

รายงานวิจัยฉบับสมบูรณ

โครงการ การออกแบบและพฒันาซอฟทแวรสําหรับการจําลอง
สถานการณแบบสุมดวยสเปรดชีท

โดย ผศ. ดร. จุฑา พิชิตลําเค็ญ และคณะ

ตุลาคม 2551

สัญญาเลขที่ MRG4980121

รายงานวิจัยฉบับสมบูรณ

โครงการ การออกแบบและพฒันาซอฟทแวรสําหรับการจําลอง
สถานการณแบบสุมดวยสเปรดชีท

คณะผูวิจัย สังกัด
1. ผศ.ดร. จุฑา พิชิตลําเค็ญ ภาควิชาวิศวกรรมอุตสาหการ

คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร
2. นายศุภสิทธิ์ กาจกําแหง ศูนยวิจัยระบบคอมพิวเตอรสมรรถนะสูงและเครือขายคอมพิวเตอร

คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร
3. ผศ. ดร. ภุชงค อุทโยภาศ ศูนยวิจัยระบบคอมพิวเตอรสมรรถนะสูงและเครือขายคอมพิวเตอร

คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร

สนับสนุนโดยสํานักงานคณะกรรมการการอุดมศึกษา และสํานักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เปนของผูวิจัย สกอ. และ สกว. ไมจําเปนตองเห็นดวยเสมอไป

เอกสารแนบหมายเลข 2
รูปแบบ Abstract (บทคัดยอ)

Project Code (รหัสโครงการ) : MRG4980121

Project Title: การออกแบบและพัฒนาซอฟทแวรสําหรับการจําลองสถานการณแบบสุมดวย

สเปรดชีท
 Design and Development of Stochastic Simulation Tool for Spreadsheet (S3)

Investigators:

1. ผศ.ดร. จุฑา พิชิตลําเค็ญ ภาควิชาวิศวกรรมอุตสาหการ
คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร

2. นายศุภสิทธิ์ กาจกําแหง ศูนยวิจัยระบบคอมพิวเตอรสมรรถนะสูงและเครือขายคอมพิวเตอร
คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร

3. ผศ. ดร. ภุชงค อุทโยภาศ ศูนยวิจัยระบบคอมพิวเตอรสมรรถนะสูงและเครือขายคอมพิวเตอร
คณะวิศวกรรมศาสตร มหาวิทยาลัยเกษตรศาสตร

E-mail Address: juta.p@ku.ac.th

Project Period (ระยะเวลาโครงการ): 1 กรกฎาคม 2549 ถึง 30 มิถุนายน 2551

Abstract
We present a proof-of-concept prototype for high performance spreadsheet simulation
called S3. Our goal is to provide a user-friendly, yet computationally powerful simulation
environment for end users. Our approach is to add power of parallel computing on
Windows-based desktop grid into popular Excel models. We show that, by using standard
Web Services and Service-Oriented Architecture (SOA), one can build a fast and efficient
system on a desktop grid for simulation. The complexity of parallelism can be hidden from
users through a well-defined computation template. This work also demonstrates that a
massive computing power can be harvested by linking off-the-shelf office PCs into a
desktop grid for simulation. The experimental results show that the prototype system is
highly scalable. In the best case, the execution time can be reduced 13.6 times using 16
desktop PCs; the simulation time is dramatically reduced from 200 minutes to 14 minutes.
Keywords: Spreadsheet simulation, simulation modeling, grid computing, parallel
computing, desktop grid.

บทคัดยอ
ผูวิจัยนําเสนอซอฟทแวรตนแบบเพื่อการจําลองสถานการณบนสเปรดชีท ที่มีสมรรถนะสูง โดยใช
ชื่อวา S3 งานวิจัยน้ีมีจุดมุงหมายเพ่ือพัฒนาระบบที่คาํนวณไดรวดเร็ว และงายตอการใชงาน
สําหรับผูใชงานจริง ที่อาจไมใชโปรแกรมเมอร การคํานวณแบบขนานของระบบกริด ที่สรางจาก
เดสกท็อบพีซี สามารถทําใหตัวแบบเอ็กเซลถูกประมวลผลไดเรว็ขึ้น เอ็กเซลมีขอดีตรงที่เปน
ซอฟทแวรที่รูจักกนัดี และเปนเครื่องมือสําหรับการวิเคราะห ดวยงานวิจัยน้ี ผูวิจัยไดแสดงใหเห็น
วา มาตรฐานของเว็บเซอรวิส และ Service-oriented architecture ชวยใหสามารถสรางระบบการ
คํานวณเพื่อใชในการจําลองสถานการณ ที่คํานวณไดรวดเร็ว และมีประสิทธิภาพ บนเดสกท็อบก
ริด ความซับซอนของการคํานวณแบบขนานสามารถถูกซอนไมใหผูใชรับรู โดยการใชเทมเพลท
สําหรับการคํานวณที่ถูกออกแบบมาอยางเหมาะสม นอกจากนี้ งานวิจัยน้ียังแสดงใหเห็นวา เม่ือ
ระบบการคํานวณที่มีสมรรถนะสูงเพ่ือการจําลองสถานการณ สามารถถูกสรางจากเดสกท็อบพีซีที่
ใชในออฟฟศทั่วไป ผลการทดลองแสดงใหเห็นวา ระบบตนแบบสามารถรองรับปญหาที่มีขนาด
ใหญขึ้นได ในกรณีที่ดีที่สดุ เวลาทีใ่ชในการคํานวณถกูลดลง 13.6 เทา เม่ือใชระบบที่
ประกอบดวยเดสกท็อบพีซี 16 ตวั เวลาที่ใชลดลงจาก 200 นาที เหลือเพียง 14 นาที

(คําหลัก) การจําลองสถานการณบนสเปรดชีท การจําลองสถานการณ การคํานวณบนกริด การ
คาํนวณแบบขนาน เดสกทอบกริด

เอกสารแนบหมายเลข 3
Output จากโครงการวจิัยที่ไดรับทุนจาก สกว.

1. Pichitlamken, J., S. Kajkamhaeng, and P. Uthayopas. High Performance Spreadsheet
Simulation on a Desktop GRID. In Proceedings of the 2008 Winter Simulation Conference, ed.
S. J. Mason, R. R. Hill, L. Moench, and O. Rose. To appear.

2. Pichitlamken, J., P. Uthayopas, S. Kajkamhaeng, and N. Tippayawannakorn. Service-
Oriented Architecture on a Windows Cluster for Spreadsheet Simulation. In Proceedings of the
IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
1751--1761, Singapore.

