

รายงานวิจัยฉบับสมบูรณ์

โครงการความสัมพันธ์ระหว่างโครงสร้างและการทำงาน
ของเอนไซม์เบต้า-กลูโคซิเดส จากพืชไทย

โดย พศ.ดร.ประชุมพร คงเสรี และคณะ

30 มิถุนายน พ.ศ. 2551

Abstract

The project aims to study the structure-function relationship in the family of enzyme β -glucosidases using three Thai plants β -glucosidases as model enzymes. Dalcochinase is an isoflavanoid β -glucosidase, purified from Thai rosewood (*Dalbergia cochinchinensis* Pierre). Dnbglu2 is an isoflavanoid β -diglycosidase from blackwood (*D. nigrescens* Kurz). Linamarase is a cyanogenic β -glucosidase present in cassava (*Manihot esculenta* Crantz). These three enzymes catalyse the same hydrolytic reactions, but are remarkably different in their specificities for natural substrates. Dalcochinase can perform reverse hydrolysis well, and catalyse transglucosylation using primary and secondary alcohols as acceptor, but not tertiary alcohol. In contrast, linamarase is exceptional at catalyzing transglucosylation using primary, secondary and tertiary alcohols as acceptor, but poor in catalyzing reverse hydrolysis. Understanding the mechanisms underlying these differences should lead us to better applications of the enzymes via protein engineering.

In this project, recombinant dalcochinase and Dnbglu2 have been cloned, expressed in yeast *Pichia pastoris* and purified from culture medium. Both purified recombinant enzymes exhibited similar kinetic properties to their respective natural enzymes isolated from seeds. Site-directed mutagenesis was performed to investigate the roles of amino acid residues in the aglycone binding pocket of these enzymes that might be responsible for differences in their catalytic properties. Ten dalcochinase mutants, namely I185A, N189F, M195V, H253F, V255F, N323Q, G367S, K402Y, A454N and E455I, were made by replacing residues in dalcochinase with the corresponding residues in linamarase, and were expressed and purified from *P. pastoris* cultures. Kinetic studies showed that most mutant enzymes decreased their specificities toward *p*-nitrophenyl- β -D-glucopyranoside (a commercial substrate) and dalcochinin β -D-glucoside (a natural substrate of dalcochinase). Notably, a 70- and 22-fold reduction shown by I185A, toward each respective substrate, suggested the importance of residue I185 in dalcochinase for substrate specificity. However, the hydrolytic activities towards linamarin (a natural substrate of linamarase) did not improve. In transglucosylation studies, three mutants showed improved transglucosylation abilities: I185A and V255F with both primary and secondary alcohol acceptors, N189F with only primary alcohol acceptors. So, residues A201, F205 and F271 in linamarase seemed to play prominent roles in catalysing transglucosylation. However, none of the mutant enzyme could catalyze the transfer of glucose to tertiary alcohol. Thus, it is expected that mutations at more than one position may generate new dalcochinase mutants which may function similarly to linamarase, in terms of substrate specificity and transglucosylation.

Furthermore, the differences in the aglycone binding pocket of dalcochinase and Dnbglu2 are compared, since they exhibit marked differences in substrate specificities, despite having 81% sequence identity. Three dalcochinase mutants, namely A454S and E455G single mutants and A454S/E455G double mutant, were

made by replacing residues in dalcochinase with the corresponding residues in Dnbglu2, and were expressed and purified from *P. pastoris* cultures. Kinetic studies showed that the hydrolytic efficiency toward *p*-nitrophenyl- β -D-glucopyranoside of both single mutants were similar to that of dalcochinase, but increased 2-fold by the double mutant. Furthermore, their activities for dalcochinin β -glucoside remained unchanged. For hydrolysis of isoflavonoid diglycosides dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside (natural substrates of Dnbglu2), the single mutants showed similar hydrolysis of compared with the wild-type dalcochinase, whereas the double mutant showed 4-7 fold increases in relative activity toward both isoflavonoid diglycosides. However, this increased activity was only 3% that of Dnbglu2, indicating other determinants are important for isoflavonoid diglycoside hydrolysis.

As for cloning of cassava linamarase, four full-length cDNA sequences were obtained from RT-PCR and cloned into pPICZ α B for methanol-inducible expression in *P. pastoris*, similar to the cloning strategies used for dalcochinase. However, no β -glucosidase activities could be detected in *P. pastoris* culture media. So these four cDNA sequences were to be cloned into pYEX-BX as an N-terminal fusion product with the signal sequence of yeast SUC2 invertase followed by a polyhistidine tag for expression in *Saccharomyces cerevisiae* under the control of yeast copper metallothionein (*CUP1*) promoter.

