

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาเชิงโครงสร้างและหน้าที่ของโปรตีนขนส่งกลูโคสและโซเดียม SGLT1 โดยใช้วิธีทางชีวเคมีและการจำเพาะในระดับโมเลกุล

โดย ดร.ธีราพร พันธุ์ธีรานุรักษ์ และคณะ

วันที่ 31 พฤษภาคม พ.ศ. 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาเชิงโครงสร้างและหน้าที่ของโปรตีนขนส่งกลูโคสและโซเดียม SGLT1 โดยใช้วิธีทางชีวเคมีและการจำเพาะในระดับโมเลกุล

คณะผู้วิจัย สังกัด

1. ดร.ธีราพร พันธุ์ธีรานุรักษ์ มหาวิทยาลัยมหิดล

2. ศ. ดร. นที่ทิพย์ กฤษณามระ มหาวิทยาลัยมหิดล

3. Prof.Dr.med.Dr.h.c. Rolf K.H. Kinne Max Planck Institute of Molecular

Physiology

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

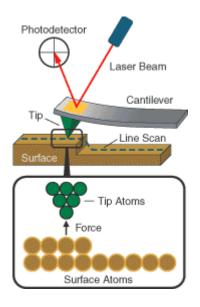
โปรตีนขนส่งกลูโคสและโซเคียม SGLT1 สามารถพบได้บนผิวเซลล์ในบริเวณลำไส้เล็กและ ไตในสิ่งมีชีวิตหลากหลายชนิด และมีหน้าที่สำคัญมากในการดูดซึมน้ำตาลแบบจำเพาะเจาะจงเพื่อ รักษาความสมดุลให้กับร่างกาย และจากความสำคัญดังกล่าวจึงนำมาซึ่งการศึกษาโปรตีนชนิดนี้กัน อย่างแพร่หลายเพื่อทั้งประโยชน์ในทางการแพทย์และทางการศึกษา แต่กระนั้นก็ตามการศึกษาทำ ความเข้าใจเกี่ยวกับกลไกการนำพาน้ำตาลและการคัดเลือกชนิดน้ำตาลเข้าสู่เซลล์นั้นยังไม่เป็นที่เข้าใจ มากนัก ยิ่งไปกว่านั้นโครงสร้างของโปรตีนชนิดนี้โดยเฉพาะในบริเวณที่น้ำตาลและตัวยับยั้งการ นำพาเข้าจับกับโปรตีนนั้นยังคงเป็นที่ถกเถียงกันอยู่ในปัจจุบัน ในงานวิจัยนี้ได้นำวิธีทางชีวฟิสิกส์ สมัยใหม่คือเทคนิคทางค้านโมเลกุลเชิงเดี่ยวโดยใช้เครื่องวัดแรงอันตรกิริยา (atomic microscopy, AFM) และวิธีทางชีวเคมีมาประยุกต์ใช้เพื่อศึกษาคุณสมบัติทางโครงสร้าง หน้าที่ และ ความจำเพาะเจาะจงของโปรตีนขนส่งนี้ โดยในงานวิจัยนี้ได้ใช้น้ำตาลกลูโคส (1-thio-D-glucose) เชื่อมต่อกับปลายเข็มแคนทิลิเวอร์ (cantilever) ด้วยปฏิกิริยาจำเพาะทางเคมี และนำไปใช้ศึกษา ความจำเพาะระหว่างกลู โคสและ โปรตีน SGLT1 ในสภาวะแวดล้อมต่างๆ นอกจากนั้นยังได้ทำการ ทดลองทางชีวเกมี โดยศึกษาผลกระทบในการนำพาน้ำตาลเข้าสู่เซลล์ในสภาวะแวดล้อมต่างๆนั้นด้วย และจากผลการทคลองทั้งสองวิธี ได้นำมาซึ่งประโยชน์ในการอธิบายลำดับความจำเพาะเจาะจงของ การนำพาน้ำตาลชนิดต่างๆ ได้ นอกจากนั้นยังเสนอแนะ ได้ว่า ภายใน โครงสร้าง โปรตีนขนส่งนี้มีอย่าง น้อยสองบริเวณที่เกี่ยวข้องในการคัดเลือกชนิดน้ำตาลอีกด้วย ส่วนการทดลองการศึกษาโครงสร้าง ของโปรตีนชนิดนี้ ได้ใช้แอนติบอดีจำเพาะสามชนิดที่มีความจำเพาะต่อสายกรดอะมิโนในบริเวณที่ เชื่อมระหว่างเมมเบรนโปรตีนที่ 6-7 8-9 และ 13-14 โดยนำแต่ละชนิดไปเชื่อมต่อกับปลายเข็มแคนทิ ลิเวอร์และนำไปศึกษาความสามารถในการเข้าจับของแอนติบอดีชนิดนั้นๆต่อโปรตีนขนส่งบนผิว เซลล์ที่อยู่ในสภาวะแวคล้อมใกล้เคียงกับธรรมชาติ และจากผลการทคลองพบว่า แอนติบอดีจำเพาะ ทั้งสามชนิคสามารถเข้าจับกับโปรตีนขนส่งได้ และสามารถยืนยันได้ว่าทั้งสามบริเวณนั้นเป็น โครงสร้างของโปรตีนที่มีการจัดเรียงตัวอยู่บริเวณด้านนอกของเซลล์ นอกไปจากนั้น ผลการทดลอง ทางชีวเคมีสามารถแนะนำได้ว่า มีการเชื่อมต่อด้วยพันธะไดซัลไฟด์ของกรคอะมิโนในบริเวณระหว่าง เมมเบรนโปรตีนที่ 6-7 และ 13-14 ซึ่งในขณะเคียวกันน่าจะมีผลทำให้บริเวณระหว่างเมมเบรน ์ โปรตีนที่ 8-9 เข้ามาใกล้กับบริเวณเมมเบรนโปรตีนที่ 6-7 และ 13-14 โดยคาดว่าทั้งสามบริเวณนี้น่าจะ เป็นบริเวณที่เป็นทางเข้าของน้ำตาลก่อนผ่านเข้าสู่ภายในและเกิดการนำพาน้ำตาลเข้าสู่เซลล์ตามลำดับ โดยรวมการศึกษาวิจัย โดยใช้วิธีทางชีวฟิสิกส์ ร่วมกับอณุชีววิทยา สรีระวิทยา และชีวเคมี สามารถทำ ให้เข้าใจขบวนการและลำดับการนำพาสารอินทรีย์เข้าสู่เซลล์ซึ่งจะเป็นประโยชน์อย่างมากในการ พัฒนาองค์ความรู้และการคิดค้นที่จะนำมาซึ่งประโยชน์ต่อไปในภายภาคหน้า

Abstract

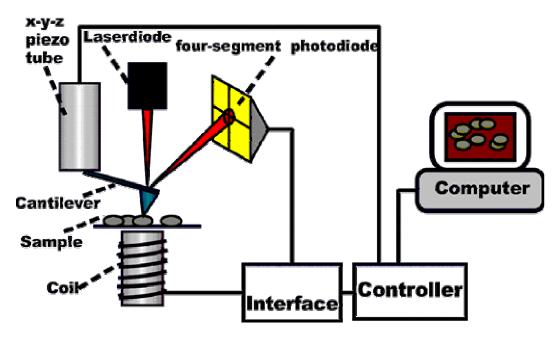
In the apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na⁺/D-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption, respectively. How sugars are selected at the molecular level and the topology of SGLT1 in the membrane are, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the stereospecificity of D-glucose binding to the surface of living rabbitSGLT1-transfected Chinese hamster ovary (CHO) cells on the single molecule level. In addition, competitive-uptake assays by using isotope-labeled sugars were performed to study the stereospecificity of the transport. Topology, arrangement, and function of the large surface subdomains of SGLT1 were also examined. These investigations were performed by using AFM tips carrying either 1-thio-D-glucose or specific-antibodies coupled to biheterofunctional-PEG linkers. The results suggest that the stereospecificity of transport is determined by at least two different selectivity filters; one located at the surface of the transporter, the other close to or within the translocation pathway. In addition, for the topology of SGLT1 we could observe that the loop 6-7 and loop 13-14 are connected by a disulfide bridge. This bridge brings also loop 8-9 into close vicinity of the former subdomains to create a vestibule for sugar binding. Altogether, the use of biophysical, molecular biological, physiological, and biochemical approaches could provide an important step in understanding the chain of dynamic events comprising transmembrane translocation of organic compounds in general.

1. Executive summary

ในงานวิจัยนี้ ได้ทำการศึกษาคุณสมบัติทางโครงสร้าง หน้าที่ และความจำเพาะของโปรตีนขนส่ง กลูโคสและโซเดียม SGLT1 ที่อยู่บนพื้นผิวเซลล์ที่ได้มีการโคลนยืนของโปรตีนนั้น โดยใช้วิธีการ ตรวจจับในระดับโมเลกุลเชิงเดี่ยวและวิธีทางชีวเคมี โปรตีน SGLT1 นั้นมีความสำคัญในการนำพา น้ำตาลกลับเข้าสู่ลำใส้เล็กและไตในสิ่งมีชีวิตหลากหลายชนิด แต่อย่างไรก็ตาม ความเข้าใจในระดับ ์ โมเลกุล โครงสร้างสามมิติของโปรตีนชนิคนี้และความจำเพาะในการนำพาน้ำตาลชนิดต่างๆเข้าสู่เซลล์ โดยโปรตีนนั้นยังไม่เป็นที่เข้าใจมากนัก ในปัจจุบันได้มีการนำเทคนิคทางด้านโมเลกุลเชิงเดี่ยวโดยใช้ เครื่องวัดแรงอันตรกิริยา (atomic force microscopy, AFM) นำมาประยุกต์ใช้ในการศึกษาทางด้าน ชีววิทยาอย่างแพร่หลายมากขึ้น โดยข้อดีในการศึกษาด้วยวีธีนี้นั้น สามารถทำการทดลองในสภาพที่ ใกล้เคียงกับสภาพความเป็นจริงในสิ่งมีชีวิตได้ และในการเตรียมตัวอย่างทดลองไม่จำเป็นต้องผ่าน ขบวนการที่อาจจะก่อให้เกิดการเปลี่ยนแปลงสภาพของตัวอย่างทดลองไปจากความเป็นจริงได้ โดยใน งานวิจัยนี้ได้แบ่งออกเป็นสองการศึกษาย่อยด้วยกันคือ การศึกษาความจำเพาะในการนำพาน้ำตาล และ การศึกษาโครงสร้างและการจัดเรียงตัวของโปรตีนชนิดนี้ ในการศึกษาความจำเพาะในการนำพาน้ำตาล นั้นได้ใช้น้ำตาลกลูโคส (1-thio-D-glucose) เชื่อมต่อกับปลายเข็ม (cantilever) ด้วยปฏิกิริยาจำเพาะทาง เคมี จากนั้นนำปลายเข็มนั้นไปใช้ศึกษาความจำเพาะระหว่างกลูโคสและโปรตีน SGLT1 บนผิวเซลล์ที่มี ชีวิตในสภาวะที่มีน้ำตาลชนิดต่างๆ เช่น 6-deoxy-D-glucose, 3-deoxy-D-glucose, 2-deoxy-D-glucose, D-glucose, L-glucose, D-galactose, α-methyl glucoside และ D-xylose ในสารละลาย เพื่อที่จะศึกษา ผลกระทบของน้ำตาลชนิดนั้นๆต่อความจำเพาะของกลูโคสบนปลายเข็มในการเข้าจับกับโปรตีน SGLT1 บนผิวเซลล์ และนอกจากนี้ยังได้ทำการทดลองทางชีวเคมีโดยศึกษาผลกระทบในการนำพาน้ำตาลเข้าสู่ เซลล์ในสภาวะที่มีน้ำตาลชนิดต่างๆที่กล่าวมาข้างต้นในสารละลาย โดยผลการทดลองจากทั้งสองวิธีนั้น ได้นำมาเปรียบเทียบ วิเคราะห์และแปรผลการทดลอง และได้พบความแตกต่างของลำดับการแข่งขันของ น้ำตาลชนิดนั้นๆ ต่อการเข้าจับ (ศึกษาโดยวิธีโมเลกุลเชิงเคี่ยว) และการนำพาน้ำตาลเข้าสู่เซลล์ผ่านทาง โปรตีน SGLT1 (ศึกษาโดยวิธีทางชีวเคมี) ดังนั้นจากการทดลองจึงสามารถเสนอแนะ ได้ว่า ความจำเพาะ เจาะจงของการนำพาน้ำตาลชนิดต่างๆเข้าสู่เซลล์ทางโปรตีน SGLT1 นั้น มีการจำแนกชนิดของน้ำตาล เกิดขึ้นในบริเวณที่แตกต่างกัน โดยการคัดเลือกบริเวณแรกน่าจะเกิดตั้งแต่ในระดับการเข้าจับของน้ำตาล ต่อโปรตีน SGLT1 และในอีกบริเวณหนึ่งอาจเกิดการจำแนกชนิดน้ำตาลบริเวณใกล้เคียงหรืออยู่ภายใน ทางผ่านของน้ำตาลก่อนจะเข้าสู่เซลล์ นอกจากนี้งานวิจัยยังได้ประยุกต์ใช้เทคนิคทางด้านโมเลกุล เชิงเดี่ยวในการศึกษาโครงสร้างและการจัดเรียงตัวของโปรตีนชนิดนี้ โดยได้ทำการศึกษาความจำเพาะ ของแอนติบอดีต่อส่วนที่มีลักษณะเป็นห่วงโซ่โปรตีนสามส่วนของโปรตีน SGLT1 ได้แก่บริเวณสาย กรคอะมิโนที่เชื่อมระหว่างเมมเบรนโปรตีนที่ 6-7 8-9 และ 13-14 โดยนำเอาแอนติบอดีแบบจำเพาะแต่ ละชนิดนั้นไปเชื่อมต่อกับปลายเข็มแคนทิลิเวอร์และนำไปศึกษาความสามารถในการเข้าจับของ

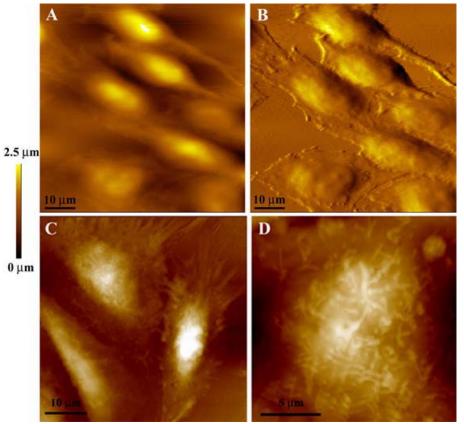

แอนติบอดีชนิดนั้นๆต่อโปรตีนขนส่งบนผิวเซลล์ที่อยู่ในสภาวะแวคล้อมใกล้เคียงกับธรรมชาติ และได้ ศึกษาผลกระทบต่อการเข้าจับของแอนติบอดีต่อส่วนโปรตีนจำเพาะนั้นๆในสภาวะที่มีและไม่มีโซเดียม ในสารละลาย และในสภาวะที่มีและไม่มีน้ำตาลกลูโคสในสารละลาย จากผลการทดลองพบว่า แอนติบอดีจำเพาะทั้งสามชนิดสามารถเข้าจับกับโปรตีนขนส่งได้ และสามารถยืนยันได้ว่าทั้งสามบริเวณ นั้นเป็นโครงสร้างของโปรตีนที่มีการจัดเรียงตัวอยู่บริเวณด้านนอกของเซลล์ และนอกไปจากนั้นยังพบว่า ในสภาวะที่มีโซเคียมและน้ำตาลกลูโคสในสารละลายมีผลกระทบต่อการเข้าจับของแอนติบอดีในบริเวณ ห่วงโซ่ที่สองของโปรตีน SGLT1 (บริเวณเชื่อมระหว่างเมมเบรนโปรตีนที่ 8-9) ซึ่งสามารถเสนอแนะได้ ว่าบริเวณคั้งกล่าวน่าจะเป็นบริเวณส่วนหนึ่งที่น้ำตาลกลูโคสเข้าจับในระหว่างการนำพาน้ำตาลเข้าสู่เซลล์ มากไปกว่านั้นข้อเสนอนี้ยังสอคคล้องกับผลการทดลองทางชีวเคมีที่พบว่า มีกรคอะมิโนที่สำคัญใน บริเวณที่หากมีการเปลี่ยนแปลงจะมีผลในการนำพาน้ำตาลเข้าสู่เซลล์อีกด้วย ต่อมาจากผลการทดลอง โดยการศึกษาจากเครื่องวัดมวลสาร (MALDI-TOF mass spectroscopy) สามารถแนะนำได้ว่า โครงสร้าง ในโปรตีนชนิดนี้มีการเชื่อมต่อด้วยพันธะ ใดซัลไฟด์ของกรคอะมิโนในบริเวณระหว่างเมมเบรนโปรตีน ที่ 6-7 และ 13-14 และในขณะเดียวกันการเชื่อมของห่วงโซ่สองห่วงนั้นน่าจะมีผลทำให้บริเวณห่วงโซ่ที่ สอง (ระหว่างเมมเบรนโปรตีนที่ 8-9) เข้ามาใกล้กับบริเวณห่วงโซ่ที่หนึ่งและสามอีกด้วย โดยคาดว่าห่วง โซ่ทั้งสามบริเวณนี้น่าจะเป็นบริเวณที่เป็นทางเข้าของน้ำตาลก่อนผ่านเข้าสู่ภายในและเกิดการนำพา น้ำตาลเข้าสู่เซลล์ตามลำดับ โดยสรุปจากผลงานวิจัยนี้ช่วยให้เข้าใจลักษณะและคุณสมบัติของโปรตีน ขนส่งกลูโคสและโซเคียม SGLT1 ใค้คียิ่งขึ้น

เนื้อหางานวิจัย


2.1 บทนำ

ในงานวิจัยนี้ได้ทำการประยุกต์ใช้เทคนิควิธีวิจัยทางชีวฟิสิกส์โดยใช้เครื่องวัดแรงอันตรกิริยาใน ระดับโมเลกุล Atomic Force Microscopy (AFM) ในการศึกษาคุณสมบัติทางโครงสร้างและการทำงาน ของโปรตีนขนส่งกลูโคสและโซเดียม SGLT1 โดยเครื่อง AFM นั้นเป็นเครื่องมือที่ได้มีการคิดค้นขึ้นเมื่อ ประมาณปี 1986 เพื่อใช้ศึกษาพื้นผิวโลหะในระดับโมเลกุลเชิงเดี่ยว (single molecule) โดยมีความ ละเอียดในระดับนาโนเมตร ในปัจจุบันได้มีการประยุกต์ใช้เทคนิคการศึกษาโดยใช้เครื่อง AFM กับ งานวิจัยทางชีวภาพอย่างแพร่หลายและหลากหลายสาขาวิชา เช่น ทางการแพทย์ ชีวเคมี วัสดุศาสตร์ และ อื่นๆ เป็นต้น หลักการทำงานของเครื่อง AFM นั้นอาศัยปลายเข็มแหลมชนิดพิเศษ (cantilever) ที่มีรัศมีที่ ปลายเข็มในระดับไม่กี่นาโนเมตร (ทั่วไปอยู่ที่ประมาณ 5-20 นาโนเมตร) ลากไปบนพื้นผิวตัวอย่าง (รูปที่ 1) โดยมีการควบคุมระดับปลายเข็มให้มีน้ำหนักความแรงในการลาก (scan force) ให้พอดีกับพื้นผิว และ การเคลื่อนที่ของเข็มแหลมนั้นและจาก สัญญาณการตรวจจับการเคลื่อนที่ของเข็มแหลมจะถูกแปรเป็นสัญญาณภาพทางจอกอมพิวเตอร์ (รูปที่ 2)