ภาคผนวก

Abstract - We present a proof-of-concept prototype for

applying service-oriented architecture (SOA) on a Windows
cluster to spreadsheet simulation. A scalable architecture
based on Web Services is proposed. Our goal is to provide a
user-friendly, yet computationally powerful simulation
environment for end users. The experimental results show
that the prototype system functions in a highly scalable way.

Keywords - service-oriented architecture, Windows

cluster, spreadsheet simulation

I. INTRODUCTION

 Simulation models are increasingly being used as an
analytical tool because advances in computers, in terms of
speed and memory, enables analysts to model complex
systems, e.g., military, logistic and manufacturing
applications. Nelson [1] observes that “the availability of
more computing horsepower has whetted the appetite of
modelers to solve more complex problems, more often.”
Generally, an analyst does not want to just model the
system of interest, but her ultimate goal is likely to be
finding the best decision (or input variables) for the
system of interest. This is often called optimization-via
simulation problems (see [2], [3] and [4] for recent
reviews). If simulation runs for a single scenario takes a
long time, analyzing it under multiple ones (i.e., doing a
what-if analysis) may be prohibitive in practice.
 To get more computing power, one can run a
simulation model on a high-end server. Another high-
performance but less expensive solution is clustering. A
cluster is a group of computers connected via a high-
speed network. Computers inside a cluster share resources
such as storage, data, software and computing power.
When an application (e.g., a simulation model) is running
on a cluster, it can harness the shared computing
resources that act as a unified pool. A cluster is appealing
because it can be built from commodity PCs which are
much cheaper than a high-end server.
 In this paper, we build a spreadsheet simulation
system that is easy to use and computationally fast by
utilizing power of a Windows cluster. Microsoft Windows
is chosen because it is robust and easy to configure. We
have used a similar architecture to develop a real world
application for the Thai Bond Market Association
(www.thaibma.or.th). In that work, the Value-at-Risk
(VaR) is calculated for a portfolio of stocks traded in the
Stock Exchange of Thailand (see [5] for more details).

We also employ the service-oriented architecture
(SOA) in designing our cluster. He [6] defines SOA as
‘‘an architectural style whose goal is to achieve loose
coupling among interacting software agents.’’ By
applying an SOA principle to a distributed simulation
system, we can easily reuse the functionality of existing
simulation models and combine them together to model
more complex problems.

To achieve the cluster environment, we implement
our simulation model as Services which is deployed on
every computer inside the cluster. In our case, a
‘‘Service’’ is running a simulation model. Using Web
Services and a multithreading technique, a client-side
module can simultaneously invoke multiple services in
parallel to speed up the execution of a simulation model.
We also add a broker component that helps locate
Services and perform simple load balancing to better
utilize the system resources.

The simulation model that we consider is the project
selection problem which is implemented in Excel®. Given
an investment decision-----a combination of projects to
invest----- the expected profits is estimated via simulation.
We choose this problem for the following reasons: It is
small and computationally straight-forward, but
simulation is required to estimate the expected payoff
because it does not have a closed-form expression. In
addition, this problem is relevant in practice as it is
essentially a resource allocation problem.

This paper is organized as follows: Section II
provides background knowledge related to this research.
We describe our system architecture in Section III. We
present our experimental results in Section IV. We
conclude with future research works in Section V.

II. BACKGROUND

 Currently, most applications are generally designed to
run on a single processor (sequential programming). To
efficiently utilize the computing resources shared in a
cluster, applications must be implemented using parallel
programming technique, where processing is distributed
on multiple processors in a cluster (see [7] and [8]).
Usually, the processors can communicate with each other
and exchange some data. A major drawback of parallel/
distributed programming is that it generally takes more
time and effort to design and implement applications than
sequential programming. Therefore, a good programming

Service-Oriented Architecture on a Windows Cluster
for Spreadsheet Simulation

Juta Pichitlamken1, Putchong Uthayopas2, Supasit Kajkamhaeng2, Noocharin Tippayawannakorn1
1Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand

2High Performance Computing and Networking Center, Kasetsart University, Bangkok, Thailand

 17571-4244-1529-2/07/$25.00 ©2007 IEEE

environment is crucial for the development of parallel
programs.

Widely-used tools for building a parallel programming
application include Application Programming Interfaces
(APIs), such as Message Passing Interface (MPI, [9];
[10]) and Parallel Virtual Machine (PVM, [11]). These
tools are designed to be used effectively on large parallel
computer or cluster systems. Recently, modern
development frameworks (e.g., J2EE, [12] and .NET
framework, [13]) are appealing because they provide
many tools and APIs that supports real-world application
implementations. These tools have been extensively tested
in modern enterprise computing environment (see, for
example, [14]). Its benefits include a user-friendly
development environment and close conformity to
industrial standards. However, a programmer has to
understand a good deal of parallel computing techniques
to use these tools.

When a cluster is built for parallel programming, two
types of operating systems (OSs) are usually selected:
Linux and Windows. With Linux OS, open-source
softwares and commodity hardwares can be used. This
type of cluster is also known as Beowulf clusters [15].
Softwares for building Linux clusters include NPACI
Rocks and OSCAR [16]. The appeals of Linux clusters
are highly configurable architecture, high scalability, and
low software licensing costs. However, a Linux skill is
required in using a cluster and performing system
administration tasks; therefore, Linux clusters are found
mostly in technical and academic environments where the
required skills are abundant.

Another main alternative is to build a Windows cluster.
Microsoft Corp. provides a clustering solution via the
Microsoft Windows OS. There are many benefits from the
use of Windows cluster technology. Firstly, a typical user
is more likely to be familiar with Windows than with
Linux. Secondly, building and maintaining a Windows
cluster may be easier than a Linux one, with a rich set of
graphic user interface-based tools. In addition, the
development time for parallel simulation is faster due to a
more powerful programming environment and robust
standards, such as Web Services. Finally, to reduce the
barrier to adoption for users, complexities related to
clustering should be hidden from end users. The use of
very familiar tools (such as Excel spreadsheets) as a user
interface will ensure that users can readily model
problems of interests. Thus, a Windows-based development
framework enables seamless integration of parallel
capability.

Recently, emerging technologies such as Web Services
and XML have led to a paradigm shift in designing a
distributed software architecture. Service Oriented
Architecture (SOA) can be explained with Fig. 1. The
application software consists of 3 main components:
Service Provider, Service Consumer, and Service Broker.
Instead of building numerous software components, SOA
emphasizes on decomposing all major functions (in our
case, the simulation models) into network accessible
Services that can be invoked using Web Services. As a

Fig. 1. Service Oriented Architecture concept.

Service comes alive, it will publish its existence to the
service broker whose role is to keep track of the existence
and status of available Services. See [17] for more details.