Keywords

β -glucosidase, substrate specificity, transglucosylation, *Dalbergia cochinchinensis*, protein engineering, site-directed mutagenesis

บทคัดย่อ

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างโครงสร้างและหน้าที่ในเอนไซม์กลุ่มเบต้า-กลูโคซิเดส โดยใช้เอนไซม์เบต้า-กลูโคซิเดสจากพืชไทย 3 ชนิดเป็นตัวอย่างศึกษา เอนไซม์ดัลโคชีนีส (dalcochinase) เป็นไอโซฟลาโวนอยด์ เบต้า-กลูโคซิเดสเอนไซม์ที่สกัดได้จากเมล็ดพะยูง (*Dalbergia cochinchinensis* Pierre หรือ Thai Rosewood) เอนไซม์ Dnbglu2 เป็นไอโซฟลาโวนอยด์ เบต้า-ไดไกลโคชีเดสเอนไซม์ที่สกัดได้จากเมล็ดชันวน (*D. nigrescens* Kurz) เอนไซม์ลินามาเรส (linamarase) เป็นไฮยาโนเจนิก เบต้า-กลูโคซิเดสเอนไซม์ที่ได้จากมันสำปะหลัง (*Manihot esculenta* Crantz หรือ cassava) เอนไซม์ทั้งสามชนิดนี้เริ่งปฏิกิริยาการสลายพันธะไกลโคซิดได้เหมือนกัน แต่แตกต่างกันในเรื่องความจำเพาะต่อสับสเตรทธรรมชาติ เอนไซม์ดัลโคชีนีสสามารถเริ่งปฏิกิริยาสลาย (*reverse hydrolysis*) ได้ดีและเริ่งปฏิกิริยาการย้ายหมู่กลูโคส (*transglucosylation*) โดยใช้แอลกอฮอล์ชนิดปฐมภูมิและทุติยภูมิเป็นตัวรับได้ แต่ใช้แอลกอฮอล์ชนิดปฐมภูมิทุติยภูมิและตติยภูมิเป็นตัวรับได้ดีมาก แต่เริ่งปฏิกิริยาสลายได้น้อย การเข้าใจถึงกลไกของความแตกต่างเหล่านี้ จะสามารถนำไปสู่การประยุกต์ใช้เอนไซม์ได้ โดยอาศัยเทคนิคทางวิศวกรรมป्रوتีน

ในโครงการวิจัยนี้ วิศวกรรมบีแวนน์ดัลโคชีนีสและ Dnbglu2 ได้ถูกโคลนและแสดงออกในเยสต์ *Pichia pastoris* และสกัดให้บริสุทธิ์จากอาหารเลี้ยงเชื้อ เมื่อทำให้บริสุทธิ์แล้ว วิศวกรรมบีแวนน์เอนไซม์ทั้งสองชนิดมีคุณสมบัติทางจนผลศาสตร์ที่คล้ายคลึงกับเอนไซม์ที่สกัดได้จากเมล็ด เอนไซม์วิศวกรรมบีแวนน์ดัลโคชีนีสได้ถูกทำการกรลพันธุ์ที่ตำแหน่งจำเพาะ (site-directed mutagenesis) เพื่อศึกษาบทบาทของกรดอะมิโนในช่องจับกับอะไกลโคน ที่อาจทำหน้าที่กำหนดความแตกต่างในการเริ่งปฏิกิริยา เอนไซม์ดัลโคชีนีสกลาวยพันธุ์ 10 ชนิด (I185A, N189F, M195V, H253F, V255F, N323Q, G367S, K402Y, A454N และ E455I) ได้ถูกสร้างขึ้น โดยการแทนที่กรดอะมิโนในเอนไซม์ดัลโคชีนีส ด้วยกรดอะมิโนที่ตำแหน่งเดียวกันในเอนไซม์ลินามาเรส และทำการแสดงออกแล้วสกัดให้บริสุทธิ์จากการเพาะเลี้ยง *P. pastoris* การศึกษาทางจนผลศาสตร์พบว่า เอนไซม์กลาวยพันธุ์ส่วนใหญ่มีความจำเพาะต่อ *p*-nitrophenyl- β -D-glucopyranoside (สับสเตรททางการค้า) และ dalcochinin β -D-glucoside (สับสเตรทธรรมชาติของเอนไซม์ดัลโคชีนีส) ลดลง โดยเฉพาะเอนไซม์กลาวยพันธุ์ I185A ที่มีความจำเพาะลดลง 70 และ 22 เท่า ตามลำดับ ซึ่งชี้ถึงความสำคัญของกรดอะมิโนในตำแหน่ง I185 ในเอนไซม์ดัลโคชีนีสในการกำหนดความจำเพาะต่อสับสเตรท อย่างไรก็ตาม ความสามารถในการสลายลินามาริน (linamarin ซึ่งเป็นสับสเตรทธรรมชาติของเอนไซม์ลินามาเรส) ไม่มีความเปลี่ยนแปลง ในการศึกษาปฏิกิริยาการย้ายหมู่กลูโคสพบว่า เอนไซม์กลาวยพันธุ์ 3 ชนิด มีความสามารถในการเริ่งปฏิกิริยาการย้ายหมู่กลูโคสได้ดีขึ้น กล่าวคือ เอนไซม์กลาวยพันธุ์ I185A and V255F ใช้แอลกอฮอล์ชนิดปฐมภูมิและทุติยภูมิได้ดีขึ้น และเอนไซม์กลาวยพันธุ์ N189F ใช้แอลกอฮอล์ชนิดปฐมภูมิได้ดีขึ้น ดังนั้น กรดอะมิโนในตำแหน่ง A201, F205 และ F271 ในเอนไซม์ลินามาเรส น่าจะมีบทบาทเด่นในการเริ่งปฏิกิริยาการย้ายหมู่กลูโคส อย่างไรก็ตาม ไม่พบเอนไซม์ดัลโคชีนีสกลาวยพันธุ์ชนิดใดที่สามารถย้ายหมู่กลูโคสไปสู่แอลกอฮอล์ชนิดตติยภูมิ ดังนั้น จึงคาดว่าหากทำการกรลพันธุ์มากกว่าหนึ่งตำแหน่ง อาจจะทำให้ได้เอนไซม์ดัลโคชีนีสกลาวยพันธุ์ชนิดใหม่ ที่ทำงานได้คล้ายคลึงกับเอนไซม์ลินามาเรส ในด้านความจำเพาะต่อสับสเตรทและด้านการย้ายหมู่กลูโคส

