
รูปจากจากการทดลอง Cast silk fibroin โดยวิธี Gamma-ray irradiation

เนื่องจากลักษณะ semi-solid ที่ เกิดจากการทดลอง cast silk เพื่อใช้เป็น dermal scaffold ในครั้ง แรกโดยวิธีอบ สามารถทำให้ fibroblast cells ยึดเกาะได้ และ Toxicity test โดย MTT assay มีผล show ว่า silk ไม่เป็นพิษกับ cells แต่ก็มีลักษณะด้วยคือ เปราะ แตก และไม่สามารถทำให้มีพื้นผิวหน้าที่เรียบได้ ซึ่งไม่ สามารถดำรงไว้ซึ่งคุณสมบัติหลักของ dermal part ดังรูปที่ show แต่อย่างไรก็ดี การทดลองดังกล่าวทำให้มี ความหวังว่า silk มีคุณสมบัติทางชีวภาพที่สามารถนำมาใช้เป็น Biomaterial ได้

ต่อมา ทางคณะผู้วิจัยได้พยายามทำการทดลองโดยการเปลี่ยนวิธี cast silk fibroin เป็นวิธี Ultrasoound induced protein linkage เพื่อให้ได้ silk scaffold ที่มีลักษณะเป็น gel และ cast เป็น semi-solid ได้ เพื่อให้ silk scaffold สามารถ integrate กับ cells ได้ และมีพื้นผิวหน้าที่เรียบเนียน ก่อนที่จะได้ทำการทดลองในชั้น epidermis ใน step ต่อไป พบว่าลักษณะ silk ที่ได้เป็น semi-solid gel อย่างที่คาดหวังไว้ ตามรูป

แต่ว่า gel ที่ได้ มีลักษณะยุ่ยเมื่อได้รับแรงจับ จึงทำให้ผู้วิจัยทดลองผสม PVA (PolyVinylAcetate) ซึ่งเป็นสารสังเคราะห์ที่มีลักษณะเหนียว ยืดหยุ่น เพื่อเพิ่มคุณสมบัติ elasticity และลดความยุ่ยของ silk gel ลง โดยทดลองผสม PVA ความเข้มข้นต่างกัน มีและไม่มี fibroblast cells ตามตาราง เหตุผลคือ ยิ่งความ เข้มข้นของ PVA มาก ความเหนียวยืดหยุ่นก็จะมีมาก ส่วน fibroblast cells สามารถทำให้ dermal scaffold หดรั้งตัวลดขนาดลงมาได้ ตามรูป

ผลการทดลองพบว่า Ultrasound silk fibroin+PVA dermal scaffold มาสามารถทำให้ fibroblast cells ยึดเกาะได้ และไม่มีความยืดหยุ่นและเหนียวพอที่จะนำไปใช้เป็น dermal scaffold ได้ ทางคณะผู้วิจัยจึงได้เปลี่ยนวิธีการ Cross-linked protein linkage ของ silk fibroin เป็นการทดลอง ใช้ Gamma-ray irradiation ผลการทดสอบเบื้องต้น, ทำการทดลอง Gamma-ray irradiation ที่สำนักงาน ปรมาณูเพื่อสันติ ขอความร่วมมือผ่านการอนุเคราะห์ติดต่อประมานงานโดยผศ.ดร.บวรลักษณ์ อุนคานนท์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล, พบว่า silk fibroin ซึ่ง Cast protein linkage โดยวิธี Gamma-ray irradiation มีความเหนียวและยืดหยุ่นได้ดีมากตามภาพ

สรุปงานวิจัยจนจบโครงการ

1. ทดสอบทำ Dermal scaffold โดยใช้ collagen type I ล้มเหลวเพราะ collagen type I ที่หาซื้อได้ใน ประเทศไทยผ่าน บริษัท Roche (ซึ่งเป็นตัวเดียวเท่านั้นที่หาซื้อได้ในประเทศ) ไม่สามารถ cast เป็น semi-solid gel ได้แบบ collagen type I จากบริษัท Nitta gelatin ประเทศญี่ปุ่นที่ผู้วิจัยหลักเคยใช้ทำการทดลอง เมื่อครั้งยังทดลองอยู่ในประเทศญี่ปุ่น และเมื่อติดต่อขอซื้อก็ไม่สามารถซื้อจากบริษัท Nitta gelatin ได้ เพราะ ไม่มีตัวเทนในประเทศไทยและไม่สามารถนำเข้าได้เองผ่านกรมศุลกากร เนื่องจากเป็นผลิตภัณ์จากสัตว์เท้า ก็

เหตุผลน่าจะเป็นลักษณะมาตรฐานของ laboratory ที่แตกต่างกัน ของ บริษัท Nitta gelatin และบริษัท Roche

2. ทางผู้วิจัยได้ทำการเปลี่ยนมาใช้ Dermal scaffold โดยสารสกัดจาก silk fibroin โดยเพราะจากการ review literature พบว่าสามารถนำมาใช้ได้ ทางผู้วิจัยจึงได้ทดสอลคุณสมบัติทางเคมีเบื้อต้นโดยทดสอบการยึดเกาะ ของเซลล์บนเส้นใยไหมโดยถ่ายภาพการยึดเกาะขอเซลล์โดยกล้อง scanning electron microscope ทดสอบ cytotoxicity test โดย MTT assay และทดสอบ การสลายตัวของ silk fibroin โดยวิธี FTIR (Fourier Transform Infrared Spectroscopy) ทั้งหมดให้ผลเป็นบวกต่อการนำ silk fibroin มาใช้เป็น biological product สำหรับกรณีของเราคือเหมาะแก่การทำ dermal scaffold

ทางผู้วิจัยจึงได้ทำการทดลองต่อเพื่อหาวิธีที่ดีที่สุดในการสกัดใช้ Silk fibroin โดย

- 2.1) การอบแห้ง พบว่าสามารถ cast silk fibroin เป็นก้อนได้ตามต้องการ แต่ scaffold ที่ได้เปราะแตกง่าย และมีผิวหน้าไม่เรียบพอที่จะใช้ทำเป็น dermal scaffold
- 2.2) การ cast โดยการใช้ ultrasonic พบว่าสามารถ cast silk fibroin เป็น semi solid ที่มีเนื้อเนียน และ ผิวหน้าเรียบได้ตามต้องการ แต่ silk scaffold ที่ได้เปื่อยและยุ่ยเกินกว่าที่จะนำมาพัฒนาต่อเป็น dermal scaffold ที่ต้องมีลักษณะเหนียวและยืดหยุ่นได้ดีกว่านี้
- 2.3) การ cast โดยการใช้ ultrasonic ผสมสาร PVA พบว่าสามารถ cast silk fibroin เป็น semi solid ที่มี เนื้อเนียน และผิวหน้าเรียบได้ตามต้องการและ scaffold ที่ได้มีเนื้อใส, เหนียวและยืดหยุ่นมากขึ้น แต่ก็ยัง เปื่อยอยู่
- 2.4) การ Cast protein linkage โดยวิธี Gamma-ray irradiation จากการทดสอบเบื้องต้น silk scaffold มี ลักษณะ ตามต้องการทุกประการ scaffold ที่ได้มีเนื้อใส, เหนียวและยืดหยุ่น สามารถพัฒนาไปเป็น dermal scaffold สำหรับผลิต wound dressing care หรือ skin tissue engineering (STE) ได้ และเนื่อง จากการ crosslink โดยการฉายรังสี Gramma ใน silk เป็นกรรมวิธีใหม่ ทางผู้วิจัยจึงได้ทำการยื่นขอจด สิทธิบัตรกับกรมทรัพย์สินทางปัญญา วันที่ 27 กันยายน 2553 <u>เลขที่คำขอสิทธิบัตร 1001001477</u>

Output จากโครงการวิจัย

1. การตีพิมพ์ระดับนานาชาติ

De novo method of developing silk fibroin hydrogel aim for using as a dermal scaffold by Gamma irradiation. **Sanmano-Hanpanich B**, Oonkhanond B, Srimuninnimit V, Visuthikosol V, Sophon P. Int J App Biomed Eng. 2010 Jul-Dec issue. [Epub ahead of print]. (เอกสารแนบ)

2. ยื่นจดสิทธิบัตร

หัวข้อ "กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี" ยื่นเมื่อ 27 กันยายน 2553 เลขที่คำขอ1001001477 (เอกสารแนบ) De novo method of developing silk fibroin hydrogel aim for using as a dermal scaffold by

Gamma irradiation.