Our application is developed as a Service Consumer.
When a Service Consumer needs any Services (such as
Monte-Carlo simulation), the available Service Providers
can be found by sending a finding request to a Service
Broker. Then, a Service Consumer will bind itself to the
Service Provider and invoke the Service to execute the
function on the behalf of a user. The invocation of each
Service is done using the Web Service protocol. By
applying SOA to simulation, we can potentially populate
the network with large number of simulation Services.
There are many clear advantages that we can gain from
using SOA within simulation contexts. When the need
arises, these ready-made Services speed up the simulation
tasks by deploying multiple instances of the same
Services. Moreover, a complex simulation model can be
built by integrating multiple different Services.

III. DESIGN AND ARCHITECTURE

The system architecture used in this work is shown in
Fig. 2. The system is composed of three main components.
The first part is the computing Service nodes which is a
set of PCs on which simulation Services are installed. The
second component is the Services broker or the resource
manager that perform two main functions: to locate
available machines by keeping track of registration
requests; and to perform workload management for the
system. The third part is the Service Consumer that is
developed as an add-in to the Excel spreadsheet. The role
of this component is to get a user’s request and input data
from the spreadsheet model and then invoke the Service
on computing Service nodes using Web Service. This
Excel add-in is also responsible for creating multiple
execution threads and for managing the parallelism to
maximize the cluster performance. The execution steps of
our architecture can be explained as follows (the numbers
below correspond to the ones in Fig. 2):

 1758

Proceedings of the 2007 IEEE IEEM

Fig. 2. System configuration.

1. A user creates a simulation model in Excel which has

our Web Service add-in. When she runs her
simulation model, Web Service add-in calls the
resource manager to reserve the PC in the Windows
cluster.

2. The resource manager tells the client machine which
PC is reserved.

3. The Excel add-in in the client machine sends the
computation to the reserved PC.

4. Once the computation is completed, the PC in the
Windows cluster sends the results back to the client’s
machine.

IV. EXPERIMENTAL RESULTS

 We describe our test problem in Section IVA. The
numerical results are shown in Section IVB.

A. Prototype Problem

 The problem that we consider is a project selection
problem taken from [18]. Given an investment decision—
a combination of projects to invest—the expected profits
is estimated via simulation. The total investment money is
limited to $2 million, and the outcomes of the projects
being successful and the project revenues are probabilistic.
We model the event that a project is successful or not as a
binomial random variable. If the project is successful, the
realized revenue is modeled with triangular distribution.
The output of each replication is total profit, the amount
of investment money used and the surplus investment
money. Table I shows numerical input data for this model.
Fig. 3 shows the screen shot of the test application.

Fig. 3. Screen shot of the test application.

B. Results and Discussion

The experiment is done on a 5-PC system. The client
system is an Intel Pentium III 894MHz system with
256MB RAM installing Windows XP. The spreadsheet,
client Web Service add-in and the Service broker executes
on this computer. The rest of computing service nodes
specifications are: Pentium III 930MHz with 512MB
RAM, Pentium IV 3GHz with 512MB RAM, Athlon XP
1GHz with 512MB RAM, and Athlon 64 3000+ with
1GB RAM. All machines are connected together using
100Mbps FastEthernet switch. In this work, all the
softwares are developed with Visual Studio 2005 and
Visual Studio Tool for Office (VSTO). The resource
manager uses the round robin algorithm (see, for example,
[19]) to do node assignments.

We control the number of simulation replications and
the number of threads used to manage parallelism. The
response or the performance measure is the computational
time to complete the simulation runs. The test is done at
100, 200, 400, 800, 1600, and 3200 replications. The
number of thread used is 1, 2, 4, and 8 threads. The
runtime results are shown in Fig. 4.

We see that the run time decreases almost linearly
when number of processing nodes increases. This is due
to the distribution of the processing task to multiple
computing Service nodes simultaneously.

Fig. 4. Runtime on the Windows cluster when the number

of simulation replications are varied.

 1759

Proceedings of the 2007 IEEE IEEM

Fig. 5 shows the speedup of the work. Speedup is
defined as a ratio between sequential runtime (i.e.,
runtime on one thread) and parallel runtime (i.e., runtime
on multiple threads). Speedup shows how many times
faster the execution is when parallel computing is used.
We observe the following results:

Fig. 5. Speedup on the Windows cluster when the number
of simulation replications are varied.

Fig. 6. Efficiency on the Windows cluster when the number
of simulation replications are varied.

1. Speed up increases at a faster rate when the number
of computing Service nodes are added. Maximum
speedup gained in this experiment is 6.4; therefore,
the application runs 6-7 times faster for the system of
only 8 nodes.

2. Speedup for a larger problem is likely to be higher.
The reason is that when more computing workload is
available, the fraction of computing overhead (e.g., in
load balancing and communication) to the computing
workload will be lower. Thus, our proposed system
will work even better for large and complex
problems.

A fraction of runtime used as system overhead can be
assessed through a ratio called efficiency. The efficiency
of parallel computation is speedup divided by number of
computing elements. Fig. 6 shows the efficiency of our
cluster.

We can see that for small number of computing Service
nodes, the efficiency is high since the communication
from application to Services is low. As number of nodes
increases, the communication overhead increases as well.
Thus, the efficiency is decreasing accordingly, at a higher
rate. However, running a larger simulation model may
result in a better efficiency because the ratio of
computation time to communication time is higher.

V. FUTURE WORKS

 We present a prototype of a computing system for
spreadsheet simulation. This system is able to utilize a
vast amount of computing resources available from a
Windows cluster or a farm of desktop PCs. We use
Service Oriented Architecture as a basis for the design
and capitalize on robust commercial standard technology,
such as XML and Web Services. The goal is to provide a
user-friendly, yet computationally powerful simulation
environment for end users.

 TABLE I
Input data for the project selection example

Revenue potential ($000s)
Project Initial

Investments ($000s)
Probability
of success Min Most likely Max

1 $250 90% $600 $750 $900

2 $650 70% $1250 $1500 $1600

3 $250 60% $500 $600 $750

4 $500 40% $1600 $1800 $1900

5 $700 80% $1150 $1200 $1400

6 $30 60% $150 $180 $250

7 $350 70% $750 $900 $1000

8 $70 90% $220 $250 $320

 1760

Proceedings of the 2007 IEEE IEEM

The experimental result has shown that our prototype
system functions in a highly scalable way. Currently, its
major limitation is that the system can only simulate
models whose entire simulation replication is on one
computing node, i.e., there is no interactions or
communications among nodes. The speedup occurs
because multiple replications can be done simultaneously.

