

รายงานวิจัยฉบับสมบูรณ์

โครงการ

**Interaction of *Penicillium marneffei* with soil amoeba as a model of
fungal pathogenesis and the role of melanin on susceptibility to
nitric oxide from macrophages**

ศึกษาการกำจัดเชื้ออ米巴ที่อยู่ในดิน โดยเชื้อรา เพนนิซิลเลียม มาเนฟฟิ
อาย ซึ่งใช้เป็นแม่แบบในการศึกษาความสามารถในการก่อโรคของ
เชื้อรา และบทบาทของเมลานินที่เกี่ยวข้องกับความไวของเชื้อในตระก
อ้อกไซด์ ที่สร้างจากเซลล์แมคโครฟาก

โดย

ผศ.ดร. สิริดา ยังฉิม

เมษายน 2013

สัญญาเลขที่ MRG 4980060

รายงานวิจัยฉบับสมบูรณ์

โครงการ

**Interaction of *Penicillium marneffei* with soil amoeba as a model of
fungal pathogenesis and the role of melanin on susceptibility to
nitric oxide from macrophages**

ศึกษาการกำจัดเชื้ออ米巴ที่อยู่ในดิน โดยเชื้อรา เพนนิซิลลี่ม มาเนฟฟิ
อาย ซึ่งใช้เป็นแม่แบบในการศึกษาความสามารถในการก่อโรคของ
เชื้อรา และบทบาทของเมลานินที่เกี่ยวข้องกับความไวของเชื้อในตระก
อ้อกไซด์ ที่สร้างจากเซลล์แมคโครฟ่าด

ผู้วิจัย

ผศ.ดร. สิริดา ยังฉิม

ศ. ดร. นงนุช วนิตร์ธนาคม

ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอ)

Acknowledgements

We would like to acknowledge the funding sources. Our work was supported by a grant from the Thailand Research Fund and the Commission of Higher Education, Ministry of Education, Thailand.

A special thank to Associate Professor. Dr. Joshua D. Nosanchuk, Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York to advice throughout the duration of this research.

Sirida Youngchim

Nongnuch Vanittanakom

II

Abstract (English)

Penicillium marneffei is an important dimorphic mycosis endemic in Southeast Asia, but the origin and maintenance of virulence in this organism is mysterious. Recently, several pathogenic fungi including *Cryptococcus neoformans*, *Blastomyces dermatitidis*, *Sporothrix schenckii*, and *Histoplasma capsulatum* were shown to interact with amoebae in similar behavior, applying that fungal pathogenic strategies may arise from environmental interactions with phagocytic microorganisms. In this study, we examined the interactions of *P. marneffei* and *Candida albicans* with the soil amoeba *Acanthamoebae castellanii*. Both *P. marneffei* and *C. albicans* were ingested by amoebae, and phagocytosis of fungal cells resulted in amoeba death and fungal growth. Exposure of *C. albicans* to amoebae induced germ tube formation and changed to hyphae at 37^oC. These results are consistent with the view that soil amoebae, environmental predators may contribute to the selection and maintenance of certain traits in *P. marneffei* and *C. albicans* that confer on these microbes the capacity for virulence in mammals.

บทคัดย่อ

เชื้อรา เพนนิซิเลี่ยม มาเนฟพิอย จัดอยู่ในกลุ่มราสองรูปที่พบการก่อโรคในเขตເອເຊຍ ตัววันออกเลี้ยงໄຕ สามารถก่อโรคในกลุ่มผู้ป่วยที่มีภูมิคุ้มกันบกพร่อง โดยเฉพาะผู้ป่วยที่เป็น โรคเออดส์และยังไม่มีการศึกษาถึงแหล่งกำเนิดหรือการแพร่ของเชื้อรานิดนี้ ต่อมามีการศึกษา ในเชื้อรา คริพโตคoccัส นีโอฟอร์แมนซ์, บลัสตومัยซีส เดอร์มาไติติส, สปอโรทริก เซ็งกิอย และ อิสโตพลาสไมซีส แคปซูลเลตัม พบร่องสภาวะในเชื้ออะมีบा ที่อาศัยอยู่ในดิน ได้ ดังนั้นในการศึกษารังนี้ ต้องการศึกษาว่า เชื้อรา เพนนิซิเลี่ยม มาเนฟพิอย สามารถเจริญ เพิ่มจำนวนอยู่ภายในเชื้ออะมีบा ได้หรือไม่ โดยมีเชื้อรา แคนดิต้า อัลบิแคนส์ เป็นเชื้อควบคุม จากผลการทดลองพบว่า เชื้อรา เพนนิซิเลี่ยม มาเนฟพิอย และเชื้อ แคนดิต้า อัลบิแคนส์ เมื่อ ถูกจับกินด้วย อะมีบ่า สามารถฆ่าอะมีบ่าและเพิ่มจำนวนอยู่ภายในเซลล์ของอะมีบ่าได้ นอกจากนี้ยังพบว่า เชื้อ แคนดิต้า อัลบิแคนส์ สามารถสร้างเจ้มทิว โดยพบอยู่ภายในเซลล์ อะมีบ่า ที่อุณหภูมิ 37 องศาเซลเซียส ดังนั้นการศึกษารังนี้ แสดงให้เห็นว่า เชื้อรากั้ง 2 ชนิด สามารถฆ่าเชื้ออะมีบ่า เพื่อใช้เป็นแหล่งอาหารในการเพิ่มจำนวนต่อไป

หน้าสรุปโครงการ (Executive Summary)

1. ชื่อโครงการ (ภาษาไทย)

ศึกษาการกำจัดเชื้อมีบ้าที่อยู่ในดิน โดยเชื้อรา เพนนิซิเลียม มาเนฟพิอย ซึ่งใช้เป็นแม่แบบในการศึกษาความสามารถในการก่อโรคของเชื้อรา และบทบาทของเมลานินที่เกี่ยวข้องกับความไวของเชื้อในตระก อ็อกไซด์ ที่สร้างจาก เซลล์แมกโคลาด

ชื่อโครงการ (อังกฤษ)

Interaction of *Penicillium marneffei* with soil amoeba as a model of fungal pathogenesis and the role of melanin on susceptibility to nitric oxide from macrophage

2. ชื่อหัวหน้าโครงการ

นาง สิริดา ยังจิม

หน่วยงานที่สังกัด

ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์

มหาวิทยาลัยเชียงใหม่

239 ถ. อินทนิล ต. ศรีภูมิ อ. เมือง จ.เชียงใหม่

หมายเลขโทรศัพท์

053-945332 9 ต่อ 412

โทรศัพท์

053-217144

e-mail

syoungchim@gmail.com

3. สาขาวิชาที่ทำวิจัย

เชื้อริวิทยาการแพทย์

Table of contents

	Page
Acknowledgement	I
Abstract (English)	II
Abstract (Thai)	III
Executive summary	IV
List of figures	VI
List of abbreviations	VII
Chapter I: Introduction	1
Chapter II :	
A. Objectives	6
B. Material and methods	7
C. Results	11
D. Discussion	21
Chapter III: Conclusion	23
Chapter IV: Output	24
References	25
Appendix	28
Manuscript	30

List of figures

Figure	Page
1 Corresponding Immunofluorescent (a) and light microscopic pictures (b) of 2 h post-incubation of <i>A. castellanii</i> with FITC-labeled <i>P. marneffei</i> conidia	11
2 Corresponding Immunofluorescent (a) and light microscopic pictures (b) of 2 h post-incubation of <i>A. castellanii</i> with FITC-labeled <i>A. fumigates</i> conidia	12
3 Corresponding Immunofluorescent (a) and light microscopic pictures (b) of 24 h post-incubation of <i>A. castellanii</i> with FITC-labeled <i>P. marneffei</i> conidia	12
4 Phagocytosis of <i>P. marneffei</i> , <i>A. fumigatus</i> and <i>C. albicans</i> cells by <i>A. castellanii</i> ATCC 30324 at different temperature	13
5 The percentage of dead amoebae (<i>A. castellanii</i>) after incubation with three different fungi	14
6 Fungal cell counts after incubation with or without amoebae in PBS at room temperature (28°C)	15
7 Comparison the percentage of germ tube formation of <i>C. albicans</i> within <i>A. castellanii</i> after incubation at 37 °C and 28 °C for 2 hours	16
8 Transmission electron micrographs of <i>P. marneffei</i> interacted with <i>A. castellanii</i> after incubation at room temperature (28°C) for 30 min (A) and 2 h (B).	17
9 Transmission electron micrographs of <i>C. albicans</i> within <i>A. castellanii</i> at 2 h after incubation at 37°C	17
10 Transformation of <i>C. albicans</i> from yeast forms to hyphal or filament forms at 37°C	18
11 Interaction of <i>C. albicans</i> with amoebae at room temperature (28°C) in different time points	19
12 Interaction of <i>C. albicans</i> with <i>A. castellanii</i> at room temperature (28 °C) after 48 h of incubation in PBS and with <i>A. castellanii</i>	20

VII

List of abbreviations

%	Percent
°C	Degree celsius
µg	Microgram
µl	Microliter
µm	Micrometer
AIDs	Acquired immunodeficiency syndrome
ATCC	American Type Culture Collection
BHI	Brain heart infusion
CFU	Colony forming unit
FITC	Fluorescein isothiocyanate
h	Hour(s)
M	Molar
MEA	Malt Extract Agar
min	Minute(s)
ml	Millimeter
MOI	Multiplicity of Infection
nm	nanometer
PBS	Phosphate buffer saline
PYG	Peptone yeast extract glucose
SDA	Sabouraud dextrose agar
TEM	Transmission Electron Microscope

Chapter I

Introduction

Penicillium marneffei is the only dimorphic species of the genus *Penicillium* that causes penicilliosis marneffei in HIV-infected individuals living in the Far East, including Thailand, Myanmar (Burma), Cambodia, southern China, Indonesia, Laos, Malaysia and Vietnam. The number of cases of penicilliosis has increased dramatically over the past several years in Thailand. Between 1991 and 1997, penicilliosis was diagnosed in 1,173 HIV-infected patients at Chiang Mai University hospital alone (Supparatpinyo *et al.*, 1992). Other countries in the endemic area reporting cases of penicilliosis in HIV-infected patients include Hong Kong, Taiwan and Malaysia. Cases have also been reported in HIV-infected patients in Australia, France, Germany, Italy, the Netherlands, Sweden, Switzerland and the United Kingdom (Duong, 1996). All of these penicilliosis patients had previously visited the endemic area.

1. *Penicillium marneffei* -general introduction

P. marneffei is unique in its genus in being dimorphism by growing in living tissue or in culture at 37°C as yeast-like organisms (although the latter are more properly described as fission arthroconidia) or in culture at environmental temperatures as a mycelial phase. The ability of *P. marneffei* to grow at 37°C must play a major role in its infectivity (Hamilton, 2003). At 37° C *in vitro*, *P. marneffei* is grown as arthroconidia divided by fission to produce yeast cells. The morphology of yeast cells grown *in vitro* differs from that found *in vivo* (Cánovas & Andrianopoulos, 2007). It depends on the nutrition conditions of culture media which influence the morphology of *P. marneffei* yeast cells (Tongchusak *et al.*, 2004). We investigated the effect of different morphological yeast cells against antifungal susceptibility.

2. Melanin—its definition

Melanins are dark brown or black pigments which are formed by the oxidative polymerization of phenolic or indolic precursors. They are widely distributed in all living kingdoms and are negatively charged, hydrophobic pigments, which are recalcitrant to degradation. Typically they are insoluble in aqueous and organic solvents (Jacobson, 2000). Melanins are generally subdivided into 3 typical types: eumelanins, which are formed from quinines and free radicals by a complex

polymerization process, phaeomelanins, which are formed from tyrosine and cysteine precursors, and allomelanins, which are produced from nitrogen free precursors (Hamilton and Gómez, 2002). The identification of a pigment as a melanin relies on various biophysical techniques such as electron spin resonance (ESR) spectroscopy, which establishes that the particular compound under study is a stable free radical (Enochs *et al.*, 1993).

2.1 Immunological behavior of melanins

Melanins are immunologically active molecules, which are capable of inducing strong T-cell independent antibody responses (Nosanchuk *et al.*, 1998); they also contain anti-inflammatory properties (Mohagheghpour *et al.*, 2000). *C. neoformans* melanin has been shown to activate the alternative complement cascade (Rosas *et al.*, 2002) and has ability to inhibit the recognition of the organism by host defenses (Huffnagle *et al.*, 1995). In contrast, grape melanin has anti-inflammatory and immunosuppressive properties— injection of grape melanin into rats inhibits the development of primary and secondary adjuvant induced disease, and results in a significant decrease in the detectable levels of various cytokines in these animals (Avramidis *et al.*, 1998). Production of the pro-inflammatory cytokines IL-1 β , IL-6, IL-10 and TNF- α by lipopolysaccharides (LPS) stimulated human peripheral blood monocytes has also shown to be inhibited by synthetic melanin (Mohagheghpour *et al.*, 2000).

2.3 Resistance to antimicrobial compounds

Several recent studies have been undertaken to determine whether melanin produced by fungal pathogens alters their susceptibility to anti-fungal drugs. Melanized *C. neoformans* cells have been shown to be less susceptible to amphotericin B (AmB) when compared with non-melanized cells (Wang and Casadevall, 1994). Such observations suggest that melanin may protect the organism against the effects of AmB by binding the drug and preventing its penetration; alternatively it may reduce cell wall permeability to AmB. Subsequently the effects of melanin synthesis by *C. neoformans* and *H. capsulatum* on their susceptibilities to the antifungal drugs; AmB, caspofungin, fluconazole, itraconazole and flucytosine have been investigated using the standard minimal inhibitory concentration (MIC) M27A protocol (van Duin *et al.*, 2002). However, more detailed killing assays demonstrated that melanin can indeed protect *C. neoformans* and *H. capsulatum* against the activity

of AmB and caspofungin by decreasing the susceptibilities of both fungi to these drugs. In addition, this suggested that these drugs were in fact being absorbed by melanin (van Duin *et al.*, 2002). In contrast, exposure of melanin to other antifungals, such as fluconazole, itraconazole or flucytosine had no detectable effect on the C:N ratio, which indicated that there was no binding of melanin to these drugs. More recently, Ikeda and colleagues (2003) have confirmed the role of *C. neoformans* melanin in resistance to AmB. These authors found that pigmented *C. neoformans* cells were much more resistant to killing by AmB when compared with non-pigmented cells. It thus seems likely that infections with melanized *C. neoformans* and *H. capsulatum* cells may be more difficult to treat given that they are less susceptible to killing by both AmB and caspofungin (van Duin *et al.*, 2002). Interestingly, although caspofungin exhibits measurable *in vitro* activity it has been shown to be ineffective in treatment using *in vivo* models of *C. neoformans* (Abruzzo *et al.*, 1997) or *H. capsulatum* (Kohler *et al.*, 2000).

Our previous study, *P. marneffei* had been found to produce melanin or melanin-like compounds *in vitro* and during infection (Youngchim *et al.*, 2005). In this respect, melanin presumably contributes to *P. marneffei* virulence by promoting survival within host tissue. Given the potential role of melanin in virulence of *P. marneffei*, we investigated the effect of melanin on the susceptibility to antifungals.

3. Maintenance of virulence for human pathogenic fungus

The idea that pathogenic microbes are endowed with certain components that confer upon them the capacity for virulence is the central theme of the virulence factor concept. Although the definition of what constitutes a virulence factor is varied and debatable (Casadevall & Pirofski 1999), and this idea has been undermined by the finding that commensal organisms cause disease (Casadevall & Pirofski 2001), the concept maintains a powerful understanding in the imagination of investigators and continues to drive much of the intellectual and experimental energy in the field of microbial pathogenesis. The virulence factor concept has unquestionably led to the identification of important microbial attributes of virulence that have greatly furthered our understanding of microbial pathogenesis. Nevertheless, the virulence factor concept has significant limitations for a global understanding of microbial virulence.