นอกจากความสามารถในการศึกษาพื้นผิวต่างๆ ได้ในความละเอียดที่ระดับนาโนเมตรแล้ว เครื่อง AFM ยังสามารถใช้ในการศึกษาการเข้าจับกันของลิแกนค์และตัวรับลิแกนค์ได้อีกด้วย โดยสามารถวัดค่า พลังงานที่ใช้ในการแยกลิแกนค์และตัวรับลิแกนค์นั้นๆ ได้ในระดับพิโคนิวตัน และสามารถใช้ใน การศึกษาความจำเพาะเจาะจงในการเข้าจับของลิแกนค์ต่างๆ ได้อีกด้วย ซึ่งวิธีนี้เรียกว่า Single-Molecule Recognition หรือการศึกษาความจำเพาะในระดับโมเลกุลเชิงเดี่ยว โดยการศึกษาด้วยวิธีนี้จะเป็นวิธีการ หลักของงานวิจัยที่ใช้ในการศึกษาวิจัยในโครงการนี้ โดยจะนำเสนอผลการทดลองในลำดับต่อไป



รูปที่ 1 ภาพแสดงการเคลื่อนที่ของปลายเข็มแหลมแคนทิลิเวอร์บนพื้นผิวตัวอย่าง

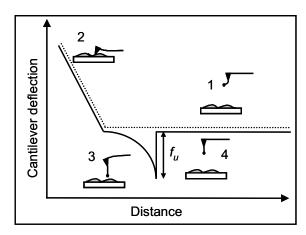
รูปที่ 2 ภาพแสดงหลักการทำงานของเครื่อง AFM

การศึกษาโปรตีนขนส่งกลูโคสและโซเคียม SGLT1 ได้ใช้เซลล์ที่ได้รับการนำพายีนแบบถาวร เข้าสู่เซลล์ต้นแบบ CHO (Chinese Hamster Ovary cell-line) โดยตั้งชื่อเซลล์ที่มียีนถาวรของโปรตีน SGLT1 ว่าเซลล์ G6D3 (รูปที่ 3) โดยเป็นเซลล์ที่ใช้ในการศึกษาโครงการวิจัยนี้

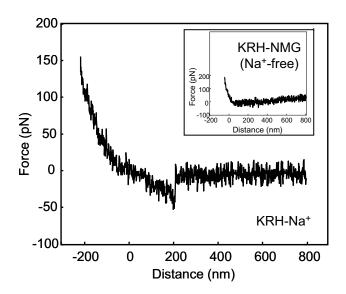
รูปที่ 3 ภาพ AFM ของเซลล์ G6D3 โดยภาพ A และ B เป็นเซลล์ที่มีชีวิต ส่วนภาพ C และ D เป็นเซลล์ที่ ได้ทำการ fix ด้วยสารละลาย glutaraldehyde เพื่อให้เห็น โครงสร้างของพื้นผิวเซลล์ได้ชัดเจนขึ้น

2.2 วัตถุประสงค์ของโครงการ

- 1. เพื่อศึกษาการทำงานและความจำเพาะของโปรตีนขนส่งกลูโคสและโซเคียม SGLT1 ในการ ขนส่งน้ำตาลชนิดต่างๆโดยใช้วิธีการตรวจจับในระดับโมเลกุลเชิงเดี่ยวและวิธีทางชีวเคมีในการศึกษา คุณสมบัติการขนส่งน้ำตาลเข้าสู่เซลล์
- เพื่อศึกษาคุณสมบัติทางโครงสร้างและหน้าที่ของโปรตีนขนส่งกลูโคสและโซเคียม SGLT1
 โดยเฉพาะในส่วนของโปรตีนที่มีลักษณะเป็นห่วงโซ่โปรตีนสามส่วนที่อาจจะเกี่ยวข้องกับความจำเพาะในการนำกลูโคสเข้าสู่เซลล์
- 3. เพื่อศึกษาความเป็นไปได้ที่อาจจะมีโครงสร้างที่เชื่อมต่อระหว่างกรดอะมิโน cysteine (พันธะ ใดซัลไฟด์, disulfide bond) ในโปรตีนขนส่งกลูโคสและโซเดียม SGLT1

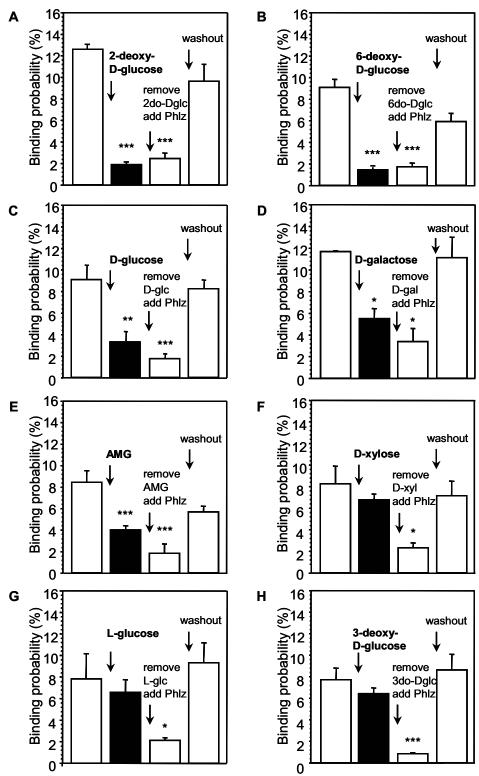

2.3 ผลงานวิจัยที่ได้รับ

งานวิจัยนี้ได้แบ่งออกเป็นสองการศึกษาหลักด้วยกันคือ การศึกษาความจำเพาะในการนำพา น้ำตาล และการศึกษาโครงสร้างและการจัดเรียงตัวของโปรตีนชนิดนี้


การวิจัยส่วนที่ 1

ในการศึกษาการทำงานของโปรตีน SGLT1 และความจำเพาะของโปรตีนขนส่งนี้ในการนำพา น้ำตาลชนิดต่างๆ โดยใช้วิธีความจำเพาะในระดับโมเลกุลเชิงเดี่ยว โดยเชื่อมต่อกลูโคส (1-thio-D-glucose) ที่ปลายเข็ม (cantilever) ดังรูปที่ 4 และนำไปศึกษาความจำเพาะกับโปรตีน SGLT1 บนผิวเซลล์ โดยใช้เครื่องวัดแรงอันตรกิริยา และบันทึกผลการทดลองการทำ force-distance cycle ด้วยปลายเข็ม ดังกล่าวบนพื้นผิวเซลล์ ดังแผนภาพในรูปที่ 5 และผลการทดลองจริงในสภาวะที่มีและไม่มีโซเดียมใน สารละลาย ซึ่งได้แสดงให้เห็นลักษณะการจับแบบจำเพาะของกลูโคสต่อโปรตีน SGLT1 ดังรูปที่ 6

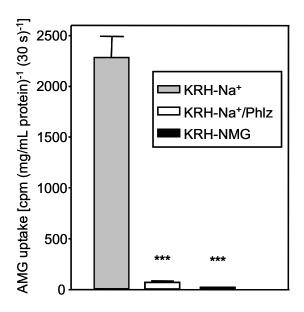
รูปที่ 4 การเชื่อมต่อน้ำตาล 1-thio-D-glucose กับปลายเข็ม (cantilever) โดยวิธีทางเคมี


รูปที่ 5 แผนภาพแสดงวิธีการทำการทดลองแบบ force spectroscopy โดยบันทึกผล force-distance cycles ของการจับแบบจำเพาะของลิแกนด์บนปลายเข็มกับตัวรับจำเพาะบนผิวเซลล์ ซึ่งสามารถบอกได้ จากลักษณะที่พิเศษของเส้นกราพที่เกิดจากการจับกันแบบจำเพาะและการแยกออกจากกันของคู่จำเพาะ นั้น

รูปที่ 6 เส้นกราฟพลังงาน (force curve) แสดงการจับกันแบบจำเพาะของกลู โคสกับโปรตีน SGLT1 ใน สภาวะที่มีโซเดียม และการจับแบบจำเพาะนั้นหายไปในสภาวะที่ไม่มีโซเดียมในสารละลาย (รูปเล็ก)

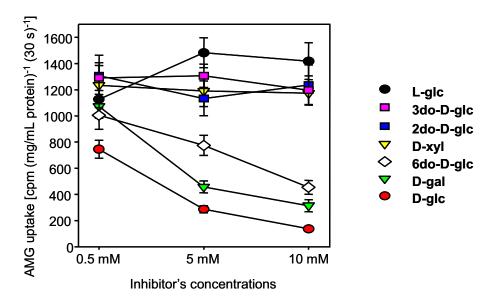
จากนั้นได้นำปลายเข็มดังกล่าวไปใช้ศึกษาความจำเพาะระหว่างกลูโคสและโปรตีน SGLT1 บน ผิวเซลล์ในสภาวะที่มีน้ำตาลชนิดต่างๆ เช่น 6-deoxy-D-glucose, 3-deoxy-D-glucose, 2-deoxy-D-glucose, D-glucose, L-glucose, D-galactose, α-methyl glucoside และ D-xylose ในสารละลายที่มี โซเดียม เพื่อที่จะศึกษาผลกระทบของน้ำตาลต่อความจำเพาะของกลูโคสบนปลายเข็มในการเข้าจับกับ โปรตีน SGLT1 บนผิวเซลล์ โดยได้มีการคำนวณผลการทดลองจาก force-distance cycles (2000-4000 curves) ออกมาในรูปแบบของเปอร์เซ็นต์ที่พบการจับแบบจำเพาะ (% bind probability) ในสภาวะต่างๆ คือ ในสภาวะเริ่มแรก ในสภาวะที่มีการเติมน้ำตาลในสารละลายระหว่างทำการทดลอง ในสภาวะที่ได้

ล้างน้ำตาลชนิดนั้นๆ ออกไปและใส่สารยับยั้ง (phlorizin) การเข้าจับของกลูโคส และในสภาวะที่ล้าง สารยับยั้งการเข้าจับ (รูปที่ 7) และได้ทำการคำนวณผลการยับยั้งการเข้าจับของกลูโคสที่ปลายเข็มกับ โปรตีน SGLT1 และได้แสดงผลในรูปแบบของตาราง (ตารางที่ 1) เพื่อให้สะดวกในการทำความเข้าใจ


รูปที่ 7 ผลกระทบของน้ำตาลชนิดต่างๆต่อการจับกันของกลูโคสที่ปลายเข็มกับโปรตีน SGLT1 บน พื้นผิวเซลล์

ตารางที่ 1 ผลกระทบของน้ำตาลชนิคต่างๆ ต่อเปอร์เซ็นต์การจับกันของกลู โคสกับ โปรตีน SGLT1

sugars and derivatives	% reduction ^a
6-deoxy-D-glucose	79.4 ± 4.8
2-deoxy-D-glucose	75.3 ± 9.6
D-glucose	71.7 ± 8.0
D-galactose	60.6 ± 7.9
α -methyglucoside	60.5 ± 7.5
D-xylose	18.0
L-glucose	15.4
3-deoxy-D-glucose	13.9 ± 1.6


^a The data were derived from two independent experiments except D-xylose (n = 1) and L-glucose (n = 1) and 3-deoxy-D-glucse (n = 3). Each experiment was analyzed from 2000-4000 force-distance curves with 4 positions on cells.

ต่อมาได้ทำการทดลองวัดการนำพาน้ำตาลเข้าสู่เซลล์โดยใช้วิธีทางชีวเคมี โดยได้ศึกษาการนำพา น้ำตาลในสภาวะที่มีโซเดียมในสารละลาย ในสภาวะที่มีโซเดียมและสารยับยั้งการนำพาในสารละลาย และในสภาวะที่ไม่มีโซเดียมในสารละลาย (รูปที่ 8) และจากผลการทดลองสามารถสรุปได้ว่าโปรตีน SGLT1 ที่แสดงออกที่ผิวเซลล์มีการนำพาน้ำตาลเป็นไปตามสภาพที่มีในธรรมชาติ กล่าวคือ มีการนำพา น้ำตาลที่พึ่งพาสภาวะการมีโซเดียม และการนำพานั้นสามารถยับยั้งได้ด้วยสารยับยั้ง phlorizin

รูปที่ 8 กราฟแสดงผลการนำพาน้ำตาลเข้าสู่เซลล์ในสภาวะต่างๆ

ต่อมาได้ทำการทดลองทางชีวเคมีโดยศึกษาผลกระทบในการนำพาน้ำตาลเข้าสู่เซลล์ ในสภาวะที่ มีน้ำตาลชนิดต่างๆที่กล่าวมาข้างต้นในสารละลาย ดังแสดงในรูปที่ 9 และได้ทำการคำนวณผลการ ทดลองเพื่อแสดงผลในรูปแบบของตาราง (ตารางที่ 2)

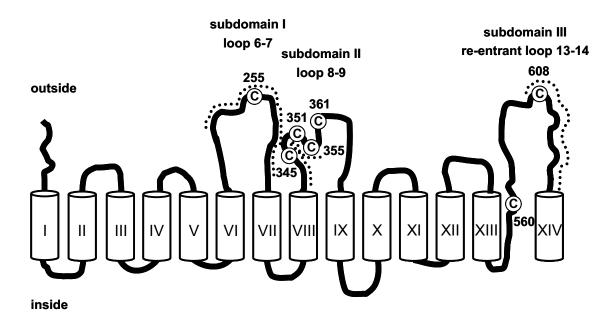
รูปที่ 9 กราฟแสดงผลการนำพาน้ำตาลเข้าสู่เซลล์ในสภาวะที่มีน้ำตาลชนิดต่างๆ

ตารางที่ 2 ผลกระทบของน้ำตาลชนิดต่างๆต่อการนำพาน้ำตาลเข้าสู่เซลล์

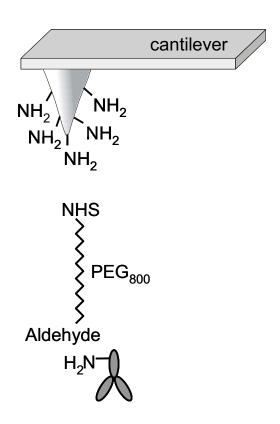
sugars and derivatives	% reduction ^a	
D-glucose	90.2	
D-galactose	77.3	
6-deoxy-D-glucose	67.2	
D-xylose	15.1	
3-deoxy-D-glucose	13.3	
2-deoxy-D-glucose	10.5	
L-glucose	-2.8	

^a The data were calculated by using the value of AMG uptake at

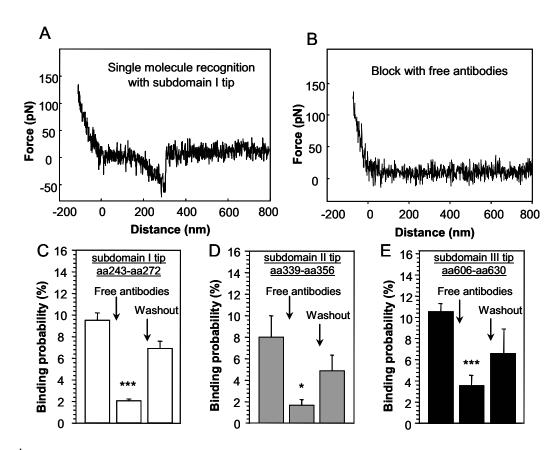
โดยผลการทดลองจากทั้งสองวิธีนั้น ได้นำมาเปรียบเทียบ วิเคราะห์และแปรผลการทดลอง และ ได้พบความแตกต่างของลำดับการแข่งขันของน้ำตาลชนิดต่างๆ ต่อการเข้าจับ (ศึกษาโดยวิธีโมเลกุล เชิงเดี่ยว) และการนำพาน้ำตาลเข้าสู่เซลล์ผ่านทางโปรตีน SGLT1 (ศึกษาโดยวิธีทางชีวเคมี) ดังนั้นจาก การทดลองจึงสามารถเสนอแนะได้ว่า ความจำเพาะเจาะจงของการนำพาน้ำตาลชนิดต่างๆเข้าสู่เซลล์ทาง


^{0.1} mM concentration as a reference value.

โปรตีน SGLT1 นั้น มีการจำแนกชนิดของน้ำตาลเกิดขึ้นในบริเวณที่แตกต่างกัน โดยบริเวณแรกน่าจะเกิด ตั้งแต่ในระดับการเข้าจับของน้ำตาลต่อโปรตีน SGLT1 และในอีกบริเวณหนึ่งอาจเกิดการจำแนกชนิด น้ำตาลบริเวณใกล้เคียงหรืออยู่ภายในทางผ่านของน้ำตาลก่อนจะเข้าสู่เซลล์

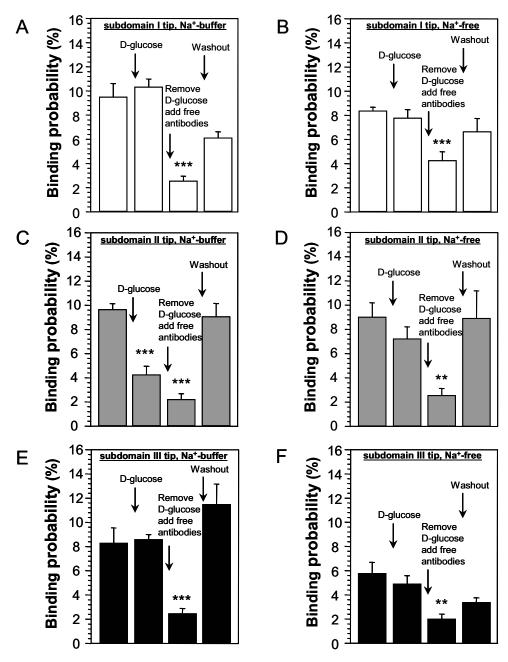

จากการศึกษาการทำงานของโปรตีน SGLT1 และความจำเพาะของโปรตีนขนส่งนี้ในการนำพา น้ำตาลชนิดต่างๆ โดยใช้วิธีความจำเพาะในระดับโมเลกุลเชิงเดี่ยวและวิธีทางชีวเคมีสามารถบรรลุ วัตถุประสงค์ที่ตั้งไว้ได้เป็นอย่างดี และได้เรียบเรียงเขียนเป็นบทความตีพิมพ์วารสารระดับนานาชาติใน หัวข้อเรื่อง Substrate Specificity of Sugar Transport by Rabbit SGLT1: Single molecule AFM versus Transport Studies และได้รับการตอบรับตีพิพม์ในวารสาร Biochemistry ที่มีค่า impact factor ที่ดีคือ 3.848 ได้เป็นผลสำเร็จ (ภาคผนวก)

การวิจัยส่วนที่ 2


ต่อมาในงานวิจัยส่วนที่สองได้ประยุกต์ใช้เทคนิคทางด้านโมเลกุลเชิงเคี่ยว ในการศึกษา โครงสร้างและการจัดเรียงตัวของโปรตีนขนส่งกลูโคสและโซเคียม โดยอาศัยความจำเพาะของ แอนติบอดีต่อส่วนที่มีลักษณะเป็นห่วงโซ่โปรตีนสามส่วนของโปรตีน SGLT1 โดยได้เรียกห่วงโซ่ทั้ง สามว่าซับโดเมนที่หนึ่ง (subdomain I) ซับโดเมนที่สอง (subdomain II) และซับโดเมนที่สาม (subdomain III) ดังแสดงในรูปที่ 10

รูปที่ 10 แผนภาพจำลองแสดงโครงสร้าง (proposed model) ของโปรตีน SGLT1 โดยเส้นประแสดง บริเวณที่แอนติบอดีแบบจำเพาะจับกับห่วงโซ่โปรตีน และ C แสดงตำแหน่งกรดอะมิโน cysteine ใน โปรตีน SGLT1 และได้ทำการเชื่อมแอนติบอดีนั้นเข้ากับปลายเข็ม (cantilever) ดังแสดงในรูปที่ 11 เพื่อนำไป ศึกษาการเข้าจับกันของแอนติบอดีต่อส่วนโปรตีนจำเพาะนั้น โดยใช้วิธี force spectroscopy และบันทึก ผลการทดลองของ force-distance cycles โดยรูปแบบของการจับกันแบบจำเพาะนั้น ได้แสดงในรูปที่ 12A และเพื่อยืนยันความจำเพาะของการจับของแอนติบอดีนั้นๆ ได้เติมแอนติบอดีที่จำเพาะนั้นลงใน สารละลายเพื่อเป็นการบดบังห่วงโซ่โปรตีนนั้นจากการจับกับแอนติบอดีที่อยู่ที่ปลายเข็ม (รูปที่ 12B) และรวบรวมผลการทดลองจากหลายๆ force-distance cycles (2000-4000 curve) ในแต่ละสภาวะและได้ วิเคราะห์ผลในรูปแบบของเปอร์เซ็นต์การจับกันของแอนติบอดีและโปรตีน SGLT1 (% binding probability) ดังแสดงในรูปที่ 12C และ D และจากการทดลองหลายๆการทดลอง ทำให้ได้ค่าเฉลี่ยของ เปอร์เซ็นต์การจับกันของแอนติบอดีทั้งสามต่อโปรตีน SGLT1 และได้ค่าเฉลี่ยของพลังงานที่ใช้ในการ แยกการจับกันของแอนติบอดีต่อโปรตีน SGLT1 (unbinding force) ดังแสดงในตารางที่ 3

