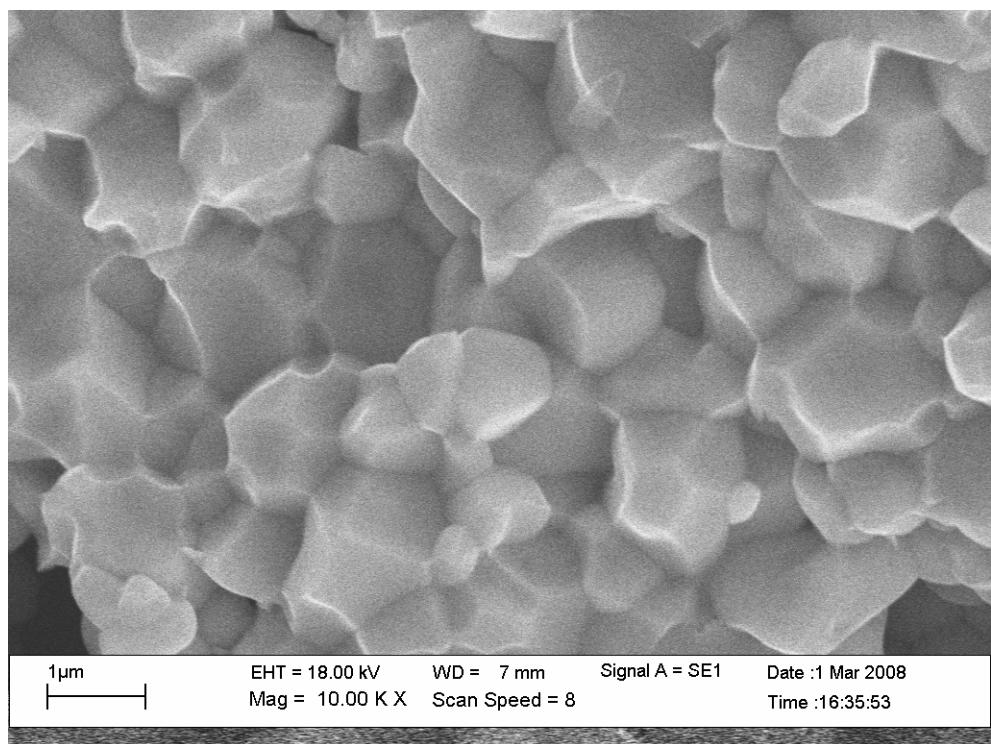
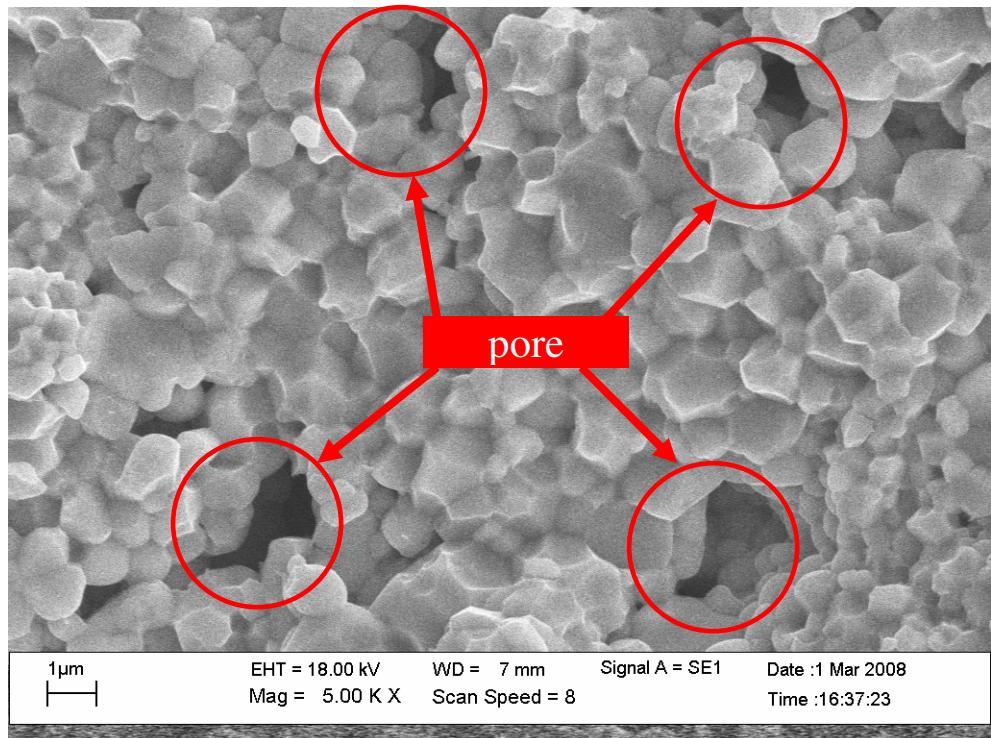
รูป 4.24 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของพีก (2 0 0) ของเซรามิก 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เป็นเวลา 4 ชั่วโมง

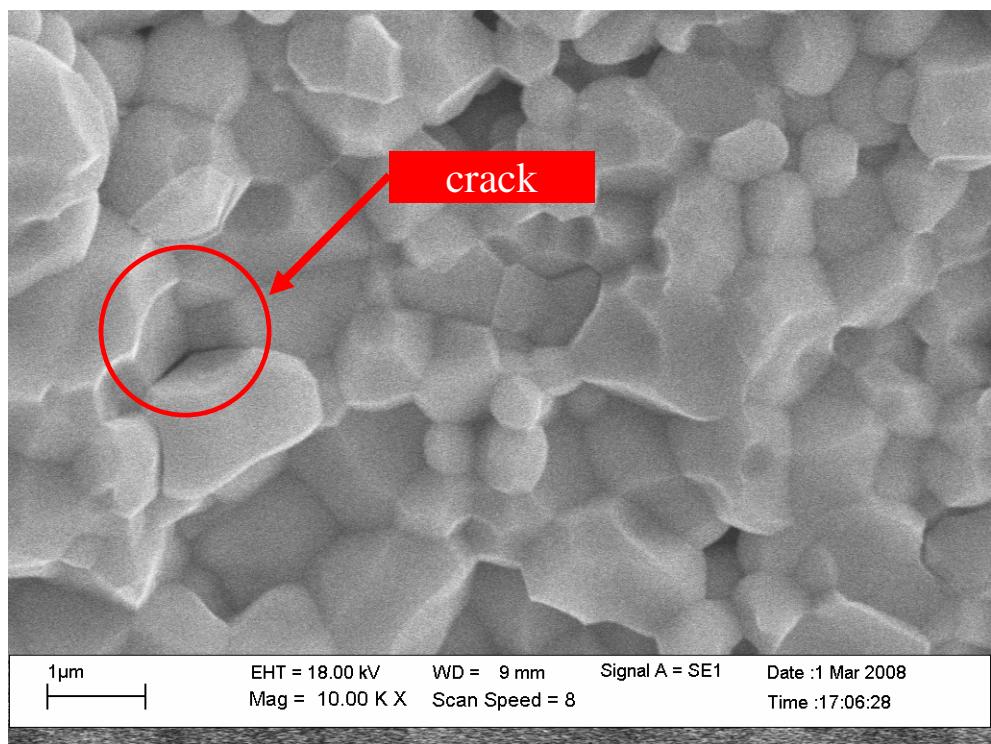
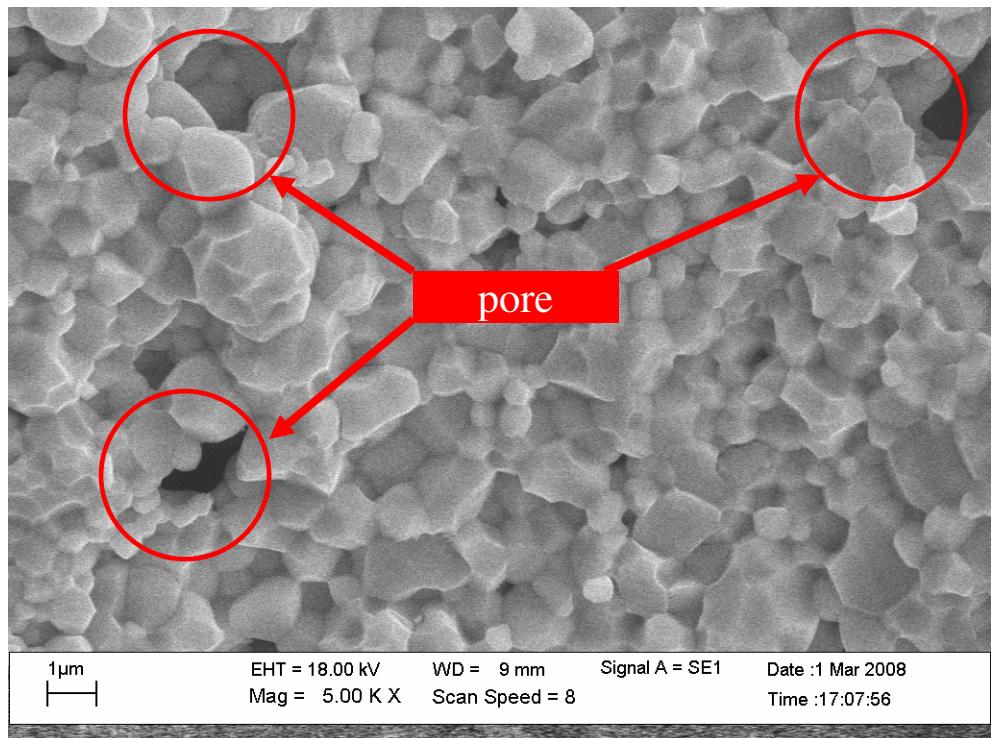


4.3.2 การตรวจสอบทางสัมฐานวิทยา

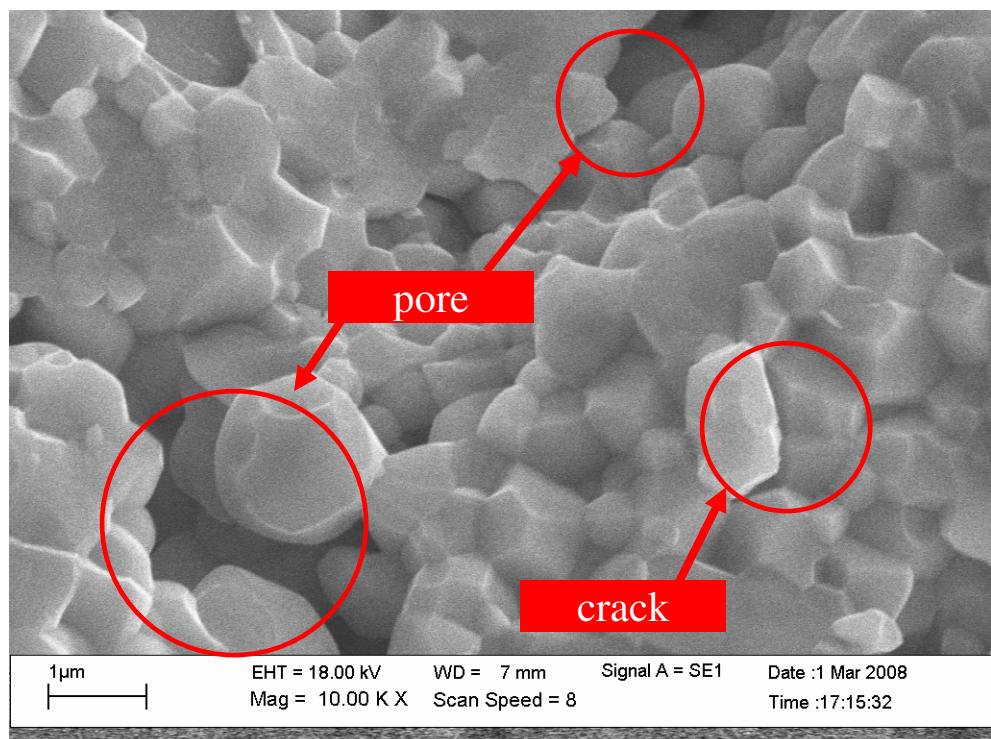
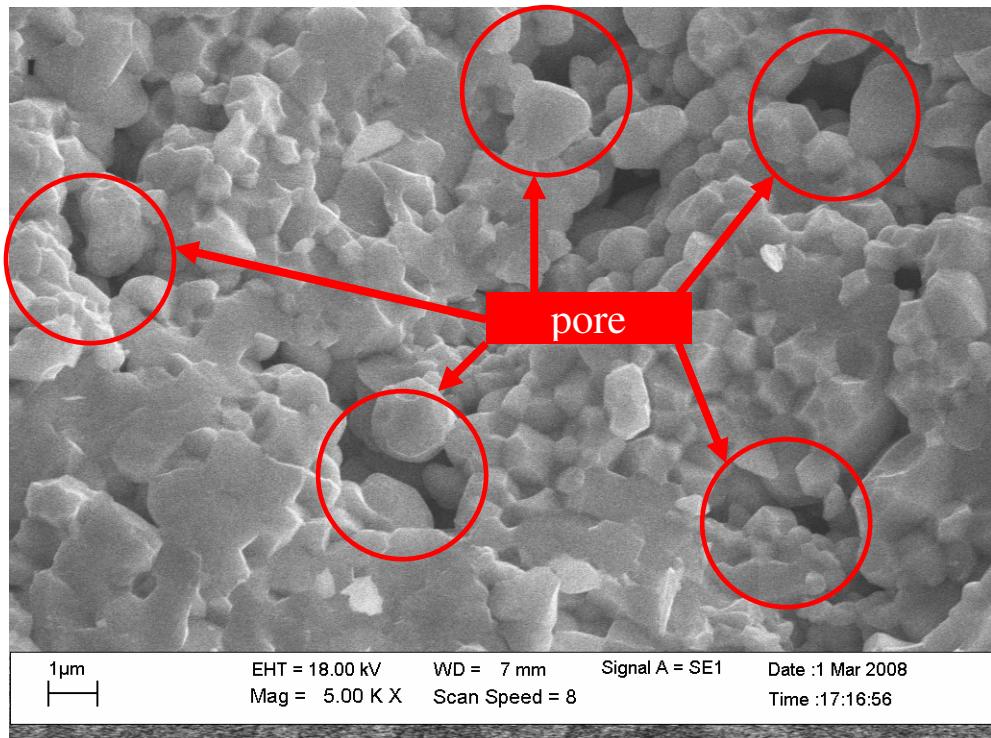
ขนาดเกรนและความหนาแน่นของเซรามิกเป็นปัจจัยที่มีผลต่อสมบัติได้อิเล็กทริกและสมบัติเพียโซอิเล็กทริก ซึ่งการเปลี่ยนแปลงขนาดเกรนและความหนาแน่นของเซรามิกนั้น อาจเป็นผลอันเนื่องมาจากการอบอ่อนได้ ดังนั้น ต้องมีการศึกษาผลของขนาดเกรนและความหนาแน่นของเซรามิกที่มีต่อสมบัติได้อิเล็กทริกด้วย เพื่อเป็นการลดปัจจัยที่มีผลต่อสมบัติได้อิเล็กทริกให้น้อยลง เพื่อจะศึกษาอิทธิพลจากการอบอ่อนที่สูงที่สุด [33, 35]

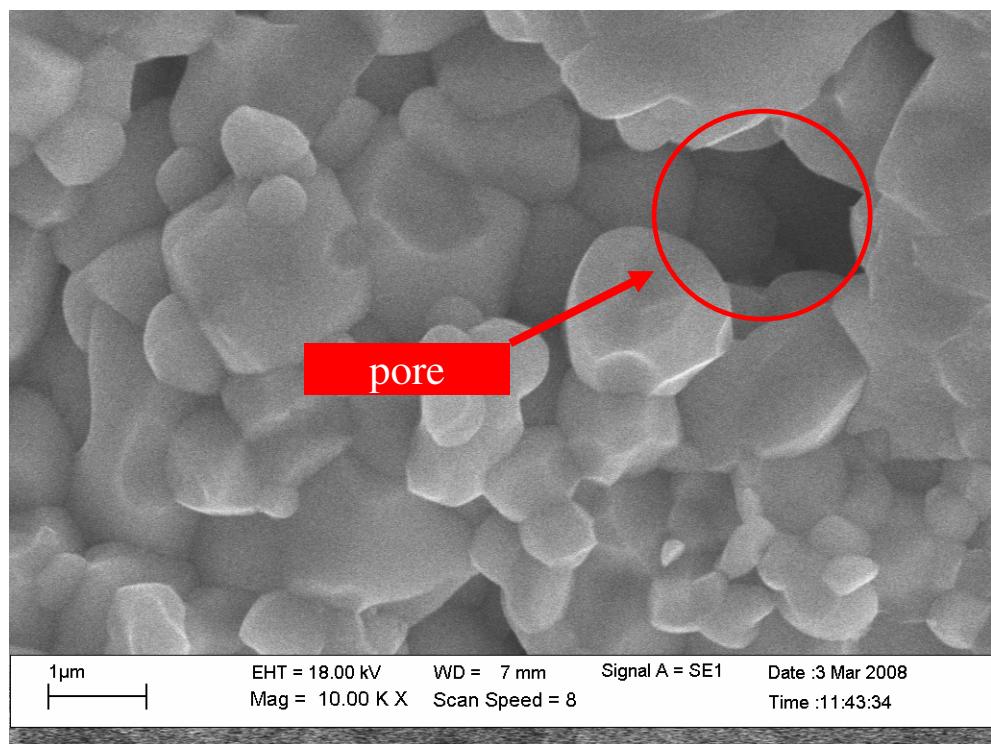
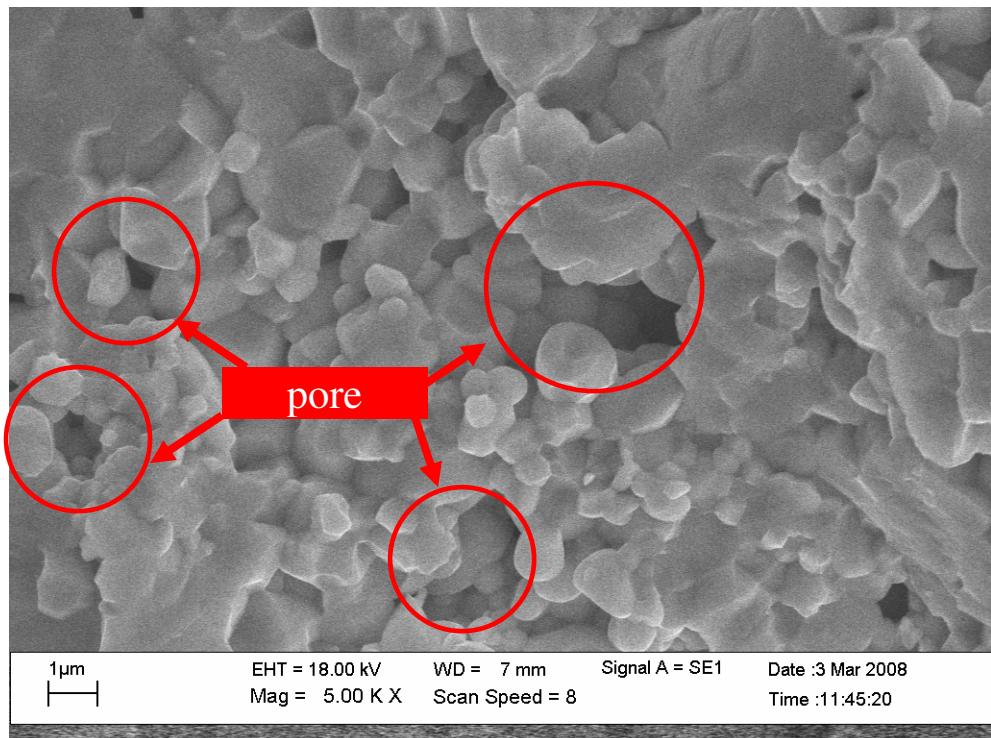


รูปที่ 4.25-4.26 แสดงโครงสร้างจุลภาคที่ได้จากการลอกจุลทรรศน์อิเล็กตรอนแบบส่องกราดของรอยหักของเม็ดเซรามิกที่ยังไม่ผ่านการอบอ่อนและเม็ดเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ พบว่า ขนาดของเกรน โดยเฉลี่ยมีค่าระหว่าง 1.45-2.05 ไมครอน และเกรนมีลักษณะใกล้เคียงกัน ไม่พบเกรนที่มีลักษณะแตกต่างซึ่งคาดว่าเป็นของเฟสอื่น โดยเกรนมีการเรียงตัวชิดติดกัน แต่โครงสร้างเซรามิกยังคงมีรูพรุน ความหนาแน่นของเซรามิกมีค่าประมาณ $6.2-7.8 \text{ g/cm}^3$ ตาราง 4.1 แสดงค่าความหนาแน่นและขนาดเกรนเฉลี่ยของเซรามิก $0.7\text{PZT}-0.3\text{PCoN}$ จากการเปรียบเทียบขนาดเกรนและค่าความหนาแน่นของเซรามิกที่ยังไม่ผ่านการอบอ่อนกับเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850-1100 องศาเซลเซียส แล้วพบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญจนเป็นผลให้เกิดความแตกต่างของสมบัติทางไฟฟ้า ดังนั้น จึงสามารถคาดการณ์ได้ว่าการเปลี่ยนแปลงและความแตกต่างของสมบัติได้อิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนนั้นไม่ได้เป็นผลอันเนื่องมาจากการเปลี่ยนแปลงของขนาดเกรนและความหนาแน่นของเซรามิก

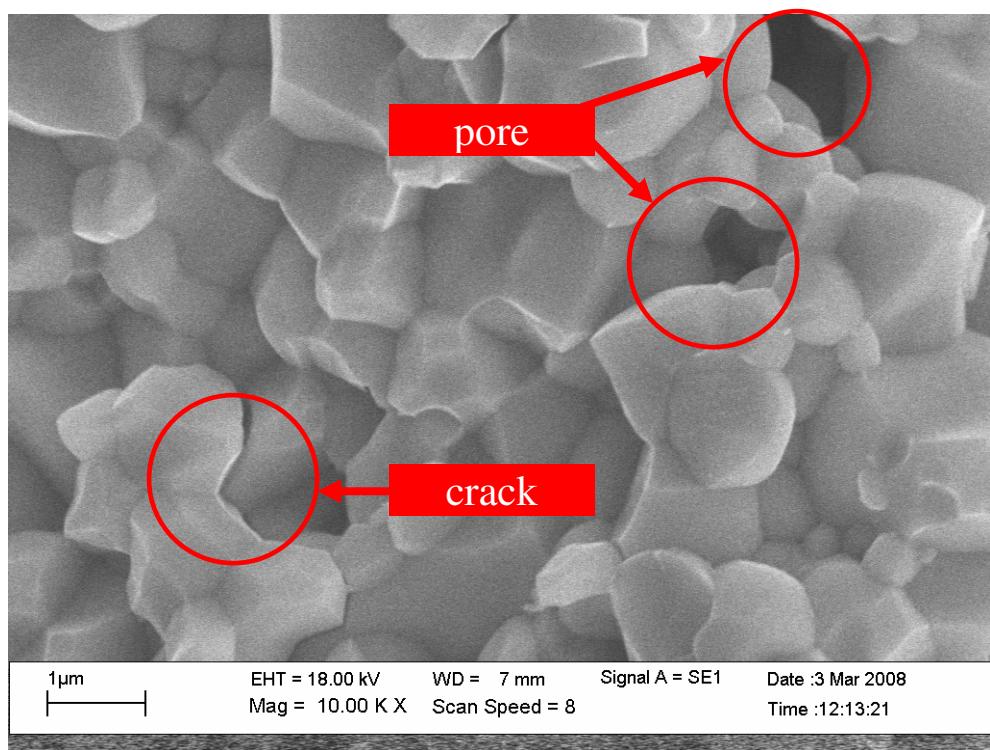
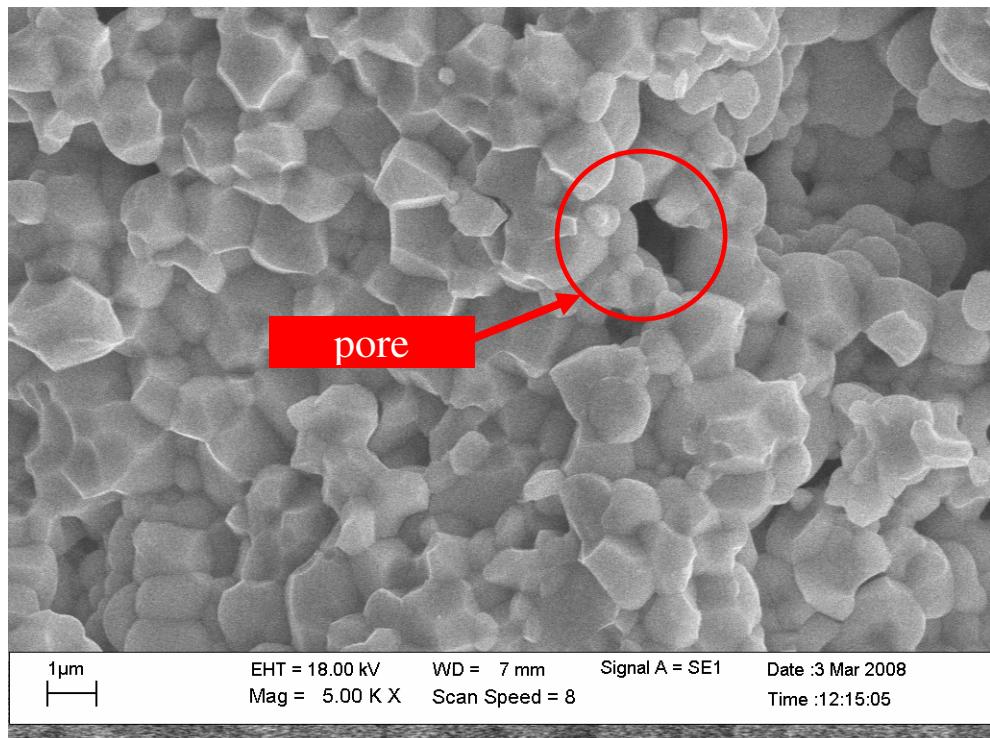
ตาราง 4.4 แสดงค่าความหนาแน่นและขนาดเกรนเฉลี่ยของเซรามิก $0.7\text{PZT}-0.3\text{PCoN}$



อุณหภูมิการอบอ่อน ($^{\circ}\text{C}$)	ค่าความหนาแน่น (g/cm^3)	ขนาดเกรนเฉลี่ย (10^{-6} m)
As-sintered	7.8	1.95 ± 0.35
850	6.6	1.68 ± 0.41
900	7.0	1.74 ± 0.26
950	6.5	1.61 ± 0.29
1000	6.2	1.47 ± 0.20
1050	6.8	1.75 ± 0.21
1100	6.9	2.02 ± 0.37



รูป 4.25 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่ไม่ผ่านการอบอุ่น

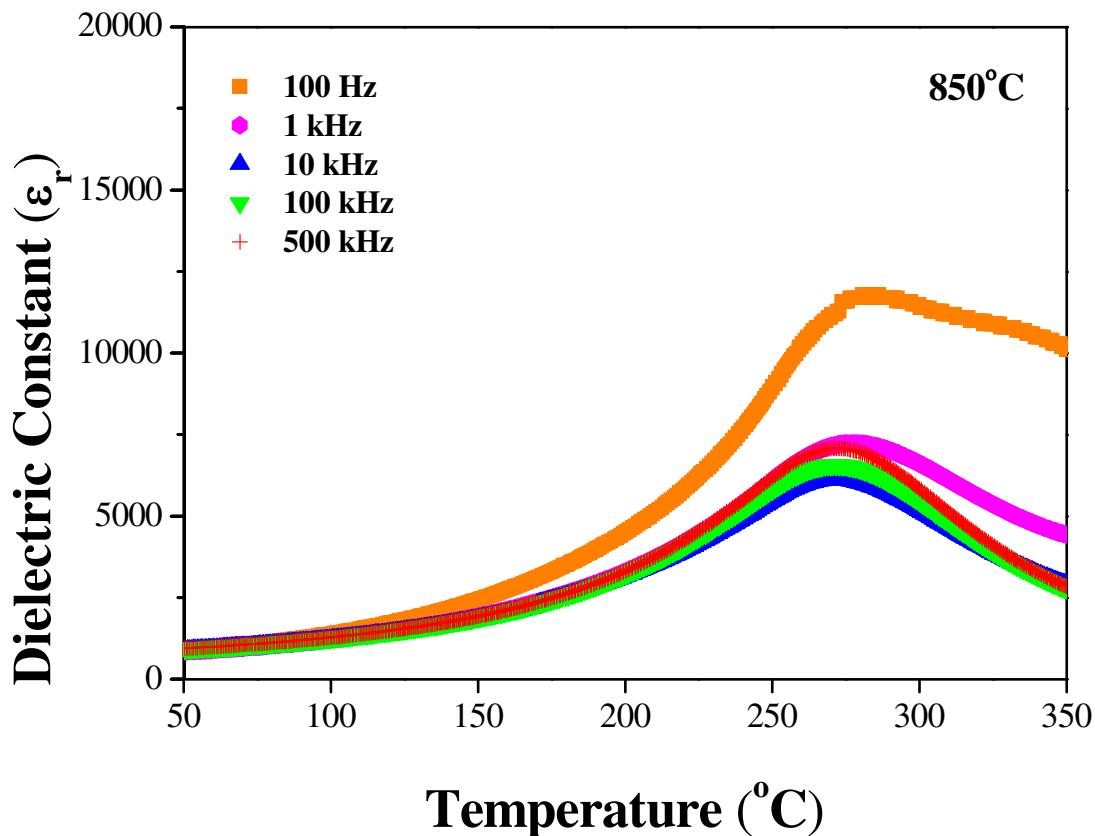


รูป 4.26 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส



รูป 4.27 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 900 องศาเซลเซียส

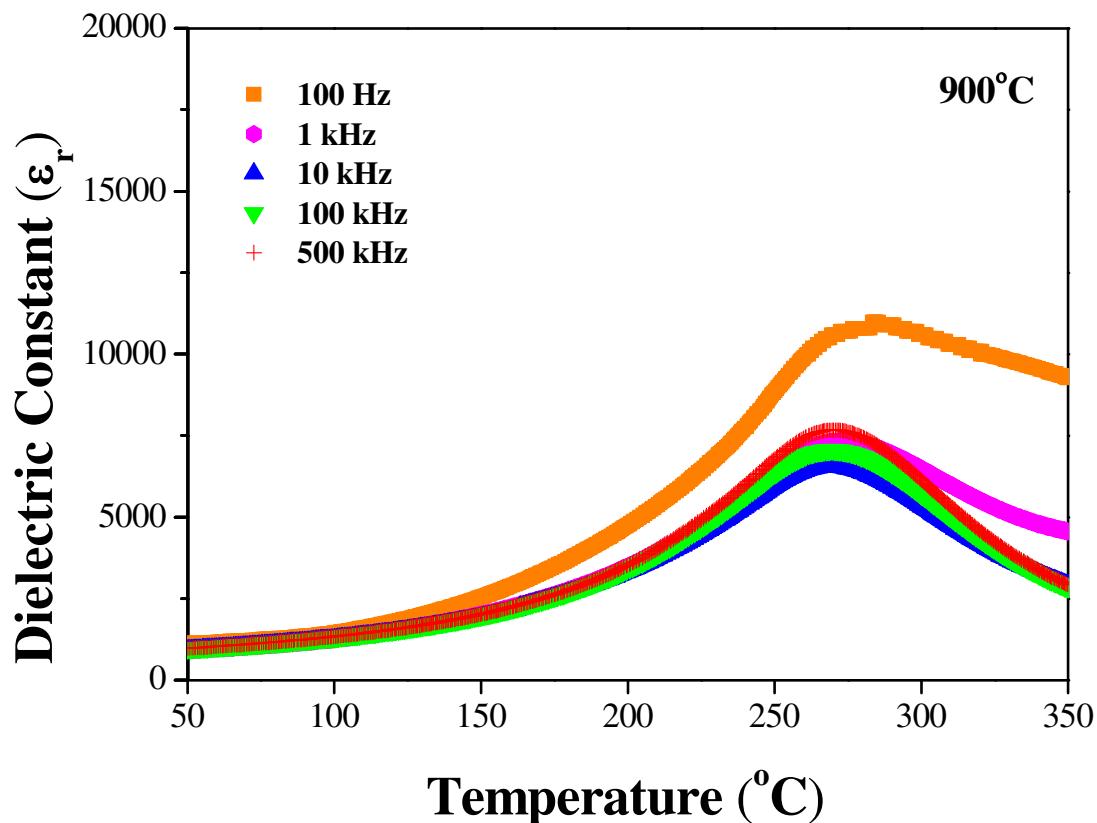


รูป 4.28 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 950 องศาเซลเซียส

รูป 4.29 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1000 องศาเซลเซียส

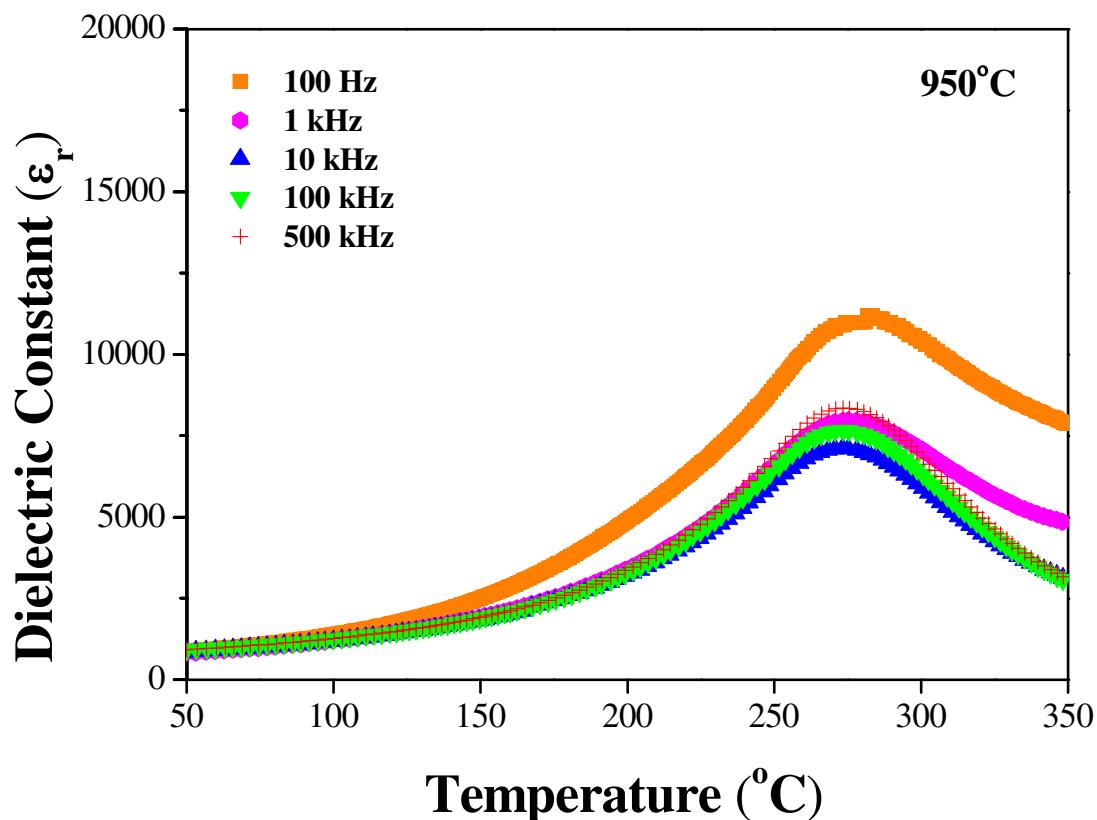
รูป 4.30 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1050 องศาเซลเซียส

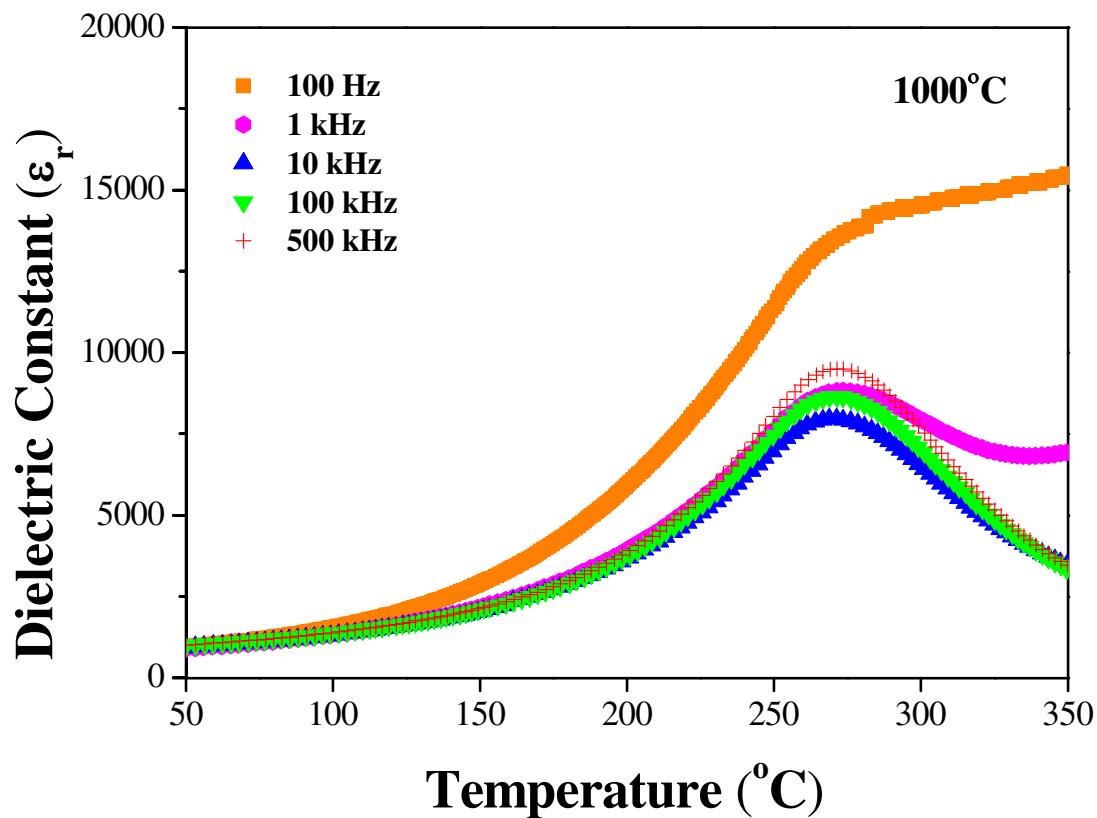

รูป 4.31 โครงสร้างจุลภาคจาก SEM ของรอยหักของเซรามิกที่อบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส

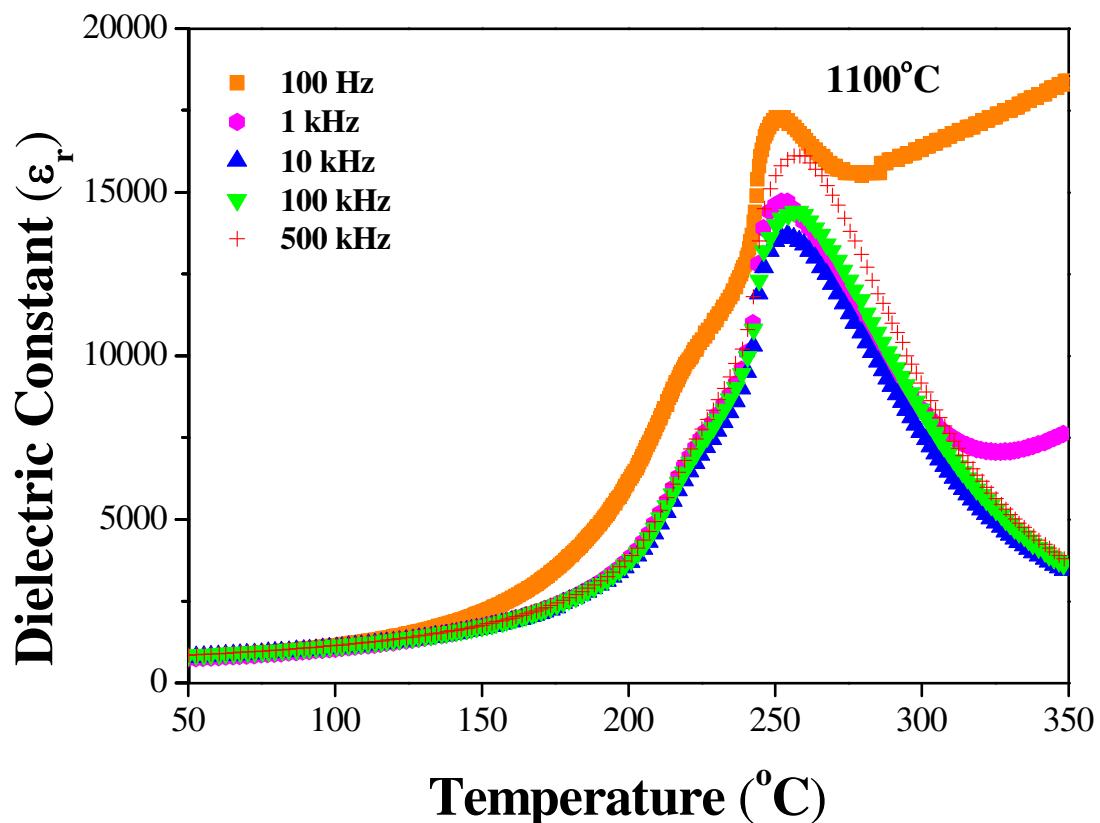
4.3.3 การตรวจสอบสมบัติทางไฟฟ้า


4.3.3.1 สมบัติไดอิเล็กทริก

รูปที่ 4.32-4.36 แสดงค่าคงที่ไดอิเล็กทริกของเซรามิก $0.7\text{PZT}-0.3\text{PCoN}$ ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ จากรูปที่ 4.32 แสดงค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียสเทียบกับอุณหภูมิ พบว่าที่บริเวณอุณหภูมิต่ำกว่า 200 องศาเซลเซียส ค่าคงที่ไดอิเล็กทริกจะมีการเปลี่ยนแปลงไม่มากนัก โดยเพิ่มขึ้นอย่างช้าๆ เกือบเป็นเส้นตรง เมื่ออุณหภูมิสูงขึ้นมากกว่า 200 องศาเซลเซียส ค่าคงที่ไดอิเล็กทริกจะมีการเปลี่ยนแปลงเพิ่มมากขึ้น จนเกิดการเปลี่ยนแปลงแบบฉับพลัน โดยเพิ่มขึ้นและลดลงอย่างรวดเร็ว ที่บริเวณอุณหภูมิ 270 องศาเซลเซียส ซึ่งเซรามิกที่ทำการอบอ่อนที่อุณหภูมิอื่นก็แสดงลักษณะการเปลี่ยนแปลงที่ช่วงอุณหภูมิตั้งกล่าว ยกเว้นเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส พบว่าการเปลี่ยนแปลงของค่าคงที่ไดอิเล็กทริกแบบฉับพลันนั้นเกิดที่อุณหภูมิประมาณ 250 องศาเซลเซียส ซึ่งการเปลี่ยนแปลงค่าคงที่ไดอิเล็กทริกแบบฉับพลันนี้แสดงถึงการเปลี่ยนเฟสของสารตัวอย่าง เรียกว่า อุณหภูมิการเปลี่ยนเฟส (T_m) ซึ่งในระบบ $0.7\text{PZT}-0.3\text{PCoN}$ นี้เป็นการเปลี่ยนสมบัติจากเพอร์โวอิเล็กทริกไปเป็นพาราอิเล็กทริก


อีกทั้งยังพบว่าค่าคงที่ไดอิเล็กทริกมีการเปลี่ยนแปลงขึ้นกับความถี่ โดยเฉพาะที่ความถี่ต่ำ จะเห็นว่าค่าคงที่ไดอิเล็กทริกที่ความถี่ 100 Hz จะมีค่าสูงกว่าที่ความถี่อื่นๆ และมีการเปลี่ยนแปลงขึ้นกับอุณหภูมิตัวอย่าง ซึ่งพบการเปลี่ยนแปลงนี้ในเซรามิกที่ผ่านการอบอ่อนทุกๆ อุณหภูมิ ทั้งนี้ที่ความถี่อื่นไม่พบความแตกต่างกันอย่างมีนัยสำคัญ

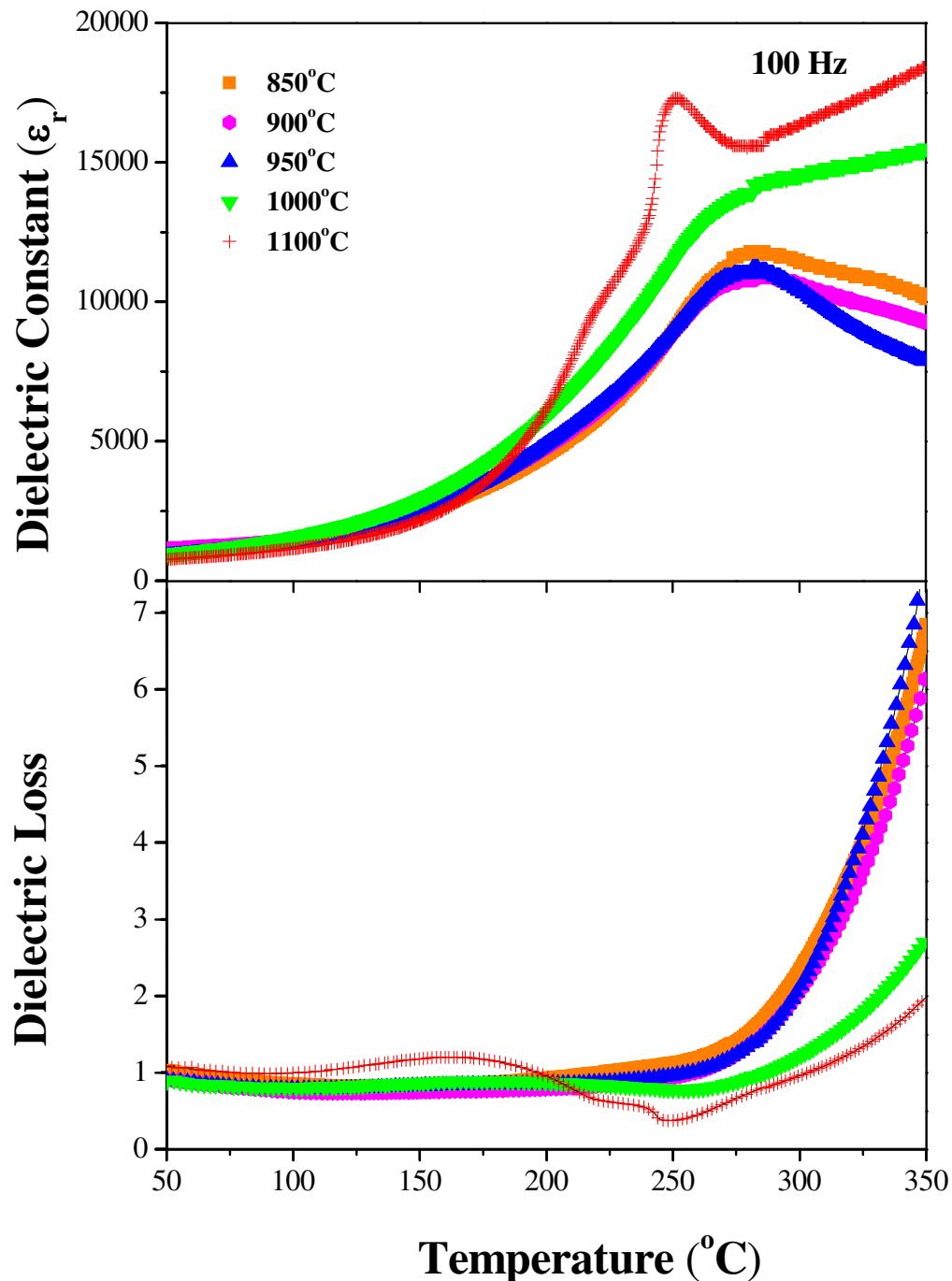

รูป 4.32 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz


รูป 4.33 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 900 องศาเซลเซียส
เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz

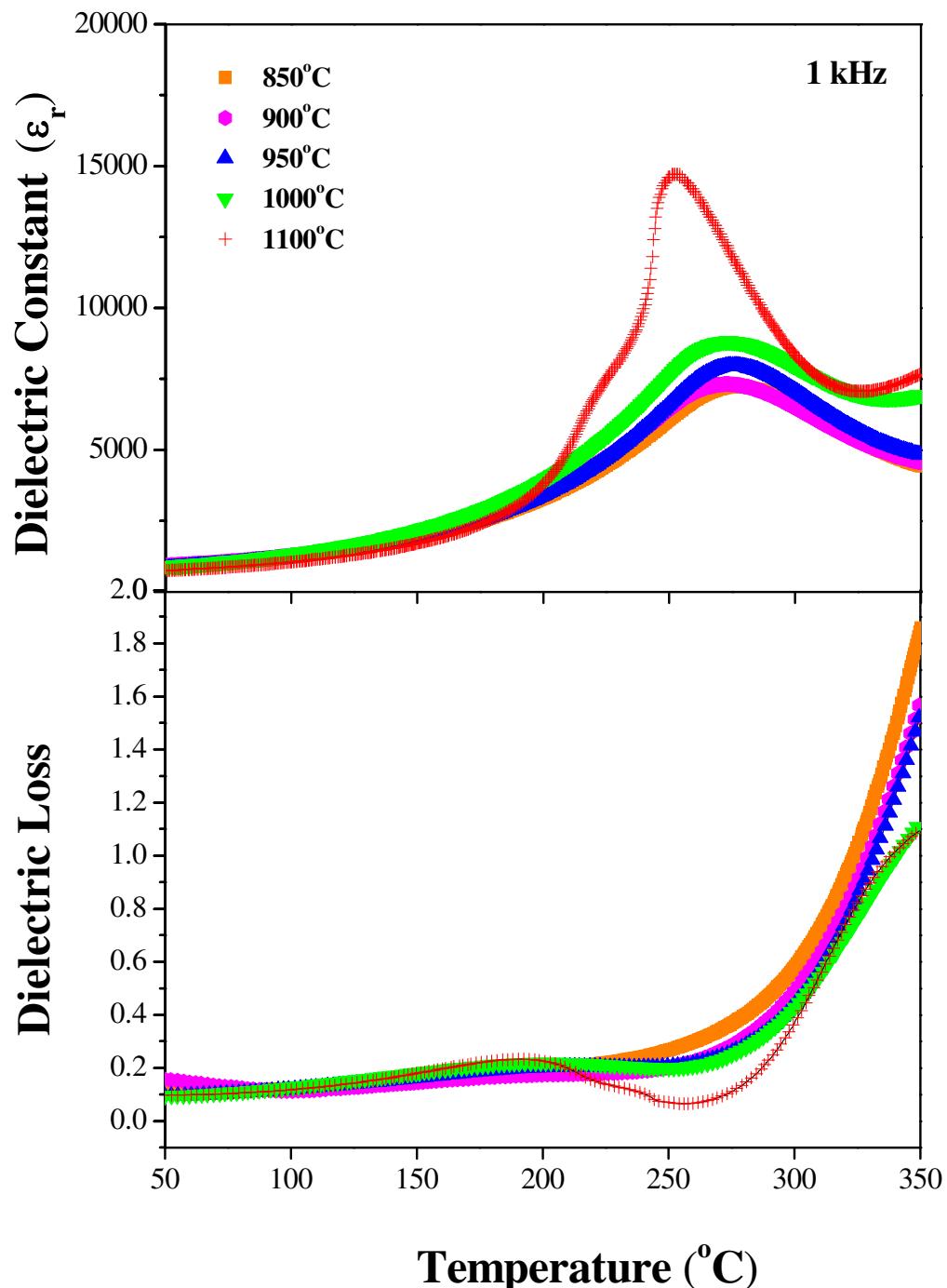
รูป 4.34 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 950 องศาเซลเซียส
เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz

รูป 4.35 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1000 องศาเซลเซียส
เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz

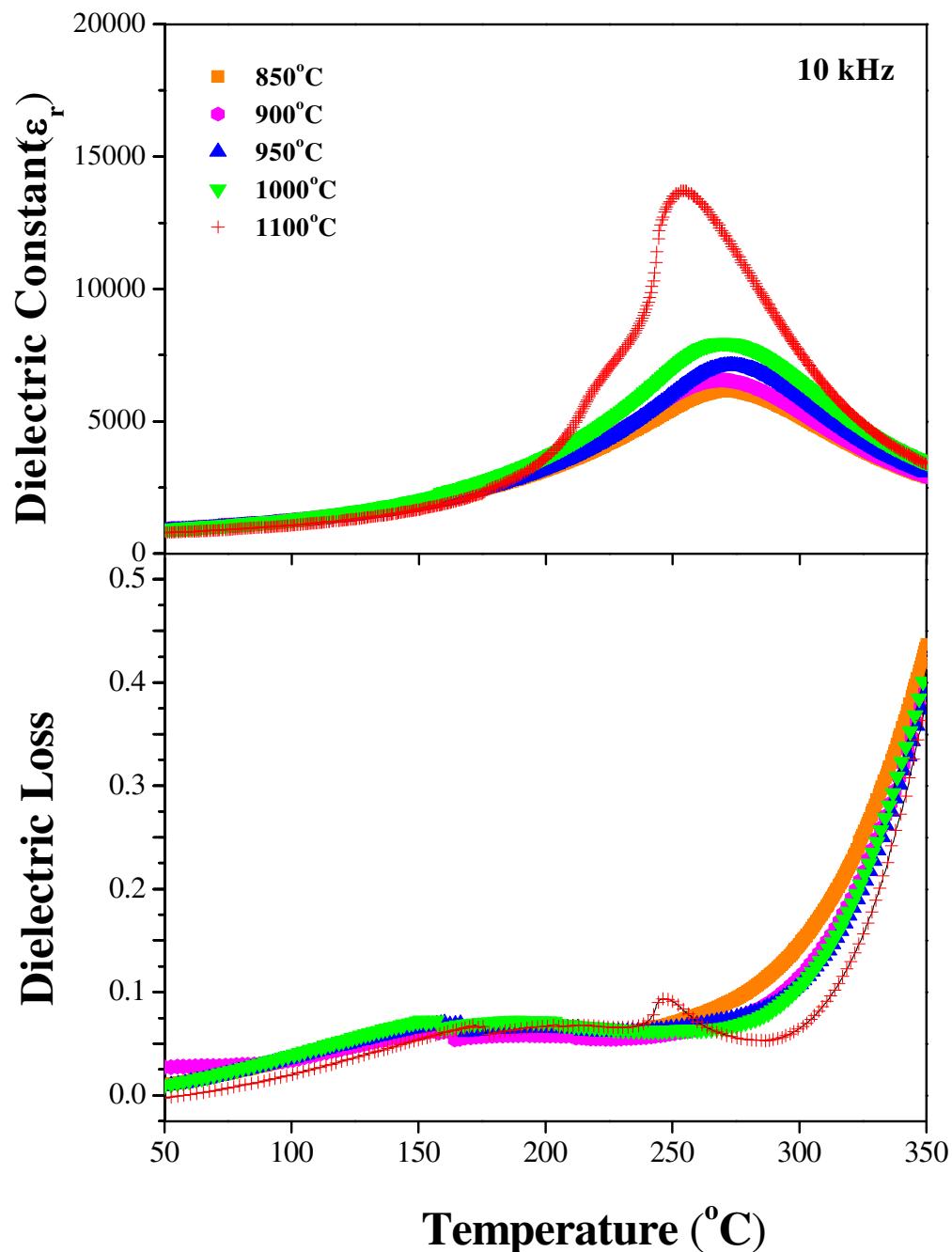
รูป 4.36 ค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส
เทียบกับอุณหภูมิที่ความถี่ระหว่าง 100 Hz-500 kHz

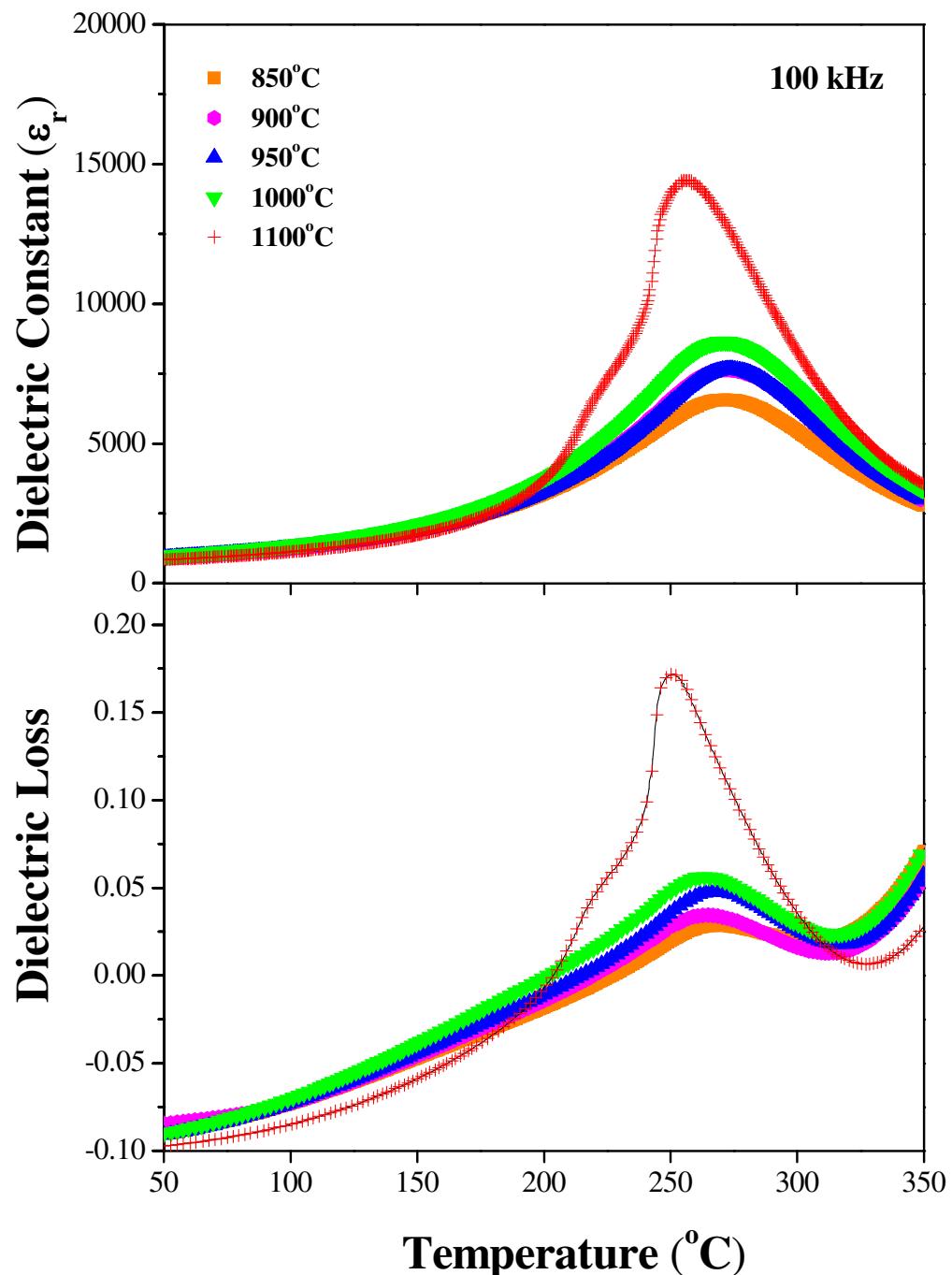

รูปที่ 4.37–4.41 แสดงค่าคงที่ไดอิเล็กทริกของเซรามิก $0.7\text{PZT}-0.3\text{PCoN}$ ที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ เพียงกับอุณหภูมิที่ความถี่ต่างๆ รูปที่ 4.37 แสดงค่าคงที่ไดอิเล็กทริกที่ความถี่ 100 Hz พบว่าเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850-950 องศาเซลเซียส มีความแตกต่างของค่าคงที่ไดอิเล็กทริกบริเวณอุณหภูมิการเปลี่ยนเฟสไม่มากนัก อยู่ในช่วง 11000-11800 แต่ค่าคงที่ไดอิเล็กทริกจะเพิ่มขึ้นในเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิสูงขึ้น และเพิ่มขึ้นสูงอย่างเห็นได้ชัดในเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส โดยค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นเป็น 17300 ซึ่งเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิอื่นๆ ก็แสดงผลในลักษณะเดียวกัน โดยที่ความถี่ 500 kHz เซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส แสดงค่าคงที่ไดอิเล็กทริกบริเวณอุณหภูมิการเปลี่ยนเฟสมีค่ามากที่สุด เท่ากับ 16100 โดยเพิ่มขึ้นจากเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียสมากกว่าร้อยละ 200 แสดงให้เห็นว่าค่าคงที่ไดอิเล็กทริกจะเพิ่มขึ้นตามอุณหภูมิที่ใช้ในการอบอ่อน โดยเฉพาะอย่างยิ่งเมื่ออุณหภูมิที่ใช้สูงเท่ากับ 1100 องศาเซลเซียส

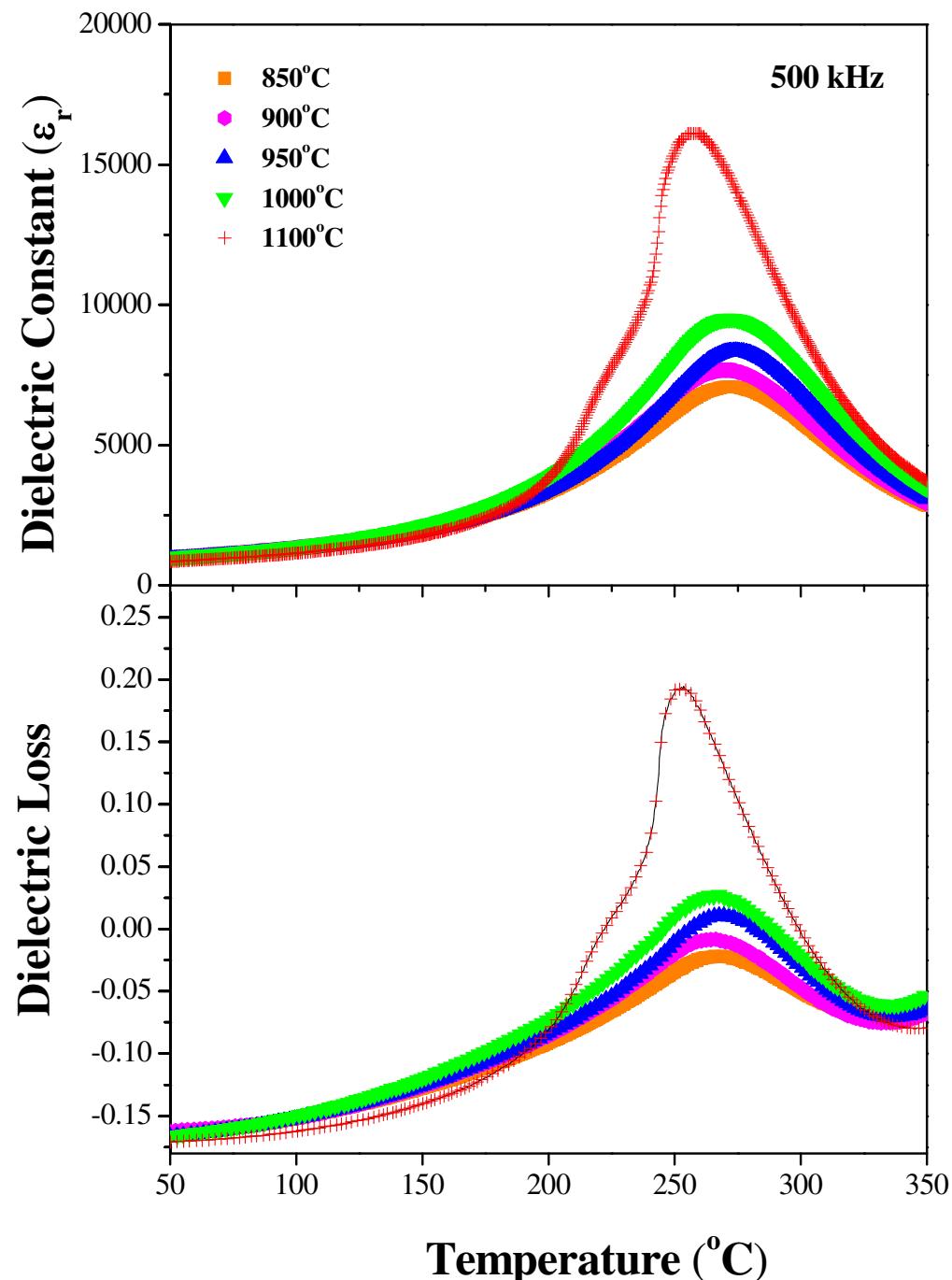
การเพิ่มขึ้นของค่าคงที่ไดอิเล็กทริกนั้นอาจมีสาเหตุอันเนื่องมาจากการปัจจัยหลายประการ อาทิ เช่น ผลจากเฟสไไฟโรคลอร์ การเปลี่ยนแปลงขนาดเกรน การเปลี่ยนแปลงค่าความหนาแน่น ผลจากขนาดของขอบเกรน การลดลงของความเครียดภายในเซรามิก การจัดเรียงองค์ประกอบในตำแหน่ง B (B-site) รวมทั้งความบกพร่อง (defect) ต่างๆ และการเคลื่อนของผนังโน้ม เป็นต้น แต่จากการตรวจสอบเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆ โดยใช้เทคนิคการเลี้ยวเบนของรังสีเอกซ์ แล้วไม่พบเฟสแปลงปลอมหรือเฟสไไฟโรคลอร์แต่อย่างใด การตรวจสอบโครงสร้างจุลภาคจาก SEM ของรอยหักของเม็ดเซรามิกนั้น พบว่าการอบอ่อนไม่ทำให้เกิดการเปลี่ยนแปลงของขนาดเกรนและความหนาแน่นให้มีความแตกต่างกันอย่างมีนัยสำคัญ นอกจากนี้การมี PbO ซึ่งเป็นสารตั้งต้นในปริมาณมากเกินพอด้วยทำให้เกิดความแตกต่างของขนาดของขอบเกรนได้ ซึ่งมักมีการเติม PbO ให้มีปริมาณมากเกินพอด้วยเพื่อชดเชยปริมาณที่ระเหยไป เพราะมักเกิดการสูญเสีย PbO อันเนื่องมาจากการบวนการทางความร้อนต่างๆ แต่อย่างไรก็ตาม ในงานวิจัยครั้นนี้มีการเติม PbO ที่มากเกินพอด้วยปริมาณที่เท่ากันทุกตัวอย่าง หากการมีปริมาณมากเกินพอด้วย PbO ดังกล่าวมีผลต่อการเปลี่ยนแปลงสมบัติไดอิเล็กทริก ก็จะมีผลกระทบต่อทุกๆ ตัวอย่างเท่ากัน ทำให้เกิดความคลาดเคลื่อนอย่างเป็นระบบ [33, 35, 36] ทั้งนี้จึงสามารถเดาได้ว่า การเพิ่มขึ้นของค่าคงที่ไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนนั้น อาจมาจากสาเหตุที่การอบอ่อนมีผลต่อการเปลี่ยนแปลงขององค์ประกอบของเซรามิกให้เข้าใกล้กันหรือไฟฟารอปิกเฟสนาโนเครวี (morphotropic phase boundary; MPB) มากขึ้น ทั้งนี้ เมื่อแรกเริ่มเซรามิกที่ยังไม่ผ่านการอบอ่อนอาจมีองค์ประกอบที่เป็นเฟสวิวิชพันธ์ (heterogeneous) ในระดับนาโนเมตรหรือระดับที่เทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD) ไม่สามารถตรวจสอบได้ เมื่อตัวอย่างผ่านการอบอ่อนแล้ว การอบอ่อนไม่ได้ทำให้ขนาดเกรนและความหนาแน่นเปลี่ยนแปลงไปอย่างมีนัยสำคัญ แต่


ผลลัพธ์จากการอบอ่อนน้ำน้ำไปทำให้เกิดความเป็นเนื้อเดียวกันขององค์ประกอบมากยิ่งขึ้น ทำให้เกิดเฟสเอกพันธ์ (homogeneous) ในระดับนาโนเมตรขึ้น

การเพิ่มขึ้นของค่าคงที่ไอดิอิเล็กทริกอย่างเห็นได้ชัดที่บริเวณอุณหภูมิการเปลี่ยนเฟส (T_m) นั้นสามารถอธิบายได้โดยอาศัยการเคลื่อนที่ของผนังโอดเมน เนื่องจากที่อุณหภูมิห้องนั้นการเคลื่อนที่ของผนังโอดเมนเกิดขึ้นได้ยาก ทำให้มีผลน้อยต่อการเปลี่ยนแปลงค่าคงที่ไอดิอิเล็กทริก และอุณหภูมิหลังจากอุณหภูมิการเปลี่ยนเฟส (T_m) ที่ทำให้เกิดสมบัติพาราอิเล็กทริกซึ่งไม่มีโอดเมน อย่างไรก็ตาม ที่อุณหภูมิใกล้กับอุณหภูมิการเปลี่ยนเฟส (T_m) จะพบความแตกต่างของค่าคงที่ไอดิอิเล็กทริกอย่างมาก อันเนื่องมาจากการเคลื่อนของผนังโอดเมนที่มีขนาดระดับนาโนเมตร [33]