Most of human-pathogenic fungi that are attained from the environment dwell in ecological niches defined by soils, trees, and decaying vegetation. Soils are extreme environments, and soil-dwelling microbes must alter to rapidly changing, harsh conditions. Soil microbes occupy an environment where there must be brutal competition for nutrients. In addition to these nutritional and physical stresses, soil-dwelling microbes must cope with predators in the form of amoebae and other protista, which feed on bacteria and fungi. Consequently, soil-dwelling microbes must develop ways to escape phagocytosis and/or survive ingestion through mechanisms for intracellular survival.

The incidence of invasive fungal disease has significantly increased over the past few decades corresponding to the rising number of immunocompromised patients. The major risk factors for severe fungal disease include administration of broad-spectrum antibiotics, corticosteroids and cytotoxic agents, invasive medical procedures, and HIV infection. The rise in the incidence of fungal infection has led researchers to identify virulence determinants and to examine why environmental fungi cause disease.

The amoebae are an extremely diverse group of eukaryotic microorganisms that constitute a major class of phagocytic organisms in soils. *Acanthamoeba* is a free-living, ubiquitous ameba that occurs in trophozoite and cyst stages during its life cycle. In addition, *Acanthamoeba castellanii* is a soil amoeba that feeds on bacteria and fungi that was originally isolated from cultures of *Cryptococcus neoformans*, and has been used to study bacteria–amoeba interactions. Both plant and animal pathogenic fungi that reside in soils and vegetation inhabit extreme environments where they must compete with other microbes, endure extremes of humidity and survive predation by amoeboid organisms and small animals such as nematodes. Hence, both share comparable risks and selection pressures. For several human pathogenic fungi it has been demonstrated that determinants of virulence needed for mammalian pathogenicity are also important for surviving predation by amoeba, slime molds, and nematodes (Steenbergen, *et al.*, 2001; 2003; 2004).

Most common pathogenic fungi are considerate saprophytic because they are free living and do not require an animal host for propagation. Likewise, several dimorphic fungi are important human pathogens, but the origin and maintenance of virulence in these organisms is mysterious, since an interaction with a mammalian

host is not a required for fungal survival. For instance, *Cryptococcus neoformans* was shown to interact with macrophages, slime molds (Steenbergen, *et al.*, 2003) and amoebae (Steenbergen, *et al.*, 2001) in a similar manner, suggesting that fungal pathogenic strategies may arise from environmental interactions with phagocytic microorganisms. Since thermally dimorphic fungi are found primarily in the soil, we hypothesized that *A. castellanii*, an environmental phagocytic predators could place selective pressures on *P. marneffei* soil fungi. Here, we investigated the interaction of *P. marneffei* with *A. castellanii*. According to global warming has been assumed to bring about new fungal diseases in the coming century, to understand the mechanisms by which virulence emerges in environmental microbes is necessary (Garcia-Solache, & Casadevall, 2010).

Chapter II

A. Objective

To investigate the interaction of pathogenic fungi including *P. marneffei*, *A. fumigatus* and *C. albicans* with *A. castellanii* in different condition, to understand the mechanisms by which virulence emerges in environmental microbes is necessary.

B. MATERIAL & METHODS

1. Organisms and culture conditions.

Penicillium marneffei ATCC 200051, *Candida albicans* ATCC 90028, *A. fumigatus* B5233 and *A. castellanii* ATCC 30324 were obtained from American Type Culture Collection (ATCC). *P. marneffei* and *C. albicans* were maintained on Sabouraud dextrose agar (SDA, Difco) at 25°C. For experimental use and routine maintenance, *Acanthamoeba castellanii* was cultured as adherent cells in peptone-yeast extract-glucose (PYG) broth (ATCC medium 354) at 28 °C in the dark (Bozue & Johnson, 1996).

2. Production of *P. marneffei* and *A. fumigatus* conidia

P. marneffei ATCC 200051 was isolated from a bone marrow sample of a patient infected with HIV at Maharaj Nakorn Chiang Mai University, Chiang Mai, Thailand. *P. marneffei* was maintained by monthly subculture onto Malt Extract Agar (MEA; Oxoid). *P. marneffei* and *A. fumigatus* were grown on MEA for 7-10 days at 25° C, and added 5 ml of sterile PBS onto surface growth; conidia were removed by gentle scraping with a cotton swab. The conidia were collected by filtration through sterile glass wool, centrifuge at 5000 g for 15 min, and then washes three times with sterile PBS. *C. albicans* ATCC 90028 was cultured on Sabouraud dextrose broth for 24 h at 25° C, and then harvested by centrifugation at 5000 g for 15 min and washes 3 times with PBS.

3. *Acanthamoeba castellanii*. *Acanthamoeba castellanii* ATCC 30324 was obtained from the American Type Culture Collection and was maintained routinely at room temperature in PYG broth (ATCC medium 354) as monolayers in 75-cm² tissue culture flasks. *A. castellanii* was harvested by tapping the flasks, centrifuged at 2500 rpm for 10 min, and suspended in fresh distilled water or 0.02 M phosphate-buffered saline (PBS) (0.137 M NaCl, 0.003 M sodium phosphate [pH 7.4]). Cell counts were determined with a hemocytometer with a modified Fuchs-Rosenthal chamber. In addition, *A. castellanii* viability was determined by trypan blue staining, and the initial viability was always greater than 98% (data not shown). Amoebae were subcultured at intervals of 10 days.

4. Phagocytosis Assay. *A. castellanii* cells were removed from tissue culture flasks (Corning, Corning, N.Y.), washed with PBS, and counted with a hemocytometer. The cells were suspended to 10^6 cells/ml in PBS and added to 24-well tissue culture plates at 10^6 cells/well and allowed to adhere for 2 h at 28°C before the addition of fungal cells, *P. marneffei*, *A. fumigates* and *C. albicans* at a 10:1 effector-to-target ratio. The plates were incubated for 2 h at 28°C and 37°C. The media were aspirated, and the cells were fixed with ice-cold methanol for 30 min at 4°C and washed three times with PBS, stained with Giemsa diluted 1:10 in PBS for 2 h. The plates were viewed with a microscope at 100 magnification, and four wells per experimental condition were used to ascertain the percentage of phagocytic cells. The phagocytic index is the number of *A. castellanii* with internalized yeast per 100 amoebae (Steenbergen *et al.*, 2001).

5. Fungal killing assays. *A. castellanii* cells were removed from tissue culture flasks (Corning, Corning, N.Y.), washed with PBS, and counted with a hemocytometer. Fungal cells were labeled with Oregon green-fluorescein isothiocyanate (FITC) (Molecular Probes, Leiden, The Netherlands) as described previously (Walenkamp *et al.*, 2000). Briefly, fungal cells were suspended at 2×10^8 cells/ml in a microcentrifuge tube, Oregon green-FITC was added to a final concentration of 5×10^{-4} g/ml, and the suspension was incubated at room temperature for 30 min. The fungal cells were washed three times with PBS. Labeling did not affect viability as determined by CFU counts on BHI agar. The cells were suspended to 10^6 cells/ml in PBS, and 1000 µl was added to 24-well tissue culture plates. The plates were incubated at 37°C for 2 h prior to adding fungal cells to allow for *A. castellanii* acclimation. *A. castellanii* viability was determined by trypan blue staining, and the initial viability was always greater than 98% (data not shown). *P. marneffei* conidia were washed, harvested, and suspended in PBS, and cell numbers were determined with a hemocytometer. Fungal cells were added to the acclimated cultures of *A. castellanii* at a 1:10 effector-to-target ratio and incubated at 37°C. At 0, 24, and 48 h, the number of viable yeast cells was determined by CFU. At each time interval, the 24-well plates were placed on ice for 10 min to loosen the cells from the bottoms of the plates. The *A. castellanii* cells were lysed by shear stress induced by pulling the suspension through a 27-gauge needle five to several times (Moffat & Tompkins, 1992). Fungal viability was unaffected by this procedure, as determined by comparison of initial hemocytometer determinations and CFU counts. For each well,

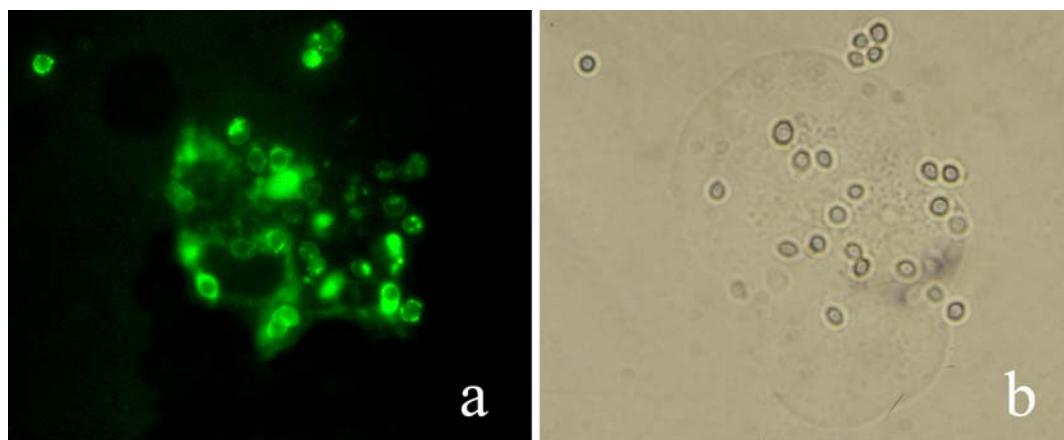
serial dilutions were plated onto BHI agar plates, which were then incubated at 37°C for 48 h. At each time, a minimum of 4 tissue culture wells per isolate were used to determine CFU, and each experiment was repeated at least one time. Conidial killing assays were performed as described above with two differences.

6. Amoeba killing. Trypan blue exclusion assays were applied to determine the number of viable *A. castellanii* cells at time interval, 0, 24, and 48 h. Amoebae and fungal cells, *P. marneffei*, *A. fumigatus* and *C. albicans* were incubated in PBS in 24-well tissue culture plates at a 1:10 ratio. At each time interval, the medium was aspirated and the cultures were incubated with a 1:10 dilution of trypan blue in PBS. The 24-well plates were viewed at a magnification of X100, and the percentage of dead amoebae was determined by counting the number of amoeba cells unable to exclude the dye per total amoebae counted. At each time interval, five wells per culture condition were counted and experiments were repeated at least one additional time.

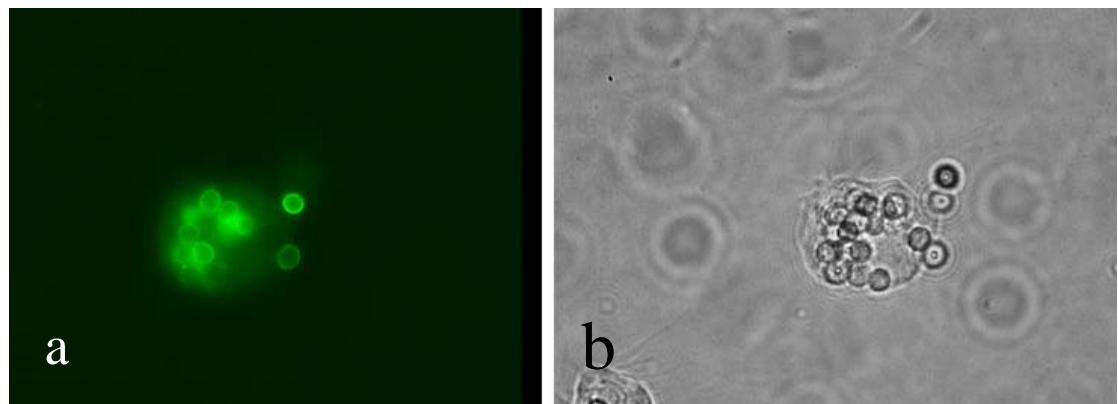
7. Germ tube formation. *A. castellanii* cells were removed from tissue culture flasks, washed with PBS, and counted with a hemocytometer. The cells were suspended to 10^6 cells/ml in PBS, and 1ml was added to eight-chamber glass culture slides (SPL Lifescience, Korea). The plates were incubated at 37°C for 2 h prior to adding fungal cells to allow for *A. castellanii* acclimation. *A. castellanii* viability was determined by trypan blue staining, and the initial viability was always greater than 98% (data not shown). *C. albicans* were suspended at 10^7 cells/ml, which was confirmed by CFU determination on SDA plates at 28°C. *C. albicans* were added to the acclimated cultures of *A. castellanii* at a 1:10 effector-to-target ratio and incubated at 28 and 37°C for 24 hours. The germ tube germination was calculated by counting the total number of *C. albicans* (in both of germination and non germination of yeast cells). Five wells were counted per experimental condition, and each experiment was repeated. *C. albicans* incubated in PBS alone was included in the experiment as negative control.

6. Transmission electron microscopy (TEM). TEM was used to examine the intracellular compartment of *P. marneffei* and *C. albicans* within *A. castellanii*. Plastic adherent *A. castellanii* monolayer containing 2×10^6 cells/well in 24-well tissue culture plate was infected with *P. marneffei* or *C. albicans* at a multiplicity of infection (MOI) of 10. After 2 hours of incubation at 37 °C, amoeba infected with *C.*

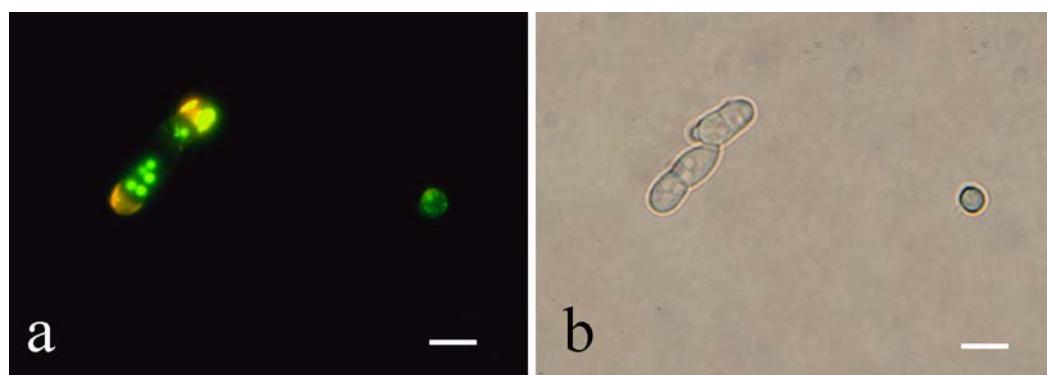
albicans was removed by using rubber policeman and fixed with 2.5 % glutaraldehyde in 0.1 M cacodylate at room temperature overnight. The sample was prepared for electron microscopy by previous described (Steenbergen *et al.*, 2001). The samples were mounted with gold–palladium, and viewed in a Transmission Electron Microscope JEOL JEM-2010.


7. Interaction of *C. albicans* with *A. castellanii* at different temperature. To investigate the effect of temperature, *C. albicans* was incubated with *A. castellanii* at different temperature, 28°C and 37°C for variable time. Amoebae and fungal cells were incubated in PBS in eight-chamber glass culture slides at a 1:10 ratio. At each time point, the medium was aspirated, wells were washed with PBS, and fixed with 1% paraformaldehyde at 4°C for 30 min. Coverslips were mounted with a mounting solution of 0.1% *n*-propyl gallate and 50% glycerol in PBS, and the slides were viewed at a magnification of X100 at different time, 30 min, 2, 24 and 48 h.

8. Statistical analysis. Student's *t* test was used for statistical analyses. Both the statistical analysis and the graphs were compiled by two tailed, unpaired Student's *t*-test using Prism 4 software (GraphPad). A *P*-value ≤ 0.05 was considered significant.


C. RESULTS

1. Phagocytosis of fungi by amoebae.


The phagocytosis indexes of *A. castellanii* for *P. marneffei*, and *A. fumigatus* were investigated (Fig. 1,2). In addition, the interaction of *P. marneffei* conidia was changed to fission yeast cells after interaction with amoeba at 37°C for 24 h (Fig.3). *A. castellanii* was capable to phagocytose each of the fungi (Fig.4). *P. marneffei*, *A. fumigatus* and *C. albicans* were phagocytosed at significantly higher rates compared to *A. fumigatus* in both 37°C and room temperature ($p \leq 0.001$). In addition, the phagocytosis index of *P. marneffei* conidia was found 80% which significantly higher than those of *C. albicans* and *A. fumigatus* in both temperature (37°C and 28°C). Based on dimorphic fungus, both yeast cells and conidia of *P. marneffei* were determined the phagocytic indexes. *P. marneffei* conidia were phagocytosed by *A. castellanii* at significantly higher rate than yeast cells at 37°C ($p \leq 0.01$). In contrast, the phagocytic indexes of conidia and yeast cells of *P. marneffei* were not different when studied at room temperature (28°C).