รูปที่ 11 การเชื่อมต่อแอนติบอดีกับปลายเข็ม (cantilever) โดยวิธีทางเคมี


รูปที่ 12 เส้นกราฟพลังงานและเปอร์เซ็นต์การจับกันแบบจำเพาะของแอนติบอดีต่อโปรตีน SGLT1

ตารางที่ 3 แสดงค่าเฉลี่ยของเปอร์เซ็นต์การจับกันของแอนติบอดีทั้งสามต่อโปรตีน SGLT1 และค่าเฉลี่ย ของพลังงานที่ใช้ในการแยกการจับกันของแอนติบอดีต่อโปรตีน SGLT1 (unbinding force)

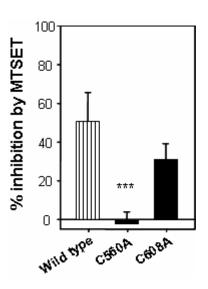
Antibodies Binding probability ^a	Maximum unbinding		
Antibodies	Binding probability	force f_u (pN) ^a	
subdomain I	9.5 ± 0.7	61.9 ± 2.2	
(aa243-aa272)	9.3 ± 0.7	01.9 ± 2.2	
subdomain II	8.0 ± 1.9	60.7 ± 6.2	
(aa339-aa356)	6.0 ± 1.9	00.7 ± 0.2	
subdomain III	10.6 ± 0.7	95.2 ± 9.9	
(aa606-aa630)	10.0 ± 0.7	93.2 ± 9.9	

^abinding probability and maximum unbinding force from several independent experiments with four locations on fours cells for each experiment. Values are mean \pm SEM. (n = 3 except for subdomain III, n = 9)

ต่อมาได้ศึกษาผลกระทบต่อการเข้าจับของแอนติบอดีต่อส่วนโปรตีนจำเพาะนั้นในสภาวะที่มี และไม่มีโซเคียมในสารละลาย และในสภาวะที่มีและไม่มีน้ำตาลกลูโคสในสารละลาย ดังแสดงในรูปที่ 13 จากผลการทดลองพบว่า ในสภาวะที่มีโซเคียมและน้ำตาลกลูโคสในสารละลายมีผลกระทบต่อการ เข้าจับของแอนติบอดีในบริเวณห่วงโซ่ที่สองของโปรตีน SGLT1 (รูปที่ 13C) จึงเสนอแนะได้ว่าบริเวณ ห่วงโซ่ที่สองน่าจะเป็นส่วนหนึ่งของบริเวณที่มีการเข้าจับของน้ำตาล หรือในระหว่างการนำพาน้ำตาลจะ ทำให้เกิดการเปลี่ยนแปลงโครงสร้าง (conformation changes) บริเวณห่วงโซ่ที่สองนี้

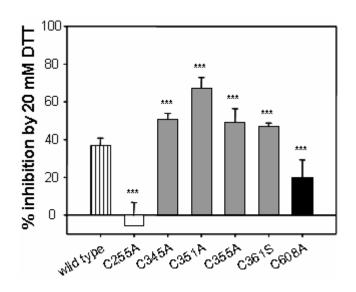
รูปที่ 13 ผลกระทบของน้ำตาลชนิดต่างๆต่อการจับกันของกลูโคสที่ปลายเข็มกับโปรตีน SGLT1 บน พื้นผิวเซลล์

จากนั้นได้ทำการศึกษาเพิ่มเติมทางชีวเคมีเพื่อค้นหากรดอะมิโนที่สำคัญในบริเวณห่วงโซ่ที่สอง (ที่ได้เสนอแนะว่าอาจเป็นหนึ่งในบริเวณที่น้ำตาลเข้าจับกับโปรตีน SGLT1) โดยได้ทำการนำพายืน SGLT1 ที่ได้ถูกทำให้กลายพันธุ์เฉพาะจุด (site-directed mutagenesis) เข้าสู่เซลล์ COS-7 เพื่อทำการแสดง ออกแบบชั่วคราว (transient transfection) โดยได้ทำการเปลี่ยนกรดอะมิโนจากซีสติอื่น (cysteine) ไป เป็นอะลานีน (alanine) และเซรีน (serine) ต่อมาทำการวัดค่าการนำพาน้ำตาลเข้าสู่เซลล์และคำนวณ ค่าเฉลี่ย K_m และค่าเฉลี่ยของอัตราการนำพาน้ำตาลเข้าสู่เซลล์ เนื่องจากโปรตีนกลายพันธุ์ทั้งสี่ชนิดนั้นมีอัตราการนำพาน้ำตาลที่ลดลงอย่างเห็นได้ชัดเมื่อเทียบกับโปรตีนคั้งเดิม โดยเฉพาะการเปลี่ยนกรดอะมิโนที่ ตำแหน่ง 351 และ 361 ส่งผลกระทบอย่างมากต่ออัตราการนำพาน้ำตาลและมีค่า K_m เพิ่มสูงกว่าโปรตีน ดั้งเดิมมาก นั่นหมายถึงว่า การเปลี่ยนกรดอะมิโนที่ตำแหน่งนี้มีผลต่อการเข้าจับของน้ำตาลต่อโปรตีน SGLT1 ซึ่งผลการทดลองทางชีวเกมีสอดคล้องกับผลการทดลองทางโมเลกุลเชิงเดี่ยว ที่เสนอแนะว่าห่วงโซ่ที่สองน่าจะเป็นบริเวณที่มีการเข้าจับของน้ำตาล


ตารางที่ 4 แสดงค่า K_m และค่าเฉลี่ยเปอร์เซ็นต์ของอัตราการนำพาน้ำตาลเข้าสู่เซลล์ COS-7 ที่ทำการ แสดงออกแบบชั่วคราวของโปรตีน SGLT1 ที่ศึกษา [โปรตีนดั้งเดิม (wild type) และโปรตีนกลายพันธุ์ (mutant)]

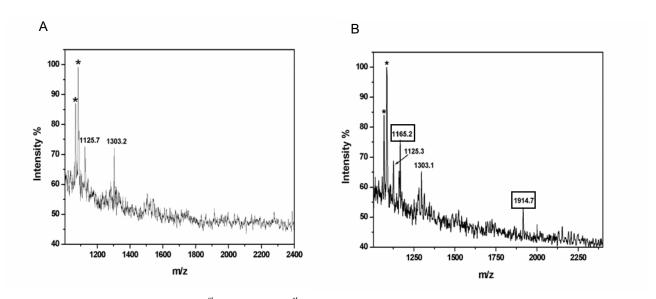
Mutant	Apparent K_m	% AMG uptake rate
	AMG (mmol/L) ^a	of wild type ^b
Wild type	1.0 ± 0.2	100.0
C345A	3.3 ± 1.5	27.4 ± 4.8
C351A	> 20.0	3.9 ± 1.7
C355A	5.1 ± 1.6	27.5 ± 4.5
C361S	> 20.0	37.3 ± 5.7

^aKinetics constants (Km) were obtained from measurements repeated in triplicate. Values are mean \pm SD (n = 3).


^bMaximum AMG uptake rate of wild type was 2.8 ± 0.3 nmoles (mg protein)-1 (15 min)-1 at 0.02 mM [14C]AMG. Values are mean \pm SD (n = 6).

เพื่อศึกษาสมมติฐานที่ว่าในโปรตีนขนส่งกลูโกสและโซเดียม SGLT1 น่าจะมีพันธะไดซัลไฟด์ที่ เชื่อมต่อระหว่างกรดอะมิโนซีสเตอีน (disulfide bond) ภายในโปรตีนนั้น และจากการเสนอแนะที่ว่า บริเวณห่วงโซ่ที่สาม หรือซับโดเมนสาม น่าจะอยู่ใกล้กับซับโดเมนที่สอง และทั้งสองซับโดเมนน่าจะ เป็นบริเวณที่เกี่ยวข้องกับการเข้าจับของน้ำตาลและตัวยับยั้ง phlorizin จึงทำการศึกษาความเป็นไปได้ ที่ว่าหากสองซับโดเมนนั้นเชื่อมต่อกันด้วยพันธะไดซัลไฟด์จริง ในบริเวณซับโดเมนที่สามจะต้องมี กรดอะมิโนที่ทำหน้าที่นั้น จึงทำการศึกษาว่ากรดอะมิโนซีสเตอีนตัวใดในซับโดเมนที่สามที่น่าจะเป็น ตัวรับพันธะไดซัลไฟด์ โดยทำการกลายพันธ์ที่กรดอะมิโนซีสเตอีนที่อยู่ในบริเวณห่วงโซ่นั้น คือที่ ตำแหน่ง C560 และ C608 และทำการศึกษาการนำพาน้ำตาลภายในสภาวะที่มี MTSET ซึ่งเป็นตัวยึดติด (block) หมู่ SH อิสระบนผิวเมมเบรน จากผลการทดลองที่แสดงในรูปที่ 14 นั้น จะเห็นว่า MTSET ยับยั้ง การนำพาน้ำตาลของโปรตีน SGLT1 ดั้งเดิม และโปรตีนกลายพันธ์ C608A และพบว่า MTSET ไม่มีผล ต่อการนำพาน้ำตาลของโปรตีนกลายพันธ์ C560A ซึ่งหมายความว่า ซีสเตอีนที่ตำแหน่ง 560 นั้นเป็น ตำแหน่งที่มีหมู่ SH อิสระ (ในโปรตีนด้งเดิมและในโปรตีนกลายพันธ์ C608A) ที่ MTSET สามารถเข้าจับ และยับยั้งการนำพาน้ำตาลได้ และยังสามารถเสนอแนะได้อีกว่าซีสเตอีนที่ตำแหน่ง 608 น่าจะทำหน้าที่ เป็นตัวรับพันธะไดซัลไฟด์ (หากมี)

รูปที่ 14 กราฟแสดงผลเปอร์เซ็นต์การยับยั้งของ MTSET ต่อการนำพาน้ำตาลเข้าสู่เซลล์ที่แสดงออก โปรตีน SGLT1 คั้งเดิม โปรตีนกลายพันธุ์ C560A และ โปรตีนกลายพันธุ์ C608A


ต่อมาได้ทำการศึกษาหากรดอะมิโนที่อาจจะเกิดพันธะไดซัลไฟด์ร่วมกับกรดอะมิโนซีสเตอีนที่ ตำแหน่ง 608 โดยทำการศึกษาผลกระทบต่อการนำพาน้ำตาลของโปรตีนดั้งเดิมและโปรตีนกลายพันธุ์ ชนิดต่างๆ (บริเวณซับโดเมนที่หนึ่ง สองและสาม ที่ได้ทำการเปลี่ยนกรดอะมิโนซีสเตอีนเป็นกรดอะมิ โนอะลานีนหรือเซริน) ต่อสาร DTT ซึ่งเป็นตัวทำลายพันธะไดซัลไฟด์ภายในโครงสร้างโปรตีน ดัง แสดงในรูปที่ 15

รูปที่ 15 กราฟแสดงผลเปอร์เซ็นต์การยับยั้งของ DTT ต่อการนำพาน้ำตาลเข้าสู่เซลล์ที่แสดงออกโปรตีน SGLT1 ดั้งเดิมและโปรตีนกลายพันธุ์ชนิดต่างๆ (บริเวณซับโดเมนที่หนึ่ง สองและสาม ที่ได้ทำการ เปลี่ยนกรดอะมิโนซีสเตอีนเป็นกรดอะมิโนอะลานีนหรือเซรีน)

จากผลการทคลองพบว่า DTT มีผลยับยั้งการนำพาน้ำตาลของโปรตีนดั้งเดิมและโปรตีนกลาย พันธุ์ในบริเวณซับโคเมนที่สอง ส่วนโปรตีนกลายพันธุ์บริเวณซับโคเมนที่หนึ่งและซับโคเมนที่สาม มีผล การยับยั้งน้อยกว่าโปรตีนดั้งเดิมอย่างเห็นได้ชัด ซึ่งสามารถตีความได้ว่า กรคอะมิโนซีสเตอีนที่ตำแหน่ง 255 ของซับโคเมนที่หนึ่งและตำแหน่ง 608 ของซับโคเมนที่สาม น่าจะเป็นกรคอะมิโนที่สร้างพันธะได ซับไฟด์ต่อกันภายในโครงสร้างโปรตีน SGLT1

ต่อมาได้ทำการทดลองทางชีวเคมีอีกวิธีหนึ่งเพื่อเป็นการยืนยันการเกิดพันธะไดซัลไฟด์ของ กรดอะมิโนซีสเตอีนที่ตำแหน่ง 255 และ 608 โดยได้ทำการสกัดโปรตีน SGLTI จากเซลล์ G6D3 แล้ว นำมาใส่ร่วมกับสาร maleimide-PEO2-biotin ในสภาวะที่มีและไม่มี DTT โดยหมู่ maleimide จะไปยึด ติดกับกรดอะมิโนซีสเตอีนในโปรตีน จากนั้นนำโปรตีนไปตัดด้วยเอนไซม์ทริปซิน (trypsin) เพื่อให้ได้ เป็นสายโปรตีนสั้นๆ และนำไปวัดขนาดขึ้นโปรตีนที่ตัดได้ด้วยเครื่อง MALDI-TOF mass-spectroscopy ผลการทดลองของสองสภาวะ (ที่มีและไม่มี DTT) ได้ทำการเปรียบเทียบและแสดงผลในรูปที่ 16 โดยใน สภาวะที่มี DTT ในสารละลายนั้น เกิดชิ้นโปรตีนสองชิ้นเพิ่มขึ้นจากในสภาวะที่ไม่มี DTT โดยตีความได้ ว่า DTT ไปทำลายพันธะไดซัลไฟด์ในโปรตีน ทำให้ maleimide-PEO2-biotin สามารถไปยึดติดที่หมู่ SH อิสระที่มีเพิ่มขึ้นได้ และจากการคำนวณขนาดของชิ้นโปรตีนที่ตัดได้เมื่อเทียบกับลำดับกรดอะมิโนตาม ทฤษฎี สามารถแสดงให้เห็นว่า หมู่ SH อิสระเกิดจากการทำลายพันธะไดซัลไฟด์ระหว่างซีสเตอีนที่ ตำแหน่ง 255 และ 608 (ตารางที่ 5) ซึ่งผลการทดลองนี้สอดคล้องเป็นอย่างดีกับการศึกษาก่อนหน้านี้ด้วย วิธีการศึกษาผลกระทบของ DTT ต่อการนำพาน้ำตาล

รูปที่ 16 แสดงผลการวัดขนาดชิ้นโปรตีนสายสั้นๆ ที่ได้ทำการเตรียมในสองสภาวะคือ A สภาวะที่ไม่มี DTT และ B สภาวะที่มี DTT

ตารางที่ 5 แสดงขนาดของชิ้นโปรตีน (peptide) ที่ได้จากการตัดด้วยเอนไซม์ทริปซินในสภาวะที่มีและ ไม่มี DTT โดยเปรียบเทียบผลจากค่าที่คำนวณทางทฤษฎีและจากผลที่ได้จากเครื่อง MALDI-TOF massspectroscopy

Tryptic peptide	Expected mass	Measured mass	
without reduction			
YCGRT-PMAB	1125.3	1125.7	
(residues 354-358)			
LCWSLR-PMAB	1202.6	1202.2	
(residues559-564)	1303.6	1303.2	
with reduction			
YCGRT-PMAB	1125.3	1125.3	
(residues 354-358)			
LCWSLR-PMAB	1303.6	1202 1	
(residues559-564)	1303.0	1303.1	
CYTRP-PMAB	1165 4	1165.2	
(residues255-259)	1165.4	1165.2	
AYDLFCGLDQDK-PMAB	1014.1	1914.7	
(residues 603-614)	1914.1	1914./	

จากการวิจัยนี้สามารถเสนอแนะได้ว่า ในโปรตีน SGLT1 (rabbit SGLT1) มีพันธะไดซัลไฟด์ เชื่อมต่อระหว่างกรดอะมิโนซีสเตอีนที่ตำแหน่ง 255 และ 608 และจากการเชื่อมกันนี้เองทำให้ห่วงโซ่ที่ หนึ่งหรือเรียกอีกอย่างว่าซับโดเมนที่หนึ่งและซับโดเมนที่สามมีการจัดเรียงตัวที่อยู่ใกล้กัน และยัง สามารถทำให้ซับโดเมนที่สองเข้ามาอยู่ใกล้ได้อีกด้วย จึงเสนอแนะได้ว่าบริเวณซับโดเมนทั้งสามนี้ น่าจะเป็นบริเวณที่เป็นทางเข้าของน้ำตาลก่อนผ่านเข้าสู่ภายในและเกิดการนำพาน้ำตาลเข้าสู่เซลล์ ตามลำดับ

จากการศึกษาโครงสร้างของโปรตีนขนส่งกลูโคสและโซเดียมโดยใช้วิธีความจำเพาะในระดับ โมเลกุลเชิงเคี่ยวและวิธีทางชีวเคมีสามารถบรรลุวัตถุประสงค์ที่ตั้งไว้ได้เป็นอย่างดี และได้เรียบเรียงเขียน เป็นบทความตีพิมพ์วารสารระดับนานาชาติในหัวข้อเรื่อง Three Surface Subdomains Form the Vestibule of the Na $^{+}$ -Glucose Cotransporter SGLT1 และได้รับการตอบรับตีพิพม์ในวารสาร Journal of Biological Chemistry ที่มีค่า impact factor ที่ดีมากคือ 5.808 ได้เป็นผลสำเร็จ (ภาคผนวก)

กล่าวโดยสรุปจากผลงานวิจัยนี้ช่วยให้เข้าใจลักษณะและคุณสมบัติของโปรตีนขนส่งกลูโคส และโซเดียม SGLT1 ได้ดียิ่งขึ้น ซึ่งจะเป็นประโยชน์อย่างมากในการนำพื้นฐานความรู้ที่ได้นี้ไป ประยุกต์ใช้ในหลายๆสาขางานวิจัยเช่น การพัฒนายาเพื่อใช้รักษาโรคเบาหวาน และนอกจากนั้นยัง สามารถนำเทคนิควิธีวิจัยที่ได้พัฒนาขึ้นนี้ในการนำไปประยุกต์ใช้สำหรับการศึกษาเมมเบรนโปรตีนชนิด อื่นๆได้อีกด้วย

3. Output ที่ได้จากโครงการ

3.1 บทความตีพิมพ์วารสารนานาชาติ (ภาคผนวก)

- 1. **Puntheeranurak T.**, Kasch M., Xia X., Hinterdorfer P., Kinne R.K.H. (2007) Three suface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. *Journal of Biological Chemistry*. 282 (35), 25222-30. (Impact factor 5.808)
- 2. **Puntheeranurak T.**, Wimmer B., Castaneda F., Gruber H.J., Hinterdorfer P., Kinne R.K.H. (2007) Substrate Specificity of Sugar Transport by Rabbit SGLT1: Single molecule AFM versus Transport Studies. *Biochemistry*. 46 (10), 2797-2804. (Impact factor 3.848)

3.2 กิจกรรมอื่นๆ ที่เกี่ยวข้อง

การได้รับเชิญไปเป็นวิทยากร (Invited lecture)

- 1. **Puntheeranurak T.**, Kinne R.K.H., Hinterdorfer P. (2007) Topology and Substrate Translocation of Sodium-Glucose cotransporter SGLT1 Investigated by Single-Molecule Force Microscopy. June 8, Ehwa Womans University, Seoul, Korea.
- 2. **Puntheeranurak T.**, Wildling L., Gruber H.J., Kinne R.K.H., Hinterdorfer P. (2006) Single-Molecule AFM Studies on the Interaction of Antibodies and Substrates with the Na⁺-Glucose Cotransporter SGLT1 in Living Cells. The 1st Annual Symposium of the Protein Society of Thailand, October 24-25, Chulabhorn Research Institute, Bangkok, Thailand
- 3. **Puntheeranurak T.** (2006) Single-molecule AFM studies on the interaction of antibodies and substrates with the Na⁺-glucose cotransporter SGLT1 in living cells. November 8, Faculty of Science, Kasetsart University, Bangkok, Thailand.