นอกจากนี้ งานวิจัยได้เบรียบเทียบความแตกต่างในช่องจับกับอะไกลโคนของเอนไซม์ดัลโคชีนีส และเอนไซม์ Dnbglu2 นี่องจากเอนไซม์ทั้ง 2 ชนิดมีความแตกต่างในด้านความจำเพาะต่อสับสเตรท ถึงแม้ว่าจะมีลำดับกรดอะมิโนคล้ายกันถึง

81% เอนไซม์ดัลโคซีนสกัลัยพันธุ์ 3 ชนิด (กลา yal พันธุ์ 3 ตัวแห่งเดียว คือ A454 และ E455) และกลา yal พันธุ์สองตัวแห่งเดียว คือ A454S/E455G) ได้ถูกสร้างขึ้น โดยการแทนที่กรดอะมิโนในเอนไซม์ดัลโคซีนส ด้วยกรดอะมิโนที่ตัวแห่งเดียวกันในเอนไซม์ Dnbglu2 และทำการแสดงออกแล้วสกัดให้บริสุทธิ์จากการเพาะเลี้ยง *P. pastoris* การศึกษาทางจลนพลศาสตร์พบว่า เอนไซม์กลา yal พันธุ์ 3 ตัวแห่งเดียวมีประสิทธิภาพในการสลาย *p*-nitrophenyl- β -D-glucopyranoside คล้ายกับเอนไซม์ดัลโคซีนสตั้งเดิม แต่เพิ่มขึ้น 2 เท่าในเอนไซม์กลา yal พันธุ์สองตัวแห่ง นอกจากนี้พบว่า กิจกรรมของเอนไซม์กลา yal พันธุ์ต่อ dalcochinin β -glucoside ไม่เปลี่ยนแปลง สำหรับการสลาย dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside และ dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside (สับสเตรทธรรมชาติของเอนไซม์ Dnbglu2) พบว่า เอนไซม์กลา yal พันธุ์ 3 ตัวแห่งเดียวสามารถสลายไอโซฟลาโนนอยด์ เปบต้า-ไดไกลดิไซด์ 2 ชนิดนี้ ได้ดีใกล้เคียงกับเอนไซม์ดัลโคซีนสตั้งเดิม ในขณะที่เอนไซม์กลา yal พันธุ์สองตัวแห่งเดียวมีความสามารถเพิ่มขึ้น 4-7 เท่า อย่างไรก็ตาม ความสามารถที่เพิ่มขึ้นนี้ คิดเป็นแค่ 3% ของเอนไซม์ Dnbglu2 ซึ่งแสดงว่ามีส่วนอื่นของเอนไซม์ที่สำคัญต่อการกำหนดความสามารถในการสลายไอโซฟลาโนนอยด์ ได้ไกลดิไซด์