In the future, we plan to explore the issue of scalability.
This can be achieved by using a more efficient load
balancing algorithm at the Service broker. As a system
scales up, it has a potential to reach out beyond a single
physical location. Thus, the issue of reliability in a
geographically distributed system must be taken into
consideration. Finally, the use of this system to simulate a
large, complex and challenging simulation model will
illustrate the potential of this system, especially when
optimization via simulation is the ultimate goal.

ACKOWLEDGMENT

This research is supported by the Thailand Research Fund
Grant Number MRG4980121.

REFERENCES

[1] B. L. Nelson, “50th anniversary article stochastic

simulation research in Management Science,” Management
Science vol. 50, no. 7, pp. 855–868, 2004.

[2] M. C. Fu, “Optimization for simulation: theory vs.
practice,” INFORMS Journal on Computing, vol. 14 no. 3,
pp. 192–215, 2002.

[3] M.C. Fu, F. W. Glover, and J. April, “Simulation
optimization: A review, new developments, and
applications,” in Proceedings of the 2005 Winter Simulation
Conference, ed., M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc. 2002,
pp.184–191.

[4] S. Andradóttir, “An overview of simulation optimization
via random search,” in Handbooks in Operations Research
and Management Science: Simulation, ed., S. Henderson
and B. L. Nelson. Amsterdam: North Holland, 2006, vol.
13, pp. 617–632.

[5] S. Chaisiri, J. Pichitlamken, P. Uthayopas, T. Rojanapanpat
S. Phakhawirotkul, and T. Vorakosit, “Applying web
services and windows clustering for high volume risk
analysis,” in Proceedings of the 8th International
Conference on High Performance Computing in Asia
Pacific Region (HPC ASIA), ed., J. Fan and J. Lee. Beijing,
China: Institute of Computer Technology, Chinese
Academy of Sciences, 2005.

[6] H. He, “What is service-oriented architecture,” Available
via <http://webservices.xml.com/pub/a/ws/2003/09/30/soa.
html> [accessed January 3, 2007].

[7] R. Duncan, “A survey of parallel computer architectures,”
IEEE Computer, 1990, pp. 5–16.

[8] SP Parallel Programming Workshop 2003. “Parallel
programming introduction,” Available via <www.

mhpcc.edu/training/workshop/parallel_intro/MAIN.html>
[accessed January 3, 2007].

[9] M. S. Snir, Otto, S. Huss-Lederman, D.Walker, and J.
Dongarra, 1998. MPI: The complete reference volume 1:
The MPI core. 4h ed. Cambridge, Massachusetts: MIT
Press, 1998.

[10] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B.
Nitzberg, W. Saphir, and M. Snir, MPI: The complete
reference volume 2: The MPI-2 extensions. Cambridge,
Massachusetts: MIT Press. 1998.

[11] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM: Parallel virtual machine: A user’s
guide and tutorial for network parallel computing.
Cambridge, Massachusetts: MIT Press, 1994.

[12] J. Grosling, B. Joy, G. Steele, and G. Bracha, The Java
language specification. 3d ed. Addison–Wesley
Professional, 2005.

[13] D. S. Platt, Introducing Microsoft .NET. 3d ed. Microsoft
Press, 2003.

[14] D. Spector, “Linux in the enterprise at LWE 2003.”
Available via <www.linuxdevcenter.com/pub/a/linux/2003/
02/13/enterprise.html> [accessed January 3, 2007].

[15] W. Gropp, E. Lusk, and T. Sterling, Beowolf cluster
computing with Linux. 2d ed. Cambridge, Massachusetts:
MIT Press, 2003.

[16] J. D. Sloan, High performance linux clusters: With OSCAR,
Rocks, openMosix, and MPI. O’Reilly & Associates. 2004.

[17] T. Erl, Service-oriented architecture: A field guide to
integrating XML and Web Services. Prentice Hall Ptr.,
2004.

[18] C. T. Ragsdale, Spreadsheet modeling & decision analysis:
A practical introduction to management science. 3d ed.
Mason, Ohio: South-Western. 2004.

[19] A. Tanenbaum, Modern operating systems. 2d ed. Prentice
Hall. 2001.

 1761

Proceedings of the 2007 IEEE IEEM

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Moench, O. Rose, eds.

HIGH PERFORMANCE SPREADSHEET SIMULATION ON A DESKTOP GRID

Juta Pichitlamken

Department of Industrial Engineering
Faculty of Engineering, Kasetsart University

Bangkok, 10900, THAILAND

Supasit Kajkamhaeng
Putchong Uthayopas

High Performance Computing and Networking Center
Faculty of Engineering, Kasetsart University

Bangkok, 10900, THAILAND

ABSTRACT

We present a proof-of-concept prototype for high perfor-
mance spreadsheet simulation called S3. Our goal is to
provide a user-friendly, yet computationally powerful sim-
ulation environment for end users. Our approach is to add
power of parallel computing on Windows-based desktop
grid into popular Excel models. We show that, by using
standard Web Services and Service-Oriented Architecture
(SOA), one can build a fast and efficient system on a desk-
top grid for simulation. The complexity of parallelism can
be hidden from users through a well-defined computation
template. This work also demonstrates that a massive com-
puting power can be harvested by linking off-the-shelf office
PCs into a desktop grid for simulation. The experimental
results show that the prototype system is highly scalable. In
the best case, the execution time can be reduced 13.6 times
using 16 desktop PCs; the simulation time is dramatically
reduced from 200 minutes to 14 minutes.

1 INTRODUCTION

Spreadsheet is a widely used computer application because
of its versatility and ease of use in calculation or modeling a
problem. Currently, the most popular spreadsheet program is
Microsoft Excel on Windows since Windows shared more
than 90% of the client operating system market (as of
2004) (Legard 2004). In fact, many textbooks use Excel
as a calculation tool, e.g., Ragsdale (2004) and Stevenson
and Ozgur (2007) which prove that Excel is sufficiently
applicable to many types of analysis.

What-if analysis is used to assess how sensitive outputs
are to changes in input values; e.g., how much total cost
would increase if the project is delayed by x days. The
analysis is inefficient if one parameter is changed at a
time. Stochastic simulation is a widely-used technique
for sensitivity analysis as it allows users to explore many
more scenarios automatically. Applications of spreadsheet
simulation include financial risk analysis (e.g., Paisittanand

and Olson 2006) and operational risk analysis (e.g., Shariff
et al. 2006). Seila (2006) and Seila, Ceric, and Tadikamalla
(2003) provide a comprehensive introduction to spreadsheet
simulation.