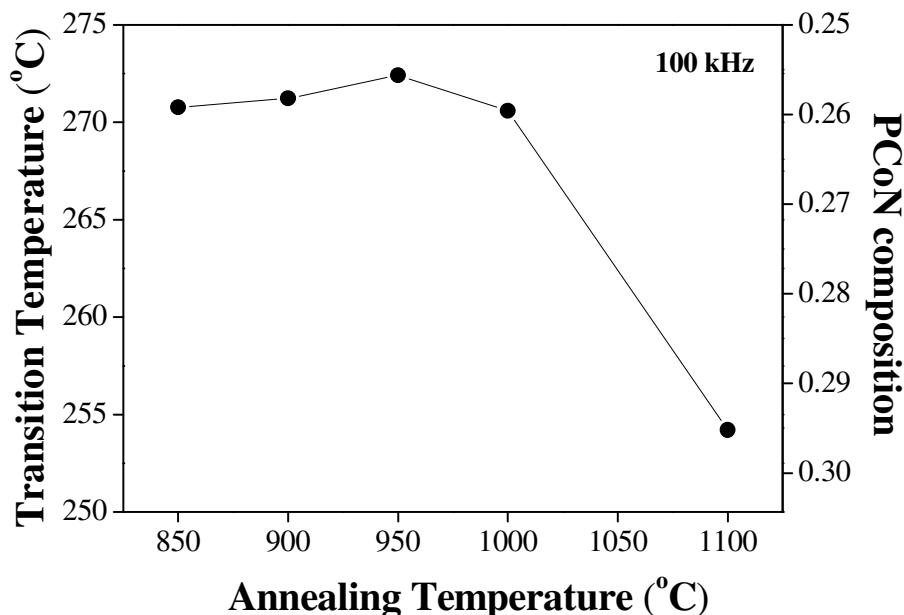

จากปัจจัยที่กล่าวมาแล้วข้างต้นทำให้สามารถสรุปได้ว่า การเพิ่มขึ้นของค่าคงที่ไอดิอิเล็กทริกนั้นมีผลจากการอบอ่อน โดยเห็นได้อย่างชัดเจนเมื่อทำการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ซึ่งคาดเดาว่าทำให้เกิดการเปลี่ยนแปลงขององค์ประกอบของเซรามิกทำให้มีความใกล้เคียงกับ MPB มากที่สุด ทำให้มีค่าทางไฟฟ้าที่โดดเด่นมากยิ่งขึ้น โดยไม่ทำให้ขนาดเกรนและความหนาแน่นของเซรามิกเปลี่ยนแปลง


รูป 4.37 ค่าคงที่ไดอิเล็กทริกและค่าตัวประกอนการสูญเสียทางไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆเทียบกับอุณหภูมิที่ความถี่ 100 Hz


รูป 4.38 ค่าคงที่ไดอิเล็กทริกและค่าตัวประกอนการสูญเสียทางไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆเทียบกับอุณหภูมิที่ความถี่ 1 kHz

รูป 4.39 ค่าคงที่ไดอิเล็กทริกและค่าตัวประกอบการสูญเสียทางไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆเทียบกับอุณหภูมิที่ความถี่ 10 kHz

รูป 4.40 ค่าคงที่ไดอิเล็กทริกและค่าตัวประกอนการสูญเสียทางไดอิเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆเทียบกับอุณหภูมิที่ความถี่ 100 kHz


รูป 4.41 ค่าคงที่ไอดีเล็กทริกและค่าตัวประกอนการสูญเสียทางไอดีเล็กทริกของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่างๆเทียบกับอุณหภูมิที่ความถี่ 500 kHz

เนื่องจาก PZT มีอุณหภูมิการเปลี่ยนเฟส ~390 องศาเซลเซียส และ PCoN มีอุณหภูมิการเปลี่ยนเฟส ~(-70) องศาเซลเซียส ดังนั้นค่าอุณหภูมิการเปลี่ยนเฟสของเซรามิกในระบบ 0.7PZT-0.3PCoN โดยทฤษฎีเท่ากับ ~252 องศาเซลเซียส ซึ่งสามารถคำนวณจากสมการ 4.1 [3]

ทั้งนี้เมื่อพิจารณาค่าอุณหภูมิการเปลี่ยนเฟส (T_m) ของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส ที่ความถี่ 100 kHz ซึ่งค่าอุณหภูมิการเปลี่ยนเฟส (T_m) มีค่า ~270 องศาเซลเซียสนั้น เมื่อนำไปแทนค่าในสมการ (4.1) แล้ว สามารถคำนวณสัดส่วนขององค์ประกอบในเซรามิกได้ ซึ่งจาก การคำนวณพบว่าเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียสนั้น เป็นเซรามิกในอัตราส่วน 0.74PZT-0.26PCoN

รูปที่ 4.42 แสดงค่าอุณหภูมิในการเปลี่ยนเฟสที่วัดได้ (T_m) เทียบกับอุณหภูมิการอบอ่อนที่ความถี่ 100 kHz ซึ่งพบว่าที่อุณหภูมิการอบอ่อนระหว่าง 850-1000 องศาเซลเซียส ค่าอุณหภูมิการเปลี่ยนเฟส (T_m) ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ ซึ่งมีค่าอยู่ระหว่าง 270.6-272.4 องศาเซลเซียส ซึ่งเป็นเซรามิกในอัตราส่วน 0.74PZT-0.26PCoN แต่จะเกิดความแตกต่างอย่างมีนัยสำคัญเมื่ออุณหภูมิการอบอ่อนสูงถึง 1100 องศาเซลเซียส อุณหภูมิการเปลี่ยนเฟสเท่ากับ 254.2 องศาเซลเซียส ซึ่งมีค่าใกล้เคียงกับอุณหภูมิการเปลี่ยนเฟสจากการคำนวณตามสมการ (4.1) ของระบบ 0.7PZT-0.3PCoN ซึ่งในที่นี้สามารถสรุปได้ว่า การอบอ่อนที่อุณหภูมิมากกว่า 1000 องศาเซลเซียสนั้น ทำให้เซรามิกมีการเปลี่ยนแปลงสัดส่วนองค์ประกอบให้มีความใกล้เคียงกับมอร์โฟโฟร์มิคเฟสนาวเดรี (morphotropic phase boundary; MPB) มากยิ่งขึ้น

เมื่อพิจารณาอัตราส่วนขององค์ประกอบจากการคำนวณข้างต้นและแผนภาพวัสดุภาคของ PZT-เรกเซอร์เฟอร์โรอิเล็กทริก พบว่า ที่อัตราส่วน 0.74PZT-0.26PCoN เซรามิกจะเป็นเฟสคิวบิก เสมือน และที่อัตราส่วน 0.7PZT-0.3PCoN นั้นเซรามิกจะมีเฟสร่วมของเฟสروم โนฮีดรอลและเฟสเททรัฟโกล ซึ่งลักษณะของเฟสนี้สอดคล้องกับผลการตรวจสอบองค์ประกอบทางเคมีและโครงสร้างพลีก ที่ลักษณะการเลี้ยวเบนของรังสีเอกซ์แสดงถึงการเปลี่ยนแปลงจากเฟสเฟสคิวบิก เสมือนเมื่อเซรามิกผ่านการอบอ่อนที่อุณหภูมิ 850 องศาเซลเซียส และพบเฟสร่วมของเฟสروم โนฮีดรอลและเฟสเททรัฟโกลในเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส

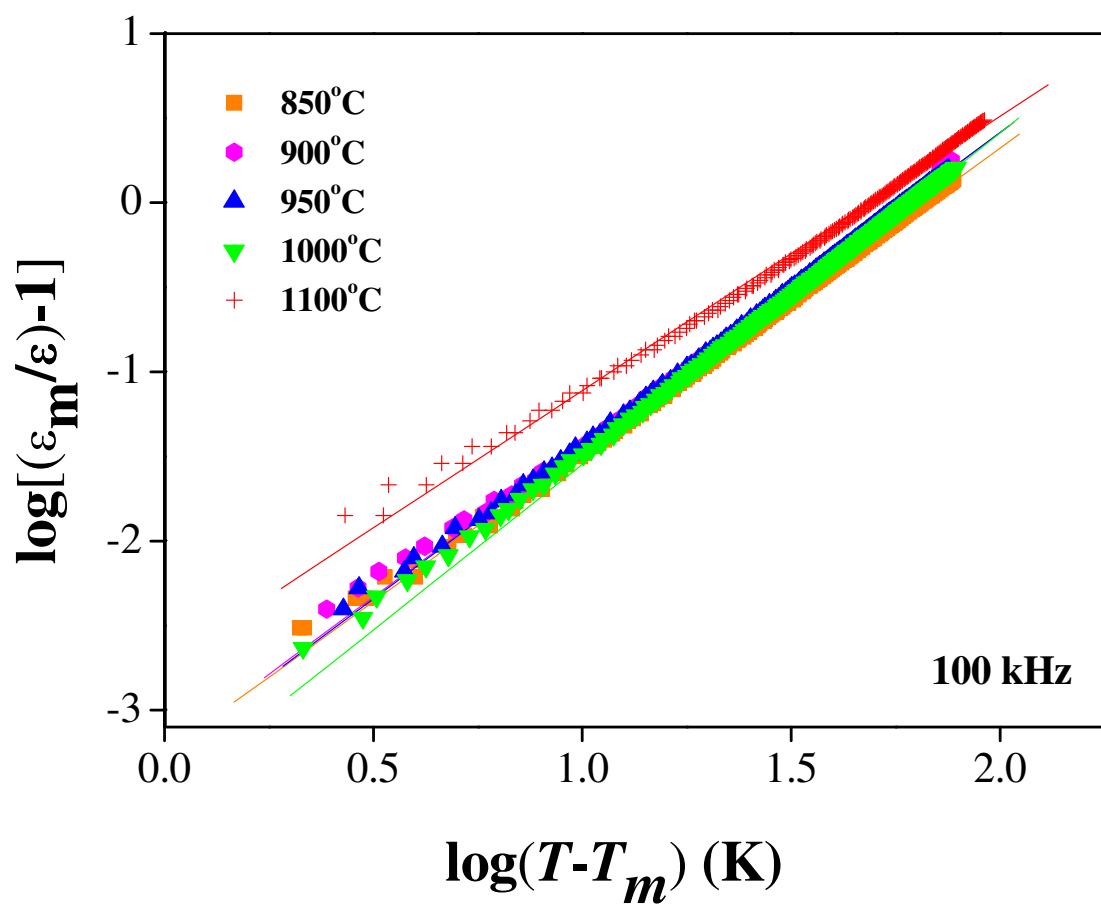
รูป 4.42 ค่าอุณหภูมิในการเปลี่ยนเฟสที่วัดได้ (T_m) เทียบกับอุณหภูมิการอบอ่อนที่ความถี่ 100 kHz

สมการ 4.3 แสดงความสัมพันธ์ตามกฎของ Curie-Weiss ซึ่งนิยมใช้ในการอธิบายการเปลี่ยนแปลงค่าคงที่ไดอิเล็กทริกหลังอุณหภูมิการเปลี่ยนเฟส (T_m) ของสารที่มีสมบัติเป็นสารเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) ซึ่งจะมีการจะมีการเปลี่ยนแปลงเฟสระหว่างเฟอร์โรอิเล็กทริกกับพาราอิเล็กทริกที่อุณหภูมิแน่นอน ณ อุณหภูมิการเปลี่ยนเฟสที่เรียกว่า อุณหภูมิคูรี (Curie temperature; T_c) ดังนั้นกราฟแสดงความสัมพันธ์ระหว่างค่าคงที่ไดอิเล็กทริก (dielectric constant) กับอุณหภูมิจะมีลักษณะเป็นพีกแหลม ณ อุณหภูมิคูรี ซึ่งเรียกว่ามีการเปลี่ยนเฟสอันดับที่ 1 (first-order) [5, 10, 49]

$$\frac{1}{\varepsilon_r} = \frac{T - \theta}{C} \quad (4.3)$$

เมื่อ θ คือ อุณหภูมิคูรี และ C คือค่าคงที่คูรี ส่วนการเปลี่ยนแปลงค่าคงที่ไดอิเล็กทริกหลังอุณหภูมิการเปลี่ยนเฟส (T_m) ของรีแลกเซอร์เฟอร์โรอิเล็กทริก (relaxor ferroelectric) นั้นจะมีการเปลี่ยนแปลงขึ้นกับอุณหภูมิ มีอุณหภูมิการเปลี่ยนเฟสในช่วงกว้าง เป็นการเปลี่ยนเฟสอันดับที่ 2 (second-order) จึงใช้ความสัมพันธ์ค่าวอคราทิก (quadratic relationship) ดังสมการ 4.4

$$\frac{\varepsilon'_m}{\varepsilon'(f, T)} = 1 + \frac{(T - T_m(f))^\gamma}{2\delta_\gamma^2} \quad (1 \leq \gamma \leq 2) \quad (4.4)$$


เมื่อ ε'_m คือ ค่าคงที่ไดอิเล็กทริกที่มากที่สุด ณ อุณหภูมิ (T) เท่ากับ $T_m(f)$ ค่าพารามิเตอร์ γ จะแสดงสมบัติความเป็นรีแลกเซอร์เฟอร์โรอิเล็กทริก (relaxor ferroelectric) เมื่อพารามิเตอร์ γ มีค่าเท่ากับ 1 ความสัมพันธ์ตามสมการ 4.5 จะแสดงถึงสมบัติความเป็นสารเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) ซึ่งเป็นไปตามกฎของ Curie-Weiss แต่เมื่อพารามิเตอร์ γ มีค่าเท่ากับ 2 จะเป็นความสัมพันธ์แบบคัวอกราทิก (quadratic relationship) โดยที่พารามิเตอร์ δ_γ จะแสดงถึงค่าพารามิเตอร์การกระจาย (degree of diffuseness) ในสารละลายของแข็งระหว่างสารเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) กับรีแลกเซอร์เฟอร์โรอิเล็กทริก (relaxor ferroelectric) ซึ่งพารามิเตอร์ δ_γ และ γ นั้นเป็นค่าคงที่ที่มีการเปลี่ยนแปลงขึ้นกับองค์ประกอบและโครงสร้างของสาร [3, 33, 35, 36]

รูปที่ 4.43 แสดงกราฟความสัมพันธ์ระหว่าง $\log(T - T_m)$ กับ $\log[(\varepsilon_m/\varepsilon) - 1]$ ที่ความถี่ 100 kHz ของเซรามิก 0.7PZT-0.3PCoN ตามความสัมพันธ์ในสมการ (4.4) พบว่ากราฟมีลักษณะเป็นเส้นตรง มีค่าพารามิเตอร์ต่างๆ ดังแสดงในตาราง 4.5

เมื่อพิจารณาความชันของกราฟเส้นตรง (γ) จะพบว่าความชันของกราฟที่อุณหภูมิการอบอุ่น 850-1000 องศาเซลเซียส มีค่าระหว่าง 1.79-1.87 ซึ่งไม่พบความแตกต่างกันอย่างมีนัยสำคัญ เชรามิกเหล่านี้จะแสดงสมบัติเป็นสารรีแลกเซอร์เฟอร์โรอิเล็กทริก (relaxor ferroelectric) มากกว่า เมื่ออุณหภูมิการอบอุ่นเท่ากับ 1100 องศาเซลเซียส ความชันของกราฟเส้นตรงมีค่าเท่ากับ 1.62 ซึ่งมีค่าน้อยลงแตกต่างกับความชันที่อุณหภูมิการอบอุ่นอย่างมีนัยสำคัญ เชรามิกจะแสดงสมบัติเป็นสารเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) มากขึ้น ซึ่งคาดเดาได้ว่า ที่อุณหภูมิการอบอุ่น 850-1000 องศาเซลเซียส นี้ เชรามิกยังไม่มีการเปลี่ยนแปลงใดๆ ที่ทำให้เกิดความแตกต่างกันอย่างมีนัยสำคัญ แต่เมื่อทำการอบอุ่นที่อุณหภูมิสูงถึง 1100 องศาเซลเซียส เกิดการเปลี่ยนแปลงในเชรามิกซึ่งทำให้เกิดการเปลี่ยนแปลงอย่างมีนัยสำคัญ ซึ่งอาจเนื่องมาจากการเปลี่ยนแปลงในองค์ประกอบของเชรามิก ทำให้เชรามิกมีองค์ประกอบใกล้กับมอร์โฟทรอปิกเฟสนาวดรี (morphotropic phase boundary; MPB) มากยิ่งขึ้น

อีกทั้งเมื่อพิจารณาผลจากความชันของกราฟในรูป 4.43 ร่วมกับผลจากการตรวจสอบองค์ประกอบทางเคมีและโครงสร้างผลึก และจากผลการตรวจสอบสมบัติไดอิเล็กทริกแล้ว ทำให้สามารถสรุปได้ว่า การอบอุ่นที่อุณหภูมิมากกว่า 1000 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง สามารถปรับปรุงสมบัติไดอิเล็กทริกของเชรามิกในระบบ 0.7PZT-0.3PCoN ให้ดีขึ้นได้ โดยที่เชรามิกที่ผ่านการอบอุ่นที่อุณหภูมิ 850 องศาเมื่องค์ประกอบในอัตราส่วน 0.74PZT-0.26PCoN มีลักษณะของเฟส

คิวบิกเสมีอง เมื่ออุณหภูมิการอบอ่อนสูงมากกว่า 1000 องศาเซลเซียส จะทำให้เซรามิกมีองค์ประกอบเปลี่ยนไปเป็นอัตราส่วน 0.7PZT-0.3PCoN มีลักษณะของเฟสเทหะระโภนอยู่ร่วมกับเฟสรองโนบีซีรอล ซึ่งแสดงถึงการเข้าใกล้กับมอร์โฟโฟรอปิกเฟสนาวดี (morphotropic phase boundary; MPB) มากยิ่งขึ้น

รูป 4.43 กราฟความสัมพันธ์ระหว่าง $\log(T-T_m)$ กับ $\log[(\epsilon_m/\epsilon)-1]$ ตามกฎของ Curie-Weiss ที่ความถี่ 100 kHz

ตาราง 4.5 แสดงพารามิเตอร์ต่างๆ ที่ความถี่ 100 kHz ของเซรามิก 0.7PZT-0.3PCoN

	ε_m	T_m (°C)	δ_γ (°C)	γ
850 °C	6570	270.8	29.8	1.8
900 °C	7650	271.2	29.7	1.8
950 °C	7650	272.4	30.2	1.8
1000 °C	8640	270.6	33.4	1.9
1100 °C	14400	254.2	16.5	1.6

สรุปผลการทดลองและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

จากการศึกษาเซรามิก $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ที่สัดส่วน $x = 0.0, 0.1, 0.2, 0.3, 0.4$ และ 0.5 พบว่าสามารถสรุปได้ดังนี้

- สามารถเตรียมเซรามิกในระบบ PZT-PCoN ได้โดยใช้วิธีปฏิกริยาสถานะของแข็ง
- ช่วงอุณหภูมิการเผาแคลไชน์ที่ใช้คือ 650°C - 900°C องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ด้วย อัตรา 20 องศาเซลเซียสต่อนาที
- จากข้อมูลรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างพบว่า
 - ผลสารตัวอย่างที่ทุกสัดส่วนสามารถเตรียมให้เกิดเฟสเพอรอฟสไกต์อย่างสมบูรณ์ได้ โดยเฟสไฟโรคลอร์หายไปอย่างสมบูรณ์ที่อุณหภูมิประมาณ 750°C สำหรับสัดส่วนที่ $x = 0.0, 0.1, 0.2, 0.3$ สำหรับที่สัดส่วน $x = 0.4$ และ $x = 0.5$ เฟสไฟโรคลอจะหายไปอย่างสมบูรณ์ที่อุณหภูมิประมาณ 850°C องศาเซลเซียส และ 900°C องศาเซลเซียส ตามลำดับ
 - สามารถหาปริมาณเฟสเพอรอฟสไกต์ได้
 - พบว่าด้วยการเพิ่มของ x มีผลให้อุณหภูมิในการเผาแคลไชน์เพิ่มสูงขึ้น
- ด้วยการอัดขึ้นรูปและนำไปเผาชินเตอร์ จะได้เซรามิก $(1-x)\text{PZT}-x\text{PCoN}$ ซึ่งจากข้อมูลรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก พบว่า
 - ที่สัดส่วน $x \leq 0.4$ พบเฟสเดี่ยวของโครงสร้างเพอรอฟสไกต์ โดยไม่พบเฟสไฟโรคลอร์หรือเฟสแปรกลปโลมอื่น
 - ที่สัดส่วน $x = 0.5$ พบเฟสไฟโรคลอเกิดขึ้น
- จากการตรวจสอบทางสัมฐานวิทยาด้วยกล้องจุลทรรศน์แบบส่องกราด พบว่าได้เซรามิกที่มีความหนาแน่นสูง จากลักษณะเกรนที่มีขนาดใกล้เคียงกันและมีรูพรุนน้อย แต่พบเฟสไฟโรคลอร์ที่สัดส่วน $x = 0.5$
- จากการตรวจสอบสมบัติทางไฟฟ้า พบว่า
 - ค่าคงที่ไดอิเล็กทริกเพิ่มสูงขึ้น เมื่อสัดส่วนของ PCoN เพิ่มสูงขึ้น
 - ค่าคงที่ไดอิเล็กทริกที่ได้ขึ้นเปลี่ยนแปลงตามอุณหภูมิ แต่ไม่ขึ้นกับความถี่ ยกเว้นบริเวณใกล้เคียงกับอุณหภูมิในการเปลี่ยนเฟส สำหรับที่สัดส่วน $x = 0.1-0.3$

6.3 สำหรับที่สัดส่วน $x = 0.4$ และ $x = 0.5$ ที่อุณหภูมิสูงกว่าอุณหภูมิในการเปลี่ยนเฟส ค่าคงที่ไดอิเล็กทริกจะขึ้นอยู่กับความถี่ อาจเป็นผลมาจากการเปลี่ยนจาก Co^{2+} ไปเป็น Co^{3+}

6.4 ในทุกสัดส่วนของ $\text{PCoN}(x)$ พบว่าอุณหภูมิในการเปลี่ยนเฟสมีแนวโน้มลดลงเมื่อสัดส่วน x เพิ่มขึ้น

6.5 ที่สัดส่วน 0.7PZT-0.3PCoN คาดว่าเป็นบริเวณของมอร์โฟฟอโรปิกเฟสนาวเดรี (Morphotropic phase boundary; MPB) เนื่องจากแสดงค่าคงที่ไดอิเล็กทริกสูงสุด ประมาณ 39,000 (ที่ 1 kHz) ด้วยอุณหภูมิการเปลี่ยนเฟสประมาณ 236 องศาเซลเซียส

7. ระบบ PZT-PCoN ที่ได้นี้เป็นสารละลายของเพ็งที่สมบูรณ์ เนื่องจากความสัมพันธ์ระหว่างอุณหภูมิในการเปลี่ยนเฟสกับสัดส่วนของ PCoN เป็นความสัมพันธ์เชิงเส้นตรง

จากการศึกษาเชิงรัมิกในระบบ 0.7PZT-0.3PCoN ที่ผ่านการอบอ่อนที่อุณหภูมิ 850-1100 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง โดยใช้อัตราการขึ้น-ลงของอุณหภูมิเท่ากับ 5 องศาเซลเซียสต่อนาที พบว่าสามารถให้ข้อสรุปได้ดังนี้

1. จากผลการตรวจสอบเชิงรัมิกโดยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ พบว่า
 - 1.1 กระบวนการอบอ่อนที่อุณหภูมิต่างๆ ทำให้เกิดเฟสเชิงเดี่ยวที่ประกอบด้วย $\text{Pb}(\text{Zr}_{0.44}\text{Ti}_{0.56})\text{O}_3$ ที่เป็นฐานข้อมูลมาตรฐาน JCPDS file No.50-0346 และไม่ก่อให้เกิดเฟสไพโรคลอร์เจ็นในระบบ
 - 1.2 เชิงรัมิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียสแสดงเฟสเทหะรากนอกร่วมกับเฟสรองโนบีเดรอล ซึ่งแสดงให้เห็นว่าองค์ประกอบของเชิงรัมิกเข้าใกล้กับมอร์โฟฟอโรปิกเฟสนาวเดรี (morphotropic phase boundary; MPB) มากยิ่งขึ้น
2. จากผลการตรวจสอบทางสัมฐานวิทยาโดยกล้องจุลทรรศน์อิเล็กทรอนแบบส่องกราด พบว่า
 - 2.1 เชิงรัมิกมีขนาดเกรนเฉลี่ยระหว่าง 1.45-2.05 ไมครอน เกรนมีลักษณะใกล้เคียงกัน ไม่พบเกรนที่มีลักษณะแตกต่างซึ่งคาดว่าเป็นของเฟสอื่น โดยเกรนมีการเรียงตัวชิดติดกัน แต่โครงสร้างเชิงรัมิกยังคงมีรูพรุน
 - 2.2 ความหนาแน่นของเชิงรัมิกมีค่าประมาณ $6.2-7.8 \text{ g/cm}^3$
 - 2.3 การเปรียบเทียบขนาดเกรนและค่าความหนาแน่นของเชิงรัมิกที่ยังไม่ผ่านการอบอ่อนกับเชิงรัมิกที่ผ่านการอบอ่อนที่อุณหภูมิ 850-1100 องศาเซลเซียส แล้ว

พบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญจนน่าจะเป็นผลให้เกิดความแตกต่างของสมบัติทางไฟฟ้า

3. จากการตรวจสอบสมบัติทางไฟฟ้าพบว่า

- 3.1 ค่าคงที่ไดอิเล็กทริกมีการเปลี่ยนแปลงขึ้นกับอุณหภูมิอย่างมากที่บริเวณไกล์กับอุณหภูมิการเปลี่ยนเฟส โดยไม่ขึ้นกับความถี่ ยกเว้นที่ความถี่ 100 Hz
- 3.2 ค่าคงที่ไดอิเล็กทริกมีค่าเพิ่มสูงขึ้นตามอุณหภูมิ และเพิ่มขึ้นสูงอย่างเห็นได้ชัดในเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส
- 3.3 เมื่ออุณหภูมิการอบอ่อนเท่ากับ 1100 องศาเซลเซียส ค่าอุณหภูมิการเปลี่ยนเฟสจะลดลง เข้าใกล้ค่าอุณหภูมิการเปลี่ยนเฟสที่ได้จากการคำนวณ
- 3.4 ความชันของกราฟ (γ) ตามกฎ Curie-Weiss ของเซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส มีค่าน้อยลง แตกต่างกับอุณหภูมิการอบอ่อนอื่นอย่างมีนัยสำคัญ ซึ่งแสดงสมบัติเป็นสารเฟอร์โรอิเล็กทริกแบบปกติ (normal ferroelectric) มากกว่า
4. เซรามิกที่ผ่านการอบอ่อนที่อุณหภูมิต่ำแสดงเฟสคิวบิกเสมีอน ซึ่งมีอัตราส่วนองค์ประกอบจากการคำนวณเท่ากับ 0.74PZT-0.26PCoN เมื่ออุณหภูมิการอบอ่อนเท่ากับ 1100 องศาเซลเซียส ทำให้เกิดการเปลี่ยนแปลงองค์ประกอบใหม่หรือฟอฟโรปิกเฟสนาวเดรี (morphotropic phase boundary; MPB) มากยิ่งขึ้น มีอัตราส่วนขององค์ประกอบเป็น 0.7PZT-0.3PCoN ซึ่งมีของเฟสเทหะทะ โภกออลและเฟสรอม โนบีดรอโลยร์ร่วมกัน
5. การอบอ่อนที่อุณหภูมิ 1100 องศาเซลเซียส มีผลทำให้ค่าคงที่ไดอิเล็กทริกของเซรามิกในระบบ 0.7PZT-0.3PCoN มีค่าสูงมากขึ้นเนื่องจากองค์ประกอบเข้าใกล้มอร์ฟอฟโรปิกเฟสนาวเดรี (morphotropic phase boundary; MPB) มากยิ่งขึ้น

5.2 ข้อเสนอแนะ

1. ควรทำการศึกษาเกี่ยวกับการเปลี่ยนแปลงของ Co^{2+} ไปเป็น Co^{3+} รวมทั้งอิทธิพลของการเปลี่ยนแปลงนี้โดยละเอียด เพื่ออธิบายเกี่ยวกับค่าสภาพยอมสัมพัทธ์ของตัวอย่าง
2. ควรทำการศึกษาเพิ่มเติมอย่างละเอียดเกี่ยวกับค่าสภาพยอมสัมพัทธ์ของตัวอย่าง การเปลี่ยนแปลงสัดส่วน (x) ให้มีความละเอียดมากขึ้น เพื่อจะงบบริเวณ MPB ให้ชัดเจนยิ่งขึ้น
3. ควรศึกษาเกี่ยวกับสมบัติเฟอร์โรอิเล็กทริกเพิ่มเติม
4. ควรทำการศึกษาเพิ่มเติมอย่างละเอียดถึงอุณหภูมิที่เหมาะสมในการอบอ่อน โดยการใช้อุณหภูมิให้มีความละเอียดมากยิ่งขึ้น เพื่อให้ได้อุณหภูมิที่มีความจำเพาะเจาะจงมากยิ่งขึ้น

5. ศึกษาเพิ่มเติมเกี่ยวกับปัจจัยที่มีผลต่อการเพิ่มขึ้นของค่าคงที่โดยอิเล็กทริกและค่าตัวประกอบการสูญเสียทางโดยอิเล็กทริกที่เกิดขึ้น ณ อุณหภูมิหลังอุณหภูมิการเปลี่ยนเฟส
6. ศึกษาผลของการอบอ่อนที่มีต่อสมบัติเฟอร์โรอิเล็กทริกอื่นๆ เพิ่มเติม

เอกสารอ้างอิง

- [1] J. Kuwata, K. Uchino, and S. Nomura, "Phase transition in the PZN-PT system," *Ferroelectrics*, vol. 37, p. 579, 1981.
- [2] D. Z. Xu G., Wang X., Yang D. & Chen K, "Growth and some electrical properties of $\text{Pb}(\text{Co1/3Nb2/3})\text{O}_3$ - PbTiO_3 crystals prepared by a Bridgman method.," *Journal of Crystal Growth* vol. 281, pp. 543-548, 2005.
- [3] N. Vittayakorn, G. Rujijanagul, X. Tan, M. A. Marquardt, and D. P. Cann, "The morphotropic phase boundary and dielectric properties of the $x\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ -(1-x) $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ perovskite solid solution," *J. Appl. Phys.*, vol. 96, p. 5103, 2004.
- [4] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, "Influence of processing condition on the phase transition and ferroelectric properties of $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics," *Mat. Sci. Eng. B*, vol. 108, p. 258, 2004.
- [5] A. S. Bhalla, R. Guo, and R. Roy, "The perovskite structure-a review of its role in ceramic science and technology.," *Mat. Res. Innovat.*, vol. 4, p. 3, 2000.
- [6] V. N., "Synthesis and Characterization of Mixed Normal and Relaxor Ferroelectric Materials.," *Materials science*: , 2005.
- [7] www.nature.com/.../v1/n3/fig_tab/nmat753_f1.html.
- [8] K. Uchino, *Piezoelectric Actuators and Ultrasonic Motors*. Boston: Kluwer Academic Publishers, 1996.
- [9] G. H. Haertling, "Ferroelectric Ceramics: History and Technology," *J. Am. Ceram. Soc.*, vol. 82, pp. 797-818, 1999.
- [10] B. Jaffe and W. R. Cook, *Piezoelectric ceramic*: R.A.N. Publishers, 1971.
- [11] ว. ธรรมจารี, "ความสัมพันธ์ระหว่างโครงสร้างจุลภาคและสมบัติทางไฟฟ้าของเซรามิกในระบบพีแซดที," 2544.
- [12] พ. ด. ส. อ. ด.ร. รัตติกร ยิ่มนิรัณ, อิเล็กทรอเซรามิก (*Electroceramics*). เชียงใหม่: คณะวิทยาศาสตร์ ภาควิชาฟิสิกส์: มหาวิทยาลัยเชียงใหม่ 2545.
- [13] S. T. R. J. F. J., "Relaxor Ferroelectric Materials," in *Ultrasonics Symposium, 1990*), pp. 711-720.
- [14] P. R. K. J. V. F. Safari A., "Ferroelectric: Materials, Characteristics & Applications," vol. 122-124, pp. 122-124:35-70.
- [15] <http://www.rci.rutgers.edu/~ecerg/images/review/reviewf13.jpg>.

- [16] C. W. R. J. H. Jaffe B., "Piezoelectric ceramics," vol. Academic Press Limited., 1971.
- [17] A. J. Moulson and J. M. Herbert, *Electroceramics: Materials, Properties, Applications*. New York: Chapman and Hall, 1990.
- [18] T. R., "Microstructure and electrical property relationship of lead zirconate titanate-lead magnesium niobate ceramic," in *Materials science*: Chiang Mai University, 2005.
- [19] H. D. L. B. J.V., "Solid-State Reaction in the System PbO-TiO₂-ZrO₂," *J. Am. Ceram. Soc.*, vol. 62, pp. c172-c173, 1981.
- [20] C. S. H. B. J.B., "Characterization and Sintering of Lead Zirconate Titanate Powders," *J. Am. Ceram. Soc.*, vol. 66, 1983.
- [21] L. L. Zhilun G., Sahua G. & Xiaowen Z., "Low Temperature Sintering of Lead-Based Piezoelectric Ceramics.," *J. Am. Ceram. Soc.*, vol. 72, pp. 486-491, 1989.
- [22] T. A. C. P. o. L. Z. T. P. Z. T. O. b. H. P. a. Calcination., "Preparation of Lead Zirconate Titanate [Pb(Zr0.52Ti0.48)O₃] by Homogeneous Precipitation and Calcination.," *J. Am. Ceram. Soc.*, vol. 82, pp. 1582-1584, 1999.
- [23] H. Ouchi, K. Nagona, and S. Hayakawa, *J. Am. Ceram. Soc.*, vol. 54, p. 1, 1965.
- [24] H. Fan and H.-E. Kim, "Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate- lead zirconate titanate," *J. Appl. Phys.*, vol. 91, p. 317, 2002.
- [25] H. Fan and H.-E. Kim, "Preparation and improvement in the electrical properties of lead-zinc -niobate- based ceramics by thermal treatments," *J. Mater. Res.*, vol. 17, p. 180, 2002.
- [26] R. Yimnirun, S. Ananta, E. Meechoowas, and S. Wongsaeinmai, "Effects of Uniaxial Stress on Dielectric Properties of Lead Magnesium Niobate-Lead Zirconate Titanate Ceramics," *J. Phys. D: Appl. Phys.*, vol. 36, p. 1615, 2003.
- [27] S. T. R. H. A., "Preparation of lead-based ferroelectric relaxors for capacitors.," *Am.Ceram.Soc.Bull.*, vol. 66, p. 104, 1987.
- [28] C. L.E., *Relaxor ferroelectrics*, 1994.
- [29] ด. ศ. อนันดา, กระบวนการประดิษฐ์สำหรับเซรามิกขั้นสูง (*Fabrication Process For Advanced Ceramics*). : มหาวิทยาลัยเชียงใหม่.
- [30] T. Kudo, T. Yazaki, F. Naito, and S. Sugaya, "Dielectric and piezoelectric properties of PCoN-PT-PZ solid solution ceramics," *J. Am. Ceram. Soc.*, vol. 53, p. 326, 1969.

[31] ค. ล. เจียรศิริสมบูรณ์, กระบวนการประดิษฐ์สำหรับเซรามิกชั้นสูง (*Fabrication Processes for Advanced Ceramics*). เชียงใหม่: มหาวิทยาลัยเชียงใหม่.

[32] H. Fan, G.-T. Park, J.-J. Choi, J. Ryn, and H.-E. Kim, "Preparation and improvement in the electrical properties of lead-zinc-niobate-based ceramics by thermal treatment," *Materials Research Society*, vol. 17, pp. 180-185, 2001.

[33] F. Xia and X. Yao, "Postsintering annealing induced extrinsic dielectric and piezoelectric responses in lead-zinc-niobate-based ferroelectric ceramics," *J. Appl. Phys.*, vol. 92, pp. 2709-2715, 2002.

[34] X. Wang and H. Chen, "Effect of annealing on the dielectric properties of PZN-PT-BT ceramics," *Materials Science and Engineering B*, vol. 99, pp. 36-40, 2003.

[35] M. Adamczyk, Z. Ujma, L. Szymczak, and J. Koperski, "Influence of post-sintering annealing on relaxor behaviour of (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3 ceramics," *Ceramics International*, vol. 31, pp. 791-794, 2005.

[36] N. Vittayakorn, G. Rujijanagul, and D. P. Cann, "Investigation of the influence of thermal treatment on the morphologies, dielectric and ferroelectric properties of PZT-based ceramics" *Journal of Alloys and Compounds*, vol. In Press, Corrected Proof, 2007.

[37] www.hkbu.edu.hk/~chem/thermal.htm.

[38] <http://pubs.usgs.gov/of/2001/of01-041/htmldocs/xrpdl.htm>.

[39] www.mecheng.dcu.ie/MPRC/MatCharac.htm.

[40] www.angstrom.us/equipment_zeiss.html.

[41] http://fys.kuleuven.be/atf/rt_dielectric.htm.

[42] http://en.wikipedia.org/wiki/Polymer_degradation.

[43] http://www.camd.lsu.edu/msds/I/lead_oxide.htm.

[44] ว. ไชยสาร, "ผลของอัตราการขึ้น/ลงอุณหภูมิในการแคลไชน์ต่อพฤติกรรมการเกิดเฟสของ PbZrO3 ผลกระทบที่เตรียมโดยวิธีผสมออกไซด์," in คณะวิทยาศาสตร์. vol. วิทยาศาสตร์บัณฑิต (วัสดุศาสตร์) เชียงใหม่: มหาวิทยาลัยเชียงใหม่, 2543.

[45] K. S. R. Senthilkumar, A. Subramania, M. S. Vijaya " Preparation of lead-based ferroelectric relaxors for capacitors.,," *Ferroelectrics*, pp. 43-48, 2005.

[46] V. A. Bokov and I. E. Mylnikova, *Sov.Phys-Solid State*, vol. 2, p. 2428, 1960.

[47] N. Vittayakorn, S. Wirunchit, S. Traisak, R. Yimnirun, and G. Rujijanagul, "Development of perovskite and phase transition in lead cobalt niobate modified lead zirconate titanate system," *Current Applied Physics*, vol. 8, pp. 128-133, 2008.

- [48] A. Bouzid, E. M. Bourim, M. Gabbay, and G. Fantozzi, "PZT phase diagram determination by measurement of elastic moduli," *Journal of the European Ceramic Society*, vol. 25, pp. 3213-3221, 2005.
- [49] K. Uchino, *Ferroelectric Devices*. New York: Marcel Dekker, Inc., 2000.

Synthesis and a crystal structural study of microwave dielectric Zirconium Titanate ($ZrTiO_4$) powders via a mixed oxide synthesis route

Naratip Vittayakorn

Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

A mixed oxide synthesis route has been investigated for the synthesis of zirconium titanate, $ZrTiO_4$. The formation of $ZrTiO_4$ phases have been investigated as a function of calcination temperature by XRD. The crystal structure, particle size distribution, morphology and phase composition of the calcined powders were determined via XRD and SEM. It has been found that with increasing calcination temperature up to 1150°C , the results showed that anatase- TiO_2 changed structure to rutile- TiO_2 . The yield of the $ZrTiO_4$ phase increased significantly up to 1350°C , when a single phase of $ZrTiO_4$ was formed, revealing that the rutile- TiO_2 had completely reacted with the ZrO_2 phase. It seemed that the pure wolframite phase of $ZrTiO_4$ powders was successfully obtained from calcinations conditions of 1350°C for 4 h with heating/cooling rates of 5 K minute^{-1} .

Key words: Zirconium titanate, $ZrTiO_4$, Calcination, Powder synthesis.

Introduction

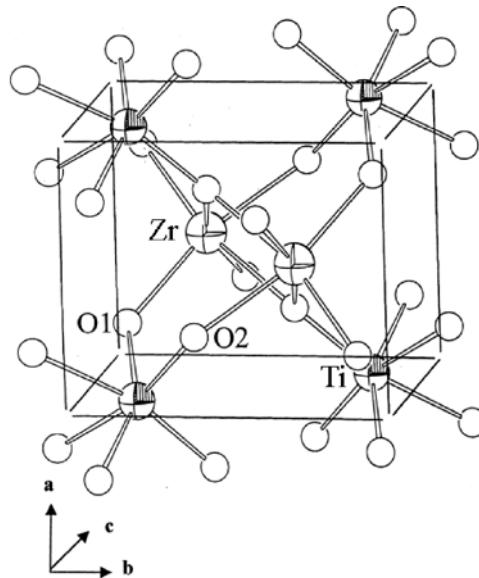
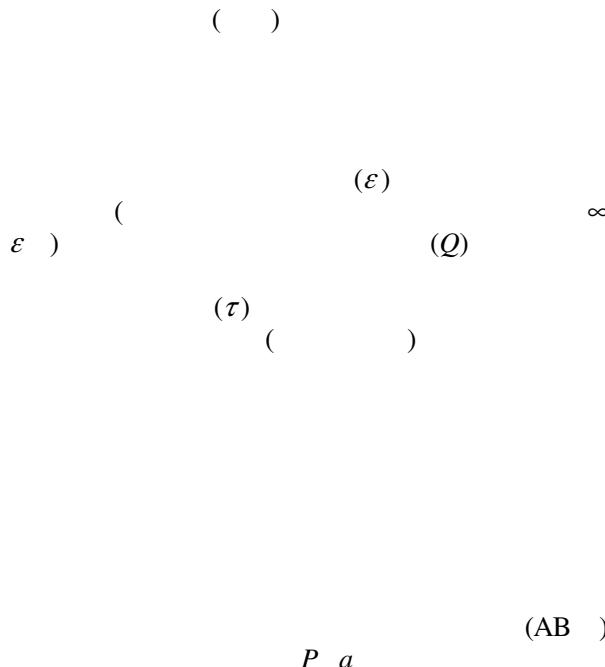



Fig. 1.

Experimental Procedure

()

()

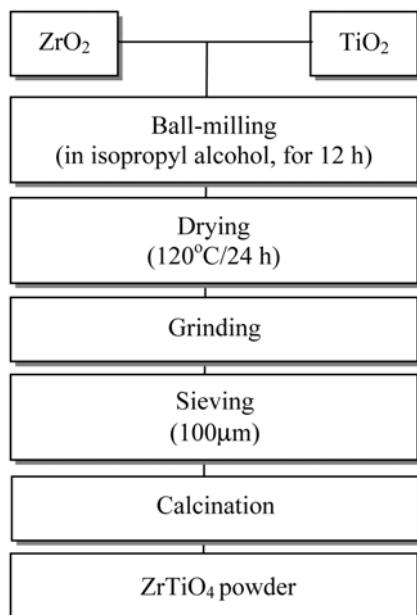


Fig. 2.

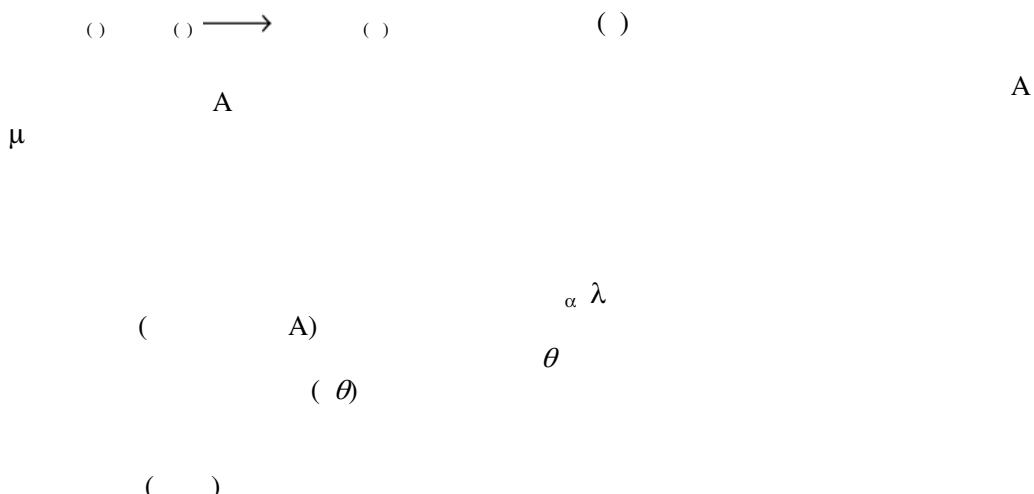
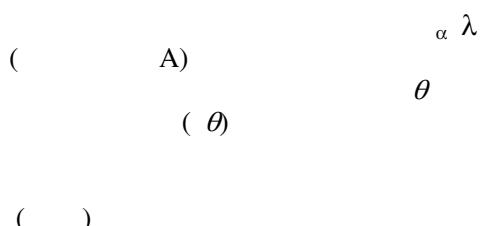



Fig. 3.

Results and Discussion

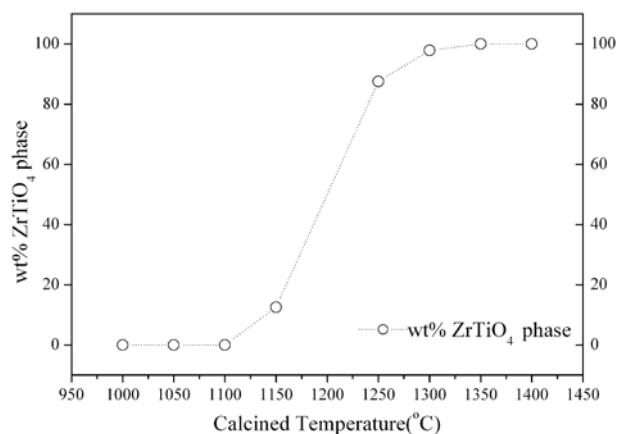


Fig. 4.

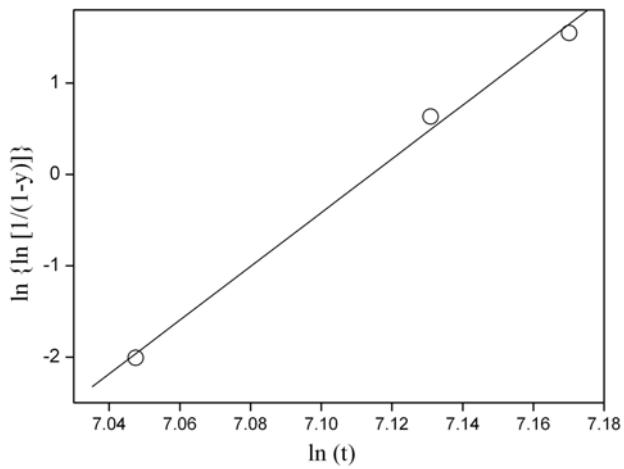


Fig. 5.

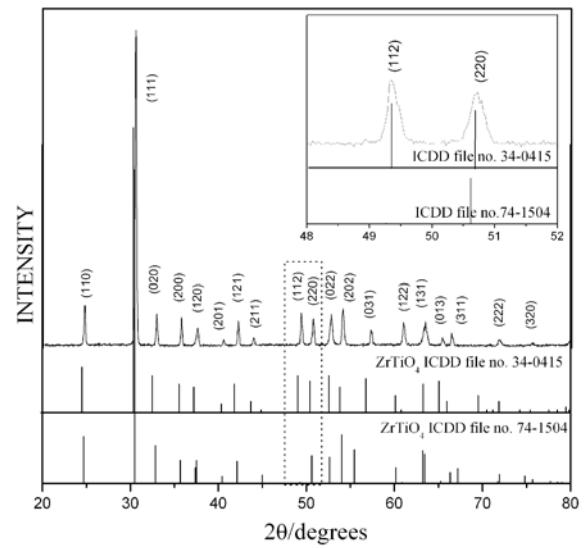
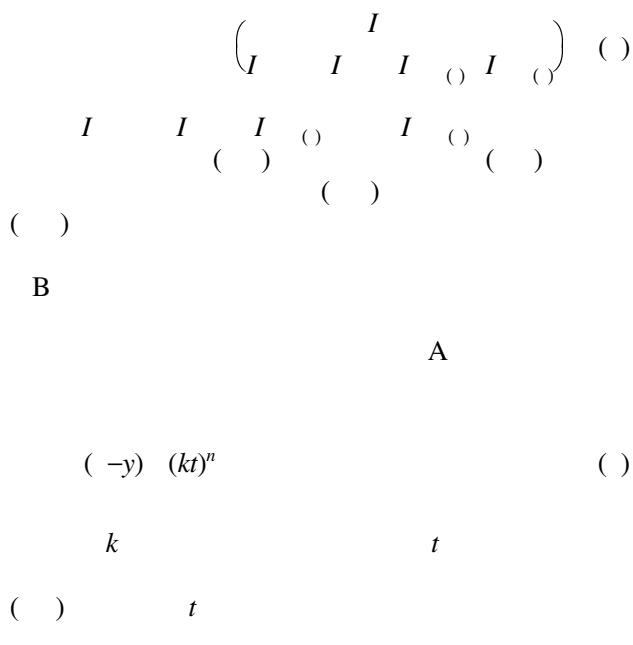
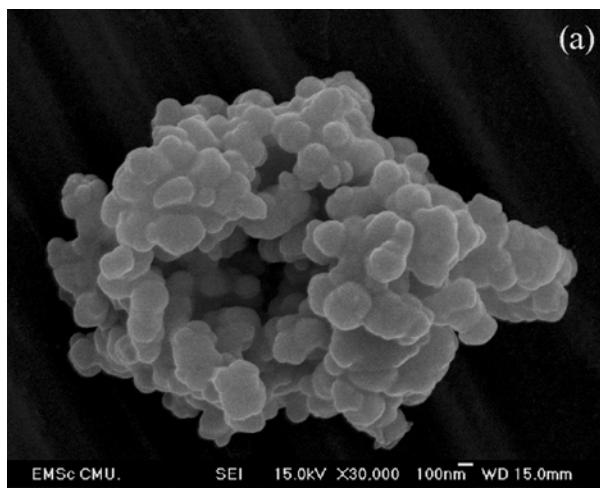




Fig. 6.

(a)

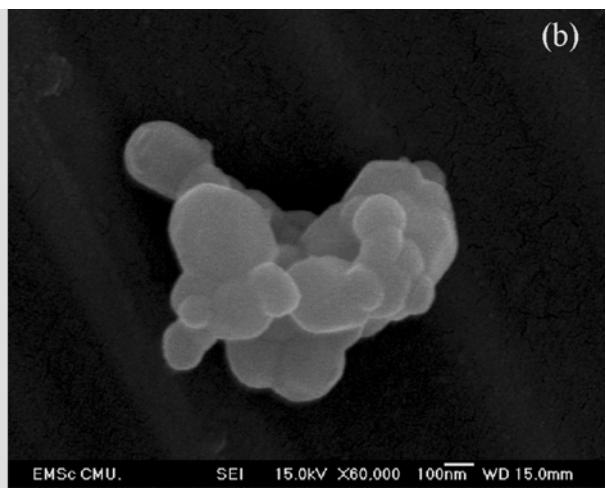


Fig. 7.

Acknowledgements

—
() () ()

References

A A A ()
() () ()
Conclusions A B B () A () ()
A A A () ()
— A B ()
A B B ()
() ()
() b ()
() c a

Structural, Phase Transition and Ferroelectric Properties of $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ – $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Ceramic Synthesized by High-temperature Solid-state Reaction Technique

Naratip Vittayakorn

Department of chemistry, Faculty of Science,
King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520.

Abstract: Polycrystalline samples of $(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ – $x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT – PCoN) with $x = 0$ – 0.5 have been synthesized by high-temperature solid-state reaction technique. X-ray diffractograms of the samples reveal the single phase perovskite structure formation with PbCoN content $x \leq 0.5$. There is a transformation in crystal structure observed from tetragonal to co-existence of tetragonal and pseudo-cubic to single pseudo-cubic phase with the increase in PCoN concentration in the basic PZT composition. Ferroelectric hysteresis behaviour was also studied as a function of applied electric field for all the compositions. Square behavior of the ferroelectric loops was found with the increase in PCoN concentration. The maximum value of remnant polarization P_r (25.3 mC/cm²) was obtained for the 0.5PZT – 0.5PCoN ceramic.

Key words:

INTRODUCTION

Electroceramics based on lead zirconate titanate (PZT) are widely used in high-density, high-reliability ferroelectric random access memory (FeRAM) and microelectromechanical systems (MEMS), and as such have attracted much attention recently for application in low-cost, mass-produced memory with high device reliability^[1]. To enhance electro-mechanical coupling, most of the technically important PZT ceramics have compositions in the vicinity of the morphotropic phase boundary (MPB), with two ferroelectric phases, i.e., the tetragonal and the rhombohedral phases, coexisting inside the materials^[2]. Various modifications have been made with relaxor ferroelectric in order to improve the piezoelectric properties^[3-8]. The distinctive properties of PZT are non-hygroscopicity, mechanical strength, simplicity of preparation, high sensitivity and ease of poling in a particular direction. The main advantage of PZT series is the possibility of controlling their electrophysical properties and curve temperature with the aid of modifying additions, PCoN being the most effective one. In the present work, a systematic study of structural and ferroelectric properties of PCoN modified lead zirconate titanate (PZT) ceramics prepared by conventional solid-state reaction route has been undertaken.

MATERIALS AND METHODS

Polycrystalline samples of $(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ –

$x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT – PCoN) with $x = 0$ – 0.5 have been prepared by the starting materials (commercially available lead oxide, cobalt oxide, niobium oxide, zirconium oxide and titanium oxide powders of 99.9% purity) in stoichiometric proportions. 0.02 mol excess lead oxide was used to compensate for the lead evaporation during sintering process at the elevated temperature. The mixture was wet milled in ethanol using ZrO_2 balls in a polyethylene jar for 24h, and then evaporated to dryness before calcination at 700–900°C for 4h. The calcined powders were sieved through a 100mesh sieve, and pressed into pellets using polyvinyl alcohol as a binder. The pellets were also isostatically pressed at 100 MPa before sintering at 1000–1200°C in a closed alumina crucible. All the sintered samples were found to be of 95% of the theoretical density. The structural studies of all the samples were performed on PW 1729 Philips X-ray diffractometer using $\text{CuK}\alpha$ ($\lambda = 1.5405\text{\AA}$) radiation. Scanning electron micrographs were obtained for microstructural studies. $P-E$ hysteresis loops were recorded with computer interfaced loop tracer based on modified Sawyer Tower circuit.

RESULTS AND DISCUSSIONS

The XRD patterns of $(1-x)\text{PZT} - x\text{PCoN}$ ceramics with various x values are shown in figure 1. The XRD patterns of PZT-PCoN ceramics show very sharp and single diffraction peaks, which indicate a better homogeneity and crystallization of the samples. The

Corresponding Author: Naratip Vittayakorn, Department of chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520.

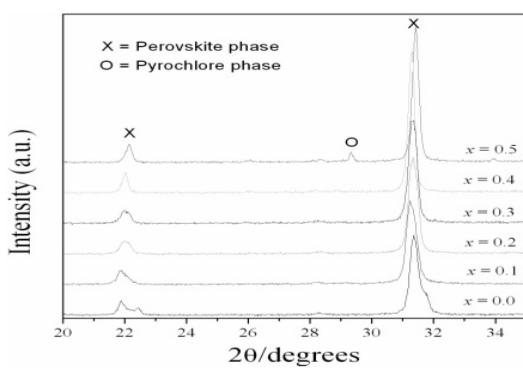


Fig.1: XRD patterns of PZT-PCoN ceramics with compositions versus composition x .

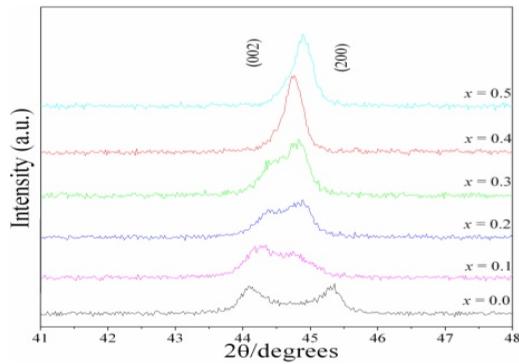


Fig.2: XRD patterns of ceramic specimens in the $2\theta = 43-46^\circ$.

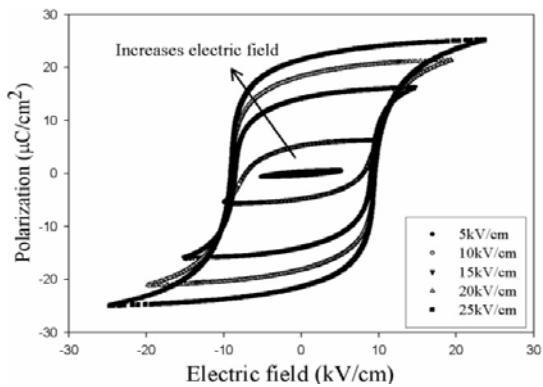
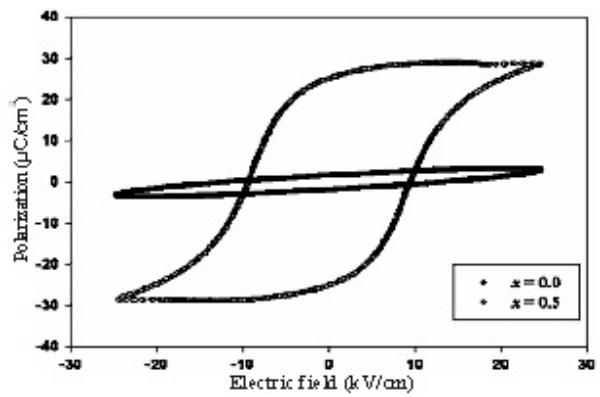
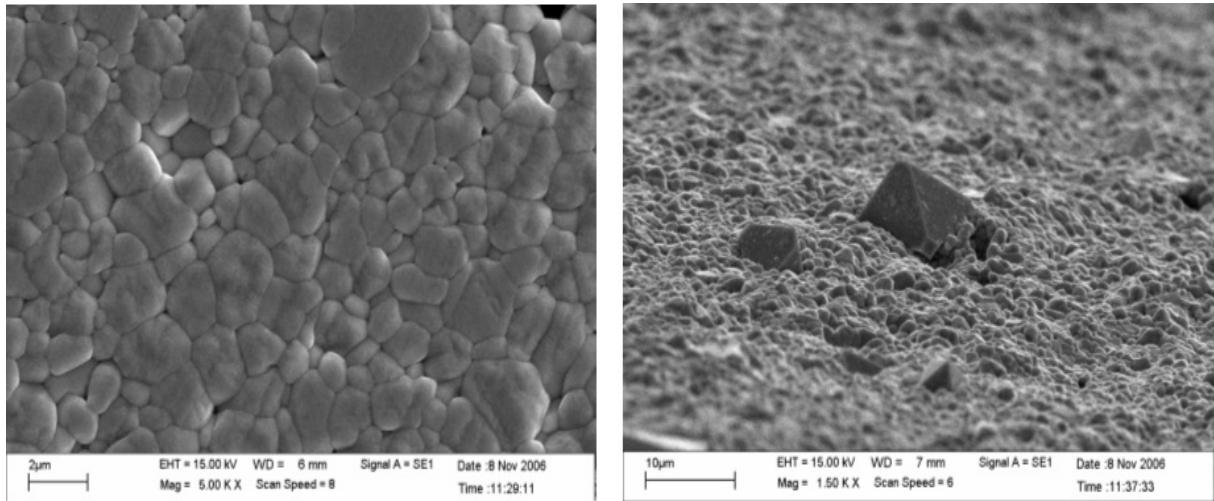


Fig.3: Polarization of $(1-x)$ PZT - x PCoN ceramics with $x = 0.1$ as a function of electric fields

patterns show single-phase perovskite-structured ceramics with $x=0.4$. Evidence for the pyrochlore or other second phases was not detected in the patterns. Pyrochlore peaks, identified with "o" in Fig. 1, were found in the samples with $x=0.5$. These results indicated that the presence of PCoN in the solid solution decreases the structural stability of PZT perovskite phase by its tolerance factor and




Fig.4: shows the hysteresis loops of the ceramics electronegativity^[9].

The PbZrO_3 - PbTiO_3 phase diagram predicts that at room temperature $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ falls within the tetragonal phase field near the MPB. The crystal symmetry for pure PCoN is cubic at room temperature. Below $T_{\max} \approx -70^\circ\text{C}$, the symmetry changes to rhombohedral. Therefore, with increasing x the crystal symmetry should change due to the effects of the increased PCoN fraction and the decrease in T_c . It is well known that in the pseudo-cubic phase, the $\{200\}$ profile will show a single narrow peak because all the planes of $\{200\}$ share the same lattice parameters, while in the tetragonal phase, the $\{200\}$ profile should be split into two peaks with the intensity height of the former being half of the latter because the lattice parameters of (200) and (020) are the same but are slightly different from those of (002) . Figure 6 shows the evolution of the (200) peak as a function of composition. The XRD patterns with low PCoN concentration show strong (200) peak splitting which is indicative of the tetragonal phase. As the PCoN concentration increased, the (200) transformed to a single peak which suggests pseudo-cubic symmetry.

It is interesting to note that the influence of the addition of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ on the phase transition of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ system is similar to that of $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system^[3,4,7].

Figure 3 shows the saturated loops of 0.9PZT-0.1PCoN samples with different electric field strengths.

From the fully saturated loops, the remanent polarization P_r and coercive field E_c were determined. The values of P_r and E_c for composition $x = 0.1$ are $21.4 \mu\text{C}/\text{cm}^2$ and $9 \text{ kV}/\text{cm}$, respectively, whereas for composition $x = 0.0$ the remanent polarization P_r is only $2 \mu\text{C}/\text{cm}^2$, less than one tenth of that for composition $x = 0.1$ (Fig. 4). At the composition $0.0 \leq x \leq 0.5$, the hysteresis loop has a typical "square" form stipulated by switching of a domain structure in an electrical field, which is typical of a phase that contains long-range cooperation between dipoles. That is characteristic of a ferroelectric micro-domain state. Room temperature

Fig.5: SEM microstructures of the surfaces of the composition (A); $x = 0.1$ and (B); $x = 0.5$

Table I: Polarization hysteresis data as a function of x in the (1- x)PZT- x PCoN system.

Composition	P_s ($\mu\text{C}/\text{cm}^2$)	P_r ($\mu\text{C}/\text{cm}^2$)	E_c (kV/cm)
$x = 0.0$	3.1	2.0	11.4
$x = 0.1$	25.0	21.4	9.0
$x = 0.2$	10.1	9.5	9.7
$x = 0.3$	12.5	7.6	8.4
$x = 0.4$	13.9	8.6	9.8
$x = 0.5$	28.7	25.3	9.3

values of P_r are found to be ~ 2 , 21.4 and $25.3 \mu\text{C}/\text{cm}^2$ for composition $x = 0.0$, 0.1 and 0.5 samples, respectively. The results on other compositions are also listed Table I.

It is also evident from Table I that 0.9PZT-0.1PCoN and 0.5PZT-0.5PCoN show the highest values of the remanent polarization. Occurrence of maximum P_r in the composition $x = 0.1$ ceramics can be attributed to the increase in rhombohedral domains transformation into tetragonal domains as the tetragonal structure in the PZT system increases with the increase in PCoN content. Furthermore, the highest values of the remanent polarization in the composition $x = 0.5$ is may be attributed to the transition from normal ferroelectric to relaxor ferroelectric for the pseudo-cubic phase.

Figure 5(A) shows the SEM micrographs of the polished surface of the sintered pellet sample. The ceramic has a close microstructure with low porosity, and the packed grains are in the size range of $0.5 \sim 4 \mu\text{m}$. It was found from the SEM micrograph that the grains of different sizes are homogeneously distributed over the entire surface of the sample, and hence the sample is highly dense. It should be noted that a rectangular shape of $\text{Pb}_3\text{Nb}_4\text{O}_{13}$ or octahedral shape of pyrochlore phase has been reported inside and on the surface of the composition $x = 0.5$ as shown in Figure 5 (B).

Conclusions: We have prepared PZT-PCoN ceramics using the conventional mixed-oxide technique. Compositions of (1- x)PZT- x PCoN $x=0.0-0.5$ were selected based on the linear combination rule. Their phase structures were studied in detail using XRD. All the samples except $x = 0.5$ are demonstrated to be pure perovskite solid solutions. The maximum value of remnant polarization P_r ($25.3 \mu\text{C}/\text{cm}^2$) was obtained for the 0.5PZT - 0.5PCoN ceramic. Most importantly, this study showed that the addition of PCoN could improve the ferroelectric behavior in PZT ceramics.

ACKNOWLEDGEMENTS

This work was supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE) and King Mongkut's Institute of Technology Ladkrabang for their financial support.

REFERENCES

1. Bhalla, A.S., R. Guo, R. Roy 2000. The perovskite structure-a review of its role in ceramic science and technology. *Mat. Res. Innovat.*, 4: 3.
2. Somiya S, Aldinger F, Claussen N, et al. *Handbook of Advanced Ceramics*: Elsavier Academic Press, 2003.
3. Vittayakorn, N., C. Puchmark, G. Rujjanagul, X. Tan, D.P. Cann, 2006. Piezoelectric properties of $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics prepared by the columbite-(wolframite) precursor method. *Current Applied Physics*, 6(3): 303-306.

4. Vittayakorn, N., G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, 2006. Dielectric properties and morphotropic phase boundary in the $x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ pseudo-binary system. *J. Electroceramic*, 16(2):141-149.
5. Vittayakorn, N., S. Uttiya, G. Rujijanagul, D.P. Cann, 2005. Dielectric and ferroelectric characteristics of 0.7 PZT-0.3PZN ceramics substituted with Sr. *J. Phys. D: Appl. Phys.*, 38: 2942-2946
6. Vittayakorn, N., G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, 2004. Influence of processing condition on the phase transition and ferroelectric properties of $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics. *Mat. Sci., Eng. B.*, 108:258.
7. Vittayakorn, N., G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, 2004. The morphotropic phase boundary and dielectric properties of the $x\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(1-x)\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ perovskite solid solution. *J. Appl. Phys.*, 96(9): 5103.
8. Vittayakorn, N., G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, 2003. Perovskite phase formation and ferroelectric properties of the lead nickel niobate-lead zinc niobate-lead zirconate titanate ternary system. *J. Mater. Res.*, 18(12): 2882-2889.
9. Shrout, T.R., A. Halliyal, 1987. Preparation of lead-based ferroelectric relaxors for capacitors. *Am. Ceram. Soc. Bull.*, 66(4): 704.

Investigation of the influence of thermal treatment on the morphologies, dielectric and ferroelectric properties of PZT-based ceramics

Naratip Vittayakorn ^{a,*}, Gobwute Rujijanagul ^b, David P. Cann ^c

^a Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

^b Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^c Faculty of Materials Science, Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, USA

Received 10 May 2006; received in revised form 25 August 2006; accepted 1 September 2006

Available online 19 October 2006

Abstract

$\text{Pb}[(\text{Zr}_{1/2}\text{Ti}_{1/2})_{0.9}(\text{Zn}_{1/3}\text{Nb}_{2/3})_{0.1}]\text{O}_3$ (PZT–10PZN) powder was prepared using the columbite precursor method. The phase development of calcined powder precursors was analyzed by X-ray diffraction. Dielectric and ferroelectric properties of the as-sintered and annealed samples were measured and correlated with the microstructure. The morphological evolution was determined by scanning electron microscopy (SEM). The as-sintered ceramic exhibited weak normal-ferroelectric behavior, with a relatively low dielectric constant maximum measured at 1 kHz ($\varepsilon_{\text{rmax}}$ at 1 kHz) of 13,000. Annealing resulted in a transition to relaxor-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 to 350 °C, and a dramatic increase in $\varepsilon_{\text{rmax}}$ at 1 kHz to a maximum value of 35,000 for the longer anneal. Furthermore, after thermal annealing at 900 °C for 1 week the composition shifted close to the MPB with a great reduction in the transition temperature and a broadening of the dielectric constant maximum. A strong enhancement of the remanent polarization (P_r) was also observed.

© 2006 Elsevier B.V. All rights reserved.

PACS: 77.84.Dy; 77.65.-j; 77.80.Bh

Keywords: PZT; Piezoelectricity; Ferroelectricity; Phase transitions

1. Introduction

Lead zirconate titanate (PZT) is one of the most interesting perovskite ferroelectric materials for applications in various devices owing to its potential usefulness and stability [1]. PZT has been applied to many useful electronic devices by utilizing their excellent dielectric, piezoelectric and pyroelectric properties [2]. Lead zirconate titanate ceramics and their solid solution with several complex perovskite oxides represented by $\text{Pb}(\text{B}'\text{B}'')\text{O}_3$ have been investigated [3–5]. Among the various complex ferroelectric oxide materials, several niobates with transition temperatures above room temperature are $\text{Pb}(\text{Fe}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [6], $\text{Pb}(\text{Mn}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [7], $\text{Pb}(\text{Sc}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [8], $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ [4] and $\text{Pb}(\text{Cd}_{1/3}\text{Nb}_{2/3})\text{O}_3$ [9]. Among them lead zinc niobate [$\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZN)] is also a typi-

cal ferroelectric relaxor material with a transition temperature of 140 °C reported by Smolenskii et al. in 1959 [10]. PZN is one of the most widely studied relaxor ferroelectrics with the perovskite structure exhibiting a diffused phase transition [11,12]. While single crystals of PZN can be synthesized via a flux method with excellent dielectric, optical and electrostrictive properties, PZN ceramics with pure perovskite are relatively difficult to prepare by conventional ceramic techniques [13,14].