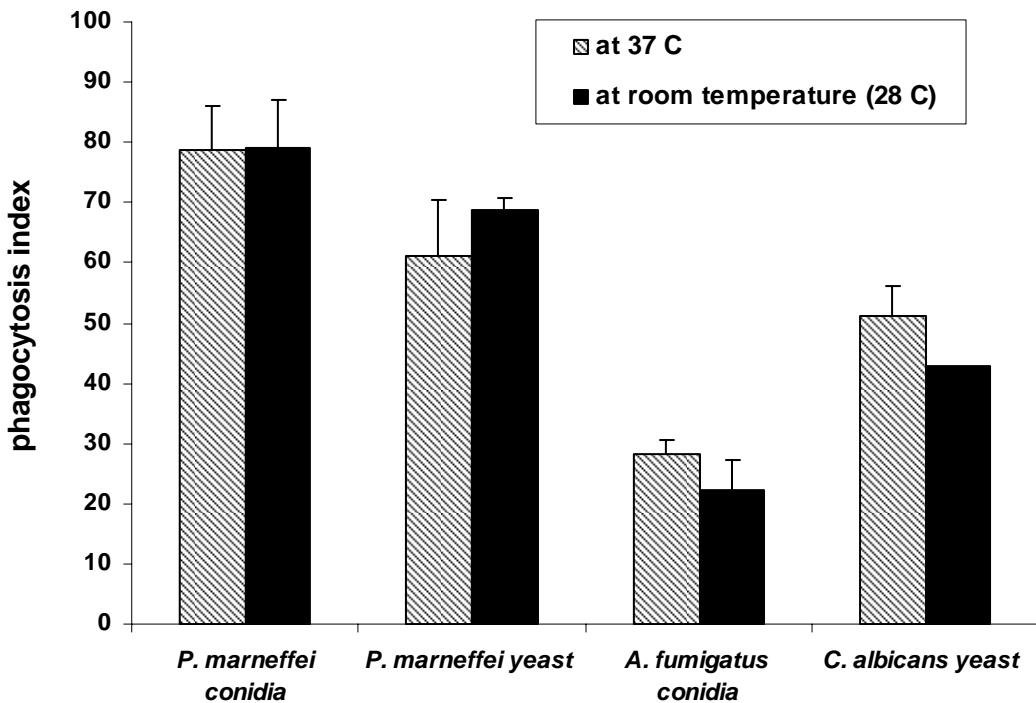

Fig.1. Corresponding Immunofluorescent (a) and light microscopic pictures (b) of 2 h post-incubation of *A. castellanii* with FITC-labeled *P. marneffei* conidia. (Magnifications: x1000)

Fig.2. Corresponding Immunofluorescence (a) and light microscopic pictures (b) of 2 h post-incubation of *A. castellanii* with FITC-labeled *A. fumigates* conidia. (Magnifications: x1000)

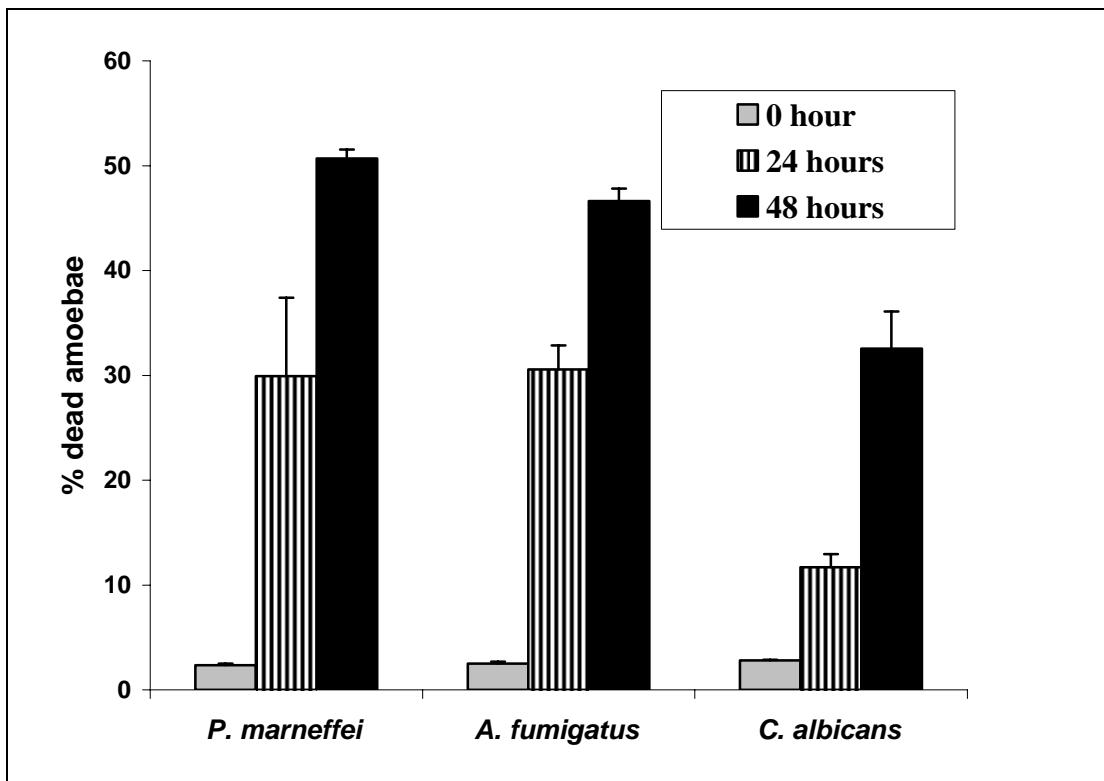

Fig. 3. Corresponding Immunofluorescent (a) and light microscopic pictures (b) of 24 h post-incubation at 37 °C of *A. castellanii* with FITC-labeled *P. marneffei* conidia. The scale bars represented 5 μ m.

Fig. 4. Phagocytosis of *P. marneffei*, *A. fumigatus* and *C. albicans* cells by *A. castellanii* ATCC 30324 at different temperature. Bars represent the phagocytic index by amoebae either at 37 °C (hatched bars), or at room temperature (28 °C) (solid bars), and each bar denotes one standard deviation. The phagocytosis index was determined by counting the total number of *A. castellanii* with internalized conidia per 100 *A. castellanii* cells.

2. Amoebae are killed by *P. marneffei*, *A. fumigatus*, and *C. albicans*.

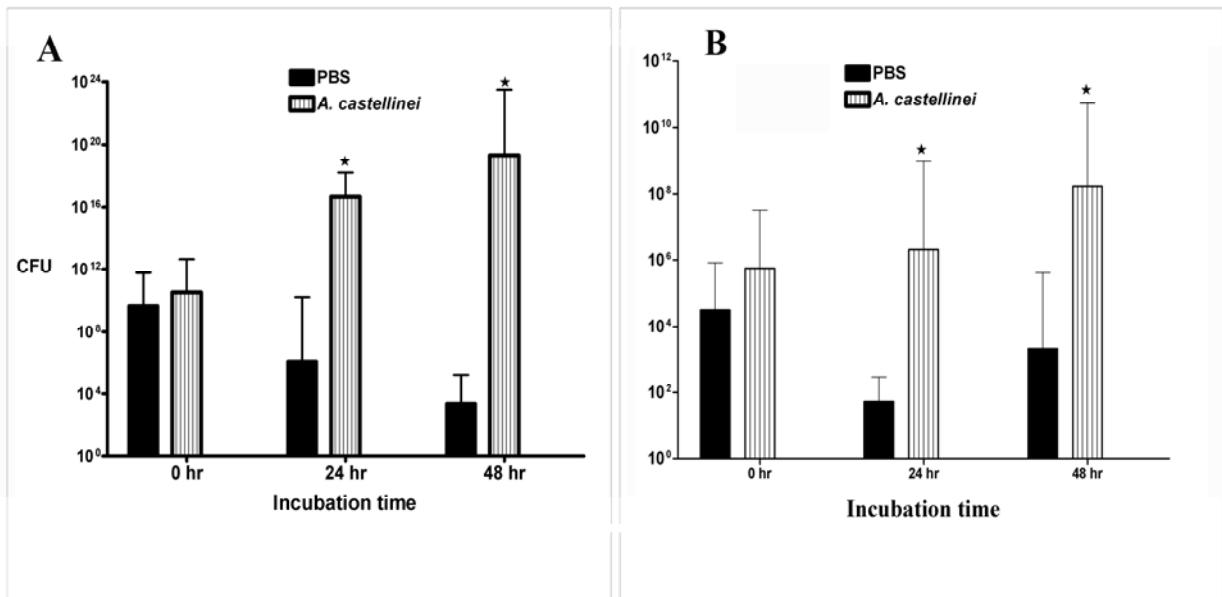

Trypan blue exclusion assays were used to determine the percentage of amoebae alive after incubation with the fungi. The results, depicted in Fig.5, have shown that a significant proportion of amoebae exposed to *P. marneffei*, *A. fumigatus*, or *C. albicans* were killed. At the beginning of the assay, 99% of the amoebae were alive and excluded the dye. At 48 h, more than 50% of amoeba cells were no longer viable, as indicated by incapacity to exclude dye. *P. marneffei* and *A. fumigatus* killed 30 to 50 % of *A. castellanii* cells. *P. marneffei* had the highest killing rate of 50.68% compared to other fungi, *A. fumigatus* and *C. albicans*. In addition, *C. albicans* had the lowest killing rate of 32.54 % at 48 h. The amoeba death occurred within the first 24 h for all the isolates and continued to cause amoeba death through 48 h.

Fig. 5. The percentage of dead amoebae (*A. castellanii*) after incubation with three different fungi, *P. marneffei*, *A. fumigatus*, and *C. albicans*. Amoeba cell viability was interfered by the ability of the cell to exclude trypan blue dye. Error bars each denote one standard deviation.

3. Growth of *P. marneffei* and *C. albicans* in presence of *A. castellanii*.

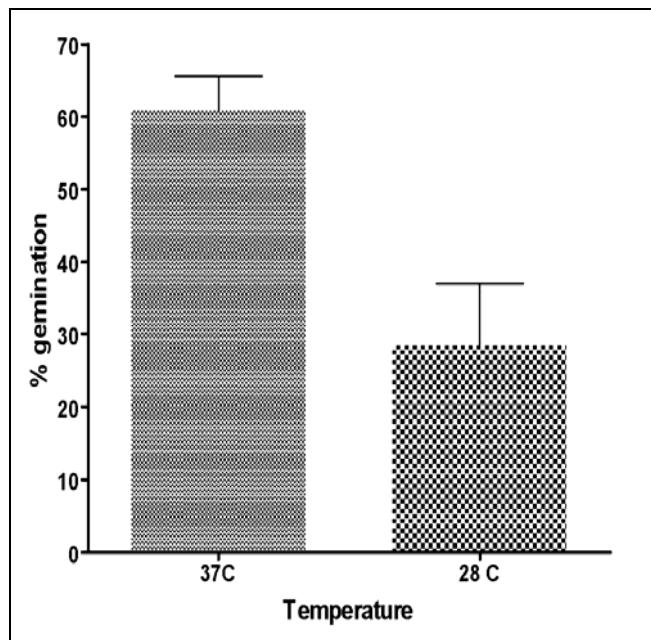
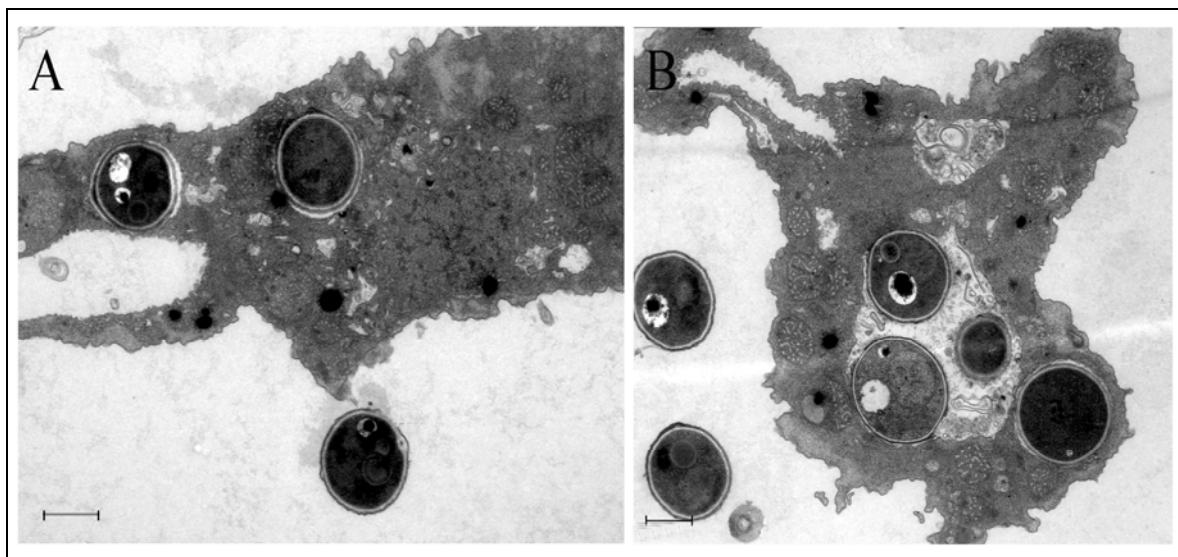
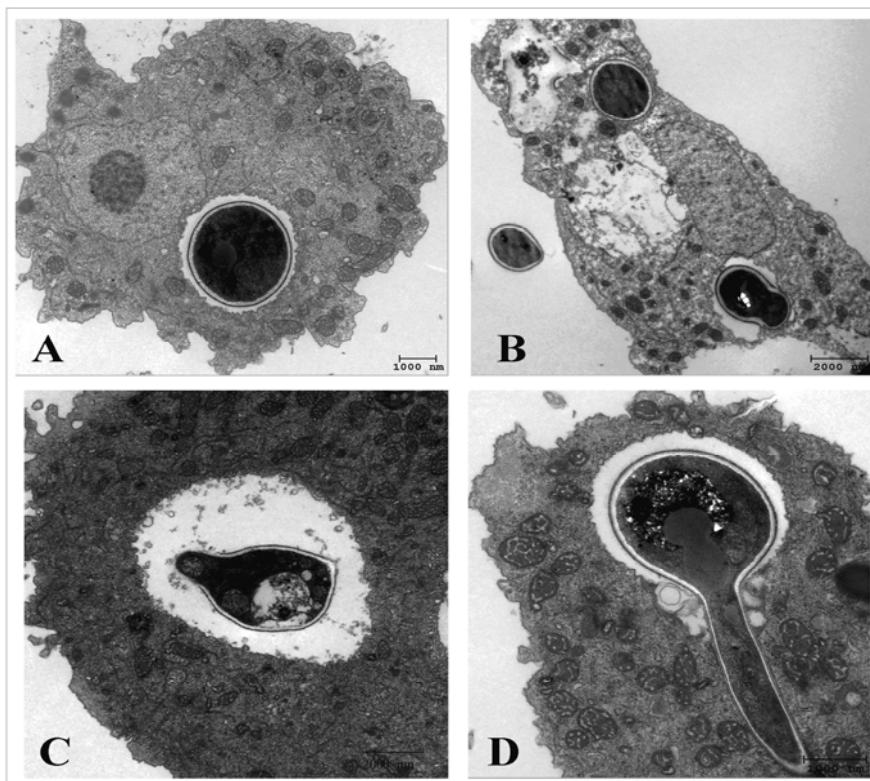

Neither fungi nor amoebae replicated significantly when incubated in PBS alone, probably as a result of nutritional starvation. Incubation of *P. marneffei* with amoeba cells resulted in significant CFU increases ranging between 2- to 16-fold when incubated for 24 to 48 hours (Fig.6A). Increases in CFU for *P. marneffei* in the presence of amoebae at 48 h were significant compared to the fungi alone ($P \leq 0.001$). For *C. albicans*, incubation with *A. castellanii* resulted in threefold increase in CFU compared to PBS-alone condition at 24 and 48 hours (Fig.6B). Initial numbers of CFU changed, since the experiment with all fungi was done simultaneously. Each experiment was done at least twice with similar results.