Borisut Sanmano Hanpanich, MD., PhD.1*, Bovornlak Oonkhanond, PhD.2,

Vichai Srimuninnimit, MD, FRCP³, Vivat Visuthikosol, MD., FRCP⁴, Prasert Sophon, PhD.

Assistant Professor of Division of Molecular genetics & Molecular biology in medicine,

Faculty of Medicine, Thammasat University, Pathumthani, Thailand

² Assistant Professor of Department of Chemical Engineering, Faculty of Engineer, Mahidol

University, Nakornprathom, Thailand

³ Associate Professor of Division of Plastic Surgery, Department of Surgery, Faculty of

Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

⁴ Professor of Division of Plastic Surgery, Department of Surgery, Faculty of Medicine,

Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand

* correspondent author

Asst. Prof. Borisut Sanmano HANPANICH, MD., PhD

Faculty of Medicine, Thammasat University, Pathumthani, Thailand 12121

Tel: (662)9269757-9, Fax: (662)9269755

Email: sborisut@yahoo.com

Keywords: tissue engineering, skin substitute, silk fibroin, biocompatibility

Abstract

Tissue engineering of skin is a rapidly developing field in biomedical engineering research. One of the challenges in skin tissue engineering (STE) is molding engineered skin tissue to create a dermal scaffold that could be used in wound care or skin grafting. We developed a novel method for cross-linking a silk fibroin solution by gamma irradiation to form a hydrogel that might serve as a dermal scaffold. The silk fibroin hydrogel was not cytotoxic to human fibroblasts or human keratinocytes, which are analyzed by cytotoxicity and direct contact tests. The mechanical properties of the silk fibroin hydrogel formed by gamma irradiation method were improved mechanical properties to those of a silk fibroin hydrogen created using a freeze-drying method. The silk fibroin hydrogel created using this novel method has potential use as a dermal scaffold in STE.

Introduction

Biomedical engineering is multidisciplinary field that combines medicine, engineering, and biology in the application of natural or synthetic materials to enhance cellular, tissue or organ functions. The field is dynamic and growing, and reports frequently describe new clinical applications arising from tissue-engineering technology, such as gingival autografts in treatment of gingival recession [1-5] and semitendinosus-gracilis grafts in anterior cruciate ligament (ACL) reconstruction [6-7]. One of the earliest and most successful applications of tissue-engineering technology has been the development of skin substitutes for treatment of severe burn patients (8-11); however, many challenges remain.

Native skin tissue is composed of an epidermal layer that lies atop the dermis, with keratinocytes comprising most of the cells in the epidermal layer. Commercially available

skin substitutes reconstruct the two-layer skin model, using allogenic human keratinocytes and fibroblasts embedded in a dermal scaffold, which in many cases is made of animal-source collagen fiber [12]. Table 1 summarizes the components, clinical uses, advantages, and disadvantages of the various commercial skin substitutes that are currently available. In most commercial skin substitutes, allogenic human cells or animal-source materials are used, leading to a risk of delayed-phase graft rejection. To circumvent this problem, keratinocytes and fibroblasts can be cultivated from the patient's own skin; autologous cells in skin substitutes have been shown to be more effective in wound healing than allogenic cells.

The ideal material for a dermal scaffold would be biocompatible in both physical and biological properties; for example, the ideal material should not provoke an immunological reaction. Both natural proteins, such as animal collagen fiber, and synthetic polymers, such as Poly(lactide-co-glycolide) (PLGA), have been tested as components of engineered dermal scaffolds. Silk fibroin is a structural protein in cocoons produced by silkworms (Bombyx mori) that has been tested as a biomaterial in various tissue-engineering applications, including construction of a silk fibroin scaffold to use as a graft in myringoplasty surgery (13). Although silk fibroin has biocompatible properties, molding silk fibroin to form an acceptable dermal scaffold is challenging because it is a natural product that can be degraded.

Here we report a novel method to create a dermal scaffold by cross-linking silk fibroin with Gamma irradiation to produce a hydrogel.

Materials and Methods

1. Culture of human dermal fibroblasts and keratinocytes

Primary human dermal fibroblasts and primary human keratinocytes were isolated from fresh adult human skin specimens in elective caesarean sections at the Thammsat

Chalermprakiat University Hospital. Fibroblasts and keratinocytes were extracted and cultured as previously described [14-15]. Briefly, skin specimens measuring approximately 5 x 1 cm2 were washed with phosphate buffered saline (PBS) containing 1% (v/v) penicillin and streptomycin, minced into small pieces, and incubated at 4 °C overnight in wash solution containing 15 U/ml dispase (Sigma Chemical Co., St. Louis, MO, USA). The following morning, forceps were used to separate the dermal and epidermal layers. The dermal tissue was treated with 80 U/ml collagenase (Sigma Chemical Co., St. Louis, MO, USA) at 37 °C for 1 h to harvest the fibroblasts. Epidermal tissue was subjected to further trypsinization with 0.025% trypsin with 0.38 gm/L with EDTA (Gibco Invitrogen Co., Carlsbad, CA, USA) at 37 °C for 1 h to harvest the keratinocytes.

The harvested dermal fibroblasts were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS) (Sigma Chemical Co., St. Louis, MO, USA), 100 U/ml penicillin, and 100 mg/ml streptomycin in a humidified incubator containing 5% CO₂ in air at 37 °C. The harvested epidermal keratinocytes were maintained in Serum Free Medium (SFM) (Sigma Chemical Co., St. Louis, MO, USA) supplemented with 100 U/ml penicillin, and 100 mg/ml streptomycin in a humidified incubator containing 5% CO₂ in air at 37°C. Second to third passages of fibroblasts and keratinocytes were used in our experiments.

2. Cytotoxicity of incubated silk media solution

Primary fibroblast or keratinocyte cells were plated in 96-well culture plates at an initial density of 1 x 10⁶ cells/ml in DMEM containing 10% FCS (fibroblast culture medium) or in SFM (keratinocyte culture medium), respectively, and incubated in a humidified atmosphere of 95% air and 5% CO₂ at 37°C. Testing solution was prepared by incubation of

sterile 60 gm silk fibroin sponge in 5 ml culture medium for 72 hours. Fibroblasts and keratinocytes were each cultured in testing solution for 48 hours before cell viability assays. As controls, fibroblasts and keratinocytes were incubated in the appropriate culture medium without addition of the testing solution.

For the cell viability assay, culture medium was removed from each well and replaced with 100 μ l of the appropriate culture medium containing 10 μ l MTT (tetrazolium salt 3-[4,5-dimethyl- thiazol-2-yl]-2,5-diphnyltetrazolium bromide). Culture plates were covered with aluminum foil, and cells were incubated in the dark for 2 hours. The MTT solution was then removed and 100 μ l isopropyl alcohol was added to each well. The absorbance at 570 nm was measured using a spectrophotometer (BioTek Instruments, Inc, Winooski, VT, USA). Experiments were performed in triplicate.

3. Direct contact test

The morphology of fibroblast attachment on silk fibroin fiber was observed by scanning electron microscopy (SEM) using a XL30 & EDAX (Philips). To test the efficacy of the fibers as a dermal matrix, fibroblasts were incubated with the silk fibers for 48 hours or for 14 days. After incubation the fibers were deposited onto a coverslip and dried for 2 hours at room temperature. The fibers were gilded and then observed in the thermal field of the electron microscope.