Since both PZT and PZN have the perovskite structure and are known to have excellent dielectric and piezoelectric properties, it is suggested that PZN can be alloyed with PZT to stabilize and optimize PZN-based ceramics. Recently, our previous work [4] has shown promise in producing phase pure perovskite PZN–PZT ceramics with the columbite method. A morphotropic phase boundary (MPB) between the PZN-rich rhombohedral phase and the PZT-rich tetragonal phase was reported at $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3:0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$. At this composition, a high dielectric constant ($\varepsilon_r \sim 26,000$) was measured [15].

* Corresponding author. Tel.: +66 9 700 2136; fax: +66 2 326 4415.
E-mail address: naratipcmu@yahoo.com (N. Vittayakorn).

In this study, we emphasize the effect of annealing on the crystal structure, dielectric and ferroelectric properties in PZT–PZN ceramics. Based on our previous results [4] for the PZT–PZN system, PZT containing 10 mol% of PZN was selected as the starting composition which is close to the tetragonal MPB in this system [4,15]. For annealing, the samples were heat treated at 900 °C for 1 week in a sealed Al₂O₃ crucible with PbO-rich atmosphere. In this paper, we report the perovskite phase evolution and crystal structure of the PZT–PZN ceramics. Next, the temperature and frequency dependence of the dielectric constant are given for as-sintered and annealed samples. The remanent polarization and coercive field determined from *P*–*E* hysteresis loops are presented. Finally, the diffuseness parameter (δ) of as-sintered and annealed samples is determined.

2. Experimental procedure

PZT-based ceramics of the composition 0.9Pb(Zr_{1/2}Ti_{1/2})O₃–0.1Pb(Zn_{1/3}Nb_{2/3})O₃ were prepared by the columbite-(woulframite) precursor method. Reagent-grade oxide powders of PbO (99.9%, Aldrich, Milwaukee, WI, USA), ZnO (99.9%), Nb₂O₅ (99.9%), ZrO₂ (99.9%) and TiO₂ (99.9%) were used as starting materials. Prior to reaction with other raw materials, ZnO was reacted with Nb₂O₅ at 975 °C for 4 h to form ZnNb₂O₆ and ZrO₂ was reacted with TiO₂ at 1400 °C for 4 h to form ZrTiO₄. The precursors ZnNb₂O₆, ZrTiO₄ and PbO (with 2 mol% excess PbO) were weighed and mixed by ball-milling in a polyethylene bottle together with methyl alcohol and partially stabilized zirconia media. Methyl alcohol was removed by heating at 80 °C for appropriate durations and then the mixture was dried at 150 °C for 24 h. After drying, the mixed powders were calcined at 700–900 °C for 4 h in a covered Al₂O₃ crucible. The calcined powders were crushed using a mortar and pestle, mixed with 3 wt% organic PVA binder to facilitate pressing. The mixtures were uniaxially cold-pressed at 90 MPa into disks of 15 mm in diameter and about 1 mm in thickness. Binder burn out occurred by slow heating to 500 °C and holding for 2 h. To investigate the densification of the ceramics, the disks were sintered in a sealed alumina crucible at temperatures ranging from 1175 to 1275 °C using a heating rate of 5 °C/min and a dwell time of 2 h. To prevent PbO volatilization from the disks, a PbO atmosphere was maintained by placing PbZrO₃ powders in the crucible. To determine the effect of thermal annealing, the high-density samples were thermally annealed at 900 °C in the same PbO atmosphere for 1 week.

X-ray diffraction (XRD) patterns of the sintered pellets were measured using an X-ray diffractometer (PW1729, Philips, Netherlands). Cu K α radiation with step scanning was used with a step size of 0.02° and a scan rate of 2 s per step. The relative amounts of perovskite and pyrochlore phases were approximated by calculating the ratio of the major XRD peak intensities of the perovskite and pyrochlore phase via the following equation:

$$\text{Perov\%} = \frac{I_{\text{perov}}}{I_{\text{perov}} + I_{\text{pyro}} + I_{\text{PbO}}} \times 100 \quad (1)$$

where I_{perov} , I_{pyro} and I_{PbO} refer to the intensity of the (1 1 0) perovskite peak, (2 2 2) pyrochlore peak and the intensity of the highest lead oxide peak, respectively.

The dielectric and ferroelectric properties of the as-sintered and annealed samples were characterized as follows. The polished samples were electrode with silver paste and then fired at 550 °C for 30 min. The dielectric constant (ϵ_r) and dielectric loss ($\tan \delta$) were measured on heating at 3 °C min⁻¹ using an LCR meter (HP4284A, Hewlett-Packard, Palo Alto, CA) over the range of 100–500 kHz and temperatures 25–450 °C. In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radian Technologies, Inc., PT66A).

3. Results and discussions

3.1. Perovskite phase formation and crystal structure

Powder XRD patterns of the calcined 0.9PZT–0.1PZN powders at different calcination temperatures are shown in Fig. 1. The XRD results show that the pyrochlore phase Pb_{1.88}(Zn_{0.3}Nb_{1.25})O_{5.305} (JCPDS No. 25-0446) was dominant at calcination temperatures below 700 °C. Unreacted PbO, ZrTiO₄ and ZnNb₂O₆ phases were detected from the original mixture up to 750 °C, whereas minor amounts of Pb_{1.88}(Zn_{0.3}Nb_{1.25})O_{5.305} were observed at 750 °C and totally disappeared at higher temperatures. The perovskite phase formation at various calcination temperatures is shown in Fig. 2. By increasing the calcination temperature from 700 to 850 °C, the yield of the perovskite phase increased significantly until at 850 °C, a single phase of perovskite 0.9PZT–0.1PZN was formed. Because the reactant powders consisted of multiple

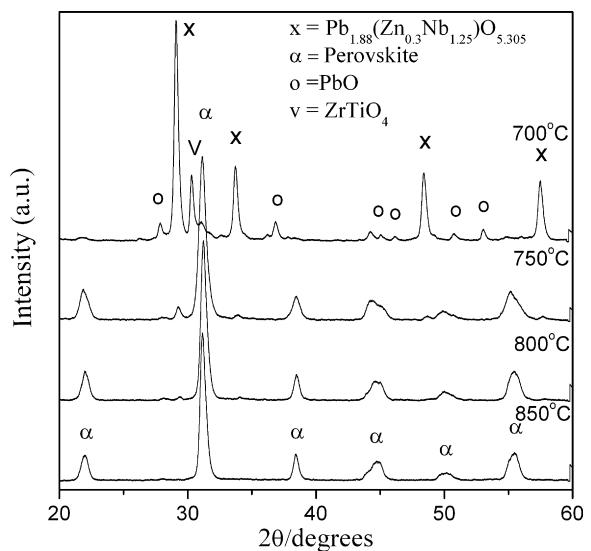


Fig. 1. XRD patterns of 0.9PZT–0.1PZN powders calcined at various temperatures for 4 h at a heating/cooling rate of 20 °C/min.

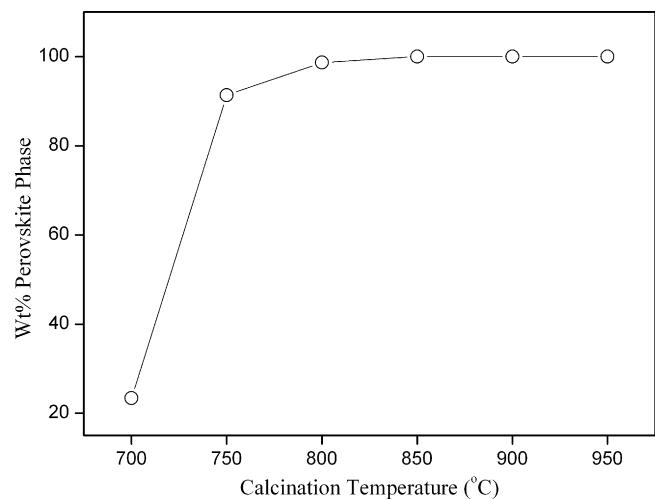


Fig. 2. Percentage of perovskite phase as a function of calcination temperature.

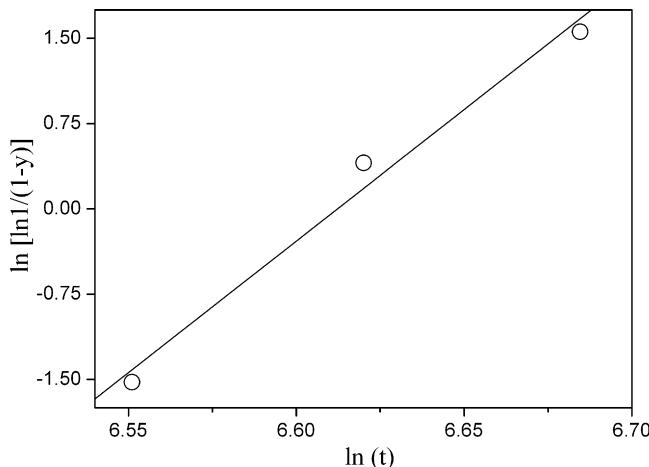


Fig. 3. Reaction kinetics following the Johnson–Mehl–Avrami equation for 0.9PZT–0.1PZN.

phases, the formation reaction of the perovskite phase belongs to the heterogeneous system. A model used to treat multiphase reaction kinetics was derived by Johnson and Mehl and the equation for this reaction is

$$\ln \frac{1}{1-y} = (kt)^n \quad (2)$$

where y is the constant of the perovskite phase formed, k the reaction rate constant, t the calcination time and n is the reaction order. The relation of $\ln [\ln 1/(1-y)]$ versus $\ln t$ is plotted in Fig. 3. From this graph, it was found that the phase transformation of perovskite phase obeys with the theory of phase transformations [16]. This phenomenological model is based on the theory of nucleation and growth and is accurate for a large number of systems. The fact that the data in Fig. 3 closely follow Eq. (2) indicates that the perovskite phase grows at a constant rate from a random distribution of point nuclei.

The XRD results show that the optimum calcination temperature for the formation of phase pure perovskite was found to be about 850 °C for 4 h with heating/cooling rates as fast as 20 °C/min. The 20 °C/min heating rate was selected because prior experiments at slower heating rates resulted in pyrochlore formation and excessive PbO loss. It is assumed that the columbite phase $ZnNb_2O_6$ decomposed via reaction with PbO at low temperatures to form the pyrochlore phase $Pb_{1.88}(Zn_{0.3}Nb_{1.25})O_{5.305}$ and then the pyrochlore phase ($Pb_{1.88}(Zn_{0.3}Nb_{1.25})O_{5.305}$) transforms to perovskite phase ($0.9Pb(Zr_{1/2}Ti_{1/2})O_3$ – $0.1Pb(Zn_{1/3}Nb_{2/3})O_3$) with increased calcination temperatures. This behavior is consistent with the perovskite formation mechanism of many lead-based systems [17–19].

The variation of density with sintering temperature of as-sintered samples is shown in Fig. 4. It was observed that a density of about 91–97% of the maximum value for 0.9PZT–0.1PZN can be achieved in this study. The maximum density was obtained only in the samples sintered at 1225 °C for 2 h with heating/cooling rates of 5 °C/min. Ceramics sintered under this condition were used in determining the effects of thermal annealing. From Fig. 4, the observed sharp decrease in density at

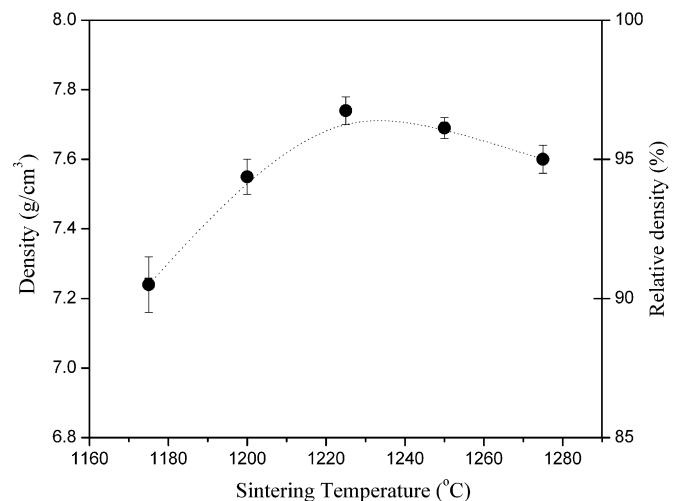


Fig. 4. Density of as-sintered ceramics at various sintering temperatures.

higher temperature seems to be associated with the decomposition of perovskite phase to pyrochlore probably caused by the volatilization of PbO. This is similar to the results noted in other Pb-based perovskite systems [17,20]. Room temperature XRD patterns are shown in Fig. 5 for 0.9PZT–0.1PZN samples before and after annealing. First, both samples exhibit pure phase perovskite with no evidence of a pyrochlore phase such as $Pb_{1.88}(Zn_{0.33}Nb_{1.25})O_{5.305}$.

On the basis of XRD and dielectric experiments, we have identified the MPB in the $(1-x)PZT-xPZN$ system from our previous work [15]. The MPB resides at around $x \sim 0.2$, separating the tetragonal phase for $x \leq 0.2$ from the rhombohedral phase for $x \geq 0.3$. In this study, the as-sintered sample exhibited strong (200) peak splitting which is indicative of the tetragonal

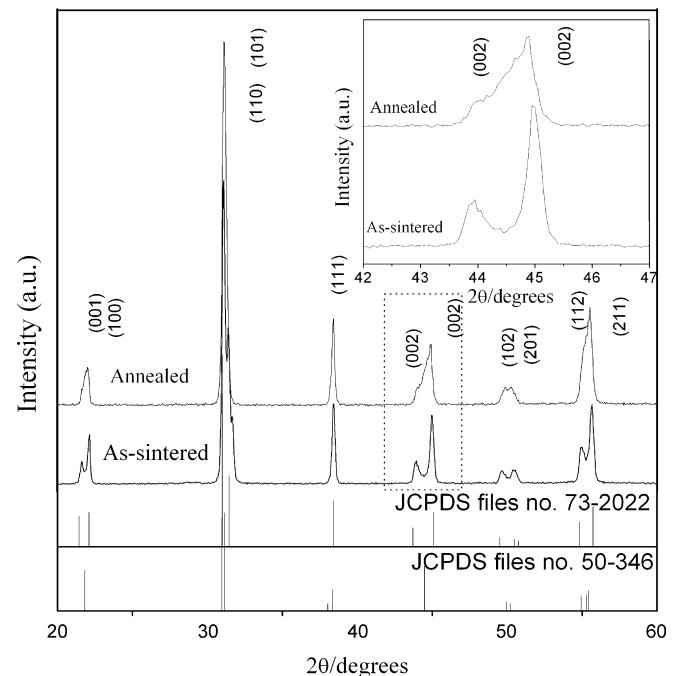


Fig. 5. Room temperature XRD patterns of as-sintered and annealed ceramics.

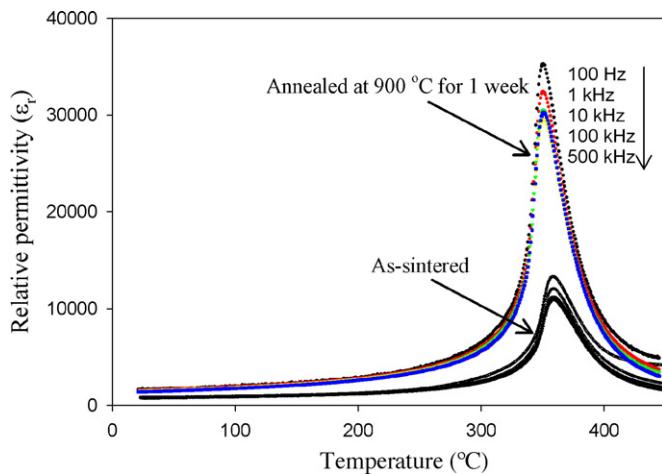


Fig. 6. Temperature dependence of the dielectric constant at different frequencies for as-sintered and annealed ceramics.

phase. But for the annealed sample, the weak splitting of the (2 0 0) peak indicates the co-existence of tetragonal and rhombohedral perovskite phases. The transition from tetragonal to rhombohedral phase is clearly seen from the XRD profile peak splitting with increasing annealing time. From these results, it is clear that the composition of the annealed sample has shifted very close to the MPB.

3.2. Dielectric and ferroelectric properties

3.2.1. Dielectric behavior

The characteristic temperature and frequency dependence of the dielectric constant for as-sintered and annealed samples are shown in Fig. 6. The general trend seems to indicate that the annealed samples become more relaxor-ferroelectric-like in their behavior as opposed to the normal-ferroelectric behavior observed in the as-sintered state. The as-sintered 0.9PZT–0.1PZN ceramic exhibited weak normal-ferroelectric behavior, with a relatively low dielectric constant maximum of approximately 14,000 measured at 1 kHz with a $T_{\max} \sim 360$ °C. Annealing resulted in a transition to relaxor-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000 for the longest anneal. This change in behavior might be due to a reduction in the effective volume fraction of a low- K PbO-rich grain-boundary phase and a decrease in the chemical heterogeneity of the sample. This behavior is consistent with the conclusions of Randall et al. [21] and Leite et al. [5] in the PMN–PT system.

Randall et al. [21] and Xia and Yao [22] observed that excess PbO has a great influence on the electrical properties. In lead-based ferroelectric ceramics, liquid phase sintering is present because of the low melting point of lead oxide. Thus, a small amount of excess PbO can be added to assist in the formation of the perovskite phase and for densification of the ceramic. However, an overabundance of PbO will result in PbO enrichment of the grain boundary and the formation of a grain-boundary layer. Because this layer has a low dielectric constant ($\epsilon_r \sim 20$), the overall dielectric constant will be decreased due to the pres-

ence of the grain-boundary phase. To ameliorate this effect, thermal annealing is effective in increasing the chemical homogeneity. It is important to note that the transition temperature of the annealed sample is close to the composition $x=0.2$ of $(1-x)$ PZT– x PZN which is located directly at the MPB for this system [15]. This effect will be examined further by analyzing the phase transformation in more detail.

3.2.2. Departure from the Curie–Weiss law and relevant critical exponents

It is well known that the permittivity of a first-order normal ferroelectric can be described by the Curie–Weiss law [23]:

$$\epsilon = \frac{c}{T - T_0} \quad (3)$$

where T_0 is the Curie–Weiss temperature and c is Curie constant. A second-order relaxor ferroelectric can be described by a simple quadratic law. This arises from the fact that the total number of relaxors contributing to the permittivity response in the vicinity of the permittivity peak is temperature dependent, and the temperature distribution of this number is given by a Gaussian function about a mean value T_0 with a standard deviation δ . The relative permittivity can be derived via the following expression [24,25]:

$$\frac{\epsilon'_m}{\epsilon'(f, T)} = 1 + \frac{(T - T_m(f))^\gamma}{2\delta_\gamma^2} \quad (1 \leq \gamma \leq 2) \quad (4)$$

where ϵ'_m is the maximum value of the permittivity at $T = T_m(f)$. The value of γ is the expression of the degree of dielectric relaxation in the relaxor ferroelectric material. When $\gamma=1$ Eq. (4) expresses Curie–Weiss behavior, while for $\gamma=2$ this equation is identical to the quadratic relationship. Many relaxor ferroelectric materials can be fit to Eq. (4) with $\gamma=2$ at temperatures above T_{\max} . The parameter δ_γ can be used to measure the degree of diffuseness of the phase transition in mixed relaxor–normal ferroelectric materials. The values γ and δ_γ are both material constants depending on the composition and structure of the material. Fig. 7(a and b) is the fitting curves of the dielectric constants for the as-sintered and annealed samples according to Eq. (4). The δ_γ value can be determined from the slope of ϵ'_m/ϵ' versus $(T - T_m)^2$, which should be linear. The fitting results and dielectric properties are summarized in Table 1. From Table 1, it was found that a significant increase in δ_γ and γ was observed in the annealed samples, indicating an increased diffuseness in the phase transition. The parameter γ is determined to be 1.34 and 1.47 and the δ_γ is measured to be 10.7 and 14.3 for the as-sintered and annealed samples, respectively. As the annealing time increased, the solid solution displayed stronger relaxor-like

Table 1
Dielectric parameter at 10 kHz for as-sintered and annealed samples

	As-sintered	Annealed
$\epsilon_{r\max}$	11000	30000
T_{\max}	360	350
γ	1.34	1.47
δ	10.7	14.3

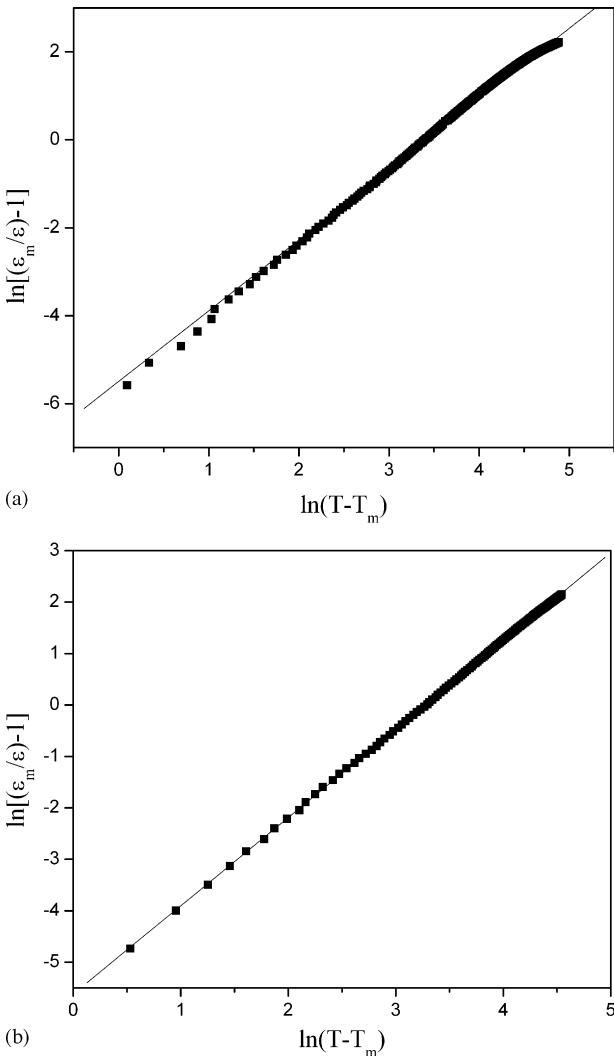


Fig. 7. $\ln[(\epsilon_m/\epsilon) - 1]$ vs. $\ln(T - T_m)$ for 0.9PZT–0.1PZN ceramics: (a) as-sintered sample and (b) annealed sample.

characteristics. Furthermore, γ and δ_γ values of the annealed sample approached the values observed at the MPB ($x=0.2$) of $(1-x)$ PZT– x PZN system [15]. It is well known that as the PZN mole fraction increases, the solid solution displays more relaxor-like characteristics [4]. Based on the results of X-ray diffraction, dielectric spectroscopy, transition temperature and diffusiveness parameter, we believe that this composition in the annealed sample approached the MPB composition for this system. This indicates that the annealing time has an influence on the phase composition.

3.2.3. Ferroelectric properties

Polarization hysteresis measurements at room temperature were performed using a modified Sawyer–Tower circuit. The hysteresis loops of as-sintered and annealed samples are shown in Fig. 8. The remanent polarization (P_r) increased from $20.4 \mu\text{C}/\text{cm}^2$ for the as-sintered sample to $34.1 \mu\text{C}/\text{cm}^2$ for the annealed sample. Moreover, the coercive field (E_c) decreased from 21.6 to $12.8 \text{ kV}/\text{cm}$ after annealing. It can be concluded that the annealed samples exhibited a larger remnant polarizations

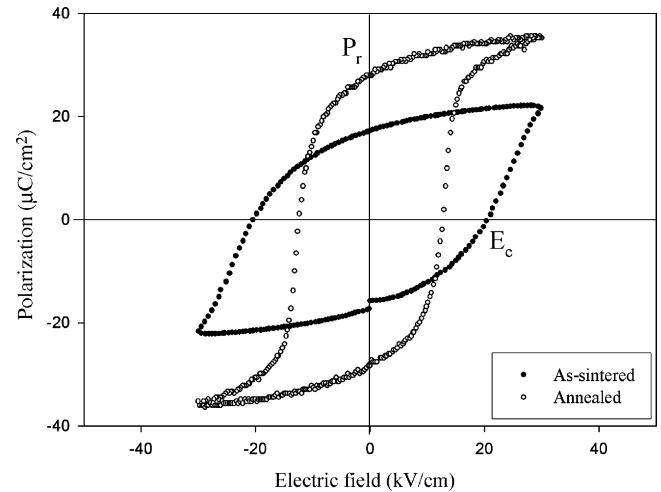


Fig. 8. Polarization vs. electrical field for 0.9PZT–0.1PZN ceramics before and after annealing.

and lower coercive fields compared with as-sintered samples, which means that the annealed ceramic samples are more easily poled and should have better piezoelectric properties.

Haertling and Zimmer [26] derived an empirical relationship between remanent polarization, saturation polarization and polarization at fields above the coercive field. This permits the quantification of changes in the hysteresis behavior for each sample through the following equation:

$$R_{\text{sq}} = \frac{P_r}{P_s} + \frac{P_{1.1E_c}}{P_r} \quad (5)$$

where R_{sq} is the squareness of hysteresis loop, P_r the remanent polarization, P_s the saturation polarization and $P_{1.1E_c}$ is the polarization at an electric field equal to 1.1 times the coercive field (E_c). For an ideal hysteresis loop, the squareness parameter is equal to 2. Normal square ferroelectric P – E loops were observed in undoped as-sintered samples. After annealing, the value of R_{sq} increased from 1.12 to 1.52 for the annealed sample.

In lead-based ferroelectric materials, the dielectric and piezoelectric properties are strongly influenced by phase composition, homogeneity, microstructure, defects, external field and domain wall motion. These external factors not only contribute to the material properties but also in many cases actually control material responses [1,27]. The transition from a mixed domain to a uniform domain structure after annealing is believed to account for the observed increase in properties. Leite et al. [5] observed many types of ferroelectric domains in hot-pressed PMN–PT ceramics, including nano-domains, tweedlike domains and ferroelectric micro-domains. With the anticipated differences in size and mobility between the three coexisting types of domains, the interaction among these domains will be weak, resulting in low permittivity and P_r . After annealing, only tweedlike domains were observed. Interactions between these domains and the motion of domain walls yield higher values of P_r and lower coercive fields (E_c).

Fig. 9 shows scanning electron microscopy (SEM) images of the surfaces of 0.9PZT–0.1PZN ceramics before and after

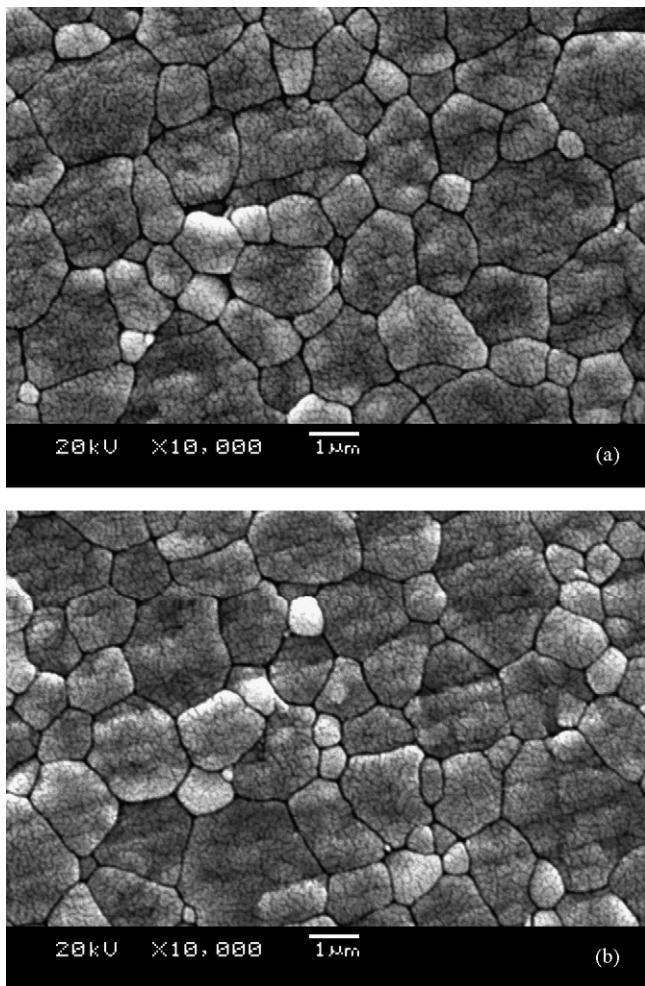


Fig. 9. SEM micrographs of 0.9PZT–0.1PZN ceramics before and after annealing: (a) as-sintered and (b) annealed at 900 °C for 1 week.

annealing. No plate-like grains were observed in both samples, indicating an absence of pyrochlore formation. There is no change in the grain size, nor is there any evidence of abnormal grain growth in the annealed sample. Both of the microstructures appear to be quite dense, with little porosity. The density of the samples decreased slightly from 96.7% theoretical density to 95.8% after annealing at 900 °C for 1 week. Obviously this minor decrease in density will not have any significant impact on the dielectric and piezoelectric responses.

4. Conclusions

The dielectric and ferroelectric properties of 0.9PZT–0.1PZN ceramics formed via the columbite process were investigated. Thermal annealing was observed to be effective at improving

the dielectric and piezoelectric responses of PZT-based ferroelectric ceramics. The annealing time was found to have an effect on the electrical properties. After annealing at 900 °C for 1 week in a PbO-rich atmosphere, PZT-based ceramics with $\epsilon_{r\max}$ 35,000, P_r 34.1 $\mu\text{C}/\text{cm}^2$ were achieved in this study. The large improvements in the dielectric and ferroelectric properties after annealing were attributed to a shift in the phase composition to the MPB composition.

Acknowledgements

The authors are grateful to the Thailand Research Fund (TRF), Faculty of Science, Chiang Mai University and King Mongkut's Institute of Technology Ladkrabang for their financial support.

References

- [1] K. Uchino, Ferroelectric Devices, Marcel Dekker, Inc., New York, 2000.
- [2] Y. Xu, Ferroelectric Materials and Their Application, Elsevier Science Publishers B.V., 1991.
- [3] N. Vittayakorn, G. Rujjanagul, X. Tan, M.A. Marquardt, D.P. Cann, *J. Appl. Phys.* 96 (2004) 5103.
- [4] N. Vittayakorn, G. Rujjanagul, T. Tunkasiri, X. Tan, D.P. Cann, *Mater. Sci. Eng.*, B 108 (2004) 258.
- [5] E.R. Leite, A.M. Scotch, A. Khan, T. Li, H.M. Chan, M.P. Harmer, S.-F. Liu, S.-E. Park, *J. Am. Ceram. Soc.* 85 (2002) 3018.
- [6] Y. Yoshikawa, *J. Eur. Ceram. Soc.* 19 (1999) 1037–1041.
- [7] Y. Yamashita, N. Ichinose, *Proc. IEEE ISAF'96* (1996) 71.
- [8] V.A. Isupov, *Sov. Phys.-Solid State* 5 (1958) 136.
- [9] N. Ichinose, T. Takahashi, Y. Tokomizo, *J. Phys. Soc. Jpn.* 31 (1971) 1848.
- [10] G.A. Smolenskii, A.L. Agranovskaya, *Sov. Phys.-Tech. Phys.* (1958) 1380.
- [11] M.L. Mulvihill, L.E. Cross, W. Cao, K. Uchino, *J. Am. Ceram. Soc.* 80 (1997) 1462.
- [12] L.E. Cross, *Ferroelectrics* 151 (1994) 305.
- [13] A. Halliyal, U. Kumar, R.E. Newham, L.E. Cross, *J. Am. Ceram. Soc.* 70 (1987) 119–124.
- [14] T.R. Shroud, A. Halliyal, *Am. Ceram. Soc. Bull.* 66 (1987) 704.
- [15] N. Vittayakorn, G. Rujjanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, *J. Electroceram.* 16 (2006) 141–149.
- [16] J.W. Christian, *The Theory of Transformations in Metals and Alloys: Part I*, Pergamon Press, Oxford, 2002.
- [17] N. Vittayakorn, G. Rujjanagul, T. Tunkasiri, X. Tan, D.P. Cann, *J. Mater. Res.* 18 (2003) 2882–2889.
- [18] M.F. Yan, H.C. Ling, W.W. Rhodes, *J. Mater. Res.* 4 (1989) 930.
- [19] S.-G. Jun, N.-K. Kim, J.-J. Kim, S.-H. Cho, *Mater. Lett.* 34 (1998) 336–340.
- [20] R. Yimnirun, S. Ananta, E. Meechoowas, S. Wongsaenmai, *J. Phys. D: Appl. Phys.* 36 (2003) 1615.
- [21] C.A. Randall, A.D. Hilton, D.J. Barber, T.R. Shroud, *J. Mater. Res.* 8 (1993) 880.
- [22] F. Xia, X. Yao, *J. Mater. Sci.* 36 (2001) 247.
- [23] B. Jaffe, W.R. Cook, *Piezoelectric Ceramic*, R.A.N. Publishers, 1971.
- [24] L.E. Cross, *Ferroelectrics* 76 (1987) 241.
- [25] K. Uchino, *Ferroelectrics* 151 (1994) 321.
- [26] G.H. Haertling, W.J. Zimmer, *Am. Ceram. Soc. Bull.* 45 (1966) 1084.
- [27] A.J. Moulson, J.M. Herbert, *Electroceramics: Materials, Properties, Applications*, Chapman and Hall, New York, 1990.

The improvement in dielectric and ferroelectric performance of PZT–PZN ceramics by thermal treatment

Naratip Vittayakorn ^{a,*}, Gobwute Rujijanagul ^b, David P. Cann ^c

^a Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

^b Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^c Faculty of Materials Science, Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, United States

Received 24 November 2006; accepted 5 December 2006

Available online 23 December 2006

Abstract

Pyrochlore-free lead zirconate titanate – lead zinc niobate ceramics have been systematically investigated in the as-sintered condition as well as after annealing. The ceramics were characterized by dielectric spectroscopy and Sawyer–Tower polarization (*P*–*E*) measurements. The powders of $\text{Pb}[(\text{Zr}_{1/2}\text{Ti}_{1/2})_{(1-x)}-(\text{Zn}_{1/3}\text{Nb}_{2/3})_x]\text{O}_3$, where $x = 0.1, 0.3$ and 0.5 were prepared using the columbite–(wolframite) precursor method. The general trend seems to indicate that the annealed samples become more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric-like behavior observed in the as-sintered state. The as-sintered 0.9PZT–0.1PZN ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum of 14,000 measured at 1 kHz. Annealing resulted in a transition to normal-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 °C to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000 for the longer anneal. After thermal annealing at 900 °C for one week a strong enhancement of remanent polarization (P_r) was observed.

© 2007 Elsevier B.V. All rights reserved.

PACS: 77.84.Dy; 77.65.-j; 77.80.Bh

Keywords: Lead zinc niobate (PZN); Lead zirconate titanate (PZT); Dielectric properties

1. Introduction

Lead zirconate titanate (PZT) is one of the most interesting perovskite ferroelectric materials for applications in various devices owing to its potential usefulness and stability [1]. PZT have been applied to many useful electronic devices by utilizing their excellent dielectric, piezoelectric and pyroelectric properties [2]. Lead zirconate titanate ceramics and their solid solution with several complex perovskite oxides represented by $\text{Pb}(\text{B}'\text{B}'')\text{O}_3$ have been investigated [3–5]. Among the various complex ferroelectric oxide materials, several niobates with a transition point higher than room temperature are $\text{Pb}(\text{Fe}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [6],

$\text{Pb}(\text{Mn}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [7], $\text{Pb}(\text{Sc}_{1/2}\text{Nb}_{1/2})\text{O}_3$ [8], $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ [4], and $\text{Pb}(\text{Cd}_{1/3}\text{Nb}_{2/3})\text{O}_3$ [9]. Among them Lead zinc niobate [$\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$, (PZN)] is also a typical ferroelectric relaxor material with a transition temperature of 140 °C and its ferroelectricity was reported by Smolenskii et al. in 1959 [10]. PZN is one of the most famous relaxor-ferroelectrics with perovskite structure exhibiting a diffused phase transition [11,12]. Single crystals of PZN can be synthesized by using flux method with excellent dielectric, optical, and electrostrictive properties, but PZN ceramics with pure perovskite are relatively difficult to prepare by conventional ceramic techniques [13,14]. Since both PZT and PZN have perovskite structure and are known to have excellent dielectric and piezoelectric properties, it is suggested that PZN alloyed with PZT to stabilize and optimize the PZN ceramics. Recently our previous work [4,15] has shown promise in producing

* Corresponding author. Tel.: +66 9 700 2136; fax: +66 2 3264415.
E-mail address: naratipcmu@yahoo.com (N. Vittayakorn).

phase-pure perovskite PZN–PZT ceramics with the columbite method. A morphotropic phase boundary (MPB) between the PZN-rich rhombohedral phase and the PZT-rich tetragonal phase was reported at PZN:PZT 50/50 ~ 0.2:0.8. At this composition, a high dielectric constant (ϵ_r) ~ 26,000 was measured [16]. In this study we emphasize the effect of annealing on the crystal structure dielectric and ferroelectric properties in PZT–PZN ceramics. The samples were heat treated at 900 °C for one week in a sealed Al_2O_3 crucible with PbO-rich atmosphere. The temperature and frequency dependence of the dielectric constant are given for as-sintered and annealed samples. Finally, the remanent polarization and coercive field determined from P – E hysteresis loops are also introduced.

2. Experimental procedure

PZT-based ceramics with the composition of $\text{Pb}[(\text{Zr}_{1/2}\text{Ti}_{1/2})_{(1-x)}(\text{Zn}_{1/3}\text{Nb}_{2/3})_x]\text{O}_3$, where $x = 0.1, 0.3$ and 0.5 were prepared by columbite–(wolframite) precursor. The reagent-grade oxide powders of PbO (99.9%, Aldrich, Milwaukee, WI, USA), ZnO (99.9%), Nb_2O_5 (99.9%), ZrO_2 (99.9%) and TiO_2 (99.9%) were used as starting raw materials. Prior to reaction with other raw materials, ZnO was reacted with Nb_2O_5 at 975 °C for 4 h to form ZnNb_2O_6 and ZrO_2 was reacted with TiO_2 at 1400 °C for 4 h to form ZrTiO_4 . The precursors ZnNb_2O_6 , ZrTiO_4 and PbO (with 2 mol% excess PbO) were weighted and mixed well by ball-milling in polyethylene bottle together with methyl alcohol and partially stabilized zirconia balls. Methyl alcohol was removed by heating at 80 °C for appropriate durations and then the mixture was dried at 150 °C for 24 h. After drying, the mixture powders were calcined at 700–900 °C for 4 h in covered Al_2O_3 crucible. To investigate densification of ceramics, the disks were sintered in a sealed alumina crucible at temperatures ranging from 1175 °C to 1275 °C using a heating rate of 5 °C/min and a dwell time of 2 h. To prevent PbO volatilization from the disks, a PbO atmosphere was maintained by placing PbZrO_3 powders in the crucible. This resulted in pellets with 94–96% of theoretical density which were single-phase perovskite with grain sizes of 2–5 μm . The crystal structure and phase transition of the individual compositions can be found in Refs. [4,17]. To determine the effect of thermal annealing, the maximum density sample was thermally annealed at 900 °C in the same PbO atmosphere for one week.

The dielectric and ferroelectric properties of the as-sintered and annealed samples were characterized as follows. The polished samples were electrode with silver paste and then fired at 550 °C for 30 min. The dielectric constant (K) and dielectric loss ($\tan \delta$) were measured on heating at 3 °C min⁻¹ using an LCR meter (HP4284A, Hewlett-Packard, Palo Alto, CA) over the range of 100–500 kHz and temperatures 25–450 °C. In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radiant Technologies, Inc., PT66A).

3. Results and discussion

The phase development in the annealed samples was analyzed by XRD and the results are shown in Fig. 1. All samples show single-phase powder diffraction pattern. No secondary reaction phases, such as PbO, Pb-based compounds, unreacted oxide and so on, are observed in the pattern. There seem to be no measurable changes before and after annealing. Fig. 2a–c show the dielectric constant versus temperature of the as-sintered and annealed samples of compositions $x = 0.1, 0.3$ and 0.5 , respectively, for frequency of 100 Hz, 1 kHz, 10 kHz, 100 kHz and 500 kHz. The as-sintered sample showed typical relaxor-ferroelectric-like behavior, characterized by a diffuse dielectric-temperature response (Fig. 2a). After annealing, a significant improvement in the dielectric constant is observed, especially near the temperature of the maximum dielectric constant and it is relatively small at room temperature and at temperatures far above T_m . At the composition $x = 0.1$, the maximum dielectric constant at 1 kHz (K_m @ 1 kHz) was approximately 14,000 and the T_m value was 360 °C. The general trend seems to indicate that the annealed samples become more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric-like behavior observed in the as-sintered state. In contrast, the annealed samples showed normal-ferroelectric behavior, characterized by a much-sharper dielectric-temperature response and a weak dependence of T_m with frequency. Annealing resulted in a transition to normal–ferroelectric–like behavior, a shift in the dielectric maximum temperature from 360 °C to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000, up from the initial value of 14,000 for as-sintered sample. This behavior also appeared in the

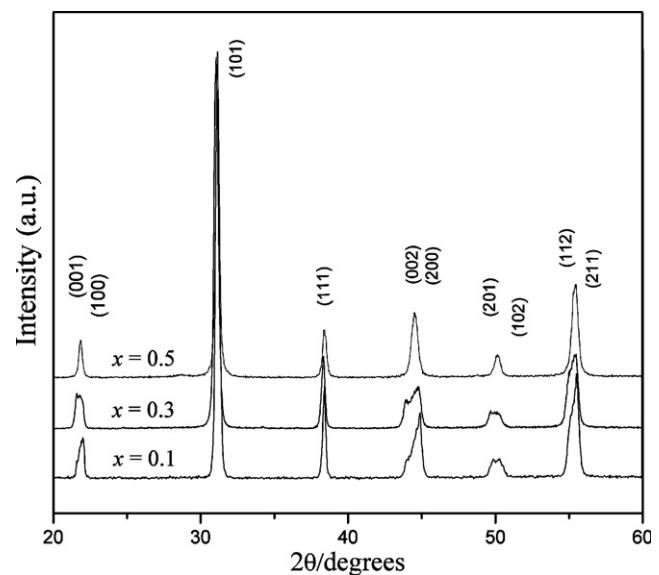


Fig. 1. X-ray diffractograms of annealed samples for various compositions of the $\text{Pb}[(\text{Zr}_{1/2}\text{Ti}_{1/2})_{(1-x)}(\text{Zn}_{1/3}\text{Nb}_{2/3})_x]\text{O}_3$, where $x = 0.1, 0.3$ and 0.5 system at room temperature.

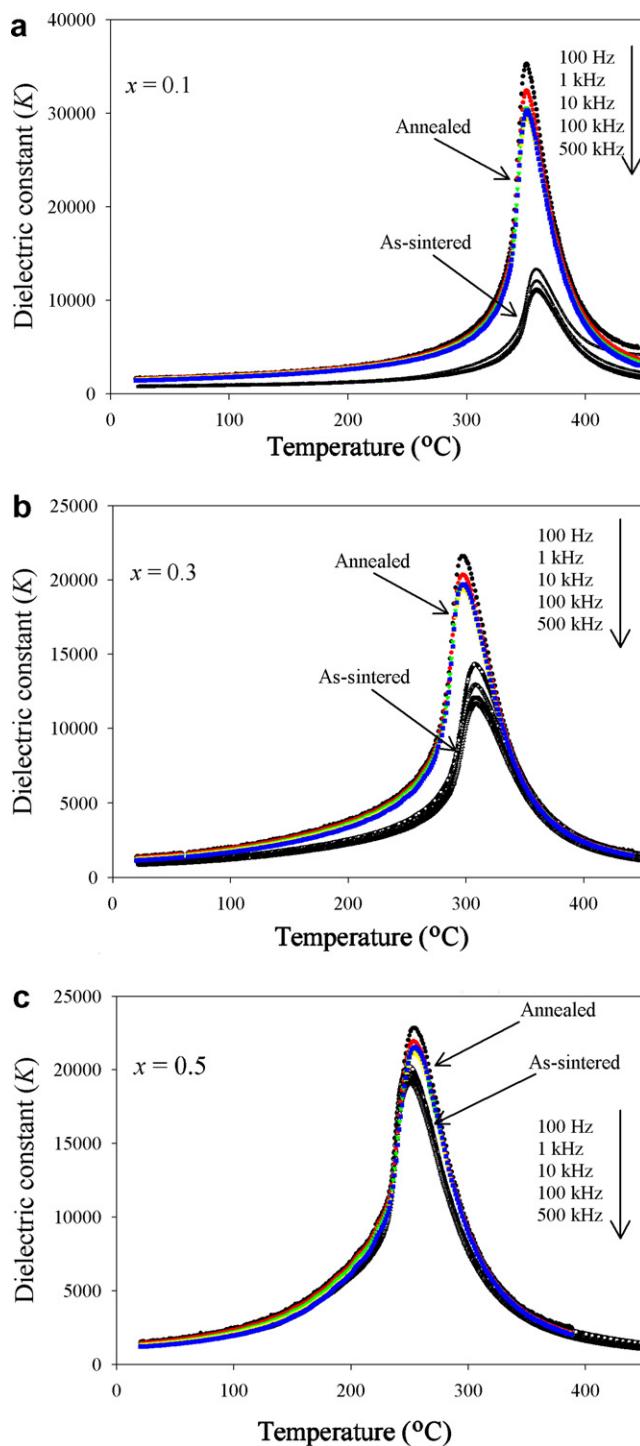


Fig. 2. Temperature dependence of the dielectric constant at difference frequencies for as-sintered and annealed samples (a) $x = 0.1$, (b) $x = 0.3$ and (c) $x = 0.5$.

$x = 0.3$ and 0.5 composition. The dielectric constant and transition temperature of the samples studied is summarized in Table 1. However, very limited improvements were observed for the $x = 0.5$ composition because the higher PZN content required lower sintering temperatures, thus limiting the efficacy of the annealing step. Polarization hysteresis measurements at room temperature were performed

Table 1
Dielectric properties of as-sintered and annealed sample

Composition	As-sintered		Annealed	
	K_m	$T_m, ^\circ\text{C}$	K_m	$T_m, ^\circ\text{C}$
$x = 0.1$	14,000	360	35,000	350
$x = 0.3$	14,500	310	21,500	300
$x = 0.5$	21,000	250	23,000	254

using a modified Sawyer–Tower circuit. Fig. 3 shows the saturated loops of $0.7\text{PZT}-0.3\text{PZN}$ samples with difference electric fields strengths.

It is clearly evident that the shape of hysteresis varies greatly with the electric fields strength. At 5kV/cm electric fields strength, a near-linear relationship of $P-E$ is observed. This result is due to the fact that the electric field is not large enough to switch any domains. At 10kV/cm electric fields, the polarization nonlinearity is developed in both regions of the positive and negative fields. These results clearly demonstrate that the electric field strength of 10kV/cm is of enough energy to constrain realignment of some domains in the direction of the applied fields. No evidence of pinning effect or asymmetric loop was detected in all electric fields strength. At 30kV/cm electric field strength, the loop reveals fully developed symmetric hysteresis loop. This shows that the electric fields strength of 30kV/cm has of enough energy to constrain realignment of all domains in the direction of the electric fields. The hysteresis loops of as-sintered and annealed samples are shown in Fig. 4. The as-sintered sample exhibited a smaller remnant polarization (P_r) and lower coercive field (E_c), compared with the annealed samples. Annealed sample showed normal-ferroelectric behavior with a rectangular loop. For the composition $x = 0.3$, the P_r increased from $21.4\text{ }\mu\text{C/cm}^2$ to $34.7\text{ }\mu\text{C/cm}^2$ for the annealed sample. Moreover the E_c decreased from 14.5 kV/cm to 12.3 kV/cm after annealing. Although this behavior was observed in all of our composition, the increasing in the P_r and

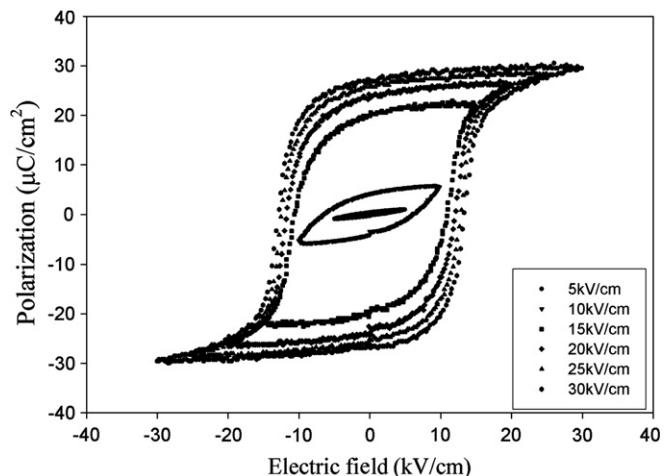


Fig. 3. $P-E$ behaviors for annealed sample at various maximum electric field strengths.

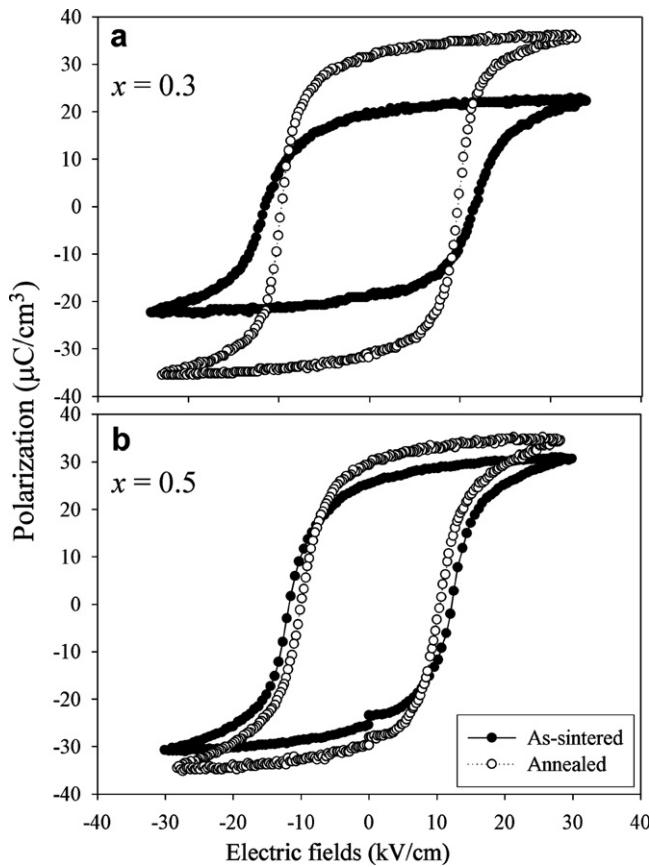


Fig. 4. P - E behaviors for $(1-x)$ PZT- x PZN ceramics before and after annealing.

decreasing in the E_c was minimal at high concentrations of PZN. This is due to the fact that the higher PZN content required lower sintering temperatures to achieve the best combination of density and properties. Therefore, heat treatment is not necessary for ceramics with high PZN content. This change in behavior is might be due to the extrinsic effect of domain wall motion and a decrease in the chemical heterogeneity of the samples. This behavior is consistent with the conclusions of Xia et al. [18] and Leite et al. [5] in the PZN-BT-PT and PMN-PT system respectively.

4. Conclusions

The dielectric and ferroelectric properties of $\text{Pb}[(\text{Zr}_{1/2}\text{Ti}_{1/2})_{(1-x)}(\text{Zn}_{1/3}\text{Nb}_{2/3})_x]\text{O}_3$, where $x = 0.1, 0.3$ and 0.5 ceramics formed via the columbite process were investigated. Thermal treatment is an effective way to improve the dielectric and piezoelectric responses of PZT-based ferroelectric ceramics. The annealing time has an effect on the electrical properties. The large improvement in the dielectric and ferroelectric properties due to annealing are mainly

attributed to the increase in the chemical homogeneity and the extrinsic effect of domain wall motion in ferroelectric ceramics.

Acknowledgements

The authors are grateful to the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), Faculty of Science Chiang Mai University, and King Mongkut's Institute of Technology Ladkrabang for their financial support.

References

- [1] K. Uchino, Ferroelectric Devices, Marcel Dekker, New York, 2000.
- [2] Y. Xu, Ferroelectric Materials and Their Application, Elsevier Science Publishers B.V., 1991.
- [3] N. Vittayakorn et al., The morphotropic phase boundary and dielectric properties of the $x\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(1-x)\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ perovskite solid solution, *J. Appl. Phys.* 96 (9) (2004) 5103.
- [4] N. Vittayakorn et al., Influence of processing condition on the phase transition and ferroelectric properties of $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-b(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics, *Mat. Sci. Eng. B* 108 (2004) 258.
- [5] E.R. Leite et al., Chemical heterogeneity in PMN-35PT ceramics and effects on dielectric and piezoelectric properties, *J. Am. Ceram. Soc.* 85 (12) (2002) 3018.
- [6] Y. Yoshikawa, Crystallization behavior of PZN-PFN powders from nitrate solutions, *J. Eur. Ceram. Soc.* 19 (6–7) (1999) 1037–1041.
- [7] Y. Yamashita, N. Ichinose, Can relaxor piezoelectric materials outperform PZT? (Review), *Proc. IEEE ISAF'96*, (1996) 71.
- [8] V.A. Isupov, Causes of phase-transition broadening and the nature of dielectric polarization relaxation in some ferroelectric, *Sov. Phys. Solid state* 5 (1) (1958) 136.
- [9] N. Ichinose, T. Takahashi, Y. Tokomizo, *J. Phys. Soc. Jpn.* 31 (1971) 1848.
- [10] G.A. Smolenskii, A.L. Agranovskaya, Dielectric polarization of and loss of some complex compounds, *Sov. Phys.-Tech. Phys.* (1958) 1380.
- [11] M.L. Mulvihill et al., Domain-related Phase transition like behavior in lead zinc niobate relaxor ferroelectric single crystals, *J. Am. Ceram. Soc.* 80 (16) (1997) 1462.
- [12] L.E. Cross, Relaxor ferroelectrics: An Overview, *Ferroelectrics* 151 (1994) 305.
- [13] A. Halliyal et al., Dielectric and ferroelectric properties ceramics in the PZN-BT-PT system, *J. Am. Ceram. Soc.* 70 (2) (1987) 119–124.
- [14] T.R. Shrout, A. Halliyal, Preparation of lead-based ferroelectric relaxors for capacitors, *Am. Ceram. Soc. Bull.* 66 (4) (1987) 704.
- [15] N. Vittayakorn et al., Piezoelectric properties of $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics prepared by the columbite-(wolframite) precursor method, *Curr. Appl. Phys.* 6 (3) (2006) 303–306.
- [16] N. Vittayakorn et al., Dielectric properties and morphotropic phase boundary in the $x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ pseudo-binary system, *J. Electroceramic.* 16 (2) (2006) 141–149.
- [17] N. Vittayakorn et al., Dielectric and ferroelectric characteristics of 0.7 PZT-0.3PZN ceramics substituted with Sr., *J. Phys. D: Appl. Phys.* 38 (2005) 2942–2946.
- [18] F. Xia, X. Yao, Postsintering annealing induced extrinsic dielectric and piezoelectric responses in lead-zinc-niobate-based ferroelectric ceramics, *J. Appl. Phys.* 92 (5) (2002) 2709–2715.

Phase transition, mechanical, dielectric and piezoelectric properties of perovskite $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ ceramics

Naratip Vittayakorn^{a,*}, Theerachai Bongkarn^b, Gobwute Rujijanagul^c

^aDepartment of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

^bDepartment of Physics, Faculty of Science, Naresuan University, Pitsanuloke 65000, Thailand

^cDepartment of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Received 30 October 2005; received in revised form 10 March 2006; accepted 27 April 2006

Abstract

$(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ ceramics were prepared in the composition range $0.00 \leq x \leq 0.30$ by the mixed oxide solid-state reaction method. The samples were kept at the calcination temperature 1000°C for 1 h and at the sintering temperature 1300°C for 3 h. The structural phase transitions and the dielectric properties were studied. It was found that the density of the ceramics decreases with increasing amount of Ba^{2+} , whilst the average grain size is in the range $1\text{--}2.3\text{ }\mu\text{m}$. The structure of as-calcined powder reveals that the fraction of the orthorhombic phase is decreasing with increasing Ba^{2+} content. The values of Vickers and Knoop hardness are in the range of 4.10–6.48 and 4.15–5.67 GPa, respectively. Dielectric measurements show that the antiferroelectric phase (AFE)–ferroelectric phase (FE) and the FE to paraelectric phase (PE) phase transformation temperatures decrease with increasing Ba^{2+} concentration. The AFE–FE phase transformation is detected for compositions $0.00 \leq x \leq 0.075$. The maximum dielectric constant gradually increases with increasing composition up to $x = 0.20$. For higher Ba^{2+} concentrations, the lowering of the maximum dielectric value is accompanied by a progressive broadening of the permittivity peak. The d_{33} values of the samples increase from ~ 0 to 87 pC/N with increasing Ba^{2+} concentration from $x = 0.00$ to 0.30 .

© 2006 Elsevier B.V. All rights reserved.

PACS: 77.22.Ch; 77.80.-e; 77.80.Bh; 77.84.-S

Keywords: $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$; Structural phase; Phase transformation; Dielectric properties

1. Introduction

Lead Zirconate, PbZrO_3 (PZ), is one end member of the industrially interesting solid-solution series $\text{PbZrO}_3\text{--PbTiO}_3$ [1] and the first antiferroelectric identified by Sawaguchi et al. [2,3]. At room temperature PZ has an antiferroelectric phase (AFE), which has an orthorhombic structure [2]. It undergoes the AFE to a paraelectric phase (PE) and transforms from an orthorhombic structure to a cubic structure at 236°C [4]. It is reported that there exists a ferroelectric phase (FE) over a very narrow temperature range ($230\text{--}233^\circ\text{C}$) [5–8]. The FE intermediate phase can also be introduced by partial replacement of Pb^{2+} ions

with Ba^{2+} ions. The temperature range of this intermediate phase also increases with Ba concentration [9–16]. The AFE–FE phase transition produced a large volume expansion. It makes this material potentially useful for high displacement electromechanical actuator applications [15,16].

The effect of Ba^{2+} ion substitution on the phase transformation behavior of PZ has been investigated by many authors [4,9–21]. The first one was Roberts [4] but he did not get any evidence for the AFE–FE transformation. Later, Shirane [9] investigated the phase transformation behavior of $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ (PBZ) for $0 \leq x \leq 0.30$ and reported that the ferroelectric intermediate phase does not appear until the Ba^{2+} concentration exceeds the threshold value at about 5 mol%. The temperature range of this intermediate phase increases with the Ba^{2+}

*Corresponding author. Tel.: +66 9 7002136; fax: +66 2 3264415.

E-mail address: naratipcmu@yahoo.com (N. Vittayakorn).

concentration. On the contrary, Ujma et al. reported the FE phase existence in PBZ containing up to 5 mol% Ba^{2+} , with dielectric properties different from the previous papers [12]. Harrad et al. [18,19] carried out a detailed Raman scattering study of phase transformations in PBZ ceramics and showed that the AFE phase persists up to a critical composition of $x = 0.175$. Recently, Pokharel et al. synthesized PBZ by a semiwet route to ensure a homogeneous distribution of Pb^{2+} and Ba^{2+} [14–17,20,22]. They found unusually wide thermal hysteresis in the transformation temperatures measured by dielectric measurement during heating and cooling cycles (e.g., nearly 100 °C for $x = 0.05$ in contrast to about 11 °C for pure PZ) and an irreversibility of the AFE–FE transformation temperature during the cooling cycle for $x = 0.10$.

However, the dielectric constant measured on the cooling cycle of PBZ ceramics prepared via the mixed oxide solid state method has not been performed. Moreover, microstructures, mechanical and piezoelectric properties of the PBZ system are not clearly understood. Therefore, in this present work, $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ (PBZ) for $0 \leq x \leq 0.30$ were prepared by the solid state reaction method. The structural phase, densification, microstructure, mechanical and piezoelectric properties of PBZ ceramics were investigated as a function of composition x . Permittivity measurements were also used to study the details of AFE–FE and FE–PE phase transformations accompanied with evaluations of the dielectric behaviors of the PBZ samples. The results were discussed and compared to previous work.

2. Experimental procedure

The $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$, $0 \leq x \leq 0.30$, ceramics were prepared using a conventional mixed oxide method. The raw materials of PbO , ZrO_2 and BaCO_3 were weighed and mixed. Each mixture of the starting powders was milled and mixed in a ball mill, as well as wet-homogenized with acetone for 24 h using zirconia grinding media. The suspensions were dried and the powders were ground using an agate mortar and sieved into fine powder. All obtained powders were calcined at 1000 °C for 1 h. The calcined powders were reground by wet ball milling with 1 wt% binder (B-5 supplied by Rohn-Haas, Germany) for 24 h. The calcined powders with binder were dried, crushed, and sieved again. The powder mixtures were isostatically pressed at 80 MPa into a pellet of 15 mm in diameter.

Finally, the pellets were fired in an alumina crucible and sintered at 1300 °C for 3 h. In order to minimize the loss of lead due to vaporization, the PbO atmosphere for the sintering was maintained using PbZrO_3 as the spacer powder. Thermogravimetric and differential thermal analysis (TG-DTA) techniques were used to monitor the thermal behavior due to the reactions between the oxide precursors carried out on the powder mixtures at a heating rate of 10 °C/min with a simultaneous thermal analyzer (PERKIN ELMER Model TGA-7 and DTA-7). The

microstructures of the sintered samples were examined using a scanning electron microscopy (JEOL, JSM5910). The phase formation of the calcined powders was determined using a diffractometer (Philips ADP1700). The density of the sintered samples was measured by Archimedes' method with distilled water as the fluid medium. The effect of Ba^{2+} content on the mechanical properties of the ceramics was studied by Vickers and Knoop microhardness testers. Indentations were applied on the polished surfaces of PBZ ceramics. Applied loads were 500 and 50 g for Vickers and Knoop microhardness, respectively, with an indentation period of 15 s. The sintered samples were prepared for electrical property measurements by first polishing and then gold sputtering on to the clean pellet faces. Poling was done conventionally in a silicone oil bath at 170 °C with a field of 25 kV/cm. After poling, the d_{33} coefficient was measured using a d_{33} tester (Pennebaker Model 8000). The dielectric measurements were carried out at 1 kHz using a HIOKI 3532-50 impedance analyzer from room temperature to 300 °C with a heating and cooling rate of 0.5 °C/min controlled by a computer.

3. Results and discussion

The TG and DTA curves recorded at a heating rate of 10 °C/min in air for an equimolar mixture of lead oxide, barium carbonate and zirconium oxide where the ratio of Pb:Ba is 0.750:0.250 are given in Fig. 1. The TG curve shows two distinct weight losses. The first weight loss occurs around 275 °C and the second one above 750 °C. The sample shows a small endothermic peak in the DTA curve ~100 °C. This DTA peak can be attributed to the vaporization of water. However, no anomaly was observed from the TG pattern at this temperature. This may indicate that the small amount of vaporization of water could not be detected by the TG measurement. The first weight loss relates to the elimination of the organic residual from the

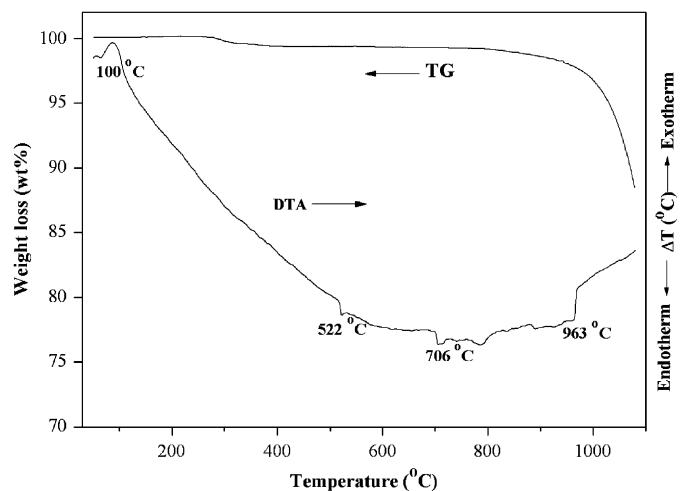


Fig. 1. TG and DTA curves for the mixture of PbO , BaCO_3 and ZrO_2 powders with the ratio of Pb:Ba = 0.750:0.250.

milling process [23]. After the first weight loss, the sample shows nearly zero weight loss up to 750 °C. Corresponding to the second fall in specimen weight, by increasing the temperature up to 700 °C, the solid-state reaction between PbO, BaCO₃ and ZrO₂ was observed. The broad endothermic characteristic in the DTA curve represents that reaction which has a minimum at 706 °C. Moreover, another endothermic peak with a minimum at 963 °C was also observed in this profile. Whilst the DTA event at 522 °C is associated with the allotropic transition $\gamma\text{-BaCO}_3 \rightarrow \alpha\text{-BaCO}_3$, this kind of transition does not result in weight loss [24]. The result agreed with Gomez-Yanez et al. [25] who analyzed the reaction of the milled powders of BaCO₃ and TiO₃. These data were used to make the decision of calcinations temperature at 1000 °C.

XRD patterns of the calcined (Pb_{1-x}Ba_x)ZrO₃ powders for 0.000 $\leq x \leq 0.300$ are shown in Fig. 2. Other than the perovskite, the structural phase was not observed for the whole range of compositions. The result agreed with

the TG and DTA results. Furthermore, the XRD patterns indicate that the replacement of Pb²⁺ by Ba²⁺ ions apparently influenced the orthorhombic PbZrO₃ structure. For all of the samples, the diffraction lines could be indexed with respect to an orthorhombic structure. The intensity ratio of 004/240 peaks and the relative intensity of superlattice reflections, namely 110 and 130/112 decreased with increasing Ba²⁺ content as shown in Fig. 3. Pokharel et al. [14–17] reported that the XRD pattern of orthorhombic antiferroelectric (A_O) phase presents the doublet of 240 and 004 reflections, which change to the single peak of 200 reflections for the rhombohedral ferroelectric (F_R) phase. For a purely orthorhombic pattern, the value $I_{004/240} \sim 0.5$ decreases with increasing amounts of the coexisting rhombohedral phase. In addition, the superlattice reflections, such as 110 and 130/112 of A_O phase, disappear absolutely for the F_R phase. Furthermore, the structure of as-calcined powder also revealed that, the fraction of the orthorhombic phase decreases with increasing Ba²⁺ content.

Fig. 4 shows the typical sintered densities for various PBZ compositions. The bulk densities for all samples are higher than 97% of theoretical density. The bulk density continuously decreases with increasing Ba²⁺ content. The result agreed with the work by Pokharel et al. [17]. In general, the bulk density of the PbZrO₃–BaZrO₃ system decreased with the increased mol% of BaZrO₃ (BZ). The theoretical density of the constituent compounds PZ and BZ are 8.055 and 6.229 g/cm³, respectively [26,27], which can be used to calculate an empirical estimate of the density (D) via the equation

$$D = ((1 - x) \times 8.055) + (x \times 6.229). \quad (1)$$

The variation of the measured density and the calculated density with composition x is also shown in Fig. 4. The scanning electron micrographs in Fig. 5 show the as-sintered surface of (Pb_{0.950}Ba_{0.050})ZrO₃ and (Pb_{0.800}Ba_{0.200})ZrO₃ ceramics. It can be seen that the samples with higher Ba²⁺ concentration show more uniformity in grain size.

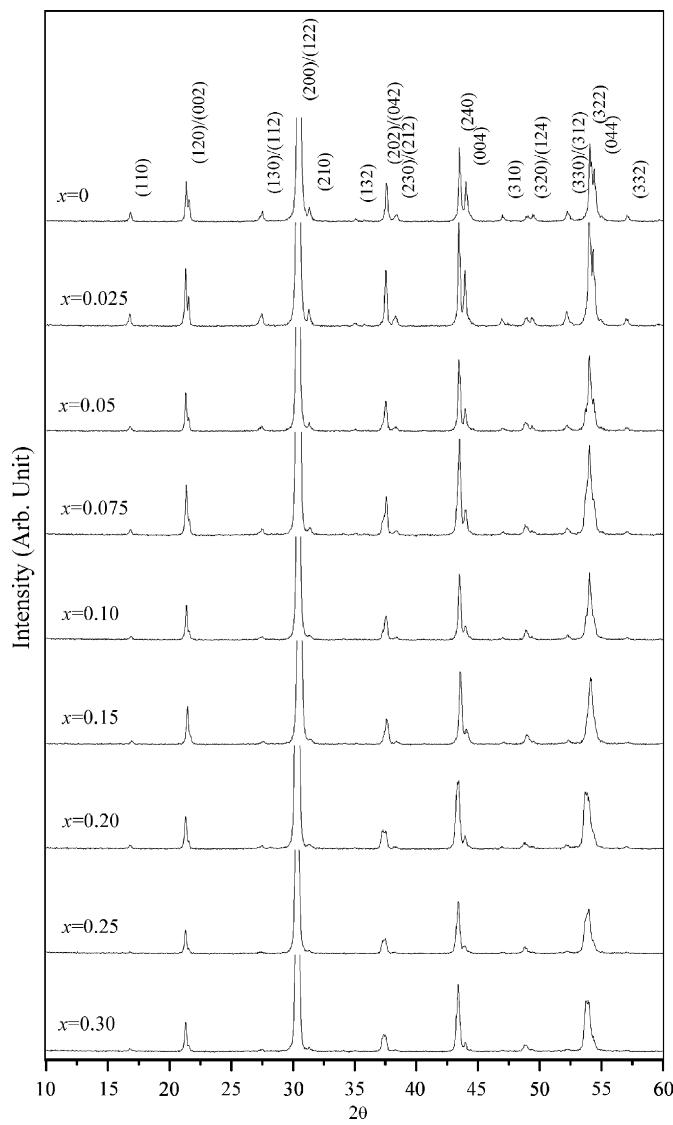


Fig. 2. XRD patterns of calcined powders of (Pb_{1-x}Ba_x)ZrO₃.