ในส่วนของการโคลนเอนไซม์ลินามาเรสจากมันสำปะหลัง ได้ทำการโคลน full-length cDNA sequences 4 โคลน จากการทำ RT-PCR และโคลนเข้าสู่เวคเตอร์ pPICZαB เพื่อให้เกิดการแสดงออกใน *P. pastoris* โดยใช้เมทานอลเป็นตัวหนุนยานนำ ซึ่งคล้ายกับวิธีการโคลนเอนไซม์ดัลโคซีเนส อย่างไรก็ตาม ไม่พบกิจกรรมของเอนไซม์เบต้า-กลูโคซิดส์ในอาหารเลี้ยงเชื้อ *P. pastoris* ดังนั้น full-length cDNA sequences 4 โคลนนี้ จึงถูกโคลนเข้าในเวคเตอร์ pYEX-BX ในรูปของ N-terminal fusion product กับลำดับของ the signal sequence ของ yeast SUC2 invertase ตามด้วย polyhistidine tag และควบคุมการแสดงออกโดย copper metallothionein (CUP1) promoter

คำสำคัญ

เป้าฯ-กฤษโคจิเดส ความจำเพาะต่อสัปสเทราท การย้ายหมู่กฤษโคส พะ yön วิศวกรรมปิโตรีน การกลยุทธ์ที่ดำเนินการ

Executive Summary

β -Glucosidases (E.C. 3.2.1.21) belong to a group of enzymes that catalyse the hydrolysis of β -O-glucosidic linkages between D-glucose and an aglycone or another sugar. All members of this enzyme family recognise a β -glucoside as their substrate. However, β -glucosidases from different sources differ vastly in their specificities for the aglycone linked to the glucosyl group. Furthermore, they are different in their abilities to catalyse reverse hydrolysis and glucose transfer reactions. It is likely that these differences occurred as a result of the specific interactions between unique amino acid residues in the active pocket and the specific substrates. Thus, the present research project employs techniques in molecular biology and protein engineering to study the structure-function relationship in the family of β -glucosidases. Understanding the mechanisms that determine these differences should lead us to better applications of the enzymes via development of engineered β -glucosidases with desired properties.

Three β -glucosidases from Thai plants are used as model enzymes in this study. Two β -glucosidases are from related *Dalbergia* species, namely dalcochinase from Thai rosewood (*Dalbergia cochinchinensis* Pierre), and Dnbglu2 from blackwood (*D. nigrescens* Kurz). Another β -glucosidase, linamarase, is a cyanogenic β -glucosidase present in cassava (*Manihot esculenta* Crantz). While all three enzymes catalyse the same hydrolytic reactions, they show remarkable differences in their specificity for substrate, and their catalytic activities in hydrolysis, reverse hydrolysis and transglucosylation reactions. Dalcochinase and Dnbglu2 show 81% sequence identity and yet their substrate specificities are distinct. Dalcochinase could hydrolyse dalcochinin β -D-glucoside, its natural substrate, efficiently, but not the two isoflavanoid diglycosides, the natural substrates of Dnbglu2, and vice versa. In transglucosylation, dalcochinase can transfer glucose from a glucosyl donor to primary and secondary alcohol acceptors, while linamarase exhibits a unique ability to catalyze glucose transfer to primary, secondary as well as tertiary alcohols as glucosyl acceptors. Previously, the coding sequence of dalcochinase has been cloned and expressed efficiently in yeast *Pichia pastoris*. Purified recombinant dalcochinase exhibits enzymatic properties that are similar to those of natural dalcochinase. The project now focuses on characterisation and site-directed mutagenesis of dalcochinase by replacing residues in dalcochinase with the corresponding residues in Dnbglu2 or linamarase. The effect of mutations will be tested to identify the residues that are important for differences in catalytic properties of dalcochinase and other β -glucosidases.

In the first part of this project, the sequence of wild-type Thai rosewood dalcochinase has been expressed and purified. The expression and purification procedures overcome the limitations in enzyme supply from natural sources, and allow further studies on structure-function relationships in this enzyme. To identify residues that are important for distinct properties of dalcochinase and cassava linamarase in substrate

specificities and transglucosylation activities, ten single mutations were made by site-directed mutagenesis to replace ten different residues in the aglycone binding pocket of dalcochinase with the corresponding residues of linamarase. This resulted in ten dalcochinase mutants, namely I185A, N189F, M195V, H253F, V255F, N323Q, G367S, K402Y, A454N and E455I. All mutants have been cloned into *P. pastoris*, expressed, purified, and characterized with respect to their substrate specificities and transglucosylation activities.