For SEM studies, the attached cells on the silk fiber were rinsed twice in PBS, fixed in a 250-mL solution of 2.5% glutaraldehyde in PBS for 30–60 minutes, and rinsed twice in PBS. Dehydration was performed by slow water replacement by 15-minute incubations in a series of ethanol solutions (30%, 50%, 70%, and 95%). The final dehydration step was performed by incubation in absolute ethanol for 30 minutes. Samples were dried under

vacuum at room temperature. The silk fiber were mounted on stubs and coated in vacuum with gold. Cells were examined with a SEM. [16-17]

4. Scaffold material and molding method

Cocoons from the native Thai silkworm Bombyx mori var. Nangnoi Sisaket-1 (kindly provided by The Queen Sirikit Department of Sericulture, Thailand) were degummed to remove the glue-like coating of sericin on the fibroin fibers, using the method described by Meesilpa et al. [18]

Silk fibroin solution was prepared as previously described by Kojthung et al. (2008) [19]. Briefly, the extracted silk fibroins (degummed cocoons) were dissolved in CaCl₂.2H₂O: C₂H₅OH: H₂O in a molar ratio of 1: 2: 8 at 80°C. This solution was dialyzed against distilled water using cellulose tubular membranes with a MWCO range of 12,000–14,000 (CelluSep T4; Uptima Interchim, Montluçon, France) for 2 days to remove salts. The final concentration of silk fibroin aqueous solution was 2.5% (w/v).

Silk gelation was accomplished by crosslinking between silk fibroin and PVA contents by irradiation with 40 and 60 kGy using a Gammacell 220 Excel irradiator (MDS Nordian, Toronto, Canada) kindly provided by the Thailand Institute of Nuclear Technology. The ratio of silk fibroin to PVA was 1:0.1 (i.e., 10% PVA). Sodium chloride (75-150 μm) as porogens were added into the silk fibroin-PVA solution by varying in the ratios of 1:0.03 (3% NaCl), 1:0.05 (5% NaCl), 1:0.07 (7% NaCl), and no porogens. Mechanical properties were tested by pulling the fibers with bare hands.

Results

Cytotoxicity tests

The MTT assay showed that 48-hour incubation in silk media solutions had no toxic effects on human fibroblasts or human keratinocytes. Assay results are presented in Figure 1 (Figure 1: Cytotoxicity test by MTT assay of silk fibroin fiber on fibroblasts survival).

Direct contact test

The direct contact test showed formation of fibroblast colonies on silk fibroin at 48 hours. After a 14-day incubation in the presence of silk fibroin fibers, the fibroblasts had migrated and covered the entire silk fiber area. (Figure 2: Direct contact test of fibroblasts on silk fiber observing by SEM at 48 hours and 14 days after incubation).

Cross-linking by gamma ray irradiation

To improve the chemical and physical properties of the silk dermal scaffold, we added PVA and cross-linked the fibers by gamma irradiation. Tensile strength of the resulting silk hydrogel was assessed by stretching the fibers with bare hands. The hydrogel showed significant improvement in mechanical properties, compared to silk dermal scaffolds created without gamma irradiation and cross-linking. [Figure4: Mechanical stretching of gamma ray cross-link silk hydrogel].

Discussion

The traditional method of drying silk fibroin without cross-linking produces a sponge that is brittle and fragile. In earlier studies we attempted to create a sponge by freeze-drying silk fibroin fiber, but freeze-drying resulted in a scaffold that did not interact with fibroblasts as effectively as native dermal tissue nor produce a smooth surface for attachment of

keratinocytes (Figure 3: Histology of silk fiber culture with fibroblasts and seeding on top with keratinocyte).

We tried to improve mechanical properties by adding PVA and creating as a hydrogel form instead of sponge form. Hydrogels are hydrophilic polymeric networks that are capable of absorbing and retaining large amounts of water; consequently, they are used as surgical sealants in wound dressings and as STE dermal scaffolds [20]. As wound dressings hydrogels have a improved rate of epithelization and dermal regeneration compared to other components [19, 21].

Several methods can be used for cross-linking proteins in the creation of hydrogels [22]. We describe a novel method for cross-linking a silk fibroin solution that improves both the mechanical and chemical properties of the resulting product [23-24]. Addition of PVA to the silk fibroin solution and subsequent gamma irradiation of the solution caused the silk fibroin solution to be cast as a hydrogel with improved mechanical properties. In future studies we hope to use both in vitro and in vivo models to characterize histological, immunological, and ultrastructural features of our silk fibroin hydrogel as a dermal scaffold for dermal wound care or skin grafting.

Acknowledgments

We thank Suvoraporn Saelim for excellent technical assistance, Dr. Yuthadej Thaweekul for surgical skin specimens. Our work has been supported by grant number MRG4980045 from the Thailand Research Fund (TRF) and Thammasat University (TU) for Assist.Prof.Dr. Borisut Sanmano Hanpanich as a recipient.

References

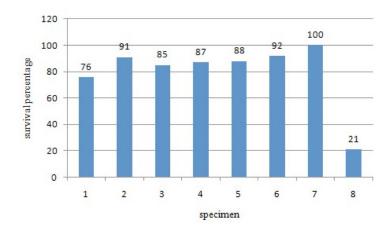
- [1] A two-stage approach using an autogenous masticatory mucosal graft and an autogenous connective tissue graft to treat gingival recession: a case report. Park JB. J Int Acad Periodontol. 2010 Apr;12(2):45-8.
- [2] Acellular dermal matrix seeded with autologous gingival fibroblasts for the treatment of gingival recession: a proof-of-concept study. Jhaveri HM, Chavan MS, Tomar GB, Deshmukh VL, Wani MR, Miller PD Jr. J Periodontol. 2010 Apr;81(4):616-25.
- [3] A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, Wada I, Nakamura T, Omori K. Biomaterials. 2010 Jun;31(18):4855-63. Epub 2010 Mar 26.
- [4] Acellular dermal matrix in soft tissue reconstruction prior to bone grafting. A case report.

 Ruiz-Magaz V, Hernández-Alfaro F, Díaz-Carandell A, Biosca-Gómez-de-Tejada MJ.Med

 Oral Patol Oral Cir Bucal. 2010 Jan 1;15(1):e61-4
- [5] Comparison of autologous full-thickness gingiva and skin substitutes for wound healing. Vriens AP, Waaijman T, van den Hoogenband HM, de Boer EM, Scheper RJ, Gibbs S. Cell Transplant. 2008;17(10-11):1199-209
- [6] Magnetic Resonance Imaging Evaluation of the Integration and Maturation of Semitendinosus-Gracilis Graft in Anterior Cruciate Ligament Reconstruction Using Autologous Platelet Concentrate. Figueroa D, Melean P, Calvo R, Vaisman A, Zilleruelo N, Figueroa F, Villalón I. Arthroscopy. 2010 Aug 26. [Epub ahead of print]
- [7] Cost analysis of outpatient anterior cruciate ligament reconstruction: autograft versus allograft. Nagda SH, Altobelli GG, Bowdry KA, Brewster CE, Lombardo SJ. Clin Orthop

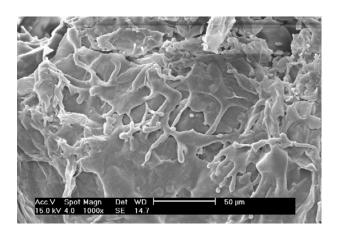
- Relat Res. 2010 May;468(5):1418-22. Epub 2009 Dec 18.
- [8] Cutaneous burns treated with hydrogel (Burnshield) and a semipermeable adhesive film.

