

บทคัดย่อ

รหัสโครงการ : MRG4980074

ชื่อโครงการ : การศึกษาผลของคลอไครด์และผลของอันตรกิริยาของคลอไครด์กับสารเติมแต่งชนิดอื่นระหว่างกระบวนการชุบทองแดงโดยวิธีไฟฟ้าเคมีในสารละลายน้ำมันเจล

ชื่อนักวิจัย : ดร.นิสิต ตันทวิเชฐ
ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : nisit.t@chula.ac.th

ระยะเวลาโครงการ : 1 ก.ค. 2549 – 31 ธ.ค. 2552

งานวิจัยนี้เป็นการศึกษาอันตรกิริยาระหว่างคลอไครด์ และไทอเรีย(thiourea)เพื่อความเข้าใจถึงกลไกการเกิดปฏิกิริยาไฟฟ้าเคมีของการฟอกฟูนทองแดง โดยพบว่า คลอไครด์มีผลต่อการทำงานของไทอเรียระหว่างการฟอกฟูนทองแดงโดยวิธีไฟฟ้าเคมี ซึ่งปกติไทอเรียเป็นสารเติมแต่งที่ใช้อยู่ทั่วไปเพื่อให้ผิวทองแดงที่ฟอกฟูนได้มีความเป็นมันเงาขึ้นเมื่อเทียบกับการการฟอกฟูนทองแดงที่ไม่ใช้สารติมแต่ง โดยไทอเรียทำให้โครงสร้างของทองแดงที่ฟอกฟูนได้มีความละเอียดขึ้นส่งผลให้ผิวมีความเป็นมันเงา แต่จะมีปุ่มขนาดเล็กระดับจุลภาคโผล่ขึ้นจากผิวซึ่งกระจายทั่วผิวสั่งผลให้ผิวมีความมันเงาที่ไม่คมชัด ในทางตรงข้ามเมื่อใช้คลอไครด์เป็นสารเติมแต่งผิวทองแดงที่ฟอกฟูนได้จะด้านและไม่มีความเป็นมันเงาเมื่อเทียบกับการไม่ใช้สารติมแต่ง แต่เมื่อใช้คลอไครด์ร่วมกับไทอเรียผิวของทองแดงที่ฟอกฟูนได้จะมีความมันเงาที่คมชัดมากขึ้น โดยปุ่มขนาดเล็กระดับจุลภาคที่พบกระจายทั่วผิวเมื่อใช้เพียงไทอเรียเป็นสารเติมแต่งได้หายไป และผิวทองแดงที่ฟอกฟูนได้มีความเป็นมันเงาที่คมชัดมากขึ้น แต่จะส่งผลกระทบต่อโครงสร้างทองแดงที่ซับระดับมหภาคซึ่งสามารถเห็นได้ด้วยตาเปล่าว่าผิวทองแดงที่ซับได้จะมีความขรุขระ เป็นหลุม และไม่สม่ำเสมอ

งานวิจัยนี้จึงมุ่งเน้นไปที่การตอบปัญหาและพยายามหากกลไกที่ว่าเหตุใดคลอไครด์จึงมีผลต่อการทำงานของไทอเรียระหว่างการชุบทองแดงโดยวิธีไฟฟ้าเคมี โดยใช้กล้องจุลทรรศน์แบบส่องกล้องจุลทรรศน์แรงอัตโนมัติ และเทคนิคทางเคมีไฟฟ้า ซึ่งพบว่าพื้นผิวที่ขรุขระเมื่อใช้ไทอเรียและคลอไครด์เป็นสารเติมแต่งเกิดจากการที่ชั้นฟิล์มของสารเชิงซ้อนทองแดงไอออน-ไทอเรีย-คลอไครด์

ไฮร์ด์ที่เกะบันผิวระหว่างการฟอกฟูนโดยไฟฟ้ามีความไม่สม่ำเสมอ กัน ส่งผลให้การฟอกฟูนของ
แดงที่ปริเวณต่างๆ บนพื้นผิวผ่านกลไกที่แตกต่างกัน ทำให้พื้นผิวที่ฟอกฟูนได้ชรุขระ ไม่สม่ำเสมอ
และพบว่าความหนาแน่นกระแทกที่ใช้ในการฟอกฟูนมีผลต่อการสร้างชั้นพิล์มของสารเชิงซ้อน
ท้องแดง ไออ่อน-ไทอเรีย-คลอไฮร์ดที่เกะบันผิวชั้นงาน โดยที่หากใช้ความหนาแน่นกระแทกที่สูงพอ
ชั้นพิล์มของสารเชิงซ้อนท้องแดง ไออ่อน-ไทอเรีย-คลอไฮร์ดที่เกะบันผิวชั้นงานจะถลวยตัวอย่าง
สม่ำเสมอ กันทั้งผิวชั้นงานระหว่างการฟอกฟูน ส่งผลให้ท้องแดงที่ฟอกฟูนได้มีโครงสร้างที่ละเอียด
และผิวมีความเป็นมันเงา โดยผิวมีความเรียบทั้งระดับมหภาคและจุลภาค ซึ่งสามารถใช้เป็น
แนวทางเพื่อนำไปประยุกต์ใช้จริงในอุตสาหกรรมทั่วไป รวมทั้งอุตสาหกรรมผลิตุงจรไฟฟ้า

คำหลัก : กระบวนการซุบท้องแดงโดยวิธีไฟฟ้าเคมี; ไทอเรีย; คลอไฮร์ด; อันตรกิริยา; ลักษณะ
โครงสร้าง

Abstract

Project Code : MRG4980074

Project Title : The study of influence of copper and its interaction with other additive on copper electrodeposition in sulphate plating solution

Investigator : Dr. Nisit Tantavichet

Department of Chemical Technology, Faculty of Science,
Chulalongkorn University

E-mail Address : nisit.t@chula.ac.th

Project Period : July 1, 2006 – 30 December, 2009

The interaction between chloride and thiourea in copper electrodeposition in a sulfate-plating bath was investigated. The sole addition of thiourea to the bath increased the polarization of the electrode potential during copper deposition, leading to very fine and smoothly structured deposit but with microscopic nodules distributed over the surface. When chloride was added to a plating solution containing thiourea, the copper deposition mechanism was changed, showing a depolarization of the electrode potential, and the copper deposits were found to have a relatively rougher microstructure, but without the formation of microscopic nodules. However, rough deposit surfaces having no distinct pattern were formed at the macroscopic scale. Observations of roughening evolution show that the rough surface was initiated from small holes formed across the deposit surface during the initial stage of deposition that eventually developed into visibly rough deposits. The copper deposition inside these holes and at other areas was expected to undergo different deposition mechanisms. Copper deposition in the areas that ultimately developed into holes was almost totally inhibited by the thiourea-Cu(I)-chloride complex film, not just in the grain growth process, but over practically the entire electrodeposition process. Conversely, copper deposition occurred in other areas under conditions where nucleation

proceeded, but grain growth was inhibited to produce a fine, homogeneous microstructure. An uneven deposit surface that had different microscopic structures in different areas was then formed. The structure of the thiourea-Cu(I)-chloride film was strongly affected by the current density and appeared to break down completely if sufficiently high current density was applied to yield a fine and homogeneous microstructure that was also macroscopically smooth.

Keywords : copper electrodeposition; thiourea; chloride; synergetic effect; morphology