Fig. 6. Fungal cell counts after incubation with or without amoebae in PBS at room temperature (28°C). Bars represent CFU at different times: solid bars denote CFU at 0 h and hatched bars denote CFU at 48 h. The error bars each represent one standard deviation. There are significant differences ($P \leq 0.05$) in *P. marneffei* (A) or *C. albicans* (B) incubated with amoebae and in PBS at 24 and 48 h.

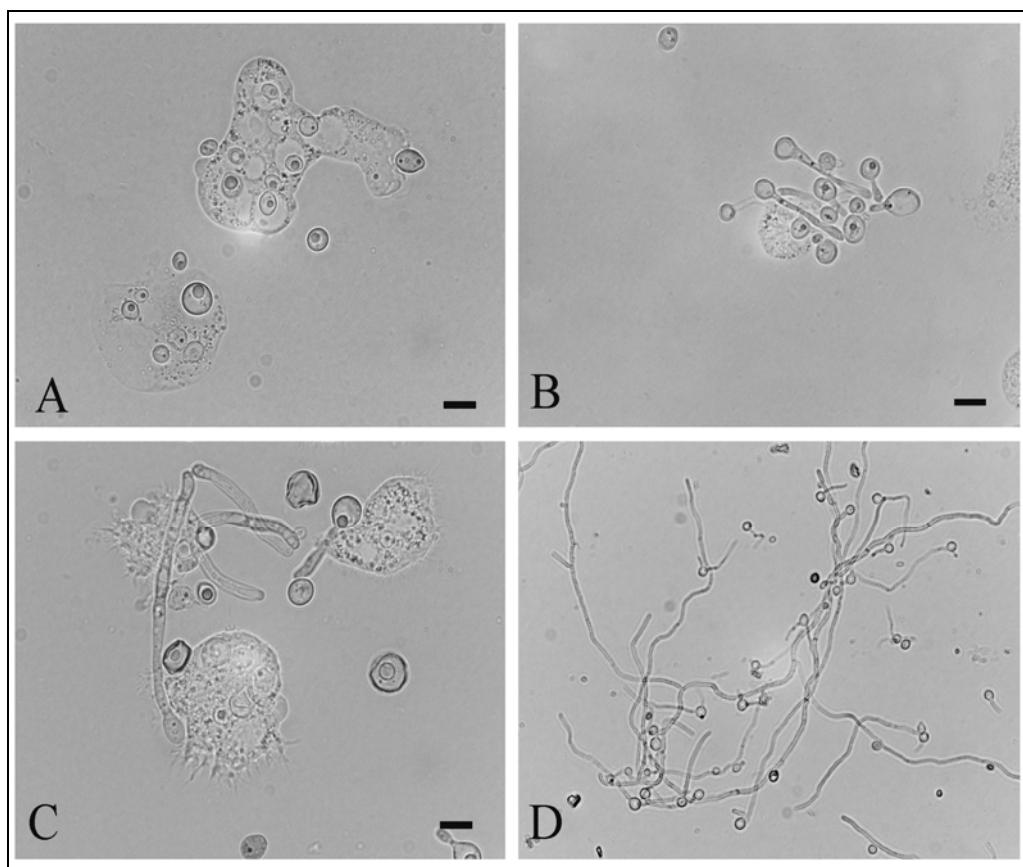
4. Germ tube formation.

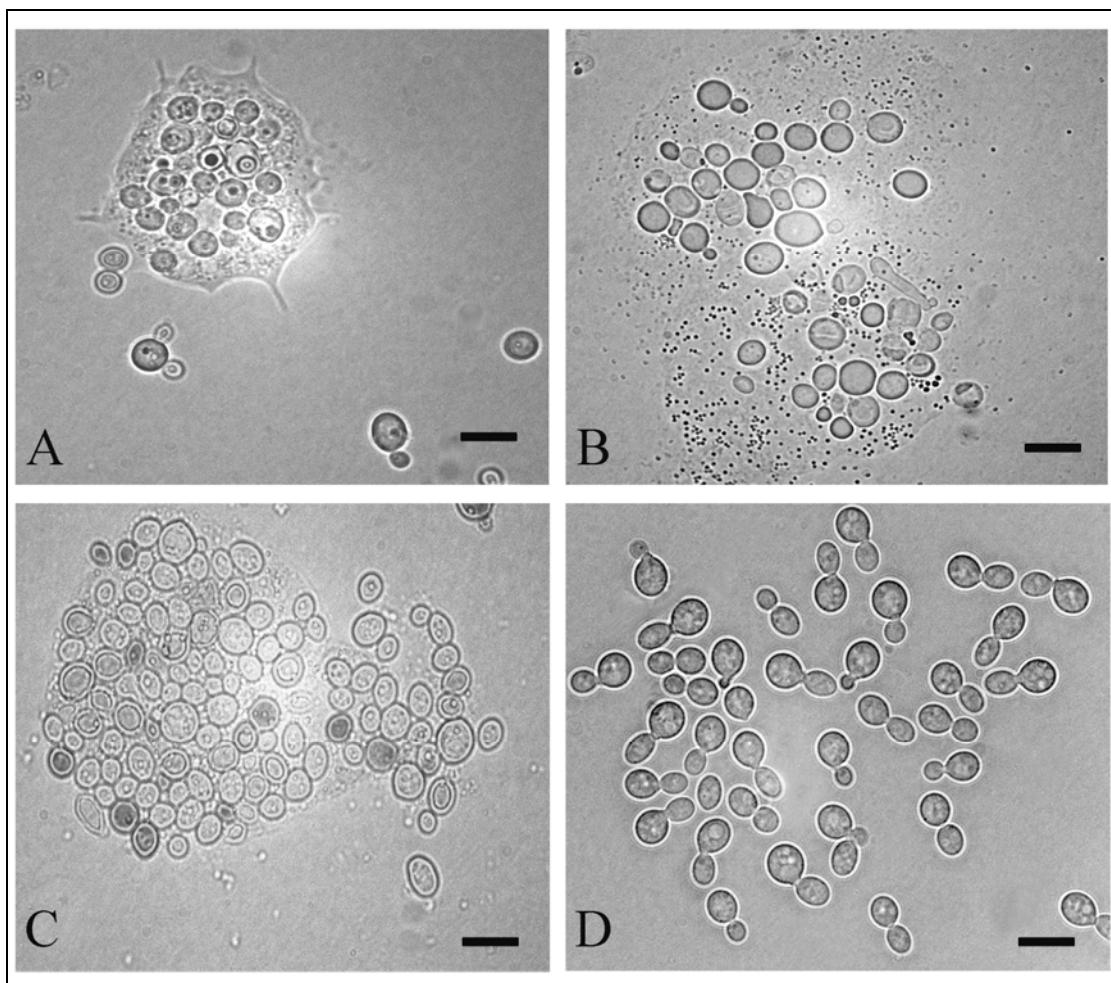

Incubation of *C. albicans* with amoeba cells resulted in germ tube formation at both room (28°C) temperature and 37 °C (Fig.7). The percentages of germ tube production were found 28.42% and 60.79 % at room temperature and 37°C, respectively (Fig.7). The germ tube production was significantly higher at 37°C compared to room temperature (28°C) ($p \leq 0.0001$). However, *C. albicans* was incapable to produce germ tube in PBS in either 28°C or 37°C (data not shown).


Fig 7. Comparison the percentage of germ tube formation of *C. albicans* within *A. castellanii* after incubation at 37 °C and 28 °C for 2 hours.

5. Electron microscopy of amoeba-fungus interactions.

TEM was used to demonstrate that amoebae internalized *P. marneffei* conidia after incubation 30 min and 2 h (Fig. 8A,B). The conidia enclosed in membrane bound vesicles inside *A. castellanii*. In addition, the interaction between *C. albicans* and amoebae was studied by TEM showing multiple contacts with yeast cells and amoeba during phagocytosis (Fig.9). *C. albicans* is phagocytosed and encircled in membrane-bound vacuoles (Fig.9A,B). Several amoebae had more than one internalized yeast cell indicative of either separate phagocytic events or intracellular replication. Within 24 h, yeast cells of *C. albicans* exposed to amoebae were internalized into phagocytic vacuoles (Fig. 9A,B). The internalized yeast cells were starting germination to form germ tube after incubated at 37°C for 2 h (Fig. 9C,D). However, *C. albicans* incubated in PBS in either room temperature or 37°C remained yeast cells. Growth of *C. albicans* correlated with the increasing number of the death amoeba. Surprisingly, germ tube formation in *C. albicans* was found at room temperature when phagocytosed into amoeba, although the percentage of germ tube was lower than found at 37°C.


Fig. 8. Transmission electron micrographs of *P. marneffei* interacted with *A. castellanii* after incubation at room temperature (28°C) for 30 min (A) and 2 h (B). The scale bars represented 1μm.


Fig. 9. Transmission electron micrographs of *C. albicans* within *A. castellanii* at 2 h after incubation at 37°C. Yeast cells in a membrane-bound vacuole surrounding the fungal cell 2 h post incubation (A and B). *C. albicans* started producing germ tube in amoeba (C and D). The scale bars shown in panel A was 1 μm while B, C and D were 2 μm.

6. Interaction of *C. albicans* with *A. castellanii* at different temperature.

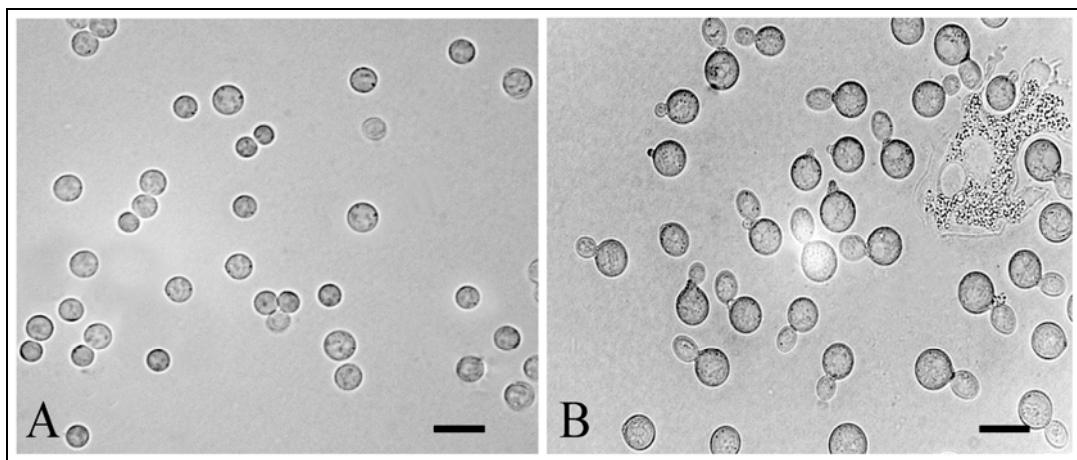

Fig 10 showed the interaction of *C. albicans* and amoebae at 37 °C, germ tube formation was seen after incubated for 2 h (Fig. 10B). Then, the germ tube was transformed to short filament and hyphae in 24 h (Fig. 10C) and 48 h (Fig. 10D). In contrast, *C. albicans* incubated with amoebae at room temperature infrequently found germ tube, but exhibited an increase in buds of yeast cells over time (Fig. 11). *C. albicans* incubated in PBS alone was included in the experiment as negative control. For negative control, *C. albicans* incubated in PBS only was included in the experiment (Fig.12).

Fig. 10. Transformation of *C. albicans* from yeast forms to hyphal or filament forms at 37°C. Micrograph illustrating an internalized *C. albicans* yeast cells surrounded by a membrane-bound vacuole after 30 min cocultures with *A. castellanii* (A). Germ tubes were produced after 2 h incubation with amoebae (B) and 24 h (C). Micrograph depicting morphology changes of yeast cells after 48 h of incubation with amoebae illustrating hyphal forms of *C. albicans* (D). Bars represent 5 μ m.

Fig. 11. Interaction of *C. albicans* with amoebae at room temperature (28°C). The amoebae phagocytosed *Candida* yeast cells after 30 min (A) and 2 h (B) of incubation. Micrograph depicting yeast cells of *C. albicans* in proximity to an amoeba cell after 24 h (C) and 48 h (D) of incubation. Bars represent 5 μ m. found internalized by *A. castellanii*

Fig. 12. Interaction of *C. albicans* with *A. castellanii* at room temperature (28 °C) after 48 h of incubation in PBS (A) and with *A. castellanii* (B). Bars represent 5 μm.

D. DISCUSSION

Amoebae represent a major class of environmental predators in soils and may exert potential selection pressures on environmental populations to generate variants with the potential for mammalian pathogenicity (Mylonakis *et al.*, 2002, Steenbergen *et al.*, 2003). Early studies in the 1970s suggested that a particular type of amoebae, *Acanthamoebae polyphaga*, could be predatory for *C. neoformans*, but the interaction was not depicted at the cellular level (Bunting *et al.*, 1979). In fact, the interaction between *C. neoformans* and *A. castellanii*, a soil amoeba that feeds on bacteria and fungi was analyzed in detail (Steenbergen *et al.*, 2001, 2003, Malliaris *et al.*, 2004 Chrisman *et al.*, 2010). Given the recent observation that other dimorphic fungi, *H. capsulatum*, *B. dermatitidis*, and *S. schenckii* are capable of nonlytic exocytosis from mammalian phagocytic cells (Steenbergen *et al.*, 2004), we investigated whether similar phenomena occurred following ingestion of *P. marneffei* and *C. albicans* by *A. castellanii*. *P. marneffei* was readily ingested by *A. castellanii*, and the interaction between the fungal and amoeboid cells resulted in the death of the host cell and proliferation of the fungal cells.

P. marneffei is a thermally dimorphic fungus which can convert from yeast to mycelial form depending on temperature. Hence, this fungus believed to survive in the soil as distinct, multibranched, mycelial form, but this has not been directly demonstrated. We investigated the interaction of *A. castellanii* with *P. marneffei* to demonstrate that *A. castellanii* can serve as a host system for *P. marneffei*. Our results found that *A. castellanii* can ingest *P. marneffei* resulted in amoebae death which found 37.4% and 50.68 % at 24 and 48 hours, respectively. The result revealed a reduction in viable amoebae and indicated that *P. marneffei* was competent to kill amoeba and exploited them for food. Additionally, *P. marneffei* can reproduce only in the presence of amoebae which similar to the previous study of other dimorphic fungi, *H. capsulatum*, *B. dermatitidis*, and *S. schenckii* (Steenbergen *et al.*, 2004).

Electron microscopy revealed that both *P. marneffei* and *C. albicans* were enclosed in a membrane-bound vacuole after ingestion by amoebae. For these fungi, internalized fungal cells can exploit the amoebae after ingestion and possibly gain nutrients by feeding from the remains of the killed host cells. Thus, the mechanism of killing of amoeba cells required contact between the fungal and amoeba cells.

Several human pathogenic yeasts like *C. albicans*, *C. neoformans* may persist as viable organisms in natural environment. Lacks of nutrients in natural ecosystem

are often limiting factor for microbial population. In our study was showed *C. albicans* was able to get nutrients by feeding on amoeba. *C. albicans* can survive in different water including fresh or sea water for a long period which may be explained by their autophagie strategy adopted under starvation condition (Mizushima, 2005). It is unsurprised that the interaction between *C. albicans* and amoeboid cells resulted in the death of the host cell and increase of the yeast cells.