การไปเสนอผลงานวิชาการแบบ oral presentation และบทความตีพิมพ์จากการเสนอผลงาน

- 1. **Puntheeranurak T.**, Charoenphandhu N., Krishnamra N. (2008) Characterization of Biological Materials by using Atomic Force Microscopy (AFM). The 25th MST Annual Conference, January 9-11, Pitsanulok, p. 26-27.
- 2. **Puntheeranurak T.**, Hinterdorfer P., Kinne R.K.H. (2007) Single-Molecule Force Microscopy Investigation of the Topology of Sodium Glucose Cotransporter SGLT1. German-Thai Symposium on Nanoscience and Nanotechnology, September 27-28, Chonburi, p. 96-100.

- 3. **Puntheeranurak T.**, Hinterdorfer P., Kinne R.K.H. (2007) Topology and Substrate Translocation of Sodium-Glucose Cotransporter SGLT1 Investigated by Single-Molecule Force Spectroscopy. The 1st Thailand National Nanotechnology Conference on Nanomaterials, Phamaceutical, Devices and Applications, August 14-17, ChiangMai, p. 96-100.
- 4. **Puntheeranurak T.**, Kinne R.K.H., Hinterdorfer P. (2007) Substrate Translocation by the Sodium-Glucose cotransporter SGLT1: Topology and Selectivity of the Initial Binding Site as Studied by Single Molecule Force Microscopy. The International Scanning Probe Microscopy Conference, June 10-14, Jeju, Korea.

การไปเสนอผลงานวิชาการแบบ poster presentation และบทความตีพิมพ์จากการเสนอผลงาน

- 1. **Puntheeranurak T.**, Charoenphandhu N., Krishnamra N. (2008) Potential of Atomic Force Microscopy (AFM) to Investigate Biological Materials. The 2nd Progress in Advanced Materials: Micro/Nano Material and Applications, January 17-18, Khon-Khan, p. 98.
- 2. **Puntheeranurak T.**, Hinterdorfer P., Kinne R.K.H. (2007) Substrate Specificity of Sugar Transport by Rabbit SGLT1: Single Molecule AFM versus Transport Studies. TRF-CHE meeting, October 11-13, Chonburi, p. 264.
- 3. **Puntheeranurak T.**, Kasch M., Xia X., Hinterdorfer P., Kinne R.K.H. (2007) Three suface subdomains form the vestibule of the Na⁺/glucose cotransporter SGLT1. The 2nd Annual Symposium Protein Society of Thailand, September 20-21, Bangkok, p. 26.
- 4. **Puntheeranurak T.**, (2007) Stereospecificity of substrate transport by rabbit SGLT1: Single molecule AFM versus transport studies. February 2, THAI-UK CRN Forum, Bangkok.

ภาคผนวก

13000

The Journal of Biological Chemistry

Three Surface Subdomains Form the Vestibule of the Na⁺/Glucose Cotransporter SGLT1*

Received for publication, May 21, 2007, and in revised form, July 5, 2007 Published, JBC Papers in Press, July 6, 2007, DOI 10.1074/jbc.M704190200

Theeraporn Puntheeranurak^द, Myriam Kasch[§], Xiaobing Xia[§], Peter Hinterdorfer[¶], and Rolf K. H. Kinne^{§1}

From the [‡]Department of Biology, Faculty of Science, Mahidol University, and Center of Excellence, National Nanotechnology Center at Mahidol University, Bangkok, 10400, Thailand, the [§]Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany, and the [¶]Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstrasse 69, A-4040, Linz, Austria

A combination of biophysical and biochemical approaches was employed to probe the topology, arrangement, and function of the large surface subdomains of SGLT1 in living cells. Using atomic force microscopy on the single molecule level, Chinese hamster ovary cells overexpressing SGLT1 were probed with atomic force microscopy tips carrying antibodies against epitopes of different subdomains. Specific single molecule recognition events were observed with antibodies against loop 6-7, loop 8-9, and loop 13-14, demonstrating the extracellular orientation of these subdomains. The addition of D-glucose in Na+containing medium decreased the binding probability of the loop 8-9 antibody, suggesting a transport-related conformational change in the region between amino acids 339 and 356. Transport studies with mutants C345A, C351A, C355A, or C361S supported a role for these amino acids in determining the affinity of SGLT1 for D-glucose. MTSET, [2-(Trimethylammonium)ethyl] methanethiosulfonate and dithiothreitol inhibition patterns on α -methyl-glucoside uptake by COS-7 cells expressing C255A, C560A, or C608A suggested the presence of a disulfide bridge between Cys²⁵⁵ and Cys⁶⁰⁸. This assumption was corroborated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showing mass differences in peptides derived from transporters biotinylated in the absence and presence of dithiothreitol. These results indicate that loop 6-7 and loop 13-14 are connected by a disulfide bridge. This bridge brings also loop 8-9 into close vicinity with the former subdomains to create a vestibule for sugar binding.

SGLT1 proteins, highly conserved in many species (1), contain 662 residues with a molecular mass of \sim 75 kDa (2). It has been well documented that this protein is responsible for the "secondary active" transport of glucose across the brush border membrane of the small intestine and the kidney (3). However, knowledge of the three-dimensional structure of this protein and of the dynamics at the molecular level is rather limited.

Several molecular biological approaches have been employed to determine the membrane topology of SGLT1, indicating that it contains 14 transmembrane α -helices and 13 surface domains or loops connecting the transmembrane segments (4-6). There is still controversy, especially regarding the orientation of the large C-terminal loop connecting transmembrane helices 13 and 14 and the C-terminal end of SGLT1. Recently, singlemolecule force spectroscopy using AFM² has been utilized as an alternative method for probing the surface topology of loop 13-14 of the rabbit SGLT1 on living cells (7). This study confirmed an extracellular orientation of the disputed loop 13–14 of SGLT1, which is also supported by previous studies by Gagnon et al. (8) using the substituted cysteine accessibility method (SCAM) and fluorescent labeling methods. Both groups have proposed that this loop possibly acts as a reentrant loop during substrate translocation.

The N-terminal half of SGLT1 contains the Na⁺-binding sites, whereas the sugar pathway is located in the C-terminal domain, particularly in helices 10-13 of the protein (9-11). It is known that SGLT1 strongly discriminates among its natural substrates, D-glucose, D-galactose, and other hexoses (12). Many researchers have attempted to localize a substrate translocation pathway in SGLT1. Studies on chimera proteins of SGLT1/SGLT2 and a truncated protein (residues 407-648) showed that residues from 381-662 of SGLT1 are important for sugar transport, however, with less sugar specificity and lower sensitivity to the competitive inhibitor phlorizin (10, 13). Also residues 457, 468, and 499 have been shown to play an important role in controlling the sugar binding of SGLT1 (14, 15). Additional studies have demonstrated that loop 13-14 is involved in phlorizin binding and possibly contains a glucosebinding site (7, 16-18). Nevertheless, the precise substratebinding domains have not yet been defined. In this study, we have speculated that a region before residue 380 might play an important role in high affinity glucose binding, because the mutations at residues 292 and 355 in human SGLT1 lead to the hereditary disease glucose-galactose malabsorption (19, 20).

SGLT1 possesses 14 conserved cysteine residues, and there is evidence indicating that the existence of (at least) two disulfide bonds is important for functioning of this transporter (21, 22).

² The abbreviations used are: AFM, atomic force microscopy; aa, amino acid(s); DTT, dithiothreitol; MTSET, ——; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight; AMG, \(\alpha\cdot\)[14C]methyl glucoside; KRH, Krebs-Ringer-HEPES; PEG, polyethylene glycol; MTSET, [2-(Trimethylammonium)ethyl] methanethiosulfonate.

^{*} This work has been supported in part by the Thailand Research Fund (to T. P.), the Doctorate College Project Mobility Centres Austria from the Austrian Science Foundation (to P. H.), the Max Planck Institute of Molecular Physiology, and the National Nanotechnology Center, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ To whom correspondence should be addressed. Tel.: 49-0231-9742-6491; Fax: 49-0231-9742-6479; E-mail: rolf.kinne@mpi-dortmund.mpg.de.

Disulfide groups play a key role in stabilizing the three-dimensional structure of a protein by forming intra- and interchain disulfide bonds. In addition, free sulfhydryl groups often have important catalytic or regulatory roles. So far, there is evidence showing one disulfide bridge between residues Cys^{255} and Cys^{511} in human SGLT1 (23). In rabbit SGLT1 there are three large extramembranous loops or surface subdomains (loop 6–7, loop 8–9, and loop 13–14) that contain cysteine residues and therefore are potential sites for bringing the transmembrane helices 4 and 5 close to the transmembrane helices 10-13. Thereby, a vestibule containing a glucose recognition site might be formed similar to the results from the γ -aminobutyric acid transporters, showing that three surface loops form a pocket in which the substrate initially binds to the transporters (24).

To prove this assumption, the investigations using single-molecule AFM were further expanded to study the binding of epitope-specific antibodies to surface domains of SGLT1 during D-glucose translocation. In addition, site-directed mutagenesis, uptake assays, and MALDI-TOF mass spectrometry were employed to strengthen this study.

The results clearly show that the region between aa 339 and 361 in loop 8–9, especially residues Cys³⁵¹ and Cys³⁶¹, are involved in glucose binding. There is also evidence for a disulfide bridge between Cys²⁵⁵ and Cys⁶⁰⁸ in rabbit SGLT1. Taken together, these studies demonstrate the potential of AFM techniques in combination with biochemical and genetic approaches to investigate the structure and function of subdomains of SGLT1. Thereby, considerable insight is provided into the arrangement of transmembrane helices and the substrate-binding pocket of the rabbit SGLT1. This is important information for understanding the mechanism of action of this carrier protein.

EXPERIMENTAL PROCEDURES

Materials—All of the chemicals were of the highest purity available and were purchased from Sigma unless other sources are indicated. Immunopurified polyclonal antibodies QIS30 (subdomain I), PAN2-2 (subdomain II), and PAN3-2 (subdomain III) were raised against oligopeptides from the amino acid sequences aa 243-272 (loop 6-7, *i.e.* the loop between the transmembrane helices 6 and 7), aa 339-356 (loop 8-9), and aa 606-630 (loop 13-14) of rbSGLT1 (rabbit isoform), respectively, as described before (6, 25, 26). The specificity of the interaction of the antibodies with the supposed epitopes has been shown in independent previous immunohistochemistry studies where surface labeling of the cells could be prevented in the presence of the peptides used for their generation.

Mutagenesis of SGLT1 cDNA and Plasmid Construction—All of the mutants were prepared by site-directed mutagenesis using a ChameleonTM double-stranded site-directed mutagenesis kit (Stratagene, La Jolla, CA). The following primers with mutated nucleotides (underlined) were used for mutagenesis: C225A, 5'-CCTCCATCCCACAGAAGGCCTACACCCCAAGGGAAGACGCC-3'; C345A, 5'-CCTGTACACAGACAAAGTTGCCGCCTCGGAAGCTCGGGAAGCTGGCCTCGGAAGCTGGCCCTCGGAAGCTGGCCCTCGGAAGGATACTGTGGCACC-3'; C355A, 5'-GCCCTCGGAATGTGAGAGATACGCTGGCACCAGGGTTGGCTCCACCAACATTGCCTTCCC-3'; C560A, 5'-GCATCTCTATCG-

TCTG**GC**CTGGAGCCTACGTAATAGC-3'; and C608A, 5'-GGCGGGCCTATGACCTGTTT**GC**TGGGCTGGACCAGGATAAGGG-3'.

For preparation of mutants, plasmid pSGLT1 (2207 bp of rabbit DNA) was used as a template. After site-directed mutagenesis all of the mutants were confirmed by DNA sequencing and cloned from plasmid pSGLT1 into expression plasmid pHookTM-2 (Invitrogen) with appropriate enzymes. Final plasmids were purified with a Qiagen endotoxin-free plasmid maxi kit.

Cell Cultures and Transient Transfection—G6D3 cells or cell line stably transfected with the rabbit SGLT1 (25) and COS-7 cells were grown in 25-cm² flasks (Falcon, Heidelberg, Germany) under 5% CO₂ at 37 °C. The G6D3 cells were cultured in Dulbecco's modified Eagle's medium, containing high glucose (25 mm) supplemented with 5% fetal calf serum, 1 mm sodium pyruvate, 2 mm L-glutamine, 1× minimal essential medium, 25 μ M β -mercaptoethanol, and 400 μ g/ml paneticin G420 (PAN Biotech GmbH, Aidenbach, Germany). The COS-7 cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 1% L-glutamine. The culture media were renewed three times a week, and the cells were subcultured at 80% confluence. Cell passages below 15 were used for all experiments. For AFM investigation, the G6D3 cells were seeded on 22-mm² poly-L-lysine-coated glass coverslips, and the experiments were performed within 1-4 days of seeding the cells.

COS-7 cells were grown in 6-well culture plates to 70-80% confluence before transfection. Transient transfection was performed by using the activated dendrimer transfection reagent SuperFectTM (Qiagen) as described earlier (16). The efficiency of transfection was tested in COS-7 cells that were simultaneously transfected with the pHookTM-2lacZ control plasmid expressing β -galactosidase under identical conditions (Invitrogen). The post-transfection period for an optimal expression of β -galactosidase was 48 h. The transfection was performed as described in the manufacturer's manual, and $\sim 35-40\%$ efficiency was found for the wild type and all mutants.

Transport Studies-Na⁺/D-glucose cotransport activity of transiently transfected COS-7 cells (wild type and mutants) was assessed by examining α -[14 C]methyl glucoside (AMG) uptake at 37 °C in Na+-containing Krebs-Ringer-HEPES (KRH) medium as described previously for Chinese hamster ovary cells (25). Prior to the transport assay, COS-7 cells cultured in 6-well plates were incubated in a D-glucose-free medium for 1 h at 37 °C to reduce the intracellular glucose concentration to a nonsignificant level. Uptakes of AMG were carried out at a concentration of 0.02 mM AMG (containing 2 µCi of ¹⁴C-labeled AMG). The maximum uptake rate of wild type was 2.8 \pm $0.3 \text{ nmol (mg protein)}^{-1} (15 \text{ min)}^{-1}$. The results were expressed as percentages of AMG uptake of the wild type (mean values \pm S.D., n = 6). In kinetic measurements for the determination of the apparent K_m AMG (mmol/liter), two concentrations of substrate, *i.e.* 0.1 mM (S_1) and 3 mM (S_2) were used. The results were expressed as mean values \pm S.D. (n = 3). The calculations were performed as described earlier (16).

For determination of the free thiol groups on the surface of SGLT1, MTSET (a thiol-reactive compound) was used. The

Downloaded from www.jbc.org at Universitatsbibliothek Linz Auhof on April 6, 2008

Functional Subdomains of SGLT1

transfected wild type COS-7 cells and mutants were incubated with 1 mm MTSET for 12 min before performing AMG uptake assays in Na $^+$ -KRH medium containing 1 mm MTSET. The results are presented as a percentage of inhibition compared with the uptake in the control buffer (without MTSET) with respective cells and were obtained from measurement repeated in triplicate (mean values \pm S.D., n = 4).

To demolish possible intramolecular disulfide bonds of SGLT1, 20 mM dithiothreitol (DTT) were added in the AMG uptake assays of the transiently transfected COS-7 cells (wild type and mutants). The results were expressed as percentages of inhibition compared with the uptake of the respective cells in the buffer without DTT and were obtained from measurement performed in duplicate (mean values \pm S.D., n=3).

Conjugation of Antibodies to AFM Tips-Conjugation of immunopurified subdomain antibodies (i.e. QIS30, PAN2-2, and PAN3-2) to AFM tips via a flexible PEG-cross-linker, generating subdomain I tip, subdomain II tip, and subdomain III tip, respectively, were done similarly as described previously (27). In brief, AFM tips were first functionalized with ethanolamine by an overnight incubation with ethanolamine hydrochloride solubilized in Me₂SO. Then the heterobifunctional (aldehyde-PEG-*N*-hydroxysuccinimide) linker covalently bound to the amino groups on the tip surface via the N-hydroxysuccinimide ester function. Next, the specific antibodies were coupled via the aldehyde function to the PEG-conjugated AFM tips (28). The tips were finally washed in the AFM working buffer and stored in the cold room. This method provides tips to which only a few antibodies, functionally separated from each other, are attached. These tips have been used successfully in single-molecule recognition studies (7, 27).

Atomic Force Microscopy—All AFM experiments were performed using a magnetically driven dynamic force microscope (Agilent 5500 AFM; Agilent Technologies, Tempe, AZ) in the Na⁺-containing KRH medium except where Na⁺-free medium was stated. For the detection of antibody-SGLT1 recognition, force distance cycles were performed at room temperature using ligand-coated cantilevers (rectangular cantilever; Veeco Instruments, Mannheim, Germany) with 0.02 N/m nominal spring constants in the conventional contact force spectroscopy mode as described previously (7). Spring constants were determined according to the thermal noise method (29). Force distance cycles were recorded at the cell surfaces with the assistance of a CCD camera for positioning the AFM cantilever. An AFM tip carrying antibody was first approached (trace) and then retracted (retrace) from a cell surface, and the deflection angle of the cantilever was measured as a function of the z position. The deflection is proportional to the interaction force according to $f = k\Delta z$ (Hook's law, k is the spring constant of the cantilever, Δz is the deflection up (+) or down (-) of the cantilever). The sweep-amplitude of the force-distance cycles was 1000 nm at 1 Hz sweep rate. Up to 500-1000 force-distance cycles were performed for each area on the surface of cells, in the average four different cells for each condition, i.e. initial condition, ligand addition, and washout condition. For ligand addition, 0.3 µM free antibodies (QIS30, PAN2-2, and PAN3-2) and 10 mm D-glucose were separately applied in different conditions. The binding probability for each condition was derived

and expressed as the mean value \pm S.E. (n = 1500 - 4000). The statistical significance was tested using a Student's t test. Several experiments were performed, and one typical experiment for each condition is shown. Analysis of force distance cycles was performed using Matlab version 6.5 (Math Works, Natick, MA) as previously described (27, 30).

Sample Preparation for MALDI-TOF Mass Spectroscopy— The rbSGLT1 was purified by immunoprecipitation from G6D3 cells as previously described (25). The extracted protein was then incubated with 10 milliunits of peptide-N-glycosidase F (Roche Diagnostics) at 37 °C for 1 h and subsequently precipitated with CHCl₃/MeOH (31). The protein pellets were solubilized in 10 mM Tris-HCl, pH 6.8, containing 0.5% SDS at 90 °C for 5 min in two conditions, i.e. in the absence or presence of 5 $\,$ mm DTT. Cysteine residues were then biotinylated using $10\,$ mm maleimide-PEO₂-biotin (molecular weight, 525.6; Pierce) at room temperature in the dark for 1 h. The reaction was stopped by adding excess L-cysteine HCl and followed by SDS-PAGE. The SGLT1 protein was digested with modified trypsin (20 μg/ml) in 25 mM ammonium bicarbonate overnight at 37 °C. The tryptic peptides were extracted twice with acetonitrile/ water/trifluoroacetic acid (66:33:0.1, v/v/v) solution and subsequently dried and resuspended in phosphate-buffered saline buffer, pH 6.5. The detrimental effects of proteases were avoided by treating the protein with 4-(2-aminoethyl)benzenesulfonyl fluoride (Roche Diagnostics). The peptides were then purified with avidine coupled agarose, and the biotinylated peptides were then eluted with acetonitrile/water (60:45, v/v) containing 5% formic acid.