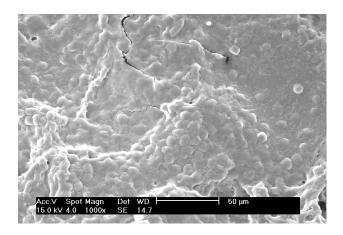
 Osti E. Arch Surg. 2006 Jan;141(1):39-42.
- [9] Update on tissue-engineered biological dressings. Ehrenreich M, Ruszczak Z. Tissue Eng. 2006 Sep;12(9):2407-24. Review.
- [10] Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Macri L, Clark RA. Skin Pharmacol Physiol. 2009;22(2):83-93. Epub 2009 Feb 4. Review.
- [11] Insights into acinetobacter war-wound infections, biofilms, and control. Dallo SF, Weitao T. Adv Skin Wound Care. 2010 Apr;23(4):169-74. Review.
- [12] Update on tissue-engineered biological dressings. Ehrenreich M, Ruszczak Z. Tissue Eng. 2006 Sep;12(9):2407-24. Review
- [13] Grafts in myringoplasty: utilizing a silk fibroin scaffold as a novel device. Levin B, Rajkhowa R, Redmond SL, Atlas MD. Expert Rev Med Devices. 2009 Nov;6(6):653-64. Review.
- [14] Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. Sanmano B, Mizoguchi M, Suga Y, Ikeda S, Ogawa H. J Dermatol Sci. 2005 Jan;37(1):29-39. Epub 2004 Nov 30.
- [15] Organotypic culture and surface plantation using umbilical cord epithelial cells: morphogenesis and expression of differentiation markers mimicking cutaneous epidermis. Mizoguchi M, Suga Y, Sanmano B, Ikeda S, Ogawa H. J Dermatol Sci. 2004 Sep;35(3): 199-206.
- [16] Chemical synthesis, characterization, and biocompatibility study of hydroxyapatite/ chitosan phosphate nanocomposite for bone tissue engineering applications. Pramanik N,


- Mishra D, Banerjee I, Maiti TK, Bhargava P, Pramanik P. Int J Biomater. 2009;2009:512417. Epub 2009 Jan 25.
- [17] In vitro osteoclastogenesis on textile chitosan scaffold. Heinemann C, Heinemann S,
 Bernhardt A, Lode A, Worch H, Hanke T. Eur Cell Mater. 2010 Feb 26;19:96-106
 [18] Meesilpa P, Nuipirom W, Nakaprasert D, Sungsonthiporn S, Ravinu B, Sudatis B.
 Methodology to Produce Silk Fibroin Powder. The Sericulture Research Institute, Annual
 Research Reports, 2002; 165-172.
- [19] Kojthung A, Meesilpa P, Sudatis B, Treeratanapiboon L, Udomsangpetch R,
 Oonkhanond B. Effects of gamma radiation on biodegradation of *Bombyx mori* silk fibroin.
 International Biodeterioration & Biodegradation, 2008; 62; 487-490.
- [20] Occlusive dressings and the healing of standardized abrasions. Beam JW. J Athl Train. 2008 Oct-Dec;43(6):600-7.
- [21] Soft tissue augmentation using silk gels: an in vitro and in vivo study. Etienne O, Schneider A, Kluge JA, Bellemin-Laponnaz C, Polidori C, Leisk GG, Kaplan DL, Garlick JA, Egles C. J Periodontol. 2009 Nov;80(11):1852-8.
- [22] Cutaneous burns treated with hydrogel (Burnshield) and a semipermeable adhesive film.

 Osti E. Arch Surg. 2006 Jan;141(1):39-42
- [23] Hydrogels cross-linked by native chemical ligation. Hu BH, Su J, Messersmith PB. Biomacromolecules. 2009 Aug 10;10(8):2194-200.
- [24] Templating hydrogels. Texter J. Colloid Polym Sci. 2009 Mar;287(3):313-321. Epub 2009 Jan 20

Table, picture


(Attached file: Table 1)


Figure 1: Cytotoxicity test by MTT assay of silk fibroin fiber on fibroblasts survival

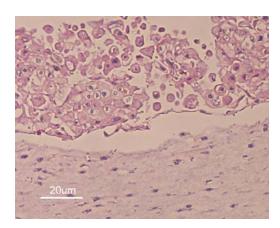

Specimen number 1-8 are silk fibroin fiber varying degumming time. 1: degum for 0 minute, 2: degum for 20 minutes, 3: degum for 40 minutes, 4: degum for 60 minutes, 5: degum for 80 minutes, 6: degum for 100 minutes, 7: positive control, 8: negative control

Figure2: Direct contact test of fibroblasts on silk fiber observing by SEM at 48 hours and 14 days after incubation



Figure3: Histology of silk fiber culture with fibroblasts and seeding on top with keratinocyte

Figure4: Mechanical stretching of Gamma ray cross-link silk hydrogel

Substitutes
Skin
Commercial
e 1
Tabl

Product name	Epidermal Component	Dermal Component	Advantages	Disadvantages
(Company)				
Epicel (Genzyme)	Cultured epidermal autograft None	None	No rejection; large area	3 week delay and fragile
Alloderm Corp)	None	Processed cadaver Allograft	Reduced antigenicity good for burns	Rejection and possible for biological contamination
Dermagraft (Advanced Biohealing Inc.)	None	Allogeneic neonatal fibroblasts on 3D scaffold	Rapid proliferation of fibroblasts	Rejection and possible for biological contamination
Integra (Johnson & Johnson)	Synthetic polymer	Bovine type I collagen and glycosaminoglycans	Allogenic fibroblast ingrowth and autologous epidermis	Rejection and possible for biological contamination
Transcytet (Advanced Biohealing Inc.)	Thin silicone layer	Neonatal allogeneic fibroblasts on nylon mesh	Dermal fibroblasts secrete collagen, glycosaminoglycans & growth factors	Rejection and possible for biological contamination nylon mesh is non-biodegradable
Apligraf (Organogenesis)	Human allogeneic neonatal keratinocytes	Human allogeneic neonatal Graft take comparable to fibroblasts in bovine collagen autograft	Graft take comparable to 1 autograft	Rejection and possible for biological contamination and repeated applications

ผาเนา

สำหรับเจ้าหน้าที่						
	วันรับคำขอ 2 7 11. ป. 2003	เลขที่คำขอ				
คำขอรับสิทธิบัตร/อนุสิทธิบัตร	วันยื่นคำขอ	1001001477				
🗹 การประดิษฐ์	สัญลักษณ์จำแนกการประดิษฐ์ระหว่างประเทศ					
การออกแบบผลิตภัณฑ์						
<u>อนุสิทธิบัตร</u>	ใช้กับแบบผลิตภัณฑ์					
	ประเภทผลิตภัณฑ์					
ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้	วันประกาศโฆษณา	เลขที่ประกาศโฆษณา				
ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร		4-2				
พ.ศ.2522 แก้ไขเพิ่มเติมโคยพระราชบัญญัติสิทธิบัตร (ฉบับที่2) พ.ศ.2535 และพระราชบัญญัติสิทธิบัตร (ฉบับที่3) พ.ศ.2542	วันออกสิทธิบัตร/อนุสิทธิบัตร	เลขที่สิทธิบัตร/อนุสิทธิบัตร				
	ลายมือชื่อเจ้าหน้าที่					
1.ชื่อที่แสดงถึงการประดิษฐ์/การออกแบบผลิตภัณฑ์						
กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี						
2.คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิตภัณฑ์อย่างเคียวกันและเป็นคำขอลำดับที่						
ในจำนวน คำขอ ที่ขึ้นในคราวเคียวกัน						
3.ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร และที่อยู่ (เลขที่ ถนน ประเทศ) 3 1 สัญชาติ ไทย						
มหาวิทยาลัยธรรมศาสตร์						
99 หมู่ 18 ถนนพหลโยธิน ตำบลคลองหนึ่ง อำเภอคลองหลวง 3.3 โครสาร 02-5642887						
จังหวัดปทุมธานี 12120 ประเทศไทย (มีต่อหน้า 3) 3.4 อีเมล์ benjamas_tubi@hotmail.com						
4.สิทธิในการขอรับสิทธิบัตร/อนุสิทธิบัตร ผู้ประคิษฐ์/ผู้ออกแบบ ผู้รับโอนผู้ขอรับสิทธิโดยเหตุอื่น						
wadi, da ana and lander	6 1 ตัวแทนเสขที่					
5.คัวแทน (ถ้ามี)/ที่อยู่ (เลขที่ ถนน จังหวัค รหัสไปรษณีย์)	5.2 โทรศัพท์	1				
ร.คัวแทน (ถ้าม)/ทอยู (เลขท ถนน จงหวด รหส เบร ยน)/ ขนะเป็นเป็นสิ่นสารสารสารสารสารสารสารสารสารสารสารสารสารส						
	5.4 อีเมล์	5.4 อีเมล์				
6.ผู้ประคิษฐ์/ผู้ออกแบบผลิตภัณฑ์ และที่อยู่ (เลขที่ ถนน ประเทศ)						
ผศ.พญ.คร.บริสุทธิ์ แสนมโน หาญพานิช ภาควิชาสถานวิทยาศาส	คร์พรีคลินิก คณะแพทยศาสตร์ มหา	วิทยาลัยธรรมศาสตร์				
ผศ.คร.บวรลักษณ์ อุนคานนท์ ภาควิชาวิศวกรรมเคมี คณะวิศวกรร	มศาสตร์ มหาวิทยาลัยมหิคล					
99 หมู่ 18 ถนนพหลโยธิน ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120 ประเทศไทย						
7.คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิม						
ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร ขอให้ถือว่าได้ยื่นกำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้ ในวันเดียวกับกำขอรับสิทธิบัตร						
เลขที่ วันยื่น เพราะคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิมเพราะ						
🗌 อำขอเดิมมีการประดิษฐ์หลายอย่าง 🔲 ถูกคัดค้านเนื่องจากผู้ขอไม่มีสิทธิ 🔲 ขอเปลี่ยนแปลงประเภทของสิทธิ						