Our results demonstrate that *A. castellanii* can serve as a host system for the *P. marneffei* and *C. albicans*. We propose that phagocytic predators in the environment apply selective pressures, which favor fungal attributes that confer survival advantages in animal hosts. We do not exert that amoebae are the sole selective pressure for the emergence and maintenance of virulence in the environment. Clearly, the ability to grow at 37°C would seem to be an important requirement for mammalian virulence. In fact, previous studies suggest that nematodes (Mylonakis *et al.*, 2002) and slime molds (Steenbergen *et al.*, 2003) could provide additional selection pressures for the acquisition of virulence factors. Bacteria may also contribute to the selection of traits associated with mammalian pathogenesis (Cirillo *et al.*, 1997). Furthermore, we note that there are many types of amoebae, and it is possible that other amoeboid species are able to efficiently kill these fungi. However, the similarity of interactions between amoebae and macrophages and the observation that fungal virulence can be enhanced by exposure to amoebae strongly link these phagocytic predators to the phenomenon of fungal virulence for animals.

In summary, we purpose a possible mechanism by which the need for survival against environmental predator, *A. castellanii* has resulted in the acquisition of characteristics by *P. marneffei* and *C. albicans* that can also function as virulence factors for animals. In addition, the interaction of *A. castellanii* and *P. marneffei* is implied to the evolutionary bases for virulence factor development and maintenance.

Chapter III

Conclusion

We presented the interaction of *P. marneffei*, *A. fumigatus* and *C. albicans* with soil amoeba, *A. castellanii* in different conditions. For these fungi, internalized fungal cells can exploit the amoebae after ingestion and possibly acquire nutrients by feeding from the remains of the killed host cells. *P. marneffei* can convert to fission yeast when interacted with *A. castellanii* at 37°C for 24 h. In addition, *C. albicans* was capable to produce germ tube after phagocytosis within amoeba in both room temperature and 37°C. Our results are consistent with the view that soil amoebae may contribute to the selection and maintenance of certain traits in *P. marneffei*, pathogenic dimorphic fungus and *C. albicans* that confer on these microbes the capacity for virulence in mammals.

Chapter IV

Output

A manuscript entitle “Interaction of *Penicillium marneffei* and *Candida albicans* with environmental amoebae enhances virulence” is in preparation. The manuscript will be submitted to a Journal of FEMS MICROBIOL ECOL, impact factor 3.408 (Year 2011).

E. REFERENCE

1. **Assislopes, L., De Faia, MM., & Van Uden N.** 1956. Isolation of *Candida albicans* from vegetable sources. *J Gen Microbiol.* **15**:151–153.
2. **Bozue, JA., & Johnson, W.** 1996 Interaction of *Legionella pneumophila* with *Acanthamoeba castellanii*: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. *Infect Immun.* **64**: 668– 673.
3. **Bunting, LB., Neilson, JB., & Bulmer, GS.** 1797. *Cryptococcus neoformans*: gastronomic delight of a soil ameba, *Sabouraudia*. **17**:225–232.
4. **Cánovas, D., & Andrianopoulos, A.** 2007. New Insights in Medical Mycology. The Biology of the Thermally Dimorphic Fungal Pathogen *Penicillium marneffei*, Springer Netherlands, 213-226, 2007
5. **Casadevall, A., & Pirofski, L.** 1999 Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. *Infect. Immun.* **67**: 3703–3713.
6. **Casadevall, A., & Pirofski, L.** 2000 Host–pathogen interactions: the basic concepts of microbial commensalism, colonization, infection, and disease. *Infect. Immun.* **68**: 6511–6518.
7. **Casadevall, A., & Pirofski, LA.** 2007. Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. *Eukaryot. Cell* **6**:2169–2174.
8. **Chaieb, K., Koudhi, B., Zmantar, T., Mahdouani, K., & Bakhrouf, A.** 2011. Starvation survival of *Candida albicans* in various water microcosms. *J Basic Microbiol.* **51**:357–363.
9. **Cirillo, JD., Falkow, S., Tompkins, LS., & Bermudez, LE.** 1997. Interaction of *Mycobacterium avium* with environmental amoebae enhances virulence. *Infect Immun.* **65**:3759–3767.
10. **Chrisman, CJ., Alvarez, M., & Casadevall, A.** 2010. Phagocytosis of *Cryptococcus neoformans* by, and nonlytic exocytosis from, *Acanthamoeba castellanii*. *Appl Environ Microbiol.* **76**:6056–6062.
11. **Cook, WL. & Schlitzer, RL.** 1981. Isolation of *Candida albicans* from freshwater and sewage. *Appl Environ Microbiol.* **41**: 840–842.
12. **Duong, T. A.** 1996. Infection due to *Penicillium marneffei*, an emerging pathogen: review of 155 reported cases. *Clin. Infect. Dis.* **23**:125–130.

13. **Garcia-Solache, M, & Casadevall, A.** 2010. Global warming will bring new fungal diseases for mammals. *mBio*. **1**: e00061–10.
14. **Malliaris, SD., Steenbergen, JN, & Casadevall, A.** 2004. *Cryptococcus neoformans* var. *gattii* can exploit *Acanthamoeba castellanii* for growth. *Med Mycol*. **42**:149–158.
15. **Martinez, AJ, & Visvesvara, GS.** 1997. Free-living, amphizoic and opportunistic amebas. *Brain Pathology*. **7**: 583–598.
16. **Mizushima, N.** 2005. The pleiotropic role of autophagy: from protein metabolism to bactericide. *Cell Death Differ*. **12**: 1535–1541.
17. **Moffat, JF, & Tompkins, LS.** 1992. A quantitative model of intracellular growth of *Legionella pneumophila* in *Acanthamoeba castellanii*. *Infect. Immun.* **60**:296–301.
18. **Mok, WY., Luizão, RC., do Socorro Barreto da Silva, M., Teixeira, MF., & Muniz, EG.** 1984. Ecology of pathogenic yeasts in Amazonian soil. *Appl Environ Microbiol*. **47**:390–394.
19. **Mylonakis, E., Ausubel, FM., Perfect, JR., Heitman, J., & Calderwood, SB.** 2002. Killing of *Caenorhabditis elegans* by *Cryptococcus neoformans* as a model of yeast pathogenesis. *Proc Natl Acad Sci U S A*. **99**:15675–15680.
20. **Nero, LC., Tarver, MG., & Hedrick, LR.** 1964. Growth of *Acanthamoeba castellanii* with the yeast *Torulopsis famata*. *J. Bacteriol*. **87**:220–225.
21. **Steenbergen, JN., Shuman, JN., & Casadevall, A.** 2001. *Cryptococcus neoformans* interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. *Proc. Nat. Acad. Sci. U.S.A.* **18**:15245–15250.
22. **Steenbergen, JN., Nosanchuk, JD., Malliaris, SD. & Casadevall, A.** 2003. *Cryptococcus neoformans* virulence is enhanced after intracellular growth in the genetically malleable host *Dictyostelium discoideum*. *Infect. Immun.* **71**: 4862–4872.
23. **Steenbergen, JN., Nosanchuk, JD., Malliaris, SD., & Casadevall, A.** 2004. Interaction of *Blastomyces dermatitidis*, *Sporothrix schenckii*, and *Histoplasma capsulatum* with *Acanthamoeba castellanii*. *Infect & Immun*, **72**: 3378–3488.
24. **Supparatpinyo, K., Chiewchanvit, S., Hirunsri, P., Uthammachai, C., Nelson, KE. & Sirisanthana, T.** 1992. *Penicillium marneffei* infection in

patients infected with human immunodeficiency virus. *Clin. Infect. Dis.* **14**:871–874.

25. **Valdes-Collazo, L., Schultz, AJ. & Hazen, TC.** 1987. Survival of *Candida albicans* in tropical marine and fresh waters. *Appl Environ Microbiol.* **5**:1762–1767.
26. **Walenkamp, AM., Scharringa, J., Schramel, FM., Coenjaerts, FE., & Hoepelman, IM.** 2000. Quantitative analysis of phagocytosis of *Cryptococcus neoformans* by adherent phagocytic cells by fluorescence multi-well plate reader. *J. Microbiol. Methods.* **40**:39–45.

APPENDIX

A. Culture Media

1. Brain Heart Infusion media (BHI)

This medium was used in the routine culture of yeasts.

Brain heart infusion (Oxoid)	37 g
Agar Bacteriological No.1 (Oxoid)	20 g
Distilled water	1000 ml

The solution was autoclaved for 15 minutes at 121°C and 15 lb pressure.

Media was poured into the Petri-dishes in the same way as SDA and 10 ml of media was poured into 25x150 mm sterile test tubes and allowed to cool and harden on a slant.

For broth culture medium, agar was omitted and 200 ml aliquots were kept in 1000 ml flasks at 4°C before use.

2. Sabouraud's Dextrose Agar (SDA)

This medium was used in routine culture and in sterility controls.

Peptone (Oxoid)	10 g
D-glucose (Sigma)	40 g
Agar Bacteriological No.1 (Oxoid)	20 g
Distilled water	1000 ml

The solution was autoclaved for 15 minutes at 121°C and 15 lb pressure. 15 ml of solution were poured under sterile conditions into 90 mm diameter Petri-dishes (Sterilin, Bibby Sterilin Ltd., Staffordshire, UK) whilst the medium was still hot and allowed to cool and harden at room temperature. Medium was stored after checking for sterility at room temperature and 37°C for a maximum of 4 weeks at 4°C.

3. Malt Extract (ME) agar media

Malt Extract (Oxoid)	20 g
Peptone	10 g
Glucose	20 g
Distilled water	1000 ml

10 ml of solution was poured into 25x150 mm test tubes and then autoclaved for 10 minutes at 110°C and 15 lb pressure. When the medium was still hot, it was cooled and allowed to harden on a slant. The medium was stored (after checking for sterility at room temperature and 37°C) for a maximum of 4 weeks at 4°C. For broth culture medium, agar was omitted and 200 ml aliquots were kept in 1000 ml flasks at 4°C before use.

4. Minimal medium broth pH 5.5

15 mM glucose (Sigma)	2.7 g
10 mM MgSO ₄	2.4 g
29.4 mM KH ₂ PO ₄	4.0 g
13.0 mM glycine (Sigma)	0.97 g
3.0 µM vitamin B1 (Sigma)	0.001 g

The above components were mixed and the pH was adjusted to 5.5 by adding 1.0 M HCl. Aliquots of 200 ml of the minimal medium in 1000 ml flasks were made and autoclaved for 15 minutes at 121°C and 15 lb pressure. The medium was then kept for a maximum of 4 weeks at 4°C.

5. ATCC medium: 712 *Acanthamoeba* medium

Proteose Peptone (BD 211684)	20.0 g
Yeast extract	1.0 g
Agar (if needed)	20.0 g
Distilled water	950.0 ml

Prepare and sterilize separately each of the following components and add directly to the basal medium as indicated below to avoid precipitation:

0.4 M MgSO ₄ . 7H ₂ O	10.0 ml
0.05 M CaCl ₂	8.0 ml
0.1 M Sodium citrate . 2H ₂ O	34.0 ml
0.005 M Fe(NH ₄) ₂ (SO ₄) ₂ . 6H ₂ O	10.0 ml
0.25 M Na ₂ HPO ₄ . 7H ₂ O	10.0 ml
0.25 M KH ₂ PO ₄	10.0 ml

Adjust pH to 6.5. Autoclave 25 minutes at 121°C. Add aseptically:

2 M Glucose (filter-sterilized)	50.0 ml
---------------------------------	---------

Manuscript

Interaction of *Penicillium marneffei* and *Candida albicans* with soil amoeba as a model of fungal pathogenesis

Sirida Youngchim^{1*}, Joshua D. Nosanchuk² and Noungnuch Vanittanokom¹

5 ¹Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai,
6 50200, Thailand, ²Departments of Microbiology and Immunology and Medicine, Albert
7 Einstein College of Medicine, Bronx, New York 10461, USA

8

9

10 *Correspondence:* Dr Sirida Youngchim, Department Microbiology, Faculty of Medicine,
11 ChiangMai University, ChiangMai 50200, Thailand, Tel.: +6653 945332 Ext 412, Fax:
12 +6653 217144
13 e-mails: syoungch@med.cmu.ac.th and syoungchim@gmail.com

14

15

16

17

18

19

30

21 Keywords: *Penicillium marneffei*, *Acanthamoeba castellanii*, Phagocytosis

22

1 **ABSTRACT**

2 *Penicillium marneffei* is an important dimorphic mycosis endemic in Southeast Asia, but the
3 origin and maintenance of virulence in this organism is mysterious. Recently, several
4 pathogenic fungi including *Cryptococcus neoformans*, *Blastomyces dermatitidis*, *Sporothrix*
5 *schenckii*, and *Histoplasma capsulatum* were shown to interact with amoebae in similar
6 behavior, applying that fungal pathogenic strategies may arise from environmental
7 interactions with phagocytic microorganisms. In this study, we examined the interactions of
8 *P. marneffei* and *Candida albicans* with the soil amoeba *Acanthameobae castellanii*. Both *P.*
9 *marneffei* and *C. albicans* were ingested by amoebae, and phagocytosis of fungal cells
10 resulted in amoeba death and fungal growth. Exposure of *C. albicans* to amoebae induced
11 germ tube formation and changed to hyphae at 37°C. These results are consistent with the
12 view that soil amoebae, environmental predators may contribute to the selection and
13 maintenance of certain traits in *P. marneffei* and *C. albicans* that confer on these microbes the
14 capacity for virulence in mammals.

15

16

17

18

19

20

21

22

23

24

25

1 **1. Introduction**

2 Most of human-pathogenic fungi that are attained from the environment dwell in
3 ecological niches defined by soils, trees, and decaying vegetation. Soils are extreme
4 environments, and soil-dwelling microbes must alter to rapidly changing, harsh conditions.
5 Soil microbes occupy an environment where there must be brutal competition for nutrients. In
6 addition to these nutritional and physical stresses, soil-dwelling microbes must cope with
7 predators in the form of amoebae and other protista, which feed on bacteria and fungi.
8 Consequently, soil-dwelling microbes must develop ways to escape phagocytosis and/or
9 survive ingestion through mechanisms for intracellular survival.

10 The amoebae are an extremely diverse group of eukaryotic microorganisms that
11 constitute a major class of phagocytic organisms in soils. *Acanthamoeba* is a free-living,
12 ubiquitous ameba that occurs in trophozoite and cyst stages during its life cycle. In addition,
13 *Acanthamoeba castellanii* is a soil amoeba that feeds on bacteria and fungi that was originally
14 isolated from cultures of *Cryptococcus* neoformans, and has been used to study bacteria–
15 amoeba interactions. Both plant and animal pathogenic fungi that reside in soils and
16 vegetation inhabit extreme environments where they must compete with other microbes,
17 endure extremes of humidity and survive predation by amoeboid organisms and small
18 animals such as nematodes. Hence, both share comparable risks and selection pressures. For
19 several human pathogenic fungi it has been demonstrated that determinants of virulence
20 needed for mammalian pathogenicity are also important for surviving predation by amoeba,
21 slime molds, and nematodes (Steenbergen, *et al.*, 2001; 2003; 2004).

22 *P. marneffei* is unique in its genus in being dimorphism by growing in living tissue or
23 in culture at 37°C as yeast-like organisms (although the latter are more properly described as
24 fission arthroconidia) or in culture at environmental temperatures as a mycelial phase. The
25 ability of *P. marneffei* to grow at 37°C must play a major role in its infectivity (Hamilton,

1 2003). At 37° C *in vitro*, *P. marneffei* is grown as arthroconidia divided by fission to produce
2 yeast cells. The morphology of yeast cells grown in vitro differs from that found *in vivo*
3 (Cánovas & Andrianopoulos, 2007). It depends on the nutrition conditions of culture media
4 which influence the morphology of *P. marneffei* yeast cells (Tongchusak *et al.*, 2004).