MALDI-TOF Mass Spectrometry—The sample was spotted onto the MALDI plate and air-dried at room temperature. MALDI-TOF mass spectra were acquired on a Voyager MALDI system (PE-Biosystems). MALDI peptide spectra were collected by using the linear delayed mode (100 ns) with 94% grid voltage (guide wire voltage) and 0.05% low mass gate, 500. The spectra were externally calibrated with insulin, thioredoxin, and apomyoglobin (PE-Biosystems).

RESULTS

Orientation of Three Subdomains Determined by Antibodies Coupled to AFM Cantilevers-AFM force spectroscopy was employed to verify the surface topology of subdomain I (loop 6-7), subdomain II (loop 8-9), and subdomain III (loop 13-14) (Fig. 1). rbSGLT1-transfected G6D3 cells, which overexpress SGLT1 on the cell surface (25), were used as a cell model for this investigation. Using three different AFM tips primed with epitope-specific antibodies, i.e. subdomain I tip, subdomain II tip, and subdomain III tip (see "Experimental Procedures"), force-distance cycles were performed at a fixed lateral position above the cells in Na⁺-containing KRH medium. The principle of single-molecule recognition force detection of the ligandreceptor complex on living G6D3 cells by using AFM has been described previously (7). Specific recognition events were observed with a unique characteristic from the force signal, as illustrated by a typical force curve using the subdomain I tip (Fig. 2A). The recognitions diminished in the presence of specific subdomain I antibodies in solution (Fig. 2B), suggesting that the antibody coupled to the cantilever only reacts with

Functional Subdomains of SGLT1

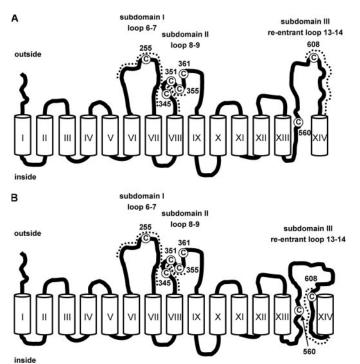


FIGURE 1. Hypothetical topology models of rabbit SGLT1. A and B are the models in which the intracellular and extracellular orientation, respectively, of the disputable C-terminal end are illustrated. rbSGLT1 contains 14 α -helical transmembrane segments that are identified by Roman numerals. The amino acid positions of endogenous cysteine residues located in subdomains I, II, and III are depicted in white circles. The dotted lines represent epitope sequences against subdomain I, II, and III antibodies.

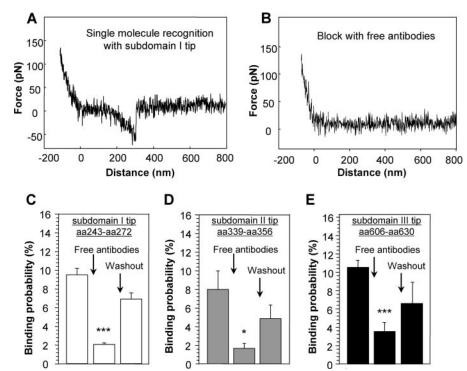


FIGURE 2. Recognition of SGLT1 on the surface of intact cells by AFM tips carrying epitope-specific antibodies (subdomain I, II, and III). *A*, force curve showing specific interaction between the subdomain I antibody and SGLT1 upon tip surface retraction. The specific interaction is blocked by adding free subdomain I antibodies in the solution (B). C-E, quantitative comparison of binding probabilities of subdomain I (C), subdomain II (D), and subdomain III (E) coupled to AFM tips to G6D3 cells in the absence or presence of free specific antibodies in the medium. The values are the means \pm S.E., n = 1500 - 4000.* n < 0.05 and **, p < 0.005 compared with levels in the relevant controls (absence of free antibodies in solution, value from the first bar).

SGLT1 and no other proteins. Specific unbinding events that can be prevented by free antibodies were also observed when epitope-specific antibodies against subdomain II and subdomain III were coupled to the AFM tips. The binding probabilities (probability to find an unbinding event in force distance cycles) from several experiments were derived. From typical experiments (n = 3 for subdomain I and II, n = 9 for subdomain III), a binding probability of subdomain I, II, and III antibodies on G6D3 cells of 9.5 \pm 0.7, 8.0 \pm 1.9, and 10.6 \pm 0.7%, respectively, were observed, (Fig. 2, C, D, and E, first bars). For confirmation of the specific recognition of SGLT1 by the antibodies, blocking experiments by injecting free antibodies were performed. Binding probability decreased to $2.1 \pm 0.2\%$ when free subdomain I antibodies were present in the medium and subsequently recovered to 6.9 \pm 0.7% after wash-out of the antibodies (Fig. 2C). Likewise, the binding probabilities decreased to 1.7 \pm 0.5 or 3.6 \pm 0.9% when free subdomain II and III antibodies were injected. After subdomain II and III antibodies were subsequently removed the binding probabilities increased again to 4.9 \pm 1.5 and 6.6 \pm 2.3%, respectively (Fig. 2, *D* and *E*). From these results it can be concluded that the epitopic regions of the subdomain I, II, and III of SGLT1 are localized extracellularly in living cells.

By determining f_u , the maximum of the probability density function of the unbinding forces, the most probable unbinding force for the interaction strength of the different antibodies with SGLT1 was quantified. The results are shown in Table 1. The interaction force between subdomain III and SGLT1 was

95.2 \pm 9.9 pN, which is in agreement with previous investigations (7). However, the unbinding forces between the subdomain I antibody and SGLT1 and between the subdomain II antibody and SGLT1 were slightly lower (61.9 \pm 2.2 and 60.7 \pm 6.2 pN, respectively) (n = 3).

Effect of D-Glucose and Na+ on the Subdomain Antibody Recognition Observed by AFM-To determine whether the three subdomains are involved in glucose-sodium cotransport, the effect of D-glucose and sodium on the recognition of the three subdomains by the antibodies was investigated. As illustrated in Fig. 3, before the addition of D-glucose, SGLT1 could be recognized by the three antibodies on the AFM tips in both Na+-containing (KRH-NaCl) and Na+-free (KRH-NMG) buffers with 8.7 ± 0.4% binding probability for both conditions (n = 15). Upon the addition of 10 mm D-glucose, the binding probability was significantly reduced only with the subdomain II antibody tip and only in the presence of Na⁺ (from 9.6 \pm 1.1 to 4.3 \pm

The Journal of Biological Chemistry

2

Functional Subdomains of SGLT1

TABLE 1 Binding probabilities and unbinding forces of SGLT1 antibodies

Antibodies	Binding probability ^a	Maximum unbinding force $f_{ m u}^{~a}$
		pN
Subdomain I (aa 243-272)	9.5 ± 0.7	61.9 ± 2.2
Subdomain II (aa 339-356)	8.0 ± 1.9	60.7 ± 6.2
Subdomain III (aa 606-630)	10.6 ± 0.7	95.2 ± 9.9

^a Binding probability and maximum unbinding force from several independent experiments with four locations on fours cells for each experiment. The values are the means \pm S.E. (n=3 except for subdomain III, where n=9).

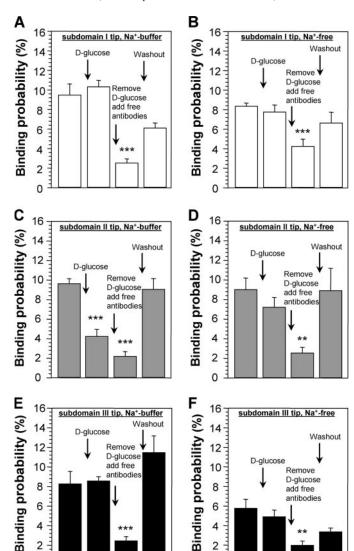


FIGURE 3. Effect of D-glucose and Na⁺ on the recognition of SGLT1 by antibodies. Binding probabilities of subdomain I (A and B), subdomain II (C and D), and subdomain III (E and F) tips to the surface of G6D3 cells under various conditions in the presence of Na⁺ (KRH-NaCl buffer) and in the absence of Na⁺ (KRH-NMG buffer), respectively. The values are the means \pm S.E. (n = 1500 - 4000; **, p < 0.01 and ***, p < 0.005) compared with levels in the relevant controls (absence of D-glucose or antibodies, value from the first bar).

2

0

0.7%, p = 0.0013) (Fig. 3C, second bar). Again, injection of the respective antibody resulted in a drastic significant reduction of binding (Fig. 3, *A–F*, third bars). After the free antibodies were removed from the medium, the binding probabilities recovered (Fig. 3, A-F, fourth bars). These results show that in the pres-

TABLE 2 Kinetic properties of AMG uptake into COS-7 cells transiently transfected with SGLT1 wild type and mutants

Mutant	Apparent K_m of AMG ^a	AMG uptake rate of wild type ^b
	mmol/liter	%
Wild type	1.0 ± 0.2	100.0
C345A	3.3 ± 1.5	27.4 ± 4.8
C351A	>20.0	3.9 ± 1.7
C355A	5.1 ± 1.6	27.5 ± 4.5
C361S	>20.0	37.3 ± 5.7

 $[^]a$ Kinetics constants (K_m) were obtained from measurements repeated in triplicate. The values are the means \pm S.D. (n = 3).

ence of D-glucose and Na⁺, the region of aa 339 – 356 on subdomain II, where the antigenic sites are located, becomes either less accessible to the antibody or that its conformation changes dramatically. Interestingly, the antigenic sites on subdomain I and III were still reachable from the outside by the antibodies under the same conditions.

Effect of Mutation of Cys³⁴⁵, Cys³⁵¹, Cys³⁵⁵, or Cys³⁶¹ in Subdomain II on Transport Properties of SGLT1—In the previous section, single-molecule recognition investigations have demonstrated a sodium-dependent effect of D-glucose on the region between aa 339 and 356 on subdomain II of SGLT1. Hence, it was interesting to investigate whether this region is indeed involved in sugar translocation. Therefore, transport studies were performed with wild type and mutants of the subdomain II region. Four mutants were generated by site-directed mutagenesis to replace cysteine by alanine or serine, i.e. C345A, C351A, C355A, and C361S. Subsequently, the wild type and mutant SGLT1 gene were transiently transfected into COS-7 cells for functional characterization. The uptake rate of wild type was $2.8 \pm 0.3 \,\mathrm{nmol} \,\mathrm{(mg \, protein)^{-1}} \,\mathrm{(15 \, min)^{-1}}$ at a concentration of 0.02 mm AMG. All of the replacements showed clearly a reduction of the transport activity. The most prominent effect was observed for C351A, i.e. \sim 4% of the maximum wild type activity, whereas the other mutants were \sim 27–37% of the wild type one (Table 2). The kinetic properties of wild type and mutants were also investigated. As depicted in Table 2, the replacements of cysteine residues in the subdomain II strongly affected the affinity of the transporter for AMG. The most striking effects were observed for C351A and C361S with the apparent K_m values for AMG at least 20-fold higher than the apparent K_m of the wild type. These results are in agreement with the observed effect of D-glucose on the recognition of the epitopic region of aa 339 – 356 in loop 8 – 9 by the subdomain II antibody, suggesting a possible glucose-binding pocket in this region (see "Discussion").

Proximity of the Three Subdomains-Several studies have shown that segments in subdomain III of rabbit SGLT1 are involved in phlorizin binding (7, 16-18). It also has been demonstrated that phlorizin obstructs the initial glucose-binding site of rbSGLT1 (12). Hence, we hypothesized that subdomain III of rbSGLT1 is in close vicinity to subdomain II, which we found above to be involved in glucose binding. Such proximity can be created by an intramolecular disulfide bridge. To determine whether this assumption is true, the cysteine residues in subdomain III were investigated as possible candidate acceptors of forming a disulfide bond. To this end, two mutants, i.e.

 $[^]b$ Maximum AMG uptake rate of wild type was 2.8 \pm 0.3 nmol (mg protein) $^{-1}$ $(15 \text{ min})^{-1}$ at 0.02 mm [14 C]AMG. The values are the means \pm S.D. (n = 6).

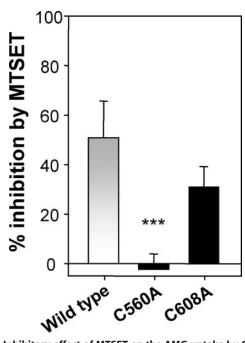


FIGURE 4. Inhibitory effect of MTSET on the AMG uptake by COS-7 cells transiently transfected with SGLT1 wild type and the indicated mutants. The cells were incubated with 1 mm MTSET for 12 min before performing the AMG uptake assays. The results are presented as percentages of inhibition compared with the uptake of the respective cells in the control buffer (without MTSET), mean values \pm S.D. (n=4). ***, p<0.005. The maximum uptakes of wild type, C560A, and C608A were 2.8 \pm 0.3, 0.6 \pm 0.2, and 1.6 \pm 0.1 nmol $(mg protein)^{-1} (15 min)^{-1}$, respectively.

C560A and C608A were generated, and the inhibitory effect of MTSET (which blocks free SH groups on the membrane surface) on AMG uptake by COS-7 cells transiently transfected with SGLT1 wild type and the mutants was measured. As illustrated in Fig. 4, MTSET inhibited uptake both in cells expressing wild type SGLT1 and in cells expressing C608A, where the cysteine at position 608 is replaced by alanine. The percentages of inhibition of wild type and C608A were not significantly different. However, almost no inhibition by MTSET was observed when uptake in cells expressing C560A was determined. These results imply that a free SH group exists at position 560 on the subdomain III; binding of MTSET to this cysteine inhibits sugar transport by SGLT1. They also suggest that the cysteine at position 608 might be forming a disulfide bond with another part of SGLT1.

To identify the donor and acceptor residues for such a disulfide bridge, we determined the effect of DTT on AMG uptake by COS-7 cells transiently transfected with SGLT1 wild type and mutants in subdomain I (C255A), subdomain II (C345A, C351A, C355A, and C361S), and subdomain III (C608A). As depicted in Fig. 5, cells expressing the wild type SGLT1 showed \sim 40% inhibition of sugar uptake by DTT. All of the mutants in subdomain II showed high DTT inhibition (i.e. $\sim 50-70\%$), whereas the mutants in subdomain I (C255A) and III (C608A) showed no or low inhibition by DTT ($-6 \pm 12.7\%$ and 20 \pm 9.3%, respectively). These results suggest that the residues Cys²⁵⁵ and Cys⁶⁰⁸ possibly form an intramolecular disulfide bond in rbSGLT1 (see "Discussion").

Finally, surface biotinylation and MALDI-TOF mass spectrometry was used to locate the regions containing the candi-

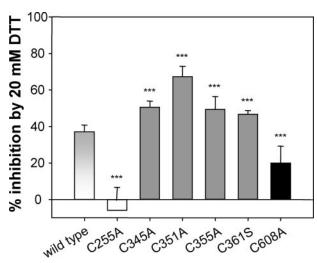


FIGURE 5. Inhibitory effect of DTT on the AMG uptake by COS-7 cells transiently transfected with SGLT1 wild type and the indicated mutants. 20 mm DTT were added in the AMG uptake assays of the transiently transfected COS-7 cells. The results are presented as percentages of inhibition compared with the uptake of the respective cells in the buffer without DTT, mean values \pm S.D. (n = 3). ***, p < 0.005.

date disulfide acceptor and donor groups. Cysteine residues were labeled in the immunopurified rbSGLT1 with PEO-maleimide-activated biotin (PMAB) in the absence or presence of 5 mm DTT. Then the protein was digested with trypsin as described under "Experimental Procedures." MALDI-TOF mass spectra of the biotinylated tryptic peptides from purified SGLT1 without and with reduction are shown in Fig. 6. Upon treatment with DTT, two new biotinylated peaks with molecular mass (mass/charge, m/z ratios) of 1165.2 and 1914.7 were observed. In Table 3, the theoretical and measured masses of biotinylated tryptic peptides of SGLT1 are compared. This comparison shows that two new peptides were generated under reducing conditions with the amino acid sequences CYTRP (residues 255-259) and AYDLFCGLDQDK (residues 603-614) conjugated with PMAB. Thus, in the presence of DTT, but not in its absence, PMAB could react with the cysteine residues Csy²⁵⁵ and Cys⁶⁰⁸, respectively. These results confirm our assumption that residues Cys²⁵⁵ and Cys⁶⁰⁸ form a disulfide bridge in rbSGLT1.

DISCUSSION

Surface Topology of the Three Subdomains—The structural topology of SGLT1 has been investigated in several studies (4-8, 32). However, contradictory results have been obtained that might be due to various factors, such as the methods employed and/or the expression systems used. The orientation of loop 13–14 of SGLT1 is the most ambiguous. The current study used a recently developed technique as an alternative way to verify the surface topology of subdomains I, II, and III of the rabbit SGLT1 in the nearly native structure in the living cells. We demonstrated that antibodies against these regions coupled separately to AFM tips could interact specifically with the antigenic-binding epitopes of SGLT1. These results confirm the extracellular orientations of the regions of the subdomain I (aa 243–272), II (aa 339 – 356), and III (aa 606 – 630), which support the assumptions derived from previous studies (5-8, 33) and

Functional Subdomains of SGLT1

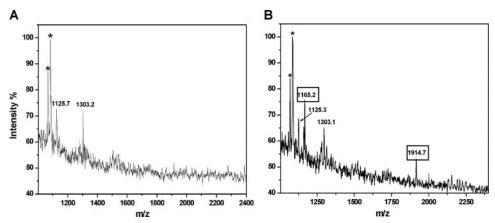


FIGURE 6. **MALDI-TOF** mass spectra of the biotinylated tryptic peptides from purified SGLT1. The purified protein was labeled with maleimide-PEO $_2$ -biotin in the absence or presence of 5 mm DTT for 1 h in the dark at room temperature and digested with trypsin. The tryptic peptides were purified and prepared for MALDI-TOF. *A*, peptides obtained after labeling without DTT. *B*, peptides obtained after labeling in the presence of DTT.

TABLE 3
Theoretical and measured masses of biotinylated tryptic peptides of SGLT1

Tryptic peptide	Expected mass	Measured mass
Without reduction		
YCGRT-PMAB (residues 354–358)	1125.3	1125.7
LCWSLR-PMAB (residues 559-564)	1303.6	1303.2
With reduction		
YCGRT-PMAB (residues 354-358)	1125.3	1125.3
LCWSLR-PMAB (residues 559-564)	1303.6	1303.1
CYTRP-PMAB (residues 255-259)	1165.4	1165.2
AYDLFCGLDQDK-PMAB (residues 603-614)	1914.1	1914.7

also from our immunohistochemistry labeling the surface of SGLT1-expressing cells (26). Furthermore, the binding probabilities of the three antibodies to SGLT1 are quite similar. This evidence strongly supports the view that the tips recognize the same transporter.

The Journal of Biological Chemistry

From these studies, two different models concerning the C terminus of SGLT1 can be developed, as shown in Fig. 1. In Fig. 1.4 the end of the transmembrane helix 14 faces intracellularly, quite in contrast to most of the models proposed thus far. There is, however, some experimental evidence to support also this orientation (6, 34). If one assumes that during substrate translocation by SGLT1 conformational changes occur, transmembrane helix 14 as a dynamic helical structure could alternate between inside-facing and outward-facing states, as previously reported for the *Escherichia coli* β -glucoside transporter BglF (35).

The receptor-ligand forces found in this work are in the range of the ones observed for other biological systems, *i.e.* in the range of 50–250 pN (27, 36, 37). The unbinding force required to disrupt the association of either subdomain I or subdomain II antibodies from SGLT1 was, however, detected to be lower than the interaction of subdomain III antibody to SGLT1. The difference in forces might be due to differences in accessibility and/or interaction strength of the different antibodies and their specific epitopes. According to topology models the epitopic region in subdomain III is located in the late part of loop 13–14, which is also the longest loop in the SGLT1, whereas the subdomain II epitope in loop 8–9 lies close to the membrane plane, and this loop is

much shorter than the one of subdomain III. Moreover, antigenicity plots (JaMBW) for each antigenic peptide showed that the peptide from subdomain III exhibits the highest antigenic index, *i.e.* the number of probable interactive sites between the antigen and the antibody is the highest.