When a problem size is large, computation power of a
single computer might not be enough; users may have to wait
for a few hours to see simulation results. Thus, accelerating
computing speed for Excel in a transparent way is beneficial
since it allows users to quickly “play” with the problem
and gain insights. One approach to solve this problem is to
enhance Excel using a parallel/distributed computing. The
idea is to break a large simulation problem into many small
sub-problems that can be executed concurrently on multiple
computers. Excel can be customized through user-defined
Visual Basic for Applications (VBA) macros or add-ins
that allow users to include their own functions; therefore,
it is possible to modify Excel to seamlessly use parallel
computing to speed up its execution of a large simulation
problem.

In this paper, we build a spreadsheet simulation system
(S3) that is easy to use and computationally fast by utilizing
power of parallel computing on a Windows-based desktop
grid. When simulation runs are faster, an analyst can ex-
ecute a simulation model under multiple sets of decision
variables, or they may want to find the best set of deci-
sion variables for the system of interest (optimization via
simulation). S3 allows users to execute a spreadsheet sim-
ulation model under multiple set of integer-valued decision
variables by specifying their upper and lower bounds. For
each combination of decision variables, S3 returns sample
means and standard errors. Users can then explore these
outputs by sorting them and examine which set of decision
variables give the top x% performance.

We consider two key design problems:

1. To design spreadsheet simulation infrastructure
which is inexpensive and easy to maintain.

2. To design an Excel user’s interface in such a way
that users can slightly modify their existing mod-

Pichitlamken, Kajkamhaeng and Uthayopas

els or build their models without being aware of
parallelism and infrastructure used. The parallel
computation should be hidden from users as much
as possible to make it user-friendly.

We address the first issue with a desktop grid which are
built from commodity PCs, readily available in most orga-
nizations. Grid computing focuses on large-scale resource
sharing. Grid architecture specifies protocols that define
“the basic mechanisms by which users and resources nego-
tiate, establish, manage, and exploit sharing relationships”
(Foster, Kesselman, and Tuecke 2001).

Desktop grid computing generally consists of clients,
workers, a manager, and servers. A client submits jobs
that are executed by workers. A manager is responsible
for job scheduling and resource management. Servers are
used for data storage. A well-known example of desktop
grids is SETI@home which is based on BOINC (Anderson
2004). Desktop grids are appealing for they allow intensive
computation to be performed at low cost. However, the
main challenge is stability and security. Given that our
desktop grid consists of PCs within the same organization,
the security issue may not be too prohibitive.

The second issue is more challenging. Typically, Excel
evaluates formulas and display the results as values in the
cells that contain the formulas (Ecklund 2007). A .xls
file is an Excel Workbook which consists of Worksheets. By
default, Excel has automatic calculation: it recalculates any
cells that are dependent on other cells whose values have
been changed. Abramson et al. (2001) calls it sequential
calculation. This feature complicates evaluation of multiple
cells that have built-in formulas in parallel.

As a result, the issue of hiding parallelism is resolved by
separating random inputs and simulation outputs so that they
are on separate Worksheets. We have a Worksheet template
where a user specifies the number of inputs and their cell
locations and similarly for outputs. When simulation runs
are finished, users get outputs of each replication (if there
is only one set of decision variables) or sample means and
standard errors of each set of decision variables, i.e., a
parametric sweep. Due to space limitation, we will only
discuss the template and result display of the latter case.

This paper is organized as follows: We summarizes
related work in Section 2. We describe our system archi-
tecture in Section 3. We present our experimental results in
Section 4, and we conclude with future research direction
in Section 5.

2 RELATED WORK

In this section, we summarize works that address the issue
of achieving parallelism, especially for spreadsheet.

Condor is a widely-known tool for maximizing utiliza-
tion of computing resources (Litzkow, Livny, and Mutka

1988). The Condor scheduling system identifies idle ma-
chines and schedules background jobs on them. When those
machines are used for non-Condor jobs, the Condor job is
terminated and transferred to another machine, with the last
system state before termination.

ActiveSheets is an application that allow parallel evalua-
tion of spreadsheets. User interface is Microsoft Excel. Ac-
tiveSheets require custom functions for parallel calculation
which are done at backend computers. When the computa-
tion is finished, the results are displayed on a spreadsheet. In
Abramson et al. (2001), the backend platform is managed
by EnFuzion (www.axceleon.com) on a high perfor-
mance computing (HPC) system such as computer clusters
or grids. On the other hand, Abramson et al. (2004) uses
NetSolve (Agrawal et al. 2003), a grid middleware.

Nadiminti et al. (2004) introduce ExcelGrid, an open-
source .NET plug-in that uses Excel as a front-end to a grid
and perform user-defined calculations on it. Mustafee et al.
(2006) show how WinGrid can enable Witness—a commer-
cial simulation package—perform simulation replications
in parallel on enterprise grid (linked resources within the
same organization, as opposed to the public grid). In this
work, users do not build a simulation model on Witness
directly but specifying model parameters through Excel.
The simulation results are also displayed on Excel.

ActiveSheets, ExcelGrid and WinGrid use Excel mainly
for user interface; they do not perform computing-intensive
calculation on Excel, and they are not designed specifically
for spreadsheet simulation. On the other hand, our S3
still exploits Excel calculation, and it aims specifically at
spreadsheet simulation applications. Hence, no complex
programming is needed to benefit from our approach.

Microsoft also offers a tool for creating Excel Ser-
vices for running a parametric sweep on a Excel 2007
Windows Compute Cluster Server (CCS) 2003 (Microsoft
Corp. 2008). Excel Services is an architecture that allows
Excel calculation on servers and enable applications to ac-
cess Excel files. However, Excel Services and Windows
CCS are not specifically designed for stochastic simulation.
Thus, without further programming, users have no control
over random number streams, and they have to implement
their own algorithms for generating random variates.

Platform Symphony (www2.platform.com) is a com-
mercial software designed to operate on enterprise grids.
Platform introduces Adapter which enables Excel calcula-
tions to be run in parallel. Symphony’s Adapter is targeted
for financial applications.

Widely used commercial spreadsheet simulation
Excel add-ins also offer parallel versions: @Risk
(www.palisade.com) has RiskAcceleratorTM, and Crys-
tal Ball (www.crystalball.com) provides Crystall Ball
TurboTM.

http://www.axceleon.com/
http://www2.platform.com/
http://www.palisade.com/
http://www.crystalball.com/

Pichitlamken, Kajkamhaeng and Uthayopas

3 DESIGN AND ARCHITECTURE

We first describe a S3 spreadsheet simulation model. Then
we provide details on system design and implementation.