5 Most common pathogenic fungi are considerate saprophytic because they are free
6 living and do not require an animal host for propagation. Likewise, several dimorphic fungi
7 are important human pathogens, but the origin and maintenance of virulence in these
8 organisms is mysterious, since an interaction with a mammalian host is not a required for
9 fungal survival. For instance, *Cryptococcus neoformans* was shown to interact with
10 macrophages, slime molds (Steenbergen, *et al.*, 2003) and amoebae (Steenbergen, *et al.*,
11 2001) in a similar manner, suggesting that fungal pathogenic strategies may arise from
12 environmental interactions with phagocytic microorganisms. Since thermally dimorphic fungi
13 are found primarily in the soil, we hypothesized that *A. castellanii*, an environmental
14 phagocytic predators could place selective pressures on *P. marneffei* soil fungi. Here, we
15 investigated the interaction of *P. marneffei* with *A. castellanii*. According to global warming
16 has been assumed to bring about new fungal diseases in the coming century, to understand
17 the mechanisms by which virulence emerges in environmental microbes is necessary (Garcia-
18 Solache, & Casadevall, 2010).

19

20

21

22

1 **2. Materials and methods**

2 **2.1 Organisms and culture conditions.**

3 *Penicillium marneffei* ATCC 200051, *Candida albicans* ATCC 90028, *A. fumigatus*
4 B5233 and *A. castellanii* ATCC 30324 were obtained from American Type Culture
5 Collection (ATCC). *P. marneffei* and *C. albicans* were maintained on Sabouraud dextrose
6 agar (SDA, Difco) at 25°C. For experimental use and routine maintenance, *Acanthamoeba*
7 *castellanii* was cultured as adherent cells in peptone-yeast extract-glucose (PYG) broth
8 (ATCC medium 354) at 28 °C in the dark (Bozue & Johnson, 1996).

9 **2.2 Production of *P. marneffei* and *A. fumigatus* conidia**

10 *P. marneffei* ATCC 200051 was isolated from a bone marrow sample of a patient
11 infected with HIV at Maharaj Nakorn Chiang Mai University, Chiang Mai, Thailand. *P.*
12 *marneffei* was maintained by monthly subculture onto Malt Extract Agar (MEA; Oxoid). *P.*
13 *marneffei* and *A. fumigatus* were grown on MEA for 7-10 days at 25° C, and added 5 ml of
14 sterile PBS onto surface growth; conidia were removed by gentle scraping with a cotton
15 swab. The conidia were collected by filtration through sterile glass wool, centrifuge at 5000 g
16 for 15 min, and then washes three times with sterile PBS. *C. albicans* ATCC 90028 was
17 cultured on Sabouraud dextrose broth for 24 h at 25° C, and then harvested by centrifugation
18 at 5000 g for 15 min and washes 3 times with PBS.

19 **2.3 *Acanthamoeba castellanii*.** *Acanthamoeba castellanii* ATCC 30324 was obtained
20 from the American Type Culture Collection and was maintained routinely at room
21 temperature in PYG broth (ATCC medium 354) as monolayers in 75-cm² tissue culture
22 flasks. *A. castellanii* was harvested by tapping the flasks, centrifuged at 2500 rpm for 10 min,
23 and suspended in fresh distilled water or 0.02 M phosphate-buffered saline (PBS) (0.137 M
24 NaCl, 0.003 M sodium phosphate [pH 7.4]). Cell counts were determined with a

1 hemocytometer with a modified Fuchs-Rosenthal chamber. In addition, *A. castellanii* viability
2 was determined by trypan blue staining, and the initial viability was always greater than 98%
3 (data not shown). Amoebae were subcultured at intervals of 10 days.

4 **2.4 Phagocytosis Assay.** *A. castellanii* cells were removed from tissue culture flasks
5 (Corning, Corning, N.Y.), washed with PBS, and counted with a hemocytometer. The cells
6 were suspended to 10^6 cells/ml in PBS and added to 24-well tissue culture plates at 10^6
7 cells/well and allowed to adhere for 2 h at 28°C before the addition of fungal cells, *P.*
8 *marneffei*, *A. fumigates* and *C. albicans* at a 10:1 effector-to-target ratio. The plates were
9 incubated for 2 h at 28°C and 37°C. The media were aspirated, and the cells were fixed with
10 ice-cold methanol for 30 min at 4°C and washed three times with PBS, stained with Giemsa
11 diluted 1:10 in PBS for 2 h. The plates were viewed with a microscope at 100 magnification,
12 and four wells per experimental condition were used to ascertain the percentage of
13 phagocytic cells. The phagocytic index is the number of *A. castellanii* with internalized yeast
14 per 100 amoebae (Steenbergen *et al.*, 2001).

15 **2.5 Fungal killing assays.** *A. castellanii* cells were removed from tissue culture flasks
16 (Corning, Corning, N.Y.), washed with PBS, and counted with a hemocytometer. The cells
17 were suspended to 10^5 cells/ml in PBS, and 100 μ l was added to 96-well tissue culture plates.
18 The plates were incubated at 37°C for 2 h prior to adding fungal cells to allow for *A.*
19 *castellanii* acclimation. *A. castellanii* viability was determined by trypan blue staining, and
20 the initial viability was always greater than 98% (data not shown). *P. marneffei* conidia were
21 washed, harvested, and suspended in PBS, and cell numbers were determined with a
22 hemocytometer. Fungal cells were added to the acclimated cultures of *A. castellanii* at a 1:10
23 effector-to-target ratio and incubated at 37°C. At 0, 24, and 48 h, the number of viable yeast
24 cells was determined by CFU. At each time interval, the 24-well plates were placed on ice for
25 10 min to loosen the cells from the bottoms of the plates. The *A. castellanii* cells were lysed

1 by shear stress induced by pulling the suspension through a 27-gauge needle five to several
2 times (Moffat & Tompkins, 1992). Fungal viability was unaffected by this procedure, as
3 determined by comparison of initial hemocytometer determinations and CFU counts. For
4 each well, serial dilutions were plated onto BHI agar plates, which were then incubated at
5 37°C for 48 h. At each time, a minimum of 4 tissue culture wells per isolate were used to
6 determine CFU, and each experiment was repeated at least one time. Conidial killing assays
7 were performed as described above with two differences.

8 **2.6 Amoeba killing.** Trypan blue exclusion assays were applied to determine the number
9 of viable *A. castellanii* cells at time interval, 0, 24, and 48 h. Amoebae and fungal cells, *P.*
10 *marneffei*, *A. fumigatus* and *C. albicans* were incubated in PBS in 24-well tissue culture
11 plates at a 1:10 ratio. At each time interval, the medium was aspirated and the cultures were
12 incubated with a 1:10 dilution of trypan blue in PBS. The 24-well plates were viewed at a
13 magnification of X100, and the percentage of dead amoebae was determined by counting the
14 number of amoeba cells unable to exclude the dye per total amoebae counted. At each time
15 interval, five wells per culture condition were counted and experiments were repeated at least
16 one additional time.

17 **2.7 Germ tube formation.** *A. castellanii* cells were removed from tissue culture flasks,
18 washed with PBS, and counted with a hemocytometer. The cells were suspended to 10^6
19 cells/ml in PBS, and 1ml was added to eight-chamber glass culture slides (SPL Lifescience,
20 Korea). The plates were incubated at 37°C for 2 h prior to adding fungal cells to allow for *A.*
21 *castellanii* acclimation. *A. castellanii* viability was determined by trypan blue staining, and
22 the initial viability was always greater than 98% (data not shown). *C. albicans* were
23 suspended at 10^7 cells/ml, which confirmed by CFU determination on SDA plates at 28°C. *C.*
24 *albicans* were added to the acclimated cultures of *A. castellanii* at a 1:10 effector-to-target
25 ratio and incubated at 28 and 37°C for 24 hours. The germ tube germination was calculated

1 by counting the total number of *C. albicans* (in both of germination and non germination of
2 yeast cells). Five wells were counted per experimental condition, and each experiment was
3 repeated. *C. albicans* incubated in PBS alone was included in the experiment as negative
4 control.

5 **2.8 Transmission electron microscopy (TEM).** TEM was used to examine the
6 intracellular compartment of *P. marneffei* and *C. albicans* within *A. castellanii*. Plastic
7 adherent *A. castellanii* monolayer containing 2×10^6 /well in 24-well tissue culture plate was
8 infected with *P. marneffei* or *C. albicans* at a multiplicity of infection (MOI) of 10. After 2
9 hours of incubation at 37 °C, amoeba infected with *C. albicans* was removed by using rubber
10 policeman and fixed with 2.5 % glutaraldehyde in 0.1 M cacodylate at room temperature
11 overnight. The sample was prepared for electron microscopy by previous described
12 (Steenbergen *et al.*, 2001). The samples were mounted with gold–palladium, and viewed in a
13 Transmission Electron Microscope JEOL JEM-2010.

14 **2.9 Interaction of *C. albicans* with *A. castellanii* at different temperature.** To
15 investigate the effect of temperature, *C. albicans* was incubated with *A. castellanii* at
16 different temperature, 28°C and 37°C for variable time. Amoebae and fungal cells were
17 incubated in PBS in eight-chamber glass culture slides at a 1:10 ratio. At each time point, the
18 medium was aspirated, wells were washed with PBS, and fixed with 1% paraformaldehyde at
19 4°C for 30 min. Coverslips were mounted with a mounting solution of 0.1% *n*-propyl gallate
20 and 50% glycerol in PBS, and the slides were viewed at a magnification of X100 at different
21 time, 30 min, 2, 24 and 48 h.

22 **2.10 Statistical analysis.** Student's *t* test was used for statistical analyses. Both the
23 statistical analysis and the graphs were compiled by two tailed, unpaired Student's *t*-test
24 using Prism 4 software (GraphPad). A *P*-value ≤ 0.05 was considered significant.

1 **3. Results**

2 **3.1 Phagocytosis of fungi by amoebae.**

3 The phagocytosis indexes of *A. castellanii* for *P. marneffei*, *C. albicans* and *A. fumigatus*
4 were investigated (Fig. 1,2). *A. castellanii* was capable to phagocytose each of the fungi. *P.*
5 *marneffei* and *C. albicans* were phagocytosed at significantly higher rates compared to *A.*
6 *fumigatus* in both 37°C and room temperature ($p \leq 0.001$). In addition, the phagocytosis index
7 of *P. marneffei* conidia was found 80% which significantly higher than other fungi, *C.*
8 *albicans* and *A. fumigatus* in both temperature (37°C and 28°C). Based on dimorphic fungus,
9 both yeast cells and conidia of *P. marneffei* were determined the phagocytic indexes. *P.*
10 *marneffei* conidia were phagocytosed by *A. castellanii* at significantly higher rate than yeast
11 cells at 37°C ($p \leq 0.01$). In contrast, the phagocytic indexes of conidia and yeast cells of *P.*
12 *marneffei* were not different when studied at room temperature (28°C).

13 **3.2 Growth of *P. marneffei* and *C. albicans* in presence of *A. castellanii*.**

14 Neither fungi nor amoebae replicated significantly when incubated in PBS alone, probably as
15 a result of nutritional starvation. Incubation of *P. marneffei* with amoeba cells resulted in
16 significant CFU increases ranging between 2- to 16-fold when incubated for 24 to 48 hours
17 (Fig.3A). Increases in CFU for *P. marneffei* in the presence of amoebae at 48 h were
18 significant compared to the fungi alone ($P \leq 0.001$). For *C. albicans*, incubation with *A.*
19 *castellanii* resulted in threefold increase in CFU compared to PBS-alone condition at 24 and
20 48 hours (Fig.3B). Initial numbers of CFU changed, since the experiment with all fungi was
21 done simultaneously. Each experiment was done at least twice with similar results.

22 **3.3 Amoebae are killed by *P. marneffei*, *A. fumigatus*, and *C. albicans*.**

23 Trypan blue exclusion assays were used to determine the percentage of amoebae alive after
24 incubation with the fungi. The results, depicted in 3C , have shown that a significant

1 proportion of amoebae exposed to *P. marneffei*, *A. fumigatus*, or *C. albicans* were killed. At
2 the beginning of the assay, 99% of the amoebae were alive and excluded the dye. At 48 h,
3 more than 50% of amoeba cells were no longer viable, as indicated by incapacity to exclude
4 dye. *P. marneffei* and *A. fumigatus* killed 30 to 50 % of *A. castellanii* cells. *P. marneffei* had
5 the highest killing rate of 50.68% compared to other fungi, *A. fumigatus* and *C. albicans*. In
6 addition, *C. albicans* had the lowest killing rate of 32.54 % at 48 h. The amoeba death
7 occurred within the first 24 h for all the isolates and continued to cause amoeba death through
8 48 h.

9 **3.4 Germ tube formation.**

10 Incubation of *C. albicans* with amoeba cells resulted in germ tube formation at both room
11 (28°C) temperature and 37 °C (Fig. 3D). The percentages of germ tube production were
12 found 28.42% and 60.79 % at room temperature and 37°C, respectively (Fig.3D). The germ
13 tube production was significantly higher at 37°C compared to room temperature (28°C)
14 ($p \leq 0.0001$). However, *C. albicans* was incapable to produce germ tube in PBS in either 28°C
15 or 37°C (data not shown).

16 **3.5 Electron microscopy of amoeba-fungus interactions.**

17 TEM was used to demonstrate that amoebae internalized *P. marneffei* conidia after
18 incubation 30 min and 2 h (Fig. 4A,B). The conidia enclosed in membrane bound vesicles
19 inside *A. catellanii*. In addition, the interaction between *C. albicans* and amoebae was studied
20 by TEM showing multiple contacts with yeast cells and amoeba during phagocytosis (Fig.5).
21 *C. albicans* is phagocytosed and encircled in membrane-bound vacuoles (Fig.5A,B). Several
22 amoebae had more than one internalized yeast cell indicative of either separate phagocytic
23 events or intracellular replication. Within 24 h, yeast cells of *C. albicans* exposed to amoebae
24 were internalized into phagocytic vacuoles (Fig. 5A,B). The internalized yeast cells were

1 starting germination to form germ tube after incubated at 37°C for 2 h (Fig. 5C,D). However,
2 *C. albicans* incubated in PBS in either room temperature or 37°C remained yeast cells.
3 Growth of *C. albicans* correlated with the increasing number of the death amoeba.
4 Surprisingly, germ tube formation in *C. albicans* was found at room temperature when
5 phagocytosed into amoeba, although the percentage of germ tube was lower than found at
6 37°C.

7 **3.6 Interaction of *C. albicans* with *A. castellanii* at different temperature.**

8 Fig 6 showed the interaction of *C. albicans* and amoebae at 37 °C, germ tube
9 formation was seen after incubated for 2 h (Fig. 6B). Then, the germ tube was transformed to
10 short filament and hyphae in 24 h (Fig. 6C) and 48 h (Fig. 6D). In contrast, *C. albicans*
11 incubated with amoebae at room temperature infrequently found germ tube, but exhibited an
12 increase in buds of yeast cells over time (Fig. 7). *C. albicans* incubated in PBS alone was
13 included in the experiment as negative control. For negative control, *C. albicans* incubated
14 in PBS only was included in the experiment (Fig S1).

15

16

17

18

19

20

21

22

23

24

25

1 4. **Discussion**

2 Amoebae represent a major class of environmental predators in soils and may exert
3 potential selection pressures on environmental populations to generate variants with the
4 potential for mammalian pathogenicity (Mylonakis *et al.*, 2002, Steenbergen *et al.*, 2003).
5 Early studies in the 1970s suggested that a particular type of amoebae, *Acanthamoebae*
6 *polyphaga*, could be predatory for *C. neoformans*, but the interaction was not depicted at the
7 cellular level (Bunting *et al.*, 1979). In fact, the interaction between *C. neoformans* and *A.*
8 *castellanii*, a soil amoeba that feeds on bacteria and fungi was analyzed in detail
9 (Steenbergen *et al.*, 2001, 2003, Malliaris *et al.*, 2004 Chrisman *et al.*, 2010). Given the
10 recent observation that other dimorphic fungi, *H. capsulatum*, *B. dermatitidis*, and *S.*
11 *schenckii* are capable of nonlytic exocytosis from mammalian phagocytic cells (Steenbergen
12 *et al.*, 2004), we investigated whether similar phenomena occurred following ingestion of *P.*
13 *marneffei* and *C. albicans* by *A. castellanii*. *P. marneffei* was readily ingested by *A.*
14 *castellanii*, and the interaction between the fungal and amoeboid cells resulted in the death of
15 the host cell and proliferation of the fungal cells.

