Abstract

โดยทั่วไปในการรักษากระดูกต้นขาหักจะเกี่ยวข้องกับการเสริมด้วยเหล็กและการผ่าตัดที่รุนแรง การ กำหนดชนิดและขนาดของวัสดุเที่ยมจะทำโดยศัลยแพทย์ตามข้อมูลเชิงประจักษ์ ดังนั้นการศึกษาถึงผล ของทางรูปร่างและวัสดุต่อการรับแรงของระบบเป็นสิ่งสำคัญในการลดการเกิดความผิดพลาดที่อาจจะ เกิดขึ้นได้ การรับน้ำหนักตัวก่อนที่การรักษากระดูกสมบูรณ์เป็นสาเหตุสังเกตทั่วไปของการรักษาความ ล้มเหลว จุดประสงค์ของการวิจัยนี้คือเพื่อศึกษาผลของทิศทางและจำนวนของสกรูต่อการกระจายตัวของ ความเค้นในกระดูกต้นขาของมนุษย์และแผ่นดามกระดูกด้วยวิธีไฟไนต์เอลิเมนต์ ส่วนที่หนึ่ง ทำการทดลอง เพื่อหาความสามารถในการรับแรงดึงของสกรูใน 4 รูปแบบของทิศทางของสกรู จากผลการทดสอบแสดงให้ เห็นว่า กรณีที่สามารถในการรับแรงมีค่าน้อยที่สุดคือกรณีที่สกรูมีทิศทางแยกออกจากกัน และจะมีค่ามาก ที่สุดในกรณีที่มีทิศทางเข้าหากัน ส่วนที่สอง คือการใช้วิธีไฟในต์เอลิเมนต์ในการศึกษาผลของตัวแปรต่างๆ ได้แก่ (1) รูปแบบของทิศทางของสกรู (2) ความยาวของแผ่นดามกระดูกที่มีสกรูสองตัว (3) จำนวนของสกรู และรูปแบบการวางตำแหน่งที่แตกต่างกันบนแผ่นดามกระดูกยาว 200 มม. และ (4) อิทธิพลของขนาด ช่องว่างระหว่างกระดูกสองชิ้นส่วนที่ขาดของกระดูก ต่อการกระจายตัวของความเค้น จากผลการวิเคราะห์ ได้แสดงให้เห็นว่า (1) ในรูปแบบของการยิงสกรู ทิศทางตั้งฉาก และหันเข้าหากัน จะให้ค่าความเค้นลดลง เมื่อจำนวนของสกรูเพิ่มมากขึ้น นอกจากนี้ สำหรับกรณี ทิศทางของสกรูขนานกันและทิศทางหันออกจาก กัน ค่าความเค้นสูงสุดจะเพิ่มขึ้นเมื่อจำนวนของสกาูเพิ่มมากขึ้น นอกจากนี้ ในการใช้สกาู 4 ตัวในทิศทาง ตั้งฉากจะให้ค่าที่ปลอดภัยและทนกว่ารูปแบบอื่น ๆ สำหรับใช้สกรู 6 ตัว ในรูปแบบทิศทางออกจากกันจะ ปลอดภัยและทนกว่ารูปแบบอื่น ๆ สำหรับการใช้สกรู 8 ตัว ในทิศทางขนานกันจะให้ค่าที่ความปลอดภัย และทนกว่ารูปแบบอื่นๆ (2) เมื่อเพิ่มความยาวของแผ่นจาก 100 mm 200 mm, ความเค้นสูงสุดจะเพิ่มขึ้น ซึ่งพบว่าความเค้นจะมีค่าเพิ่มขึ้น 61.2% และ 107% สำหรับสกรูด้านบนและล่างตามลำดับ และแผ่นดาม กระดูก cortical bone และ cancellous bone จะมีค่าความเค้นเพิ่มขึ้น 114%, 55.1% และ 166% ตามลำดับ (3) แสดงให้เห็นว่า สกรูที่อยู่ห่างที่สุด (1 หมายเลขและ 8) และแผ่นดามกระดูก จะมีค่าความ เค้นที่เกิดขึ้นในค่าที่เท่าๆกัน ในทุกๆ กรณี ที่มีการใช้ตำแหน่งของสกรูนี้ และเมื่อสกรูในตำแหน่งนี้ไม่ได้ใช้ เช่น รูปแบบที่ 4-3 และรูปแบบที่ 4-4 ค่าความเค้นสูงสุดและต่ำสุดที่เกิดขึ้นในสกรูเพิ่มขึ้นอย่างมีนัยสำคัญ โดยวิธีการพบว่าค่าเฉลี่ยความเค้นในสกรูจะมีค่าลดลงตามจำนวนของสกรูเพิ่มขึ้น (4) สุดท้าย ขนาดของ ช่องว่างของรอยแตกหักจะให้ค่าความเค้นที่มากขึ้นในทุกๆ ชิ้นส่วน

Healing of femoral fractures commonly involves the use of a steel prosthesis and invasive surgery. The determination of prosthesis type and dimensions is still made by surgeons according to empirical data. In order to reduce the occurrence of failures of the steel components it is important to study geometrical and material influences on system resistance. The bearing of the total body weight by the bone before complete healing is a commonly observed cause of healing failure. The objective of this research is to study the effects of direction and number of the screw fixation to stress distribution in the human femur and the attached plate by using Finite Element Method (FEM). First, the experiment was performed to determine the holding force of the screws in 4 patterns of screws direction. From experiment results showed the holding force is minimum when the screws are in a diverge direction and be maximum when the screws are in a converge direction. Second, the FEM was used to study the influence of 4 geometrical parameters: (1) the patterns of screws direction (2) the length of the plate fixed with two screws, (3) the number of screws and the different positioning patterns with a 200mm plate length, and (4) the influence of the fracture gap size between the two broken parts of the bone on the stress distribution. The analysis results showed that (1) in the normal and the converge directions of screw fixation, the maximum stress would be decreased when the number of screw increase. Moreover, in the parallel and the diverge directions of screw fixation, the maximum stress would be increased when the number of screw increase. Additionally, using of 4 screws fixed in the normal direction pattern would be more safe and endured than other patterns, using of 6 screws fixed in the diverge direction pattern also more safe and tolerated than other pattern and when using of 8 screws fixed in the parallel direction pattern also more safe and tolerated than other patterns. (2) When increasing the length of plate from 100 mm to 200 mm, the maximum stress will be increased. The results showed that the stress is increased by 61.2% and 107%. for the top and bottom screws, respectively. And for the plate, cortical bone and cancellous bone, the stress will be increased by 114%, 55.1% and 166%, respectively. (3) The results show that the extreme screws (number 1 and 8) and the plate appear to be almost equally stressed in every model using these holes. Furthermore when these screws are removed (pattern 4-3 and 4-4) the stress value of the highest and the lowest screws increase significantly. By the way, the results showed that the average stress value in screws decreases as the number of screws increase. (4) Finally the appliance of a simulated fracture gap produces a huge increase of the stress value in part.