3.1 Spreadsheet Simulation Models

By design, each simulation replication (i.e., runs) of the same
model yield outputs that are independent and identically
distributed (i.i.d.); therefore, we can achieve parallelism by
assigning simulation replications that use different set of
random inputs to each compute node, i.e., parallelism is
achieved via domain decomposition (Quinn 2003). This
technique relies on the execution of the same spreadsheet
on multiple computers using different data set for each one.
Once the calculation at all compute nodes are completed,
simulation outputs are then aggregated and summarized,
numerically via summary statistics, such as sample means
and standard errors, or graphically, through Excel’s charting
tools.

It can be shown that random numbers of any paramet-
ric distributions can be transformed from uniform random
numbers over the range (0,1) (see, for example, Banks et al.
2005 for proof). These standard uniform random variables
are generated from mathematical algorithms, the so-called
random number generators (RNGs). RNGs produce a very
long sequence of pseudo-random numbers, and RNG seeds
allow us to specify from which point in this sequence we get
our numbers; we obtain the same sequence of numbers if
the seeds are identical (see Henderson and Nelson 2006 for
brief summaries on RNGs and random variate generation).

Excel has a built-in RNG, called RAND() which is not
used in S3 for the following reasons: we do not know how
to control sequence of numbers that RAND() produces. In
addition, RAND() has some statistical deficiencies: Knusel
(2005) and McCullough and Wilson (2005) discuss RAND()
issues in Excel 2003. Therefore, we separate (0,1) uni-
form random numbers and Excel outputs from other Excel
calculations.

We illustrate our approach via an example (more details
in Section 4.1): We estimate value-at-risk (VaR) of stock
portfolios by first simulating daily stock prices. In doing
so, we need normally distributed random variables which
in turn require uniform (0,1) random numbers. We fix the
names of the following two Worksheets:

• Model contains calculation.
• SimRun is a template where a user specifies de-

tails on uniform(0,1) random numbers (number of
rows and columns and their locations), outputs
(number of outputs and their cell locations), and
decision variables (number of decision variables,
their location and their respective lower and upper
bounds). See Figure 7. The location of some of

these cells are fixed, but some cell locations depend
on locations of other cells. SimRun also holds uni-
form(0,1) random numbers that Worksheet Model
needs. The RNG that our compute nodes use is
Mersenne Twister (“mt19937”) where we adapt to
C# from C code in the GNU Scientific Library
(Galassi et al. 2006). S3 knows the details about
a simulation model through this worksheet.

In this VaR example, we have three simulation outputs
that are estimated from multiple i.i.d. trials in Worksheet
Model: VaR, average portfolio values on the next day
and average profit/loss. S3 knows that they are outputs
because we link them to Worksheet SimRun. Users can
also execute simulation runs under multiple set of decision
variables (DVs) by specifying the upper and lower bounds of
each DV in Worksheet SimRun (see Figure 7). Currently,
we only allow integer values with step size of 1. In this
example, our DVs are the number of lots (one lot consists of
100 stocks) of each stock in our portfolio. DVs are specified
on Worksheet SimRun, and they are used in Worksheet
Model for calculation.

Once the calculation is completed, a user gets result
on another Worksheet called Output (see Figure 8). For
each combination of DVs in the specified range, sample
means and standard errors are provided. (Standard error is
a measure of how close a sample mean is to the unknown
true mean. It is defined as a sample standard deviation
divided by square root of the number of replications.)

3.2 Design and Implementation

We first explain the execution steps of S3 and discuss the
details about system architecture.

The S3 system architecture is shown in Figure 9. The
system is consisted of four main components:

1. Users upload Excel simulation models and down-
load Excel output files when jobs are completed.

2. Manager is responsible for resource management
(book keeping of status of workers), job man-
agement (job submission, job scheduling, and job
allocation), and data management (managing data
files).

3. Workers or compute nodes are PCs that execute
Excel calculations. Currently, we have dedicated
workers which are always available for Manager
even if there are other jobs running on them.

4. File Server stores data files that are created during
job execution. Users upload Excel files that con-
tain their simulation models onto this File Server
from which workers subsequently download. Once
simulation is finished, users download Excel files
that hold simulation results from the File Server.

Pichitlamken, Kajkamhaeng and Uthayopas

The execution steps of S3 can be explained as follows
(the number below correspond to ones in Figure 1).

Figure 1: System configuration.

1. A user creates a simulation model in Excel which
has our add-in that connects to Manager through
Web Services. Figure 2 shows the dialog box
for job submission. Job description (such as the
number of replications, number of workers and a
seed number) is sent to Manager (1(a)) and the
user’s Excel file is sent to File Server (1(b)).

2. “Idle” Workers (not currently running Manager’s
jobs but maybe doing other jobs) periodically check
with Manager to request jobs. If there are pending
jobs, Manager sends them to Workers.

3. A Worker downloads an Excel file according to
what Manager has assigned.

4. When a Worker completes his job, Worker uploads
his job onto File Server.

5. Then Worker updates his status with Manager.
6. A user can check status of his submitted jobs

through Manager (see Figure 3).
7. When user’s job is completed, he downloads his

output Excel file from File Server.

Figure 8 shows an example of output display.

4 EXPERIMENTAL RESULTS

We first describe our test problem and the experimental
setups, followed by experimental results and discussion.

4.1 Value-at-Risk Test Problem

VaR is a risk metric that probabilistically describe market
risks. Let L be investment profit or loss. Given some
confidence level α ∈ (0,1), the VaR of the portfolio at
the confidence level α is given by the smallest number `
such that Pr{L > `} = 1−α (Jorion 2001). For a given

Figure 2: Dialog box when a user requests simulation runs.

combination of stocks, we simulate a value-at-risk over one-
day period. We assume that stock prices follow a Brownian
motion process. The calculation steps are (Hull 2003):

1. Compute the value of portfolio today using the
current stock prices. Let Sit be the price of stock
i on day t, and xi is the number of stock i in the
portfolio, i = 1,2, . . . ,n. The value of portfolio on
day t is Pt = ∑i xiSit .

2. Sample stock returns, r = [r1,r2, . . . ,rn]′, from the
multivariate normal distribution whose mean is
zero and the covariance matrix is estimated from
historical data.

3. Use ri to determine the stock price on day t +1:
Si(t+1) = Siteri . Revalue the portfolio value on day
t +1, Pt+1 = ∑i xiSi(t+1).

4. Compute δP = Pt+1 −Pt .
5. Repeat steps 2 to 4 m times to get samples of δP.

We estimate the α% VaR as the α percentiles of m
simulated values of δP. We use m = 200 and n = 10 stocks
that are traded in the Stock Exchange of Thailand. The
covariance matrix of stock returns are estimated from 50
trading days, from December 7, 2007 to February 20, 2008.