16 *P. marneffei* is a thermally dimorphic fungus which can convert from yeast to
17 mycelial form depending on temperature. Hence, this fungus believed to survive in the soil as
18 distinct, multibranched, mycelial form, but this has not been directly demonstrated. We
19 investigated the interaction of *A. castellanii* with *P. marneffei* to demonstrate that *A.*
20 *castellanii* can serve as a host system for *P. marneffei*. Our results found that *A. castellanii*
21 can ingest *P. marneffei* resulted in amoebae death which found 37.4% and 50.68 % at 24 and
22 48 hours, respectively. The result revealed a reduction in viable amoebae and indicated that
23 *P. marneffei* was competent to kill amoeba and exploited them for food. Additionally, *P.*
24 *marneffei* can reproduce only in the presence of amoebae which similar to the previous study

1 of other dimorphic fungi, *H. capsulatum*, *B. dermatitidis*, and *S. schenckii* (Steenbergen *et al.*,
2 2004).

3 Electron microscopy revealed that both *P. marneffei* and *C. albicans* were enclosed in
4 a membrane-bound vacuole after ingestion by amoebae. For these fungi, internalized fungal
5 cells can exploit the amoebae after ingestion and possibly gain nutrients by feeding from the
6 remains of the killed host cells. Thus, the mechanism of killing of amoeba cells required
7 contact between the fungal and amoeba cells.

8 Several human pathogenic yeasts like *C. albicans*, *C. neoformans* may persist as
9 viable organisms in natural environment. Lacks of nutrients in natural ecosystem are often
10 limiting factor for microbial population. In our study was showed *C. albicans* was able to get
11 nutrients by feeding on amoeba. *C. albicans* can survive in different water including fresh or
12 sea water for a long period which may be explained by their autophagie strategy adopted
13 under starvation condition (Mizushima, 2005). It is unsurprised that the interaction between
14 *C. albicans* and amoeboid cells resulted in the death of the host cell and increase of the yeast
15 cells.

16 Our results demonstrate that *A. castellanii* can serve as a host system for the *P.*
17 *marneffei* and *C. albicans*. We propose that phagocytic predators in the environment apply
18 selective pressures, which favor fungal attributes that confer survival advantages in animal
19 hosts. We do not exert that amoebae are the sole selective pressure for the emergence and
20 maintenance of virulence in the environment. Clearly, the ability to grow at 37°C would seem
21 to be an important requirement for mammalian virulence. In fact, previous studies suggest
22 that nematodes (Mylonakis *et al.*, 2002) and slime molds (Steenbergen *et al.*, 2003) could
23 provide additional selection pressures for the acquisition of virulence factors. Bacteria may
24 also contribute to the selection of traits associated with mammalian pathogenesis (Cirillo *et*
25 *al.*, 1997). Furthermore, we note that there are many types of amoebae, and it is possible that

1 other amoeboid species are able to efficiently kill these fungi. However, the similarity of
2 interactions between amoebae and macrophages and the observation that fungal virulence can
3 be enhanced by exposure to amoebae strongly link these phagocytic predators to the
4 phenomenon of fungal virulence for animals.

5 In summary, we propose a possible mechanism by which the need for survival against
6 environmental predator, *A. castellanii* has resulted in the acquisition of characteristics by *P.*
7 *marneffei* and *C. albicans* that can also function as virulence factors for animals. In addition,
8 the interaction of *A. castellanii* and *P. marneffei* is implied to the evolutionary bases for
9 virulence factor development and maintenance.

10

11

12 **5. ACKNOWLEDGEMENTS**

13 We would like to thank the Thailand Research fund (TRF) for financial support.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 **6. REFERENCE**

2

3 **1. Assislopes, L., De Faia, MM., & Van Uden N.** 1956. Isolation of *Canidida albicans*
4 from vegetable sources. *J Gen Microbiol.* **15**:151–153.

5 **2. Bozue, JA., & Johnson, W.** 1996 Interaction of *Legionella pneumophila* with
6 *Acanthamoeba castellanii*: uptake by coiling phagocytosis and inhibition of
7 phagosome-lysosome fusion. *Infect Immun.* **64**: 668– 673.

8 **3. Bunting, LB., Neilson, JB., & Bulmer, GS.** 1797. *Cryptococcus neoformans*:
9 gastronomic delight of a soil ameba, *Sabouraudia*. **17**:225–232.

10 **4. Cánovas, D., & Andrianopoulos, A.** 2007. New Insights in Medical Mycology. The
11 Biology of the Thermally Dimorphic Fungal Pathogen *Penicillium marneffei*,
12 Springer Netherlands, 213-226, 2007

13 **5. Casadevall, A., & Pirofski, L.** 1999 Host–pathogen interactions: redefining the basic
14 concepts of virulence and pathogenicity. *Infect. Immun.* **67**: 3703–3713.

15 **6. Casadevall, A., & Pirofski, L.** 2000 Host–pathogen interactions: the basic concepts
16 of microbial commensalism, colonization, infection, and disease. *Infect. Immun.* **68**:
17 6511–6518.

18 **7. Casadevall, A., & Pirofski, LA.** 2007. Accidental virulence, cryptic pathogenesis,
19 martians, lost hosts, and the pathogenicity of environmental microbes. *Eukaryot. Cell*
20 **6**:2169–2174.

21 **8. Chaieb, K., Kouidhi, B., Zmantar, T., Mahdouani, K., & Bakhrouf, A.** 2011.
22 Starvation survival of *Candida albicans* in various water microcosms. *J Basic*
23 *Microbiol.* **51**:357–363.

24 **9. Cirillo, JD., Falkow, S., Tompkins, LS., & Bermudez, LE.** 1997. Interaction of
25 *Mycobacterium avium* with environmental amoebae enhances virulence. *Infect*
26 *Immun.* **65**:3759–3767.

1 **10. Chrisman, CJ., Alvarez, M., & Casadevall, A.** 2010. Phagocytosis of *Cryptococcus*
2 *neoformans* by, and nonlytic exocytosis from, *Acanthamoeba castellanii*. *Appl*
3 *Environ Microbiol.* **76**:6056–6062.

4 **11. Cook, WL. & Schlitzer, RL.** 1981. Isolation of *Candida albicans* from freshwater
5 and sewage. *Appl Environ Microbiol.* **41**: 840–842.

6 **12. Duong, T. A.** 1996. Infection due to *Penicillium marneffei*, an emerging pathogen:
7 review of 155 reported cases. *Clin. Infect. Dis.* **23**:125–130.

8 **13. Garcia-Solache, M, & Casadevall, A.** 2010. Global warming will bring new fungal
9 diseases for mammals. *mBio.* **1**: e00061–10.

10 **14. Malliaris, SD., Steenbergen, JN, & Casadevall, A.** 2004. *Cryptococcus neoformans*
11 var. *gattii* can exploit *Acanthamoeba castellanii* for growth. *Med Mycol.* **42**:149–158.

12 **15. Martinez, AJ, & Visvesvara, GS.** 1997. Free-living, amphizoic and
13 opportunistic amebas. *Brain Pathology.* **7**: 583–598.

14 **16. Mizushima, N.** 2005. The pleiotropic role of autophagy: from protein metabolism to
15 bactericide. *Cell Death Differ.* **12**: 1535–1541.

16 **17. Moffat, JF, & Tompkins, LS.** 1992. A quantitative model of intracellular growth of
17 *Legionella pneumophila* in *Acanthamoeba castellanii*. *Infect. Immun.* **60**:296–301.

18 **18. Mok, WY., Luizão, RC., do Socorro Barreto da Silva, M., Teixeira, MF., &**
19 **Muniz, EG.** 1984. Ecology of pathogenic yeasts in Amazonian soil. *Appl Environ*
20 *Microbiol.* **47**:390–394.

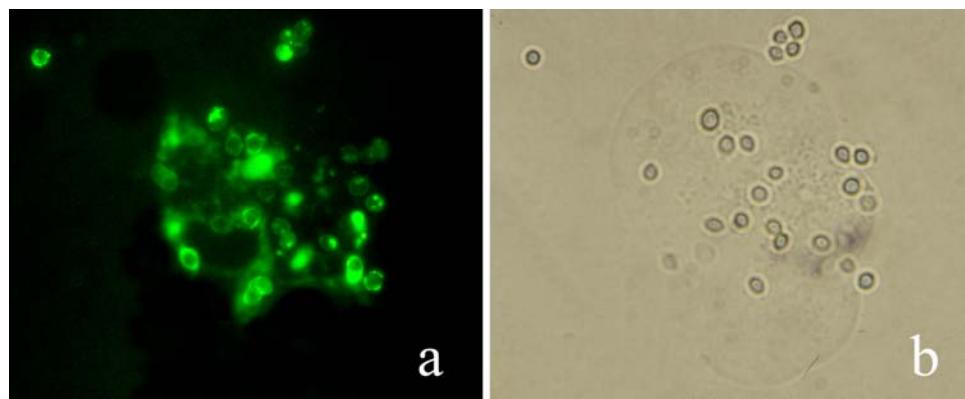
21 **19. Mylonakis, E., Ausubel, FM., Perfect, JR., Heitman, J., & Calderwood, SB.** 2002.
22 Killing of *Caenorhabditis elegans* by *Cryptococcus neoformans* as a model of yeast
23 pathogenesis. *Proc Natl Acad Sci U S A.* **99**:15675–15680.

24 **20. Nero, LC., Tarver, MG., & Hedrick, LR.** 1964. Growth of *Acanthamoeba*
25 *castellanii* with the yeast *Torulopsis famata*. *J. Bacteriol.* **87**:220–225.

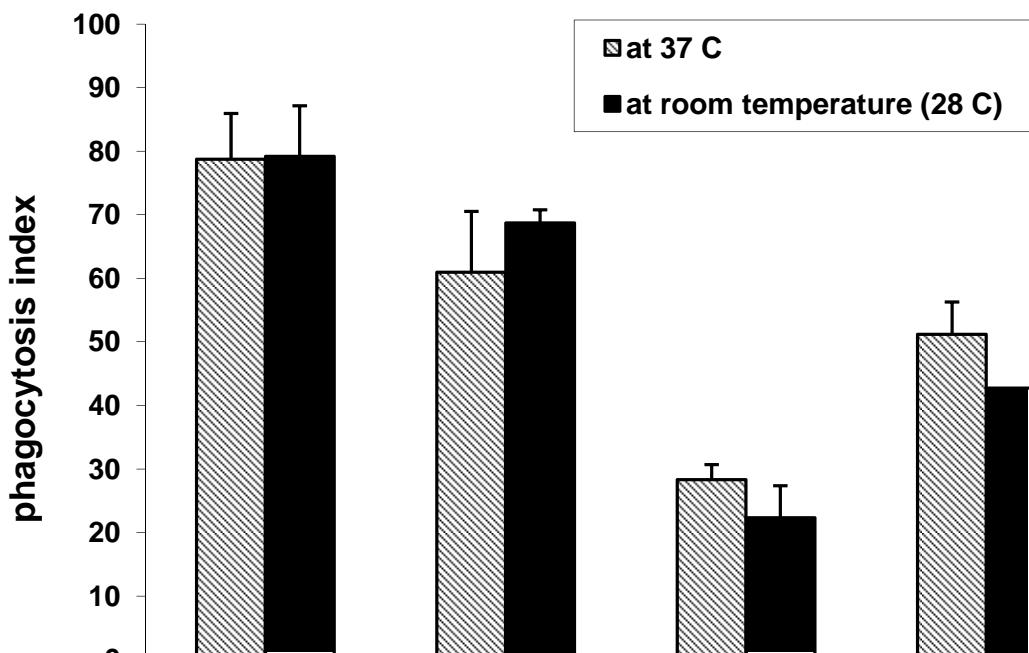
1 **21. Steenbergen, JN., Shuman, JN., & Casadevall, A.** 2001. *Cryptococcus neoformans*
2 interactions with amoebae suggest an explanation for its virulence and intracellular
3 pathogenic strategy in macrophages. *Proc. Nat. Acad. Sci. U.S.A.* **18**:15245–15250.

4 **22. Steenbergen, JN., Nosanchuk, JD., Malliaris, SD. & Casadevall, A.** 2003.
5 *Cryptococcus neoformans* virulence is enhanced after intracellular growth in the
6 genetically malleable host *Dictyostelium discoideum*. *Infect. Immun.* **71**: 4862–4872.

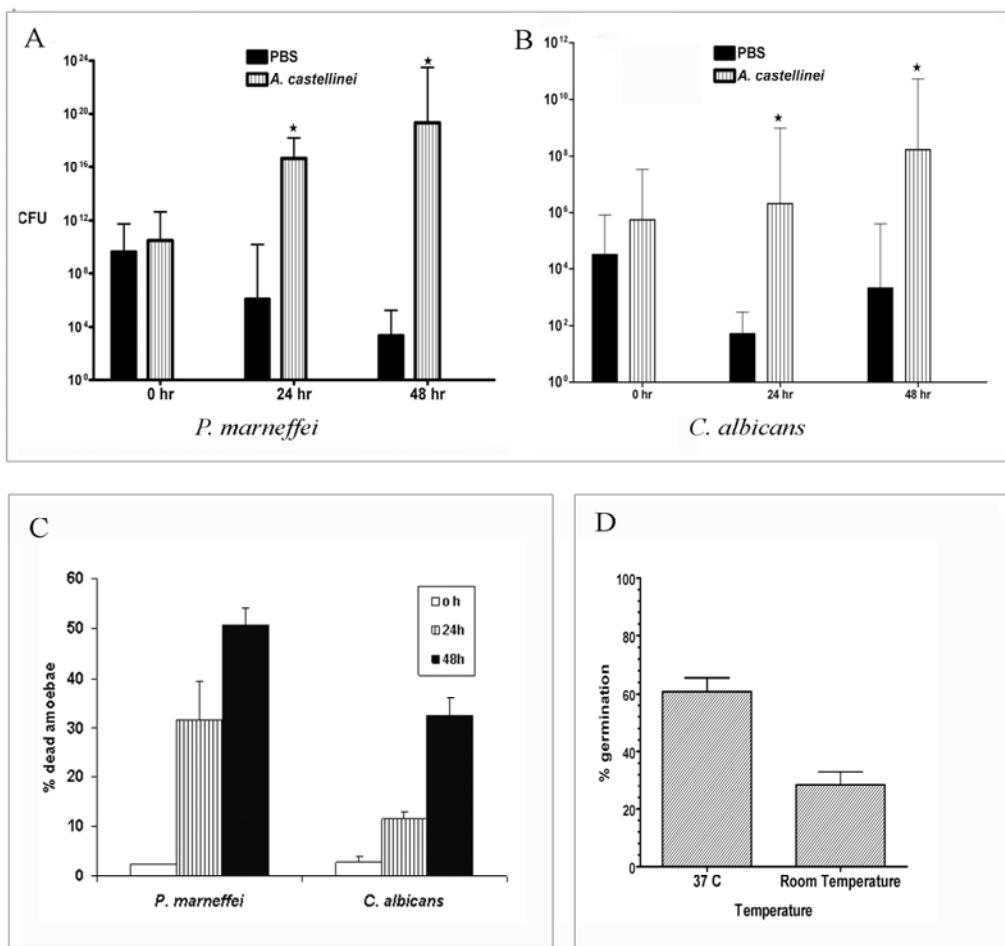
7 **23. Steenbergen, JN., Nosanchuk, JD., Malliaris, SD., & Casadevall, A.** 2004.
8 Interaction of *Blastomyces dermatitidis*, *Sporothrix schenckii*, and *Histoplasma*
9 *capsulatum* with *Acanthamoeba castellanii*. *Infect & Immun.* **72**: 3378–3488.