<u>หมายเหตุ</u> ในกรณีที่ไม่อาจระบุรายละเอียดได้ครบถ้วน ให้จัดทำเป็นเอกสารแนบท้ายแบบพิมพ์นี้โดยระบุหมายเล[่]ขกำกับข้อและหัวข้อที่แสดงรายละเอียด เพิ่มเติมดังกล่าวด้วย

8.การขึ้นคำขอนอกราชอาณาจักร					o /o	
วันขึ้นคำขอ	เลขที่ค่	ำขอ	ประเทศ		ลักษณ์จำแนกการ เษฐ์ระหว่างประเทศ	สถานะคำขอ
8.1						
8.2						
8.3						
8.4 ผู้ขอรับสิทธิบัตร/อนุสิทธิบัต ได้ยื่นเอกสารหลักฐานา	พร้อมคำขอ	งนี้ [🗌 ขอยื่นเอกสารหลั	กฐานหลัง	จากวันยื่นคำขอนี้	
	อกแบบผลิ	ตภัณฑ์ ผู้ขอ	รับสิทธิบัตร/อนุสิทธิ์	บัตร ได้แน	สดงการประดิษฐ์ที่หน่ว	ยงานของรัฐเป็นผู้จัด
วันแสคง	วันเป็	โคงานแสคง			ผู้จัด	
10.การประคิษฐ์เกี่ยวกับจุลชีพ						
10.1 เลขทะเบียนฝากเก็บ		10.2 วันท์			10.3 สถาบันฝากเก็บ	
11.ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร ข นี้ที่จัดทำเป็นภาษไทยภายใน 90 วัก	ขอยื่นเอกส น บับจากวั		ประเทศก่อนในวันที่ ้โดยขอยื่นเป็นภาษา	ขึ้นคำขอนี้	้ และจะจัดขึ้นคำขอรับส์	ริทธิบัตร/อนุสิทธิบัต
่ อังกฤษ	าส	rae	ารมัน 🔲	ญี่ปุ่น	🗌 อื่น ๆ	
12.ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร	ขอให้อธิบ	คีประกาศโร	เษณาคำขอรับสิทธิบั	คร หรือรั้ง	บจคทะเบียน และประก	าศโฆษณาอนุ
สิทธิบัตรนี้หลังจากวันที่	เคือ		W.M.			
ผู้ขอรับสิทธิบัตร/อนุสิทธิบัต	รขอให้ใช้	รูปเขียนหมา	ยเลข	ในการ	ประกาศโฆษณา	
13.คำขอรับสิทธิบัคร/อนุสิทธิบัคร				ารประกอ	บด้วย	
ก.แบบพิมพ์คำขอ	3	หน้า	101	าสารแสค	งสิทธิในการขอรับสิทธิ	บัคร/อนุสิทธิบัคร
ข.รายละเอียดการประดิษฐ์			□ หน่	เงสือรับรถ	องการแสดงการประดิษ	ฐ์/การออกแบบ
หรือคำพรรณนาแบบผลิตภัณ	19ñ 4	หน้า	1	หลิตภัณฑ์		
ค.ข้อถือสิทธิ	2	หน้า	Пил	เงสือมอบ	อำนาจ	
ง.รูปเขียน 2 รูป	1	หน้า			ะเอียคเกี่ยวกับจุลชีพ	
จ.ภาพแสคงแบบผลิตภัณฑ์			ខេ <u>រ</u>	าสารการข	อนับวันยื่นคำขอในต่าง	ประเทศเป็นวันยื่น
🗌 รูปเขียน รูป		หน้า			ระเทศไทย	
🗌 ภาพถ่าย รูป		หน้า	Let	าสารขอเป	ลี่ยนแปลงประเภทของ	สิทธิ
ฉ.บทสรุปการประดิษฐ์	1	หน้า	Lef	เสารอื่น ๆ		
15.ข้าพเจ้าขอรับรองว่า						
🗹 การประคิษฐ์นี้ไม่เคยยื่นข	อรับสิทธิบั	ัคร/อนุสิทธิ	บัตรมาก่อน			

16.ลายมือชื่อ (🗹 ผู้ขอรับสิทธิบ				407		
EMPROVING I	9	-			22	
	and I					
(ศาสตราจสร	ช้อง.สุรพ	ล นิติใกรพร	งน์) (ศ	าสตราจาร	ย์ คร.สวัสคิ์ ตันตระรัต	น์)

<u>หมายเหตุ</u> บุกกลใดขึ้นขอรับสิทธิบัตรการประคิษฐ์หรือการออกแบบผลิตภัณฑ์ หรืออนุสิทธิบัตร โดยการแสดงข้อความอันเป็นเท็จแก่พนักงานเจ้าหน้าที่ เพื่อให้ได้ไปซึ่งสิทธิบัตรหรืออนุสิทธิบัตร ต้องระวางโทษจำคุกไม่เกินหกเคือน หรือปรับไม่เกินห้าพันบาท หรือทั้งจำทั้งปรับ

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)
ที่อยู่ ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์ เลขที่ 979/17-21 ถนนพหลโยธิน แขวงสามเสนใน
เขตพญาไท กรุงเทพมหานคร 10400

หนังสือสัญญาโอนสิทธิขอรับสิทธิบัตร

ทำที่ หน่วยบ่มเพาะวิสาหกิจ มหาวิทยาลัยธรรมศาสตร์

วันที่ 20 กันยายน พ.ศ. 2553

สัญญาระหว่าง ผู้โอน คือ ผส.พญ.คร.บริสุทธิ์ แสนมโน หาญพานิช ที่อยู่ ภาควิชา สถานวิทยาสาสตร์พรีคลินิก คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ร่วมกับ ผส.คร.บวรลักษณ์ อุนคานนท์ ภาควิชาวิสวกรรมเคมี คณะวิสวกรรมศาสตร์ มหาวิทยาลัยมหิคล และผู้รับโอน คือ มหาวิทยาลัยธรรมสาสตร์ โดย สาสตราจารย์ คร.สุรพล นิติใกรพจน์ ตำแหน่ง อธิการบดี และสำนักงานกองทุนสนับสนุนการวิจัย โดย สาสตราจารย์ คร.สวัสดิ์ ตันตระรัตน์ ตำแหน่งผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย

โดยสัญญานี้ ผู้โอนซึ่งเป็นผู้ประดิษฐ์ "กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจาก สารสกัดใช่ใหมโดยวิธีฉายรังสี" ขอโอนสิทธิในการประดิษฐ์ดังกล่าว ซึ่งรวมถึงสิทธิขอรับ สิทธิบัตรและสิทธิอื่นๆ ที่เกี่ยวข้อง ให้แก่ผู้รับโอนแต่เพียงผู้เดียว และให้ผู้โอนมีสิทธิและหน้าที่ ตามระเบียบมหาวิทยาลัยธรรมศาสตร์ ที่เกี่ยวกับงานด้านทรัพย์สินทางปัญญาของมหาวิทยาลัย ซึ่งมหาวิทยาลัยจะออกระเบียบดังกล่าวนี้ต่อไป

เพื่อเป็นพยานหลักฐานในการนี้ ผู้โอนและผู้รับโอนได้ลงลายมือชื่อไว้เป็นสำคัญต่อหน้า พยาน

องชื่อ อาร์ รี. และและ	ลงชื่อ ขา 🔎 ผู้โอน
(ผศ.พญ.คร.บริสุทธิ์ แสนมโน หาญพานิช)	
ลงชื่อผู้รับโอ	น ลงชื่อผู้รับโอน
(ศาสตราจารย์คร.สุรพล นิติใกรพจน์)	(ศาสตราจารย์ คร.สวัสดิ์ ตันตระรัตน์)
11420	ลงชื่อ ภากุภ สมใหม พยาน
(รองศาสตราจารย์ สมชาย วิริยะยุทธกร)	(นางสาวอรอุมา ส้มไทย)

รายละเอียคของการประคิษฐ์ ชื่อที่แสคงถึงการประคิษฐ์ กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี

1. ลักษณะและความมุ่งหมายของการประดิษฐ์

กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี ตามการ ประคิษฐ์นี้ เป็นการนำสารสกัดจากใยไหมที่เป็นสารสกัดจากธรรมชาติ มาสกัดเอาส่วนของเซอริ ซิน (sericin) ออก จากนั้นผสมกับสารก่อรูปเจลและสารเพิ่มความพรุน ทำให้โครงร่างดังกล่าวอยู่ ในรูปของเจล (Hydrogel) โดยวิธีฉายรังสี จะได้โครงร่างที่มีลักษณะเป็นเจลใส

การประดิษฐ์นี้ มีวัตถุประสงค์เพื่อเตรียมเป็นโครงร่างเนื้อเยื่อในส่วนของผิวหนังชั้นหนัง แท้ (Artificial dermal scaffold) สำหรับใช้เป็นโครงร่างให้เซลล์ไฟโบรบลาสต์ (fibroblast) ยึดเกาะ ซึ่งปกติเซลล์นี้จะลอยตัวกระจายอยู่ในของเหลว (dermal matrix) ทำให้เกิดการสร้างเซลล์ผิวใหม่ โครงร่างนี้เป็นโครงร่างที่สร้างจากสารธรรมชาติ จึงไม่เป็นอันตรายต่อเซลล์ และเป็นโครงสร้างที่มี ความยืดหยุ่นใกล้เคียงกับผิวหนังธรรมชาติ สามารถพัฒนาต่อยอดไปเป็นผิวหนังเทียม (Tissue engineering skin) หรือแผ่นปิดทำแผล (Wound dressing) ได้

2. สาขาวิทยาการที่เกี่ยวข้องกับการประดิษฐ์

การประคิษฐ์นี้อยู่ในสาขาเคมีและการแพทย์ที่เกี่ยวข้องกับกรรมวิธีการเตรียมโครงร่าง สำหรับเนื้อเยื่อจากสารสกัดใชไหมโคยวีธีฉายรังสี

3. ภูมิหลังของศิลปะหรือวิทยาการที่เกี่ยวข้อง

ปัจจุบันมีการทดลองวิจัยเกี่ยวกับการเลี้ยงเซลล์ผิวหนังด้วยวิธีการต่างๆ หลายวิธี ได้แก่ การเลี้ยงเซลล์ผิวหนังในถาดทดลอง (monocultured layer skin cells : keratinocytes, fibroblasts), การใช้ผิวหนังจริงมาสังเคราะห์เอาเซลล์ออก (DED [de-epidermis dermis]), การใช้เส้นใยสกัดจากสัตว์ (animal source collagen constructed dermal scaffold) , การเลี้ยงเซลล์ผิวหนังมนุษย์คนอื่นบนเส้นใยโครงร่าง (allogenic human engineered skin) เพื่อเพิ่มความคงทนของผิวสังเคราะห์, การผ ลิตผิวสังเคราะหเพื่อการทดสอบยา (HSE for drug testing model) และการผลิตผิวสังเคราะห์เพื่อการปลูกถ่ายหรือรักษาแผล (HSE for grafting, wound dressing) เพื่อใช้เป็นกรณีศึกษาในการวิเคราะห์ วินิจฉัย และบำบัดโรคที่เกิดขึ้นกับผิวหนัง

20

5

10

15

25

หน้า 2 ของจำนวน 4 หน้า

การสร้างผิวหนังสังเคราะห์ (Reconstructed skin tissue) ประกอบด้วยโครงสร้างชั้นหนัง กำพร้า (Epidermis) และชั้นหนังแท้ (Dermis) โดยโครงสร้างของชั้นหนังกำพร้าจะประกอบด้วย เซลล์ keratinocyte ทับซ้อนกันอยู่ เป็นเซลล์ผิวด้านนอก ทำหน้าที่ปกป้องไม่ให้สิ่งสกปรกเข้าสู่ ร่างกาย ส่วนโครงสร้างของชั้นหนังแท้ประกอบไปด้วยเซลล์ fibroblast ผึ้งตัวอยู่ระหว่างโครงสร้าง ผิว (dermal scaffold) ธรรมชาติ เช่น คอลลาเจนและอิลาสติน แต่สำหรับผิวหนังเทียมโครงสร้างผิว (dermal scaffold) จะเป็นวัสดุที่มาจากธรรมชาติ (nature product) หรือสังเคราะห์ (syntheic) ขึ้น หรือเป็นสารผสม (combined) ก็ได้ เช่น silk fibroin ทำหน้าที่ให้ความยืดหยุ่นแก่ผิว แต่ยังไม่พบ รายงานการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใชไหมโดยการฉายรังสี ซึ่งโครงร่างดังกล่าว เป็นโครงร่างที่ถูกสังเคราะห์ (Artificial dermal scaffold) ขึ้นมา เพื่อให้เซลล์ใฟโบรบลาสต์ (fibroblast) มายึดเกาะ แทนคอลลาเจนหรือเส้นใยอิลาสติน (elastin fiber) ที่พบอยู่ในชั้นหนังแท้ ของผิวหนังธรรมชาติ

4. การเปิดเผยการประดิษฐ์โดยสมบูรณ์

5

10

15

20

25

สำหรับกรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมด้วยวิธีฉายรังสี ตาม การประคิษฐ์นี้ ประกอบด้วย 4 ขั้นตอนใหญ่ๆ คือ

1. การคัดเลือกใยไหม (Selection)

การคัดเลือกใชไหมสำหรับการประดิษฐ์นี้ จะเลือกใช้ไขไหมไทยสายพันธุ์นางน้อยศรี
สะเกษ-1 (Native Thai silkworm cocoons, Bombyx mori var. Nangnoi Sisaket-1) ซึ่งเป็น
สายพันธุ์ที่ได้รับการสนับสนุนจากรมหม่อนไหมแห่งชาติเฉลิมพระเกียรติสมเด็จพระนางเจ้าสิริกิติ์
พระบรมราชินีนาถ โดยคัดเลือกใชไหมจากรังไหมที่มีลักษณะสมบูรณ์ คือ มีลักษณะ
หัวป้านท้ายแหลม มีสีเหลืองเข้ม น้ำหนักรังไหมสดต่อรังโดยเฉลี่ยประมาณ 1 กรัม
และน้ำหนักเปลือกรังไหมสดโดยเฉลี่ยประมาณ 13 เซนติกรัม จากนั้นนำใชไหมที่ได้ไปตัดเป็นชิ้น
เล็กๆ ให้มีขนาดประมาณ 1×1 เซนติเมตร เพื่อเพิ่มพื้นที่ให้ใชไหมได้สัมผัสกับสารละลายและเพิ่ม
ประสิทธิภาพในการลอกกาวไหมเซอริซินออก