4.2 Experimental Setups

The experiment is done on a 19-PC system. The user’s
system is an AMD Athlon XP 1GHz system with 512MB
RAM installing Windows XP. Both the manager and file
server system are an AMD Athlon XP 2500+ system with
512MB RAM installing Windows Server 2003. The rest
of computing nodes are an Intel Celeron 2.53 GHz system

Pichitlamken, Kajkamhaeng and Uthayopas

Figure 3: Dialog box when a user checks job status.

with 512MB RAM installing Windows XP. All machines
are connected together using 100Mbps Fast Ethernet switch.
In this work, all the softwares are developed with Visual
Studio 2005 and Visual Studio Tool for Office (VSTO). The
manager uses the FCFS (first come, first served) algorithm
for job assignments.

We vary the number of combinations of decision vari-
ables (i.e., problem size) by changing the upper and lower
bounds of each DVs, and the number of workers used.
Each combination of decision variables gets 10 simulation
replications. The performance measure is the computational
time to complete the simulation runs. The test is done at
256, 512, 1024, 2048, 4096 combinations of decision vari-
ables. The number of workers used are 1, 2, 4, 8, and 16
workers.

4.3 Experimental Results

The runtime results are shown in Figure 4. We see that
the run time decreases when number of processing nodes
increases. This is due to the distribution of the processing
tasks to multiple computing nodes simultaneously. However,
benefits of increasing the number of workers diminish as
the number of workers increases, e.g., the runtime decreases
sharply when we include the second worker, but the benefit
declines as we go from 8 to 16 workers.

We also consider a performance measure called speedup
which is defined as a ratio between sequential runtime
(runtime on one worker) and parallel runtime (runtime on
multiple workers). Parallel run time consists of computation

Figure 4: Runtime on the desktop grid when the problem
sizes and the number of workers vary.

time and communication overhead. Thus,

Speedup =
TSeq

TParallel
=

TSeq

Tcomp +Tcomm
. (1)

Speedup shows how many times faster the execution is
when parallel computing is used; if we use n identical
processors, the ideal speedup is n, i.e., when Tcomm = 0,
Tcomp = Tseq/n in (1). The actual speedup is lower due to
communication overhead, which increases with the number
of processors and the problem size. In our experiment,
the communication overhead is mostly due to preparing
communication channels between servers and workers,
rather than in uploading or downloading files. Thus, for
a given the number of processors, our communication
overhead are relatively close across all problem sizes,
and speedup for large problems is higher than for small
problems. (that we consider).

Figure 5: Speedup on the desktop grid when the problem
sizes and the number of workers vary.

In Figure 5, we observe the following results:

Pichitlamken, Kajkamhaeng and Uthayopas

• Speed up increases at a faster rate when the number
of computing Service nodes are added. Maximum
speedup gained in this experiment is 13.6; therefore,
the application runs 13-14 times faster for the
system of only 16 nodes.

• Speedup for large problems is higher than for small
problems. The reason is that when more computing
workload is available, the fraction of computing
overhead (e.g., in load balancing and communica-
tion) to the computing workload is lower. Thus,
our proposed system will work even better for large
and complex problems. Note the seemingly un-
usual behavior of the results for 256DVs, where the
runtime for 8 and 16 processors are approximately
3 minutes. This is because the communication
overhead is much larger than the parallel compu-
tational time, and this overhead is also close to
the sequential run time. As a result, speedup is
non-increasing (see (1)).

A fraction of runtime used as system overhead can be
assessed through a ratio called efficiency. The efficiency
of parallel computation is speedup divided by number of
workers. Efficiency indicates the effectiveness that our
computing systems are utilized to solve the problem. Due
to communication overhead, efficiency is between 0 and 1
(100%), where being closer to one is desirable. Figure 6
shows the efficiency of our desktop grid. For a given
problem size, the efficiency is high for a small number of
workers since communication cost is low. As number of
workers increases, the communication overhead increases
as well. Thus, the efficiency is decreasing accordingly, and
at a higher rate. In addition, running a larger simulation
model is more efficient because the ratio of computation
time to communication time is higher. We can also see
that our implementation is very efficient since we can still
maintain efficiency of more than 80% (0.8) for 16 nodes
with the problem size of 4096 DVs.

5 FUTURE WORK

In this paper, we propose an architecture that allows spread-
sheet simulation to use Windows-based desktop grids to
accelerate the execution speed. Our approach is different in
that we base almost all computations on Excel spreadsheets
(except for random number generations). Thus, no complex
programming is needed. We also show that the complexity of
parallel computing can be mostly hidden from users through
well-designed computation templates in Excel. With these
templates, users can have a flexibility of modeling a sim-
ulation problem while enjoying massive computing power.
From the experiments, we show that runtime can be reduced
from 200 minutes to about 14 minutes. This speedup can

Figure 6: Efficiency on the desktop grid when the problem
sizes and the number of workers vary.

make a huge difference in how a user analyzes problems;
with desktop grids, they are able to consider many scenarios
simultaneously or even to optimize a sizable model, thus
gaining greater insights on the problem at hand.

Our work can be enhanced in many ways. More tem-
plates can be added for broader classes of problems. More
transparency can be built so users are not aware of the
manager existence by adding automatic job submission into
Excel. For a longer term execution, some of the fault han-
dling mechanism should be added to make it easy to use
the system in a less reliable IT environment.

ACKNOWLEDGMENTS

This research is sponsored by the Thailand Research Fund
Grant Number MRG4980121, and it is a part of the Thai
National Grid Project supported by Ministry of Information
and Communication Technology, the Royal Thai Govern-
ment. The testing facility is supported by Department of
Computer Engineering, Faculty of Engineering, Kasetsart
University, Thailand. We would also like to thank the WSC
referees for careful reading and helpful comments.

REFERENCES

Abramson, D., J. Dongarra, E. Meek, P. Roe, and Z. Shi.
2004. Simplified grid computing through spreadsheets
and NetSolve. In Proceedings of the Seventh Inter-
national Conference on High Performance Computing
and Grid in Asia Pacific Region (HPCAsia’04). IEEE
Computer Society.

Abramson, D., P. Roe, L. Kotler, and D. Mather. 2001.
ActiveSheets: Super-computing with spreadsheets. In
Proceedings of the High Performance Computing Sym-
posium (HPC’01), Advanced Simulation Technologies
Conference, 110–115. San Diego, California: Society
for Modeling and Simulation (SCS) Press.

Pichitlamken, Kajkamhaeng and Uthayopas

Agrawal, S., J. Dongarra, K. Seymour, and S. Vadhiyar.
2003. NetSolve: Past, present, and future; a look at a
grid enabled server. In Grid Computing: Making the
Global Infrastructure a Reality, ed. F. Berman, G. Fox,
and T. Hey. John Wiley & Sons.