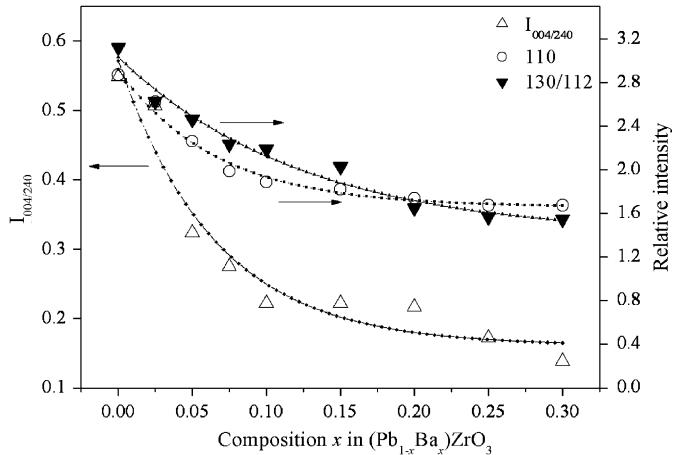


Fig. 3. Relative intensity of (110), (130)/(112) peaks and value of intensity ratio, $I_{004/240}$ as a function of Ba²⁺ content for calcined powders.

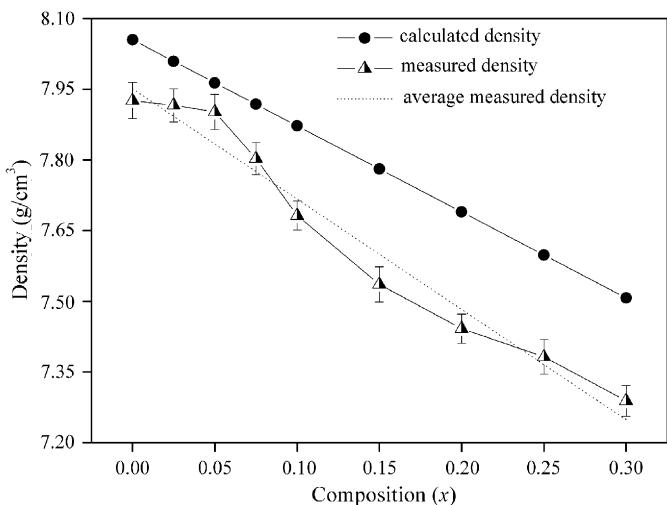


Fig. 4. Calculated density and bulk density of sintered pellets as a function of composition x .

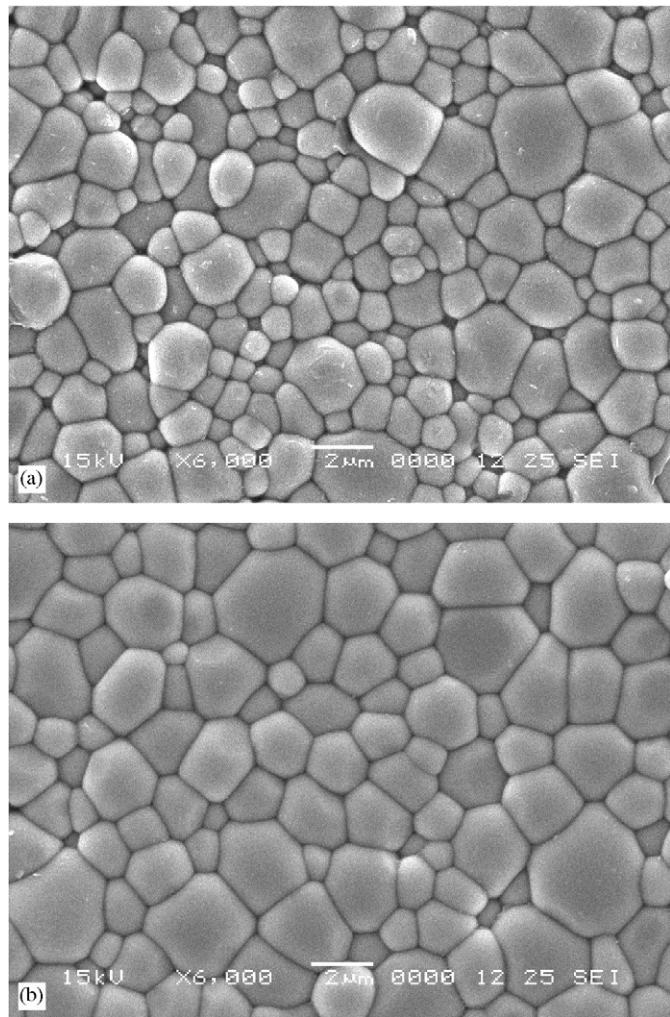


Fig. 5. SEM micrographs of as-sintered surface of (a) $(\text{Pb}_{0.950}\text{Ba}_{0.050})\text{ZrO}_3$ and (b) $(\text{Pb}_{0.800}\text{Ba}_{0.200})\text{ZrO}_3$ ceramics.

The ceramics with $x = 0.000\text{--}0.050$ compositions show a grain size of $1\text{--}1.3\text{ }\mu\text{m}$, while the $x = 0.075\text{--}0.300$ compositions show a grain size of $1.7\text{--}2.3\text{ }\mu\text{m}$ (as seen in Table 1).

The effect of Ba^{2+} substitution on the mechanical properties of the samples was studied by using Vickers hardness, Knoop hardness fracture toughness, and Young's modulus. These values are also listed in Table 1. It was found that there is no relation between Ba^{2+} concentration and the mechanical properties. Generally, the mechanical properties of lead-base ceramics depend on many factors such as grain size and porosity [28]. The variation in mechanical properties is likely caused by the variation in grain size of the samples. Because the samples were prepared by normal solid-state method, the variation in mechanical properties may also be attributed to a chemical homogeneity effect.

Fig. 6 depicts the variation of the dielectric constant with different temperatures during heating and cooling of samples for $0 \leq x \leq 0.30$. By replacing lead with barium, the dielectric maximum of lead zirconate is shown to shift to a lower temperature. Anomalies around 193 , 157 , and $116\text{ }^\circ\text{C}$ for $x = 0.025$, 0.050 and 0.075 , respectively, on heating were found. These anomalies are due to transformation from the Orthorhombic Anti-ferroelectric (A_0) phase to F_R phase [9,13,29] while the maximum dielectric on heating in all samples, is linked with the transformation of the Rhombohedral Ferroelectric (F_R) phase into the cubic paraelectric (P_C) phase [9,13,29].

The AFE–FE transformation of PZ has not been observed during heating, as can be seen Fig. 6. The absence of phase transformation may be due to some impurities from raw materials [6,30]. The FE–AFE transformation during cooling occurs at $194\text{ }^\circ\text{C}$. The intermediate FE phase of PZ exists only on the cooling cycle, which agrees with previous work [31–33]. However, the FE–AFE transformation temperature in this study is lower than in the former study. The reason for the lower FE–AFE transformation temperature of PZ is as yet unknown.

Furthermore, the AFE–FE transformation of $(\text{Pb}_{0.925}\text{Ba}_{0.075})\text{ZrO}_3$ is observed only during the heating cycle. Whilst on the cooling cycle, the FE–AFE transformation of $(\text{Pb}_{0.925}\text{Ba}_{0.075})\text{ZrO}_3$ was not observed even when investigated from dielectric loss measurement. This result is similar to what has been reported by Pokharel et al. [14,15] in the dielectric measurement for $(\text{Pb}_{0.90}\text{Ba}_{0.10})\text{ZrO}_3$. It has been proposed that the occurrence of a AFE–FE on heating, but no reverse cooling transition, is because the transformation is subject to a large temperature hysteresis, shifting the FE phase transition to below room temperature on the cooling cycle [15]. An alternative explanation is that the FE–AFE phase transition is sluggish and the FE phase is quenched to room temperature [14]. It has also been reported that the AFE phase can reappear after long-term (several months) aging [14]. In the present work, the thermal hysteresis of the $\text{AFE} \leftrightarrow \text{FE}$ phase transformation is about 80 and $100\text{ }^\circ\text{C}$ for compositions of $x = 0.025$ and 0.050 , respectively. The width of the temperature range of F_R phase on heating is 32.6 , 56.7 and $92.3\text{ }^\circ\text{C}$ for the compositions of $x = 0.025$, 0.050 and 0.075 ,

Table 1
Average grain size and mechanical properties of $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ ceramics

Samples composition (x)	Average grain size (μm)	Vickers hardness (GPa)	Knoop hardness (GPa)	Fracture toughness (MPa $\text{m}^{1/2}$)	Young's modulus (GPa)
0.000	1.0	4.81 ± 0.18	4.48 ± 0.48	3.30 ± 0.19	445 ± 55.06
0.025	1.3	6.48 ± 0.44	4.21 ± 0.77	2.04 ± 0.32	183 ± 39.76
0.050	1.3	5.83 ± 0.32	4.79 ± 0.37	1.84 ± 0.25	144 ± 41.63
0.075	2.3	5.61 ± 0.49	4.68 ± 0.35	2.15 ± 0.95	287 ± 151.26
0.100	1.6	5.85 ± 0.35	4.50 ± 0.33	1.57 ± 0.59	167 ± 116.26
0.150	2.0	5.10 ± 0.58	5.72 ± 0.31	2.75 ± 1.19	244 ± 152.60
0.200	1.7	4.61 ± 0.65	4.43 ± 0.26	2.60 ± 0.68	231 ± 87.24
0.250	1.7	5.30 ± 0.59	5.19 ± 0.53	2.25 ± 0.40	308 ± 94.04
0.300	2.2	4.10 ± 0.60	4.79 ± 0.37	2.54 ± 0.54	185 ± 74.95

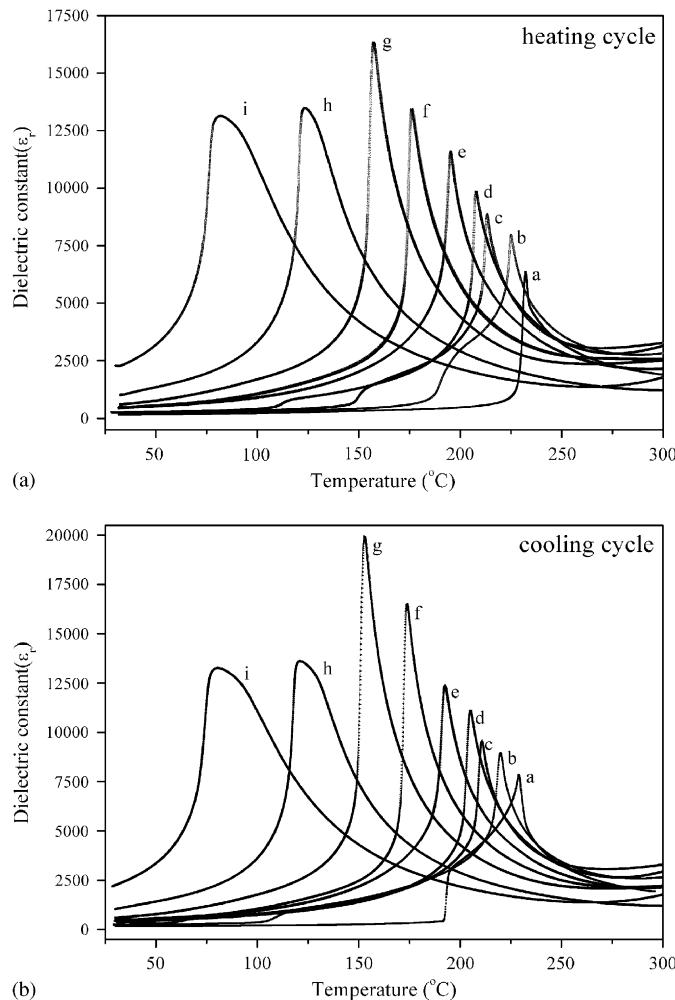


Fig. 6. Dielectric constant versus temperature on heating and cooling cycle of $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ ceramics; (a) $x = 0$, (b) $x = 0.025$, (c) $x = 0.05$, (d) $x = 0.075$, (e) $x = 0.10$, (f) $x = 0.15$, (g) $x = 0.20$, (h) $x = 0.25$, (i) $x = 0.30$.

respectively, while on cooling it is 35.5, 110.0 and 143.3 °C for the compositions of $x = 0.00$, 0.025 and 0.050, respectively, (Fig. 7). It can be noted that the AFE–FE transformation temperature decreases nearly linearly with increasing Ba^{2+} concentration.

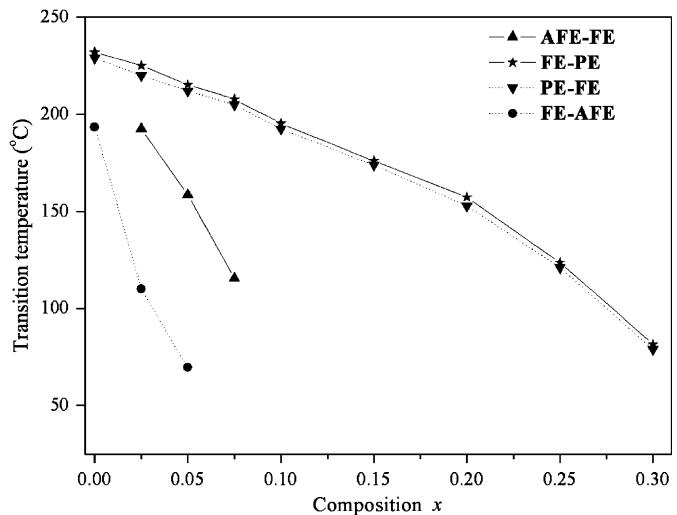


Fig. 7. Transition temperature as a function of composition x at 1 kHz.

rate of ~ 16 °C/mol% of BaZrO_3 with respect to its value for pure PZ.

The increase in the amount of Ba^{2+} is accompanied by a decrease in the Curie transformation temperature. Barium substitution at the Pb^{2+} site increases the room temperature dielectric constant from 160 for pure PZ to nearly 2300 for $(\text{Pb}_{0.700}\text{Ba}_{0.300})\text{ZrO}_3$ while the maximum dielectric constant at Curie point during the heating cycle increases with increasing Ba^{2+} content from 6300 for pure PZ to 16300 for $(\text{Pb}_{0.800}\text{Ba}_{0.200})\text{ZrO}_3$ ($x = 0.20$). For higher Ba^{2+} concentration, the lowering of maximum dielectric values is accompanied by progressive broadening of the permittivity peak. As shown in Fig. 7, the Curie temperature shifted to a lower temperature linearly, which may be explained by the increase of symmetry in PBZ structure with increasingly larger Ba^{2+} ions with Pb^{2+} site, and this system is a well-behaved complete solid solution. These results are similar to those reported in earlier papers [9,13]. However, in this study, the specimens exhibited a higher dielectric constant than earlier papers [4,9,14,15], probably due to better conditions for the sintering process. Hence, dense and homogeneous samples were achieved. The difference in

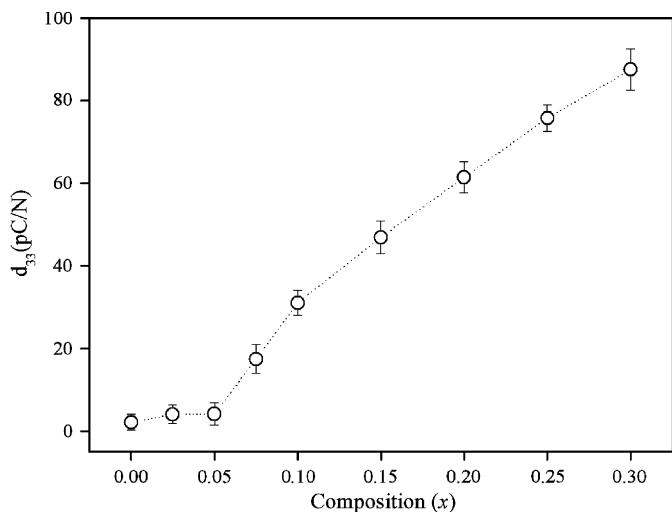


Fig. 8. Piezoelectric coefficient d_{33} and dielectric constant at room temperature of $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ with various x .

the transformation temperatures obtained during heating and cooling measurements in all samples was around 3 °C confirming that the FE–PE transformation over the entire composition range ($0 < x < 0.30$) is first order [6,8,15].

The longitudinal piezoelectric sensitivity of $(\text{Pb}_{1-x}\text{Ba}_x)\text{ZrO}_3$ at room temperature is shown in Fig. 8. The d_{33} value gradually increases with increasing Ba^{2+} content. Roberts [4] reported that the d_{33} value of $(\text{Pb}_{0.70}\text{Ba}_{0.30})\text{ZrO}_3$ was $\sim 65 \text{ pC/N}$, and it was 10^{-1} pC/N for PZ [34]. The present result indicated that substitution of Pb^{2+} by Ba^{2+} enhanced some piezoelectric properties in PBZ.

4. Conclusions

In the present work, the effect of Ba^{2+} concentration on the properties of the PBZ ceramics was studied. The orthorhombic phase and the fraction of the antiferroelectric phase were found to decrease with increasing Ba^{2+} content. The results corresponded to the structural phase changes in PBZ. The bulk density of PBZ ceramics continuously decreases with increasing Ba^{2+} content. This trend matches that of the calculated density of the PZ–BZ system. The d_{33} value at room temperature gradually increases with increasing Ba^{2+} content. Furthermore, the results indicated that Ba^{2+} concentration has a significant effect on the dielectric properties in PBZ ceramics. The AFE–FE and FE–PE phase transformation temperatures progressively decrease with continuously increasing Ba^{2+} concentration. The AFE–FE phase transformation was detected for compositions $0.00 \leq x \leq 0.075$. However, there is no relation between Ba^{2+} concentration and mechanical properties.

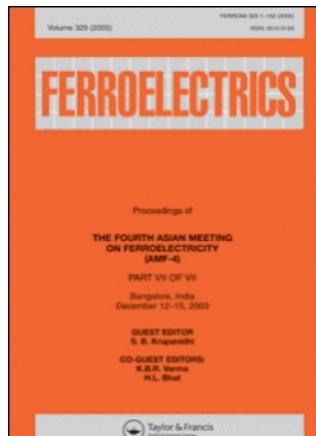
Acknowledgments

This work was supported by the Thailand Research Fund (TRF), Faculty of Science, Naresuan University and King Mongkut's Institute of Technology, Ladkrabang (KMITL). Acknowledgement is also to Dr. Mary Sarawit, Naresuan University International College, for her helpful comments and correction on the manuscript.

Reference

- [1] F.W. Ainger, Modern Oxide Materials, Academic Press, New York, 1972 P. 147–175.
- [2] E. Sawaguchi, G. Shirane, S. Hoshino, Phys. Rev. 83 (1951) 1078.
- [3] E. Sawaguchi, G. Shirane, Y. Takagi, J. Phys. Jpn. Soc. 6 (1951) 333.
- [4] S. Roberts, J. Am. Ceram. Soc. 33 (1953) 63.
- [5] L. Goulpeau, Sov. Phys. Solid State 8 (1967) 1970.
- [6] V.J. Tennery, J. Am. Ceram. Soc. 49 (1966) 483.
- [7] B.A. Scott, G. Burns, J. Am. Ceram. Soc. 55 (1972) 331.
- [8] R.W. Whatmore, A.M. Glazer, J. Phys. C: Solid State Phys. 12 (1979) 1505.
- [9] G. Shirane, Phys. Rev. 86 (1952) 219.
- [10] G. Shirane, S. Hoshino, Acta Crystallogr. 7 (1954) 203.
- [11] K. Yamakawa, S. Trolier-McKinstry, J.P. Dougherty, S.B. Krupanidhi, Appl. Phys. Lett. 67 (14) (1995) 2014.
- [12] Z. Ujma, J. Handerak, M. Pawelczyk, D. Dmytrow, Ferroelectrics 129 (1992) 127.
- [13] K.H. Yoon, S.C. Hwang, J. Mater. Sci. 32 (1997) 17.
- [14] B.P. Pokharel, D. Pandey, J. Appl. Phys. 86 (1999) 3327.
- [15] B.P. Pokharel, D. Pandey, J. Appl. Phys. 88 (2000) 5364.
- [16] B.P. Pokharel, D. Pandey, J. Appl. Phys. 90 (2001) 2294.
- [17] B.P. Pokharel, M.K. Datta, D. Pandey, J. Mater. Sci. 34 (1999) 691.
- [18] I. El-Harrad, P. Becker, C. Carabatos-Nedelec, J. Handerek, Z. Ujma, D. Dmytrow, Vib. Spectrosc. 10 (1996) 301.
- [19] I. El-Harrad, A. Ridah, C. Carabatos-Nedelec, P. Becker, J. Handerek, Z. Ujma, D. Dmytrow, J. Raman Spectrosc. 29 (1998) 123.
- [20] I. El-Harrad, A. Ridah, Ferroelectrics 265 (2002) 211.
- [21] B.P. Pokharel, R. Ranjan, D. Pandey, Appl. Phys. Lett. 74 (1999) 756.
- [22] B.P. Pokharel, D. Pandey, Phys. Rev. B 65 (2002) 214108.
- [23] J. Fang, J. Wang, L.M. Gan, S.C. Ng, Mater. Lett. 52 (2002) 304.
- [24] R.H. Perry, D. Green, Perry's Chemical Engineer's Handbook, McGraw Hill, Tokyo, 1984.
- [25] C. Gomez-Yanez, C. Benitez, H. Balmori-Ramirez, Ceram. Inter. 26 (2000) 271.
- [26] Powder Diffraction File no. 87-0570, International Centre for Diffraction Data, Newton Square, PA, 2000.
- [27] Powder Diffraction File no. 06-0399, International Centre for Diffraction Data, Newton Square, PA, 2000.
- [28] K. Uchino, Piezoelectric actuators/Ultrasonic motors, Kluwer Academic Publishers, London, 1996.
- [29] A.P. Debretteville, Phys. Rev. 94 (1954) 1125.
- [30] J. Handerek, M. Pawelczyk, Z. Ujma, J. Phys. C 14 (1981) 2007.
- [31] D.F. Weirauch, V.J. Tennery, J. Am. Ceram. Soc. 53 (1970) 229.
- [32] Z. Ujma, J. Handerek, J. Euro. Ceram. Soc. 23 (2003) 203.
- [33] A.A. Belov, Y. Jeong, J. Korean Phys. Soc. 32 (1998) S299.
- [34] S. Roberts, Phys. Rev. 51 (1951) 1078.

This article was downloaded by:[Vittayakorn, Naratip]


On: 11 November 2007

Access Details: [subscription number 784417142]

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954

Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Ferroelectrics

Publication details, including instructions for authors and subscription information:
<http://www.informaworld.com/smpp/title~content=t713617887>

Perovskite Phase Formation, Phase Transformations and Electrical Properties of Lead Nickel Niobate - Lead Zirconate Ceramics

Naratip Vittayakorn ^a; Supamas Wirunchit ^a; Sakda Trisak ^a; Rangsan Muanghlua ^b; Susasak Niemcharoem ^b

^a Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

^b Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

First Published on: 01 November 2007

To cite this Article: Vittayakorn, Naratip, Wirunchit, Supamas, Trisak, Sakda, Muanghlua, Rangsan and Niemcharoem, Susasak (2007) 'Perovskite Phase Formation, Phase Transformations and Electrical Properties of Lead Nickel Niobate - Lead Zirconate Ceramics', Ferroelectrics, 358:1, 42 - 48

To link to this article: DOI: 10.1080/00150190701533884

URL: <http://dx.doi.org/10.1080/00150190701533884>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Perovskite Phase Formation, Phase Transformations and Electrical Properties of Lead Nickel Niobate—Lead Zirconate Ceramics

NARATIP VITTAYAKORN,^{1,*} SUPAMAS WIRUNCHIT,¹
SAKDA TRISAK,¹ RANGSAN MUANGHLUA,²
AND SUSASAK NIEMCHAROEM²

¹Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

²Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

The perovskite structure of lead zirconate—lead nickel niobate ceramics, $(1-x)PbZrO_3 - xPb(Ni_{1/3}Nb_{2/3})O_3$ (PZ—PNN) with $x = 0.0-0.5$, were synthesized via the columbite precursor method. The formation of the perovskite phase in the calcined powders has been investigated as a function of calcination conditions by TG-DTA and XRD techniques. The complete solid solutions of perovskite phase of PZ—PNN ceramics were obtained over a wide compositional range. The results showed that the concentration of the PNN phase increased the calcination temperature must be increased in order to obtain phase-pure perovskite. In addition, x-ray diffraction indicated a phase transformation from a orthorhombic to a pseudo-cubic phase when the fraction of PNN was increased. A higher relative permittivity value, as a consequence of the higher PNN concentration, was observed.

Keywords Perovskite; columbite precursor; lead zirconate; lead nickel niobate

Introduction

Lead Zirconate, $PbZrO_3$ (PZ), is one end member of the industrially interesting solid-solution series $PbZrO_3$ — $PbTiO_3$ [1] and the first antiferroelectric identified by Sawaguchi et al. [2]. At room temperature PZ has an antiferroelectric phase (AFE) which has an orthorhombic structure [2]. Lead nickel niobate [$Pb(Ni_{1/3}Nb_{2/3})O_3$, PNN] was one of the first known relaxor ferroelectrics reported by Smolenskii and Agranovskaya [3]. Ferroelectric relaxor PNN exhibits a broad maximum in the dielectric constant, and a diffuse phase transition. Its Curie temperature is about -110°C and the maximum dielectric constant is about 3500 at 1 kHz [4]. Using this compound as one end member, the ternary solid solutions of PNN-PZ-PT [5] have been developed and utilized for sensors and actuators because of their excellent piezoelectric behavior.

As one part of a series of the investigations on the solid solutions with PZ, this study deals with the binary compound of PNN-PZ because of there has been no detailed report

Received September 3, 2006; accepted November 18, 2006.

*Corresponding author. E-mail: naratipcmu@yahoo.com

on dielectric and piezoelectric properties of this entire system. In the present work, the columbite precursor method was used to synthesize the $(1-x)\text{PbZrO}_3 - x\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZ – PNN) with $x = 0\text{--}0.5$. The phase formation and morphology of the powder calcined at various conditions are studied and discussed. Dielectric properties of PZ-PNN ceramics obtained from the columbite precursor method are presented and analyzed.

Experimental

Ceramics of $(1-x)\text{PbZrO}_3 - x\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZ – PNN) with $x = 0\text{--}0.5$ were synthesized using the columbite precursor method. The NiNb_2O_6 precursor, PbO (Fluka, >99% purity) and ZrO_2 (99%) were mixed and milled in ethyl alcohol for 18 h using a ball-milling. After drying at 120°C for 2 h, the reaction of the uncalcined powders taking place during heat treatment was investigated by thermogravimetric and differential thermal analysis (TG–DTA, Shimadzu), using a heating rate of 10°C/min in air from room temperature up to 1400°C. Based on the TG–DTA results, the mixture was calcined at various temperatures ranging from 650 to 900°C, dwell times 4 h and heating/cooling rates ranging 20°C/min, in closed alumina crucible, in order to investigate the perovskite phase formation. Each composition was sintered at 1100–1200°C in Pb atmosphere for 4 h in a closed alumina crucible. X-ray diffraction (XRD; Philips PW 1729 diffractometer) using $\text{CuK}\alpha$ radiation was used to determine the phases formed and optimum firing temperatures for the formation of desired phase. Lattice parameters of the perovskite phases were determined by Cohen's method in conjunction with the least squares method. Dielectric constant and loss measurements were made using an automated measurement system. This system consisted of an LCR meter (HP-4284, Hewlett-Packard Inc.). The capacitance and loss were measured at frequencies between 100 Hz and 1 MHz.

Results and Discussion

The result of TG–DTA simultaneous analysis of a powder mixed in the stoichiometric proportions of 0.5PZ–0.5PNN is shown in Fig. 1. In the temperature range 200–400°C, the sample

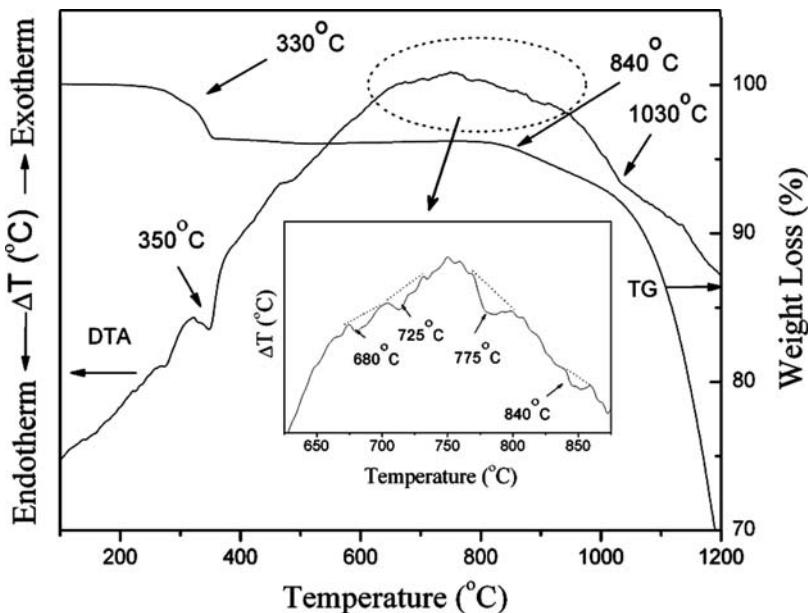
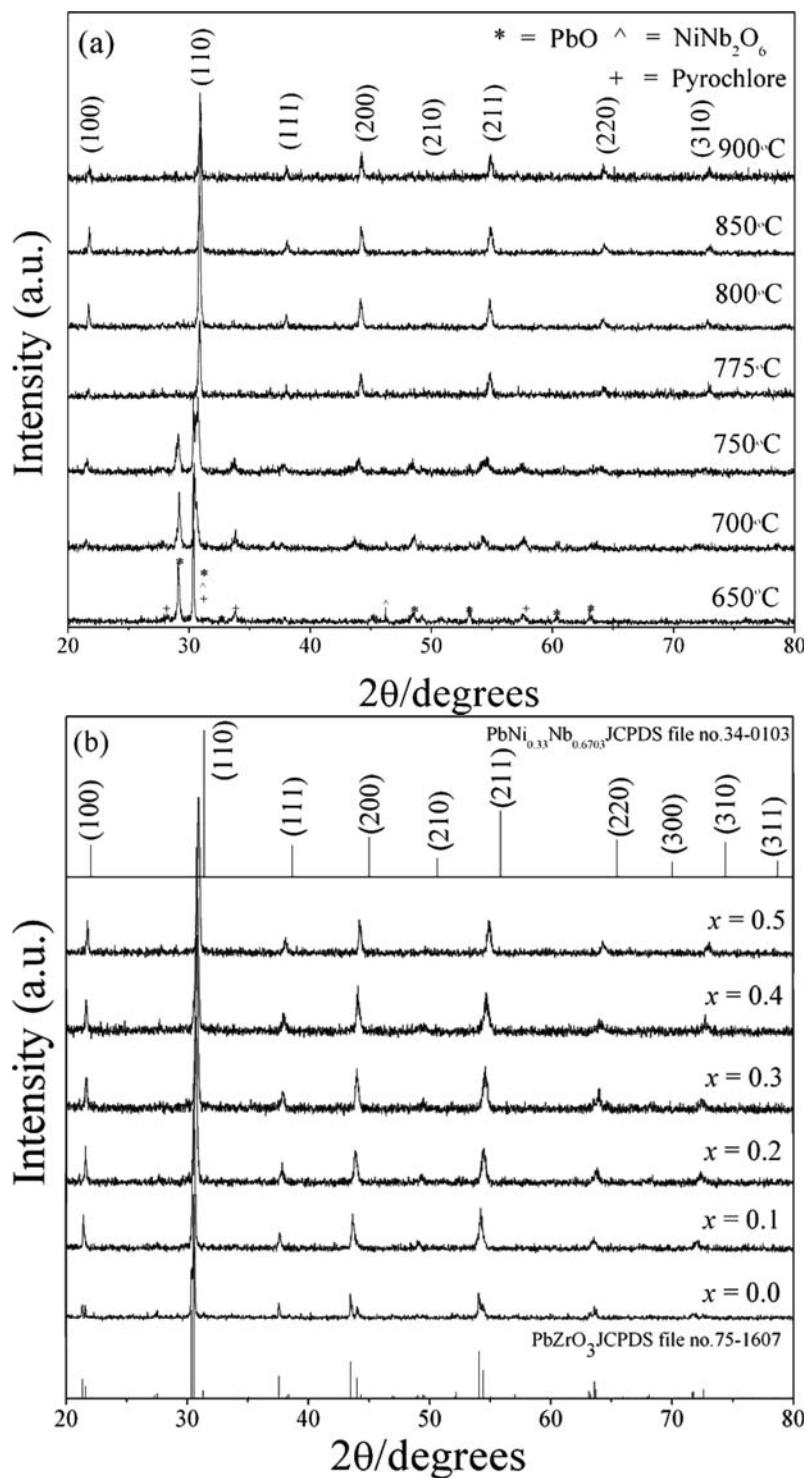
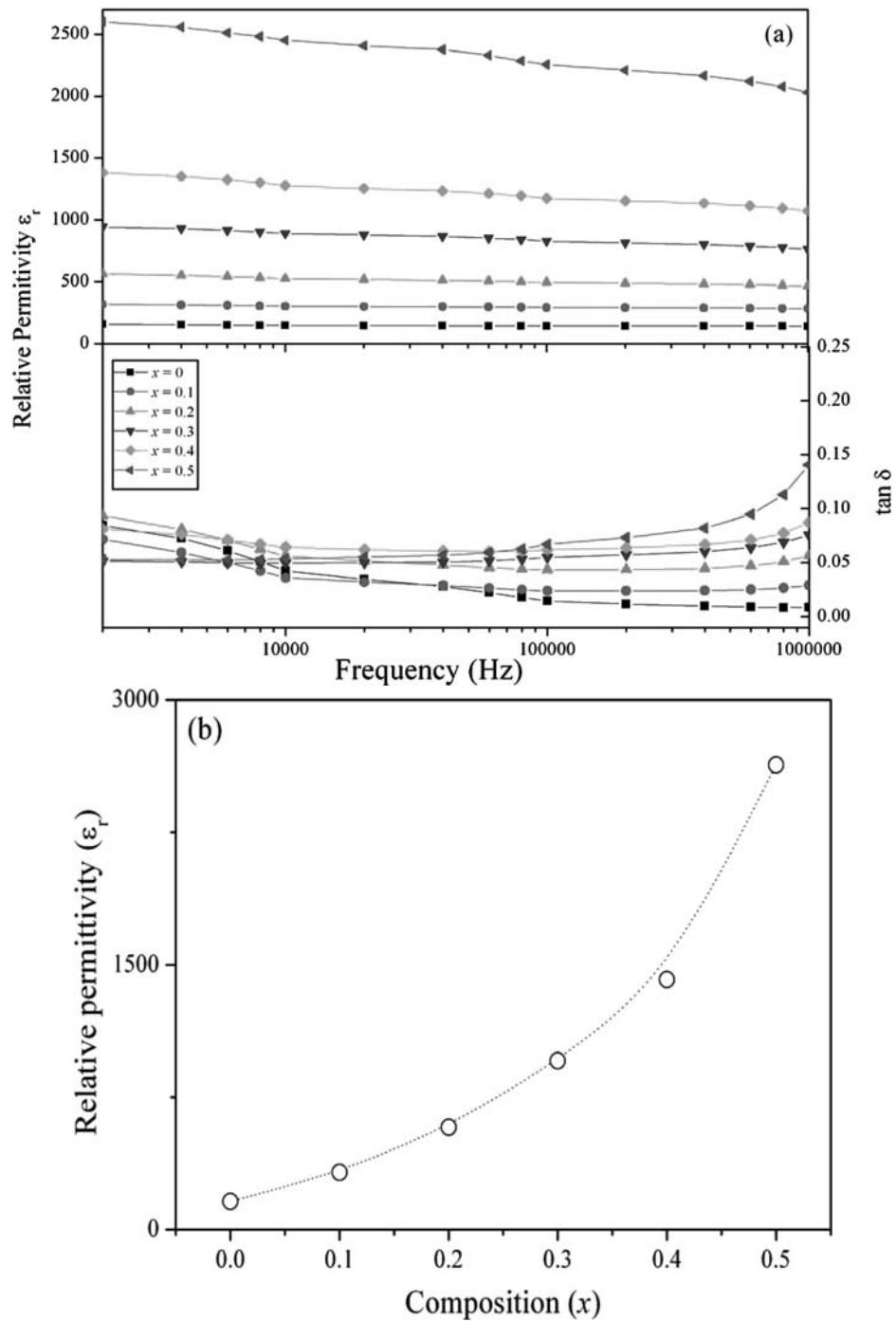



Figure 1. TG–DTA analysis of 0.5PZ–0.5PNN prepared by columbite method.


Figure 2. XRD patterns of $(1-x)\text{PZ}-x\text{PNN}$ powder prepared by columbite method (a) as a function of temperature ($x = 0.5$) (b) as a function of composition.

shows several large exothermic peaks in the DTA curve. These DTA peaks can be attributed to the decomposition of the organic species from the milling process [6]. The different temperature, intensities, and shapes of the thermal peaks probably are related to the different natures of the organic species and consequently, caused by the removal of species differently bounded in the network. In the temperature range 650–900°C, both exothermic and endothermic peaks are observed in the DTA curve. The enlarge zone of this DTA curve shown that the enothermic peak at ~775°C should be correlated to the phase transition of perovskite structure, because no weight loss could be found in TG curve and that is also in accordance to literature data. The last endothermic peak centered at ~840°C may be caused by the decomposition of lead oxide. As a result, crystallization of PZ-PNN powders takes place at 775°C, and perovskite structure is established above 780°C. Further increase in temperature or heating time will promote crystallization of perovskite phase powders. These data were used to define the range of temperatures (650 to 950°C) for XRD investigation. To study the phase development with increasing calcination temperature, all compositions were calcined at various temperatures for 4 h in air with constant heating/cooling rates of 20°C/min, followed by phase analysis using XRD technique. Fig. 2(a) shows XRD pattern of the 0.5PZ-0.5PNN powders calcined at different temperatures for 4 h prepared by columbite methods. The precursor phases PbO, NiNb₂O₆ and a small amount of crystalline pyrochlore phase were detected by XRD at 650°C. The sample heated to 750°C contained the perovskite phase, pyrochlore phase and a small amount of PbO. The heat treatment of the precursors at 775°C for 2 h results in the formation of single-perovskite phase. The studies also reflect the growth of crystallinity in the powders with the increasing heat-treatment temperatures.

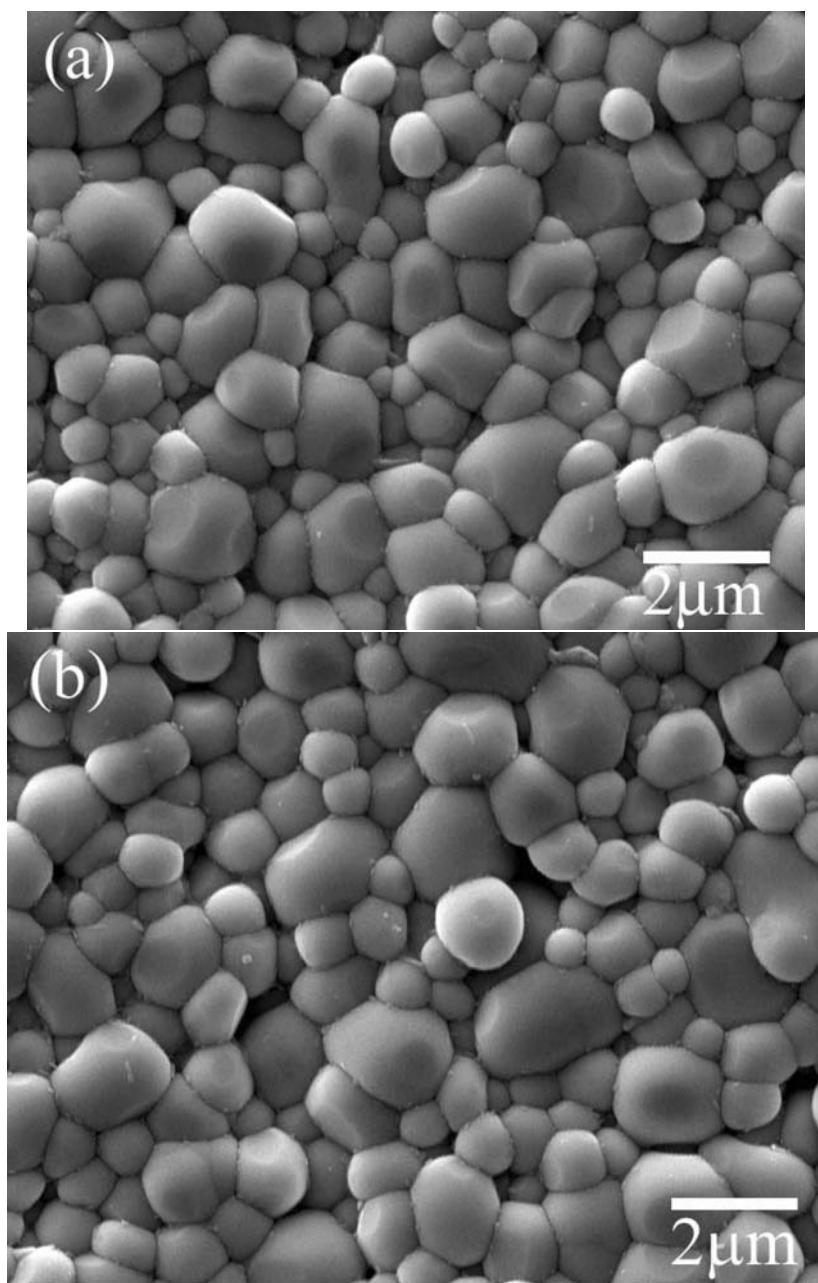

The results of the X-ray diffraction measurement support the DTA observation (Fig. 1) that the perovskite phase is formed at approximately 775°C. The XRD patterns of (1-*x*)PZ-*x*PNN powder with various *x* values are shown in Fig. 2(b). It can be seen that a complete crystalline solution of perovskite structure is formed throughout the whole composition ranges without the presence of pyrochlore or unwanted phases. From the patterns, PZ powder is identified as a single-phase material with a perovskite structure having orthorhombic symmetry which could be matched with ICDD file no. 75-1607. The XRD patterns of the PZ-PNN compositions show a combination between PZ and PNN patterns, showing a perovskite structure having the symmetry varying between orthorhombic and pseudo-cubic types. For better comparison, the ICDD file no. 34-0103 for PNN with a cubic structural symmetry is also displayed in Fig. 2(b).

Table 1
Structure and dielectric properties of (1 - *x*)PZ-*x*PNN ceramics

Composition	Lattice constant (Å)	Relative permittivity (1kHz)	Tan δ (1kHz)
<i>x</i> = 0.1	4.149 ± 0.0060	320	0.08
<i>x</i> = 0.2	4.134 ± 0.0032	580	0.01
<i>x</i> = 0.3	4.126 ± 0.0025	960	0.05
<i>x</i> = 0.4	4.111 ± 0.0040	1400	0.08
<i>x</i> = 0.5	4.099 ± 0.0027	2700	0.05

Figure 3. Relative permittivity and dielectric loss of PZ-PNN (a) as a function of frequency (b) as a function of composition. (See Color Plate VI)

Figure 4. SEM examination of the surface morphology in $(1-x)PZ-xPNN$ ceramics (a) $x = 0.1$ and (b) $x = 0.5$.

At the composition $x = 0.1$ to 0.5 , an increase in the mole fraction of PNN did not show any evidence of a change in symmetry. However, the lattice constant decreased as the amount of PNN increased due to the smaller ionic radii of b-site cation. The lattice parameters of the perovskite phase calculated from the XRD data for $(1-x)PZ-xPNN$ samples is summarized in Table 1. In Fig. 3(a) the relative permittivity and dielectric loss are plotted versus frequency

for different compositions. All curves show the same trend, the permittivity ε decreases with increasing frequency f in the form of $\varepsilon \sim 1/\log f$. Furthermore, an increase in permittivity with increasing x concentration is observed. For dielectric loss results, it can be seen that the loss tangent increases with increasing the frequency in all the samples. This may be attributed to the collective relaxation of increased dipoles and change in their relaxation time due to increased substitution of $(\text{Ni}_{1/3}\text{Nb}_{2/3})^{4+}$. Figure 3(b) represents the relative permittivity versus the PNN concentration. The relative permittivity was increased with increased mol percent of PNN as also illustrated in Table I. The effect of increasing the dielectric constant with increasing PNN content is interpreted to be due to the drive toward the orthorhombic to pseudo-cubic phase transition at room temperature, or in other words associated with the possibility of the decrease of the transition temperature to near room temperature. Other authors have reported a similar behavior [7, 8]. Figure 4 shows scanning electron microscopy (SEM) images of the surfaces of the composition $x = 0.3$ and 0.5 respectively. No plate-like grains were observed in both samples, indicating an absence of pyrochlore formation. There is not change in the grain size, nor is there any evidence of abnormal grain growth.

Conclusions

The columbite methods is explored in the preparation of single phase $(1-x)\text{PbZrO}_3 - x\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ powders. According to the results of DTA/TG and XRD analysis, crystallization of PZ-PNN powders took place at below 650°C and pure perovskite-type could be obtained above 775°C . The complete solid solutions of perovskite phase of PZ-PNN ceramics were obtained over a wide compositional range. The results showed that the concentration of the PNN phase increased the calcination temperature must be increased in order to obtain phase-pure perovskite. The permittivity ε decreases with increasing frequency f in the form of $\varepsilon \sim 1/\log f$. Furthermore, an increase in permittivity with increasing PNN concentration is observed.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE), Thailand Graduate Institute of Science and Technology (TGIST), Office of the National Research Council of Thailand (NRCT) and King Mongkut's Institute of Technology Ladkrabang.

References

1. B. Jaffe and W. R. Cook, *Piezoelectric ceramic*, R.A.N. Publishers, 1971.
2. E. Sawaguchi, G. Shirane, and S. Hoshino, *Phys. Rev.* **83**, 1078 (1951).
3. G. A. Smolenskii and A. L. Agranovskaya, *Sov. Phys.-Tech. Phys.* 1380 (1958).
4. S. Sharma, R. Sati, and R. N. P. Choudhary, *Can. J. Phys.* **71** 322 (1993).
5. E. F. Alberta and A. S. Bhalla, *Int. J. Inorg. Mater.* **3** 987 (2001).
6. A. Ngamjarurojana, O. Khamman, R. Yimnirun, and S. Ananta, *Materials Letters* **60**, 2867–2872 (2006).
7. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, *J. Mater. Res.* **18**, 2882–2889 (2003).
8. N. Vittayakorn, G. Rujijanagul, X. Tan, M. A. Marquardt, and D. P. Cann, *J. Appl. Phys.* **96** 5103 (2004).

The Effect of Post-Sintering Annealing Induced Extrinsic Dielectric Properties in PZT-PZN Ceramics

NARATIP VITTAYAKORN,^{1,*} DAVID P. CANN,²
GOBWUTE RUJJANAGUL,³ AND TAWEE TUNKASIRI

¹Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

²Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, USA

³Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand

Pb_{0.7}(Zr_{1/2}Ti_{1/2})_{0.7}(Zn_{1/3}Nb_{2/3})_{0.3}]O₃ (PZT-30PZN) powder was prepared using the columbite precursor method. The phase development of calcined powder precursors was analyzed by X-ray diffraction. Dielectric and ferroelectric properties of the as-sintered and annealed samples were measured and correlated with microstructure. The morphology evolution was determined by a scanning electron microscopy (SEM) technique. The as-sintered ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum measured at 1 kHz ($K_m@1\text{ kHz}$) of 14 000. Annealing resulted in a transition to normal-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 310°C to 300°C, and a dramatic increase of $K_m@1\text{ kHz}$ to a maximum value of 25 100 for the longer anneal. After thermal annealing at 900°C for 1 week a strong enhancement of remanent polarization (P_r) was observed.

Keywords Pb(Zr_{0.5}Ti_{0.5})O₃; Pb(Zn_{1/3}Nb_{2/3})O₃; thermal annealing; Dielectric properties; Phase Transitions

PACS: 77.84.Dy, 77.65.-j, 77.80.Bh

Introduction

Ferroelectric oxide materials are of immense interest for future electronic, optoelectronic, and multi-functional devices, where a tunable dielectric constant, switchable polarization, strong electro-optic properties, pyroelectric and piezoelectric properties may be exploited [1, 2]. In the last decade, normal ferroelectric lead zirconate titanate [Pb(Zr_{1-x}Ti_x)O₃, PZT] has become one of the most important commercially produced piezoelectric materials [3]. Lead zinc niobate, PZN, was first synthesized in the 1950s [1]. Its permittivity versus temperature curve displays a broad peak around 140°C (T_m) with a strong frequency dependence [4]. Extremely high relative permittivities have been measured in the vicinity of

Received May 15, 2006.

*Corresponding author. E-mail: naratipcmu@yahoo.com

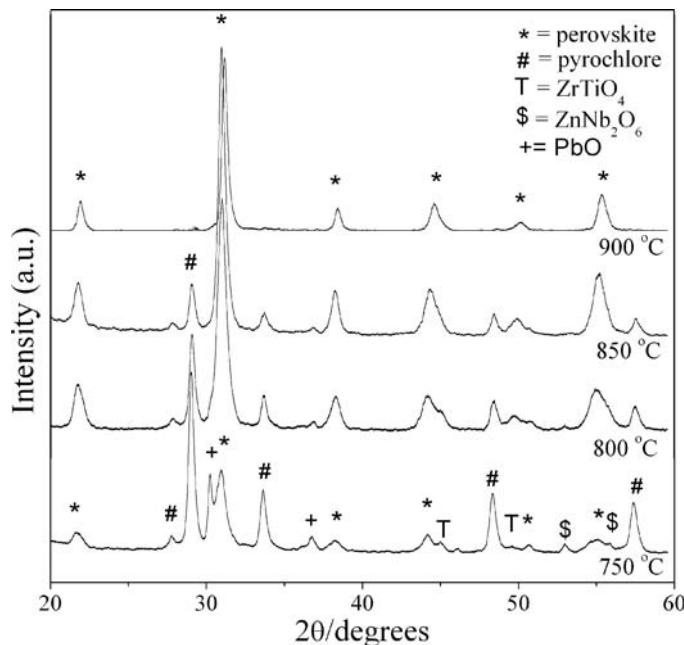
the peak with a $\varepsilon_r \sim 60\,000$ reported for single crystals [4, 5]. Nanometer-level chemical heterogeneity in the form of short range order of Zn^{2+} and Nb^{5+} at B-sites was proposed to account for the observed diffuse phase transition [6]. Although single crystals of PZN can routinely be grown by the flux method, it is known that perovskite PZN ceramics cannot be synthesized by the conventional mixed-oxide method without doping [7]. Since both PZT and PZN have the perovskite structure and are known to have excellent ferroelectric and piezoelectric properties, it is proposed to alloy PZN with PZT to stabilize and optimize the PZN ceramics. Ultra-high piezoelectric properties were expected in this system. Since both PZT and PZN have a perovskite structures and are known to have excellent dielectric and piezoelectric properties, it is suggested to alloy PZN with PZT to stabilize and optimize the PZN ceramics. Recent work by Fan and Kim [8, 9] have shown promise in producing phase-pure perovskite PZN-PZT ceramics with the conventional mixed-oxide method. In this study we emphasize the effect of annealing on the dielectric, ferroelectric properties and crystal structure in $0.7Pb(Zr_{1/2}Ti_{1/2})O_3-0.3Pb(Zn_{1/3}Nb_{2/3})O_3$ ceramics. Based on our previous results [10] for the PZN-PZT system, PZT containing 30 mol% of PZN was selected as the starting composition which is close to the rhombohedral MPB in this system [10, 11]. For annealing, the samples were heat treated at 900°C for 1 week in a sealed Al_2O_3 crucible with PbO-rich atmosphere. In this paper, we report the perovskite phase evolution and crystal structure of the PZT-PZN ceramics. Next, the temperature and frequency dependence of the dielectric constant are given for as-sintered and annealed samples. The remanent polarization and coercive field determined from $P-E$ hysteresis loops are presented. Finally, the diffuseness parameter (δ) of as-sintered and annealed sample are also introduced.

Experimental Procedure

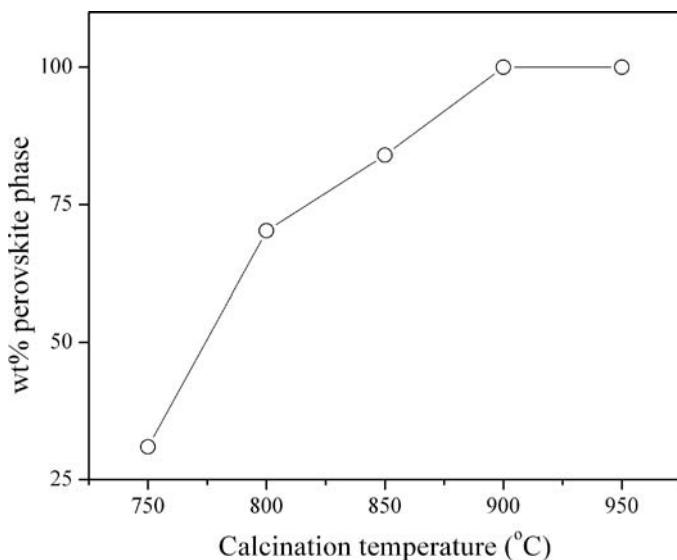
The columbite-(woulframite) precursor method was used to fabricate phase-pure $0.7Pb(Zr_{1/2}Ti_{1/2})O_3-0.3Pb(Zn_{1/3}Nb_{2/3})O_3$ ceramics. The reagent-grade oxide powders of PbO (99.9%, Aldrich, Milwaukee, WI, USA), ZnO (99.9%), Nb_2O_5 (99.9%), ZrO_2 (99.9%) and TiO_2 (99.9%) were used as starting raw materials. Prior to reaction with other raw materials, ZnO was reacted with Nb_2O_5 at 975°C for 4 h to form $ZnNb_2O_6$ and ZrO_2 was reacted with TiO_2 at 1400°C for 4 h to form $ZrTiO_4$. The precursors $ZnNb_2O_6$, $ZrTiO_4$ and PbO (with 2 mol% excess PbO) were weighed and mixed well by ball-milling in a polyethylene bottle together with methyl alcohol and partially stabilized zirconia balls. Methyl alcohol was removed by heating at 80°C for appropriate durations and then the mixture was dried at 150°C for 24 h. After drying, the mixed powders were calcined at $700-900^\circ\text{C}$ for 4 h in a covered Al_2O_3 crucible. The calcined powders were crushed using a mortar and pestle, mixed with organic binder PVA of 3 wt% to facilitate pressing. The mixtures were uniaxially cold-pressed at 90 MPa into discs of 15 mm in diameter and about 1 mm in thickness. Before sintering, the binder was removed by burning at 500°C for 2 h in a furnace, and then, the samples were placed on a dense Al_2O_3 crucible and sintered for 2 h in PbO atmosphere at temperature of 1200°C . To determine the effect of thermal annealing, the sintered samples were thermally annealed at 900°C in the same PbO atmosphere for 1 week.

X-ray diffraction (XRD) patterns of the sintered pellets were measured using an x-ray diffractometer (PW1729, Philips, Netherlands). CuK_α radiation with step scanning was used with a step size of 0.02° and a scan rate of 2 s per step. The relative amounts of perovskite and pyrochlore phases were approximated by calculating the ratio of the major XRD peak intensities of the perovskite and pyrochlore phase via the following equation

[12]:


$$\text{Perovskite Intensity \%} = \left(\frac{I_{\text{perov}}}{I_{\text{perov}} + I_{\text{pyro}} + I_{\text{PbO}}} \right) \times 100 \quad (1)$$

where I_{perov} , I_{pyro} , and I_{PbO} refer to the intensity of the (110) perovskite peak, (222) pyrochlore peak, and the intensity of the highest lead oxide peak, respectively. The dielectric and ferroelectric properties of the as-sintered and annealed samples were characterized as follows. The polished samples were electrode with silver paste and then fired at 550°C for 30 min. The dielectric constant (K) and dielectric loss ($\tan \delta$) were measured on heating at 3°C min⁻¹ using an LCR meter (HP4274A, Hewlett-Packard, Palo Alto, CA) over the range of 100–500 kHz and temperatures 25–450°C. In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radiant Technologies, Inc., RT66A).


Results and Discussion

A. Perovskite Phase Formation and Crystal Structure

Powder XRD patterns of the calcined 0.7PZT-0.3PZN powders at different calcination temperatures are shown in Figure 1. The pyrochlore phase $\text{Pb}_{1.88}(\text{Zn}_{0.3}\text{Nb}_{1.25})\text{O}_{5.305}$ (JCPDS No. 25-0446) was dominant at calcination temperatures below 850°C. The precursor phases PbO , ZrTiO_4 and ZnNb_2O_6 were also detected by XRD at below 800°C. The columbite precursors did not have any trace of free Nb_2O_5 . This minimizes the preferential reaction

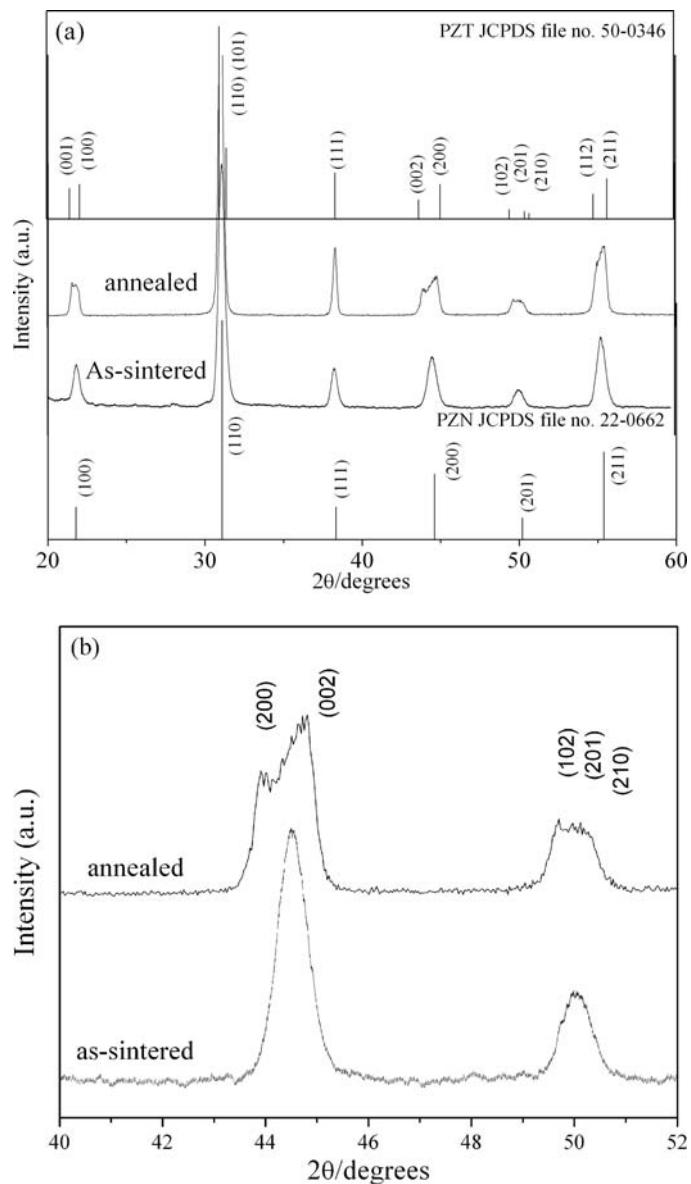


Figure 1. XRD patterns of 0.7PZT-0.3PZN powder calcined at various temperatures for 4 h with heating/cooling rate of 20°C/min.

Figure 2. Percentage of perovskite phase as a function of calcination temperature.

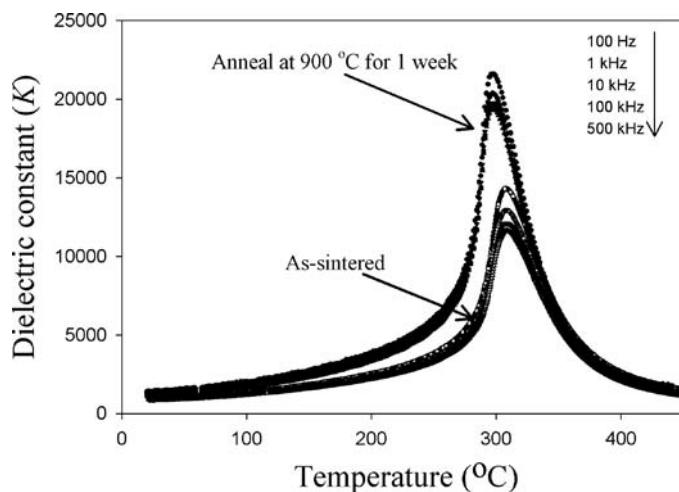
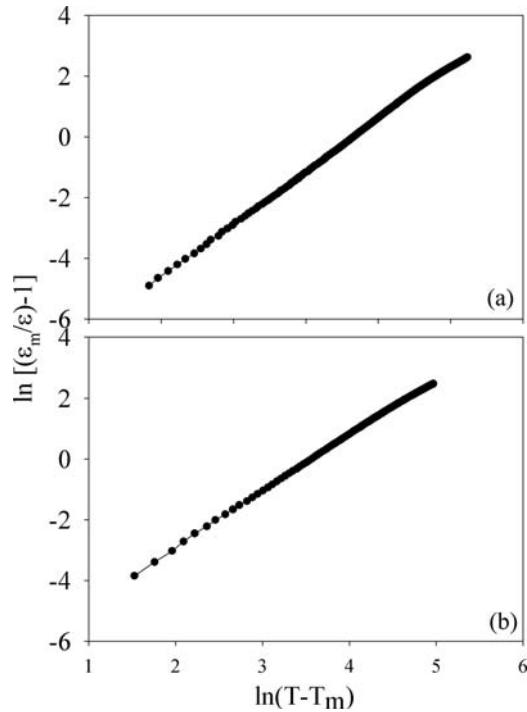

of Nb_2O_5 with PbO to form a stable $\text{Pb}_x\text{Nb}_y\text{O}_z$ pyrochlore phase. It is assumed that the columbite phase ZnNb_2O_6 decomposed via a reaction with PbO at low temperatures to form the pyrochlore phase $\text{Pb}_{1.88}(\text{Zn}_{0.3}\text{Nb}_{1.25})\text{O}_{5.305}$. At 800°C , the pyrochlore phase began to decrease and disappeared completely at 900°C . This result shown that at higher temperatures, the pyrochlore phase ($\text{Pb}_{1.88}(\text{Zn}_{0.3}\text{Nb}_{1.25})\text{O}_{5.305}$) transforms to perovskite phase ($0.7\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3-0.3\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$) with increased calcination temperatures. The optimum calcination temperature for the formation of pure perovskite phase was found to be about 900°C for 4 h. with heating/cooling rates as fast as $20^\circ\text{C}/\text{min}$. The perovskite phase formation various calcination temperatures are shown in Figure 2. Room temperature XRD patterns are shown in Figure 3(a) for 0.7PZT-0.3PZN samples before and after annealing. First, both samples show pure phase perovskite after sintering and annealing process. No evidence of pyrochlore phase $\text{Pb}_{1.88}(\text{Zn}_{0.33}\text{Nb}_{1.25})\text{O}_{5.305}$ or any unidentified phase was detected for as-sintered and annealed samples. Splitting of diffraction peaks can be used to determine details of structure changes. Figure 3(b) shows XRD peak profiles of the (200) and (102) peaks for as-sintered and annealed samples. The XRD data shows that the splitting of (200) and (102) peak are not observed in the as-sintered sample. In the as-sintered sample, only a single (200) peak is seen, indicating that the major phase had pseudo-cubic symmetry. Nevertheless, a shoulder in the (200) peak for annealed sample demonstrated the coexistence of both tetragonal and rhombohedral phase, which was consistent with this composition's proximity of the MPB [10]. As the annealing time was increased, this broad peak split into two peaks, demonstrating that the average symmetry became tetragonal. On the basic of XRD and dielectric properties measurements, we have identified the MPB in the $(1-x)\text{PZT}-x\text{PZN}$ system in our previous work [11]. The MPB sits around $x \sim 0.2$, separating the tetragonal phase for $x \leq 0.2$ from the rhombohedral phase for $x \geq 0.3$. It is possible that this composition has moved close to the tetragonal side of the MPB.

Figure 3. (a) XRD patterns of 0.7PZT-0.3PZN samples for as-sintered and after annealing at 900°C 1 week. (b) XRD patterns of the (200) and (102) peaks of as-sintered and annealed samples.

B. Dielectric and Piezoelectric Properties

The characteristic temperature and frequency dependence of the dielectric constant for as-sintered and annealed samples is shown in Figure 5. The general trend seems to indicate that the annealed samples show more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric behavior observed in the as-sintered state. The as-sintered 0.7PZT-0.3PZN ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum of approximately 12,000 measured at 1 kHz with a $T_{\max} \sim 310^{\circ}\text{C}$.

Figure 4. Temperature-dependent relative dielectric permittivity of 0.7PZT-0.3PZN for as-sintered and annealed samples.


Annealing resulted in a transition to normal–ferroelectric-like behavior, a shift in the dielectric maximum temperature from 310°C to 300°C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 22,000 for the longer anneal. This change in dielectric behavior is believed to be due to a reduction in the effective volume fraction of a low- K PbO rich grain-boundary phase and a decrease in the chemical heterogeneity of the sample. This behaviour is consistent with the conclusions of Randall et al. [13] and Leite et al. [14] in the PMN–PT system.

Randall et al. [13] and Xia and Yao [15] observed that excess PbO has a great influence on the electrical properties. In lead-based ferroelectric ceramics, liquid phase sintering is present because of the low melting point of lead oxide. Thus, a small amount of excess PbO can be added to assist in the formation of the perovskite phase and for densification of the ceramic. However, an overabundance of PbO will result in PbO enrichment of the grain boundary and the formation of a grain boundary layer. Because this layer has a low dielectric constant ($K \sim 20$), the overall dielectric constant will be decreased due to the presence of the grain-boundary phase. To ameliorate this effect, thermal annealing is effective in increasing the chemical homogeneity. Recently, work by Leite et al. [14] on PMN–35PT ceramic reported a non-uniform distribution of constituent elements in PMN–PT powder (phase-pure according to XRD) which was prepared by the columbite method. They reported that both the chemical homogeneity and dielectric properties were improved with increased annealing time.