2. การลอกกาวไหม (Degumming)

นำใชไหมที่ตัดเป็นชิ้นเล็กๆ มาทำการลอกกาวไหมเพื่อกำจัดสารเซอริซิน (sericin) ออก โดยนำใชไหมมาต้มกับสารละลายโซเดียมการ์บอเนต (Na₂CO₃) ที่ความเข้มข้น 0.5% (น้ำหนัก/ปริมาตร) ในอัตราส่วนโดยมวล 1 : 50 ที่อุณหภูมิประมาณ 80-95 องศาเซลเซียส เป็นเวลา 45 นาที จากนั้นนำมากรองแล้วล้างด้วยน้ำกลั่นหลายๆ ครั้ง เพื่อชะล้างสารเซอริซินและโซเดียม คาร์บอเนตออกจากใชไหม จะได้ใชไหมที่มีลักษณะเป็นเส้นใช ซึ่งเรียกว่า ใชไหมไฟโบรอิน

หน้า 3 ของจำนวน 4 หน้า

(Fibroin fiber) จากนั้นนำใชไหมไฟโบรอินไปทำให้แห้ง โดยนำไปอบที่อุณหภูมิ 80 องศาเซลเซียส จะได้เส้นใชไหมไฟโบรอินที่มีลักษณะแห้ง พร้อมที่จะนำไปใช้สำหรับเตรียมเยื่อโครงร่างต่อไป

3. การเครียมสารละลายใหมใฟโบรอิน (Preparation of fibroin solution)

นำใชไหมไฟโบรอิน มาใส่ลงไปในคัวทำละลายที่เป็นสารละลายผสมของแคลเซียม คลอไรค์ไดไฮโครท เอทานอล (ความเข้มข้น 90-95 %) และน้ำ ในอัตราส่วนโดยมวล 1 : 2 : 8 ตามลำดับ แล้ววางตั้งทิ้งไว้ที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 20 นาที จากนั้นนำสารละลายที่ ได้มาใส่ในถุงเซลลูโลส เพื่อแยกเอาเกลือออกจากสารละลาย โดยอาศัยหลักการแพร่ผ่านเยื่อเลือก ผ่าน (dialysis) โดยตั้งทิ้งไว้ในน้ำกลั่น เป็นเวลา 2 วัน จะได้สารละลายไหมไฟโบรอิน (Fibroin solution) เข้มข้น ที่มีลักษณะใส มีความเข้มข้น 2.5 % (น้ำหนัก/ปริมาตร)

4. การทำโครงร่างสำหรับเนื้อเยื่อ

5

10

15

20

25

30

นำสารละลายใหมใฟโบรอิน (Fibroin solution) เข้มข้น มาเตรียมให้อยู่ในรูปเจล โดย นำมาผสมกับสารก่อรูปเจลและสารเพิ่มความพรุนของเจล ตามสัดส่วนที่ระบุไว้ โดยการเติมสาร เพิ่มความพรุนลงไปในเจล จะทำให้เจลมีขนาดของรูพรุนอยู่ในช่วง 50-250 ไมครอน ซึ่งการขึ้นรูป เจลนั้นจะมีการเชื่อมต่อกัน (cross-link) ให้อยู่ในรูปของเจลด้วยการฉายรังสี ระยะเวลาการฉายรังสี ขึ้นอยู่กับความเข้มของรังสี ซึ่งความเข้มข้นของรังสีที่เหมาะสม คือ 40-60 กิโลเกรย์ จะทำให้โครง ร่างของเจลมีลักษณะใส

โครงร่างสำหรับเนื้อเยื่อจากสารสกัดใชไหม ตามการประดิษฐ์นี้ มีลักษณะเป็นโครง ร่างที่มีลักษณะใส อยู่ในรูปของเจล ใช้เป็นโครงร่างสำหรับให้เซลล์ไฟโบบลาสต์ (Fibroblast) ซึ่ง เป็นเซลล์ที่อยู่บริเวณผิวหนัง สามารถยึดเกาะได้ โดยโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใชไหมนี้ จะประกอบไปด้วย

- สารสกัดจากใยไหม ที่มีความเข้มข้น 1-30 % (น้ำหนัก/ปริมาตร)
- สารก่อรูปเจล ที่มีความเข้มข้น 1-50 % (น้ำหนัก/ปริมาตร)โดยสารก่อรูปเจล ได้แก่ โพลีไวนิลแอลกอฮอล์ (PVA), โพลีไวนิลบิวไทรัล (PVB), เพกติน (pectin), เจลลาติน (gelatin), คาร์โบพอล (carbopol), โพโลซาเมอร์ (poloxamer), เมทิลเซลลูโลส (methylcellulose) โดยจะ เลือกใช้ตัวใดตัวหนึ่งหรือใช้เป็นสารผสมก็ได้ ซึ่งสารก่อรูปเจลที่เหมาะสม คือ โพลีไวนิล แอลกอฮอล์
- สารเพิ่มความพรุนของเจล ที่มีความเข้มข้น 1-15% (น้ำหนัก/ปริมาตร) โดยสารเพิ่ม ความพรุนของเจล ได้แก่ โซเดียมคลอไรด์, โพแทสเซียมคลอไรด์, แมกนีเซียมคลอไรด์ โดยจะ เลือกใช้ตัวใดตัวหนึ่งหรือใช้เป็นสารผสมก็ได้ ซึ่งสารเพิ่มความพรุนที่เหมาะสม คือ โซเดียมคลอ ไรด์

หน้า 4 ของจำนวน 4 หน้า

โดยในระหว่างที่มีการผสมของสารแต่ละชนิด จะมีการฉายรังสีที่มีความเข้มของรังสีอยู่ใน ช่วง 20-200 กิโลเกรย์ โดยรังสีที่ใช้ ได้แก่ รังสีแกมม่า (gamma ray), รังสีอัลตราไวโอเลต (uv), รังสี เอ็กซ์ (X-ray), รังสีแอลฟา, รังสีเบต้า, รังสีนิวตรอน โดยสามารถเลือกใช้ตัวใดตัวหนึ่ง

การนำโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยใหม่ไปใช้ โดยนำไปใช้เป็นโครงร่าง ผิวหนังสังเคราะห์ (reconstructed skin equivalent) เพื่อให้เซลล์ที่อยู่ใต้ผิวหนัง เช่น เซลล์ ไฟโบรบลาสต์ (fibroblast) ยึดเกาะได้ และพัฒนาโครงสร้างไปเป็นผิวหนังชั้นหนังแท้ (Dermal scaffold) หรือผิวหนังเทียม (Tissue engineering skin) นอกจากนี้ยังสามารถพัฒนาต่อเป็นผ้าปิดทำ แผล (Wound dressing) ได้

คำอธิบายรูปเขียนโคยย่อ (ถ้ามีรูปเขียน)

10

5

รูปที่ 1 แสดงภาพตัดขวางโครงสร้างของผิวหนังธรรมชาติ รูปที่ 2 แสดงภาพตัดขวางโครงสร้างของผิวหนังสังเคราะห์

6. วิธีการในการประคิษฐ์ที่ดีที่สุด

วิธีการในการประดิษฐ์ที่ดีที่สุดได้บรรยายไว้ในหัวข้อการเปิดเผยการประดิษฐ์โดยสมบูรณ์ แล้ว

หน้า 1 ของจำนวน 2 หน้า

ข้อถือสิทธิ

 กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยใหมโดยวิธีฉายรังสี ตามการ ประคิษฐ์นี้ ประกอบด้วย 4 ขั้นตอน คือ

1.1 การคัดเลือกใหม (Selection)

5

10

15

20

25

การคัดเลือกใหม จะเลือกใช้ใยใหมไทยสายพันธุ์นางน้อยศรีสะเกษ-1 (Native Thai silkworm cocoons, Bombyx mori var. Nangnoi Sisaket-1) จากนั้นนำใหมที่ได้ไปตัดเป็นชิ้นเล็กๆ ให้ขนาดประมาณ 1×1 เซนติเมตร เพื่อเพิ่มพื้นที่ให้ใหมได้สัมผัสกับสารละลาย