Anderson, D. P. 2004. BOINC: A system for
public-resource computing and storage. In Pro-
ceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing. Available via
<http://boinc.berkeley.edu/grid paper
04.pdf> [accessed March 11, 2008].

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.
2005. Discrete-event system simulation. 4th ed. Upper
Saddle River, New Jersey: Prentice-Hall, Inc.

Ecklund, P. 2007. Notes on excel calculations. Available via
<http://faculty.fuqua.duke.edu/pecklund/
ExcelReview/ExcelFormulasReview.pdf>
[accessed March 11, 2008].

Foster, I., C. Kesselman, and S. Tuecke. 2001. The anatomy
of the Grid: Enabling scalable virtual organizations.
International Journal of High Performance Computing
Applications 15 (3): 200–244.

Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, and F. Rossi. 2006. GNU scientific library
reference manual. 2nd ed. Network Theory Ltd.

Henderson, S. G., and B. L. Nelson. 2006. Handbooks in
operations research and management science, volume
13: Simulation. North Holland: Springer-Verlag.

Hull, J. C. 2003. Options, futures & other derivatives. 5th
ed. Prentice Hall.

Jorion, P. 2001. Value at risk: The new benchmark for
managing financial risk. 2nd ed. McGraw-Hill Trade.

Knusel, L. 2005. On the accuracy of statistical distributions
in Microsoft Excel 2003. Computational Statistics and
Data Analysis 48 (3): 445–449.

Legard, D. 2004. IDC: Consolidation to
windows won’t happen. Available via
<http://www.linuxworld.com.au/index.php
/id;940707233;fp;2;fpid;1> [accessed
March 11, 2008].

Litzkow, M. J., M. Livny, and M. W. Mutka. 1988. Condor-
a hunter of idle workstations. In Proceedings of the
8th International Conference on Distributed Computing
Systems, 104–111.

McCullough, B., and B. Wilson. 2005. On the accuracy of
statistical procedures in Microsoft Excel 2003. Compu-
tational Statistics and Data Analysis 49 (4): 1244–1252.

Microsoft Corp. 2008. Microsoft Excel running
on Microsoft compute cluster. Available via
<http://msdn.microsoft.com/en-us/
library/bb463068.aspx> [accessed July 7,
2008].

Mustafee, N., A. Alstad, B. Larsen, S. J. E. Taylor, and
J. Ladbrook. 2006. Grid-enabling FIRST: Speeding up

simulation applications using WinGrid. In Proceed-
ings of the 10th IEEE/ACM International Symposium
on Distributed Simulation and Real-Time Applications
(DS-RT 2006), 157–164.

Nadiminti, K., Y.-F. Chiu, N. Teoh, A. Luter, S. Venu-
gopal, and R. Buyya. 2004. ExcelGrid: A .NET
plug-in for outsourcing Excel spreadsheet workload
to enterprise and global grids. In Proceedings of the
12th International Conference on Advanced Com-
puting and Communication (ADCOM 2004). Avail-
able via <http://www.gridbus.org/papers/
ExcelGrid.pdf> [accessed March 11, 2008].

Paisittanand, S., and D. L. Olson. 2006. A simulation study
of IT outsourcing in the credit card business. European
Journal of Operational Research 175 (2): 1248–1261.

Quinn, M. 2003. Parallel programming in C with MPI and
OpenMP. McGraw-Hill.

Ragsdale, C. T. 2004. Spreadsheet modeling & decision
analysis. 4th ed. Mason, Ohio: South-Western (Thom-
son Learning).

Seila, A. F. 2006. Spreadsheet simulation. In Proceedings of
the 2006 Winter Simulation Conference, ed. L. Perrone,
F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol,
and R. M. Fujimoto, 11–18. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Seila, A. F., V. Ceric, and P. Tadikamalla. 2003. Applied
simulation modeling. Thomson Learning.

Shariff, A. M., R. Rusli, C. T. Leong, V. Radhakrishnan,
and A. Buang. 2006. Inherent safety tool for explosion
consequences study. Journal of Loss Prevention in the
Process Industries 19 (5): 409–418.

Stevenson, W. J., and C. Ozgur. 2007. Introduction to man-
agement science with spreadsheets. New York, NY:
McGraw-Hill/Irwin.

AUTHOR BIOGRAPHIES

JUTA PICHITLAMKEN is an Assistant Professor
in the Department of Industrial Engineering, Kasetsart
University. Her research interests include ranking and
selection procedures, simulation optimization, spreadsheet
simulation, and stochastic processes. Her e-mail is
<juta.p@ku.ac.th>.

SUPASIT KAJKAMHAENG is a Master student in High
Performance Computing and Networking Center, Kasetsart
University. His recent work has involved Cluster and Grid
Computing. His email is <kurata sk@hotmail.com>.

PUTCHONG UTHAYOPAS is an Assistant Professor in
Department of Computer Engineering, Kasertsart University.
His research interests include parallel/distributed computing,
cluster and grid computing and parallel software tools. His
email is <pu@ku.ac.th>.

http://boinc.berkeley.edu/grid_paper_04.pdf
http://boinc.berkeley.edu/grid_paper_04.pdf
http://faculty.fuqua.duke.edu/~pecklund/ExcelReview/ExcelFormulasReview.pdf
http://faculty.fuqua.duke.edu/~pecklund/ExcelReview/ExcelFormulasReview.pdf
http://www.linuxworld.com.au/index.php/id;940707233;fp;2;fpid;1
http://www.linuxworld.com.au/index.php/id;940707233;fp;2;fpid;1
http://msdn.microsoft.com/en-us/library/bb463068.aspx
http://msdn.microsoft.com/en-us/library/bb463068.aspx
http://www.gridbus.org/papers/ExcelGrid.pdf
http://www.gridbus.org/papers/ExcelGrid.pdf
mailto:juta.p@ku.ac.th
mailto:kurata_sk@hotmail.com
mailto:pu@ku.ac.th

Pichitlamken, Kajkamhaeng and Uthayopas

Figure 7: Screenshot of Worksheet SimRun.

Figure 8: Screenshot of Worksheet Output.

Figure 9: S3 architecture.

	3.pdf
	3.pdf
	INTRODUCTION
	RELATED WORK
	DESIGN AND ARCHITECTURE
	Spreadsheet Simulation Models
	Design and Implementation

	EXPERIMENTAL RESULTS
	Value-at-Risk Test Problem
	Experimental Setups
	Experimental Results

	FUTURE WORK