It is well known that the permittivity of a normal ferroelectric can be described by the Curie-Weiss law: [2]

$$\frac{1}{\epsilon_r} = \frac{T - \theta}{C} \quad (2)$$

where θ is the Curie-Weiss temperature and C is Curie constant. A relaxor ferroelectric can be described by a simple quadratic law. This arises from the fact that the total number of relaxor contributing to the permittivity response in the vicinity of the permittivity peak is temperature dependent, and the temperature distribution of this number is given

Figure 5. $\ln[(\varepsilon_m/\varepsilon) - 1]$ vs $\ln(T - T_m)$ for 0.7PZT-0.3PZN ceramics; (a) as-sintered sample (b) annealed sample.

by a Gaussian function about a mean value T_0 with a standard deviation δ . The relative permittivity can be derived via the following expression: [16, 17]

$$\frac{\varepsilon'_m}{\varepsilon'(f, T)} = 1 + \frac{(T - T_m(f))^\gamma}{2\delta_\gamma^2} \quad (1 \leq \gamma \leq 2) \quad (3)$$

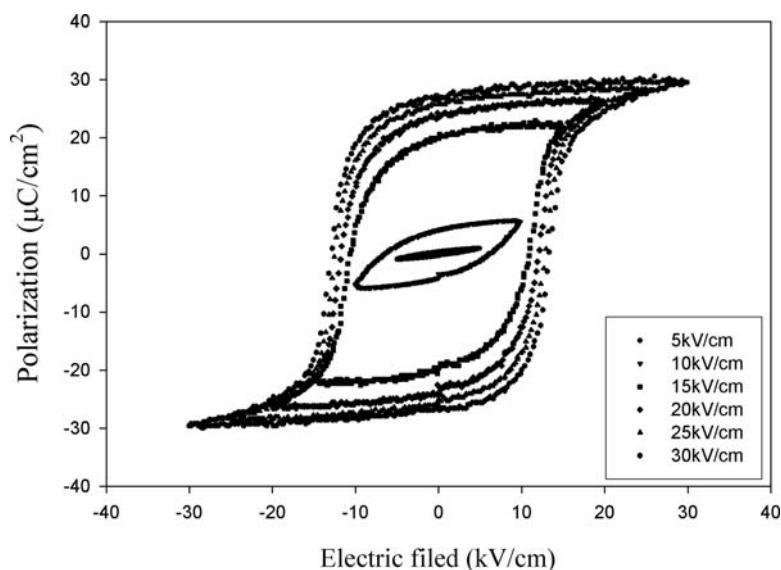
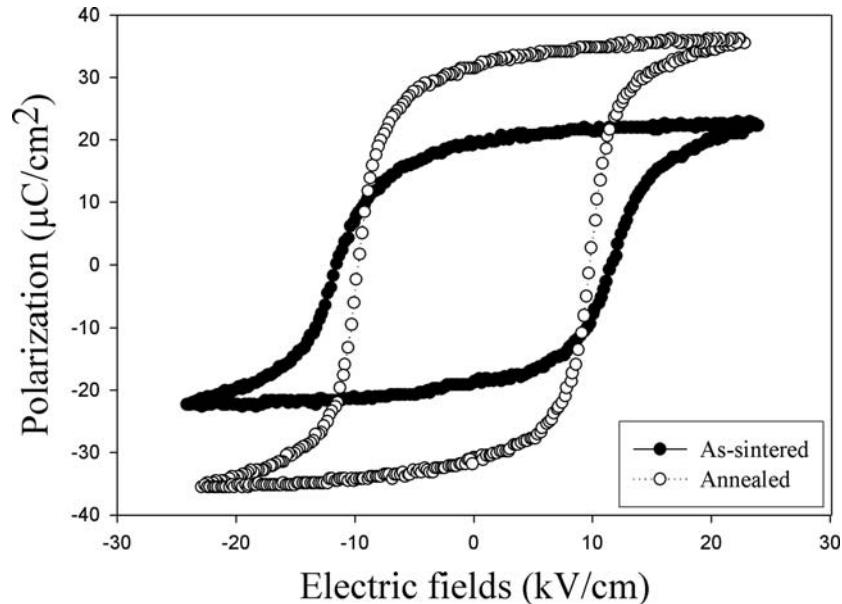

where ε'_m is the maximum value of the permittivity at $T = T_m(f)$. The value of γ is the expression of the degree of dielectric relaxation in the relaxor ferroelectric material. When $\gamma = 1$ Eq. (3) expresses Curie-Weiss behavior, while for $\gamma = 2$ this equation is identical to the quadratic relationship. Many relaxor ferroelectric materials can be fit to Eq. (3) with $\gamma = 2$ at temperatures above T_{\max} . The parameter δ_γ can be used to measure the degree of diffuseness of the phase transition in mixed relaxor-normal ferroelectric materials. The values γ and δ_γ are both material constants depending on the composition and structure of the material. Figure 5(a) and (b) are the fitting curves of the dielectric constants for the as-sintered and annealed samples according to Eqs. (3). The δ_γ value can be determined from the slope of $\varepsilon'_m/\varepsilon'$ versus $(T - T_m)^2$, which should be linear. The fitting results are summarized in Table 1. From Table 1, it was found that a significant reduction in δ_γ and γ is observed in the annealed samples, indicating reduced diffuseness in the phase transition. The large improvement in the dielectric constant after annealing mainly occurs at the temperature range around T_m , thus the dielectric peak becomes sharper, so a lower δ_γ is observed in the annealed samples with the highest ε_m . The parameter δ_γ can be used to measure the degree of diffuseness of the phase transition in mixed relaxor-normal ferroelectric materials.

Table 1
Dielectric parameter at 10 kHz for as-sintered and annealed samples


	As-sintered	Annealed
ε_r max	12 000	19 300
T_{max}	308	297
γ	1.86	1.71
δ	28.35	22.93

The lower δ value in the annealed samples indicates that the homogeneity at the atomic scale is much higher than in as-sintered samples.

Polarization hysteresis measurements at room temperature were performed using a modified Sawyer-Tower circuit. Figure 6 shows the saturated loops of 0.7PZT-0.3PZN samples with difference electric fields strengths. It is clearly evident that the shape of hysteresis varies greatly with the electric fields strength. At 5 kV/cm electric fields strength, a near-linear relationship of P-E is observed. This result is due to the fact that the electric field is not large enough to switch any domains. At 10 kV/cm electric fields, the polarization nonlinearity is developed in both regions of the positive and negative fields. These results clearly demonstrate that the electric field strength of 10 kV/cm is of enough energy to constrain realignment of some domains in the direction of the applied fields. No evidence of pinning effect or asymmetric loop was detected in all electric fields strength. At 30 kV/cm electric field strength, the loop reveals fully developed symmetric hysteresis loop. This shows that the electric fields strength of 30 kV/cm has of enough energy to constrain realignment of all domains in the direction of the electric fields.

Figure 6. P-E behaviors for annealed sample at various maximum electric field strengths.

Figure 7. P-E behaviors for 0.7PZT-0.3PZN ceramics before and after annealing.

The hysteresis loops of as-sintered and annealed samples are shown in Figure 7. The remanent polarization (P_r) increased from $21.4 \mu\text{C}/\text{cm}^2$ to $34.7 \mu\text{C}/\text{cm}^2$ for the annealed sample. Moreover the coercive field (E_c) decreased from $14.5 \text{ kV}/\text{cm}$ to $12.3 \text{ kV}/\text{cm}$ after annealing. It can be concluded that the annealed samples exhibited larger remnant polarizations and lower coercive fields compared with as-sintered samples, which means that the annealed ceramic samples are more easily poled and should have better piezoelectric properties.

Haertling and Zimmer [18] derived an empirical relationship between remanent polarization, saturation polarization and polarization at fields above the coercive field. This permits the quantification of changes in the hysteresis behavior for each sample through the following equation:

$$R_{sq} = \frac{P_r}{P_s} + \frac{P_{1.1E_c}}{P_r} \quad (4)$$

where, R_{sq} is the squareness of the hysteresis loop, P_r is remanent polarization, P_s is saturation polarization, $P_{1.1E_c}$ is the polarization of an electric field equal to 1.1 times the coercive field (E_c). For an ideal hysteresis loop, the squareness parameter is equal to two. Normal square ferroelectric P-E loops were observed in undoped as-sintered samples. After annealing, the value of R_{sq} increased from 1.21 to 1.64 for the annealed sample.

In lead-based ferroelectric materials, the dielectric and piezoelectric properties are strongly influenced by phase composition, homogeneity, microstructure, defects, external field and domain wall motion. These external factors not only contribute to the material properties but also in many cases actually control the materials responses. The transition from a mixed domain to a uniform domain structure after annealing is believed to account for the observed increase in properties. Leite et al. [14] observed many types of ferroelectric domains in hot-pressed PMN-PT ceramics, including nano-domains, tweedlike domains and

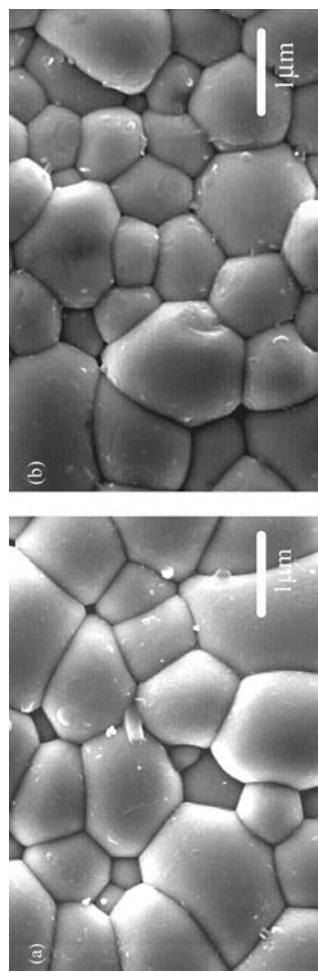


Figure 8. SEM micrographs of 0.7PZT-0.3PZN ceramics; (a) as-sintered samples and (b) annealed samples.

ferroelectric micro-domains. With the anticipated differences in size and mobility between the three coexisting types of domains, the interaction among these domains will be weak, resulting in low permittivity and P_r . After annealing, only tweedlike domains were observed. Interactions between these domains and the motion of domain walls yield higher values of P_r and lower coercive fields (E_c).

Figure 8 shows scanning electron microscopy (SEM) images of the surfaces of 0.7PZT-0.3PZN ceramics before and after annealing. No plate-like grains were observed in both samples, indicating absence of pyrochlore formation. There is no change in the grain size, no evidence of abnormal grain growth in the annealed sample. Both of the microstructures looked quite dense, with little porosity. The density of the samples slightly increases from 94.7% theoretical density to 96.2% after annealing at 900°C for 1 week. Obviously the increase in density will not lead to an improvement of dielectric and piezoelectric responses.

Conclusions

The dielectric and ferroelectric properties of 0.7PZT-0.3PZN ceramics formed via the columbite process were investigated. Post-sintering annealing is an effective way to improve the dielectric and piezoelectric responses of PZT-PZN ferroelectric ceramics. The annealing temperature and annealing time have an effect on the electrical properties. After annealing at 900°C for 1 week in a PbO-rich atmosphere, PZT-based ceramics with $\epsilon_{r\max}$ 22 000, P_r 34.7 $\mu\text{C}/\text{cm}^2$ were achieved in this study. The large improvements in the dielectric and piezoelectric properties due to postsintering annealing are mainly attributed to the extrinsic contributions from domain wall motion.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), Faculty of Science Chiang Mai University and King Mongkut's Institute of Technology Ladkrabang.

References

1. K. Uchino, *Ferroelectric Devices*, Marcel Dekker, Inc., New York, 2000.
2. B. Jaffe and W. R. Cook, *Piezoelectric ceramic*, R.A.N. Publishers, 1971.
3. G. H. Haertling, *J. Am. Ceram. Soc.* **82**, 797–818 (1999).
4. J. Kuwata, K. Uchino, and S. Nomura, *Ferroelectrics* **37**, 579 (1981).
5. M. L. Mulvihill, L. E. Cross, W. Cao, and K. Uchino, *J. Am. Ceram. Soc.* **80**, 1462 (1997).
6. C. A. Randall, A. S. Bhalla, T. R. Shrout, and L. E. Cross, *Ferroelectrics* **11**, 103 (1990).
7. A. Halliyal, U. Kumar, R. E. Newham, and L. E. Cross, *J. Am. Ceram. Soc.* **70**, 119–124 (1987).
8. H. Fan and H.-E. Kim, *J. Appl. Phys.* **91**, 317 (2002).
9. H. Fan and H.-E. Kim, *J. Mater. Res.* **17**, 180 (2002).
10. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, *Mat. Sci. Eng. B* **108**, 258 (2004).
11. N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M. A. Marquardt, and D. P. Cann, *J. Electroceramic* **16**, 141–149 (2006).
12. S. L. Swartz and T. R. Shrout, *Mater. Res. Bull.* **17**, 1245 (1982).
13. C. A. Randall, A. D. Hilton, D. J. Barber, and T. R. Shrout, *J. Mater. Res.* **8**, 880 (1993).

14. E. R. Leite, A. M. Scotch, A. Khan, T. Li, H. M. Chan, M. P. Harmer, S.-F. Liu, and S.-E. Park, *J. Am. Ceram. Soc.* **85**, 3018 (2002).
15. F. Xia and X. Yao, *J. Mater. Sci.* **36**, 247 (2001).
16. L. E. Cross, *Ferroelectrics* **76**, 241 (1987).
17. K. Uchino, *Ferroelectrics* **151**, 321 (1994).
18. G. H. Haertling, W. J. Zimmer, *Am. Ceram. Soc. Bull.* **45**, 1084 (1966).

Perovskite formation, dielectric and ferroelectric properties of $\text{PbZrO}_3\text{--Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics via a columbite precursor synthetic route

Naratip Vittayakorn and Supamas Wirunchit

B

A

Abstract

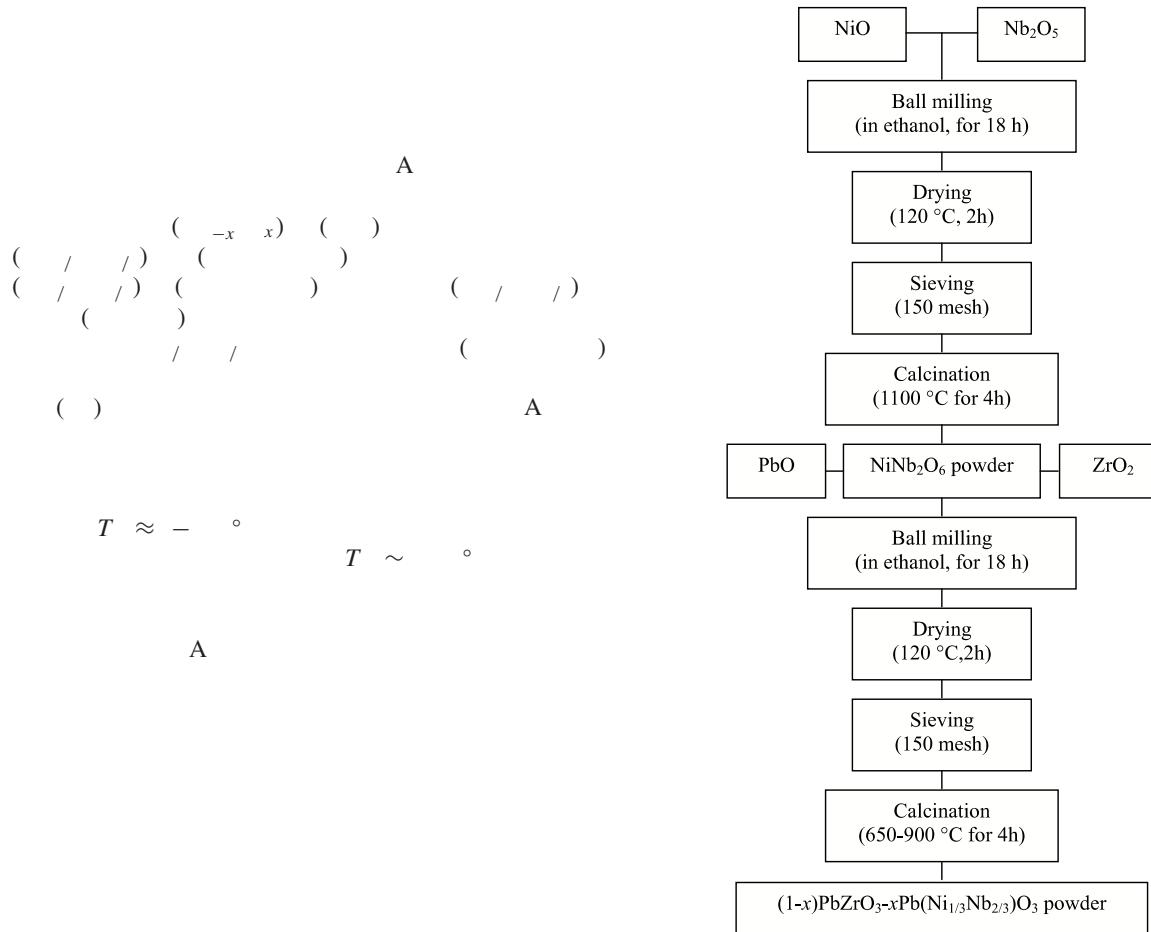
($-x$) x ($/$) $x = .$

(A) (A)

($-x$) x ($/$) x

$x = .$ x

P E


(R)

$x = .$ $\cdot \mu$ $-$ $\cdot \mu$ $-$ (P)

(A)

1. Introduction

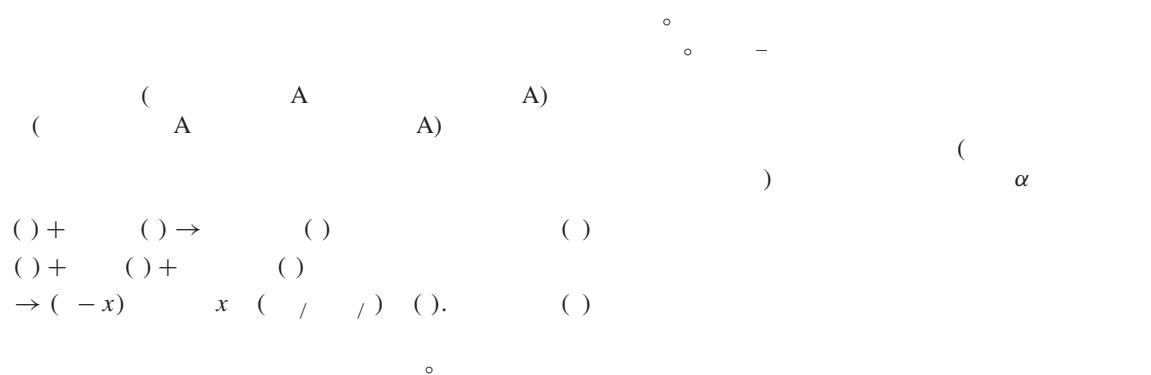

(A) A \circ
 $a = .$ $b = .$ $c = .$
 P cb (A) A $+$
 A $-$

Figure 1. (- x) x (/ /)

2. Experimental procedure

$$(-x) \quad x \quad (\quad / \quad) \quad (\quad) \quad x = \quad = \left(\frac{I}{\sum I} \right) \times \quad ;$$

$$(i = \quad) \quad (\quad)$$

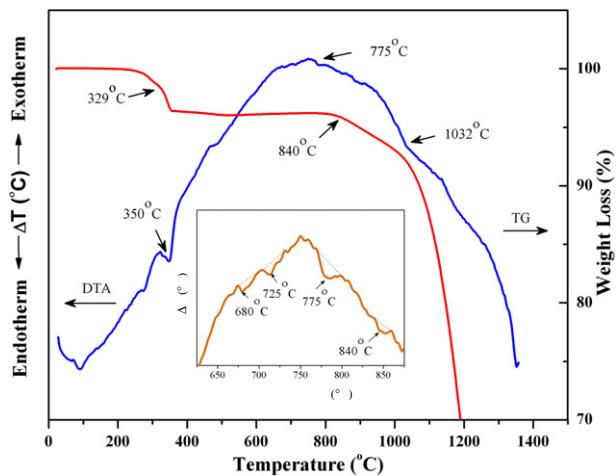


Figure 2. A

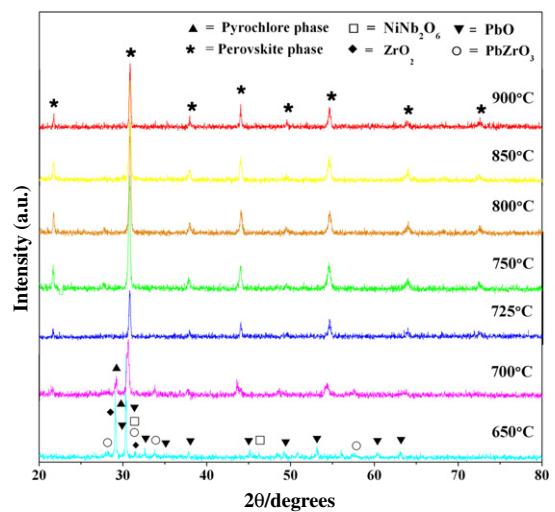
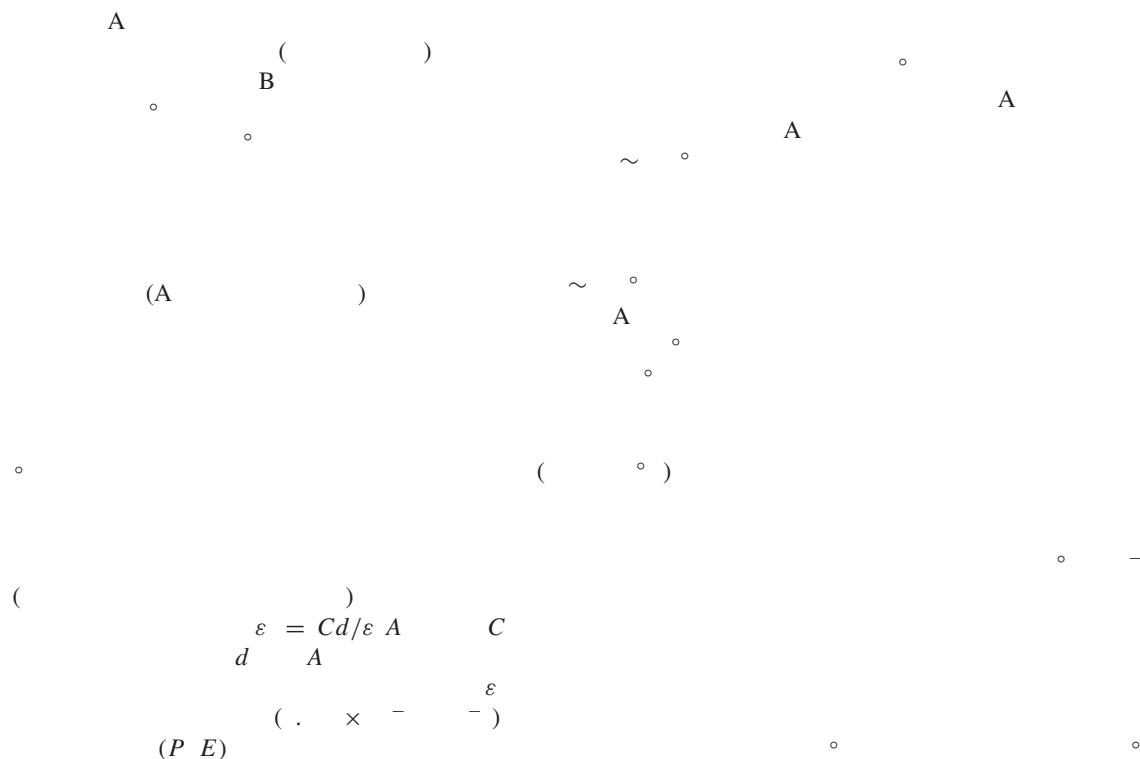
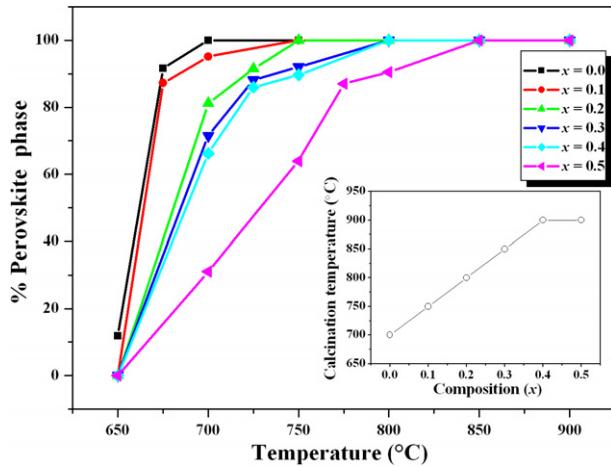
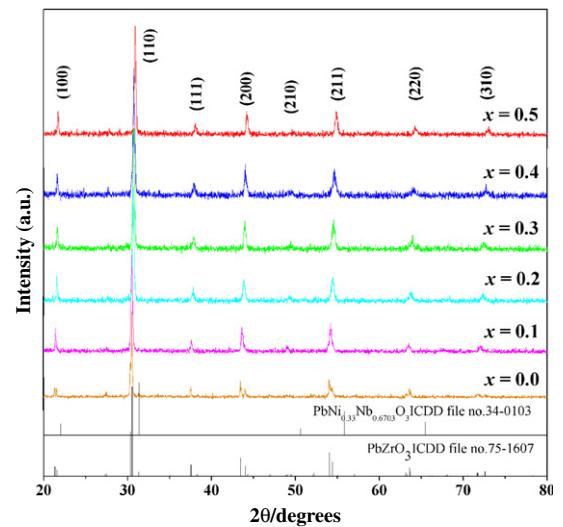
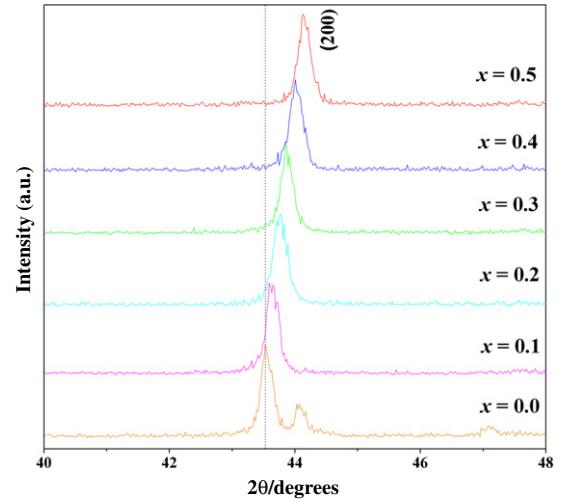



Figure 3.


I I


3. Results and discussion

A



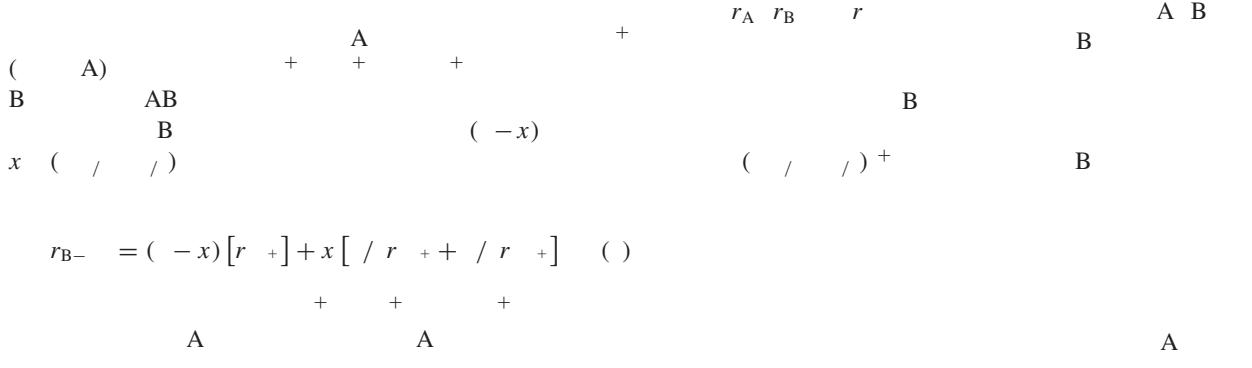
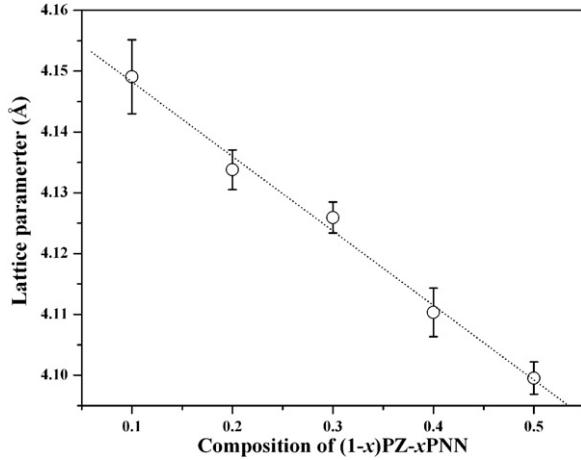
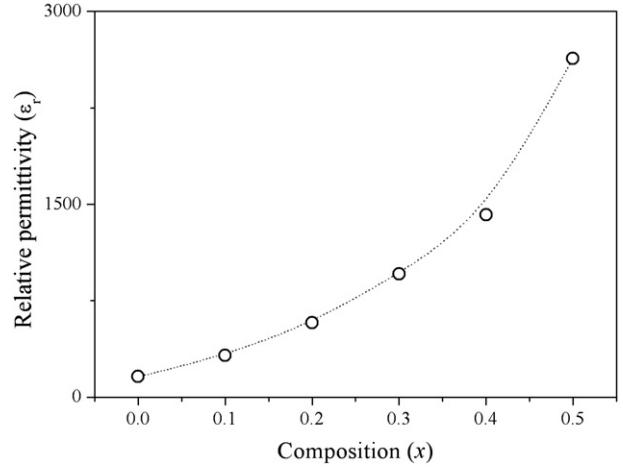
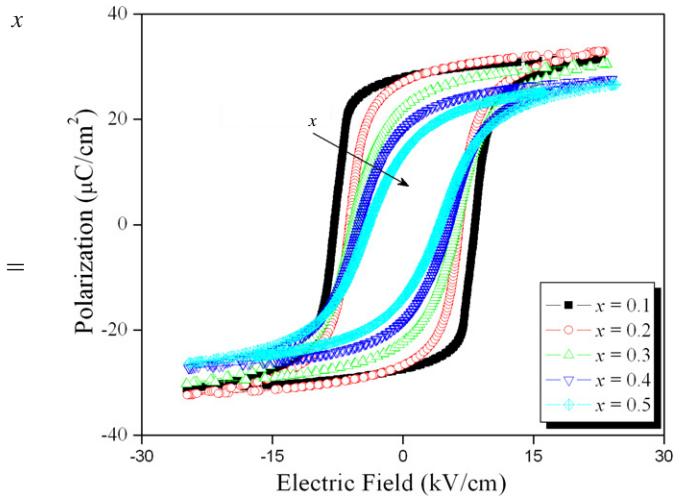
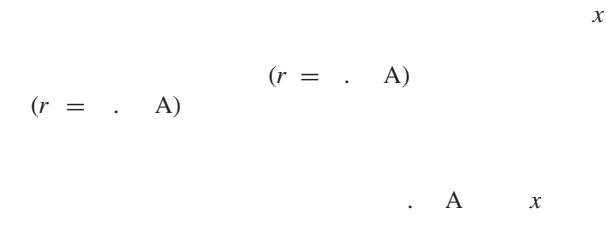
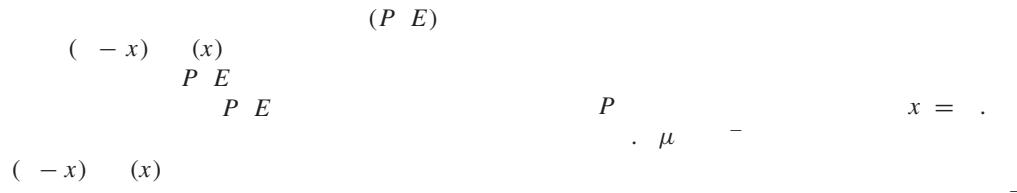

Figure 4.

Figure 5. ($-x$) x

Figure 6. A ()


$$r_{B-} = (-x)[r_{-+}] + x[r_{+-} + r_{++}] \quad (1)$$

$$t = \frac{(r_A + r_B)}{\sqrt{(r_A + r_B)}} \quad (1)$$

Table 1.

x	$(-x)$		x	
	A	B	(A)	(A)
0.1	4.15	4.15	4.10	4.10
0.2	4.13	4.13	4.11	4.11
0.3	4.12	4.12	4.10	4.10
0.4	4.11	4.11	4.10	4.10
0.5	4.10	4.10	4.10	4.10

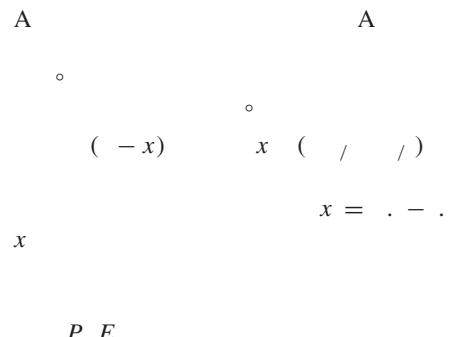

Figure 7.**Figure 8.****Figure 9.***et al*

Figure 10.

Table 2.

$$\begin{array}{ccccccc}
 & P & & P & & E & \\
 x & (\mu & -) & (\mu & -) & (& -) & (R) \\
 \end{array}$$

$$(R^-) \qquad \qquad \qquad (P) \\ (P) \qquad \qquad \qquad x = \quad .$$

Acknowledgments

$$R = \frac{P}{P} + \frac{P \cdot E}{P}$$

$$R_{P,E}$$

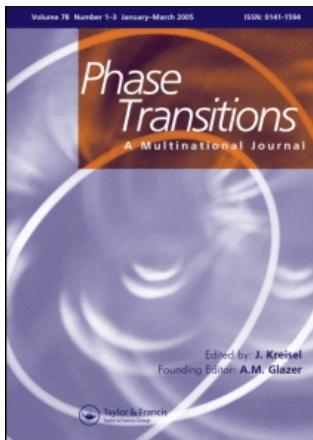
References

A			Principles and Applications of		
Ferroelectrics and Related Materials ()		
Ferroelectric Devices ()		
Ceram. Int. 21					
B			Piezoelectric Ceramics		
(A)			A)		
Soc. 25			J. Eur. Ceram.		
B					
A			J. Electroceram. 16		
A			Mater. Sci. Eng. B 108		
Ferroelectric Materials and Their Application					
(A)			B)		
B)			Int. J. Inorg. Mater. 3		
A)			A)		
J. Appl. Phys. 96					
J. Am. Ceram. Soc. 82					
A)			Am. Ceram. Soc. Bull. 66		
B)			Mater. Res. Bull. 17		
Elements of X-ray Diffraction					
(A)					
A)					
Mater. Lett. 60					
A)					
Lett. 60					
A)					
Mater. Sci. Eng. B 130					

4. Conclusions

	<i>Acta Crystallogr. A</i> 32		
A	B	A	
<i>Ferroelectrics</i> 11			<i>J. Mater. Res.</i> 18
A			<i>Appl. Phys. A</i> 65
	<i>Electroceramics: Materials, Properties, Applications</i> (<i>Phase Transit.</i> 79
)		A	<i>Phase Transit.</i> 79
			<i>Mineralog. Mag.</i> 61

This article was downloaded by:[Vittayakorn, Naratip]
[Vittayakorn, Naratip]


On: 4 July 2007

Access Details: [subscription number 780377580]

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954

Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phase Transitions

A Multinational Journal

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713647403>

Effects of strontium on the characteristics of $Pb(Zr_{1/2}Ti_{1/2})O_3$ -- $Pb(Zn_{1/3}Nb_{2/3})O_3$ ceramics

Online Publication Date: 01 August 2007

To cite this Article: Vittayakorn, N. , (2007) 'Effects of strontium on the characteristics of $Pb(Zr_{1/2}Ti_{1/2})O_3$ -- $Pb(Zn_{1/3}Nb_{2/3})O_3$ ceramics', *Phase Transitions*, 80:8, 813 - 821

To link to this article: DOI: 10.1080/01411590701288038

URL: <http://dx.doi.org/10.1080/01411590701288038>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

© Taylor and Francis 2007

Effects of strontium on the characteristics of $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ – $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics

N. VITTAYAKORN*

Materials Science Research Unit, Department of Chemistry, Faculty of Science,
King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

(Received 18 December 2006; in final form 19 February 2007)

The dielectric and piezoelectric properties of pyrochlore-free lead zirconate titanate-lead zinc niobate ceramics were investigated systematically as a function of Sr doping. The powders of $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2})-0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x=0-0.06$ were prepared using the columbite-(wolframite) precursor method. The ceramic materials were characterized using X-ray diffraction, dielectric spectra, hysteresis and electromechanical measurements. The phase-pure perovskite phase of Sr-doped PZN-PZT ceramics was obtained over a wide compositional range. The results showed that the optimized electrical properties were also achieved at composition $x=0.0$, which were $K_p=0.69$, $d_{33}=670 \text{ pCN}^{-1}$, $P_r=31.9 \mu\text{Ccm}^{-2}$ and $\varepsilon_{r\max}=18600$. Maximum dielectric constant values of the systems decreased rapidly with increasing Sr concentration. Moreover, with increasing Sr concentration dielectric constant *versus* temperature curves become gradually broader. The diffuseness parameter increased significantly with Sr doping. Furthermore, Sr doping has been shown to produce a linear reduction in the transition temperature (T_m) = $294.1-12.7x^\circ\text{C}$ with concentration (x). Sr shifts the transition temperature of this system at a rate of $12.7^\circ\text{C mol}^{-1}\%$.

Keywords: $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$; $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ dielectric properties; Perovskite structure

1. Introduction

Piezoelectric materials are widely used for various devices, including multilayer capacitors, sensors, and actuators. By the 1950s, the ferroelectric solid solution $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ (PZT) was found to host exceptionally high dielectric and piezoelectric properties for compositions close to the morphotropic phase boundary (MPB). This MPB is located around $\text{PbZrO}_3:\text{PbTiO}_3 \sim 0.52:0.48$ and separates a Ti-rich tetragonal phase from a Zr-rich rhombohedral phase [1, 2]. Recent results have discovered the existence of a low-symmetry (monoclinic) phase within the MPB region, a nearly vertical line between the rhombohedral and tetragonal phases [3]. And Noheda *et al.* [4, 5] and [6] have suggested that the enhanced dielectric

*Email: naratipcmu@yahoo.com

and piezoelectric properties around the MPB are due to the formation of an intermediate monoclinic phase.

Most commercial PZT ceramics are thus designed in the vicinity of the MPB with various dopings in order to achieve optimum properties. Ions of alkaline–earth metals, e.g., Ca^{2+} , Sr^{2+} and Ba^{2+} which have ionic radii of 1.06 Å, 1.27 Å and 1.43 Å, respectively, are frequently used to substitute for Pb^{2+} [2, 7]. Recently, Zheng *et al.* [8] have reported that Sr-modified PZT ceramics generally have higher dielectric and piezoelectric properties than pure PZT. Sr substitutions on the A-site in PZT tended to shift the MPB composition toward the tetragonal phase.

Lead zinc niobate, $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$, (PZN) has a disordered complex perovskite structure in which Zn^{2+} and Nb^{5+} cations are distributed randomly with the short range ordering on the B-site [9]. PZN is a well known relaxor ferroelectric that has been noted for its high permittivity and extremely high piezoelectric coefficients [10]. Relaxor single crystal actuators can produce strain levels in excess of 1% and exhibit five times the strain energy density of conventional piezo-ceramics [11]. These materials are used for compact chip capacitors, actuators, hydrophones, sonar transducers, receivers and micro-positioning devices [12–14]. Although single crystals of PZN can routinely be grown by the flux method [11], it is known that perovskite PZN ceramics cannot be synthesized by the conventional mixed-oxide method without doping [15]. It is well known that replacement of the A-site ion (Pb) by an ion with a large radius such as Ba or Sr is also considered to be a good approach to stabilize the perovskite phase [15]. Such an approach is also known to improve the mechanical strength, increase the electrical resistivity, and of course reduce the total amount of Pb weight% in the composition. Recently our previous work [16, 17] observed large coupling coefficients and large piezoelectric constants in PZN–PZT ceramics. This study is concerned with the effect of Sr substituted PZT modified with the relaxor ferroelectric PZN. Based on our previous [16] results for the PZN–PZT system, PZT containing 30 mol% of PZN was selected as the starting composition which is close to the rhombohedral MPB in this system.

2. Materials and methods

The general formula of the materials studied was $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2})0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x = 0\text{--}0.06$. The samples were prepared by the two-stage method to acquire a pure phase of perovskite. Reagent-grade oxide powders, PbO , ZrO_2 , TiO_2 , ZnO , Nb_2O_5 , and SrCO_3 , were used as the starting materials. In the first stage, a powder of columbite precursor, ZnNb_2O_6 , was prepared by calcination of ZnO with Nb_2O_5 at 1100°C for 4 h. And the wolframite precursor, ZrTiO_4 , were synthesized by calcination of ZrO_2 with TiO_2 at 1400°C for 4 hours. In the second stage, the above precursor with PbO , ZrTiO_4 , ZnNb_2O_6 , and SrCO_3 was weighed and mixed through use of a polyethylene jar and ZrO_2 milling media. The mixture was then calcined at 900°C for 4 h in air, remilled, pressed into disks ~10.0 mm in diameter at around 80 MPa, and then sintered at 1200°C for 2 h in a sealed alumina crucible with a PbZrO_3 powder atmosphere. The as-sintered disks were lapped and electrode with a silver paste. The specimens for piezoelectric properties measurements were poled in a silicone oil bath with a DC field of 3 kV mm⁻¹ for

45 min at 120°C and was cooled down to room temperature under a DC field. The specimens were aged for 24 h before testing.

The crystal structure of solid solutions was analyzed using X-ray diffractometry XRD (PW1729, Philips, Netherlands) with a 2θ range from 10° to 60°. A step scan with a step size of 0.02° was used with a counting time of 1 s/step. The bulk density was measured using the Archimedes method. The piezoelectric constant (d_{33}) was measured using a quasi-static piezoelectric d_{33} meter (Model 8000 d_{33} Tester). The planar coupling coefficient (k_p) was determined by the resonance and anti-resonance technique using an impedance analyzer (Model HP4194A, Hewlett-Packard, CA). The transition temperature (T_m) and dielectric constant (K) were measured on heating at 3°C min⁻¹ using an LCR meter (HP4274A, Hewlett-Packard, Palo Alto, CA) over the range of 100 Hz to 500 kHz and temperatures of 25 to 450°C. In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radiant Technologies, Inc., PT66A).

3. Results and discussion

Figure 1 shows the XRD diffraction patterns of $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2})0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x=0\text{--}0.06$ specimens, each exhibiting a phase-pure perovskite phase within the detection limit of the equipment. It is apparent that no undesirable pyrochlore phase such as $\text{Pb}_2\text{Nb}_2\text{O}_7$ or $\text{Pb}_{1.83}(\text{Zn}_{0.29}\text{Nb}_{1.71})\text{O}_{6.39}$ has been formed because no diffraction peaks are observed in the 2θ range of 28–30°,

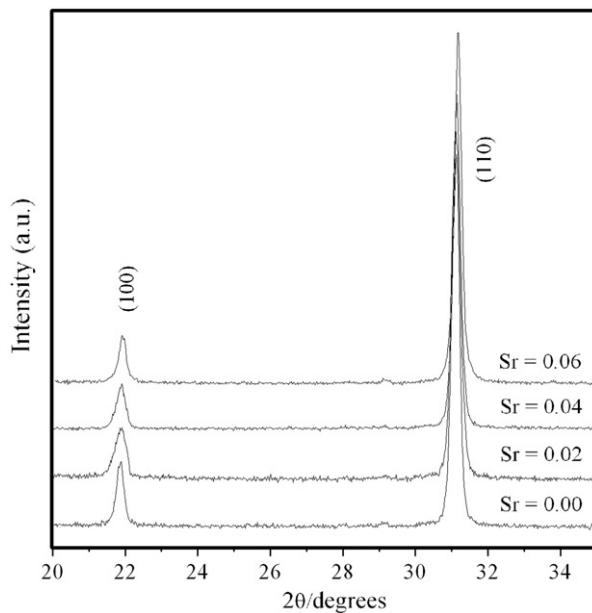


Figure 1. Room Temperature XRD patterns of PZT-PZN (ZT:ZN = 70:30) ceramics as function of Sr-doping level.

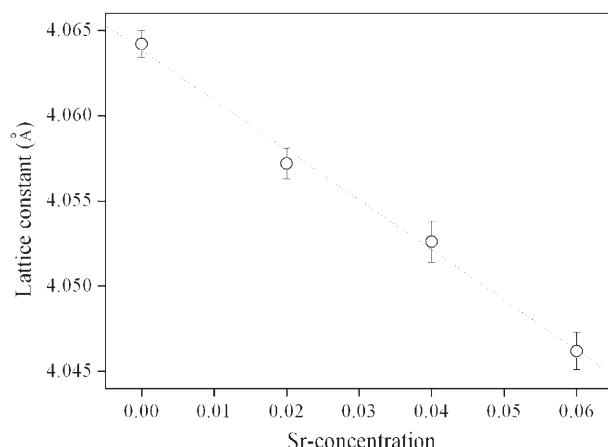


Figure 2. Lattice parameter (\AA) of perovskite structure as a function of Sr concentration.

in which their strongest diffraction peaks are (JCPDS 25-0444, 34-0374). The XRD data can be identified as a single-phase material with a perovskite structure, having rhombohedral symmetry. With the peaks properly indexed, lattice parameter was determined using UnitCell, a linear least squares refinement program. The calculated lattice parameters of the perovskite structures are presented in figure 2. An increase in the mole fraction of Sr^{2+} did not show any evidence of a change in symmetry. Also, the lattice constant linearly decreases with the replacement of Pb^{2+} by Sr^{2+} according to the Vegard rule.

It indicates that, together with the XRD patterns in figure 1, complete series of perovskite solid solutions are formed. In general, the lattice parameters of the perovskite structure also decreased gradually as x increased, undoubtedly because of the introduction of the smaller strontium ion ($r = 1.27 \text{ \AA}$) into the lead site ($r = 1.49 \text{ \AA}$), resulting in decreasing of the unit cell. Bulk density of piezo-ceramics is an important factor influencing the properties of ceramics. Commonly, the dielectric and piezoelectric properties of ferroelectric materials depend strongly on chemical compositions as well as the density of the specimens. The densities of the as-sintered specimens containing different amounts of strontium were measured, and the results are shown in figure 3. The densification behaviour of the specimen was greatly influenced by the strontium content. The density decreased almost linearly with increasing strontium concentration for both of the samples.

Dielectric constant or relative permittivity *versus* temperature measurements of as-sintered samples are summarized in figure 4. All of the samples displayed relaxor ferroelectric behaviour, characterized by broad frequency and temperature dependent phase [18]. As the Sr^{2+} content increased, a clear shift of the transition temperature to lower temperatures was observed. In addition, the dielectric maximum decreased as the x value increased. Furthermore the dielectric peak became broader as the Sr content increased. The broad dielectric spectra of the relaxor ferroelectric composition more appropriately follow the quadratic law [19]. This arises from the fact that the total number of relaxors contributing to the permittivity response in the vicinity of the permittivity peak is temperature-dependent, and the temperature distribution of this number is given

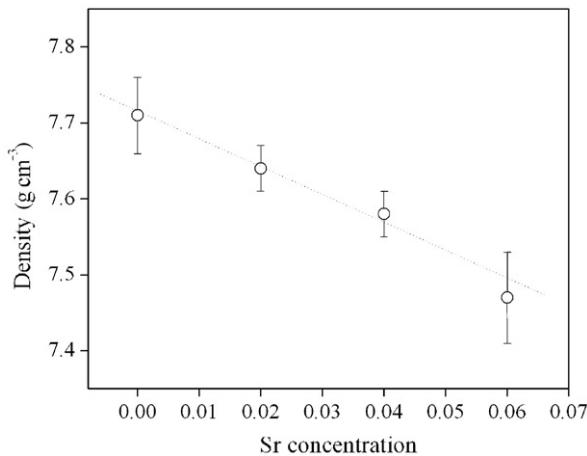


Figure 3. The density of the perovskite PZT-PZN ceramics as a function of strontium.

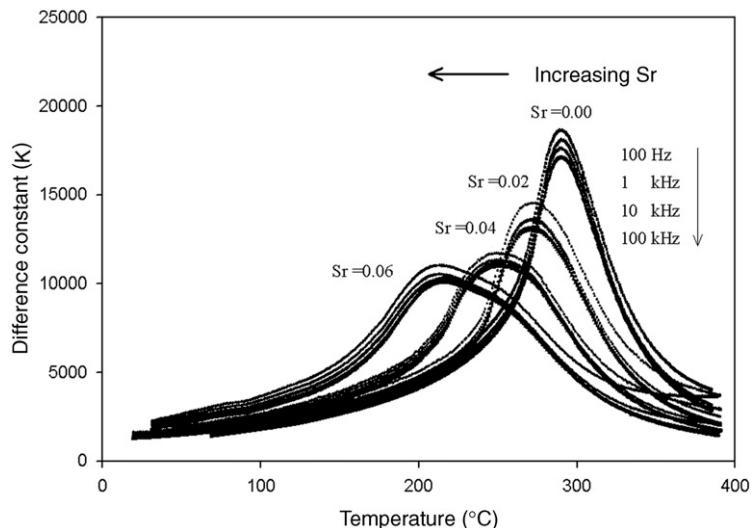
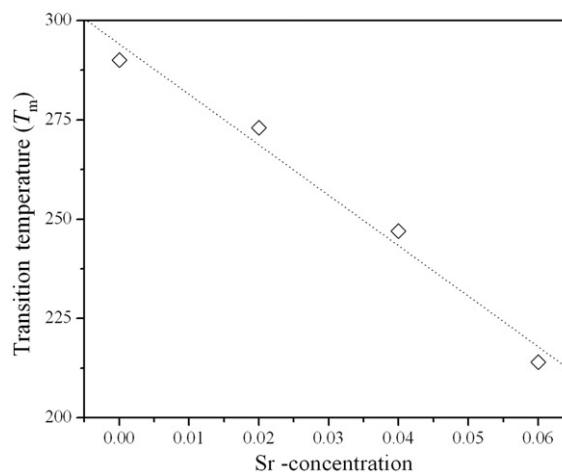


Figure 4. Dielectric properties as a function of temperature on heating at frequency of 100 Hz–100 kHz varies Sr concentration of the as-sintered sample.


by a Gaussian function about a mean value T_o with a standard deviation σ . The diffusiveness parameter (δ) of the transition was calculated from the expression [20]:

$$\frac{K_m}{K(f, T)} = \exp\left(\frac{(T - T_m(f))^2}{2\delta^2}\right) \quad (1)$$

where K_m is maximum value of the dielectric constant at $T = T_m(f)$ and $K(f, T)$ is the intrinsic dielectric constant of sample. If $\ln(K_m/K_g)$ is plotted versus $(T - T_m)^2$, the slope of the fitted curve, $1/(2\delta^2)$, will give the value of the diffuseness parameter. As clarified by Pilgrim *et al.* [20] the estimate of δ is valid for the range of $K_m/K_{(f, T)} < 1.5$. Table 1 gives in more detail the dielectric and ferroelectric

Table 1. Dielectric and ferroelectric properties of Sr-doped PZT-PZN ceramics.

As-sintered					
Sr Mol	$\varepsilon_{r\max}$	δ	P_r ($\mu\text{C cm}^{-2}$)	E_c (kV cm^{-1})	R_{sq}
0.00	18600	29.0	31.9	10.6	1.48
0.02	14500	38.8	24.0	10.8	1.41
0.04	11600	48.2	20.2	11.7	1.38
0.06	11000	71.8	18.1	12.7	1.33

Figure 5. Transition temperature (T_{\max}) of Sr doped PZT-PZN ceramic as a function of doping level.

properties of the Sr dope PZN-PZT ceramics. The diffuseness parameter increased significantly with Sr doping. It is important to note that at the composition $x=0.06$, two peaks were revealed at temperatures $\sim 214^\circ\text{C}$ and $\sim 250^\circ\text{C}$ in the ceramics at 1 kHz. However, this behaviour was not observed at a low concentration of strontium. These two peaks are interpreted to be due to the phase transitions, or in other words associated with the possibility of the decrease of the chemical homogenization. Other authors have reported a similar behaviour [21, 22].

The transition temperature at 1 kHz *versus* the Sr content is also plotted in figure 5. As expected, Sr doping has been shown to produce a linear reduction in the transition temperature (T_m) = $294.1 - 12.7x^\circ\text{C}$ with concentration (x). Sr shifts the transition temperature of this system at a rate of $12.7^\circ\text{C mol}^{-1}\%$, which agrees quantitatively with the previous studies [22, 23]. Figure 6 display the hysteresis curves of doped PZT-PZN samples. As one can expect the polarization decreased with increasing Sr dopant concentration [24, 25]. Haertling and Zimmer [26] derived an empirical relationship between remanent polarization, saturation polarization and polarization at fields above the coercive field. This permits the quantification of changes in the hysteresis behaviour for each sample through the following equation:

$$R_{sq} = \frac{P_r}{P_s} + \frac{P_{1.1E_c}}{P_r} \quad (2)$$

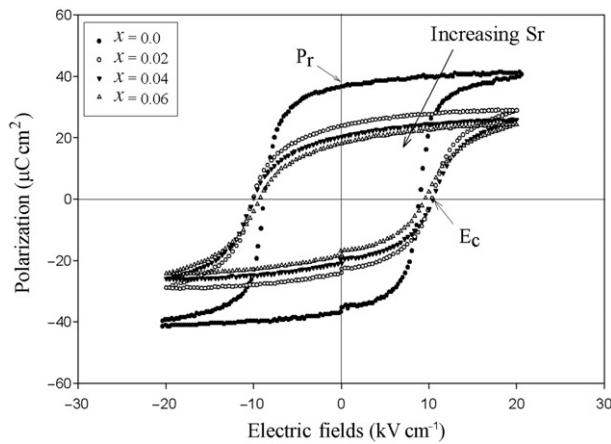


Figure 6. Dependence of the polarization *versus* electric field (*P*–*E*) loop on the Sr dopant.

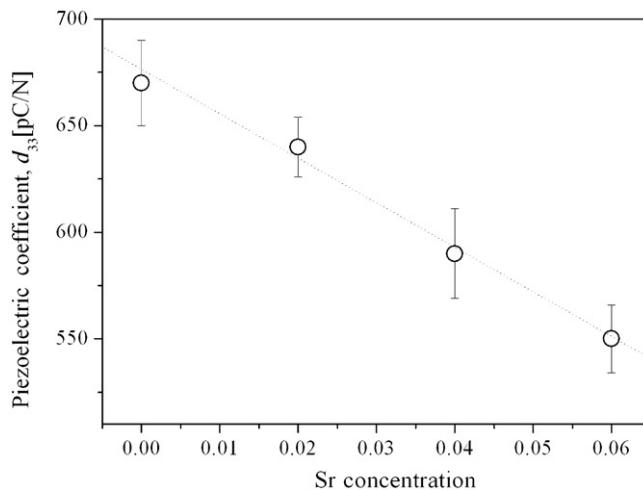


Figure 7. Piezoelectric constant (d_{33}) of PZT–PZN specimens with Sr doping concentration.

where, R_{sq} is the squareness of hysteresis loop, P_r is remanent polarization, P_s is saturation polarization, $P_{1.1E_c}$ is the polarization at an electric field equal to 1.1 times the coercive field (E_c). For an ideal hysteresis loop, the squareness parameter is equal to two. Normal square ferroelectric *P*–*E* loops were observed in undoped samples. The hysteresis curves also become more slanted with increasing Sr content. The remanent polarization decreased from 31.9 to $20.2\text{ }\mu\text{C cm}^{-2}$ for the sample doped with 0.04 mol Sr. However, the coercive field increased from 10.6 to 12.7 kV cm^{-1} after doping with 0.06 mol Sr. Figures 7 and 8 show the changes in the piezoelectric constant (d_{33}) and the electromechanical coupling factor (k_p) as a function of the amount of Sr addition, respectively. As can be seen, both k_p and d_{33} show a similar variation with increasing Sr content. The piezoelectric constant (d_{33}) and the electromechanical coupling factor (k_p) decreases with increasing Sr content.

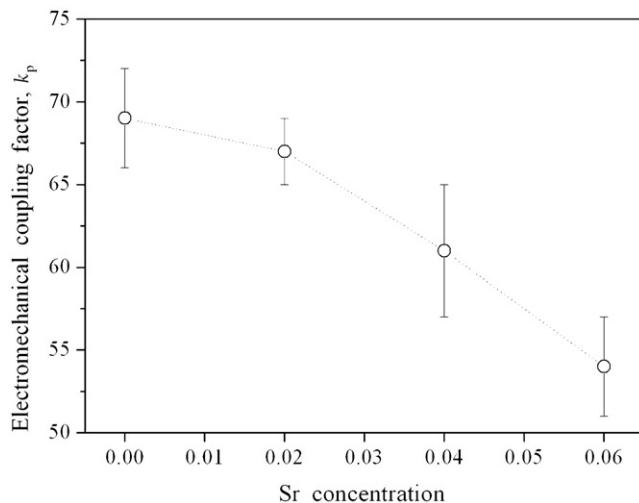


Figure 8. Electromechanical coupling factor (k_p) of PZT-PZN specimens with Sr doping concentration.

4. Conclusions

The dielectric and ferroelectric properties of Sr-modified PZT-PZN ceramics formed via the columbite process were investigated. With an increase in the Sr dopant concentration, the transition temperature and the maximum dielectric constant decreased. In addition, Sr doping caused the ferroelectric phase transition to become more diffuse.

Acknowledgements

This work was supported by The Thailand Research Fund (TRF), Commission on Higher Education (CHE) and King Mongkut's Institute of Technology Ladkrabang (KMITL). The author would like to thank Prof. Dr. Gobwuit Rujianagul and Prof. Dr. David P. Cann for their help in many facilities.

Reference

- [1] M.E. Lines and A.M. Glass, *Principles and Applications of Ferroelectrics and Related Materials* (Clarendon Press, Oxford, 1977).
- [2] B. Jaffe and W.R. Cook, *Piezoelectric Ceramic* (R.A.N. Publishers, London, 1971).
- [3] B. Noheda, D.E. Cox, G. Shirane, *et al.*, *Appl. Phys. Lett.* **74** 2059 (1999).
- [4] B. Noheda and D.E. Cox, *Phase Trans.* **79** 5 (2006).
- [5] B. Noheda, *Curr. Opin. Solid State Mater. Sci.* **6** 27 (2002).
- [6] B. Noheda, J.A. Gonzalo, L.E. Cross, *et al.*, *Phys. Rev. B* **61** 8687 (2000).
- [7] Y. Xu, *Ferroelectric Materials and Their Application* (Elsevier Science, Amsterdam, 1991).
- [8] H. Zheng, I.M. Reaney, W.E. Lee, *et al.*, *J. Eur. Ceram. Soc.* **21** 1371 (2001).
- [9] C.A. Randall, A.S. Bhalla, T.R. Shrout, *et al.*, *Ferroelectrics* **11** 103 (1990).
- [10] J. Kuwata, K. Uchino and S. Nomura, *Ferroelectrics* **37** 579 (1981).
- [11] J. Kuwata, K. Uchino and S. Nomura, *Jpn. J. Appl. Phys.* **21** 1298 (1982).

- [12] K. Uchino, *Ferroelectric Devices* (Marcel Dekker Inc., New York, 2000).
- [13] K. Uchino, *Piezoelectric Actuators and Ultrasonic Motors* (Kluwer Academic Publishers, Boston, MA, 1996).
- [14] A.J. Moulson and J.M. Herbert, *Electroceramics: Materials, Properties, Applications* (Chapman and Hall, New York, 1990).
- [15] T.R. Shrout and A. Halliyal, *Am. Ceram. Soc. Bull.* **66** 704 (1987).
- [16] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, *et al.*, *Mat. Sci. Eng. B* **108** 258 (2004).
- [17] N. Vittayakorn, C. Puchmark, G. Rujijanagul, *et al.*, *Curr. Appl. Phys.* **6** 303 (2006).
- [18] L.E. Cross, *Ferroelectrics* **76** 241 (1987).
- [19] V.V. Kirillov and V.A. Isupov, *J. Mater. Res.* **5** 3 (1973).
- [20] S.M. Pilgrim, A.E. Sutherland and S.R. Winzer, *J. Am. Ceram. Soc.* **73** 3122 (1990).
- [21] W. Chaisan, R. Yimnirun, S. Ananta, *et al.*, *Mat. Sci. Eng. B* **132** 300 (2006).
- [22] J. Belsick, Y. Yamashita and M. Harata, paper presented at IEEE 7th International Symposium on Applications of Ferroelectrics, Urbana-Champaign, IL, 1990, pp. 44–47.
- [23] J.R. Belsick, A. Halliyal, U. Kumar, *et al.*, *Am. Ceram. Soc. Bull.* **66** 664 (1987).
- [24] G.A. Samara, *J. Phys.: Condens. Matter* **15** 367 (2003).
- [25] G.A. Samara and E.L. Venturini, *Phase Transitions* **79** 21 (2006).
- [26] G.H. Haertling and W.J. Zimmer, *Am. Ceram. Soc. Bull.* **45** 1084 (1966).

N. VITTAYAKORN
D.P. CANN

Preparation and ferroelectric properties of pyrochlore-free $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ -based solid solutions

B
A

Received: 31 July 2006/Accepted: 3 November 2006
Published online: 14 December 2006 • © Springer-Verlag 2006

ABSTRACT

x (Ni^{2+} / Nb^{5+}) $x = .$ $-(\text{.} -x) - (\text{.} /)$

() / /
A ()

($^{\circ}$ /) () / () ($-x$ x) () ((/)

(ε) B x

$x = .$ $\cdot \mu /$
 $\cdot \mu /$

/

PACS

B

◦

1 Introduction

$(\text{B}^+ = \text{Ni}^{2+}, \text{Nb}^{5+}, \text{Nb}^{4+} \text{B}^+ = \text{Nb}^{4+}, \text{Nb}^{5+})$

A

 $k = .$ $\cdot \cdot \cdot \cdot \cdot \cdot$

($\cdot -x$) $x = .$

(B)

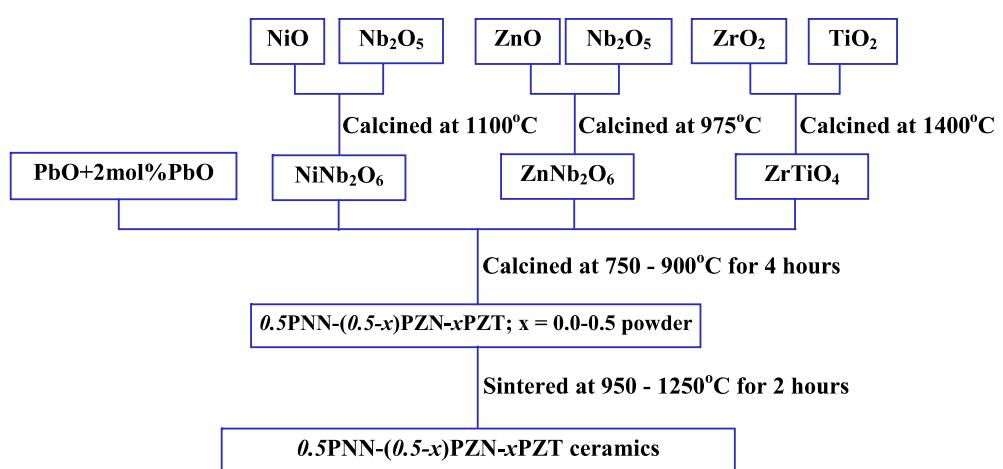


FIGURE 1

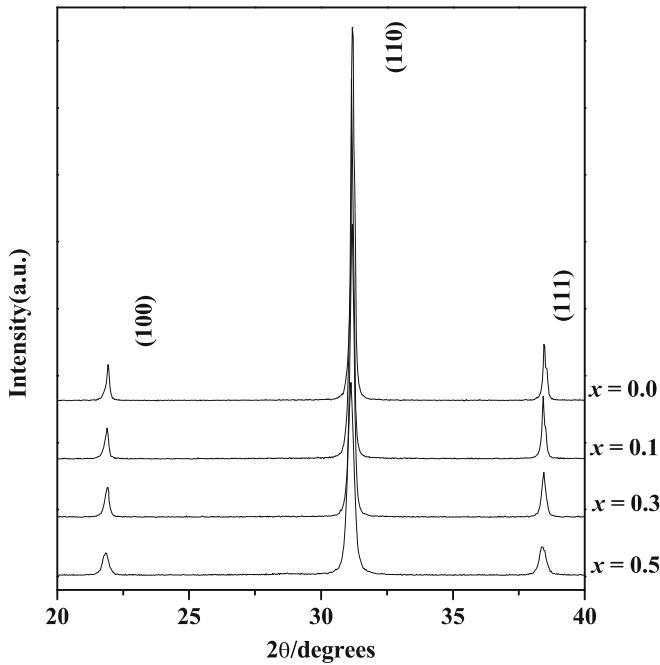


FIGURE 2

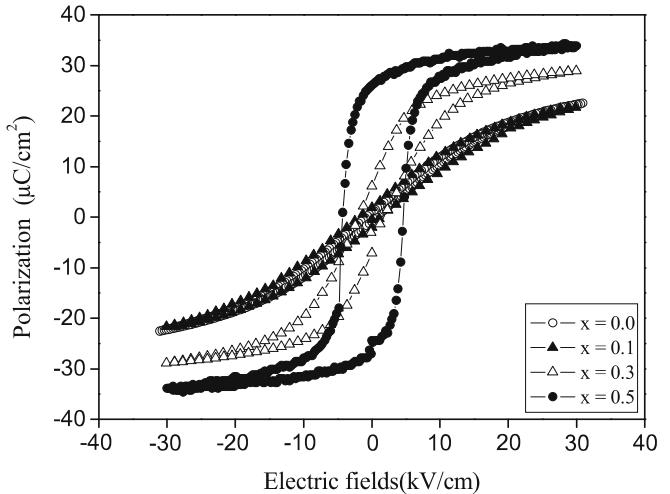


FIGURE 4

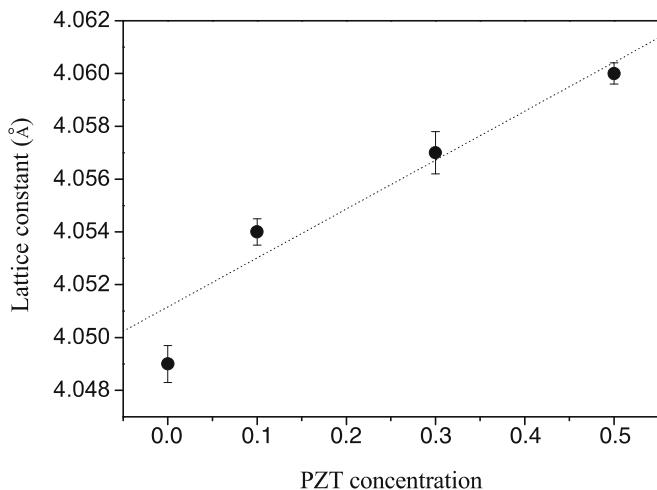
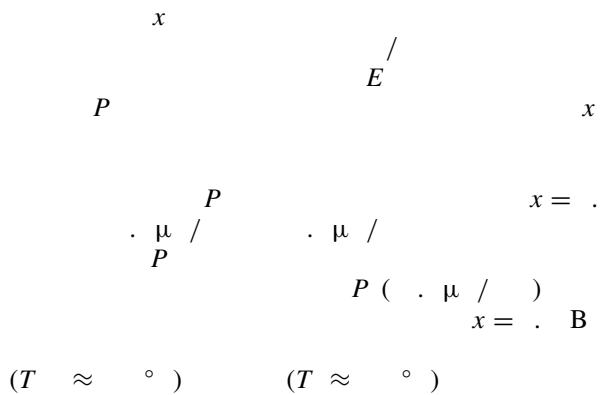



FIGURE 3

(/ /) ($r = .$) B
 $(r = .)$

3.2 Ferroelectric and dielectric properties

$$x = .$$

$$x = .$$

P E

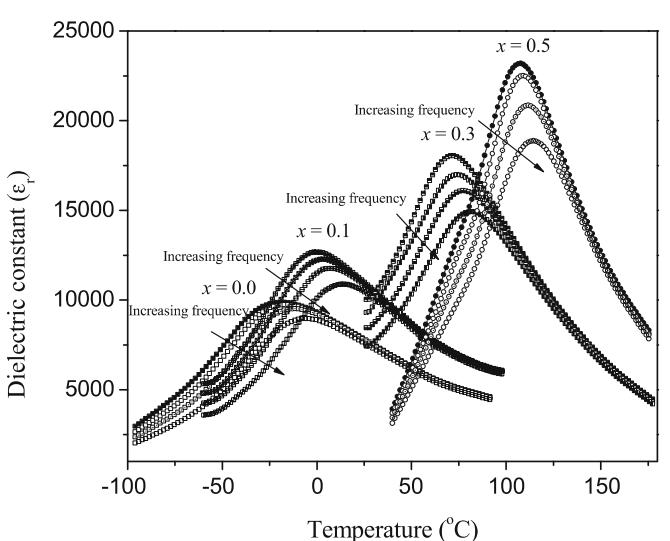


FIGURE 5

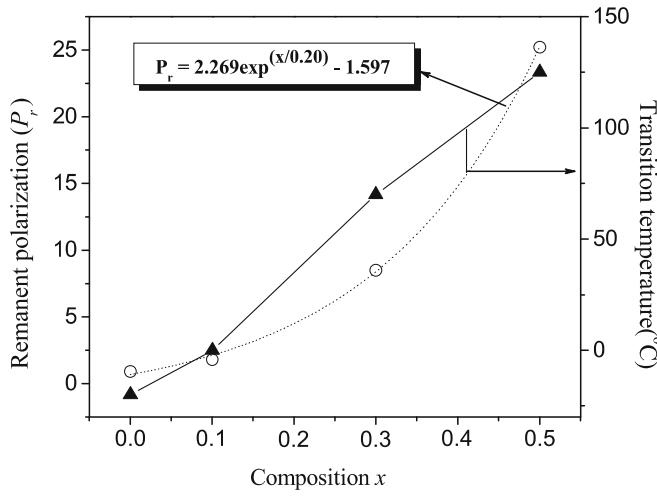


FIGURE 6

(. - x) x

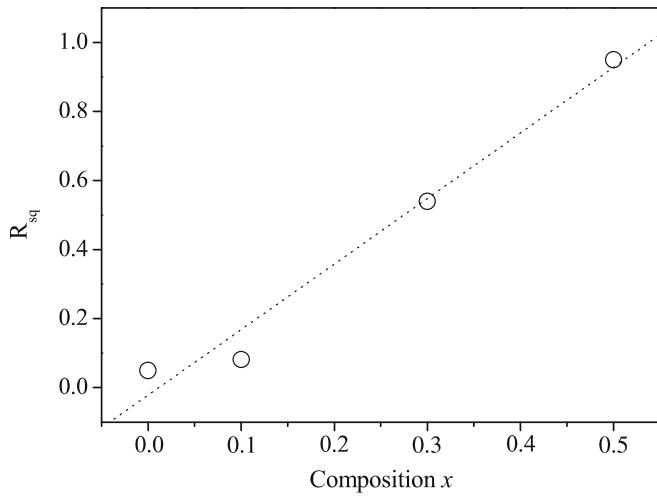


FIGURE 7

(. - x) x
x

T x x

x A

$$P = . \quad (x/ .) - . \quad \mu / \quad () \quad x = .$$

$$R = \frac{P}{P} + \frac{P_E}{P}, \quad ()$$

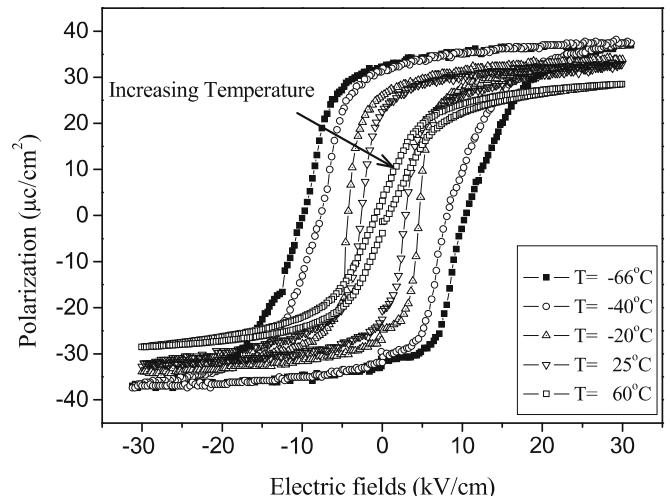


FIGURE 8

(. - x) x

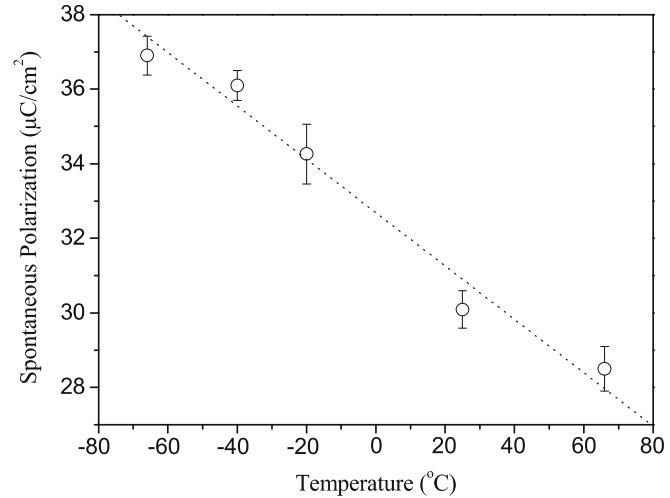


FIGURE 9

x = .