Conformational Changes Induced by Na⁺ and D-Glucose—From AFM force spectroscopy using three-specific antibodies, we observed that D-glucose significantly reduced the binding probability of the subdomain II antibody, but only in the presence of Na⁺. This implied that the change could be due to the fact

that D-glucose itself temporarily obstructs the antibody-binding site or due to a transient structural alteration of the transporter during substrate translocation. In previous studies, our group has reported direct evidence showing that sodium induces a conformational change of SGLT1, which exposes a sugar-binding site on the transporter surface (7). Therefore, we hypothesized that this region in subdomain II either lies close to the sugar-binding site, which appears only in the presence of Na⁺, or represents part of the initial binding pocket (vestibule), which subsequently transfers glucose to the translocation pathway. Several groups have proposed that the glucose translocation region lies between helices 10-13 of SGLT1, however, with low affinity to D-glucose and lost sensitivity to phlorizin (10, 13). In this study, we suggest that the residues between aa 339 and 356 located between helix 8 and 9 also contribute to efficient high affinity D-glucose transport.

Critical Residues for D-Glucose Binding—We further confirmed our statement by using site-directed mutagenesis to generate the mutants in subdomain II of SGLT1, which were transiently transfected into COS-7 cells. These cells have been shown in previous studies to lack endogenous Na⁺-dependent glucose transport (6, 16). All of the mutant clones showed lower AMG uptake rates, which might be due to insufficient sorting into the plasma membrane, inappropriate conformational structure of the expressed SGLT1 in the plasma membrane and/or a global reorganization of the disulfide bonds. Such reorientation has also been assumed recently for the rat isoform of SGLT1 expressed in HEK-293 cells (38).

The change in the kinetic properties indicates an important role for the subdomain II in glucose binding. All of the mutants in this loop clearly showed a significantly lower affinity for AMG, especially those with mutations at residues 351 and 361. Moreover, mutation in this region, especially residues 351 and 361, also showed very low inhibition affinity (high K_i) to phlorizin. These results suggest that the two cysteines either interact directly with the glucose molecule or help to stabilize this region of the SGLT1. Replacement of these residues possibly

³ M. Kasch and R. Kinne, unpublished data.

causes a structural collapse of the glucose-binding pocket, which in turn affects the affinity for substrate translocation.

Proximity of the Three Subdomains and the Proposed Topology of SGLT1—In SGLT1 there are three distinct subdomains that we have speculated may be involved in sugar translocation. By using single-molecule AFM, we have proposed that in the presence of Na⁺ subdomain III of rbSGLT1 acts as a reentrant loop containing a substrate- and/or phlorizin-binding site, which subsequently transfers a substrate close to the translocation pathway (7). In the current study, the region in subdomain II was found to be involved with either glucose or phlorizin binding, so we hypothesized that subdomains II and III (and possibly with subdomain I) may lie close together. There is evidence from other transporters showing that exposed surface loops can act as a substrate binding region (24) or can be a reentrant pore-loop-like structure with the accessibility depending on the conformation of the transporter (39-41). For this reason we investigated the proximity of these three exposed loops of SGLT1 by specifically delineating intramolecular disulfide bonds. Site-directed mutagenesis in subdomain III (C560A and C608A) and chemical modification of free cysteines by methane-thiosulfonate derivatives indicated the possibility that MTSET binds to the residue Cys⁵⁶⁰ because we could observe the inhibitory effect in wild type and the Cys^{608} mutant and not for the Cys⁵⁶⁰ mutant. These results also imply that residue Cys⁶⁰⁸ is not available for a reaction and thus might act as an acceptor for a disulfide bond. The presence of a free SH group at the D-glucose-binding site is in accordance with previous studies on the protection of this site by D-glucose in N-ethylmaleimide labeling experiments (42). In other investigations it was reported that SGLT1 is not sensitive to alkylation by N-ethylmaleimide or methanethiosulfonate. The reason for this discrepancy is unclear. It might be related to species differences and/or the incubation conditions used. Furthermore, depending on the conformation of the carrier (see for example Ref. 43), different disulfide linkages may be formed.

Our results from the effect of DTT on AMG transport and labeling of peptides were in agreement and support the existence of an intramolecular disulfide bond between Cys²⁵⁵ and Cys⁶⁰⁸ in rabbit SGLT1. These results differ from the recent work by Gagnon et al. (23) proposing a bond between Cys²⁵⁵ and Cys⁵¹¹ in human SGLT1. It is noteworthy in this context that different isoforms of SGLT1 exhibit individual properties in term of kinetics, substrate specificity, and inhibitor affinity (44). Therefore, minor differences in the functional structure of different SGLT1 isoforms, particularly in the surface loops, might be expected. Such diversity is also evident in recent studies concerning the evolution of SGLT (1). Irrespective what the exact partners are, such an intramolecular disulfide bridge would bring loop 6-7, loop 8-9, and loop 13-14 closer together and create the critical conditions for phlorizin and D-glucose binding. We thus suggest that the three subdomains of SGLT1 form a vestibule that acts as a D-glucose-binding pocket.

Finally, this study nicely demonstrates the advantage of using different techniques, i.e. AFM with the potential for nearly native environmental investigation and molecular biochemical approaches, in cooperation to investigate the

structure and dynamics of the cotransporter SGLT1 which currently has become an important target in oral rehydration therapy (45).

Acknowledgments—The skillful and generous help in the transport studies and cell culture from Kirsten Michel, Hedrike Schütz, Petra Glitz, and Chirstiane Pfaff is gratefully acknowledged. We thank Hermann J. Gruber and Linda Wildling for helpful synthesis of the AFM cross-linkers. Prof. Nateetip Krishnamra provided generous support.

REFERENCES

- 1. Althoff, T., Hentschel, H., Luig, J., Schutz, H., Kasch, M., and Kinne, R. K. (2007) Am. J. Physiol., 292, R2391-R2399
- 2. Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M. (1987) Nature **330.** 379 – 381
- 3. Crane, R. K. (1977) Rev. Physiol. Biochem. Pharmacol. 78, 99-159
- 4. Turk, E., and Wright, E. M. (1997) J. Membr. Biol. 159, 1-20
- Turk, E., Kerner, C. J., Lostao, M. P., and Wright, E. M. (1996) J. Biol. Chem. **271**, 1925–1934
- 6. Lin, J., Kormanec, J., Homerova, D., and Kinne, R. K. (1999) J. Membr. Biol. **170,** 243-252
- 7. Puntheeranurak, T., Wildling, L., Gruber, H. J., Kinne, R. K., and Hinterdorfer, P. (2006) J. Cell Sci. 119, 2960-2967
- Gagnon, D. G., Holt, A., Bourgeois, F., Wallendorff, B., Coady, M. J., and Lapointe, J. Y. (2005) Biochim. Biophys. Acta. 1712, 173-184
- Panayotova-Heiermann, M., Eskandari, S., Turk, E., Zampighi, G. A., and Wright, E. M. (1997) J. Biol. Chem. 272, 20324-20327
- 10. Panayotova-Heiermann, M., Loo, D. D., Kong, C. T., Lever, J. E., and Wright, E. M. (1996) J. Biol. Chem. 271, 10029-10034
- 11. Vayro, S., Lo, B., and Silverman, M. (1998) Biochem. J. 332, 119-125
- 12. Puntheeranurak, T., Wimmer, B., Castaneda, F., Gruber, H. J., Hinterdorfer, P., and Kinne, R. K. (2007) Biochemistry 46, 2797-2804
- 13. Panayotova-Heiermann, M., Leung, D. W., Hirayama, B. A., and Wright, E. M. (1999) FEBS Lett. 459, 386 –390
- 14. Loo, D. D., Hirayama, B. A., Gallardo, E. M., Lam, J. T., Turk, E., and Wright, E. M. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7789-7794
- Diez-Sampedro, A., Wright, E. M., and Hirayama, B. A. (2001) J. Biol. Chem. 276, 49188 - 49194
- 16. Novakova, R., Homerova, D., Kinne, R. K., Kinne-Saffran, E., and Lin, J. T. (2001) J. Membr. Biol. 184, 55-60
- Raja, M. M., Tyagi, N. K., and Kinne, R. K. (2003) J. Biol. Chem. 278, 49154 - 49163
- 18. Xia, X., Lin, J. T., and Kinne, R. K. (2003) Biochemistry 42, 6115-6120
- 19. Wright, E. M. (1998) Am. J. Physiol. 275, G879-G882
- Martin, M. G., Turk, E., Lostao, M. P., Kerner, C., and Wright, E. M. (1996) Nat. Genet. 12, 216-220
- 21. Turner, R. J., and George, J. N. (1983) J. Biol. Chem. 258, 3565–3570
- 22. Turner, R. J., and George, J. N. (1984) Biochim. Biophys. Acta. 769, 23-32
- 23. Gagnon, D. G., Bissonnette, P., and Lapointe, J. Y. (2006) J. Gen. Physiol. **127,** 145-158
- 24. Tamura, S., Nelson, H., Tamura, A., and Nelson, N. (1995) J. Biol. Chem. **270,** 28712–28715
- 25. Lin, J. T., Kormanec, J., Wehner, F., Wielert-Badt, S., and Kinne, R. K. (1998) Biochim. Biophys. Acta. 1373, 309-320
- Kipp, H., Khoursandi, S., Scharlau, D., and Kinne, R. K. (2003) Am. J. Physiol. 285, C737-C749
- 27. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 3477-3481
- 28. Ebner, A., Wildling, L., Kamruzzahan, A. S. M., Rankl, C., Wruss, J., Hahn, C. D., Hölzl, M., Kienberger, F., Blaas, D., Hinterdorfer, P., and Gruber, H. J. (2007) Bioconjug. Chem., 18, 1176-1184
- 29. Hutter, J. L., and Bechhoefer, J. (1993) Rev. Sci. Instrum. 64, 1868-1873
- Baumgartner, W., Hinterdorfer, P., and Schindler, H. (2000) Ultramicroscopy 82, 85-95
- Wessel, D., and Flugge, U. I. (1984) Anal. Biochem. 138, 141-143

Functional Subdomains of SGLT1

- 32. Raja, M. M., and Kinne, R. K. (2005) Biochemistry 44, 9123-9129
- Turk, E., Martin, M. G., and Wright, E. M. (1994) J. Biol. Chem. 269, 15204 - 15209
- 34. Turner, J. R., Lencer, W. I., Carlson, S., and Madara, J. L. (1996) J. Biol. Chem. 271, 7738 –7744
- Yagur-Kroll, S., and Amster-Choder, O. (2005) J. Biol. Chem. 280, 19306-19318
- 36. Pfister, G., Stroh, C. M., Perschinka, H., Kind, M., Knoflach, M., Hinterdorfer, P., and Wick, G. (2005) J. Cell Sci. 118, 1587-1594
- Florin, E. L., Moy, V. T., and Gaub, H. E. (1994) Science 264, 415-417
- Xia, X., Wang, G., Peng, Y., and Jen, J. (2005) Arch. Biochem. Biophys. 438, 63 - 69

- 39. Grunewald, M., and Kanner, B. I. (2000) J. Biol. Chem. 275, 9684 –9689
- 40. Krom, B. P., and Lolkema, J. S. (2003) Biochemistry 42, 467-474
- 41. Slotboom, D. J., Sobczak, I., Konings, W. N., and Lolkema, J. S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 14282-14287
- 42. Thomas, L., Kinne, R., and Frohnert, P. P. (1972) Biochim. Biophys. Acta. **290,** 125-133
- 43. Tyagi, N. K., Goyal, P., Kumar, A., Pandey, D., Siess, W., and Kinne, R. K. (2005) Biochemistry 44, 15514-15524
- 44. Hirayama, B. A., Lostao, M. P., Panayotova-Heiermann, M., Loo, D. D., Turk, E., and Wright, E. M. (1996) Am. J. Physiol. 270, G919-G926
- 45. Wright, E. M., Hirayama, B. A., and Loo, D. F. (2007) J. Intern. Med. 261, 32 - 43

Substrate Specificity of Sugar Transport by Rabbit SGLT1: Single-Molecule Atomic Force Microscopy versus Transport Studies[†]

Theeraporn Puntheeranurak, \$\frac{1}{2}, \bar{8}, \bar{1}\$ Barbara Wimmer, \$\bar{8}, \bar{1}\$ Francisco Castaneda, \$\bar{8}\$ Hermann J. Gruber, \$\bar{1}\$ Peter Hinterdorfer, \$\bar{1}\$ and Rolf K. H. Kinne*, \$\bar{8}\$

Department of Biology and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand, Department of Epithelial Cell Physiology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany, and Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstrasse 69, Linz A-4040, Austria

Received September 15, 2006; Revised Manuscript Received December 18, 2006

ABSTRACT: In the apical membrane of epithelial cells from the small intestine and the kidney, the highaffinity Na⁺/D-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption. How sugars are selected at the molecular level is, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the substrate specificity of rbSGLT1 on the singlemolecule level, while competitive-uptake assays with isotope-labeled sugars were performed in the study of the stereospecificity of the overall transport. rbSGLT1-transfected Chinese hamster ovary (CHO) cells were used for both approaches. Evidence of binding of D-glucose to the extracellular surface of rbSGLT1 could be obtained using AFM tips carrying 1-thio-p-glucose coupled at the C1 position to a PEG linker via a vinylsulfon group. Competition experiments with monosaccharides in solution revealed the following selectivity ranking of binding: 2-deoxy-D-glucose ≥ 6-deoxy-D-glucose > D-glucose > D-galactose ≥ α-methyl glucoside; 3-deoxy-D-glucose, D-xylose, and L-glucose did not measurably affect binding. These results were different from those of competitive α-methyl glucoside transport assays, where the ranking of inhibition was as follows: D-glucose > D-galactose > 6-deoxy-D-glucose; no uptake inhibition by D-xylose, 3-deoxy-D-glucose, 2-deoxy-D-glucose, or L-glucose was observed. Taken together, these results suggest that the substrate specificity of SGLT1 is determined by different recognition sites: one possibly located at the surface of the transporter and others located close to or within the translocation pathway.

Secondary active transport is a fundamental biological principle (1, 2). Na⁺/D-glucose cotransporter type 1 (SGLT1) is one of the most intensively studied membrane transporters (3, 4). SGLT1 is a member of a very large solute carrier family (SLC5) which transports various solutes into cells using the Na⁺ electrochemical potential gradient across the plasma membrane (5). Intestinal glucose absorption and renal glucose reabsorption in many species are Na⁺-dependent and crucially mediated by SGLT1 (1). Rabbit SGLT1 was first cloned by Hediger and colleagues in 1987 (6) and since then has been studied extensively. A defect in SGLT1 can cause glucose-galactose malabsorption (GGM) which is an autosomal recessive disease (7). Recently, strong interest has been focused on inhibitors of the novel target SGLT (SGLT1 and SGLT2) for potential therapy of type 2 diabetes (8, 9).

It has been proposed that SGLT1 contains 14 transmembrane α -helices with both the N- and C-termini facing the

extracellular compartment (10-12). With regard to the structure-function relationship, the N-terminal half of SGLT1 participates in Na⁺ binding while the C-terminal domain, particularly helices 10–13 of the protein, participates in sugar transport (13-16). Cotransport is supposed to be initiated when two external Na⁺ ions bind to the SGLT1 and induce structural alterations in the protein, which allow sugar binding, followed by the simultaneous translocation of sodium and sugar across the membrane (3). From transport studies in intact cells and brush border membrane vesicles, it is known that SGLT1 strongly discriminates among monosaccharides, D-glucose and D-galactose being the natural substrates (17-20). Although these former studies outlined the important structural and conformational features required for a sugar to be transported, the question of how the transporter SGLT1 selects its substrates was not investigated.

In previous studies, we have demonstrated that atomic force microscopy (AFM; see ref 21) is a powerful approach to studying the presence and dynamics of membrane transporters in intact cells on the single-molecule level (22). The high sensitivity of AFM and the soft cantilever that is

[†] This work was supported in part by the Thailand Research Fund and the Commission on Higher Education (T.P.), Austrian Science Foundation Project P-14549 (P.H.), and the Max Planck Institute for Molecular Physiology.

^{*} To whom correspondence should be addressed: Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany. E-mail: rolf.kinne@mpi-dortmund.mpg.de. Telephone: +49 (0) 231-133-2220. Fax: +49 (0) 231-133-2699.

[‡] Mahidol University.

[§] Max Planck Institute of Molecular Physiology.

^{||} Johannes Kepler University of Linz.

¹ Abbreviations: rbSGLT1, sodium/p-glucose cotransporter 1 (rabbit isoform); AFM, atomic force microscopy; CHO, Chinese hamster ovary; AMG, α-methyl glucoside; PEG, poly(ethylene glycol); VS, vinylsulfonylbenzyl group; SH, sulfhydryl; NHS, *N*-hydroxysuccinimide.

used offer the potential to detect picoNewton forces of transporter—ligand complexes, which provides a unique opportunity to detect molecular recognition of binding events under different environmental conditions (23-26).

Here we investigate the initial molecular recognition of D-glucose with SGLT1 on the cell membrane surfaces of living cells by using D-glucose coupled at the C1 position to AFM tips. The results obtained in this study reveal that the stereospecificity of the initial binding of D-glucose to SGLT1 generated from AFM force spectroscopy differs from that obtained under identical conditions in competitive transport assays in which isotope-labeled α -methyl glucoside ([\begin{align*} \begin{align*} \alpha \text{MG} \end{align*} was taken up by cells. These data support the hypothesis that at least two sites of interaction of the transporter with the sugars where selection occurs exist, one feasibly involved in the initial binding step and the other in the translocation reaction.

EXPERIMENTAL PROCEDURES

Materials. 1-thio- β -D-glucose, β -D-glucose, L-glucose, D-galactose, D-xylose, 2-deoxy-D-glucose, 3-deoxy-D-glucose, 6-deoxy-D-glucose, α -methyl glucoside, phlorizin, and poly-L-lysine were purchased from Sigma (Schnelldorf, Germany). All other reagents were of the highest available purity.

Cell Cultures. rbSGLT1-expressing G6D3 cells, a CHO cell line stably transfected with rabbit SGLT1 generated in our laboratory (27), were grown in 25 cm² flasks (Falcon, Heidelberg, Germany) under 5% CO₂ at 37 °C. This cell line was cultured in Dulbecco's modified Eagle's medium (DMEM), containing high glucose (25 mM) supplemented with 5% fetal calf serum, 1 mM sodium pyruvate, 2 mM L-glutamine, $1 \times$ minimal essential medium, and 25 μ M β -mercaptoethanol. Culture medium contained 400 μ g/mL paneticin G420 (PAN Biotech GmbH, Aidenbach, Germany) to maintain selection of transfected cells. Culture medium was renewed three times per week, and the cells were subcultured at 80% confluence. Cell passages below 15 were used for all experiments. For AFM studies, the cells were seeded on 22 mm² poly-L-lysine-coated glass cover slips and the experiments were performed within 1-4 days of seeding. For uptake studies, confluent monolayers of G6D3 cells were grown on 96-well plates (Falcon) for 3 days.

Transport Studies. Na⁺/D-glucose cotransport activity and phlorizin inhibition were assessed by examining α -[14C]AMG (specific radioactivity of 300 mCi/mmol) uptake as described previously (28). A 96-well automated method was employed so that small amounts of the radioactive compound and inhibitory substances could be used. Briefly, the cells were incubated in a D-glucose-free medium for 1 h at 37 °C prior the transport assays. For the purpose of this study, Krebs-Ringer-HEPES (KRH) solution containing 120 mM NaCl, 4.7 mM KCl, 2.2 mM CaCl₂, 1.2 mM MgCl₂, and 10 mM HEPES (pH 7.4 with Tris base) was used to asses sodiumdependent D-glucose transport. Cytochalasin B (50 μ M) was added as a supplement to KRH solution to suppress glucose uptake by GLUT protein (glucose transporter). A KRH solution containing 120 mM N-methylglucamine (NMG) instead of NaCl was used to assess sodium-independent D-glucose transport. The uptake activity assay with the three transport buffers containing KRH-Na+ or KRH-Na+ with phlorizin (0.5 mM) or KRH-NMG with 0.1 mM AMG

(containing 1 μ Ci/mL ¹⁴C-labeled AMG) was performed by using a MicroBeta Trilux (Perkin-Elmer). Then luminescence ATP detection was assessed to determine the amount of protein, and the mean counts per minute (cpm) were calculated. The results were expressed as cpm (mg/mL protein)⁻¹ (30 s)⁻¹ as mean values \pm the standard error of the mean (n = 3). The statistical significance was tested using a Student's t-test.