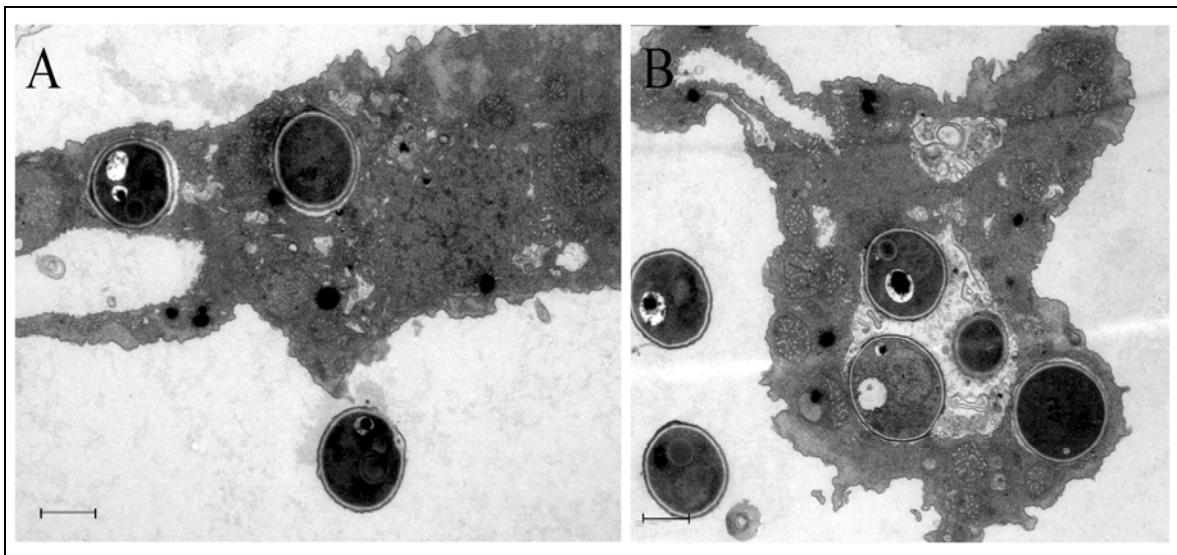

10 **24. Supparatpinyo, K., Chiewchanvit, S., Hirunsri, P., Uthammachai, C., Nelson,**
11 **KE. & Sirisanthana, T.** 1992. *Penicillium marneffei* infection in patients infected
12 with human immunodeficiency virus. *Clin. Infect. Dis.* **14**:871–874.

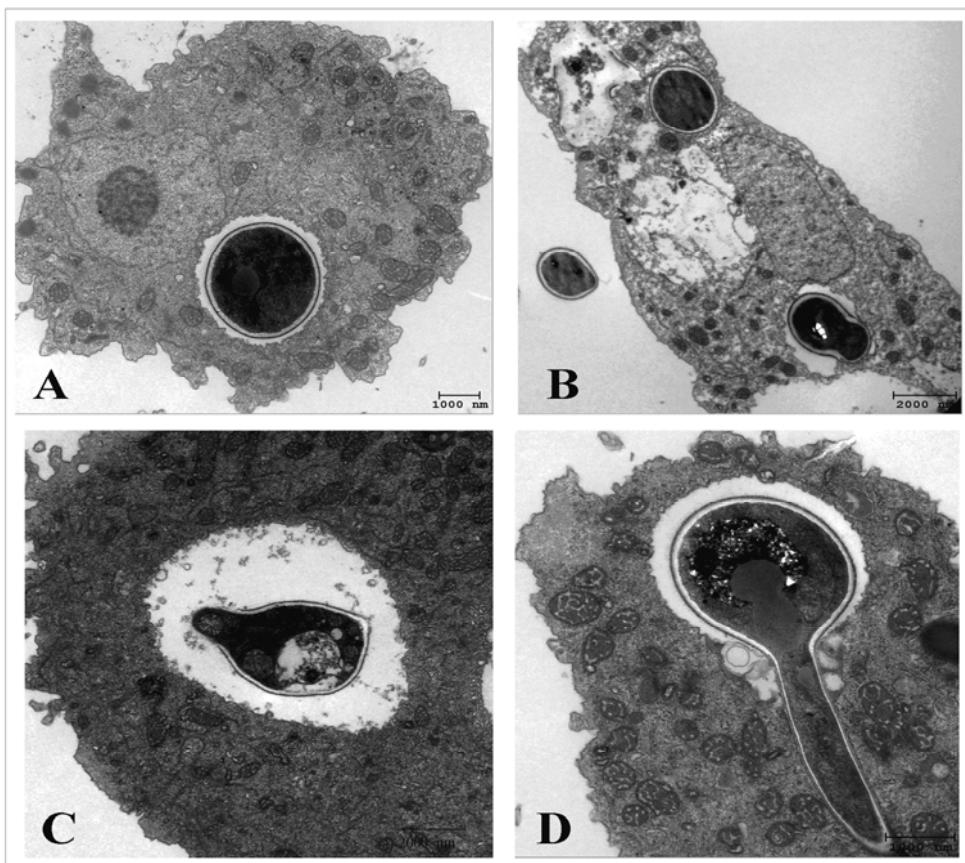
13 **25. Valdes-Collazo, L., Schultz, AJ. & Hazen, TC.** 1987. Survival of *Candida albicans*
14 in tropical marine and fresh waters. *Appl Environ Microbiol.* **5**:1762–1767.

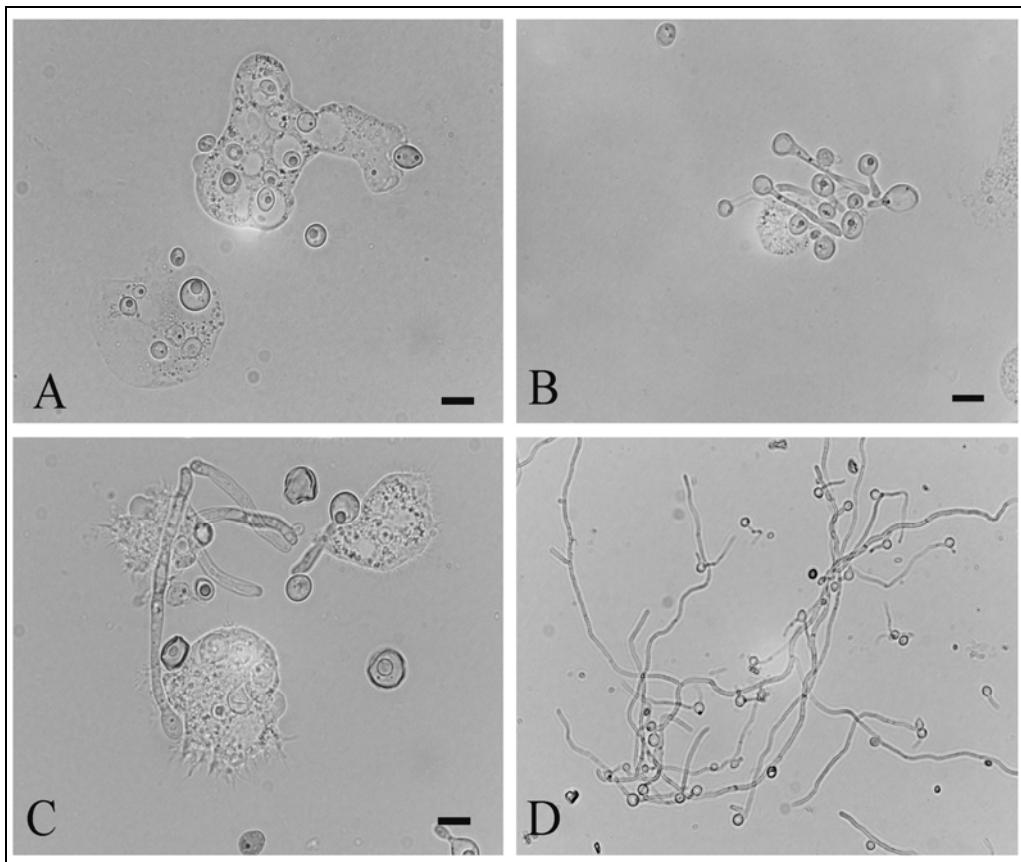

15 **26. Walenkamp, AM., Scharringa, J., Schramel, FM., Coenjaerts, FE., &**
16 **Hoepelman, IM.** 2000. Quantitative analysis of phagocytosis of *Cryptococcus*
17 *neoformans* by adherent phagocytic cells by fluorescence multi-well plate reader. *J.*
18 *Microbiol. Methods.* **40**:39–45.

19


Figure Legends


Fig.1. Corresponding Immunofluorescent(a) and light microscopic pictures (b) of 2 h post-incubation of *A. castellanii* with FITC-labeled *P. marneffei* conidia. (Magnifications: x1000)


Fig. 2. Phagocytosis of *P. marneffei*, *A. fumigatus* and *C. albicans* cells by *A. castellanii* ATCC 30324 at different temperature. Bars represent the phagocytic index by amoebae either at 37 °C (hatched bars), or at room temperature (28 °C) (solid bars), and each bar denotes one standard deviation. The phagocytosis index was determined by counting the total number of *A. castellanii* with internalized conidia per 100 *A. castellanii* cells.


Fig. 3. Fungal cell counts after incubation with or without amoebae in PBS at room temperature (28°C). Bars represent CFU at different times: solid bars denote CFU at 0 h and hatched bars denote CFU at 48 h. The error bars each represent one standard deviation. There are significant differences ($P \leq 0.05$) in *P. marneffei* (A) or *C. albicans* (B) incubated with amoebae and in PBS at 24 and 48 h. (C) The percentage of dead amoebae (*A. castellanii*) after incubation with *P. marneffei* and *C. albicans* at different time points, 0, 24 and 48 h. Amoeba cell viability was interfered by the ability of the cell to exclude trypan blue dye. (D) The germ tube formation of *C. albicans* within *A. castellanii* after incubation at 37°C and 28°C (room temperature) for 2 hours. Data are the means of triplicate wells, and the standard errors are represented by the error bars.

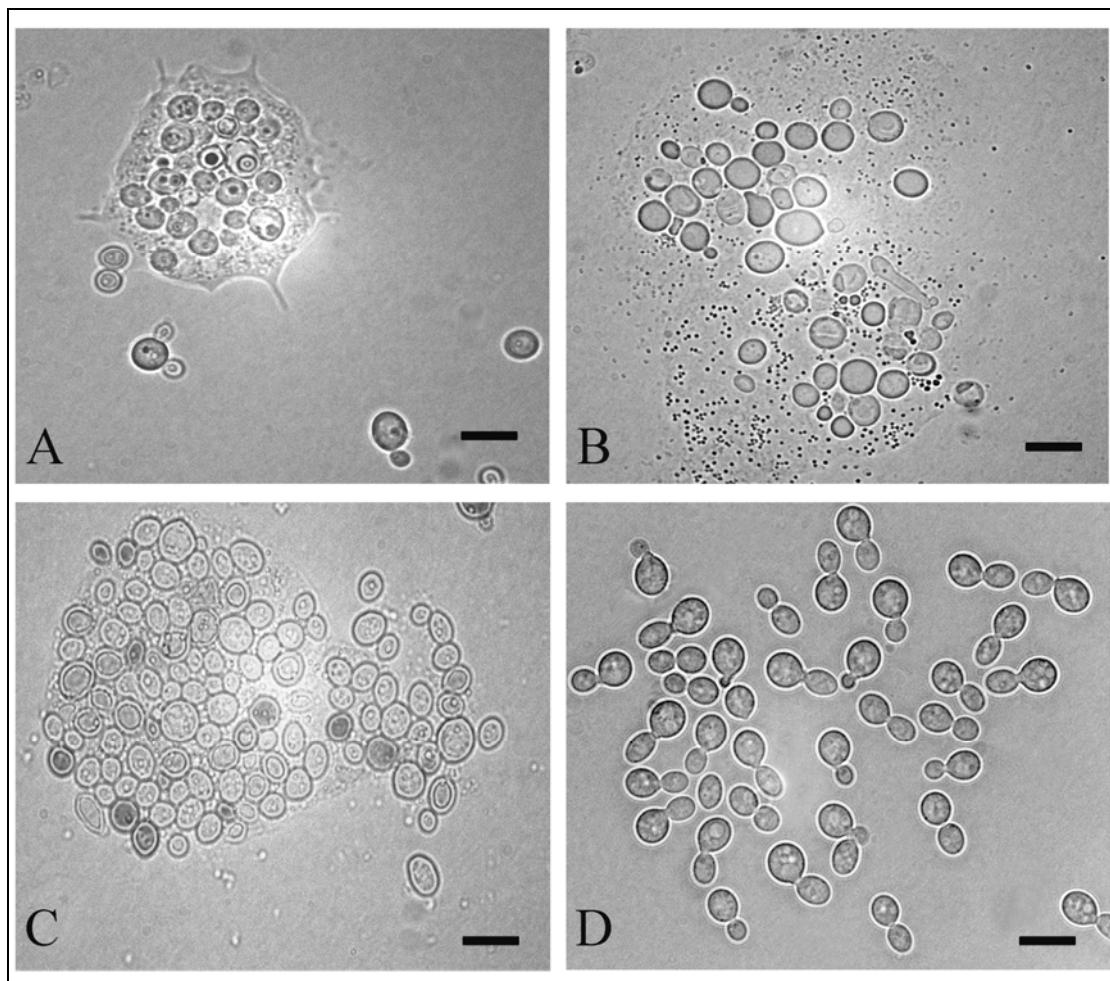

Fig. 4. Transmission electron micrographs of *P. marneffei* interacted with *A. castellanii* after incubation at room temperature (28°C) for 30 min (A) and 2 h (B). The scale bars represented 1μm.

Fig. 5. Transmission electron micrographs of *C. albicans* within *A. castellanii* at 2 h after incubation at 37°C. Yeast cells in a membrane-bound vacuole surrounding the fungal cell 2 h post incubation (A and B). *C. albicans* started producing germ tube in amoeba (C and D). The scale bars shown in panel A was 1 μ m while B, C and D were 2 μ m.

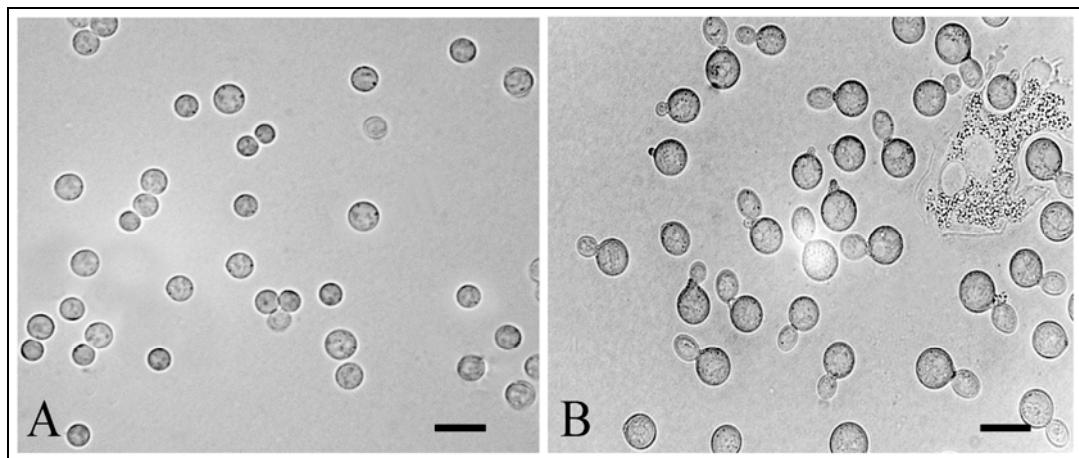


Fig. 6. Transformation of *C. albicans* from yeast forms to hyphal or filament forms at 37°C. Micrograph illustrating an internalized *C. albicans* yeast cells surrounded by a membrane-bound vacuole after 30 min cocultures with *A. castellanii* (A). Germ tubes were produced after 2 h incubation with amoebae (B) and 24 h (C). Micrograph depicting morphology changes of yeast cells after 48 h of incubation with amoebae illustrating hyphal forms of *C. albicans* (D). Bars represent 5 μ m.

Fig. 7. Interaction of *C. albicans* with amoebae at room temperature (28°C). The amoebae phagocytosed *Candida* yeast cells after 30 min (A) and 2 h (B) of incubation. Micrograph depicting yeast cells of *C. albicans* in proximity to an amoeba cell after 24 h (C) and 48 h (D) of incubation. Bars represent 5 μ m.

Supporting data

Supporting information 1. Interaction of *C. albicans* with *A. castellanii* at room temperature (28 °C) after 48 h of incubation in PBS (A) and with *A. castellanii* (B). Bars repre