R P
P E

x = .

-

x
R

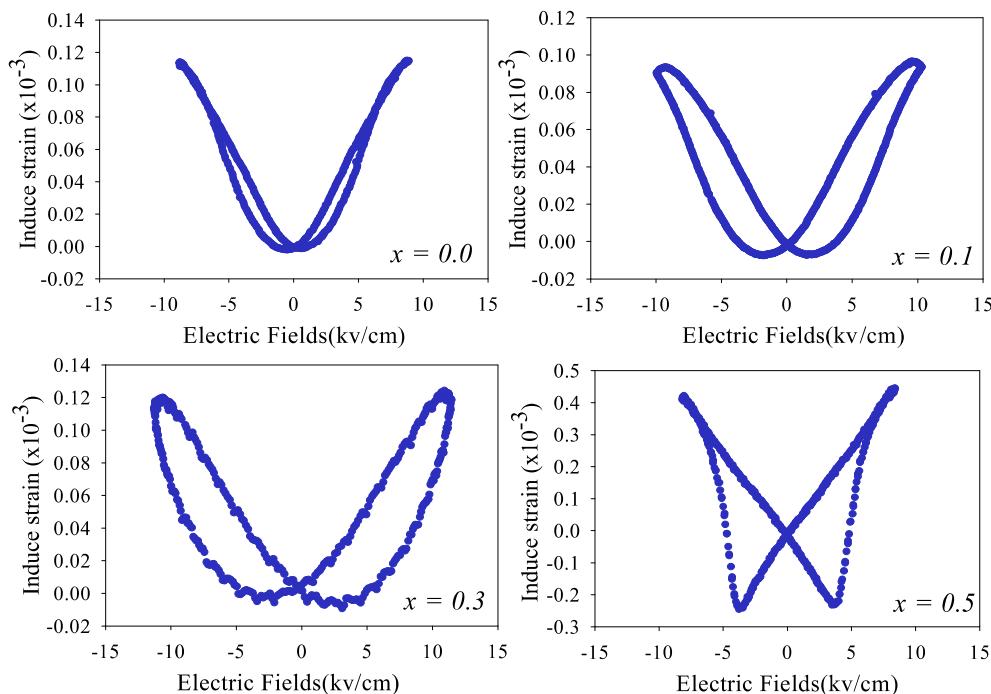


FIGURE 10

x) x

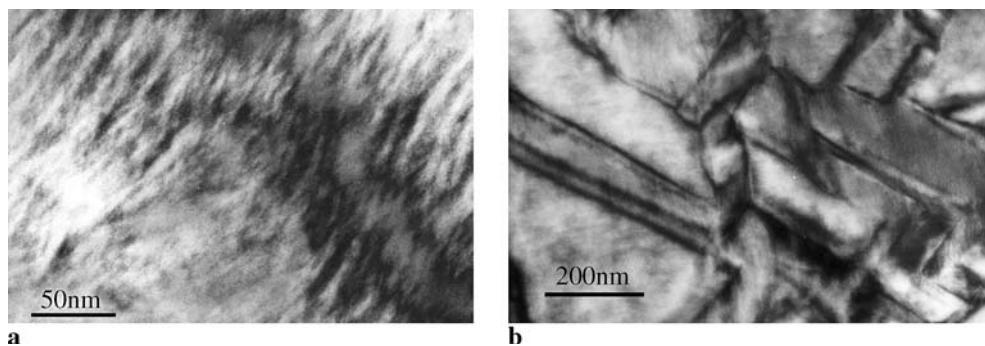


FIGURE 11

(a) $x = .$ (b) $x = .$ $(x = . . .)$
 εE $P = . . - . x,$ x $x = .$

() /

A

 $x = .$

A

A

 $x = .$

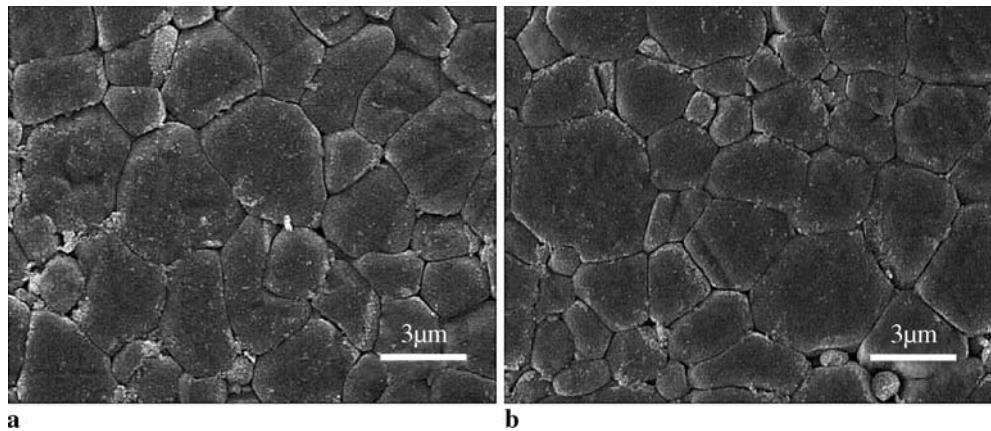


FIGURE 12

• (. - x) x
 (a) $x = .$ (b) $x = .$

• (. - x) x
 $x = .$ A

B

4 Conclusions

(° /)

E $x = .$
 $. \mu / . \mu /$

μ

ACKNOWLEDGEMENTS

()
 (A)

REFERENCES

Ferroelectric Materials and Their Applications (

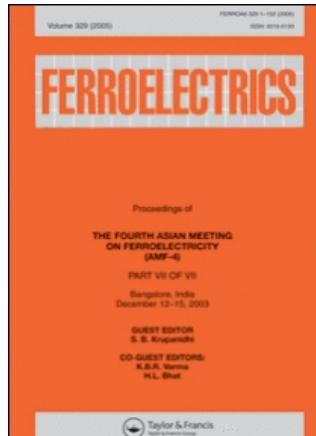
A)
Ferroelectric Devices ()
151 ()
16 ()

A

A **6** ()
 A **96** ()
 A **81** ()
 A **B** A A A

Proc. 11th Symp.

Application of Ferroelectrics A


Proc. 8th US-Japan
Seminar on Dielectric and Piezoelectric Ceramics
 A
77 ()
B 108 ()

Proc. 5th IEEE Int. Conf.
Properties and Application of Dielectric Materials
 B
 A **65** ()
71 ()

P P

$\cdot /$

This article was downloaded by:[Vittayakorn, Naratip]
On: 11 November 2007
Access Details: [subscription number 784417146]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Ferroelectrics

Publication details, including instructions for authors and subscription information:
<http://www.informaworld.com/smpp/title~content=t713617887>

Influence of Strontium Doping on the Ferroelectric and Piezoelectric Properties of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics

Naratip Vittayakorn ^a; Theerachai Bongkarn ^b

^a Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, Thailand

^b Department of Physics, Faculty of Science, Naresuan University, Pitsanuloke, Thailand

First Published on: 01 November 2007

To cite this Article: Vittayakorn, Naratip and Bongkarn, Theerachai (2007) 'Influence of Strontium Doping on the Ferroelectric and Piezoelectric Properties of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics', *Ferroelectrics*, 358:1, 54 - 59

To link to this article: DOI: 10.1080/00150190701533967

URL: <http://dx.doi.org/10.1080/00150190701533967>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Influence of Strontium Doping on the Ferroelectric and Piezoelectric Properties of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics

NARATIP VITTAYAKORN¹
AND THEERACHAI BONGKARN^{2,*}

¹Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand

²Department of Physics, Faculty of Science, Naresuan University, Pitsanuloke 65000, Thailand

The crystal structure, ferroelectric and piezoelectric properties of pyrochlore-free lead zinc niobate-lead zirconate titanate ceramics were investigated systematically as a function of Sr doping as well as thermal treatment. The results showed that the remanent polarization (P_r) has decreased significantly with increase in strontium content. After annealing, the value of squareness of hysteresis loop (R_{sq}) increased from 1.48 to 1.74 for the annealed sample. Furthermore the annealed samples exhibited larger P_r and lower coercive fields (E_c) compared with as-sintered samples. The results indicated that the ferroelectric and piezoelectric properties in Sr-modified PZT-PZN were further improved by thermal annealing.

Keywords Thermal treatment; hysteresis loop; ferroelectric properties

Introduction

Lead zirconate titanate (PZT) occupies an important place in the field of ferroelectricity since the mid 1950s, as its properties can easily be tailored for specific applications by the addition of appropriate dopants or substituents [1, 2]. Recently, Zheng et al. [3] have reported that Sr-modified PZT ceramics generally have higher dielectric and piezoelectric properties than pure PZT. Sr substitutions on the A-site in PZT tended to shift the MPB composition toward the tetragonal phase.

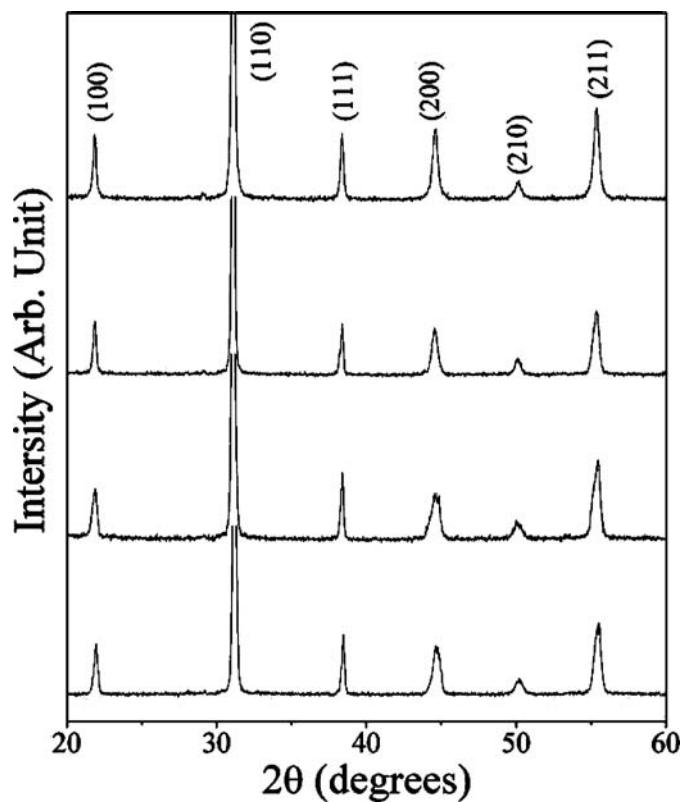
Lead zinc niobate, $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$, (PZN) is a well known relaxor ferroelectric that has been noted for its high permittivity and extremely high piezoelectric coefficients [4]. It is known that perovskite PZN ceramics cannot be synthesized by the conventional mixed-oxide method without doping [5]. It is well known that replacement of the A-site ion (Pb) by an ion with a large radius such as Ba or Sr is also considered to be a good approach to stabilize the perovskite phase [5].

Recently our previous work [6, 7] observed large coupling coefficients and large piezoelectric constants in PZN-PZT ceramics. Work by Kim et al. [8] on PZN-PZT

Received September 3, 2006; accepted September 14, 2006.

*Corresponding author. E-mail: naratipcmu@yahoo.com

ceramics reported that a dielectric and piezoelectric properties were improved with increased annealing time. This study is concerned with the effect of Sr substituted PZT modified with the relaxor ferroelectric PZN. Special emphasis is placed on the piezoelectric and ferroelectric properties before and after thermal treatment. Based on our previous [6] results for the PZN-PZT system, PZT containing 30 mol% of PZN was selected as the starting composition which is close to the rhombohedral MPB in this system.


Experimental

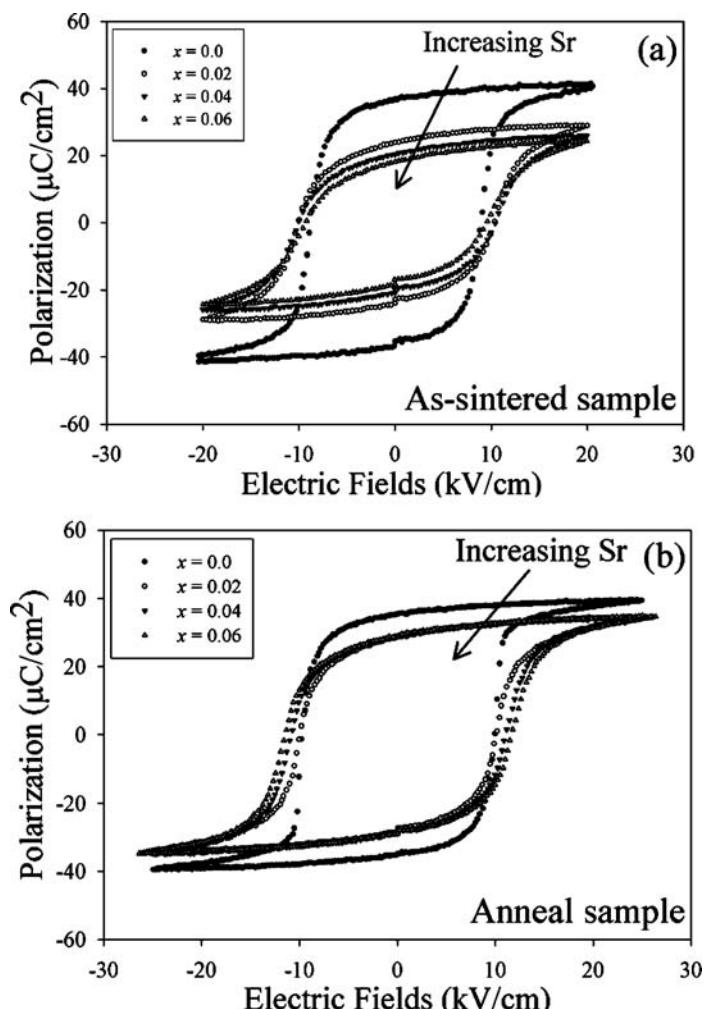
The composition selected for the present study is $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2})0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x = 0\text{--}0.06$. The mixture was calcined at 900°C for 4 h in air, remilled, pressed into disks ~ 10.0 mm in diameter at around 80 MPa, and then sintered at 1200°C for 2 h in a sealed alumina crucible with a PbZrO_3 powder atmosphere. To determine the effect of thermal annealing, all of the sintered samples were thermally annealed at 900°C in the same PbO atmosphere for 24 h. The crystal structure of solid solutions was analyzed using X-ray diffractometry XRD (PW1729, Philips, Netherlands). The bulk density was measured using the Archimedes method. The piezoelectric constant (d_{33}) was measured using a quasi-static piezoelectric d_{33} meter (Model 8000 d_{33} Tester). The planar coupling coefficient (k_p) was determined by the resonance and anti-resonance technique using an impedance analyzer (Model HP4194A, Hewlett-Packard, CA). In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radian Technologies, Inc., PT66A).

Results and Discussions

Figure 1 shows the XRD diffraction patterns of $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2})0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x = 0\text{--}0.06$ specimens, each exhibiting a phase-pure perovskite phase within the detection limit of the equipment. The XRD data is consistent with rhombohedral symmetry, which is indicative of a ferroelectric phase. With the peaks properly indexed, lattice parameter was determined using UnitCell, a linear least squares refinement program. The calculated lattice parameters of the perovskite structures and the densities of the as-sintered and annealed specimens containing different amounts of strontium are presented in Table 1. An increase in the mole fraction of Sr^{2+} did not show any evidence of a change in symmetry. Also, the lattice constant linearly decreases with the replacement of Pb^{2+} by Sr^{2+} according to the Vegard rule. It indicates that, together with the XRD patterns in Fig. 1, complete series of perovskite solid solutions are formed. In general, the lattice parameters of the perovskite structure also decreased gradually as x increased, undoubtedly because of the introduction of the smaller strontium ion ($r = 1.27\text{\AA}$) into the lead site ($r = 1.49\text{\AA}$), resulting in decreasing of the unit cell. The densification behavior of the specimen was greatly influenced by the strontium content. The density decreased almost linearly with increasing strontium concentration for both of the samples. Figure 2(a) and (b) display the hysteresis curves of doped PZT-PZN samples in the as-sintered state (Fig. 2(a)) and after annealing (Fig. 2(b)). As one can expect the polarization decreased with increasing Sr dopant concentration.

Haertling and Zimmer [9] derived an empirical relationship between remanent polarization, saturation polarization and polarization at fields above the coercive field. This permits the quantification of changes in the hysteresis behavior for each sample through the

Figure 1. XRD patterns of $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2}) 0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x = 0\text{--}0.06$ ceramic samples sintered at different temperatures.


following equation:

$$R_{sq} = \frac{P_r}{P_s} + \frac{P_{1.1}E_c}{P_r} \quad (1)$$

where, R_{sq} is the squareness of hysteresis loop, P_r is remanent polarization, P_s is saturation polarization, $P_{1.1}E_c$ is the polarization at an electric field equal to 1.1 times the coercive field

Table 1
Physical characteristic of $\text{Pb}_{(1-x)}\text{Sr}_x[0.7(\text{Zr}_{1/2}\text{Ti}_{1/2}) 0.3(\text{Zn}_{1/3}\text{Nb}_{2/3})]\text{O}_3$, where $x = 0\text{--}0.06$ ceramics

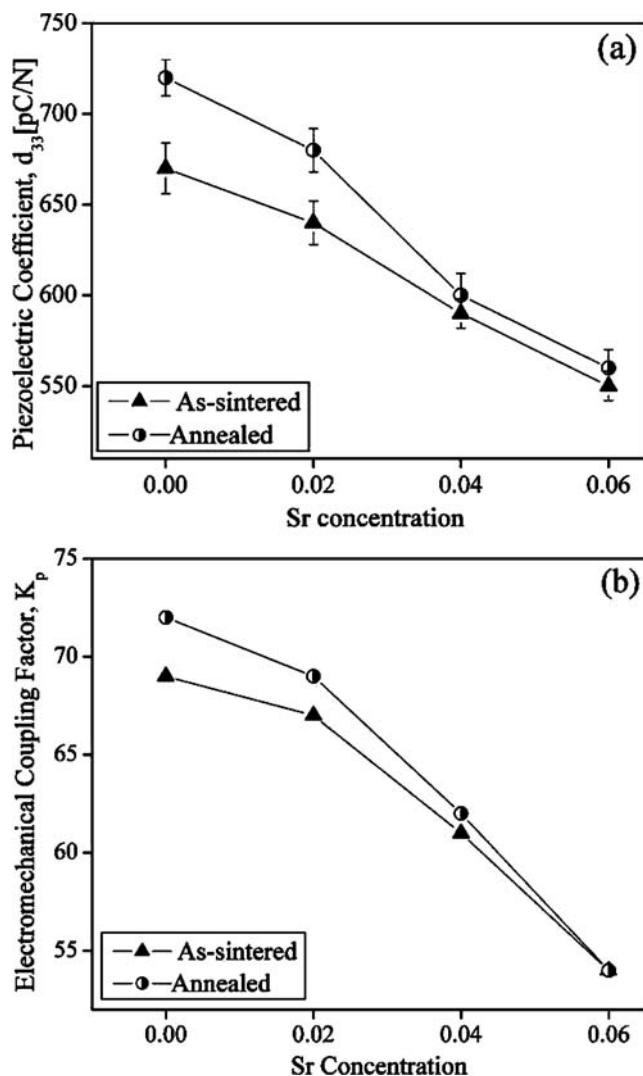

Composition	Lattice parameter (Å)	Density(g/cm ³)	
		As-sintered	Annealed
$x = 0.0$	4.0642 ± 0.008	7.71 ± 0.05	7.82 ± 0.06
$x = 0.02$	4.0568 ± 0.009	7.64 ± 0.03	7.76 ± 0.03
$x = 0.04$	4.0556 ± 0.012	7.58 ± 0.03	7.68 ± 0.08
$x = 0.06$	4.0462 ± 0.011	7.47 ± 0.06	7.54 ± 0.04

Figure 2. Dependence of the polarization versus electric field (P-E) loop on the Sr dopant concentration (a) as-sintered (b) anneal sample.

(E_C). For an ideal hysteresis loop, the squareness parameter is equal to two. Normal square ferroelectric P-E loops were observed in undoped as-sintered samples. After annealing, the value of R_{sq} increased from 1.48 to 1.74 for the annealed sample. In the as-sintered samples, the hysteresis curves also become more slanted with increasing Sr content. The remanent polarization decreased from $31.9 \mu\text{C}/\text{cm}^2$ to $20.2 \mu\text{C}/\text{cm}^2$ for the sample doped with 0.04 mol Sr.

However the coercive field increased from $10.6 \text{ kV}/\text{cm}$ to $12.7 \text{ kV}/\text{cm}$ after doping with 0.06 mol Sr. Furthermore the annealed samples exhibited larger remanent polarizations (P_r) and lower coercive fields (E_c) compared with as-sintered samples, which mean that the annealed ceramic samples are more easily poled and should have better piezoelectric properties. It is interesting to note that in annealed samples, the value of P_r was largely independent of the doping concentration and amounts to approximately $29 \mu\text{C}/\text{cm}^2$. However the coercive fields were found to increase with increasing Sr concentration. Figure 3(a)

Figure 3. Electromechanical coupling factor and piezoelectric constant (d_{33}) of PZT-PZN specimens with Sr doping concentration.

and (b) shows the changes in the piezoelectric constant (d_{33}) and the electromechanical coupling factor (k_p) as a function of the amount of Sr addition. As can be seen, both k_p and d_{33} show a similar variation with increasing Sr content. The piezoelectric constant (d_{33}) and the electromechanical coupling factor (k_p) decreases with increasing Sr content. After annealing at 900°C for 24 h, d_{33} increases from 670 to 720 pC/N, and k_p increases from 69% to 72% for 0.7PZT-0.3PZN, while there is only a slight change in k_p and d_{33} for 6 mol% Sr-doped PZT-PZN.

Conclusions

The ferroelectric properties of Sr-modified PZT-PZN ceramics formed via the columbite process were investigated. The lattice parameters of the perovskite structure decreased

gradually as x increased, undoubtedly because of the introduction of the smaller strontium ion into the lead site. The best ferroelectric properties were attained in the annealed samples. Furthermore, the piezoelectric constant (d_{33}) and the electromechanical coupling factor (k_p) decreases with increasing Sr content in the annealed samples.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE), Office of the National Research Council of Thailand (NRCT) and King Mongkut's Institute of Technology Ladkrabang.

References

1. B. Jaffe and W. R. Cook, *Piezoelectric ceramic* (R.A.N. Publishers, 1971).
2. K. Uchino, *Ferroelectric Devices* (Marcel Dekker, Inc., New York, 2000).
3. H. Zheng, I. M. Reaney, W. E. Lee, N. Jones, and H. Thomas, *J. Eur. Ceram. Soc.* **21**, 1371–1375 (2001).
4. Y. Yokomizo, T. Takahashi, and S. Nomura, *J. Phys. Soc. Jpn.* **28**, 1278–1284 (1970).
5. T. R. Shrout and A. Halliyal, *Am. Ceram. Soc. Bull.* **66**, 704 (1987).
6. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, *Mat. Sci. Eng.* **B108**, 258 (2004).
7. N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, and D. P. Cann, *Current Applied Physics* **6**, 303–306 (2006).
8. H. Fan and H.-E. Kim, *J. Appl. Phys.* **91**, 317 (2002).
9. G. H. Haertling and W. J. Zimmer, *Am. Ceram. Soc. Bull.* **45**, 1084 (1966).

Phase transitions and ferroelectric properties in BiScO_3 - $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - BaTiO_3 solid solutions

Chien-Chih Huang^{a)} and David P. Cann

Materials Science, Department of Mechanical Engineering, Oregon State University, Corvallis, Oregon 97331

Xiaoli Tan

Materials Science and Engineering Department, Iowa State University, Ames, Iowa 50011

Naratip Vittayakorn

Department of Chemistry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520

(Received 9 May 2007; accepted 1 July 2007; published online 21 August 2007)

Ceramics solid solutions within the ternary perovskite system $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - BiScO_3 - BaTiO_3 were synthesized via solid-state processing techniques. The crystal structure of sintered ceramics was analyzed by x-ray diffraction. A stable perovskite phase was obtained for all compositions with a BaTiO_3 content greater than 50 mol %. Furthermore, a change in symmetry from pseudocubic to tetragonal was observed as the mole fraction of BaTiO_3 increased. Dielectric measurements show a dielectric anomaly associated with a phase transformation over the temperature range of 30 °C–210 °C for all compositions. Examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops. With these data, ferroelectric phase diagrams were derived showing the transition between the pseudocubic relaxor behavior to the tetragonal normal ferroelectric behavior. This transition was also correlated with changes in the diffuseness parameter. © 2007 American Institute of Physics. [DOI: 10.1063/1.2769787]

I. INTRODUCTION

Perovskite $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ (PZT) ceramics are widely used for many industrial applications due to their superior performance in piezoelectric, dielectric, and pyroelectric applications. However, recently there have been environmental concerns about PZT related to the toxicity of lead oxides which are volatile during processing. Consequently, this has motivated the search for lead-free piezoelectric materials with piezoelectric properties comparable to PZT with a reduced environmental impact.

The origin of the enhanced piezoelectric response in perovskite PZT is the result of lone pair electrons in the Pb^{2+} hybrid orbitals¹ and the existence of a morphotropic phase boundary (MPB) between two ferroelectric phases.² Therefore, Bi^{3+} is an excellent candidate for the substitution of Pb in the PZT system since it has a similar electronic structure and there are already numerous Bi-based perovskite ceramics that can be used in solid solutions.^{3–8} Through systematic research, a number of MPB systems based on $\text{Bi}(M)\text{O}_3$ - PbTiO_3 ($M=\text{Ti}^{4+}$, Sc^{3+} , Zn^{2+} , Nb^{5+} , ...) have been discovered.^{6,8} Recently, BiScO_3 (BS) perovskite has drawn attention due to its high Curie temperature ($T_c=450$ °C) and its excellent piezoelectric properties at the MPB with PbTiO_3 .⁶ Another Bi-based perovskite, $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$, exhibits a high T_c with an enhanced tetragonality through solid solution with PbTiO_3 .^{8,9} However, both BiScO_3 and $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ are unstable in their pure form and can only be stabilized under high pressures^{10,11} or in solid solutions with other perovskite end members.^{6,8} In order to develop

lead-free piezoelectric materials, BaTiO_3 (BT) was used for this research in order to stabilize the BZT and BS perovskite phases in a solid solution.

Recently, Tinberg *et al.* reported ferroelectric thin films based on the BiScO_3 - BaTiO_3 binary system.¹² Similar to the BiScO_3 - PbTiO_3 system, when PbTiO_3 was replaced with BaTiO_3 , the perovskite structure was stabilized and a MPB was observed. Although there are no reports related to the $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - BaTiO_3 system, an increased transition temperature can be expected for this system.

In this work, the phase equilibria and dielectric properties of the ternary solid solution BiScO_3 - $\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - BaTiO_3 (BS-BZT-BT) were examined. This article may provide an alternative approach for lead-free piezoelectric materials development.

II. EXPERIMENTAL PROCEDURE

Solid solutions of $(1-x)(0.5\text{BiScO}_3\text{-}0.5\text{Bi}(\text{Zn}_{1/2}\text{Ti}_{1/2})\text{O}_3)\text{-}x\text{BaTiO}_3$ (BS-BZT-BT) were prepared by conventional ceramic processing. Reagent grade oxide powders of Bi_2O_3 ($\geq 99.9\%$), ZnO ($\geq 99\%$), TiO_2 ($\geq 99.9\%$), and BaCO_3 ($\geq 99.5\%$) were batched in stoichiometric amounts and ball-milled with ethanol and yttrium-stabilized zirconia media for 6 h. The dried powders were double calcined in open crucibles between 800 °C–950 °C for 24 h and followed by an additional milling and drying step. The calcined powders were mixed with 3 wt % polyvinyl alcohol (PVA) and then uniaxially cold-pressed at 150 MPa into 12.7 mm diameter pellets. Following binder burnout at 500 °C, the pellets were sintered in sealed crucibles between 850 °C–1200 °C for 2 h. For phase determination, x-ray

^{a)}Electronic mail: huangch@onid.orst.edu

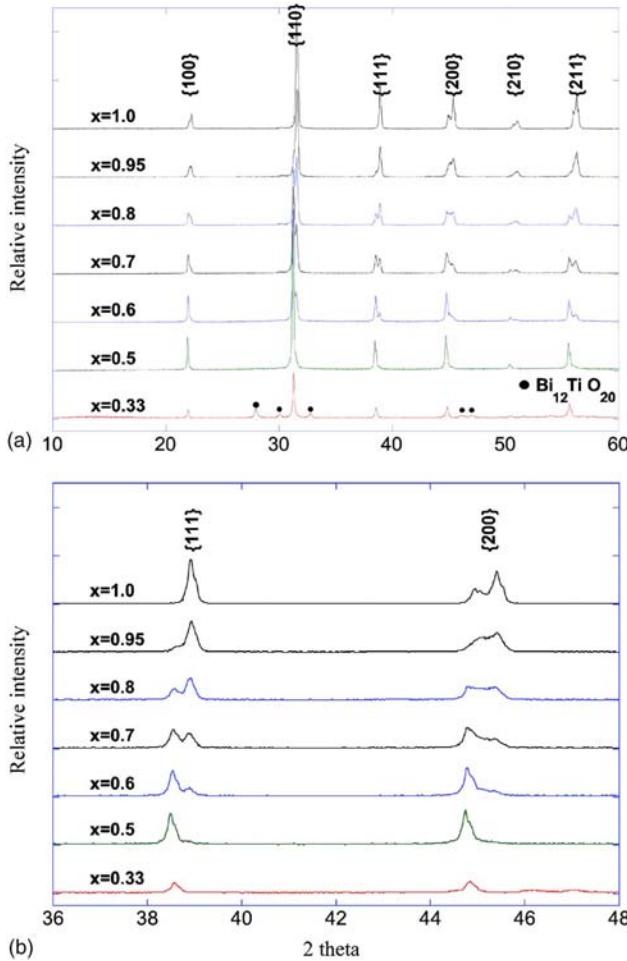


FIG. 1. (Color online) XRD diffraction pattern of calcined $(1-x)$ (BS-BZT)-xBT powders.

diffraction (XRD, Siemens D5000 diffractometer) was utilized in the 2θ scan range of 10 – 60° for calcined powders and sintered pellets.

Prior to the electrical measurements, the pellets were polished to smooth and parallel surface. After polishing, a silver electrode paste (Heraeus C1000) was applied and then fired at 600°C . An Agilent 4284A LCR was used to measure the dielectric properties over a wide temperature range using a NorECS ProboStat high-temperature measurement cell. The polarization versus electric field hysteresis loops of selected compositions were recorded at room temperature and -50°C , respectively, with a RT66A standard ferroelectric test system (Radian Technologies).

III. RESULTS AND DISCUSSION

A. Perovskite phase determination

Figure 1(a) displays the XRD patterns for calcined powders of $(1-x)$ (BS-BZT)-xBT. Perovskite phases were obtained for compositions containing at least 50 mol % BaTiO_3 . For compositions below this amount, a complex mixture of phases was observed. Based on the $\{111\}$ and $\{200\}$ peak splittings shown in Fig. 1(b), the composition with $x=0.5$ corresponds to a pure rhombohedral symmetry.

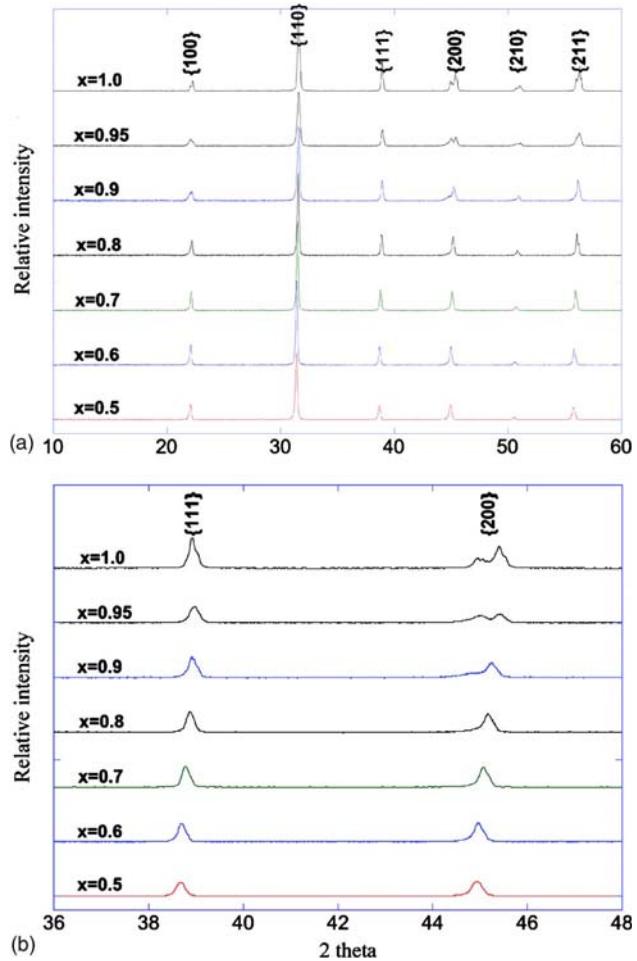


FIG. 2. (Color online) XRD diffraction pattern of sintered $(1-x)$ (BS-BZT)-xBT ceramics.

Compositions above $x=0.95$ stabilized in a pure tetragonal symmetry. The peaks between these two compositions indicated the coexistence of rhombohedral and tetragonal phases. The XRD patterns of sintered $(1-x)$ (BS-BZT)-xBT pellets shown in Fig. 2 confirm that the samples retained phase pure perovskite for all compositions with 50 mol % and above BaTiO_3 . In contrast to the calcined powders, in the sintered pellets the tetragonal perovskite phase was only present for compositions with $x=0.95$ to $x=1$. The remainder of the compositions $x \leq 0.9$ exhibited a rhombohedral symmetry. These results indicate that the MPB in this system may be located between $x=0.9$ and 0.95. This shift in symmetry between the calcined and sintered samples may be due to a number of factors. The observation of the coexistence of two perovskite phases in calcined powders is likely the result of the relatively low processing temperature. The limited reaction kinetics may have resulted in an incomplete reaction between BT, BS, and BZT. In addition, both Bi_2O_3 and ZnO have some degree of volatility at this temperature that may have caused a slight change in composition. Upon sintering, homogenization occurred, leading to a clearly observed single-perovskite phase.

The lattice parameters were calculated from XRD patterns shown in Table I. Although Bi^{3+} is slightly smaller than

TABLE I. Room-temperature structure and dielectric data for all compositions at 10 KHz.

x mol % BT	0.5	0.6	0.7	0.8	0.9	0.92	0.95	1
Structure lattice parameter (\AA)	Rhombohedral						Tetragonal	
	4.046	4.040	4.030	4.022	4.014	4.009	$a: 3.997$ $c: 4.023$	$a: 3.992$ $c: 4.034$
T_m (°C)	208	161	118	76	45	33	111	134
ε_m at T_m	1100	1170	1240	1360	2570	3960	3520	9740
δ	587.5	210.3	143.1	70	61.4	57.3	16.3	3.4
γ	1.99	1.74	1.65	1.67	1.66	1.44	1.38	1.11

Ba^{2+} based on 12-fold coordination, the unit cell volume increased with decreasing BaTiO_3 content due to substitution of larger size B -site cations $\text{Zn}^{2+}(0.88 \text{ \AA})$ and $\text{Sc}^{3+}(0.885 \text{ \AA})$ for $\text{Ti}^{4+}(0.745 \text{ \AA})$. Comparing the tetragonal structure for $x=1$ and $x=0.95$, the results show that the $c:a$ ratio increased with BaTiO_3 content. This may be due to the phase transition for $x=0.95$ that occurs close to room temperature, which results in the formation of a pseudocubic phase.

B. Dielectric behavior of BS-BZT-BT

The dielectric constant and dielectric loss were measured from 100 Hz to 100 KHz as a function of temperature. The room-temperature dielectric properties for all of the compositions in this study are listed in Table I. Figure 3 shows the

permittivity versus temperature at 10 KHz for $(1-x)$ (BS-BZT)- x BT from $x=0.5$ to 1.0. It was observed that the maximum permittivity, ε_m , increased with increasing BaTiO_3 content. However, temperature at which maximum permittivity appeared, T_m , exhibited a more complex trend. It is very clear from the data that, while pure BaTiO_3 exhibited a strong first-order phase transition, the addition of BS+BZT caused a shift toward relaxor ferroelectric behavior. It is well known that perovskite BaTiO_3 has three phase transitions within a wide range of temperature.¹³ According to our XRD data in Fig. 2, when mixed with more than 10 mol % BS-BZT, all three transition temperatures merged into one diffuse transition which is also reflected in the XRD data. This kind of phenomenon has also been noted when BaTiO_3 was mixed with BaZrO_3 .¹⁴ In Table I, the data clearly show that T_m decreased with increasing BaTiO_3 content for $x \leq 0.9$. On the contrary, T_m increased with BaTiO_3 content for $x \geq 0.95$.

For a diffuse phase transition, the degree of diffuseness can be obtained from the parameter δ_r derived via the following expression:¹⁵

$$\frac{\varepsilon'_m}{\varepsilon'(f, T)} = 1 + \frac{[T - T_m(f)]^\gamma}{2\delta_r^2} (1 \leq \gamma \leq 2). \quad (1)$$

The parameter of γ is degree of dielectric relaxation, where $\gamma=1$ corresponds to a normal first-order ferroelectric phase transition. Larger values of γ express more relaxor-ferroelectric behavior of transition. The value of δ_r represents degree of diffuseness for transition peaks. Both γ and δ_r were determined from the slope and intercept of $\ln(\varepsilon'_m/\varepsilon')$ vs $\ln(T - T_m)$. According to Table I, a greater percentage of BS and BZT resulted in a higher degree of diffuseness and stronger relaxor behavior. This can be explained by the increased cation disorder due to the substitution on the A -site by Bi and on the B -site by Sc and Zn.

The dielectric property as a function of frequency for $(1-x)$ (BS-BZT)- x BT is shown in Fig. 4. A strong frequency dependence characteristic of a relaxor ferroelectric was observed. The peaks appearing around 600 °C for $x=0.8$ are likely the result of oxygen vacancies.¹⁶ Moreover, these compositions possess a stable dielectric constant of approximately 1000 and low loss tangent ($\tan \delta < 0.01$) up to high temperatures ($T < 400$ °C). It may have great potential for high-temperature applications.

The polarization versus electric field measurements at 4 Hz for $x=0.5$ and $x=0.7$ are shown in Fig. 5. The samples used in this study were sintered without being covered,

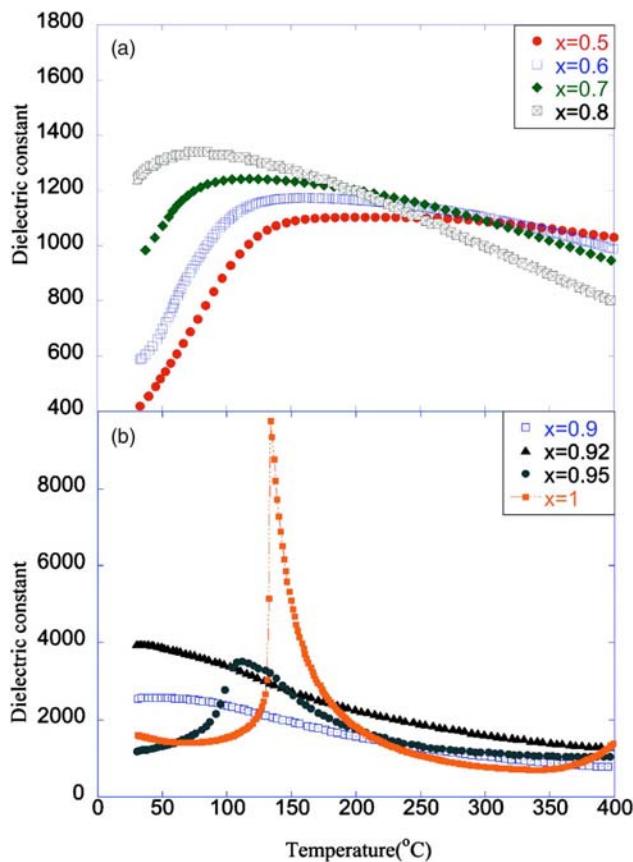


FIG. 3. (Color online) Dielectric constant of $(1-x)$ (BS-BZT)- x BT as a function of temperature at measuring frequency of 10 KHz.

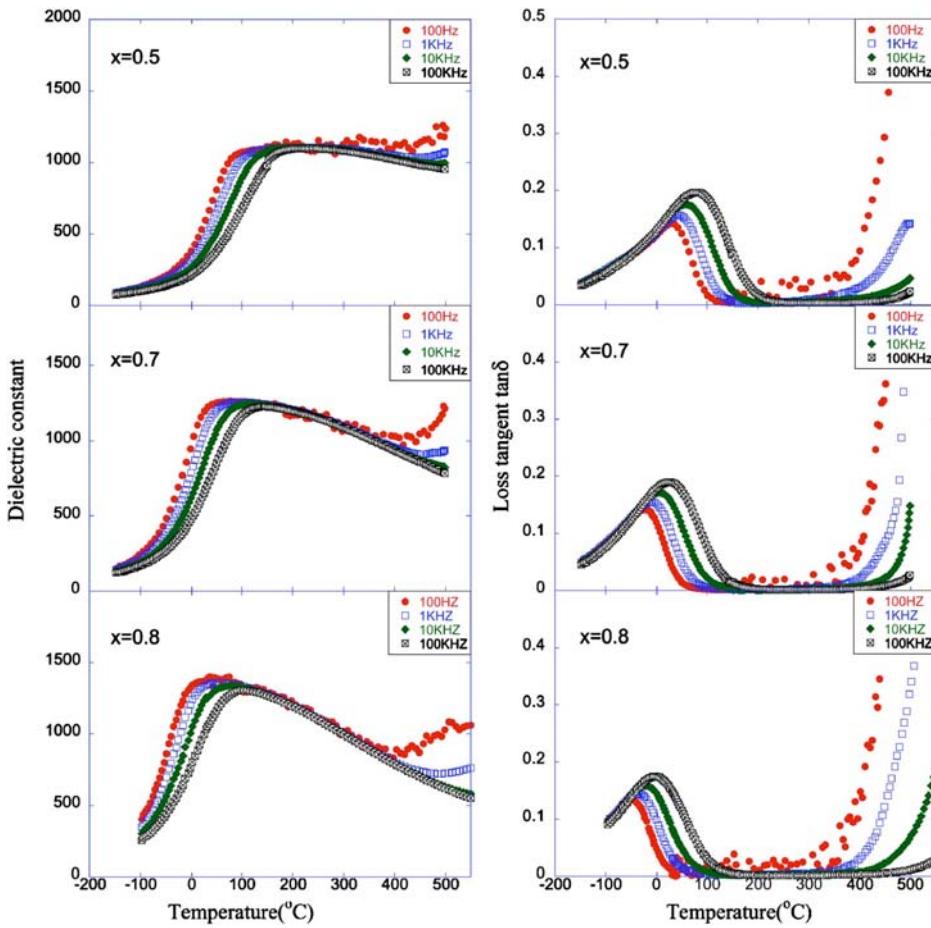


FIG. 4. (Color online) Dielectric constant and loss tangent of $(1-x)$ (BS-BZT)-xBT with $x=0.5, 0.7$, and 0.8 as a function of temperature.

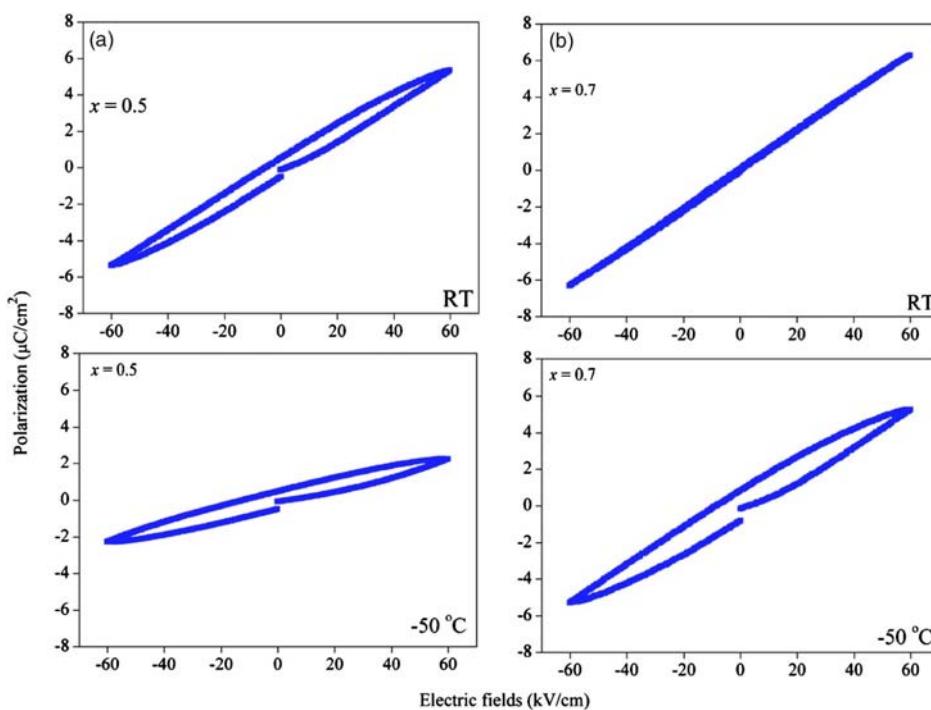


FIG. 5. (Color online) Polarization data on $(1-x)$ (BS-BZT)-xBT ceramics at 4 Hz for (a) $x=0.5$ and (b) $x=0.7$.

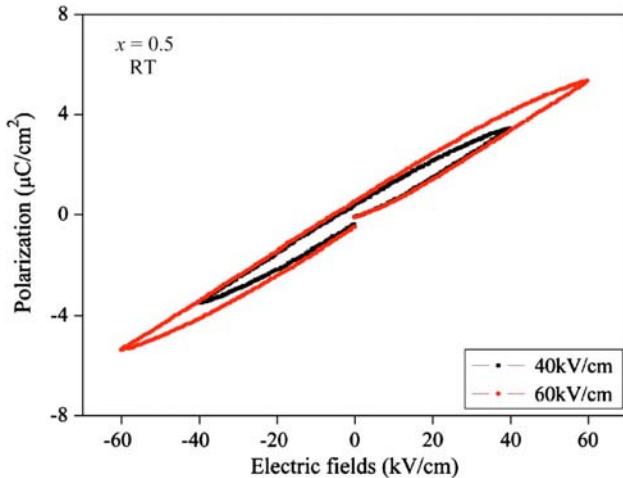


FIG. 6. (Color online) The P - E hysteresis loop measured from the ceramic of $x=0.5$ at 4 Hz at room temperature.

which, due to the loss of Zn and Bi, resulted in a slight downward shift in T_{\max} (i.e., on the order of $10\text{ }^{\circ}\text{C}$ – $20\text{ }^{\circ}\text{C}$). The loop from the ceramic of $x=0.5$ exhibits a weak nonlinearity at room temperature, which is not unexpected given that the measurements were taken at a temperature in the vicinity of T_m . At $T=-50\text{ }^{\circ}\text{C}$ the slope of the loop decreased as expected due to the decrease in dielectric permittivity below T_m . Figure 6 displays room-temperature P - E data for $x=0.5$ as a function of electric field. As the E -field increases, a clear elliptical rotation is observed which is another indication of nonlinear behavior. The $x=0.7$ sample exhibited a narrow, weakly nonlinear loop at room temperature which broadened at lower temperatures corresponding to the increased $\tan \delta$ below the transition temperature (Fig. 4). It is interesting to note that even at relatively high fields up to 60 kV/cm all the loops were weakly nonlinear with relatively low polarization values.

C. Phase transformations in the $(1-x)(\text{BS-BZT})-x\text{BT}$ system

Figure 7 presents data on the phase transformation in the $(1-x)(\text{BS-BZT})-x\text{BT}$ system obtained from the dielectric data. Starting from pure BaTiO_3 the phase transition decreases as the (BS-BZT) content increases to a minimum of $33\text{ }^{\circ}\text{C}$ at $x=0.92$. At higher (BS-BZT) concentrations the transition temperature then increases up to $x=0.5$. Also plotted in Fig. 7 is the diffuseness parameter δ as a function of composition. Pure BaTiO_3 exhibits a sharp first-order phase transition, but as the (BS-BZT) content increases a quasilinear increase in δ is observed owing to increased relaxor behavior.

IV. CONCLUSION

Single-phase perovskite was obtained for $(1-x)(\text{BS-BZT})-x\text{BT}$ for compositions containing at least

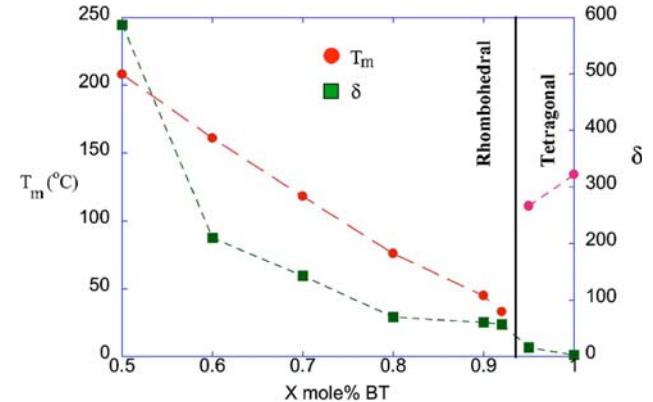


FIG. 7. (Color online) T_{\max} and diffuseness δ as a function of BaTiO_3 content.

50 mol % BaTiO_3 . The XRD data revealed that a MPB may exist between 5–10 mol % BS-BZT added to BaTiO_3 . The dielectric characterization revealed that as BS-BZT was added to BaTiO_3 the phase transition became very diffuse. The relaxor ferroelectric behavior was likely due to complex cation ordering on the A-site and on the B-site. Due to the diffuseness of the phase transition, the compositions in this study exhibited a very stable dielectric constant greater than 1000 and low loss tangents (<0.01) over a wide range of temperature ($T<400\text{ }^{\circ}\text{C}$).

ACKNOWLEDGMENTS

The authors would like to thank Professor Doug Keszler for assisting with the XRD experiments, as well as Xiaohui Zhao for his assistance with the P - E measurements.

- ¹R. E. Cohen, *Nature* **358**, 136 (1992).
- ²R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox, and G. Shirane, *Phys. Rev. Lett.* **84**, 5423 (2000).
- ³C. F. Bahrer, *J. Chem. Phys.* **36**, 798 (1962).
- ⁴T. Takenaka, K. Maruyama, and K. Sakata, *Jpn. J. Appl. Phys., Part 1* **30**, 2236 (1991).
- ⁵A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, *Jpn. J. Appl. Phys., Part 1* **38**, 5564 (1999).
- ⁶R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.-E. Park, *Jpn. J. Appl. Phys., Part 1* **40**, 5999 (2001).
- ⁷M. R. Suchomel and P. K. Davies, *J. Appl. Phys.* **96**, 4405 (2004).
- ⁸M. R. Suchomel and P. K. Davies, *Appl. Phys. Lett.* **86**, 262905 (2005).
- ⁹I. Grinberg, M. R. Suchomel, W. Dmowski, S. E. Mason, H. Wu, P. K. Davies, and A. M. Rappe, *Phys. Rev. Lett.* **98**, 107601 (2007).
- ¹⁰Y. Y. Tomashpol'skii, E. V. Zubova, K. P. Burdina, and Y. N. Venevtsev, *Sov. Phys. J.* **13**, 859 (1969).
- ¹¹M. R. Suchomel, A. M. Fogg, M. Allix, H. Niu, J. B. Claridge, and M. J. Rosseinsky, *Chem. Mater.* **18**, 4987 (2006).
- ¹²D. S. Tinberg and S. Trolier-McKinstry, *J. Appl. Phys.* **101**, 024112 (2007).
- ¹³B. Jaffe, W. Cook, and H. Jaffe, *Piezoelectric Ceramics* (Academic, London, 1971).
- ¹⁴Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, *J. Appl. Phys.* **92**, 1489 (2002).
- ¹⁵A. A. Bokov and Z.-G. Ye, *Solid State Commun.* **116**, 105 (2000).
- ¹⁶B. S. Kang and S. K. Choi, *Solid State Commun.* **121**, 441 (2002).

Influence of fabrication processing on phase transition and electrical properties of $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-0.2\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics

G. Rujijanagul ^{a,*}, N. Vittayakorn ^b

^a Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand

Received 9 January 2007; received in revised form 11 May 2007; accepted 21 May 2007

Available online 31 May 2007

Abstract

The binary system of $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-0.2\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics were synthesized by conventional mixed oxide and columbite method. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases for the columbite prepared sample. Rhombohedral to tetragonal phase transition for columbite method was different compared with those of the mixed oxide method. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature $T_{\text{Rho-Tetra}} = 195^\circ\text{C}$, and then a maximum permittivity (36,000 at 10 kHz) at the transition temperature $T_m = 277^\circ\text{C}$ on ceramics prepared with the columbite method. However, piezoelectric coefficient (d_{33}) was measured to be 282 pC/N for the conventional method and higher than the columbite method. The results were related to the phase compositions and porosity of the ceramics.

© 2007 Elsevier B.V. All rights reserved.

PACS: 77.22.-d; 77.22.Gm; 77.84.Dy

Keywords: Phase transition; Dielectric properties; Ferroelectric properties; Columbite method

1. Introduction

$\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PNN) is a relaxor ferroelectric material which has a cubic structure at room temperature. It shows a broad dielectric peak near $T_c \approx -120^\circ\text{C}$ with relative permittivity near 4000 at 1 kHz [1]. Nanometer-level chemical heterogeneity in the form of short range ordering of Ni^{2+} and Nb^{5+} on the B' site was proposed to account for the diffuse phase transition [2]. Pure perovskite phase of PNN can be prepared by the columbite method. This material can be alloyed with normal ferroelectric to optimize the electrical properties [3].

Lead zirconate-titanate, $\text{Pb}(\text{Zr}_x\text{Ti}_{1-x})\text{O}_3$ (PZT) is a normal ferroelectric material which has been extensively investigated in the past because of their owing to the

exceptionally good dielectric and piezoelectric properties as well as high Curie temperature ($>350^\circ\text{C}$) [4]. The high dielectric and piezoelectric of PZT was found for the composition close to the morphotropic phase boundary (MPB). This MPB is located around $\text{PbZrO}_3:\text{PbTiO}_3 \sim 0.52:0.48$ and separates the Ti-rich tetragonal phase from the Zr-rich rhombohedral phase [4]. PZT-based ceramics were applied in many areas such as spark igniters, micro-actuators, sensors, piezo-transformers, transducers and multilayer ceramic capacitors, electro-optical and micro-electro-mechanical systems applications [4,5].

Recently, the high electrical properties have been reported in binary and ternary systems containing a combination of normal and relaxor ferroelectric materials such as $\text{PbTiO}_3-\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PT–PMN), $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}-\text{Nb}_{2/3})\text{O}_3$ (PZT–PZN), $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT–PNN) [3,6–9], $\text{PbZrO}_3-\text{PbTiO}_3-\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZ–PT–PMN) [10], $\text{PbZrO}_3-\text{PbTiO}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZ–PT–PNN) [7–9] and $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbZrO}_3$

* Corresponding author. Tel.: +66 53 943 376; fax: +66 53 357 512.
E-mail address: rujianagul@yahoo.com (G. Rujijanagul).

(PZN–PZ) [4]. The solid solution of lead nickel niobate $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PNN) with $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ (PZT) is also a relaxor-type ferroelectrics, which has drawn much interest in recent years for its excellent dielectric, especially electrostrictive properties [7–9]. Our recent work found that the maximum relative permittivity ($\epsilon_{r(\max)}$) of MPB compositions in the PNN–PZT binary systems is higher than 30,000 [3]. However, the properties and phase transition of the lead-based ferroelectric materials are strongly influenced by density, composition, phase, and microstructure which in turn depend on the method of preparation. In the present work, the columbite precursor method and conventional mixed oxide method were used in synthesizing the 0.8PZT–0.2PNN ceramics. The columbite precursor method is used as an initial step of preparing columbite precursor (NiNb_2O_6) and wolframite (ZrTiO_4) precursor followed by a reaction with PbO to form the binary ceramics system whereas the conventional method utilizes a one-step reaction with all of the starting materials. The phase formation, phase transition and electrical properties of the ceramics prepared by both the methods were compared and discussed.

2. Experiment procedure

Ceramics of the binary system 0.8PZT–0.2PNN were prepared via the columbite method and the conventional method. For the columbite method, the columbite structure (NiNb_2O_6) and wolframite structure (ZrTiO_4) was synthesized first. NiNb_2O_6 was formed by reacting NiO and Nb_2O_5 at 1100 °C for 4 h, while ZrTiO_4 was prepared by reaction between ZrO_2 and TiO_2 at 1400 °C for 4 h. The precursors and PbO (with 2 mol% excess PbO) were weighed and mixed by ball-milling in a polyethylene bottle together with partially stabilized zirconia media. The mixture was calcined at 950 °C for 4 h in a double crucible configuration with a heating rate of 20 °C/min. After grinding and sieving, 5 wt.% of polyvinyl alcohol binder was added. The calcined powder was cold isostatically pressed into pellets at a pressure of 150 MPa. The pellets were sintered in a sealed alumina crucible at 1250 °C for 2 h. To compensate PbO volatilization, the PbO atmosphere for the sintering was maintained using PbZrO_3 as the spacer powder. For the conventional method, oxides of PbO , NiO , ZrO_2 , TiO_2 and Nb_2O_5 were mixed in the required stoichiometric ratios to form the composition 0.8PZT–0.2PNN. The mixture was then followed the same processing condition as the columbite method. The density of the sintered samples was measured by Archimedes' method with distilled water as the fluid medium. Perovskite phase formation of sintered pellets was checked by X-ray diffraction (XRD). The microstructures of the sintered samples were examined using a scanning electron microscopy (SEM). For the electrical measurement, the pellets were polished and then electrode by gold sputtering. The relative permittivity (ϵ_r) at various temperature was measured using a LCR meter in junction with an environmental chamber with a heating rate of 3 °C/min. The ferroelectric polarization ver-

sus electric field (P–E) measurements was made using a Sawyer-Tower circuit at 50 Hz. The ceramics were poled for piezoelectric measurement in silicone oil at 80 °C for 30 min at field strength of 2 kV/mm. The d_{33} piezoelectric coefficient was measured using a d_{33} meter, 24 h after poling.

3. Results and discussion

Fig. 1 shows XRD patterns of the 0.8PZT–0.2PNN ceramics prepared by columbite and conventional methods. Perovskite phase was observed for both the methods. XRD patterns for the ceramics over the range $2\theta = 42$ –48° are shown in Fig. 2. There was appearance of multi peaks due to the superposition of the tetragonal and rhombohedral (200) peaks. In general, the single peak of (200) reflection results for the rhombohedral phase, whereas it

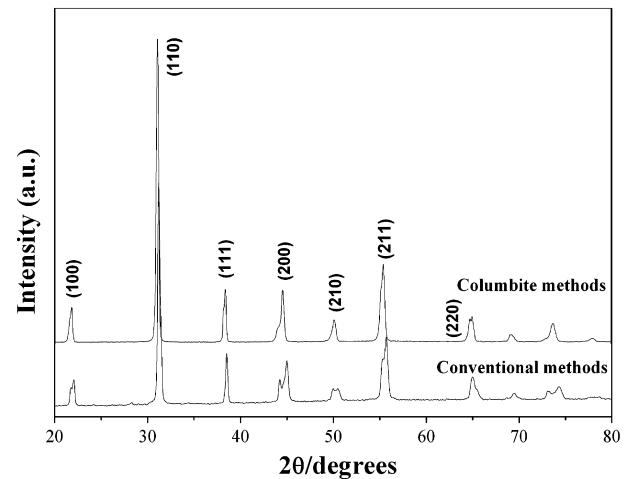


Fig. 1. XRD patterns of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method.

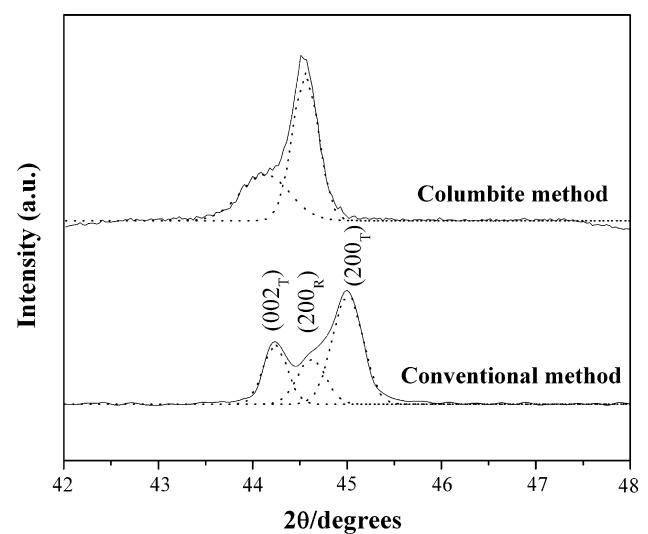


Fig. 2. XRD patterns of the (002) and (200) peaks of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method.

splits into two peaks for the tetragonal phase. In the present work, the XRD pattern for the columbite prepared sample shows a weak splitting of the (200) peak, while the conventionally prepared sample exhibits a strong splitting of the peak. In order to identify the phase compositions between rhombohedral and tetragonal phase, the (200) peaks can be fitted with Gaussian peaks. For the conventionally prepared sample, it can be well fitted with three Gaussian peaks as seen in Fig. 2. However, it can only be fitted with two peaks for the columbite prepared sample because of the intensive overlap of the (200) tetragonal and (200) rhombohedral plane. The result indicates that the columbite method produced the ceramics with the dominance of the rhombohedral phase (rhombohedral rich) compared with the conventional method. Similar behavior was reported by previous authors in another ferroelectric system [11].

The ceramic density was measured to be 7.49 g/cm^3 and 7.90 g/cm^3 for columbite and conventional methods, respectively. The SEM images of fracture surface for 0.8PZT–0.2PNN ceramics prepared by both the methods are shown in Fig. 3. The porosity levels evident in SEM micrographs of the ceramics were consistent with the density values. In addition, the columbite method produces ceramics with coarser grains compared with the conventional method. By using the linear intercept method to

the SEM images, the average grain size was determined to be 5.8 and $2.1 \mu\text{m}$ for the columbite and conventionally prepared samples, respectively. The results suggested that different processing methods develop the ceramics with different density and grain size.

In polar dielectric, in most cases the molecules cannot orient themselves in the low-temperature region. When the temperature rises, the orientation of dipoles facilitates, and this increases the permittivity. Characteristic sets of curves are obtained if the dependence of the permittivity of strong polarized dielectrics is plotted versus two variable factors – temperature and frequency. The variations of the relative permittivity of the material under investigation were measured as a function of temperature between 1 kHz and 100 kHz. From Fig. 4, the temperature dependences of dielectric constant depict a typical relaxor behavior with strong dispersion of the dielectric peak at $T < T_m$ (T_m , the temperature of permittivity maximum) for both methods. The broad dielectric maxima shifting towards higher temperature with increasing frequency signify the

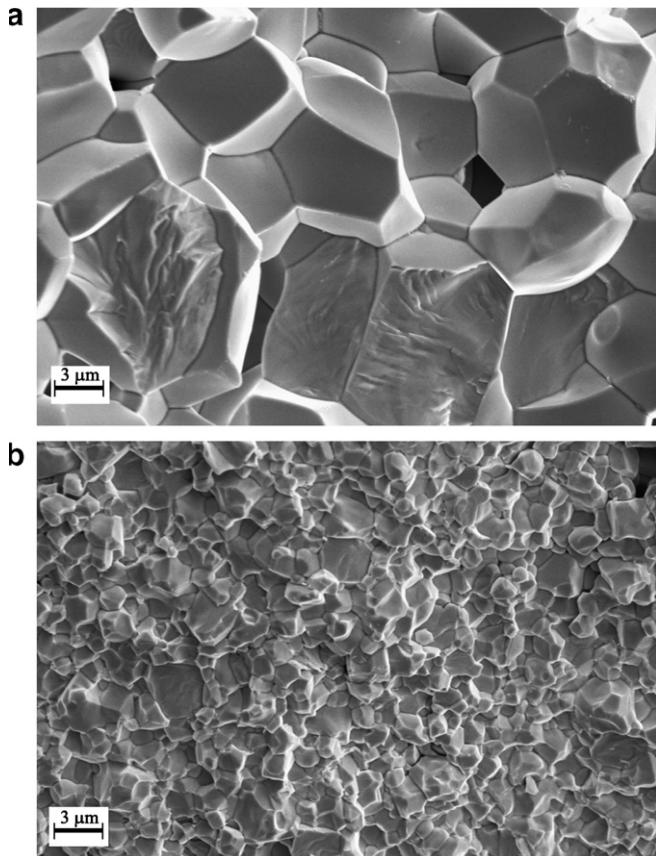


Fig. 3. Fracture surface of 0.8PZT–0.2PNN ceramics prepared by (a) columbite method and (b) conventional method.