1.2 การลอกกาวใหม (Degumming)

นำใยใหมที่ตัดเป็นชิ้นเล็กๆ มาต้มกับสารละลายโซเดียมการ์บอเนต (Na₂CO₃) ที่มี ความเข้มข้น 0.5% (น้ำหนัก/ปริมาตร) ในอัตราส่วนโดยมวล 1:50 ที่อุณหภูมิประมาณ 80-95 องศา เซลเซียส เป็นเวลา 45 นาที จากนั้นนำมากรองแล้วล้างด้วยน้ำกลั่นหลายๆ ครั้ง เพื่อชะล้างสาร เซอริซินและโซเดียมการ์บอเนตออกจากใยใหม จะได้ใยใหมไฟโบรอิน จากนั้นนำใยใหมไฟโบรอินใปทำให้แห้ง โดยนำไปอบที่อุณหภูมิ 80 องศาเซลเซียส จะได้เส้นใยใหมไฟโบรอินที่มี ลักษณะแห้ง พร้อมที่จะนำไปใช้สำหรับเตรียมเยื่อโครงร่างต่อไป

1.3 การเตรียมสารละลายใหม่ใหโบรอิน (Preparation of fibroin solution)

นำใชไหมไฟโบรอิน มาใส่ลงไปในตัวทำละลายที่เป็นสารละลายผสมของแคลเซียม คลอไรค์ไดไฮโครท เอทานอล (ความเข้มข้น 90-95 %) และน้ำ ในอัตราส่วนโคยมวล 1 : 2 : 8 ตามลำคับ แล้ววางตั้งทิ้งไว้ที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 20 นาที จากนั้นนำสารละลายที่ ได้มาใส่ในถุงเซลลูโลส เพื่อแยกเอาเกลือออกจากสารละลาย โคยอาศัยหลักการแพร่ผ่านเชื่อเลือก ผ่าน (dialysis) โคยคั้งทิ้งไว้ในน้ำกลั่น เป็นเวลา 2 วัน จะได้สารละลายไหมไฟโบรอิน (Fibroin solution) เข้มข้น ที่มีลักษณะใส

1.4 การทำโครงร่างสำหรับเนื้อเยื่อ

นำสารละลายใหม่ไฟโบรอิน (Fibroin solution) ที่มีความเข้มข้น1-30 % (น้ำหนัก/ปริมาตร) มาเตรียมให้อยู่ในรูปเจล โดยนำมาผสมกับสารก่อรูปเจล ที่มีความเข้มข้น 1-50 % (น้ำหนัก/ปริมาตร) และสารเพิ่มความพรุนของเจล ที่มีความเข้มข้น 1-15% (น้ำหนัก/ปริมาตร) โดยสารเพิ่มความพรุน จะทำให้เจลมีขนาดของรูพรุนอยู่ในช่วง 50-250 ไมครอน ซึ่งการขึ้นรูปเจล นั้นจะมีการเชื่อมต่อกัน (cross-link) ให้อยู่ในรูปของเจลด้วยการฉายรังสี ระยะเวลาการฉายรังสี ขึ้นอยู่กับความเข้มของรังสี ซึ่งความเข้มข้นของรังสีที่ใช้อยู่ในช่วง 20-200 กิโลเกรย์ จะได้โครงร่าง ของเจลที่มีลักษณะใส

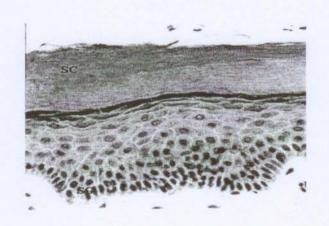
หน้า 2 ของจำนวน 2 หน้า

- 2. กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยใหมโดยวิธีฉายรังสี ตามข้อ ถือสิทธิ 1 ที่ซึ่ง สารก่อรูปเจล ได้แก่ โพลีไวนิลแอลกอฮอล์ (PVA), โพลีไวนิลบิวไทรัล (PVB), เพกติน (pectin), เจลลาติน (gelatin), การ์ โบพอล (carbopol), โพโลซาเมอร์ (poloxamer), เมทิล เซลลูโลส (methylcellulose) เลือกใช้ตัวใคตัวหนึ่งหรือใช้เป็นสารผสมก็ได้ ที่เหมาะสม คือ โพลีไว นิลแอลกอฮอล์ (PVA)
- 3. กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใชไหมโดยวิธีฉายรังสี ตามข้อ ถือสิทธิ 1 ที่ซึ่ง สารเพิ่มความพรุนของเจล ได้แก่ โซเดียมคลอไรด์, โพแทสเซียมคลอไรด์, แมกนีเซียมคลอไรด์ เลือกใช้ตัวใดตัวหนึ่งหรือใช้เป็นสารผสมก็ได้ ที่เหมาะสม คือ โซเดียมคลอ ไรด์
- 4. กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี ตามข้อ ถือสิทธิ 1 ที่ซึ่ง รังสีที่ใช้ ได้แก่ รังสีแกมม่า (gamma ray), รังสีอัลตราไวโอเลต (uv), รังสีเอ็กซ์ (X-ray), รังสีแอลฟา, รังสีเบค้า, รังสีนิวตรอน เลือกใช้ตัวใดตัวหนึ่ง ซึ่งปริมาณความเข้มข้นของรังสี ที่เหมาะสม คือ 40-60 กิโลเกรย์
 - ผลิตภัณฑ์ที่ได้จากกรรมวิธี ตามข้อถือสิทธิ 1

5

10

15


6. กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยใหมโดยวิธีฉายรังสี ตามข้อ ถือสิทธิ 1 ถึง 5 ข้อใดข้อหนึ่ง ที่ซึ่ง การนำโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยใหมไปใช้เป็น โครงร่างผิวหนังสังเคราะห์ (reconstructed skin equivalent) เพื่อให้เซลล์ที่อยู่ใต้ผิวหนัง เช่น เซลล์ ไฟโบบลาสต์ (fibroblast) ยึดเกาะได้ และพัฒนาโครงสร้างไปเป็นผิวหนังชั้นหนังแท้ (Dermal scaffold) หรือผิวหนังเทียม (Tissueengineering skin) หรือผ้าปิดทำแผล (Wound dressing)

หน้า 1 ของจำนวน 1 หน้า

บทสรุปการประคิษฐ์

กรรมวิธีการเตรียมโครงร่างสำหรับเนื้อเยื่อจากสารสกัดใยไหมโดยวิธีฉายรังสี ตามการ
ประดิษฐ์นี้ เป็นการเตรียมโครงร่างของผิวหนังสังเคราะห์ (Reconstructed skin equivalent) ในส่วน
ของผิวหนังชั้นหนังแท้ (Artificial dermal scaffold) สำหรับใช้เป็นโครงร่างให้เซลล์ใฟโบรบลาสต์
(Fibroblast) ยึดเกาะ โดยใช้สารสกัดจากใยไหมที่แยกเอาส่วนของเซอริซิน (sericin) ออก ผสมกับ
สารก่อรูปเจลและสารเพิ่มความพรุนลงไป เพื่อเพิ่มพื้นที่การยึดเกาะของเซลล์ไฟโบรบลาสต์
(Fibroblast) โดยลักษณะของโครงร่างจะอยู่ในรูปของเจล (Hydrogel) ด้วยวิธีการฉายรังสี โครงร่าง
ตามการประดิษฐ์นี้สามารถพัฒนาไปเป็นผิวหนังเทียม (Tissue engineering skin) และประยุกต์ใช้
เป็นแผ่นปิดทำแผล (Wound dressing) ซึ่งเป็นโครงสร้างที่มีลักษณะใกล้เคียงกับผิวหนังธรรมชาติ

5

รูปที่ 1

Scale bar 50 µm

รูปที่ 2