

บทคัดย่อ

ได้ศึกษาสภาวะการย่อยสตาร์ชมันสำปะหลังด้วยปฏิกิริยาเอนไซม์ pullulanase และทำแห้งด้วยวิธีการพ่นฟอย (spray drying) ที่มีผลต่อปริมาณ resistant starch (RS-III) อัตราการย่อยสตาร์ช (*in vitro* starch digestibility) การเปลี่ยนแปลงทางเคมีและกายภาพ รวมทั้งลักษณะโครงสร้างสตาร์ช โดยเปรียบเทียบกับการทำแห้งแบบแข็ง (freeze drying) และ ลมร้อน (hot air drying) ทำการเตรียมส่วนผสมสตาร์ชเข้มข้น 10% ของน้ำหนักแห้ง ปรับความเป็นกรดให้ได้ 5.0 และ 5.5 และทำให้สตาร์ชสุก (gelatinization) ด้วยความร้อนจากความดันไอน้ำ แล้วจึงเติมเอนไซม์ pullulanase เข้มข้น 3%, 5% และ 10% เพื่อย่อยแอมิโลเพกตินเป็นเวลา 8, 16 และ 24 ชม. ทำการคืนตัวสตาร์ช (retrogradation) ด้วยการแข็งเย็นที่อุณหภูมิ 4°C ใช้เวลา 24 และ 48 ชม. และทำให้แห้งด้วยวิธีการต่างๆ ผลการศึกษาพบว่าเมื่อสตาร์ช มันสำปะหลังผ่านการย่อยด้วย 10 % pullulanase และปรับความเป็นกรดที่ pH 5 ย่อยนาน 8 ถึง 24 ชม. จะมีปริมาณ RS-III เกิดขึ้นสูงกว่า การใช้ pullulanase ความเข้มข้นต่ำกว่า และ pH 5.5 และพบว่าปริมาณ RS มีความสัมพันธ์กับน้ำตาลรีดิวชั่นส์เพิ่มขึ้น และแอมิโลสลดลงจากค่าเริ่มต้น จากผลของการทำแห้งต่อปริมาณ RS-III พบว่า ระยะเวลาการย่อย 8 ชม. ร่วมกับวิธีลมร้อน ทำให้เกิด RS-III เท่ากับ 43.4 ± 4.6 g/100g และเมื่อย่อยนาน 24 ชม. จะให้ค่าสูงสุด 50.9 ± 2.9 g/100g สำหรับการทำให้เย็นนาน 24 ชม. และยังพบว่าวิธีการพ่นฟอย จะให้ค่า RS สูงเมื่อทำให้เย็นนาน 48 ชม. จากผลการตรวจสอบอัตราการย่อย RS-III ที่ผลิตได้พบว่าการทำแห้งแบบลมร้อน มีผลให้อัตราการย่อยสตาร์ชต่ำกว่าตัวอย่างอื่นๆ และเมื่อใช้เวลาอย่างนาน 90 นาที พบว่า อัตราการย่อยลดลงจากสตาร์ชทางการค้าร้อยละ 20 ถึง 30 และพบว่าความร้อนที่ใช้ในการสลายโครงสร้างผลึกมีค่าระหว่าง 167.6 ± 0.7 ถึง 188.4 ± 2.8 J/g ซึ่งต่ำกว่าค่า RS ทางการค้า เนื่องจากเป็นโครงสร้างที่เกิดจากการคืนตัวของแอมิโลเพกตินสายสั้นๆ จะไม่แข็งเกร่งเท่ากับ RS-III ที่เกิดจากแอมิโลส เมื่อตรวจสอบโครงสร้างด้วย X-ray diffractograms พบว่า RS-III มีลักษณะผลึกแบบ B โดยการเปลี่ยนผ่านด้วยลักษณะผลึกแบบ C ซึ่งบ่งชี้ถึงโครงสร้างผลึกที่แข็งเกร่งมากขึ้น โดยเฉพาะตัวอย่าง RS-III ที่ทำแห้งด้วยลมร้อน และภาพจาก SEM ที่ให้ผลที่สอดคล้องกัน ขณะที่การทำแห้งแบบพ่นฟอยทำให้เกิดโครงสร้างสตาร์ชขนาดเล็กกว่าแต่มีลักษณะการยึดเกาะตัวรวมกันของชิ้นส่วนที่มีขนาดเล็กกว่า

ABSTRACT

This study was aimed to determine an appropriate condition of pullulanase reactions for preparing resistant starch (RS-III) from the commercial cassava starch. Effects of different dryings of spray, freeze and hot air on physical and chemical properties, the *in vitro* starch digestibility as well as structural properties of the RS-III starches were examined. The 10% starch suspension was gelatinized and hydrolyzed by the 3%, 5% and 10% pullulanase of the total starch (db) adjusted to pH 5 and pH 5.5, then allowed to hydrolyzed for 8 to 24 hrs, at 50 °C and cooling for 24 and 48 hrs, at 4 °C then dried using the tested methods. The result showed that a condition of the 10% pullulanase with pH 5 for the hydrolysis of 24 hrs produced the higher RS-III than the other conditions. This was suitable for partially debranching amylopectin molecules of the cassava and consequently providing small linear fragments and small clusters of the amylopectin molecules for retrogradation / recrystallization and formation of the RS-III. Also it was shown that the formation of the RS-III would be related to the increased reducing sugars and the decreased amylose molecules from the initial values. With the effects of different dryings, the hot air drying enhanced the formation of RS-III greater than the spray and freeze dryings. The hydrolysis time of 8 hrs gave a high yield of RS-III of 43.4 ± 4.6 g/100g and the 24 hrs had the highest content of resistant starch of 50.9 ± 2.9 g/100g. This result was related to the *in vitro* starch digestibility of the hot-air dried samples showing about 20% to 30 % slower than the commercial cassava starch, after amylase digestion of 90 min. Moreover the DSC determination showed an endothermic melting enthalpy over a range of 167.6 ± 0.7 to 188.4 ± 2.8 J/g for the RS-III samples which was lower than those of the commercial cassava starch and resistant starch. This finding implied that degradation of the amylopectin molecules to short linear chains would contribute to the formation of less confined structure for melting. Finally, the structural changes of the type-B crystallites and the scanning electron micrographs of the RS-III obtained with this study could confirm its resistance to enzymatic digestion, particularly with the hot-air dried RS-III samples. Whereas the micrographs of the spray dried RS-III exhibited a fine structure of small starch particles aggregated.