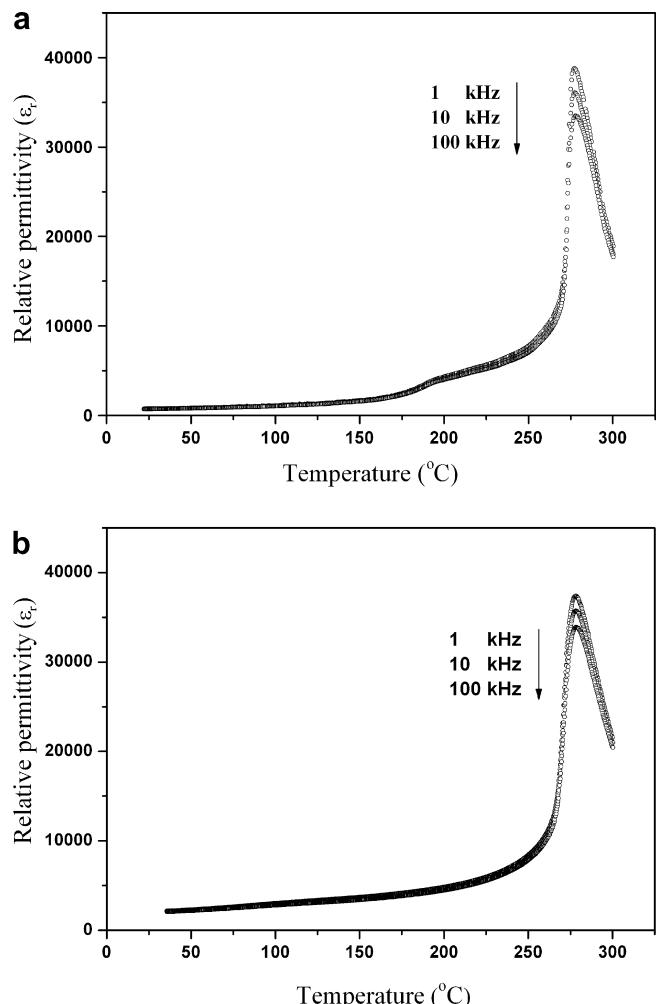


Fig. 4. Temperature dependence on the relative permittivity of 0.8PZT–0.2PNN at frequencies between 1 kHz and 100 kHz: (a) columbite method; (b) conventional method.

relaxor-like type behavior of the ceramics. Furthermore, the columbite prepared sample shows stronger frequency dependence compared with the conventional prepared sample. However, the frequency dispersion in the 0.8PZT–0.2PNN ceramics prepared by both the methods is not as strong as that in the pure relaxor PZN. Fig. 5 shows a comparison dielectric result (measured at 10 kHz) between the conventional and columbite prepared sample. The temperature at which the permittivity is maximum T_m and the relative permittivity (measured at 10 kHz) for both at room temperature and at T_m is listed in Table 1. The columbite prepared sample shows a sharp dielectric maximum at the ferroelectric transition temperature (T_m) of 277 °C with maximum permittivity value of 36,000 and the conventionally prepared sample exhibits a maximum permittivity value of 35,700 at $T_m \sim 278$ °C. Although the columbite method helps to improve the dielectric permittivity, the porosity of the samples was also found to influence on this value. Therefore, the ceramic prepared via columbite method exhibits a slightly higher relative permittivity at T_m than that of ceramics synthesized by the conventional method.

The ε_r versus T curves shown in Fig. 4 are also indicative of thermally induced phase transitions. The permittivity shows a shoulder at the rhombohedral to tetragonal phase

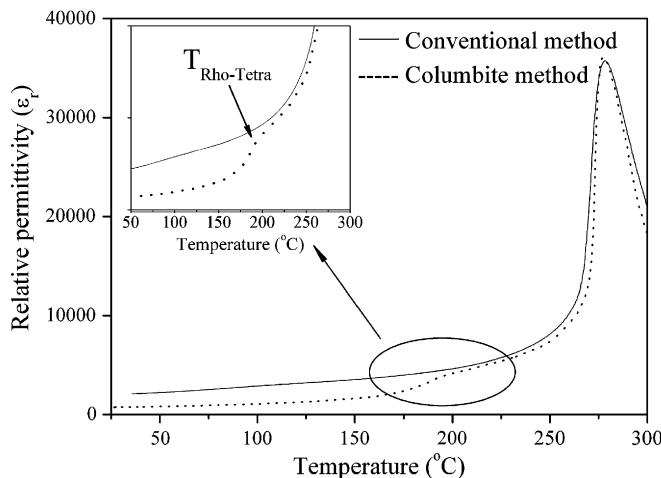


Fig. 5. Temperature dependence on the relative permittivity of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method measured at 10 kHz.

Table 1
Comparisons of dielectric properties measured at 10 kHz of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method

Method of preparation	ε_r at 25 °C	$\tan \delta$ at 25 °C	T_m (°C)	$\varepsilon_{r(\max)}$	$\tan \delta$ at T_m	δ_γ (°C)
Columbite method	825	0.011	277	36,000	0.047	14.6
Conventional method	2100	0.014	278	35,700	0.030	16.1

transition temperature ($T_{\text{Rho-Tetra}}$) ~ 195 °C for the columbite prepared sample as seen in the Fig. 5. However, for the conventional method, there was observed only one peak present at the tetragonal to cubic phase transition $T_m \sim 278$ °C. Similar transition (rhombohedral to tetragonal transition) has been reported by previous authors in other systems [3,12]. The results for the rhombohedral to tetragonal transition can be related to the XRD results, i.e. rhombohedral rich composition was observed in ceramic prepared by columbite method.

In relaxor ferroelectric materials, the value of relative permittivity above T_m does not follow the Curie–Weiss law. A number of materials show behavior intermediate between proper ferroelectric and relaxor. A simple quadratic law can be used to describe a second order relaxor ferroelectric. This arises from the fact that the total number of relaxors contributing to the permittivity response in the vicinity of the permittivity peak is temperature dependent. The diffusiveness parameter (δ_γ) of the transition was determined from the equation [13,14]:

$$\frac{\varepsilon_{r(\max)}}{\varepsilon_r} = \exp \left(\frac{(T - T_m)^2}{2\delta_\gamma^2} \right) \quad (1)$$

where $\varepsilon_{r(\max)}$ is maximum value of the relative permittivity at $T = T_m$ and ε_r is the dielectric constant of sample. The value of the diffuseness parameter can be calculated from the slope of $\ln(\varepsilon_{r(\max)}/\varepsilon_r)$ versus $(T - T_m)^2$ curve. This value is valid for the range of $\varepsilon_{r(\max)}/\varepsilon_r < 1.5$, as clarified by Pilgrim et al. [13]. The graphs of $\ln(\varepsilon_{r(\max)}/\varepsilon_r)$ versus $(T - T_m)^2$ is shown in Fig. 6. The values of parameter δ_γ are listed in Table 1. The parameter δ_γ is calculated to be 14.6 and 16.1 in ceramics prepared with columbite method and conventional method, respectively. A significant increase in δ_γ for the conventionally prepared sample indicates an increased diffusiveness in the phase transition. This may be due to the homogeneity at the atomic scale of the columbite

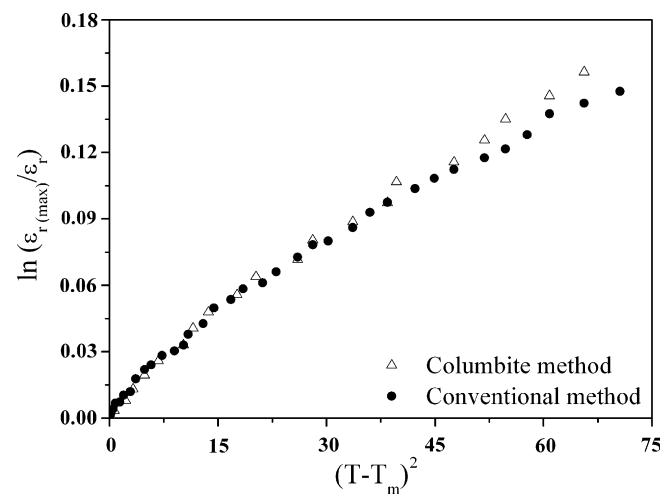


Fig. 6. The $\ln(\varepsilon_{r(\max)}/\varepsilon_r)$ versus $(T - T_m)^2$ for 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method.

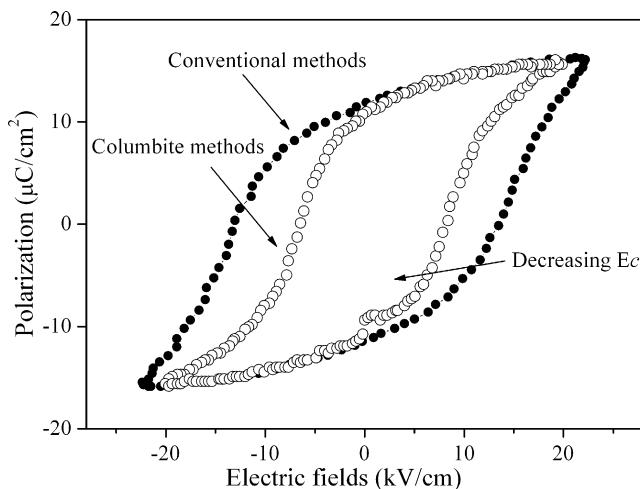


Fig. 7. P-E hysteresis of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite method.

prepared sample which is much higher than that in the ceramics prepared by conventional method.

The result of polarization–field (P–E) measurement (at 50 Hz) for ceramics prepared from both the methods is shown in Fig. 7. The polarization loop of both samples are well developed showing a large remanent polarization at zero field. The hysteresis loops have a typical “square” form stipulated by switching of a domain structure in an electrical field, which is typical of a phase that contains long-range cooperation between dipoles. That is characteristic of a ferroelectric micro-domain state. From the fully saturated loops, the remanent polarization P_r and coercive field E_c were determined. The values of P_r and E_c for conventional method are $10.1 \mu\text{C}/\text{cm}^2$ and $13.3 \text{ kV}/\text{cm}$, respectively, whereas for columbite methods the remanent polarization P_r and coercive field E_c are $10.9 \mu\text{C}/\text{cm}^2$ and $7.2 \text{ kV}/\text{cm}$, respectively. It can be noted that P_r for the columbite method is not too much higher than the conventional method, which may be due to the porosity effect. However, the higher P_r and lower E_c can be related to the more rhombohedral phase in the columbite prepared sample [15]. This trend is agreed with the results from the previous works in PMN–PZ–PT and PZT ceramics [16,17].

In order to study the piezoelectric property of the samples, the d_{33} piezoelectric coefficient was measured at the same condition. The d_{33} values were found to be 282 and 202 pC/N for the ceramics prepared by conventional and columbite method, respectively. The d_{33} value for the conventional method is relatively high compared to those reported in the literature for the same system [18]. However, d_{33} value for the columbite sample was lower than the conventional method. The lower d_{33} value is likely

due to the higher porosity of the columbite prepared sample. This effect also made the ceramics difficult to pole.

4. Conclusions

The properties of 0.8PZT–0.2PNN ceramics prepared by the conventional method and the columbite methods were investigated. Phase transition behavior, dielectric, and ferroelectric properties were found to depend on the phase composition of the samples with association with the methods of preparation. Although a slightly higher dielectric constant was observed in the columbite prepared sample, the better piezoelectric property was found for the conventionally prepared sample. These results were attributed to the porosity effect.

Acknowledgements

This work was supported by The Thailand Research Fund (TRF), Faculty of Science Chiang Mai University, King Mongkut's Institute of Technology Ladkrabang (KMITL), and Commission on Higher Education (CHE) Thailand. The authors would like to thank Prof. Dr. Tawee Tunkasiri for his help in many facilities.

References

- [1] G.A. Smolenskii, A.L. Agranovskaya, Sov. Phys. Tech. Phys. 2 (1958) 1380.
- [2] C.A. Randall, A.S. Bhalla, Jpn. J. Appl. Phys. 29 (1990) 327.
- [3] N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96 (12) (2004) 5103.
- [4] Y. Xu, Ferroelectric Materials and Their Application, Elsevier Science Publishers B.V., 1991.
- [5] K. Uchino, Ferroelectrics 151 (1994) 321.
- [6] K. Uchino, Solid State Ionics 108 (1998) 43.
- [7] N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, Curr. Appl. Phys. 6 (2006) 303.
- [8] N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, J. Electroceram 16 (2006) 141–149.
- [9] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Mat. Sci. Eng. B 108 (2004) 258.
- [10] R. Yimmirun, S. Ananta, P. Laoratanakul, J. Eur. Ceram. Soc. 25 (2005) 3235.
- [11] H. Fan, H.E. Kim, J. Am. Ceram. Soc. 84 (3) (2001) 636.
- [12] M.-S. Yoon, H.M. Jang, J. Appl. Phys. 77 (1995) 3991.
- [13] S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73 (10) (1990) 3122.
- [14] N. Vittayakorn, S. Uttiya, G. Rujijanagul, D.P. Cann, J. Phys. D: Appl. Phys. 38 (2005) 2942–2946.
- [15] K.H. Yoona, H.R. Lee, J. Appl. Phys. 89 (7) (2001) 3915.
- [16] W.Z. Zhu, A. Kholkin, P.Q. Mantas, J.L. Baptista, J. Mater. Sci. 36 (2001) 3447.
- [17] T. Yamamoto, H. Moriwake, J. Korean Phys. Soc. 32 (1998) S1301.
- [18] X. Zhu, Z. Meng, J. Mater. Sci. 31 (1996) 2171.

Development of perovskite and phase transition in lead cobalt niobate modified lead zirconate titanate system

Naratip Vittayakorn ^{a,*}, Supamas Wirunchit ^a, Sakda Traisak ^a,
Rattikorn Yimnirun ^b, Gobwut Rujijanagul ^b

^a Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

^b Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Received 19 December 2006; received in revised form 28 May 2007; accepted 15 June 2007

Available online 29 June 2007

Abstract

Ferroelectric lead zirconate–lead cobalt niobate ceramics with the formula $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ where $x = 0.0\text{--}0.5$ were fabricated using a high temperature solid-state reaction method. The formation process, the structure and homogeneity of the obtained powders have been investigated by X-ray diffraction method as well as the simultaneous thermal analysis of both differential thermal analysis (DTA) and thermogravimetry analysis (TGA). It was observed that for the binary system $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, the change in the calcination temperature is approximately linear with respect to the PCoN content in the range $x = 0.0\text{--}0.5$. In addition, X-ray diffraction indicated a phase transformation from a tetragonal to a pseudo-cubic phase when the fraction of PCoN was increased. The dielectric permittivity is remarkably increased by increasing PCoN concentration. The maximum value of remnant polarization P_r ($25.3 \mu\text{C}/\text{cm}^2$) was obtained for the 0.5PZT–0.5PCoN ceramic.

© 2007 Elsevier B.V. All rights reserved.

PACS: 77.22.-d; 77.80.Bh; 77.84.Dy; 61.10.Nz; 77.80.Dj

Keywords: Ferroelectric; Relaxor ferroelectric; Perovskite

1. Introduction

Since the late 1960s, lead titanate:lead zirconate ceramic (generally known as $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ or PZT), near the tetragonal–rhombohedral morphotropic phase boundary has been considered an important material for a wide range of piezoelectric, pyroelectric and ferroelectric device applications such as transducers, computer memory and display and pyroelectric sensors [1,2]. Most commercial PZT ceramics are thus designed in the vicinity of the morphotropic phase boundary (MPB) with various doping in order to achieve optimum properties [1,2]. Recently, many

piezoelectric ceramic materials have been developed from binary systems containing a combination of relaxor and normal ferroelectric materials [3] which yield high dielectric permittivities {e.g. $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PZN–PT) [4,5], $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT–PNN) [6]}, excellent piezoelectric coefficients {e.g. $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PZN–PT) [4,5], $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZN–PZT) [7], $\text{Pb}(\text{Sc}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PSN–PT) [8,9]}, and high pyroelectric coefficients {e.g. $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3-\text{PbZrO}_3$ (PNN–PT–PZ) [10]}.

Lead cobalt niobate ($\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, PCoN) is a typical relaxor ferroelectric characterized by a high dielectric constant, a broad diffuse phase transition near -70°C and low firing temperature [11]. Though the paraelectric–ferroelectric transition temperature of PCoN is below room temperature, it can be easily shifted upward with the

* Corresponding author. Tel.: +66 89 700 2136; fax: +66 2 326 4415.
E-mail address: naratipcmu@yahoo.com (N. Vittayakorn).

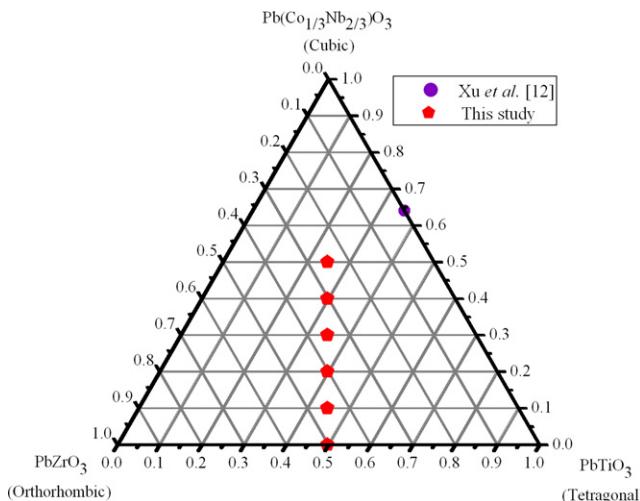


Fig. 1. Compositions studied in the PbTiO_3 – PbZrO_3 – $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ternary system.

addition of PbTiO_3 (PT), which is a normal ferroelectric compound with a phase transition at 490°C . So the PCoN-based relaxors are one of the most attractive materials for multilayer ceramic capacitors and electrostrictive actuators [2].

Since PCoN is a relaxor ferroelectrics with a broad dielectric peak near $T_c \approx -70^\circ\text{C}$ and PZT (Zr/Ti = 50/50) is a normal ferroelectric with a sharp maximum permittivity at $T_c \sim 390^\circ\text{C}$, the curie temperature in PZT–PCoN system can be engineered over a wide range of temperature by controlling the amount of PCoN in the system. However, the PZT–PCoN ceramics have not been obtained as yet. Fig. 1 schematically shows the pseudo-ternary composition range which was studied in this work compared with other studies [2]. In order to get more information about combination of relaxor and normal ferroelectric materials and to recognize the properties of PZTCoN ceramics, this paper attempted to carry out the synthesis of the quasi-binary solid solution $(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, with $x = 0.0$ – 0.5 using a solid-state reaction method and to report some properties of obtained ceramics.

2. Experimental

Ceramics of $(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3-x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT–PCoN) with $x = 0$ – 0.5 were synthesized using the solid-state reaction method. The CoO (99.9%), Nb_2O_5 (99.9%), PbO (Fluka, >99% purity) TiO_2 (99.8%) and ZrO_2 (99%) were mixed and milled in ethyl alcohol for 18 h using a ball-milling. After drying at 120°C for 2 h, the reaction of the uncalcined powders taking place during heat treatment was investigated by differential thermal analysis (DTA; Shimadzu) and thermogravimetry analysis (TGA; Shimadzu), using a heating rate of $10^\circ\text{C}/\text{min}$ in air from room temperature up to 1400°C . Based on the TG–DTA results, the mixture was calcined at various temperatures ranging from 650 to 900°C , dwell times 4 h and

heating/cooling rates ranging $20^\circ\text{C}/\text{min}$, in closed alumina crucible, in order to investigate the perovskite phase formation. The calcined powders, with polyvinyl alcohol (PVA) added as binder, were pressed into pellets of 15 mm diameter and ~ 2 mm thickness, which were then sintered at 1100 – 1200°C in Pb-atmosphere for 4 h in a closed alumina crucible. X-ray diffraction (XRD; Philips PW 1729 diffractometer) using Cu K_α radiation was used to determine the phases formed and optimum firing temperatures for the formation of desired phase. For measuring the dielectric and ferroelectric characteristics, the specimens were polished to 1 mm thickness. After ultrasonic cleaning in ethanol bath, silver-paste was coated on the polished samples on both sides by the screen printing method, and then subsequently, fired at 650°C for 30 min. For the dielectric properties measurement, capacitance was measured at 1 kHz using an automated measurement system consisted of an LCR meter (HP-4284, Hewlett–Packard Inc.). The dielectric constant is then calculated from $\varepsilon_r = Cd/\varepsilon_0 A$, where C is the capacitance of the sample, d and A are the thickness and the area of the electrode, respectively, and ε_0 is the dielectric permittivity of vacuum (8.854×10^{-12} F/m). The ferroelectric hysteresis loop parameters were measured with aid of a home-built Sawyer–Tower circuit.

3. Results and discussion

The TG–DTA simultaneous analysis of a powder mixed in the stoichiometric proportions of PZT–PCoN is illustrated in Fig. 2. In the temperature range from room temperature to $\sim 350^\circ\text{C}$, the sample shows both exothermic and endothermic peaks in the DTA curve, in consistent with a slight drop in weight loss at the same temperature range. These observations can be attributed to the decomposition of the organic species from the milling process [12,13]. The different temperature, intensities, and shapes of the thermal peaks probably are related to the different natures of the organic species and consequently, caused

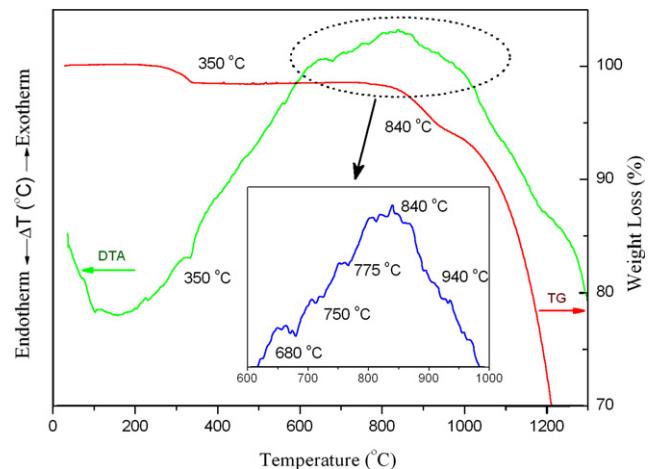


Fig. 2. DTA–TG curves for the mixture of PZT–PCoN powder.

by the removal of species differently bounded in the network [13]. In the temperature range 650–900 °C, both exothermic and endothermic peaks are observed in the DTA curve. The enlarged zone of this DTA curve shows that the endothermic peak at ~750 °C should be correlated to the phase transition of perovskite structure, because no weight loss could be found in the TG curve and that is also in accordance to literature data [14,15]. The last endothermic peak centered at ~840 °C may be caused by the decomposition of lead oxide. As a result, crystallization of PZT–PCoN powders is established above ~750 °C. Further increase in temperature or heating time will promote crystallization of perovskite phase powders. These data were used to define the range of temperatures (650–950 °C) for XRD investigation. To study the phase development with increasing calcination temperature, all compositions were calcined at various temperatures for 4 h in air with constant heating/cooling rates of 20 °C/min, followed by phase analysis using XRD technique.

XRD patterns of the calcined 0.7PZT–0.3PCoN powders at different calcination temperatures are illustrated Fig. 3. The XRD results show that the pyrochlore phase $Pb_xNb_yO_z$ pyrochlore phases was dominant at calcination temperatures below 700 °C. In the work by Chen et al. [12] it was reported that in the lead–niobium pyrochlore system the cubic $Pb_3Nb_4O_{13}$, pyrochlore phase (ICDD No. 25–443) forms first around 580 °C. At higher temperatures, it transforms to $Pb_2Nb_2O_7$, (ICDD No. 40–828) and finally to $Pb_3Nb_2O_8$, (ICDD No. 30–712) with increased calcination temperatures. At 700 °C, the pyrochlore phase began to decrease and disappeared completely at 750 °C. The yield of the perovskite phase increased significantly until at 750 °C, a single-phase of perovskite phase was formed. The studies also reflect the growth of crystallinity in the powders with the increasing heat-treatment temperatures. The results of the X-ray diffraction measurement support the DTA observation (Fig. 2) that the perovskite phase is formed at approximately 750 °C. The relationship between the relative content of perovskite phase and the calcination temperature is illustrated in Fig. 4. The relative content of perovskite phase is calculated based on the value of $(I_{Pe(110)}/(I_{Pe(110)} + I_{Py(222)})$, where $I_{Pe(110)}$ and $I_{Py(222)}$ indicate the intensity of the (110) diffraction peak of perovskite phase and the intensity of the (222) diffraction peak of the pyrochlore phase, respectively. Based on the XRD data obtained here together with the % phase perovskite, it may be conclude that the change in the calcination temperature is approximately linear with respect to the PCoN content in the range $x = 0.0–0.5$. With an increase in x , the calcination temperature shifts up to high temperatures. The XRD patterns of $(1-x)PZT-xPCoN$ ceramics with various x values are shown in Fig. 5. The patterns show single-phase perovskite-structured ceramics with $x \leq 0.4$. Evidence for the pyrochlore or other second phases was not detected in the patterns. Pyrochlore peaks, identified with “*” in Fig. 5, were found in the samples with $x = 0.5$. These results indicated that the presence of PCoN in the solid solution decreases the structural stability of PZT perovskite phase by its tolerance factor and electronegativity [16].

The $PbZrO_3$ – $PbTiO_3$ phase diagram predicts that at room temperature $Pb(Zr_{1/2}Ti_{1/2})O_3$ falls within the tetragonal phase field near the MPB. The crystal symmetry for pure PCoN is cubic at room temperature. Below $T_{max} \approx -70$ °C, the symmetry changes to rhombohedral. Therefore, with increasing x the crystal symmetry should change due to the effects of the increased PCoN fraction and the decrease in T_c . It is well known that in the pseudo-cubic phase, the {200} profile will show a single narrow peak because all the planes of {200} share the same lattice parameters, while in the tetragonal phase, the {200} profile should be split into two peaks with the intensity height of the former being half of the latter because the

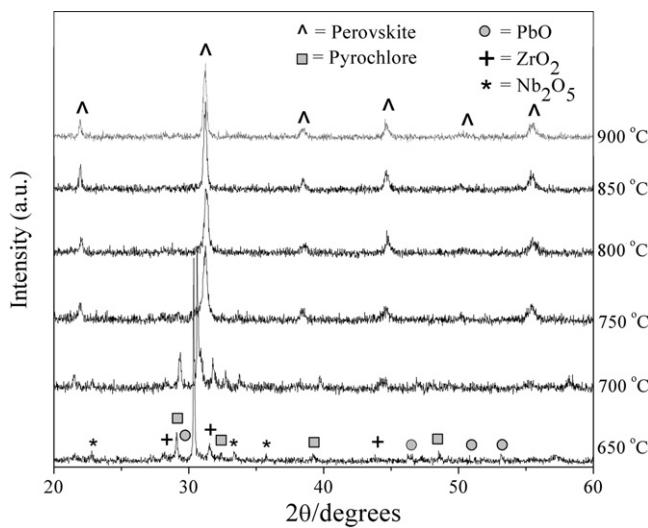


Fig. 3. XRD patterns of 0.7PZT–0.3PCoN powder calcined at various temperature for 4 h.

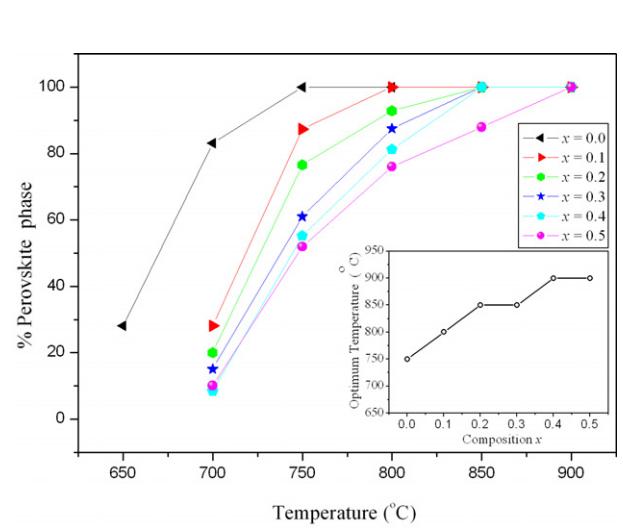
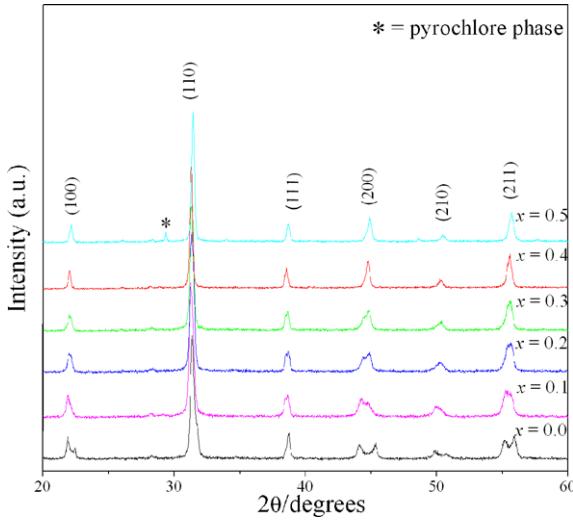
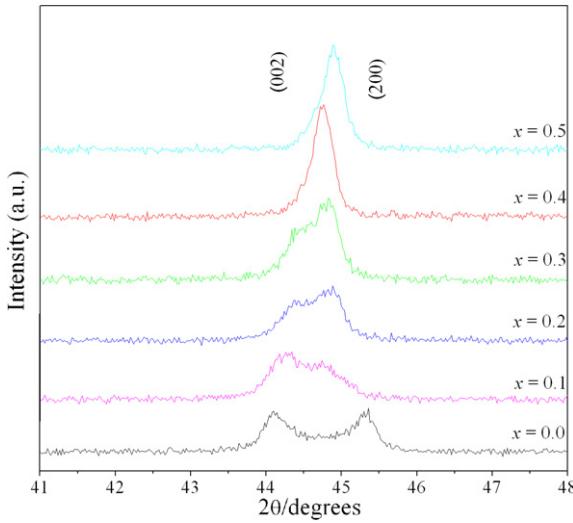
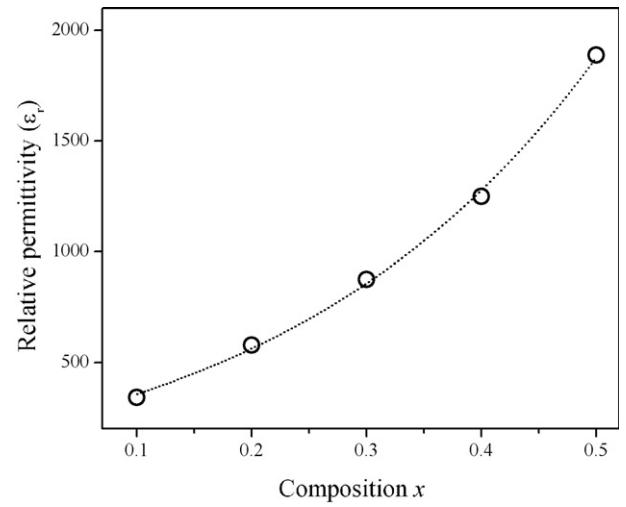




Fig. 4. Percentage of perovskite phase as a function of calcinations temperature for $(1-x)PZT-xPCoN$ powder.

Fig. 5. XRD patterns of $(1-x)$ PZT- x PCoN ceramics.


lattice parameters of (200) and (020) are the same but are slightly different from those of (002).

Based on the careful XRD study of {200} reflections in Fig. 6, we can find that a phase transformation from the tetragonal structure to the pseudo-cubic structure occurs with increasing PCoN content. The ceramics exist as tetragonal phase which is indicated by the splitting of $(002)_T$ and $(200)_T$ peaks in the 2θ range from 43.5° to 46.5° at $x = 0.10$. As PCoN content increases from $x = 0.1$ to 0.3 , the ceramics coexist as tetragonal and pseudo-cubic phase revealed by the coexistence of $(002)_T$ and $(200)_R$ peaks in the 2θ range from 43.5° to 45.5° . To a first approximation, it could be said that the composition with $x = 0.1$ – 0.2 is close to the morphotropic phase boundary (MPB) of the $\text{Pb}(\text{Zr}_{0.50}\text{Ti}_{0.50})\text{O}_3$ – $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system, where the structure of the PZT–PCoN compositions is gradually changing from tetragonal to pseudo-cubic. Electrical data described later further supports this assumption.

Fig. 6. XRD pattern of the (200) peak of $(1-x)$ PZT- x PCoN, $x = 0.0$ – 0.1 ceramics.

The ceramics with $x = 0.50$ exist as pseudo-cubic phase revealed by the single $(200)_R$ peak. It is interesting to note that the influence of the addition of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ on the phase transition of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ system is similar to that of $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ – $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$, $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ – $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ – $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ systems [6,17–19].

The dielectric properties of $(1-x)$ PZT- x PCoN, $x = 0.0$ – 0.5 are illustrated in Fig. 7. With increasing concentration of PCoN, the dielectric constant tends to increase. The effect of increasing the dielectric constant at room temperature with increasing PCoN content is interpreted to be due to the possibility of the decrease of the transition temperature to near room temperature. Because when PCoN is added into PZT, the transition temperature of the PZT–PCoN ceramics are shifted towards the room temperature; hence the dielectric properties measured at room temperature are increased. Other authors have reported a similar behavior [6,20]. Fig. 8 shows the saturated loops of 0.9PZT–0.1PCoN samples with difference electric fields strengths. It is clearly evident that the shape of hysteresis varies greatly with the electric fields strength. At 5 kV/cm electric fields strength, a near-linear relationship of P-E is observed. This result is due to the fact that the electric field is not large enough to switch any domains. At 10 kV/cm electric fields, the polarization nonlinearity is developed in both regions of the positive and negative fields. These results clearly demonstrate that the electric field strength of 10 kV/cm is of enough energy to constrain realignment of some domains in the direction of the applied fields. No evidence of pinning effect or asymmetric loop was detected in all electric fields strength. At 25 kV/cm electric field strength, the loop reveals fully developed symmetric hysteresis loop. This shows that the electric fields strength of 25 kV/cm has of enough energy to constrain realignment of all domains in the direction of the electric fields.

Fig. 7. Relative permittivity of $(1-x)$ PZT- x PCoN as a function of compositions.

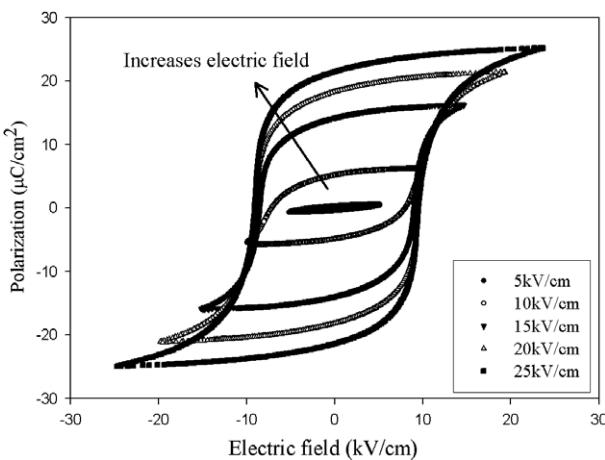


Fig. 8. Polarization of $(1 - x)$ PZT- x PCoN ceramics with $x = 0.1$ as a function of electric fields.

Fig. 9 illustrates the P - E curves of the samples with $x = 0.0, 0.1$ and 0.5 measured at 25 kV/cm. All compositions show symmetry in shape and reveal rectangular hysteresis loops. From the fully saturated loops, the remanent polarization P_r and coercive field E_c were determined. The values of P_r and E_c for composition $x = 0.1$ are 21.4 μ C/cm 2 and 9 kV/cm, respectively, whereas for composition $x = 0.0$ the remanent polarization P_r is 15.2 μ C/cm 2 . At the composition $0.0 \leq x \leq 0.5$, the hysteresis loop has a typical “square” form stipulated by switching of a domain structure in an electrical field, which is typical of a phase that contains long-range cooperation between dipoles. That is characteristic of a ferroelectric micro-domain state. Room temperature values of P_r are found to be $\sim 15.2, 21.4$ and 25.3 μ C/cm 2 for composition $x = 0.0, 0.1$ and 0.5 samples, respectively. The results on other compositions are also listed Table 1.

It is seen that the samples with compositions $x = 0.1$ and 0.5 exhibit the highest saturation and remnant polarization among all the ceramics studied. As indicated by the above

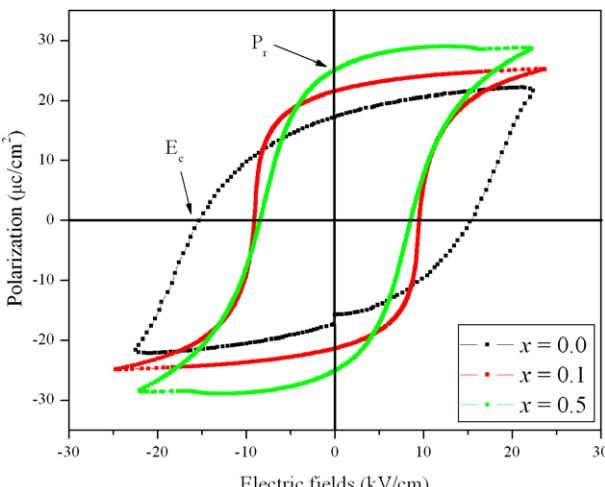


Fig. 9. Hysteresis loops of the $(1 - x)$ PZT- x PCoN ceramics with $x = 0.0, 0.1$ and 0.5 measured at 25 kV/cm.

Table 1

Polarization hysteresis data as a function of x in the $(1 - x)$ PZT- x PCoN system

Composition	P_s (μ C/cm 2)	P_r (μ C/cm 2)	E_c (kV/cm)
$x = 0.0$	19.3	15.2	16.7
$x = 0.1$	25.0	21.4	9.0
$x = 0.2$	10.1	9.5	9.7
$x = 0.3$	12.5	7.6	8.4
$x = 0.4$	13.9	8.6	9.8
$x = 0.5$	28.7	25.3	9.3

XRD, the composition with $x = 0.1$ contains both tetragonal and pseudo-cubic phases, so it should favor a strong ferroelectric effect due to the increased ease of reorientation during poling by transformation of a number of 180° domains into 90° ones. From the present results, it also can be revealed that the MPB coexisting in the tetragonal and pseudo-cubic phases in the present system is a broad composition region of $x \sim 0.1$, which exhibits high ferroelectric properties around the center of the MPB. Recent literature reviews [18,21] show that there are 2 MPBs in the PZT-PZN system; first, the separated tetragonal phase with rhombohedra phase at the composition 0.8 PZT- 0.2 PZN and the second MPB showing transformation relaxor pseudo-cubic ferroelectric to normal pseudo-cubic ferroelectric at the composition 0.5 PZT- 0.5 PZN [7]. It is interesting to note that the composition $x = 0.5$ in PZT-PCoN system may be attributed to the transition from normal ferroelectric to relaxor ferroelectric which is similar to the PZT-PZN and PZT-PNN system [6,7,21].

4. Conclusions

The effect of PCoN modification on the phase formation and transition mechanism of perovskite PZT-PCoN ceramics has been investigated for various chemical compositions. X-ray diffraction has indicated that except at $x = 0.5$, complete solid solutions occur across the entire compositional range of the $(1 - x)$ Pb(Zr $_{0.5}$ Ti $_{0.5}$)O $_3$ - x Pb(Co $_{1/3}$ Nb $_{2/3}$)O $_3$ system. PZT ceramic was identified by XRD as a single-phase material with a perovskite structure having tetragonal symmetry, while the mixed compositions showed a gradual change from tetragonal to pseudo-cubic symmetry, with a possible morphotropic phase boundary (MPB) between the two phases near the 0.9 PZT- 0.1 PCoN composition. Ferroelectric and dielectric properties of the PZT-PCoN ceramics were investigated. The maximum value of remnant polarization P_r (25.3 μ C/cm 2) was obtained for the 0.5 PZT- 0.5 PCoN ceramic. Most importantly, this study showed that the addition of PCoN could improve the ferroelectric behavior in PZT ceramics.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), National Research Council of Thailand (NRCT),

Thailand Graduate Institute of Science and Technology (TGIST) and King Mongkut's Institute of Technology Ladkrabang (KMITL).

References

- [1] K. Uchino, *Ferroelectric Devices*, Marcel Dekker, Inc., New York, 2000.
- [2] Y. Xu, *Ferroelectric Materials and Their Application*, Elsevier Science Publishers B.V., 1991.
- [3] S.-E. Park, T.R. Shroud, *IEEE Tr. UFFC* 44 (1997) 1140.
- [4] J. Kuwata, K. Uchino, S. Nomura, *Ferroelectrics* 37 (1981) 579.
- [5] M.L. Mulvihill, L.E. Cross, W. Cao, K. Uchino, *J. Am. Ceram. Soc.* 80 (1997) 1462.
- [6] N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, *J. Appl. Phys.* 96 (2004) 5103.
- [7] H. Fan, H.-E. Kim, *J. Mater. Res.* 17 (2002) 180.
- [8] O. Furukawa, Y. Yamashita, M. Harata, T. Takahashi, K. Inagai, *Jpn. J. Appl. Phys.* 24 (1985) 96.
- [9] V.J. Tennery, K.W. Hang, R.E. Novak, *J. Am. Ceram. Soc.* 51 (1968) 671.
- [10] D. Luff, R. Lane, K.R. Brown, H.J. Marshallsay, *Trans. J. Br. Ceram. Soc.* 73 (1974) 251.
- [11] G.A. Smolenskii, A.L. Agranovskaya, *Sov. Phys.-Tech. Phys.* (1958) 1380.
- [12] A. Ngamjarurojana, O. Khamman, R. Yimnirun, S. Ananta, *Mater. Lett.* 60 (2006) 2867.
- [13] N. Vittayakorn, S. Wirunchit, *Smart Mater. Struct.* 16 (2007) 851.
- [14] R. Wongmaneerung, R. Yimnirun, S. Ananta, *Mater. Lett.* 60 (2006) 2666.
- [15] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun, S. Ananta, *Mater. Sci. Eng. B* 130 (2006) 246.
- [16] T.R. Shroud, A. Halliyal, *Am. Ceram. Soc. Bull.* 66 (1987) 704.
- [17] N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, *Curr. Appl. Phys.* 6 (2006) 303.
- [18] N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, *J. Electroceram.* 16 (2006) 141.
- [19] S. Wongsaeunmai, Y. Laosiritaworn, S. Ananta, R. Yimnirun, *Mater. Sci. Eng. B* 128 (2005) 83.
- [20] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, *J. Mater. Res.* 18 (2003) 2882.
- [21] H. Fan, H.-E. Kim, *J. Appl. Phys.* 91 (2002) 317.

Dielectric properties and phase transition of polycrystalline lead zirconate titanate–lead cobalt niobate

Naratip Vittayakorn¹ and Tawee Tunkasiri²

¹ Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

² Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail: naratipcmu@yahoo.com

Received 27 February 2007

Accepted for publication 27 July 2007

Published 28 November 2007

Online at stacks.iop.org/PhysScr/T129/199

Abstract

The binary system of lead zirconate titanate [$\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$, PZT] and lead cobalt niobate [$\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, PCoN] was fabricated using a high temperature solid state reaction method. The structure and homogeneity of the ceramics obtained have been investigated using x-ray diffraction. The morphology of the ceramics was characterized by scanning electron microscopy (SEM). The results indicated that the presence of PCoN in the solid solution decreases the structural stability of PZT perovskite phase. A transition from tetragonal to pseudo-cubic phase was observed as PCoN increased and the co-existence of tetragonal–pseudo-cubic phases occurred at composition with $x = 0.3$. The permittivity showed a ferroelectric to paraelectric phase transition at 236°C with a maximum value = 39 000 at 100 Hz at the morphotropic phase boundary (MPB) composition.

PACS numbers: 77.22.–d, 77.80.Bh, 77.84.Dy, 61.10.Nz, 77.80.Dj

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Lead zirconate titanate (PZT) is a very important material due to its excellent spontaneous polarization. Hence, the ability to produce small actuator components, ultrasonic transducers, hydrophones, speakers, fish finders, sensors, electrical resonators and other devices for microelectronics would be very useful [1, 2]. PZT has an ABO_3 type perovskite structure with the A-site (Pb^{2+}) occupying the cubo-octahedral interstices described by the BO_6 -site octahedra. PZT is a solid solution of ferroelectric PbTiO_3 ($T_c = 490^\circ\text{C}$) and antiferroelectric PbZrO_3 ($T_c = 230^\circ\text{C}$) phases [3]. At room temperature all compositions are ferroelectric when the $\text{Zr} : \text{Ti}$ ratio $< 95 : 5$. Above the Curie temperature, the unit cell is cubic, but below, it is distorted to either tetragonal ($\text{Zr} : \text{Ti} < 53 : 47$) or rhombohedral ($\text{Zr} : \text{Ti} > 53 : 47$). The boundary between these two phases ($\text{Zr} : \text{Ti} \sim 53 : 47$ at room temperature) is known as the morphotropic phase boundary (MPB) [3]. The best piezoelectric and ferroelectric properties can be obtained in PZT near the MPB [4]. Most commercial

PZT ceramics are thus designed in the vicinity of the MPB with various doping in order to achieve optimum properties [2, 5]. Recently, many piezoelectric ceramic materials have been developed from binary systems containing a combination of relaxor and normal ferroelectric materials [6] which yield high dielectric permittivities (e.g. PZN–PT [7, 8], PZT–PNN [9]), excellent piezoelectric coefficients (e.g. PZN–PT [7, 8], PZN–PZT [10], PSN–PT [11, 12]) and high pyroelectric coefficients (e.g. PNN–PT–PZ) [13].

Lead cobalt niobate ($\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, PCoN) is a typical relaxor ferroelectric characterized by a high dielectric constant, a broad diffuse phase transition near -70°C and low firing temperature [14]. Though the paraelectric–ferroelectric transition temperature of PCoN is below room temperature, it can be easily shifted upward with the addition of PbTiO_3 (PT), which is a normal ferroelectric compound with a phase transition at 490°C . It was reported that the $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3\text{--PbTiO}_3$ (PCNT) system had a MPB at about 0.38 mol fraction PbTiO_3 and the PCNT ceramics near MPB showed higher Curie temperature

($T_c \sim 250^\circ\text{C}$). So the PCoN-based relaxors are one of the most attractive materials for multilayer ceramic capacitors and electrostrictive actuators [5].

Since PCoN is a relaxor ferroelectric with a broad dielectric peak near $T_c \approx -70^\circ\text{C}$ and PZT (Zr/Ti = 50/50) is a normal ferroelectric with a sharp maximum permittivity at $T_c \sim 390^\circ\text{C}$, the Curie temperature in the PZT-PCoN system can be engineered over a wide range of temperature by controlling the amount of PCoN in the system. With their complementary characteristics, it is expected that excellent properties can be obtained from ceramics in the PZT-PCoN system. So far, there have been no systematic studies on the structural and dielectric properties of the whole series of PZT-PCoN compositions, which would help in identifying excellent electrical properties within this system. In the present study, PZT and PCoN were chosen as end components to prepare solid solutions via a high temperature solid state reaction method. Structure and morphology are investigated by x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) respectively. Finally, the dielectric properties of PZT-PCoN ceramics are determined as a function of temperature and frequency to establish structure–property relationships.

2. Experimental

Samples with the composition of $(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3 - x\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT-PCoN) with $x = 0\text{--}0.5$ were synthesized using the high temperature solid state reaction method. CoO (99.9%), Nb₂O₅ (99.9%), PbO (Fluka, >99% purity) TiO₂ (99.8%) and ZrO₂ (99%) were mixed and milled in ethyl alcohol for 18 h using a ball-mill. In all compositions, 2 mol% excess PbO was added to compensate for lead volatilization during calcination and sintering. After remilling and drying, the mixtures were calcined at 700–950 °C for 4 h in alumina crucible configuration with a heating rate of 20 °C min⁻¹. The calcined powders were milled for 3 h for reduced particle size. After grinding and sieving, the calcined powder was mixed with 5 wt.% poly (vinyl alcohol) binder and uniaxially pressed into a pellet. Binder burnout occurred by slowly heating to 500 °C and holding for 2 h. Sintering occurred between 1100 and 1250 °C with a dwell time of 4 h. To mitigate the effects of lead loss during sintering, the pellets were sintered in a closed alumina crucible containing PbZrO₃ powder. The perovskite phase was examined by XRD. Data collection was performed in the 2 θ range of 20°–70° using step scanning with a step size of 0.02° and counting time of 2 s step⁻¹.

After surface grinding, the samples were electrode using sputtered gold and air-dried silver paint was applied. The relative permittivity (ϵ_r) and dissipation factor ($\tan \delta$) were measured using an automated measurement system. This system consisted of an LCR meter (HP-4284A, Hewlett-Packard Inc.) in connection with a sample holder (Norwegian Electroceramics) capable of high temperature measurement. The capacitance and dissipation factors of each sample were measured at 100 Hz, 1, 10 and 100 kHz and temperature varied between 25 and 400 °C. A heating rate of 2 °C min⁻¹ was used during measurements. The dielectric constant is then calculated from $\epsilon_r = Cd/\epsilon_0 A$, where C is the capacitance of

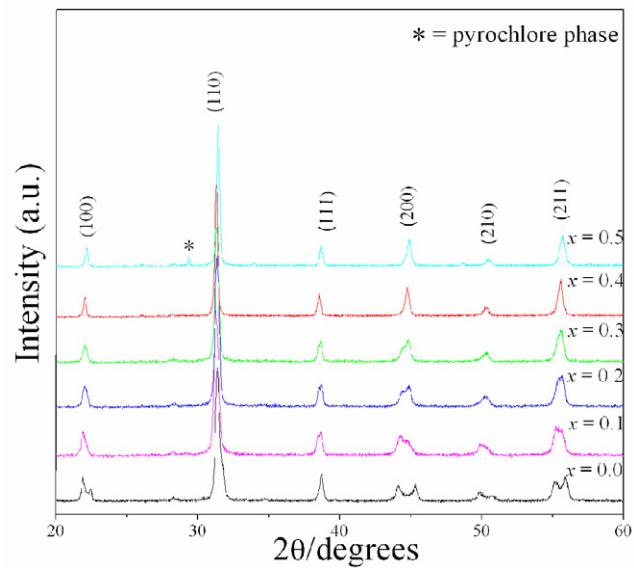
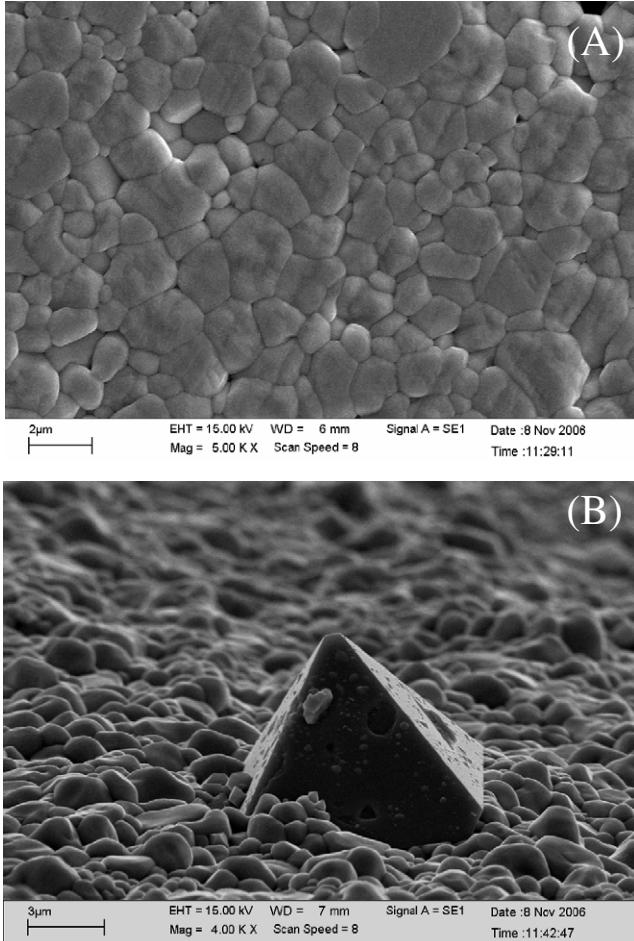
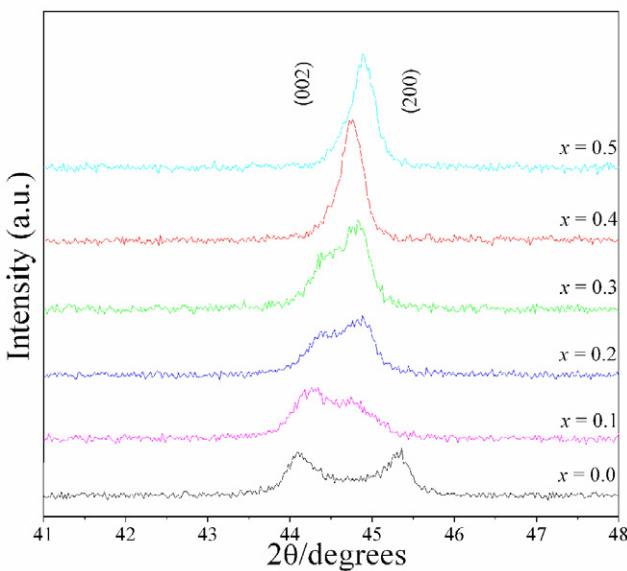


Figure 1. XRD patterns of PZT-PCoN ceramics.


the sample, d and A are the thickness and the area of the electrode, respectively, and ϵ_0 is the dielectric permittivity of vacuum ($8.854 \times 10^{-12} \text{ F m}^{-1}$).

3. Result and discussion


3.1. Crystal structure and microstructure

The XRD patterns of $(1-x)\text{PZT}-x\text{PCoN}$ ceramics with various x values are shown in figure 1. The patterns show single-phase perovskite-structured ceramics with $x \leq 0.4$. Evidence for the pyrochlore or other second phases was not detected in the patterns. Pyrochlore peaks, identified by '*' in figure 1, were found in the samples with $x = 0.5$. These results indicated that the presence of PCoN in the solid solution decreases the structural stability of PZT perovskite phase by its tolerance factor and electronegativity [15]. Figure 2(A) shows a SEM micrograph of the polished surface of the sintered pellet sample. The ceramic has a close microstructure with low porosity, and the packed grains are in the size range of 1–4 μm . It was found from the SEM micrograph that grains of different sizes are homogeneously distributed over the entire surface of the sample, and hence the sample is highly dense. It should be noted that a rectangular shape of $\text{Pb}_3\text{Nb}_4\text{O}_{13}$ or octahedral shape of pyrochlore phase has been reported inside and on the surface of the composition $x = 0.5$ as shown in figure 2(B).

The $\text{PbZrO}_3-\text{PbTiO}_3$ phase diagram predicts that at room temperature $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ falls within the tetragonal phase field near the MPB. The crystal symmetry for pure PCoN is cubic at room temperature. Below $T_{\text{max}} \approx -70^\circ\text{C}$, the symmetry changes to rhombohedral. Therefore, with increasing x the crystal symmetry should change due to the effects of the increased PCoN fraction and the decrease in T_c . It is well known that in the pseudo-cubic phase, the profile will show a single narrow peak because all the planes of $\{2\ 0\ 0\}$ share the same lattice parameters, while in the tetragonal phase, the $\{2\ 0\ 0\}$ profile should be split into two peaks with the intensity height of the former being half of the

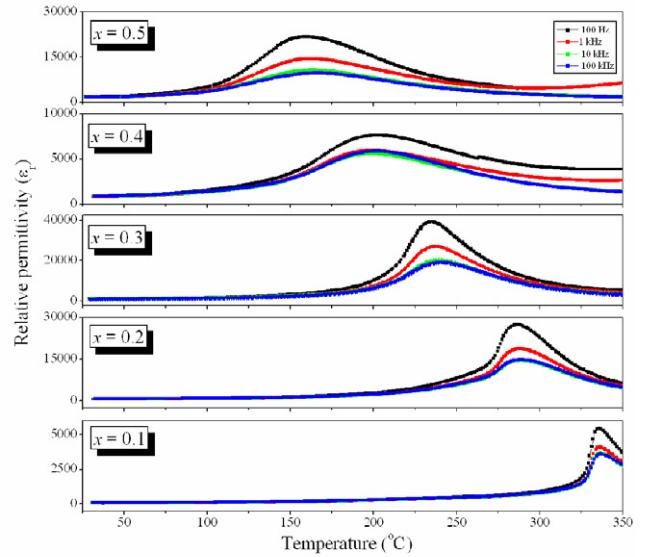


Figure 2. SEM microstructures of the surfaces of composition (A) $x = 0.1$ and (B) $x = 0.5$.

Figure 3. XRD pattern of the (2 0 0) peak of $(1 - x)$ PZT - x PCoN, $x = 0.0 - 0.1$ ceramics.

latter because the lattice parameters of (2 0 0) and (0 2 0) are the same but are slightly different from those of (0 0 2). Figure 3 shows the evolution of the (2 0 0) peak as a function of composition. At low PCoN concentration, the XRD pattern

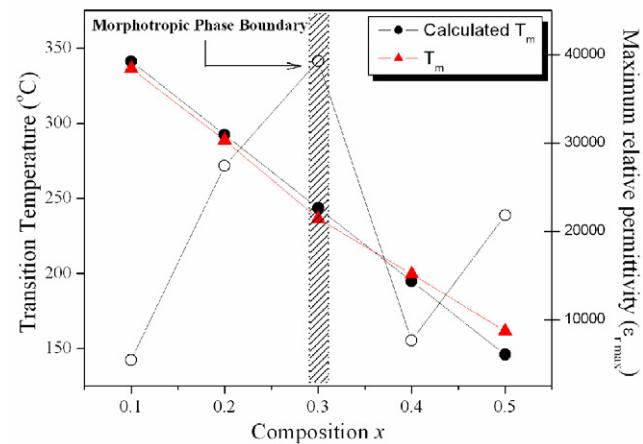
Figure 4. Dielectric properties as a function of temperature at frequencies between 100 Hz and 100 kHz.

shows strong (2 0 0) peak splitting which is indicative of the tetragonal symmetry. As the PCoN concentration increased, the (2 0 0) transformed to a single peak which suggests pseudo-cubic symmetry. The results show that the mixed phase region of the coexisting ferroelectric tetragonal and ferroelectric pseudo-cubic phases is located in the composition $x = 0.3$ of the $(1 - x)$ PZT - x PCoN binary system. A transition from tetragonal to pseudo-cubic phase was observed as PCoN increases. It is interesting to note that the influence of the addition of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ on the phase transition of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ system is similar to that of the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ systems [9, 16, 17].

3.2. Dielectric properties

The characteristic temperature and frequency dependence of the relative permittivity for $(1 - x)$ PZT - x PCoN, $x = 0.1 - 0.5$ is shown in figure 4. With increasing concentration of PCoN, the dielectric constant tends to increase. The effect of increasing dielectric constant at room temperature with increasing PCoN content is interpreted to be due to the possibility of the decrease of the transition temperature to near room temperature. The dielectric properties of PZT ceramic change significantly with temperature, but are nearly independent of frequency, except in the vicinity of the phase transformation temperature [18, 19]. This is a typical characteristic of ferroelectric ceramics with a long-range ordered structure. The Curie temperature (T_C) for PZT ceramic is not determined in this study as a result of limited range of the measuring set-up, though it is widely known to be close to 400°C [18, 19]. While PZT exhibits normal ferroelectric behaviour, PCoN is a relaxor ferroelectric material as a result of short-range ordered structure with nanometer scale heterogeneity in composition [20].

The nature of the homogeneously polarized states is believed to be primarily controlled by the concentration of PCoN. When PCoN is added to form the binary system

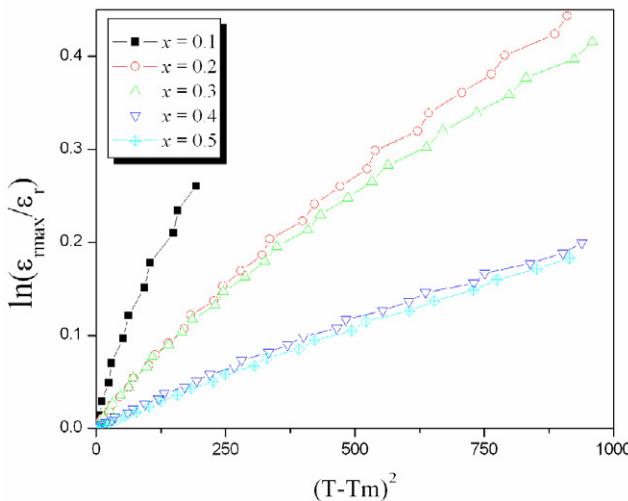

Table 1. Characteristics of $(1-x)$ PZT- x PCoN ceramics with optimized processing conditions.

Composition x	Crystal structure	T_m (°C)	Relative permittivity at 25 °C	Relative permittivity at T_{\max}	$\tan \theta$ at 25 °C	$\tan \theta$ at T_m	δ
0.1	T	336	350	5500	0.042	0.024	10.1
0.2	T	288	580	27 500	0.042	0.018	32.4
0.3	PC + T	136	875	39 500	0.029	0.025	33.9
0.4	PC	199	1250	7700	0.011	0.047	48.6
0.5	PC	161	1900	22 000	0.005	0.182	49.6

PC = Pseudo-cubic, T = tetragonal.

with PZT, a clear shift of the transition temperature to lower temperatures was observed. In addition, the dielectric maximum decreased as the x value increased. Moreover the dielectric peak became broader as the PCoN content increased. It is interesting to note that all compositions show dispersive dielectric behaviour with respect to frequency. However, the frequency dispersion in the PZT-PCoN binary system is not as strong as that in the pure relaxor PCoN. A smooth transition from normal to relaxor ferroelectric behaviour is observed with increasing mole percent of PZT from $x = 0.1$ to 0.5 . This transition is characterized by the enhancement of the first-order nature of the phase transformation and the diminishment of the relaxor behaviour (i.e. the permittivity dispersion) over the broad temperature range in the vicinity of T_{\max} . Similar phenomena have been observed in PZT-PZN [16, 17], PZT-PNN [9] and PZT-PMN [19]. For all compositions, table 1 lists the temperature at which the permittivity is maximum (T_{\max}), and the relative permittivity both at room temperature and at T_{\max} . It is also evident from figure 4 and table 1 that 0.7 PZT-0.3 PZN composition exhibited a maximum permittivity of approximately 39 000 (at 1 kHz) with a $T_{\max} \sim 236$ °C. Combined with the XRD examination described in section 3.1, the anomaly in dielectric properties clearly indicates a phase transformation over that compositional range. Therefore, an MPB separating the tetragonal phase (PZT-rich) from the pseudo-cubic phase (PCoN-rich) exists at the composition $x = 0.3$.

It should also be noted here that the PCoN-rich samples show very strong frequency-dependent dielectric dispersion significantly at high temperature ($T > T_{\max}$) as a result of thermally activated space charge conduction. In general, lead-based ceramic is known to have a significant concentration of oxygen vacancies due to super-oxidation, where there exists an excess of Pb-vacancies due to the lead oxide volatility over oxygen vacancies [3]. This results in the generation of space-charge fields which stabilize the domain structure [21]. However this behaviour may be caused by the valence variation between Co^{2+} and Co^{3+} . The conduction resulting from the addition of PCN can be understood from the charge hopping mechanism common among transition metal ions. These ions, such as Fe, Ni, or Co, can assume different charge states more readily than other cations: when Co enters the perovskite lattice as a 2^+ cation, it can undergo a local thermodynamic reaction through $\text{Co}^{2+} = \text{Co}^{3+} + \text{e}^-$. The electron is mostly likely attached to the Co^{3+} cations, but the transfer of the electronic charge from one cation to another through the lattice results in charge conduction. This charge transfer process corresponds to a low mobility and is similar to


Figure 5. Transition temperatures (T_m), calculated T_m and maximum relative permittivity ($\varepsilon_{r,\max}$) as a function of composition x .

the small polaron mechanism [22]. The maximum permittivity $\varepsilon_{r,\max}$ and T_{\max} as a function of the mole fraction of PCoN (x) are represented in figure 5. There is a good linear relationship between T_{\max} and x , indicating that this system is a well behaved complete solid solution. The T_{\max} of the constituent compounds PCoN and PZT are -70 and 390 °C, respectively, which can be used to calculate an empirical estimate of T_{\max} via the equation:

$$T_{\max} = x(390 \text{ } ^\circ\text{C}) + (1 - x)(-120 \text{ } ^\circ\text{C}) \quad (1)$$

The variation of the measured T_{\max} , the calculated T_{\max} , and the measured $\varepsilon_{r,\max}$ as a function of composition x is shown in figure 6. The highest $\varepsilon_{r,\max}$ of 39 000 at 236 °C at 10 kHz was observed for the composition at the MPB 0.7 PZT-0.3 PCoN. It is evident from the data that equation (1) gives a reasonable approximation of the transition temperature T_{\max} . This result suggests that the transition temperature of the $(1-x)$ PZT- x PCoN system can be varied over a wide range from -70 to 390 °C by controlling the amount of PCoN in the system.

It is generally accepted that a relaxor ferroelectric can be described by a simple quadratic law. This arises from the fact that the total number of relaxors contributing to the permittivity response in the vicinity of the permittivity peak is temperature-dependent, and the temperature distribution of this number is given by a Gaussian function about a mean value T_0 with a standard deviation σ . The diffusiveness parameter (δ) of the transition was calculated from the

Figure 6. Quadratic dependence of temperature on logarithmic dielectric constant of PZT-PCoN ceramic as a function of composition x .

expression (23):

$$\frac{K_m}{K(f, T)} = \exp \left(\frac{(T - T_m(f))^2}{2\delta^2} \right) \quad (2)$$

where K_m is the maximum value of the dielectric constant at $T = T_m(f)$ and $K(f, T)$ is the intrinsic dielectric constant of the sample. If $\ln(K_m/K_g)$ is plotted versus $(T - T_m)^2$, the slope of the fitted curve, $1/(2\delta^2)$, will give the value of the diffuseness parameter. As clarified by Pilgrim *et al* [23], the estimate of δ is valid for the range of $K_m/K(f, T) < 1.5$. Figures 3(a) and (b) display the curves of $\ln(K_m/K(f, T))$ versus $(T - T_m)^2$ under the condition $K_m/K(f, T) < 1.5$. The diffuseness parameter increased significantly with PCoN substitution. A similar trend was also observed for substitution with alkali-earth metals in lead-based perovskites [24–27]. The parameter δ can be used to measure the degree of diffuseness of the phase transition in mixed normal-relaxor ferroelectric materials. The lower δ value in the PZT-rich samples indicates that the homogeneity at the atomic scale is much higher than in PCoN-rich samples. As the PCoN mole fraction increases, the solid solution displays more diffuse phase transition characteristics.

4. Conclusions

The $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (where $x = 0, 0.1, 0.2, 0.3, 0.4$ and 0.5) ceramic composites are prepared using a high temperature solid state reaction method. The dielectric properties of the ceramics are determined as functions of both temperature and frequency with an automated dielectric measurement system. Dielectric measurements are taken over the temperature range of $25\text{--}400^\circ\text{C}$ with measuring frequency between 100 Hz and 100 kHz . The results indicate that the dielectric properties of the binary system PZT-PCoN follow normal and relaxor ferroelectric behaviour. Dielectric behaviour of the $0.9\text{ PZT-}0.1\text{ PCoN}$ ceramics is more like normal ferroelectrics, while the other compositions are obviously

of diffuse phase transition. It is also observed that the transition temperature decreases and the maximum dielectric constant increases with increasing amount of PCoN in the system. Investigations on the structure and properties of the PZT-PCoN system over the range $x = 0.1\text{--}0.5$ reveal an MPB at $x = 0.3$, separating tetragonal phase from pseudo-cubic phase. Examination of the dielectric spectra indicates that PZT-PCoN exhibits an extremely high relative permittivity at the MPB composition. The permittivity shows a ferroelectric to paraelectric phase transition at 236°C with a maximum value = 39 000 at 100 Hz at the MPB composition.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), Office of the National Research Council of Thailand (NRCT) and King Mongkut's Institute of Technology Ladkrabang (KMITL).

References

- [1] Haertling G H 1999 Ferroelectric ceramics: history and technology *J. Am. Ceram. Soc.* **82** 797–818
- [2] Uchino K 2000 *Ferroelectric Devices* (New York: Dekker)
- [3] Jaffe B and Cook W R 1971 *Piezoelectric Ceramic* (Marietta, OH: R.A.N. Publishers)
- [4] Bhalla A S, Guo R and Roy R 2000 The perovskite structure—a review of its role in ceramic science and technology. *Mater. Res. Innovat.* **4** 3
- [5] Xu Y 1991 *Ferroelectric Materials and Their Application* (Amsterdam: Elsevier)
- [6] Park S-E and Shroud T R 1997 Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers *IEEE Trans.UFFC* **44** 1140
- [7] Kuwata J, Uchino K and Nomura S 1981 Phase transition in the PZN-PT system *Ferroelectrics* **37** 579
- [8] Mulvihill M L, Cross L E, Cao W and Uchino K 1997 Domain-related phase transitionlike behavior in lead zinc niobate relaxor ferroelectric single crystals *J. Am. Ceram. Soc.* **80** 1462
- [9] Vittayakorn N, Rujjanagul G, Tan X, Marquardt M A and Cann D P 2004 The morphotropic phase boundary and dielectric properties of the $x\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(1-x)\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ perovskite solid solution *J. Appl. Phys.* **96** 5103
- [10] Fan H and Kim H-E 2002 Preparation and improvement in the electrical properties of lead-zinc-niobate-based ceramics by thermal treatments *J. Mater. Res.* **17** 180
- [11] Furukawa O, Yamashita Y, Harata M, Takahashi T and Inagai K 1985 *Japan. J. Appl. Phys.* **24** 96
- [12] Tennery V J, Hang K W and Novak R E 1968 Ferroelectric and structure properties of the PSNT system *J. Am. Ceram. Soc.* **51** 671–4.
- [13] Luff D, Lane R, Brown K R and Marshallsay H J 1974 Ferroelectric ceramic with high pyroelectric properties. *Trans. J. Br. Ceramic Soc.* **73** 251
- [14] Smolenskii G A and Agranovskaya A L 1958 Dielectric polarization of and losses of some complex compounds *Sov. Phys.-Tech. Phys.* 1380
- [15] Shroud T R and Halliyal A 1987 Preparation of lead-based ferroelectric relaxors for capacitors *Am. Ceram. Soc. Bull.* **66** 704
- [16] Vittayakorn N, Puchmark C, Rujjanagul G, Tan X and Cann D P 2006 Piezoelectric properties of $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics prepared by the columbite-(wolframite) precursor method *Curr. Appl. Phys.* **6** 303–6

[17] Vittayakorn N, Rujijanagul G, Tan X, He H, Marquardt M A and Cann D P 2006 Dielectric properties and morphotropic phase boundary in the $x\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-(1-x)\text{Pb}(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ pseudo-binary system *J. Electroceram.* **16** 141–9

[18] Koval V, Alemany C, Brianin J and Bruncková H 2004 Dielectric properties and phase transition behaviour of $x\text{PMN}-(1-x)\text{PZT}$ ceramic systems *J. Electroceram.* **10** 19–29

[19] Yimirun R, Ananta S and Laoratanakul P 2005 Dielectric and ferroelectric properties of lead magnesium niobate–lead zirconate titanate ceramics prepared by mixed-oxide method *J. Eur. Ceram. Soc.* **25** 3235–42

[20] Randall C A, Bhalla A S, Shrout T R and Cross L E 1990 Relationship between B-site order and properties in $\text{Pb}(\text{B}'\text{B}'')\text{O}_3$ perovskites *Ferroelectrics* **11** 103

[21] Takahashi M 1970 Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities *Japan. J. Appl. Phys.* **9** 1236

[22] Goulding R H, Zinkle S J, Rasmussen D A and Stoller R E 1996 Transient effects of ionising and displacive radiation on the dielectric properties of the ceramics *J. Appl. Phys.* **79** 2920

[23] Pilgrim S M, Sutherland A E and Winzer S R 1990 Diffuseness as a useful parameter for relaxor ceramics *J. Am. Ceram. Soc.* **73** 3122

[24] Yao W, Feng C, Li H, Yang Y and Yu Y 2003 Dielectric properties and dielectric aging of 0.9PMN–0.1PT doped with CaO *Mater. Lett.* **57** 2834

[25] Ahn B-Y and Kim N-K 2000 Effects of barium substitution on perovskite formation, dielectric properties, and diffuseness characteristics of lead zinc niobate ceramics *J. Am. Ceram. Soc.* **83** 1720–26

[26] Butcher S J and Thomas N W 1991 Ferroelectricity in the $\text{Pb}_{1-x}\text{Ba}_x(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ *J. Phys. Chem. Solids.* **52** 595

[27] Vittayakorn N, Uttiya S, Rujijanagul G and Cann D P 2005 Dielectric and ferroelectric characteristics of 0.7 PZT–0.3 PZN ceramics substituted with Sr *J. Phys. D: Appl. Phys.* **38** 2942–6

Synthesis and Dielectric and Ferroelectric Properties of Ceramics in $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ System

Anurak PRASATKHETRAGARN*, Naratip VITTAYAKORN¹,
Supon ANANTA, Rattikorn YIMNIRUN, and David P. CANN²

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

¹Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

²Materials Science, Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331, U.S.A.