Competition Assays. The competitive measurements of AMG uptake were performed in the presence of several competitive sugars, i.e., D-glucose, L-glucose, D-galactose, D-xylose, 2-deoxy-D-glucose, 3-deoxy-D-glucose, and 6-deoxy-D-glucose at concentrations of 0.5, 5, and 10 mM. Transport buffer containing a KRH-Na⁺ solution, 50 μ M cytochalasin B, and 0.1 mM AMG (containing 1 μ Ci/mL ¹⁴C-labeled AMG) was used throughout these inhibition studies. The results were expressed as cpm (mg/mL protein)⁻¹ (30 s)⁻¹ as mean values \pm the standard error of the mean (n=3). The value of AMG uptake in the absence of the competitive sugars was employed for calculation of a percent reduction for each inhibition.

Conjugation of 1-Thioglucose to AFM Tips. Conjugation of 1-thio- β -D-glucose to AFM tips via a flexible PEG [poly-(ethylene glycol)] cross-linker was carried out as described previously (22). In brief, silicon tips were first functionalized with ethanolamine by an overnight incubation with ethanolamine hydrochloride solubilized in DMSO. In the second step, the NHS (*N*-hydroxysuccinimide) ester function of the PEG linker (VS-PEG-NHS) was covalently bound to amino groups on the tip surface. In the third step, the free SH group of 1-thio- β -D-glucose was reacted with VS (vinylsulfon)-PEG-conjugated AFM tips. Tips were finally washed in the AFM working buffer and stored in the cold room. This method provides tips which are suitable for single-molecule recognition studies.

Atomic Force Microscopy and Spectroscopy. All AFM investigations were performed using a magnetically driven dynamic force microscope (PicoSPM II, Molecular Imaging, Tempe, AZ) in the Na⁺-containing KRH medium except where Na+-free medium was stated. For the detection of glucose-SGLT1 recognition, force-distance cycles were performed at room temperature using glucose-coated cantilevers (rectangular cantilever, Veeco Instruments, Mannheim, Germany) with a nominal spring constant of 0.02 N/m in the conventional contact force spectroscopy mode as described previously (22). Force—distance cycles were recorded on cell surfaces with the assistance of a CCD camera for positioning the AFM cantilever on isolated cells or cell monolayers (living cells). The sweep amplitude of the forcedistance cycles was 1000 nm at a sweep rate of 1 Hz. Up to 500-1000 force-distance cycles were performed for each location on the surface of cells and up to four locations (different cells) for each condition, i.e., initial condition, ligand addition, and washout condition. For ligand addition, D-glucose, L-glucose, D-galactose, D-xylose, 2-deoxy-Dglucose, 3-deoxy-D-glucsoe, 6-deoxy-D-glucose, AMG (10 mM each) or 0.5 mM phlorizin was separately applied for competitive investigations. Force-distance cycles were recorded after incubation with the ligand for 10 min. The washing periods were \sim 30 min to 1 h to ensure complete removal of ligand. The binding probability for each condition was derived and expressed as the mean value \pm the standard error of the mean (n = 2000-4000). The statistical significance was tested using a Student's t-test. Several experiments were performed, and one typical experiment for each condition is shown.

For the quantification of the forces, spring constants of cantilevers were determined in air using the thermal noise method (29, 30). The deflection sensitivity of the photodetector was determined from the slope of the force—distance curves taken on the bare surface of glass cover slips. Analysis of interaction forces was performed using Matlab version 6.5 (Math Works, Natick, MA) as previously described (23, 31).

RESULTS

Interaction of Sugars with rbSGLT1 As Observed by AFM Force Spectroscopy. AFM force spectroscopy was employed in investigating sugar-SGLT1 interactions at the singlemolecule level. An AFM tip sensor was designed in which the OH groups known to be essential for translocation (i.e., at C2, C3, and C4) were not modified (18, 32-39), and the ligand was tightly attached to the tip. The AFM tips were covalently conjugated with 1-thio- β -D-glucose via a distensable linker (VS-PEG-NHS; see Experimental Procedures) at a very dilute surface density. The construction of the ligand-AFM tip creating the 1-thio-D-glucose tip is depicted in Figure 1A. The NHS ester function of the PEG linker was covalently attached to amino groups on the modified tip surface. Then the free thiol group at the C1 position of 1-thio- β -D-glucose was coupled to the VS end forming a thioglycosidic bond.

The principle of single-molecule recognition force detection of the ligand-receptor complex on living G6D3 cells by using AFM is illustrated in Figure 1B. In this so-called force-distance mode, the deflection angle of the cantilever is measured as a function of the vertical position of the

A single-molecule recognition event of D-glucose with SGLT1 on the surface of a G6D3 cell with the thioglucoseconjugated tip is shown as a typical force curve (retraction) in Figure 2. Considering the size of the bulky p-vinylsulfonylbenzyl group (40), this interaction very probably represents an initial binding of the glucose to SGLT1 which is not followed by translocation. Distinct recognition events were only observed in the presence of sodium (Figure 2), and no binding events were observed in sodium-free buffer when sodium was replaced with N-methyl-D-glucamine (inset of Figure 2). The observed probabilities of binding (probability of finding an unbinding event in force-distance cycles) of D-glucose to SGLT1 ranged from 8 to 12%, binding events being detected only in CHO cells overexpressing rbSGLT1 (data not shown). Furthermore, the interactions were inhibited by phlorizin (see below), a competitive specific inhibitor of SGLT. These data establish that the binding events occur at the surface of SGLT1 molecules. By constructing an empirical probability density function of the unbinding force, we found the maximum of the distribution function to be $\sim 40-50$ pN [for more detail, see previous studies (22)].

Stereospecificity of the Initial D-Glucose-Binding Site. The effect of various sugars, including some controvertible sugars, on the probability of binding of the 1-thio-D-glucose tip to

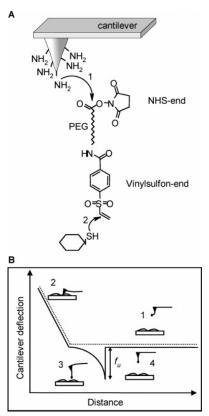


FIGURE 1: Single-molecule recognition using AFM force spectroscopy. (A) Linkage of glucose to AFM tips. 1-thio-glucose was covalently coupled to AFM tips via a heterobifunctional PEG derivative (VS-PEG-NHS) 8 nm in length. The NHS end of the PEG linker was covalently bound to amines on the functionalized tip surface (1), and glucose was attached to the VS end via a free thiol (2). (B) Schematic representation of a force-distance cycle carried out to measure specific molecular force. The tip was moved toward the cell surface (dotted line, 1-2) and then retracted (solid line) at a constant lateral position. During tip approach, the ligand specifically binds with a receptor that leads to a force signal with a distinct shape (3) during tip retraction. The force increases until bond rupture occurs (4) at an unbinding force (f_u) .

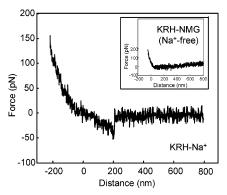


FIGURE 2: Force curve showing specific interaction between the glucose and SGLT1 upon tip-surface retraction. The retraction curve on the cell surface with a glucose-coated AFM tip shows a specific interaction in the presence of Na⁺ (KRH-Na⁺). The specific recognition disappears in the absence of Na⁺ (KRH-NMG, inset).

the transporter with the block-washout experiments is shown in Figure 3. In the absence of sugar, the probabilities of binding of the tip to SGLT1 in KRH-Na⁺ buffer were similar (Figure 3A-H, first bar). These values were in agreement with the ones from the previous studies (22). Upon injection of 10 mM free sugars into the medium, the binding

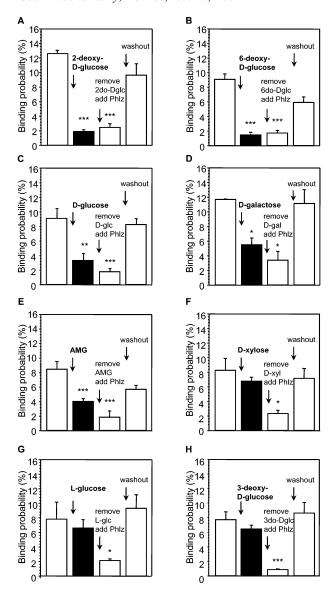


FIGURE 3: Inhibition of initial D-glucose binding. Binding probabilities of the D-glucose tip and effect of 2-deoxy-D-glucose (A, black bar), 6-deoxy-D-glucose (B, black bar), D-glucose (C, black bar), D-galactose (D, black bar), AMG (E, black bar), D-xylose (F, black bar), L-glucose (G, black bar), and 3-deoxy-D-glucose (H, black bar). Values are means \pm the standard error of the mean (n=2000-4000). Abbreviations: 2do-Dglc, 2-deoxy-D-glucose; 6do-Dglc, 6-deoxy-D-glucose; D-glc, D-glucose; D-gal, D-galactose; AMG, α -methyl glucoside; D-xyl, D-xylose; L-glc, L-glucose; 3do-Dglc, 3-deoxy-D-glucose; Phlz, phlorizin. p < 0.05 (one asterisk), p < 0.01 (two asterisks), and p < 0.005 (three asterisks) compared with levels in the relevant controls (absence of sugars or phlorizin in solution, value from the first bar).

probabilities were significantly reduced by 2-deoxy-D-glucose (from 12.6 ± 0.5 to $1.9 \pm 0.3\%$, p = 0.000003), 6-deoxy-D-glucose (from 9.1 ± 0.8 to $1.5 \pm 0.4\%$, p = 0.0001), D-glucose (from 9.3 ± 1.3 to $3.3 \pm 0.9\%$, p = 0.0086), D-galactose (from 11.7 ± 0.1 to $5.5 \pm 0.9\%$, p = 0.0109), and AMG (from 8.5 ± 1.1 to $4.0 \pm 0.4\%$, p = 0.0081). Under the same experimental conditions, however, 3-deoxy-D-glucose (from 7.7 ± 1.1 to $6.4 \pm 0.5\%$, p = 0.3289), D-xylose (from 8.3 ± 1.6 to $6.8 \pm 0.5\%$, p = 0.3657), and L-glucose (from 7.8 ± 2.4 to $6.6 \pm 1.2\%$, p = 0.6576) had no significant effect. These values are compiled as the percent

Table 1: Effect of Various Sugars on the Probability of Binding of D-Glucose to SGLT1 (AFM studies)

sugars and derivatives	% reduction ^a
2-deoxy-D-glucose	84.9
6-deoxy-D-glucose	83.5
D-glucose	64.5
D-galactose	53.0
α-methyl glucoside	52.9
D-xylose	18.0
3-deoxy-D-glucose	16.9
L-glucose	15.4

^a The values were derived from the experiments depicted in Figure 3. In each experiment, 2000–4000 force—distance curves which were obtained at four different positions on the cell surface were analyzed.

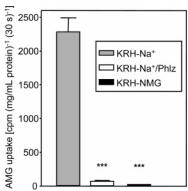


FIGURE 4: Representative experiment of uptake of [14 C]AMG by SGLT1 stably transfected G6D3 cells. Uptake was assessed by incubation with 0.1 mM AMG (containing 1 μ Ci/mL 14 C-labeled AMG) for 30 min at 37 °C under three conditions, i.e., in the presence of Na $^+$ (KRH-Na $^+$, gray bar), in the presence of Na $^+$ with specific inhibitor phlorizin (KRH-Na $^+$ /Phlz, white bar), and in the absence of Na $^+$ (KRH-NMG, black bar). Values are means \pm the standard error of the mean (n=3); p<0.005 (three asterisks) compared with levels in the presence of Na $^+$ (gray bar).

inhibition of binding in Table 1. The ranking of the sugars with regard to the potency to prevent binding is as follows: 2-deoxy-D-glucose \geq 6-deoxy-D-glucose > D-galactose \geq AMG \gg D-xylose \geq 3-deoxy-D-glucose > L-glucose.

After free sugar was removed, phlorizin, a specific high-affinity competitive inhibitor which binds on the external membrane surface of SGLT1, was added to the solution. For 6-deoxy-D-glucose and 2-deoxy-D-glucose, the inhibition was comparable to that achieved with 0.5 mM phlorizin (Figure 3A,B).

Transport Studies in CHO Cells Overexpressing rbSGLT1 (G6D3 Cells). AMG uptake was performed to verify the functional activity of SGLT1 in the G6D3 cells. AMG is a substrate specific for SGLT1 and not transported by other sugar (sodium-independent) transport systems present in these cells. The results of transport studies using the 96-well automated method are shown in Figure 4. Na⁺-dependent D-glucose cotransport assessed by [14 C]AMG uptake was 2284.4 \pm 207.3 cpm (mg/mL protein) $^{-1}$ (30 s) $^{-1}$ (n=3) in the presence of Na⁺ (KRH-Na⁺) and 20.9 \pm 3.2 cpm (mg/mL protein) $^{-1}$ (30 s) $^{-1}$ (n=3) in the absence of Na⁺ (KRH-NMG). Phlorizin inhibition was confirmed by measuring the level of [14 C]AMG uptake in the presence of Na⁺ and phlorizin, yielding 69.2 \pm 14.7

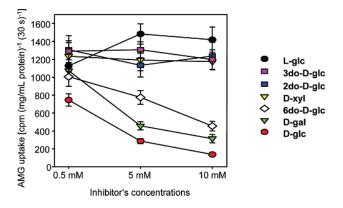


FIGURE 5: AMG uptake in the presence of competitive sugars. Uptake was assessed by incubation with 0.1 mM AMG (containing 1 μ Ci/mL 14 C-labeled AMG) together with each competitive sugar for 30 min at 37 °C in KRH-Na⁺ medium. The levels of uptake at competitive sugar concentrations of 0.5, 5, and 10 mM, i.e., L-glucose (black circles), D-glucose (red circles), D-galactose (green triangles), D-xylose (yellow triangles), 2-deoxy-D-glucose (blue rectangles), 3-deoxy-D-glucose (pink rectangles), and 6-deoxy-D-glucose (white diamonds), were compared. Values are means \pm the standard error of the mean (n=3).

Table 2: Effect of Various Sugars on the Uptake of AMG by SGLT1 (transport studies)

sugars and derivatives	% reduction ^a
D-glucose	90.2
D-galactose	77.3
6-deoxy-D-glucose	67.2
D-xylose	15.1
3-deoxy-D-glucose	13.3
2-deoxy-D-glucose	10.5
L-glucose	-2.8

 $^{^{}a}$ The data were calculated by using the value of AMG uptake at 0.1 mM as a reference value.

cpm $(mg/mL \text{ protein})^{-1} (30 \text{ s})^{-1} (n = 3)$. These data demonstrate that the expressed SGLT1 in this study shows the characteristic of Na⁺ dependence and phlorizin sensitivity of transport.

Substrate Specificity of Transport. To investigate the substrate specificity exhibited in the more complex transport reaction of rbSGLT1, competitive uptake assays using isotope-labeled AMG were performed by adding various sugars to the uptake solutions. The levels of AMG uptake at concentrations of 0.5, 5, and 10 mM for competitive sugars, i.e., D-glucose, L-glucose, D-galactose, D-xylose, 2-deoxy-D-glucose, 3-deoxy-D-glucose, and 6-deoxy-D-glucose, are shown in Figure 5. In the absence of competing sugars, the level of AMG transport was 1380.4 ± 211.9 cpm (mg/mL protein) $^{-1}$ (30 s) $^{-1}$ (n=3). Only D-glucose, D-galactose, and 6-deoxy-D-glucose inhibited AMG uptake in a dose-dependent manner, whereas the others sugars did not

The percent reductions in the level of AMG uptake in the presence of each competitive sugar (10 mM) are compiled in Table 2. D-Glucose exhibited the strongest inhibition of AMG uptake (90.2%). The ranking of percent reduction from competitive assays (Table 2) was as follows: D-glucose > D-galactose > 6-deoxy-D-glucose > D-xylose \sim 3-deoxy-D-glucose \sim 2-deoxy-D-glucose > L-glucose.

DISCUSSION

AFM Force Spectroscopy of the Interaction of D-Glucose with SGLT1. At present, atomic force microscopy is widely accepted as a tool in nano-bioscience and nano-biotechnology. The AFM approach is very useful in obtaining direct information either on isolated molecules or on the surface of living cells (for reviews, see refs 22 and 41). It is noteworthy that our study was performed with unfixed cells under near-physiological conditions in terms of ion composition of the intra- and extracellular medium, membrane potential, and membrane fluidity.

For the detection of SGLT1 with D-glucose, we used interaction force spectroscopy. SGLT1-expressing G6D3 cells were firmly attached to poly-L-lysine-coated glass cover slips. This method of preparation is suitable for maintaining cell attachment and prolonging experimental time (22). To detect single-molecule events, single-molecule tips that contain a very low surface density of ligands (~400 molecules/ μ m²) were employed (23). At a given time, only one ligand has access to the transporters present at the cell surface. Here the AFM tips were covalently conjugated with 1-thio- β -D-glucose via distensable tethers which guarantees a sufficiently stable attachment, because these covalent bonds are ~ 10 times stronger than typical ligand—receptor interactions (41). The NHS-PEG-VS cross-linker was purposely selected for this investigation since the bulky p-vinylsulfonylbenzoyl group present at the end of the linker most probably prevents a translocation, and therefore, only an initial binding of D-glucose to SGLT1 should be observed. It is noteworthy that the *p*-vinylsulfonylbenzoyl group is closely similar in size to the aglucone phloretin that is attached to the glycoside phlorizin which is not translocated by SGLT1. In this study, we observed distinct recognition events between the D-glucose-coupled cantilever and the living G6D3 cells. This interaction was Na⁺-dependent and could be inhibited by phlorizin. Furthermore, as reported previously (22), it was only observed in CHO cells overexpressing SGLT1, thereby verifying the specificity of the interaction with SGLT1. Moreover, the observed unbinding force (f_u) required to disrupt this interaction and the binding probabilities of $\sim 8-12\%$ were the same as in the previous study (22).

Selectivity of SGLT1-Mediated Sugar Transport. In general, the data presented here provide further support to previous studies which have shown the important roles of the hydroxyl groups on C2, C3, C4, and C6 in sugar binding and translocation by SGLT1 (18, 32–39).

Substrate transport by SGLT1 has been proposed to proceed in several steps along the translocation pathway, including conformational alterations of the carrier and substrate translocation (3, 42-45). Studies on the kinetics and substrate specificity of several isoforms of SGLT1, for instance, rabbit SGLT1, human SGLT1, and rat SGLT1, have demonstrated that each isoform exhibits individual properties (18). In any case, at least two sites of interaction of the transporter with the sugars are hypothesized to exist, one initial binding site and another in the translocation pathway. However, the direct experimental proof and characterization of these sites are lacking thus far.

In this study, an AFM force spectroscopy approach was used as a method for probing the initial D-glucose binding

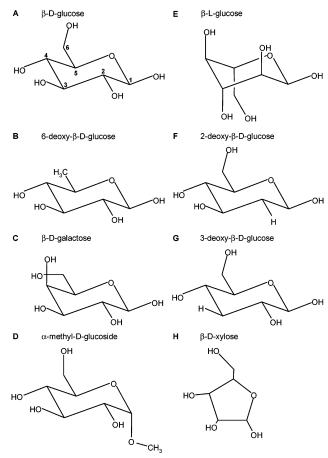


FIGURE 6: Chemical structure of the studied sugars. The ring form of β -D-glucose (A), 6-deoxy- β -D-glucose (B), β -D-galactose (C), α -methyl D-glucoside (D), β -L-glucose (E), 2-deoxy- β -D-glucose (F), 3-deoxy- β -D-glucose (G), and β -D-xylose (H) was generated with ISIS Draw 2.4.

properties of SGLT1. The changes in the probability of binding of the D-glucose-coupled AFM tip, reflecting the initial binding of D-glucose to SGLT1, were monitored before and after sugar injections. The probability of binding of the D-glucose tip was significantly reduced after application of free 6-deoxy-D-glucose, 2-deoxy-D-glucose, D-glucose, Dgalactose, and α-methyl glucoside, whereas only a slight effect was observed in the presence of 3-deoxy-D-glucose, D-xylose, and L-glucose. The results indicate that the equatorial hydroxyl group on C3 (see the structure of sugars in Figure 6) is the most crucial feature to allow the initial interaction of sugars with rabbit SGLT1. D-galactose, a 4-epimer of D-glucose, has an axial configuration of the hydroxyl group on C4 which may impede the interaction of the C3 hydroxyl group with the carrier. These data are in accordance with the lower inhibitory potency of phloretin 2'-galactoside on sugar transport compared to that of the phloretin 2'-glucoside, phlorizin (37-39). Furthermore, it seems that a steric effect of a substituent on C1 plays a role in the accessibility of the sugar to SGLT1, which is evident from a slightly weaker inhibition by α -methyl glucoside (AMG).