(Received August 16, 2007; revised September 28, 2007; accepted October 26, 2007; published online February 15, 2008)

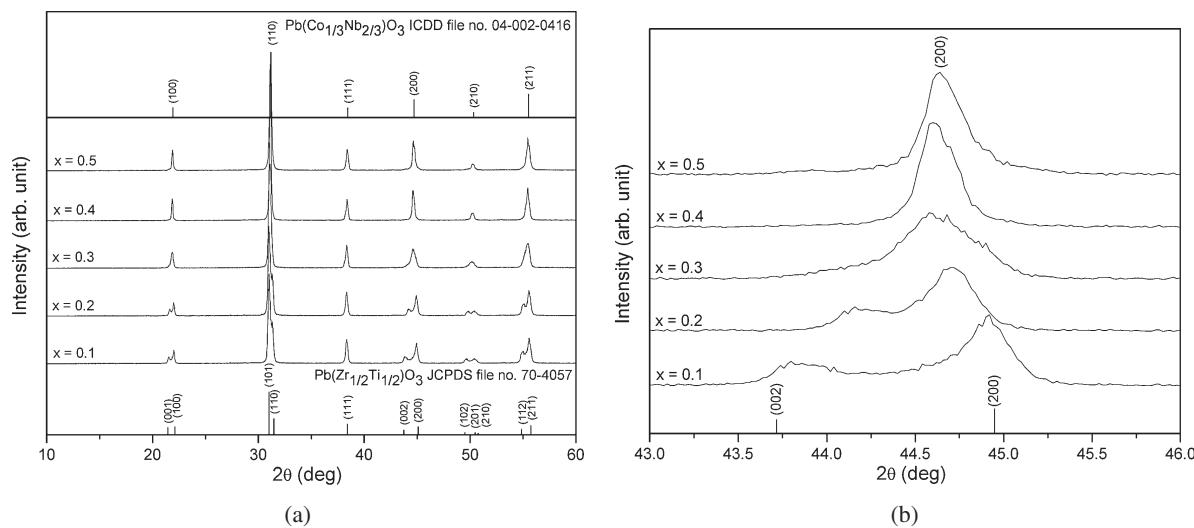
Ceramics in a PZT-PCN system with the formula $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$, where $x = 0.1-0.5$, were prepared using a solid-state mixed-oxide technique (the columbite-wolframite precursor method). The phase formation behavior and microstructure were studied using X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), respectively. The dielectric and ferroelectric properties of the compounds were studied and discussed. Phase-pure perovskites of PZT-PCN ceramics were obtained over a wide compositional range. In addition, the XRD, dielectric, and ferroelectric properties confirmed that the morphotropic phase boundary (MPB) composition between the tetragonal and pseudo cubic phases of this system lied between $0.2 \leq x \leq 0.3$. [DOI: [10.1143/JJAP.47.998](https://doi.org/10.1143/JJAP.47.998)]

KEYWORDS: ferroelectric properties, perovskites, MPB, phase transition

1. Introduction

Lead-based perovskite-type solid solutions consisting of ferroelectric and relaxor materials have attracted more and more fundamental and practical attention because of their excellent dielectric, piezoelectric, and electrostrictive properties, which are useful in actuating and sensing applications.¹⁾ Recently, many piezoelectric ceramic materials have been developed from binary systems containing a combination of relaxor and normal ferroelectric materials²⁾ that yield high dielectric permittivities [e.g., $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PZN-PT)^{3,4)} and $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT-PNN)⁵⁾], excellent piezoelectric coefficients [e.g., $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PZN-PT),^{3,4)} $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZN-PZT),⁶⁾ and $\text{Pb}(\text{Sc}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3$ (PSN-PT)^{7,8)}], and high pyroelectric coefficients [e.g., $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3-\text{PbTiO}_3-\text{PbZrO}_3$ (PNN-PT-PZ)⁹⁾]. Of the lead-based complex perovskites, lead zirconate titanate [$\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ or PZT] ceramics have been investigated from both fundamental and applied viewpoints.¹⁰⁾ A solid solution of $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ (PZT) was found to host exceptionally high value for dielectric and piezoelectric properties for compositions close to the morphotropic phase boundary (MPB). This MPB is located at a $\text{PbTiO}_3:\text{PbZrO}_3$ of $\sim 1:1$ and separates the Ti-rich tetragonal phase from the Zr-rich rhombohedral phase.¹⁰⁾ Furthermore, it has a high T_C of 390°C , which allows piezoelectric devices to be operated at relatively high temperatures. Most commercial PZT ceramics are designed in the vicinity of the MPB with various doping methods in order to achieve high properties.

Lead cobalt niobate (PCN) is a perovskite relaxor ferroelectric with a broad diffuse phase transition near -70°C .¹¹⁾ The structure is cubic at room temperature (RT). In this compound, the octahedral sites of the crystal are randomly occupied by Co^{2+} and Nb^{5+} ions.¹²⁾ Malkov and Venetsev have indicated that there are large deviations in the temperatures at which the permittivity is maximum (T_m) for single-crystal and ceramic samples.¹³⁾ The effects of the DC bias on


the dielectric properties have been reported as a function of temperature for single-crystal $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ with a diffuse phase transition.¹⁴⁾ Although the paraelectric-ferroelectric transition temperature of PCN is below RT, it can be easily shifted upward with the addition of PbTiO_3 (PT), which is a normal ferroelectric compound with a phase transition at 490°C .¹⁵⁾ In addition, it is well known that the addition of PZT enhances the piezoelectric, dielectric, and ferroelectric properties in a solid solution with a relaxor ferroelectric such as PZT-PZN,^{16,17)} PZT-PNN,⁵⁾ and PZT-PMN.¹⁸⁾ On the basis of this approach, solid solutions of PZT and PCN are expected to synergistically combine the properties of both the normal ferroelectric PZT and relaxor ferroelectric PCN, which could exhibit piezoelectric and dielectric properties that are better than those of the single-phase PZT and PCN.^{12,19)} There have been no systematic studies on the electrical properties of ceramics within a wide composition range between PZT and PCN.

The overall purpose of this study is to determine the phase transition, grain size, and composition dependence of the dielectric properties and ferroelectric behavior of ceramics in a $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (where $x = 0.1-0.5$) binary system prepared using the columbite-wolframite precursor method.

2. Experimental Procedure

Reagent-grade oxides of PbO , CoO , Nb_2O_5 , ZrO_2 , and TiO_2 (anatase-structure) were used as raw materials. The columbite CoNb_2O_6 and wolframite ZrTiO_4 precursors were weighed and introduced into the batch calculations. CoNb_2O_6 and ZrTiO_4 powders were prepared at calcination temperatures of 1100 and 1450°C for 2 h , respectively. In the present work, $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ samples with compositions of $x = 0.1-0.5$ were prepared from ZrTiO_4 , CoNb_2O_6 , and PbO powders. PZT-PCN powders were synthesized using the solid-state reaction of these raw materials and mixed by a vibro-milling technique in ethanol for 1 h . PbO excess of 2.0 mol\% was constantly added to compensate for lead losses during calcination and sintering.¹⁷⁾ After drying, the product was calcined in an alumina crucible at a temperature of 950°C .

*E-mail address: Prasatkhetragarn@yahoo.com

Fig. 1. XRD patterns of $(1-x)\text{PZT}-(x)\text{PCN}$ ceramics, where $x = 0.1-0.5$.

The calcined powders were pressed hydraulically to form disc-shaped pellets with a diameter of 10 mm and a thickness of 1 mm, with 1 wt % poly(vinyl alcohol) (PVA) added as a binder. The pellets were sintered at 1200 °C for 2 h at a heating/cooling rate of 5 °C/min. The phase structure of the powders was analyzed via X-ray diffraction (XRD; Siemens-D500 diffractometer) analysis using Cu K α radiation. The microstructures of the sintered samples were examined using scanning electron microscopy (SEM; JEOL JSM-840A). The dielectric properties of the samples were measured using an automated measurement system. This system consisted of an LCR meter (Hewlett-Packard HP-4284A) in connection with a Delta Design 9023 temperature chamber and a sample holder (Norwegian Electroceramics) capable of high-temperature measurement. The ferroelectric properties were examined using a simple Sawyer-Tower circuit.¹⁸

3. Results and Discussion

The XRD patterns of $(1-x)\text{PZT}-(x)\text{PCN}$ ceramics with various x values are shown in Fig. 1. It can be seen that a complete crystalline solution of the perovskite structure is formed throughout the entire compositional range without the presence of pyrochlore or unwanted phases. From the XRD data, the $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramic is identified as a single-phase material with a perovskite structure having tetragonal symmetry, which was matched with JCPDS file no. 70-4057. The XRD patterns of the PZT-PCN compositions show a range in symmetry between the tetragonal and pseudo cubic perovskite types.²⁰ For a better comparison, ICDD file no. 04-002-0416 for $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ with pseudo cubic structural symmetry is also displayed in Fig. 1. It is clear that the crystal symmetry should change owing to the effects of increasing the PCN fraction and a corresponding decrease in T_C . It is well known that in the pseudo cubic phase, the (200) profile will show a single narrow peak, while in the tetragonal phase, the (200) profile should be split into two peaks. More interestingly, the composition at $x = 0.3$ exhibited peak broadening at a 2θ of $\sim 44-45^\circ$, indicating the structural transformation from the tetragonal phase, characterized by the shifting of the

(002)/(200) peaks to the pseudo cubic phase. This observation is obviously associated with the composition showing the coexistence of two symmetries, which in this case are the tetragonal and pseudo cubic phases. To a first approximation, it could be said that the composition with $x = 0.3$ is close to the MPB of the $(1-x)\text{PZT}-(x)\text{PCN}$ system, where the structure of the PZT-PCN compositions gradually changes from tetragonal to pseudo cubic. The electrical data described later on will further support this assumption.

The SEM images in Fig. 2 reveal that the addition of PCN resulted in significant changes in the microstructure of the ceramics. Some grains are observed to have irregular shapes with both open and close pores as a result of the high rate of the evaporation of PbO during the sintering.¹⁷ The images also show that the grain size of the ceramics varied considerably from 0.43 to 19.56 μm (Table I). However, the average grain size significantly decreased with an increase in the content of PCN. It can also be seen that the maximum density is obtained in the 0.7PZT-0.3PCN ceramics, while the minimum density is observed in the 0.5PZT-0.5PCN ceramics. Interestingly, the density results can be correlated to the microstructure because high-density 0.7PZT-0.3PCN ceramics show high degrees of grain close packing, whereas low-density 0.5PZT-0.5PCN ceramics contain many closed pores.

The dielectric properties of $(1-x)\text{PZT}-(x)\text{PCN}$, where $x = 0.1-0.5$, are illustrated in Fig. 3. At RT, with an increase in the concentration of PCN, the dielectric constant tends to increase because the transition temperature of the PZT-PCN ceramics shift across RT; hence, the value of the dielectric properties measured at RT increased, as shown in Table II. Other authors have reported a similar behavior.⁵ The temperature dependence of the dielectric constant for the compositions of the $(1-x)\text{PZT}-(x)\text{PCN}$ system show broad dielectric peaks with an increase in the concentration of PCN, which indicate a diffuse phase transition. The diffuse phase transition may have been caused by a decrease in grain size; the observed difference in the degree of diffuseness could be a result of the grain size variation, as shown in Table II,²¹ and chemical inhomogeneities within the $(1-x)\text{PZT}-(x)\text{PCN}$ solid solution.²⁰

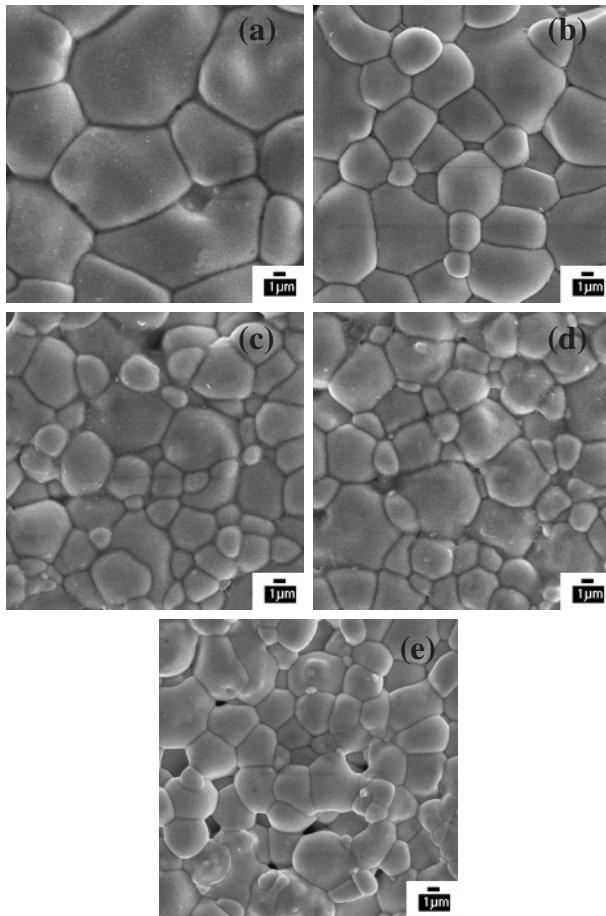


Fig. 2. SEM images of $(1-x)$ PZT $-(x)$ PCN ceramics with various compositions: $x =$ (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, and (e) 0.5.

It should be noted that the formation of MPB could be clearly seen by the crystal structure analysis as described earlier. As is well known, the value of the dielectric and ferroelectric properties of a solid solution with MPB usually maximize approximately at the MPB. An anomaly at the MPB has been observed by our group in solid solution (x) PZT $-(1-x)$ PNN.⁵ However, no anomalies approximately at the MPB in the dielectric properties (Table II) could be found in the present work. In addition, the ferroelectric properties at approximately $x = 0.3$ are only slightly different from those of other compositions ($x = 0.2, 0.4$), rather than being “anomalously high”. This could possibly be caused by a substitution of Ni^{2+} by Co^{2+} in the B-site, which shifts the MPB composition from $x = 0.2$ in the PZT-PNN system to $0.2 \leq x \leq 0.3$ in PZT-PCN. Since in this current

Table I. Physical characteristics of $(1-x)$ PZT $-(x)$ PCN ceramics, where $x = 0.1-0.5$.

Ceramics ($x = 0.1-0.5$)	Density (g/cm^3)	Grain size range (μm)	Average grain size (μm)
0.9PZT-0.1PCN	7.39 ± 0.05	4.54–19.56	7.45 ± 0.05
0.8PZT-0.2PCN	7.46 ± 0.05	2.60–12.35	4.13 ± 0.05
0.7PZT-0.3PCN	7.62 ± 0.05	0.43–9.48	2.82 ± 0.05
0.6PZT-0.4PCN	7.42 ± 0.05	0.60–10.75	2.77 ± 0.05
0.5PZT-0.5PCN	7.31 ± 0.05	0.47–9.53	2.61 ± 0.05

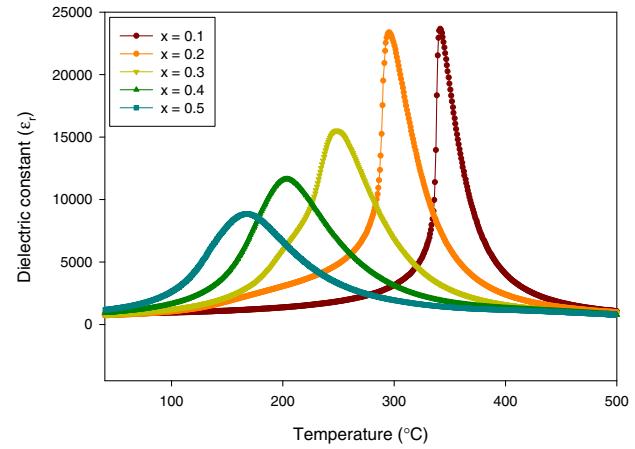


Fig. 3. (Color online) Dielectric constant (ϵ_r) of $(1-x)$ PZT $-(x)$ PCN ceramics at 100 kHz.

work, we only started with compositions at 0.1 intervals, the exact MPB composition could not be clearly identified. However, as seen in Table II, the argument that the MPB composition should fall between $0.2 \leq x \leq 0.3$ in PZT-PCN is supported by all the XRD and electrical data, which show drastic decreases in the value of the electrical properties in compositions with $x > 0.3$.

The temperature dependence of the dielectric constant (ϵ_r) measured at 100 kHz for the $(1-x)$ PZT $-(x)$ PCN samples with $x = 0.1-0.5$ is shown in Fig. 3. In an ideal solid solution of PZT and PCN, the transition temperature is expected to vary linearly between 341 and 167 °C. As shown in Table II, the Curie temperature decreased as expected with an increase in PCN content. However, the ϵ_r peaks became broader with increasing PCN content at $x \geq 0.3$. It was confirmed that the composition with $0.2 \leq x \leq 0.3$ is close to the morphotropic phase boundary (MPB) of the $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ system.

Table II. Dielectric and ferroelectric properties of $(1-x)$ PZT $-(x)$ PCN ceramics, where $x = 0.1-0.5$.

Ceramics ($x = 0.1-0.5$)	T_C (°C)	Dielectric properties				Ferroelectric properties (at 25 °C)			Loop squareness (R_{sq})
		ϵ_{max}	ϵ_{RT}	γ	δ	P_r ($\mu\text{C}/\text{cm}^2$)	P_s ($\mu\text{C}/\text{cm}^2$)	E_c (kV/cm)	
0.9PZT-0.1PCN	341.40	23700	740	1.52	14.72	2.9	4.1	8.45	1.52
0.8PZT-0.2PCN	295.50	23400	800	1.68	15.73	20.1	21.6	6.84	1.91
0.7PZT-0.3PCN	248.40	15500	840	1.81	16.55	20.9	22.6	6.92	1.94
0.6PZT-0.4PCN	203.50	11600	910	1.82	16.68	18.6	20.3	6.30	1.93
0.5PZT-0.5PCN	167.50	8900	1180	1.97	16.92	14.5	15.2	6.10	1.92

To further understand the dielectric behavior of the PZT-PCN system, the ferroelectric transition can be analyzed through the Curie-Weiss relationship. For normal ferroelectrics such as PZT and PCN, above the Curie temperature, the dielectric constant follows the following equation:

$$\varepsilon = \frac{c}{T - T_0}, \quad (1)$$

where c is the Curie constant and T_0 is the Curie-Weiss temperature.^{10,21,23} For a ferroelectric with a diffuse phase transition such as the PZT-PCN solid solutions, the following equation applies:

$$\frac{1}{\varepsilon} \approx (T - T_m)^2, \quad (2)$$

The above equation has been shown to be valid over a wide temperature range compared with the normal Curie-Weiss law [eq. (1)].^{24,25} In eq. (2), T_m is the temperature at which the dielectric constant is maximum. If the local Curie temperature distribution is Gaussian, the reciprocal permittivity can be written in the form:^{5,24}

$$\frac{1}{\varepsilon} = \frac{1}{\varepsilon_m} + \frac{(T - T_m)^\gamma}{2\varepsilon_m\delta^2}, \quad (3)$$

where ε_m is the maximum permittivity, γ is the diffusivity, and δ is the diffuseness parameter. For $(1-x)$ PZT-(x)PCN compositions, the diffusivity (γ) and diffuseness parameter (δ) can be estimated from the slope and intercept of the dielectric data shown in Fig. 4, and tabulated in Table II.

γ and δ are both material constants depending on the composition and structure of the material.⁵ γ is the expression of the degree of dielectric relaxation, while δ is used to measure the degree of diffuseness of the phase transition. In a material with a "pure" diffuse phase transition described by the Smolenskii-Isutov relation [eq. (2)], γ is expected to be 2.²⁶ The mean value of the diffusivity (γ) is extracted from these plots by fitting a linear equation. The values of γ vary between 1.52 and 1.97, which confirms that diffuse phase transition occurs in the PZT-PCN system. It is important to note that in perovskite ferroelectrics, it has been established that γ and δ can be affected by microstructure features, density, and grain size.¹⁸ For PZT-rich ceramics, γ and δ increase with an

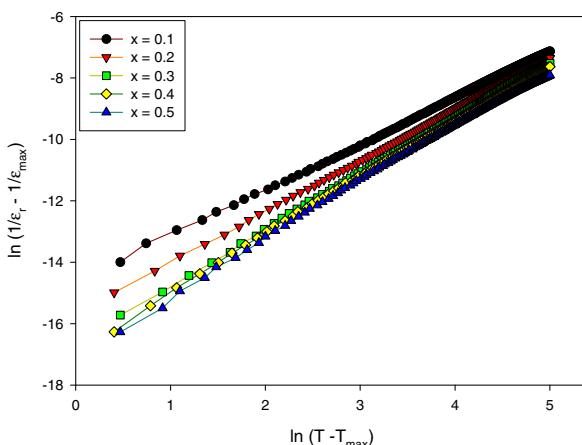


Fig. 4. (Color online) Variation of $\ln(1/\varepsilon_r - 1/\varepsilon_{\max})$ vs $\ln(T - T_{\max})$ of $(1-x)$ PZT-(x)PCN ceramics.

increase in PCN content, confirming the diffuse phase transitions in PZT-PCN solid solutions. It is clear that the addition of PCN increases the degree of disorder in $(1-x)$ PZT-(x)PCN over the compositional range $0.1 \leq x \leq 0.5$ with the highest degree of diffuseness exhibited in the 0.5PZT-0.5PCN composition. It should also be mentioned here that different dielectric behaviors could also be caused by grain size variation,²¹ as noted in Table I.

The polarization-field (P - E) hysteresis loops of $(1-x)$ PZT-(x)PCN ceramics measured at 15 kV/cm are shown in Fig. 5. A series of well-developed and mostly symmetric hysteresis loops are observed for all compositions. It is seen that the remanent polarization (P_r) varies significantly across the compositional range. However, the coercive field E_c is relatively constant, as shown in Table II. The ferroelectric parameters obtained from the P - E loops are plotted in Fig. 6. The remanent polarization (P_r) and saturated polarization (P_s) increased from $P_r = 2.9 \mu\text{C}/\text{cm}^2$ and $P_s = 4.1 \mu\text{C}/\text{cm}^2$ in 0.9PZT-0.1PCN to reach maximum values of $P_r = 20.9 \mu\text{C}/\text{cm}^2$ and $P_s = 22.6 \mu\text{C}/\text{cm}^2$ in 0.7PZT-0.3PCN. At higher PCN contents, they then drop to $P_r = 14.5 \mu\text{C}/\text{cm}^2$ and $P_s = 15.2 \mu\text{C}/\text{cm}^2$ in 0.5PZT-0.5PCN. However, it should be noted that the P_r ($2.9 \mu\text{C}/\text{cm}^2$) for the composition $x = 0.1$ in the present work is

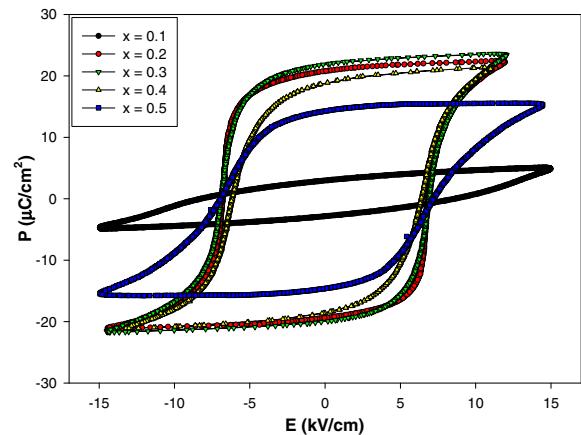


Fig. 5. (Color online) Effect of composition (x) on P - E hysteresis loops for $(1-x)$ PZT-(x)PCN ceramics with $x = 0.1-0.5$.

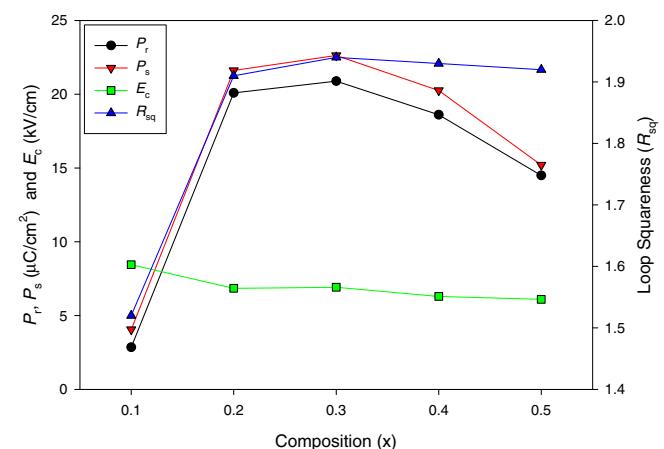


Fig. 6. (Color online) Remanent polarization (P_r), saturation polarization (P_s), coercive field (E_c), and loop squareness (R_{sq}) of $(1-x)$ PZT-(x)PCN ceramics.

lower than the P_r ($\sim 15 \mu\text{C}/\text{cm}^2$) in a previous study,²⁰⁾ probably due to the fact that the solid-state conventional mixed oxide method used in the previous study²⁰⁾ yielded two MPB compositions at $x = 0.1$ and 0.5 , which is different from the columbite–wolframite method used in this study, which showed only one MPB composition at approximately $0.2 \leq x \leq 0.3$. It is well known that ferroelectric values, such as P_r , P_s , and E_c , show maximum values approximately at the MPB composition.

An empirical relationship between remnant polarization (P_r), saturation polarization (P_s) and polarization at the fields above the coercive field was derived by Haertling and Zimmer.²⁷⁾ This permits the quantification of changes in the hysteresis behavior for the $(1-x)\text{PZT}-(x)\text{PCN}$ samples through the following equation:

$$R_{\text{sq}} = \frac{P_r}{P_s} + \frac{P_{1.1E_c}}{P_s}, \quad (4)$$

where R_{sq} is the squareness of the hysteresis loop and $P_{1.1E_c}$ is the polarization at an electric field equal to 1.1 times the coercive field (E_c). For an ideal hysteresis loop, R_{sq} is equal to 2.0. As listed in Table II, the loop squareness parameter R_{sq} increased from 1.52 in 0.9PZT–0.1PCN to reach the maximum value of 1.94 in 0.7PZT–0.3PCN before decreasing to 1.92 in the 0.5PZT–0.5PCN composition. This observation is in good agreement with the P – E hysteresis loops, as depicted in Fig. 5. The results imply that the addition of 30 mol % PCN into PZT results in an optimized square P – E loop.

4. Conclusion

In this study, ceramics within the $(1-x)\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3-(x)\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ solid solution system (where $x = 0.1\text{--}0.5$) were successfully prepared using a solid-state mixed-oxide technique. The PZT ceramic was identified by XRD analysis as a single-phase tetragonal perovskite, while the addition of PCN resulted in a gradual shift from tetragonal symmetry to pseudo cubic symmetry, with a possible MPB between the two phases located near the 0.7PZT–0.3PCN composition. However, the dielectric and ferroelectric properties did not show anomalously high value for the dielectric and ferroelectric properties at the 0.7PZT–0.3PCN composition, indicating that the MPB composition shifted to $0.2 \leq x \leq 0.3$ in the PZT–PCN system.

Acknowledgements

This work was supported by the Commission on Higher

Education (CHE), the Thailand Research Fund (TRF), the Faculty of Science, and the Graduate School of Chiang Mai University.

- 1) A. J. Moulson and J. M. Herbert: *Electroceramics: Materials, Properties, Applications* (Wiley, Chichester, U.K., 2003).
- 2) S.-E. Park and T. R. Shroud: *IEEE Trans. Ultrason. Ferroelectr. Freq. Control* **44** (1997) 1140.
- 3) J. Kuwata, K. Uchino, and S. Nomura: *Ferroelectrics* **37** (1981) 579.
- 4) M. L. Mulvihill, L. E. Cross, W. Cao, and K. Uchino: *J. Am. Ceram. Soc.* **80** (1997) 1462.
- 5) N. Vittayakorn, G. Rujijanagul, X. Tan, M. A. Marquardt, and D. P. Cann: *J. Appl. Phys.* **96** (2004) 5103.
- 6) H. Fan, G.-T. Park, J.-J. Choi, J. Ryu, and H.-E. Kim: *J. Mater. Res.* **17** (2002) 180.
- 7) O. Furukawa, Y. Yamashita, M. Harata, T. Takahashi, and K. Inagaki: *5th Meet. Ferroelectric Materials and Their Applications, Kyoto, 1985*, *Jpn. J. Appl. Phys.* **24** (1985) Suppl. 24-3, p. 96.
- 8) V. J. Tennery, K. W. Hang, and R. E. Novak: *J. Am. Ceram. Soc.* **51** (1968) 671.
- 9) D. Luff, R. Lane, K. R. Brown, and H. J. Marshallsay: *Trans. J. Br. Ceram. Soc.* **73** (1974) 251.
- 10) L. E. Cross: *Mater. Chem. Phys.* **43** (1996) 108.
- 11) G. A. Smolenskii and A. L. Agranovskaya: *Sov. Phys. Tech. Phys.* **3** (1958) 1380.
- 12) T. Kudo, T. Yazaki, F. Naito, and S. Sugaya: *J. Am. Ceram. Soc.* **53** (1970) 326.
- 13) B. A. Malkov and Y. N. Venetsev: *Izv. Akad. Nauk Neorg. Mater.* **13** (1977) 1468 [in Russian].
- 14) V. D. Salniov, Y. S. Kužminov, and Y. N. Venetsev: *Izv. Akad. Nauk Neorg. Mater.* **7** (1971) 1277 [in Russian].
- 15) C. Xu, Z. Duan, X. Wang, D. Yang, and K. Chen: *J. Cryst. Growth* **281** (2005) 543.
- 16) N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, and D. P. Cann: *Curr. Appl. Phys.* **6** (2006) 303.
- 17) N. Vittayakorn, G. Rujijanagul, T. Tankasiri, X. Tan, and D. P. Cann: *Mater. Sci. Eng. B* **108** (2004) 258.
- 18) R. Yimnirun, S. Ananta, and P. Laoratanakul: *J. Eur. Ceram. Soc.* **25** (2005) 3235.
- 19) T. Hachiga, S. Fujimoto, and N. Yasuda: *J. Phys. D* **20** (1987) 1291.
- 20) N. Vittayakorn, S. Wirunchit, S. Traisak, R. Yimnirun, and G. Rujijanagul: *Curr. Appl. Phys.* **8** (2008) 128.
- 21) R. Yimnirun, S. Ananta, and P. Laoratanakul: *Mater. Sci. Eng. B* **112** (2004) 79.
- 22) I. W. Chen, P. Li, and Y. Wang: *J. Phys. Chem. Solids* **57** (1996) 1525.
- 23) G. H. Haertling: *J. Am. Ceram. Soc.* **82** (1999) 797.
- 24) A. Halliyal, U. Kumar, R. E. Newnham, and L. E. Cross: *Am. Ceram. Soc. Bull.* **66** (1987) 671.
- 25) R. D. Shannon and C. T. Prewitt: *Acta Crystallogr., Sect. B* **25** (1969) 925.
- 26) Y.-M. Chiang, D. P. Birnie, and W. D. Kingery: *Physical Ceramics* (Wiley, Chichester, U.K., 1997) p. 522.
- 27) G. H. Haertling and W. J. Zimmer: *Am. Ceram. Soc. Bull.* **45** (1966) 1084.

Available online at www.sciencedirect.com

Ceramics International xxx (2008) xxx–xxx

CERAMICS
INTERNATIONAL

www.elsevier.com/locate/ceramint

Fabrication and electrical properties of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics

M. Unruan ^{a,*}, N. Vittayakorn ^b, R. Wongmaneerung ^a, A. Prasatkhetragarn ^a,
S. Ananta ^a, R. Yimnirun ^a

^a Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand

Accepted 1 October 2007

Abstract

$\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PCN) ceramics have been produced by sintering PCN powders synthesized from lead oxide (PbO) and cobalt niobate (CoNb_2O_6) with an effective method developed for minimizing the level of PbO loss during sintering. Attention has been focused on relationships between sintering conditions, phase formation, density, microstructural development, dielectric and ferroelectric properties of the sintered ceramics. From X-ray diffraction analysis, the optimum sintering temperature for the high purity PCN phase was found at approximately 1050 and 1100 °C. The densities of sintered PCN ceramics increased with increasing sintering temperature. However, it is also observed that at very high temperature the density began to decrease. PCN ceramic sintered at 1050 °C has small grain size with variation in grain shape. There is insignificant change of dielectric properties with sintering temperature. The P – E hysteresis loops observed at –70 °C are of slim-loop type with small remanent polarization values, which confirmed relaxor ferroelectric behavior of PCN ceramics.

© 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sintering; C. Dielectric properties; PCN

1. Introduction

Lead-based relaxor ferroelectrics, particularly lead magnesium niobate, $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PMN) belong to a technologically important class of complex $\text{Pb}(\text{B}'\text{B}'')\text{O}_3$ perovskite materials [1]. PMN has advantages of having broader operating temperature range, especially over the room temperature range. This is a direct result of a diffuse paraelectric–ferroelectric phase transition in the vicinity of room temperature. In addition, as a result of their unique microstructure features, PMN ceramics exhibit low loss and non-hysteretic characteristics [2]. However, little attention has been devoted to other lead-base relaxor ferroelectrics, $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ (A is Mg^{2+} , Co^{2+} , Ni^{2+} or Zn^{2+} and B is Nb^{5+} or Ta^{5+}), discovered by Bokov and Myl'nikova [3], with the perovskite structure and the dielectric maximum temperature (T_m) lower than room temperature, except for that of $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$. Although Mg^{2+} , Co^{2+} , Ni^{2+} and Zn^{2+} have similar radii, the temperatures

at which spontaneous polarization occurs in $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ differ [4].

Therefore, in this study, one of lesser studied ceramics in the $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ system, i.e. $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PCN), is investigated. Earlier studies have shown interesting piezoelectric properties of PCN single crystal [3]. Another study also described electrical properties of PZT-PCN ceramics [4]. However, there has been no systematic investigation on the PCN ceramics. Therefore, this study will provide more information about this interesting ceramic. Synthesis method, physical properties, microstructure, dielectric and ferroelectric properties of these ceramics are discussed.

2. Experimental procedure

PCN ceramics were prepared from starting CoNb_2O_6 (or CN) and PbO powders by a conventional mixed-oxide method. CN powders were obtained from the columbite method, while PCN powders were prepared by a simple mixed-oxide method. To obtain the perovskite-phase PCN, the cobalt niobate (CoNb_2O_6) powders were first prepared by mixing CoO (99.9%) and Nb_2O_5 (99.9%) powders in the proper proportion

* Corresponding author.

E-mail address: muangjaiunruan@yahoo.com (M. Unruan).

and vibro-milling for 1 h. After drying, the mixtures were calcined at 1100 °C for 4 h to yield so-called columbite powders (CoNb_2O_6). Subsequently, the columbite powders were mixed with PbO (99.9%) by the vibro-milling method and calcined at 950 °C for 4 h to form the perovskite-phase PCN powders. Then PCN powders were pressed hydraulically to form disc-shaped pellets 8 mm in diameter and 2 mm in thickness, with 3 wt% polyvinyl alcohol as a binder. The pellets were placed in the alumina crucible. Finally, for optimization purposes, the pellets were sintered at 1050, 1100, 1150 and 1200 °C for 2 h. Optimum sintering conditions for all ceramics were established by identifying the conditions for maximizing both the bulk density and the yield of perovskite. The phase formation of the sintered ceramics was studied by X-ray diffraction (XRD) technique. The densities of sintered specimens were measured by Archimedes method. The microstructure analyses were undertaken by scanning electron microscopy (SEM: JEOL Model JSM 840A). The grain size was determined from SEM-micrographs by a linear intercept method.

Before studying the dielectric properties, the specimens were lapped to obtain parallel face. After coating with silver paint as electrode at the faces, the specimens were heated at 750 °C for 12 min to ensure contact between the electrode and the surface of the ceramic. The dielectric properties were measured by LCR-meter at temperatures between -125 and 50 °C with a frequency of 1 kHz. The dielectric constant was then calculated from a parallel-plate capacitor equation, e.g. $\epsilon_r = Cd/\epsilon_0 A$, where C is the capacitance of the specimens, d and A are, respectively, the thickness and the area of the electrode and ϵ_0 is the dielectric permittivity of vacuum ($8.854 \times 10^{-12} \text{ F m}^{-1}$). Finally, the polarization-electric field ($P-E$) hysteresis loops at -70 °C were obtained using a standardized ferroelectric tester system (RT66A) at a frequency of 4 Hz.

3. Results and discussion

The phase formation behavior of the sintered ceramics is revealed by an XRD method. The XRD patterns are presented in Fig. 1, with the corresponding JCPDS pattern also shown. In general, the strongest reflections apparent in the majority of the XRD patterns indicate the formation of lead cobalt niobate phases. These can be matched with JCPDS file number 04-002-

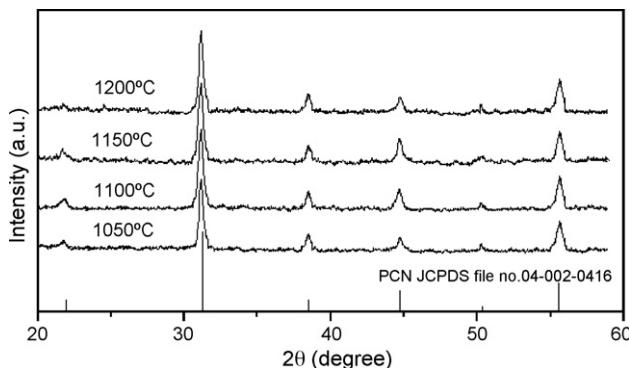


Fig. 1. XRD diffraction patterns of the sintered PCN ceramics.

Table 1
Characteristics of PCN ceramics

Sintering temperature (°C)	Relative density (%)	Average grain size (μm)	Dielectric properties	
			ϵ_{\max}	$\tan \delta$
1050	89.39	1.83	2178	0.0594
1100	95.05	4.11	2657	0.0592
1150	95.16	6.35	2673	0.0578
1200	94.10	4.58	2248	0.0507

0416 for the $\text{Pb}(\text{Co}_{0.33}\text{Nb}_{0.67})\text{O}_3$. Based on the JCPDS file, the optimum sintering temperature for the formation of a high purity PCN phase was found at 1050 and 1100 °C. The PCN ceramics sintered at 1150 °C showed a small peak of pyrochlore near $2\theta \sim 30^\circ$, while the peak of PCN ceramics sintered at 1200 °C at $2\theta \sim 22^\circ$ disappeared.

The relative densities of PCN ceramics sintered at different temperatures are listed in Table 1. It is clear that the density usually increases with increasing sintering temperature. This is believed to be a result of more completed solid-state reactions at higher sintering temperatures. However, it is also observed that at very high temperature the density begins to decrease. Lead-loss is generally accepted to be the reason for the decreasing density [5,6].

The SEM-micrographs of fractured surfaces of all PCN ceramics are shown in Fig. 2. PCN ceramic, sintered at 1050 °C, has small grain size with variation in grain shape. However, the other ceramics exhibit different morphology showing a possible pyrochlore formation (with pyramidal-shaped grains) and also over-sintered specimens. Table 1 also shows that the average grain size of PCN ceramics sintered at 1050 °C is relatively small, as compared to those sintered at higher temperatures. The average grain size seems to increase with increasing sintering temperatures. However, it is also observed that at very high temperature, the grain size begins to decrease, which is similar to the trend observed for the density.

Temperature dependencies of the dielectric constant (ϵ_r), as calculated from the capacitance of the sample and its geometry, and dielectric loss ($\tan \delta$) were measured continuously by increasing temperature from -125 to 50 °C. The temperature dependence of the dielectric constant and dielectric loss for the PCN ceramics are plotted in Fig. 3. As the measuring temperature increases, the maximum dielectric constant (ϵ_{\max}) appear at -30 °C, this temperature is called dielectric maxima temperature (T_m). There is also insignificant change of ϵ_{\max} with different sintering temperatures. The dielectric loss shows only very small decrease with decreasing temperature below the T_m and its value is much higher than that above the temperature of maximum dielectric constant. A strongly diffused dielectric peak is characteristic of ferroelectric relaxors. Frequency-dependent dielectric properties below T_m (not shown here) are also observed, further indicating relaxor behavior of PCN ceramics. Based on X-ray diffraction analysis, density data, SEM-micrograph, and dielectric properties, the optimum sintering temperature for a high purity PCN ceramic is found to be about 1050 and 1100 °C.

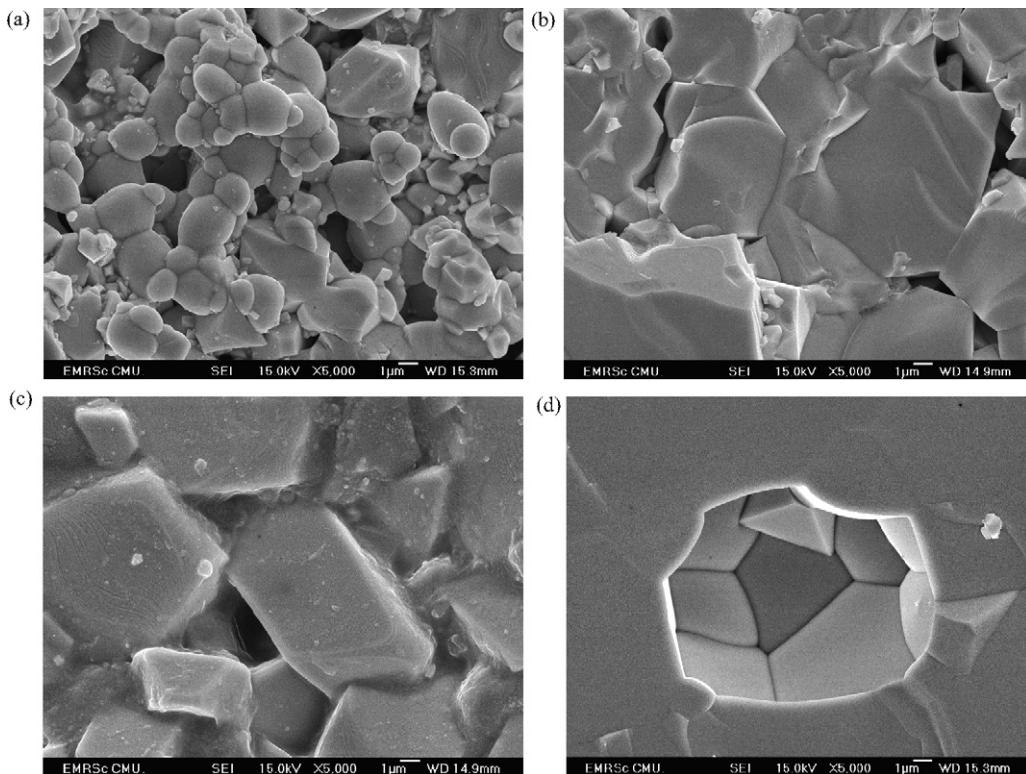


Fig. 2. SEM-micrographs of PCN ceramics at different sintering temperature: (a) 1050 °C; (b) 1100 °C; (c) 1150 °C; (d) 1200 °C.

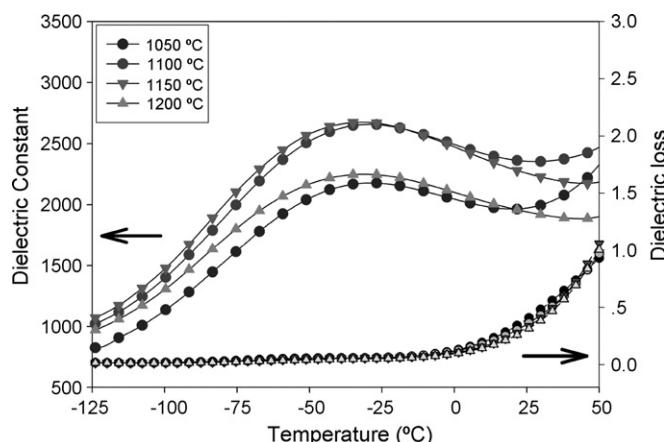


Fig. 3. Temperature dependence of dielectric properties of PCN ceramics at 1 kHz.

The hysteresis loops at -70°C of PCN ceramics sintered at different temperatures are shown in Fig. 4. It can be seen that slim P - E loops with small remanent polarization values are generally obtained for all ceramics. The slim-loop nature of the P - E curves suggests that most of the aligned dipole moments switch back to a randomly oriented state upon removal of the field. This behavior has previously been observed in ferroelectric relaxors [7]. In relaxor ferroelectric materials, micro to macro-domain transition occurs. In the absence of any external field, the domain structure of relaxor ferroelectrics contains randomly oriented micropolar

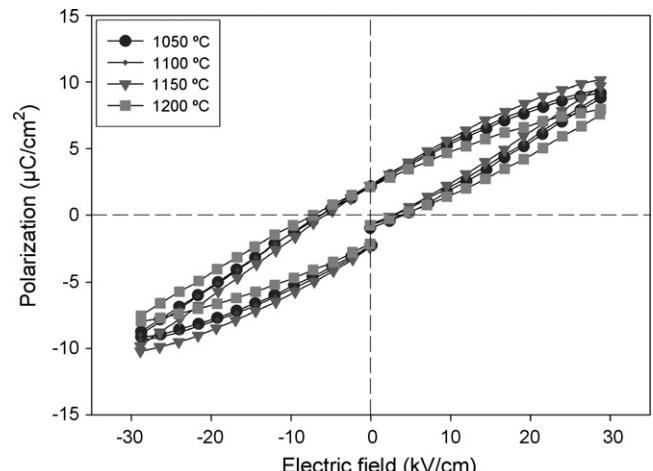


Fig. 4. P - E hysteresis loops of PCN ceramics measured at -70°C and frequency 50 Hz.

regions. However, when an electric field is applied, the micro-domains orient along the field direction and the macro-domains occur [7]. The P - E loops observed here also support that the PCN ceramics exhibit relaxor ferroelectric behavior.

4. Conclusions

In this study, PCN ceramics were prepared by the columbite precursor method. The PCN ceramics with perovskite structure and a high purity single phase were obtained. The optimum

sintering temperature for the formation of a high purity PCN phase was found to be at 1050 and 1100 °C. Density of these ceramics increases with increasing sintering temperature. However, at very high temperature the density begins to decrease. There is insignificant change of dielectric properties with different sintering temperatures. The samples exhibit a relaxor behavior around the maximum dielectric constant, characterized by a strongly diffused dielectric peak. The hysteresis loops at -70 °C show slim *P-E* loops with small remanent polarization values. This behavior has been observed in ferroelectric relaxors.

Acknowledgements

This work is supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE), and Royal Golden Jubilee (RGJ) Ph.D. Program. Additional supports from the Faculty of Science and Graduate School of Chiang Mai University are gratefully acknowledged.

References

- [1] K. Vladimir, B. Jaroslav, Microstructure and electrical response of 0.9Pb(Mg_{1/3}Nb_{2/3})O₃-0.1PbTiO₃ relaxor ceramics, Ceramics-Silikaty 47 (1) (2003) 8-12.
- [2] L.E. Cross, Relaxor ferroelectrics, Ferroelectric 76 (1987) 241-267.
- [3] V.A. Bokov, I.E. Myl'nikova, Piezoelectric properties of new compound single crystal with perovskite structure, Fiz. Tverd. Tela 2 (11) (1960) 2728-2732.
- [4] T. Kudo, T. Yazaki, F. Naito, S. Sugaya, Dielectric and piezoelectric properties of Pb(Co_{1/3}Nb_{2/3})O₃-PbTiO₃-PbZrO₃ solid solution ceramics, J. Am. Ceram. Soc. 53 (1969) 326-328.
- [5] V. Koval, C. Alemany, J. Briancin, H. Brunckova, K. Saksl, Effects of PMN modification of structure and electrical response of xPMN-(1-x)PZT ceramic systems, J. Eur. Ceram. Soc. 23 (2003) 1157-1166.
- [6] J.H. Park, K.H. Yoon, D.H. Kang., Dielectric and electrical properties of preferentially (111) oriented Zr-rich 0.1Pb(Mg_{1/3}Nb_{2/3})O₃-0.9Pb(Zr_xTi_{1-x})O₃ thin films by chemical solution deposition, Thin Solid Films 396 (2001) 84-89.
- [7] A. Peláiz-Barranco, I. González-Carmenate, F. Calderón-Piñar, Relaxor behavior in PZN-PT-BT ferroelectric ceramics, Solid State Commun. 134 (2005) 519-522.

ELSEVIER

Journal of Alloys and Compounds xxx (2007) xxx–xxx

Journal of
ALLOYS
AND COMPOUNDS

www.elsevier.com/locate/jallcom

Synthesis and properties of $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ ceramics

Muangjai Unruan ^a, Naratip Vittayakorn ^b, Rewadee Wongmaneerueng ^a,
Anurak Prasatkhetragarn ^a, Supon Ananta ^a, Rattikorn Yimnirun ^{a,*}

^a Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Received 7 June 2007; received in revised form 3 November 2007; accepted 11 November 2007

Abstract

In this study, $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ or PCN ceramics have been produced by sintering PCN powders synthesized from lead oxide (PbO) and cobalt niobate (CoNb_2O_6) with an effective method developed for minimizing the level of PbO loss during sintering. Attention has been focused on relationships between sintering conditions, phase formation, density, microstructural development, dielectric and ferroelectric properties of the sintered ceramics. The densities of sintered PCN ceramics increased with increasing sintering temperature. However, it was observed that at too high temperature the density began to decrease. Change of dielectric properties with sintering temperature also followed the same trend as the density. Based on X-ray diffraction analysis, density data, SEM micrograph, and dielectric properties, the optimum sintering temperature for a high purity PCN ceramic was found to be about 1100 and 1150 °C. A strongly diffused dielectric peak also showed a typical characteristic of ferroelectric relaxors. The P–E hysteresis loops observed at –70 °C were of slim-loop type with small remnant polarization values, which confirmed relaxor ferroelectric behavior of PCN ceramics.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Dielectric properties; Sintering; PCN

1. Introduction

Lead-base relaxor ferroelectrics, particularly lead magnesium niobate, $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PMN) belong to a technologically important class of complex $\text{Pb}(\text{B}'\text{B}'')\text{O}_3$ perovskite materials [1]. PMN has advantages of having broader operating temperature range, especially over the room temperature range. This is a direct result of a diffuse paraelectric–ferroelectric phase transition in the vicinity of room temperature. In addition, as a result of their unique microstructure features PMN ceramics exhibit low loss and non-hysteretic characteristics [2]. However, little attention has been devoted to the other lead-base relaxor ferroelectrics, $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ (A is Mg^{2+} , Co^{2+} , Ni^{2+} or Zn^{2+} and B is Nb^{5+} or Ta^{5+}), discovered by Bokov and Mylnikova [3], with the perovskite structure and the dielectric maxima temperature (T_m) lower than room temperature except for that of $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$. Although Mg^{2+} , Co^{2+} , Ni^{2+} and Zn^{2+} have similar radii, the temperatures at which

spontaneous polarization occurs in $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ differ [4].

Therefore, in this study one of lesser studied ceramics in the $\text{Pb}(\text{A}_{1/3}\text{B}_{2/3})\text{O}_3$ system, i.e. $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PCN) is investigated. Synthesis method, physical properties, microstructure, dielectric and ferroelectric properties of the ceramic are discussed.

2. Experimental method

PCN ceramics were prepared from starting PbO and CoNb_2O_6 (or CN) powders by a conventional mixed oxide method. CN powders were obtained from the columbite method [5], while PCN powders were prepared by a simple mixed oxide method. To obtain the perovskite-phase PCN, the cobalt niobate (CoNb_2O_6) powders were first prepared by mixing CoO (99.9%) and Nb_2O_5 (99.9%) powders in the proper proportion and vibro-milling for 1 h. After drying, the mixtures were calcined at 1100 °C for 4 h to yield so-called columbite powders (CoNb_2O_6). Subsequently, the columbite powders were mixed with PbO (99.9%) by the vibro-milling method and calcined at 950 °C for 4 h to form the perovskite-phase PCN powders. Then PCN powders were pressed hydraulically to form disc-shaped pellets 8 mm in diameter and 2 mm thick, with 3 wt% polyvinyl alcohol as a binder. The pellets were placed in the alumina crucible. Finally, for optimization purposes the pellets were sintered at 1050, 1100, 1150 and 1200 °C for 2 h. The phase formation of the sintered ceramics was studied by the X-ray diffraction (XRD) technique. The densities of sintered spec-

* Corresponding author. Tel.: +66 53 943 367; fax: +66 53 943 445.
E-mail address: rattikornymirun@yahoo.com (R. Yimnirun).

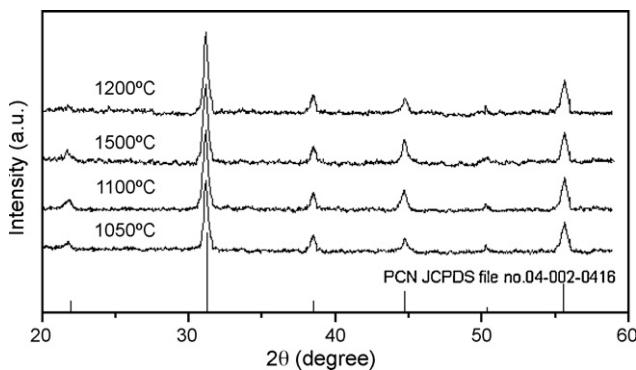


Fig. 1. XRD diffraction patterns of the sintered PCN ceramics.

imens were measured by Archimedes method. The microstructure analyses were undertaken by scanning electron microscopy (SEM: JEOL Model JSM 840A). The grain size was determined from SEM micrographs by a linear intercept method.

Before studying the dielectric properties, the specimens were lapped to obtain parallel faces. After coating with silver paint as electrode on the faces, the specimens were heated at 750 °C for 12 min to ensure contact between the electrode and the surface of the ceramic. The dielectric properties (dielectric constant (ε_r) and dielectric loss ($\tan \delta$)) were measured at temperatures between –120 and 50 °C. The capacitance was measured with a HP4284A LCR meter in connection with a Delta Design 9023 temperature chamber and a sample holder (Norwegian Electroceramics). The dielectric constant (ε_r) was then calculated from a parallel-plate capacitor equation, e.g. $\varepsilon_r = Cd/\varepsilon_0 A$, where C is the capacitance of the specimens, d and A are, respectively, the thickness and the area of the electrode and ε_0 is the dielectric permittivity of vacuum ($8.854 \times 10^{-12} \text{ Fm}^{-1}$). Finally, the polarization–electric field (P–E) hysteresis loops at –70 °C were obtained using a standardized ferroelectric tester system (RT66A) with driving frequency of 4 Hz.

3. Results and discussion

The phase formation behavior of the sintered ceramics is revealed by an XRD method. The XRD patterns are presented in Fig. 1, with the corresponding JCPDS pattern also shown. In general, the strongest reflections apparent in the majority of the XRD patterns indicate the formation of perovskite lead cobalt niobate phase. These can be matched with JCPDS file number 04-002-0416 for the $\text{Pb}(\text{Co}_{0.33}\text{Nb}_{0.67})\text{O}_3$. Based on the XRD analysis, the optimum sintering temperature for the formation of a high purity PCN phase was found at 1100 °C.

The densities of PCN ceramics sintered at different temperatures are listed in Table 1. It is clear that the density usually increases with increasing sintering temperature. This is believed

to be a result of more completed solid-state reactions at higher sintering temperatures. However, it is also observed that at too high temperature the density begins to decrease. Lead-loss is generally accepted to be the reason for the decreasing density [6].

The SEM micrographs of fractured surfaces of all PCN ceramics are shown in Fig. 2. PCN ceramic sintered at 1050 °C has small grain size with variation in grain shape. However, the other ceramics exhibit different morphology showing a possible pyrochlore formation (with pyramidal-shaped grains) and also over-sintered specimens. Table 1 also shows that the average grain size of PCN ceramics sintered at 1050 °C is relatively small, as compared to those sintered at higher temperatures. The average grain size increases with increasing sintering temperatures. However, it is also observed that at very high temperature the grain size begins to decrease, which is similar to the trend observed for the density. Change of dielectric properties with sintering temperature also followed the same trend as the density. The dielectric constant reaches maximum values at sintering temperature of 1150 °C.

Temperature and frequency dependencies of ε_r , as calculated from the capacitance of the sample and its geometry, and $\tan \delta$ were measured continuously by increasing temperature from –120 to 50 °C and frequency rang from 100 Hz to 100 kHz. The temperature dependence of ε_r and $\tan \delta$ for the PCN ceramics are plotted in Fig. 3. As the measuring temperature increases the maximum dielectric constant (ε_{\max}) appears at –30 °C, this temperature is called dielectric maxima temperature (T_m). It should be noticed that T_m obtained in this study is different from previous studies [3,7–9], which reported T_m of –70 °C for single crystal PCN and stress-dependent T_m for PCN ceramics ranging from –20 to –50 °C. It could be said that the T_m values obtained in this study fall within the previously reported values. This is because in this current study the dielectric properties, which are used to determine T_m , of the PCN ceramic were measured under compressive stress from a rather heavy sample holder used in the measurement system. In addition, the ceramics may also contain internal residual stress. Therefore, the T_m values obtained in this study are slightly lower than the previously reported value under stress-free condition. There is also insignificant change of T_m with different sintering temperatures. The $\tan \delta$ shows only very small decrease with decreasing temperature below the T_m and $\tan \delta$ becomes very high above the temperature of maximum dielectric constant. Based on X-ray diffraction analysis, density data, SEM micrograph, and dielectric properties, the optimum sintering

Table 1
Characteristics of PCN ceramics

Sintering temperature (°C)	Density (g/cm ³)	Average grain size (μm)	Dielectric properties	
			ε_{\max}	$\tan \delta$
1050	7.58	1.83	2178	0.0594
1100	8.06	4.11	2657	0.0592
1150	8.07	6.35	2673	0.0578
1200	7.98	4.58	2248	0.0507

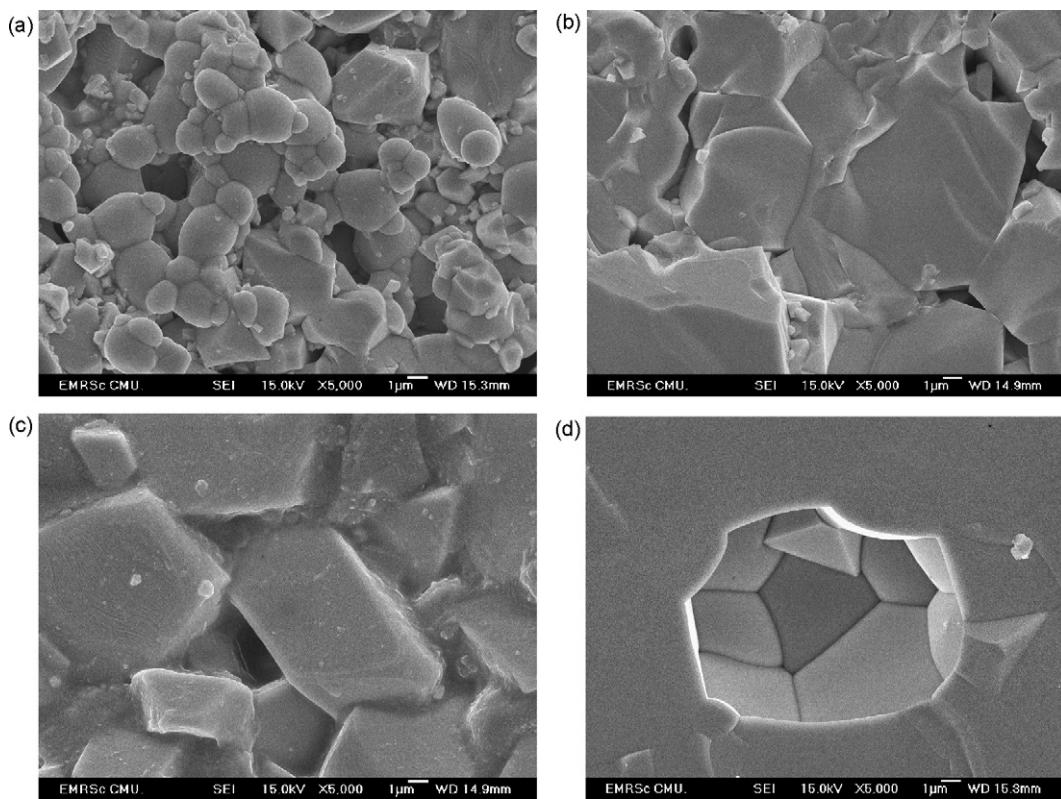


Fig. 2. SEM micrographs of PCN ceramics at different sintering temperature: (a) 1050 °C; (b) 1100 °C; (c) 1150 °C; and (d) 1200 °C.

temperature for a high purity PCN ceramic is found to be about 1100 and 1150 °C.

A strongly diffused dielectric peak is characteristic of ferroelectric relaxors. Frequency-dependent dielectric properties below T_m are also observed (Fig. 4.), further indicating relaxor behavior of PCN ceramics. However, one would expect to see a strong shift in T_m with frequency, as expected for typical relaxors, such behavior is not clearly visible because very high $\tan \delta$ above T_m causes ϵ_r to increase rapidly.

The hysteresis loops at -70 °C of PCN ceramics sintered at different temperatures are shown in Fig. 5. It can be seen that slim P-E loops with small remnant polarization values are

generally obtained for all ceramics. The slim-loop nature of the P-E curves suggests that most of the aligned dipole moments switch back to a randomly oriented state upon removal of the field. This behavior has previously been observed in ferroelectric relaxors [10]. In relaxor ferroelectric materials, micro- to macro-domain transition occurs. In the absence of any external field, the domain structure of relaxor ferroelectrics contains randomly oriented micropolar regions. However, when an electric field is applied, the micro-domains orient along the field direction and the macro-domains occur [10]. The P-E loops observed here also support that the PCN ceramics exhibit relaxor ferroelectric behavior.

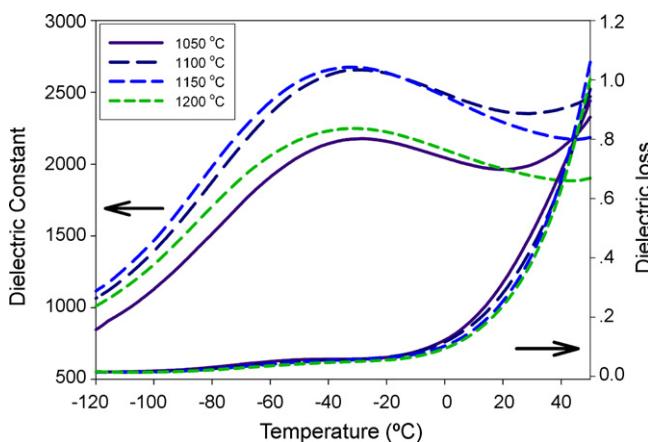


Fig. 3. Temperature dependence of dielectric properties of PCN ceramics at 1 kHz.

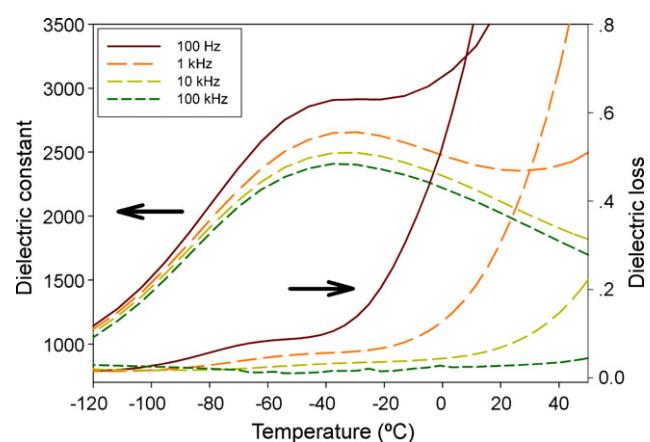


Fig. 4. Temperature and frequency dependence of dielectric properties of PCN ceramic sintered at 1100 °C.

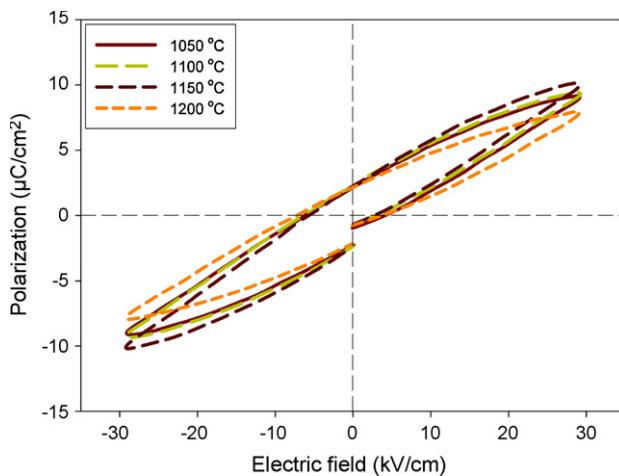


Fig. 5. P-E hysteresis loops of PCN ceramics measured at -70°C (4 Hz).

4. Conclusions

In this study, PCN ceramics were prepared by the columbite precursor method. The PCN ceramics with perovskite structure and a high purity single phase are obtained. Density of these ceramics increases with increasing sintering temperature. However, at too high temperature the density begins to decrease. Change of dielectric properties with sintering temperature also follows the same trend as the density. Based on X-ray diffraction analysis, density data, SEM micrograph, and dielectric properties, the optimum sintering temperature for a high purity PCN

ceramic is found to be about 1100 and 1150°C . The samples exhibit a relaxor behavior around the maximum dielectric constant, characterized by a strongly diffused dielectric peak at -30°C . The hysteresis loops measured at -70°C show slim P-E loops with small remnant polarization values. This behavior has been observed in ferroelectric relaxors.

Acknowledgments

This work is supported by the Thailand Research Fund (TRF) and Commission on Higher Education (CHE). Additional supports from the Faculty of Science and Graduate School of Chiang Mai University are gratefully acknowledged.

References

- [1] K. Vladimir, B. Jaroslav, Ceramics-Silikaty 47 (2003) 8.
- [2] L.E. Cross, Ferroelectrics 76 (1987) 241.
- [3] V.A. Bokov, I.E. Mylnikova, Sov. Phys. Solid State (Eng. Transl.) 2 (1961) 2428.
- [4] T. Kudo, T. Yazaki, F. Naito, S. Sugaya, J. Am. Ceram. Soc. 53 (1969) 326.
- [5] S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17 (1982) 1245.
- [6] R. Yimnirun, S. Ananta, P. Laoratanakul, J. Eur. Ceram. Soc. 25 (2005) 3225.
- [7] Landolt-Bornstein, in: T. Mitsui, S. Nomura (Eds.), Ferroelectrics and Related Substances, vol. 16, Springer-Verlag, Berlin, 1981.
- [8] Y. Yamashita, Jpn. J. Appl. Phys. 33 (1994) 5328.
- [9] T. Huchiga, S. Fujimoto, N. Yasuda, J. Phys. D: Appl. Phys. 20 (1987) 1291.
- [10] A. Peláez-Barranco, I. González-Carmenate, F. Calderón-Piñar, Solid State Commun. 134 (2005) 519–522.