It should be mentioned in this context that modification of the C3 hydroxyl group with a methyl group as in 3-*O*-methyl-D-glucose apparently still allows interaction with the initial docking site. 3-*O*-Methyl-D-glucose slightly inhibits

phlorizin binding in rat kidney brush border membranes (35), and this sugar has been used as a model substance in studies of the cotransport of sodium and D-glucose. In those investigations, it exhibited characteristics similar to those of glucose but had a lower affinity (46).

In the study presented here, we further investigated the stereospecificity of sugar translocation by using competitive AMG uptake studies with the same sugars. These studies were necessary for obtaining a complete set of data for rabbit SGLT1 under the same conditions that were used in the AFM experiments. As expected, D-glucose and D-galactose exhibited the strongest inhibitory potency, followed by 6-deoxy-D-glucose. D-Xylose, 3-deoxy-D-glucose, and L-glucose exhibited a very weak or no inhibitory effect. This was anticipated from the AFM studies since the latter sugars also did not interact with the initial docking site. Most importantly, 2-deoxy-D-glucose exhibited an only slight inhibition of the AMG uptake, while it strongly inhibited the initial D-glucose binding in the AFM instrument (see above). These results suggest that the hydroxyl group on C2 is important for discriminating the sugars for translocation. A similar discrepancy between initial binding and translocation has been observed previously in rat kidney proximal tubule. 2-Deoxy-D-glucose was shown to inhibit binding of phlorizin to isolated brush border membrane vesicles, but no transepithelial transport was observed in microperfusion studies (46). This result raises the question of why 2-deoxy-D-glucose inhibits transport only slightly but strongly inhibits binding in the AFM and phlorizin binding studies. In a model where the two steps, binding and translocation, are assumed to be sequential, equal inhibition of binding and transport should be observed. Apparently in the presence of a large substituent at C1 such as the vinylsulfon group in the AFM studies or the two aromatic rings of phlorizin, the presence and positioning of the OH group at C2 seem to become irrelevant for the binding reaction; thus, both D-glucose and 2-deoxy-D-glucose act as inhibitors, based on the presence of the OH groups at C3, C4, and C6. This might be due either to conformational changes and steric hindrances at the glucose molecule itself or to similar events at the transporter. In the absence of a large substituent (and as a free sugar) like in the AMG uptake studies, rejection of 2-deoxy-D-glucose as a substrate probably occurs at the early binding site, and thus, the subsequent transport is not inhibited. Similar considerations seem not to apply to the OH group at C3 which is farther removed from the C1 position because 3-deoxy-Dglucose does not inhibit binding or transport to a significant

When the results from the studies of the initial sugar binding and the competitive transport assays are combined, the following sequence of events in sugar recognition and selection for transport can be hypothesized. The sugars first reach a docking site which requires the presence of a hydroxyl group (or *O*-methyl group) at C3. The sugars fulfilling this requirement are then transferred to a second docking site which requires at C2 the presence of a hydroxyl group in the equatorial position, whereby mannose is also excluded which has a hydroxyl group in the axial position. Thereafter, the sugars can be translocated across the membrane. However, more detailed studies at the molecular level are needed to validate this assumption.

ACKNOWLEDGMENT

We thank Linda Wildling for helpful synthesis of the AFM cross-linkers. The generous help in the transport studies and cell culture from Kirsten Michel, Hendrike Schütz, Petra Glitz, and Christiane Pfaff is also gratefully acknowledged. Prof. Nateetip Krishnamra also provided generous support.

REFERENCES

- Crane, R. K. (1977) The gradient hypothesis and other models of carrier-mediated active transport, *Rev. Physiol. Biochem. Phar*macol. 78, 99–159.
- Schultz, S. G., and Curran, P. F. (1970) Coupled transport of sodium and organic solutes, *Physiol. Rev.* 50, 637–718.
- 3. Wright, E. M. (2001) Renal Na⁺-glucose cotransporters, Am. J. Physiol. 280, F10–F18.
- Hediger, M. A., and Rhoads, D. B. (1994) Molecular physiology of sodium-glucose cotransporters, *Physiol. Rev.* 74, 993

 1026
- 5. Wright, E. M., and Turk, E. (2004) The sodium/glucose cotransport family SLC5, *Pfluegers Arch.* 447, 510–518.
- Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M. (1987) Expression cloning and cDNA sequencing of the Na⁺/glucose co-transporter, *Nature* 330, 379–381.
- Wright, E. M., Turk, E., and Martin, M. G. (2002) Molecular basis for glucose-galactose malabsorption, *Cell Biochem. Biophys.* 36, 115–121.
- Corpe, C., Sreenan, S., and Burant, C. (2001) Effects of type-2 diabetes and troglitazone on the expression patterns of small intestinal sugar transporters and PPAR-gamma in the Zucker diabetic fatty rat, *Digestion 63*, 116–123.
- Tsujihara, K., Hongu, M., Saito, K., Kawanishi, H., Kuriyama, K., Matsumoto, M., Oku, A., Ueta, K., Tsuda, M., and Saito, A. (1999) Na⁺-glucose cotransporter (SGLT) inhibitors as antidiabetic agents.
 Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives substituted on the B ring, *J. Med. Chem.* 42, 5311–5324.
- Lin, J., Kormanec, J., Homerova, D., and Kinne, R. K. (1999) Probing transmembrane topology of the high-affinity sodium/ glucose cotransporter (SGLT1) with histidine-tagged mutants, *J. Membr. Biol.* 170, 243–252.
- Turk, E., Kerner, C. J., Lostao, M. P., and Wright, E. M. (1996) Membrane topology of the human Na⁺/glucose cotransporter SGLT1, *J. Biol. Chem. 271*, 1925–1934.
- 12. Turk, E., and Wright, E. M. (1997) Membrane topology motifs in the SGLT cotransporter family, *J. Membr. Biol.* 159, 1–20.
- Panayotova-Heiermann, M., Eskandari, S., Turk, E., Zampighi, G. A., and Wright, E. M. (1997) Five transmembrane helices form the sugar pathway through the Na⁺/glucose cotransporter, *J. Biol. Chem.* 272, 20324–20327.
- Panayotova-Heiermann, M., Loo, D. D., Kong, C. T., Lever, J. E., and Wright, E. M. (1996) Sugar binding to Na⁺/glucose cotransporters is determined by the carboxyl-terminal half of the protein, *J. Biol. Chem.* 271, 10029–10034.
- Vayro, S., Lo, B., and Silverman, M. (1998) Functional studies of the rabbit intestinal Na⁺/glucose carrier (SGLT1) expressed in COS-7 cells: Evaluation of the mutant A166C indicates this region is important for Na⁺-activation of the carrier, *Biochem. J.* 332 (Part 1), 119–125.
- Nagata, K., and Hata, Y. (2006) Substrate specificity of a chimera made from *Xenopus* SGLT1-like protein and rabbit SGLT1, *Biochim. Biophys. Acta* 1758, 747–754.
- Diez-Sampedro, A., Wright, E. M., and Hirayama, B. A. (2001) Residue 457 controls sugar binding and transport in the Na⁺/glucose cotransporter, *J. Biol. Chem.* 276, 49188–49194.
- Hirayama, B. A., Lostao, M. P., Panayotova-Heiermann, M., Loo, D. D., Turk, E., and Wright, E. M. (1996) Kinetic and specificity differences between rat, human, and rabbit Na⁺-glucose cotransporters (SGLT-1), *Am. J. Physiol.* 270, G919—G926.
- Kanai, Y., Lee, W. S., You, G., Brown, D., and Hediger, M. A. (1994) The human kidney low affinity Na⁺/glucose cotransporter

- SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose, *J. Clin. Invest. 93*, 397–404.
- You, G., Lee, W. S., Barros, E. J., Kanai, Y., Huo, T. L., Khawaja, S., Wells, R. G., Nigam, S. K., and Hediger, M. A. (1995)
 Molecular characteristics of Na⁺-coupled glucose transporters in adult and embryonic rat kidney, *J. Biol. Chem.* 270, 29365

 29371
- 21. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope, *Phys. Rev. Lett.* 56, 930–933.
- Puntheeranurak, T., Wildling, L., Gruber, H. J., Kinne, R. K., and Hinterdorfer, P. (2006) Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na⁺-glucose co-transporter SGLT1 in living cells, *J. Cell Sci.* 119, 2960–2967.
- Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, *Proc. Natl. Acad. Sci. U.S.A.* 93, 3477–3481.
- 24. Pfister, G., Stroh, C. M., Perschinka, H., Kind, M., Knoflach, M., Hinterdorfer, P., and Wick, G. (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy, *J. Cell Sci.* 118, 1587–1594.
- Wielert-Badt, S., Hinterdorfer, P., Gruber, H. J., Lin, J. T., Badt, D., Wimmer, B., Schindler, H., and Kinne, R. K. (2002) Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy, *Biophys. J.* 82, 2767– 2774
- Lee, G. U., Chrisey, L. A., and Colton, R. J. (1994) Direct measurement of the forces between complementary strands of DNA, Science 266, 771-773.
- 27. Lin, J. T., Kormanec, J., Wehner, F., Wielert-Badt, S., and Kinne, R. K. (1998) High-level expression of Na⁺/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line, *Biochim. Biophys. Acta* 1373, 309–320.
- Castaneda, F., and Kinne, R. K. (2005) A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport, *Mol. Cell. Biochem.* 280, 91–98.
- 29. Butt, H.-J., and Jaschke, M. (1995) Calculation of thermal noise in atomic force microscopy, *Nanotechnology* 6, 1–7.
- Hutter, J. L., and Bechhoefer, J. (1993) Calibration of atomicforce microscope tips, Rev. Sci. Instrum. 64, 1868–1873.
- 31. Baumgartner, W., Hinterdorfer, P., and Schindler, H. (2000) Data analysis of interaction forces measured with the atomic force microscope, *Ultramicroscopy* 82, 85–95.
- Freire, C. A., Kinne-Saffran, E., Beyenbach, K. W., and Kinne, R. K. (1995) Na-D-glucose cotransport in renal brush-border membrane vesicles of an early teleost (*Oncorhynchus mykiss*), *Am. J. Physiol.* 269, R592–R602.
- 33. Kipp, H., Kinne-Saffran, E., Bevan, C., and Kinne, R. K. (1997) Characteristics of renal Na⁺-D-glucose cotransport in the skate (*Raja erinacea*) and shark (*Squalus acanthias*), *Am. J. Physiol.* 273, R134–R142.
- Wielert-Badt, S., Lin, J. T., Lorenz, M., Fritz, S., and Kinne, R. K. (2000) Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis, *J. Med. Chem.* 43, 1692–1698.
- Glossmann, H., and Neville, D. M., Jr. (1972) Phlorizin receptors in isolated kidney brush border membranes, *J. Biol. Chem.* 247, 7779-7789.
- Panayotova-Heiermann, M., Loo, D. D., and Wright, E. M. (1995) Kinetics of steady-state currents and charge movements associated with the rat Na⁺/glucose cotransporter, *J. Biol. Chem.* 270, 27099–27105.
- Diedrich, D. F. (1961) Comparison of effects of phlorizin and phloretin 2'-galactoside on the renal tubular reabsorption of glucose in dog, *Biochim. Biophys. Acta* 47, 618–620.
- Diedrich, D. F. (1963) The comparative effects of some phlorizin analogs on the renal reabsorption of glucose, *Biochim. Biophys. Acta* 71, 688–700.
- Diedrich, D. F. (1965) In vitro evaluation of relative inhibitory potency of phlorizin and its congeners, Am. J. Physiol. 209, 621– 626
- Morpurgo, M., Veronese, F. M., Kachensky, D., and Harris, J. M. (1996) Preparation of characterization of poly(ethylene glycol) vinyl sulfone, *Bioconjugate Chem.* 7, 363–368.

- Hinterdorfer, P., and Dufrene, Y. F. (2006) Detection and localization of single molecular recognition events using atomic force microscopy, *Nat. Methods* 3, 347–355.
 Hirayama, B. A., Loo, D. D., and Wright, E. M. (1997) Cation
- 42. Hirayama, B. A., Loo, D. D., and Wright, E. M. (1997) Cation effects on protein conformation and transport in the Na⁺/glucose cotransporter, *J. Biol. Chem.* 272, 2110–2115.
- Loo, D. D., Hirayama, B. A., Gallardo, E. M., Lam, J. T., Turk, E., and Wright, E. M. (1998) Conformational changes couple Na⁺ and glucose transport, *Proc. Natl. Acad. Sci. U.S.A.* 95, 7789–7794.
- 44. Meinild, A. K., Hirayama, B. A., Wright, E. M., and Loo, D. D. (2002) Fluorescence studies of ligand-induced conformational
- changes of the Na⁺/glucose cotransporter, *Biochemistry 41*, 1250–1258
- 45. Loo, D. D., Hirayama, B. A., Cha, A., Bezanilla, F., and Wright, E. M. (2005) Perturbation analysis of the voltage-sensitive conformational changes of the Na⁺/glucose cotransporter, *J. Gen. Physiol.* 125, 13–36.
- 46. Kinne, R. K. (1976) Properties of the glucose transport system in the renal brush border membrane, *Curr. Top. Membr. Transp.* 8, 209–267.

BI061917Z

First Annual Symposium of the Protein Society of Thailand 24-25 October 2006 at the Chulabhorn Research Institute Conference Center, Bangkok

Single-molecule AFM studies on the interaction of antibodies and substrates with the Na⁺-glucose cotransporter SGLT1 in living cells

<u>Theeraporn Puntheeranurak^{1,2}</u>, Linda Wildling³, Hermann J. Gruber², Rolf K.H. Kinne³, Peter Hinterdorfer³

¹Department of Biology, Faculty of Science, Mahidol University, Thailand; ²Department of Epithelial Cell Physiology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; ³Institute for Biophysics, Johannes Kepler University of Linz, Linz, Austria; Tel: +66-2-2015275; Fax: +66-3547161; E-mail: sctpt@mahidol.ac.th

Atomic force microscopy (AFM) was employed to probe topology, conformational changes and initial substrate-carrier interactions of Na⁺glucose cotransporter (SGLT1) in living cells on a single-molecule level. Scanning SGLT1-transfected chinese hamster ovary (CHO) cells with AFM epitopespecific antibody directed against the extramembraneous C-terminal loop 13 significant recognition events could be Specificity was confirmed by the absence of events in nontransfected CHO cells and by the use of free antigen and free antibody superfusion. Thus, contrary to computer predictions on SGLT1 topology, loop 13 seems to be part of the extracellular surface of the transporter. Binding probability of the antibody decreased upon addition of phlorizin, a specific inhibitor of SGLT1, suggesting a considerable conformational change of loop 13 when the inhibitor occludes the sugar translocation pathway. Using an AFM tip carrying 1-thio-D-glucose, direct evidence could be obtained that in the presence of Na⁺ a sugar-binding site appears on the transporter surface. The binding site accepts the sugar residue of the glucoside phlorizin, free D-Glucose, and D-galactose, but not free L-glucose and represents probably the first of several selectivity filters of the transporter. This work demonstrates the potential of AFM to study the presence and dynamics of plasma membrane transporters in intact cells on the single-molecule level. This useful approach has paved the way as an alternative method for transmembrane-investigation.

Oral Presentation

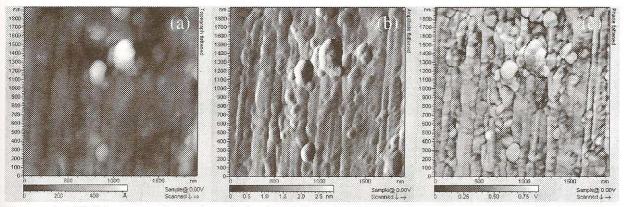
Characterization of Biological Materials by using Atomic Force Microscopy (AFM)

T. Puntheeranurak1*, N. Charoenphandhu2 and N. Krishnamra2

¹Department of Biology, Faculty of Science, Mahidol University, and NANOTEC Center of Excellence at Mahidol University, Bangkok, 10400, Thailand

Atomic force microscopy (AFM) is a powerful technique that can resolve features as small as an atomic lattice in the real space. AFM can be used on any kind of surfaces. The number of AFM applications in life science, material science, physical science, and industries has exploded since it was invented in 1986 [1]. The popularity of AFM is due to a number of reasons, such as easily achievable high resolution, low cost, little sample preparation, threedimensional information, in-situ observations, fluid imaging, temperature controls, environmental controls. The greatest advantage of AFM over other high-resolution methods commonly used in biological sciences is that the experiments can be performed under nearphysiological conditions, i.e. in aqueous solution and at room temperature with a nondestructive manner. AFM studies on DNA, RNA, protein, lipid, live cells and subcellular structures in different biological buffers can give detailed structural information in the native environment [example see 2, 3]. Here several biological samples such as bacterial cells, mammalian cells, lipid bilayers, and bones (Figure 1 and 2) have been characterized. The results show great potential of AFM as an alternative tool for studying biological materials. Thereby, it can provide considerable insight of the structure-function relationship, especially, for the healthy and non-healthy bone samples which can lead the way for medical applications in the future.

Acknowledgement


This work has partially been supported by the Thailand Research Fund, the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network, and a grant from the Faculty of Science, Mahidol University to the Consortium for Calcium and Bone Research (COCAB).

References

- 1. Binnig, G., Quate, C. F., and Gerber, C. Atomic force microscope. *Physical Review Letters* 1986, 56: 930-933.
- 2. Kienberger, F., Costa, L. T., Zhu, R., Kada, G., Reithmayer, M., Chtcheglova, L., Rankl, C., Pacheco, A. B., Thalhammer, S., Pastushenko, V., Heckl, W. M., Blaas, D., and Hinterdorfer, P. Dynamic force microscopy imaging of plasmid DNA and viral RNA. *Biomaterials* 2007, 28: 2403-2411.
- 3. Puntheeranurak, T., Wildling, L., Gruber, H. J., Kinne, R. K., and Hinterdorfer, P. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. *J Cell Sci* 2006, 119: 2960-2967.

*Corresponding author: sctpt@mahidol.ac.th

²Department of Physiology, and Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand

Figure 1 AFM images of a trabecula isolated from healthy rat bone. (a) Topographic image, (b) amplitude image, and (c) phase image of the surface of a trabecula with mineral plates.

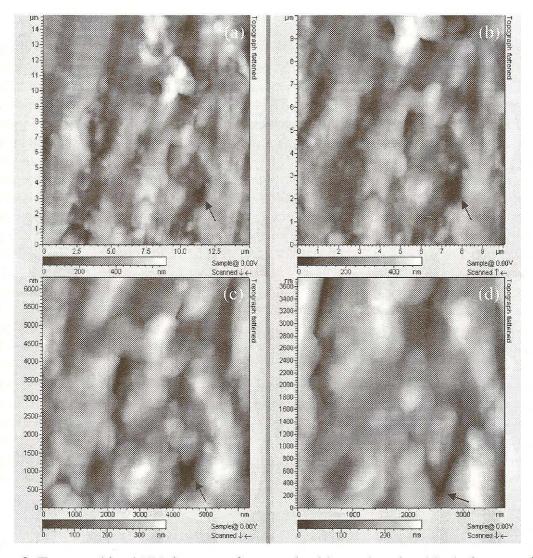


Figure 2 Topographic AFM images of a non-healthy trabecula. (a) A low resolution topographic $15\times15~\mu m$ AFM image showing the resorbed trabecula with several resorption areas. (b), (c), and (d) are higher magnification detail of the surface seen in the lower right part of (a). The same resorption area is indicated by an arrow.