Kinetic studies showed variable effects of these ten single mutations on substrate specificity. Notably, the efficiency for hydrolysis of *p*-nitrophenyl- β -D-glucopyranoside (a commercial substrate) is lowered by 70-fold in I185A, but increased by 5- and 2-fold in N189F and A454N, respectively, when compared with the wild-type dalcochinase. Most dalcochinase mutants showed decreased specificity for dalcochinin β -D-glucoside (a natural substrate of dalcochinase), especially a 22-fold reduction in I185A and a 12-fold reduction in V255F, when compared with the wild-type dalcochinase. Unexpectedly, E455I showed a 5-fold increase in specificity for dalcochinin β -D-glucoside, possibly indicating a preferable interaction between the rotenoid moiety of substrate and the hydrophobic side chain of isoleucine at this position. However, none of the dalcochinase mutants could hydrolyze linamarin (a natural substrate of linamarase), suggesting that the change in the overall conformation of the aglycone binding pocket, rather than site-specific changes, may be needed for the successful entry and hydrolysis of linamarin by dalcochinase mutants.

In transglucosylation studies, three mutants showed increased transglucosylation activities, namely I185A with long-chain primary and secondary alcohols, N189F with all primary alcohols, and V255F with both primary and secondary alcohols. However, none of the dalcochinase mutants could transfer glucose to tertiary alcohols, the property that is unique to cassava linamarase. Again, the change in the overall conformation of the aglycone binding pocket, rather than site-specific changes, may be needed for the successful entry and transglucosylation of tertiary alcohols by dalcochinase mutants. Thus, it is expected that mutations at more than one position may generate new dalcochinase mutants, which may function similarly to linamarase, in terms of substrate specificity and transglucosylation.

The second part of this project has been done in collaboration with Associate Professor James R. Ketudat Cairns at Schools of Biochemistry and Chemistry, Suranaree University of Technology. In this part, a cDNA encoding Dnbglu2 was also cloned and expressed in *P. pastoris*. Purified recombinant Dnbglu2 showed similar enzymatic properties to those of natural enzyme. The recombinant Dnbglu2 was less efficient at hydrolysis of both dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside (natural substrates of Dnbglu2) compared to natural Dnbglu2 from seed. Nonetheless, recombinant Dnbglu2 maintains a high preference for both isoflavanoid diglycosides over dalcochinin β -D-glucoside (a natural substrate of dalcochinase).

Also, in this part of the project, three more dalcochinase mutants, namely A454S and E455G single mutants and A454S/E455G double mutant, were made by replacing residues in the aglycone binding pocket of dalcochinase with residues of blackwood Dnbglu2 to identify residues that are important for distinct substrate specificities between these two enzymes. All mutants have been cloned into *P. pastoris*, expressed, purified, and characterized with respect to their substrate specificities. The single mutants of dalcochinase showed similar hydrolysis of dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and half the rate of hydrolysis of dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside compared with the wild-type dalcochinase. The double mutant showed 4- and 6.8-fold increases in relative activity toward dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside, respectively. However, this activity was only 3% that of Dnbglu2, indicating other determinants are important for isoflavonoid diglycoside hydrolysis. The results from this part of the project have been reported in Archives of Biochemistry and Biophysics, 468 (2007) 205–216 (Appendix 1).

In the third part of this project, the cDNA of cassava linamarase was cloned and sequenced for future site-directed mutagenesis and characterization. Six different cDNA sequences of linamarase from cassava were amplified by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed from the previously reported cDNA sequence of cassava linamarase. Deduced amino acid sequences from four cDNA clones showed 98-99% sequence identity to that of pCAS5, while the other two cDNA clones contained nucleotide sequences that led to premature termination. The four full-length cDNA sequences were inserted into pPICZ α B for methanol-inducible expression in *P. pastoris* as a secretory protein with the alpha mating factor propeptide and the polyhistidine tag at the N-terminus, similar to the cloning strategies used for dalcochinase. However, none of them showed significant β -glucosidase activities in *P. pastoris* culture media. A new cloning strategy has been devised to clone the four cDNA sequences in pYEX-BX as an N-terminal fusion product with the signal sequence of yeast *SUC2* invertase followed by a polyhistidine tag, and to express the recombinant protein in *Saccharomyces cerevisiae* under the control of yeast copper metallothionein (*CUP1*) promoter. The results from this part of the project have been reported in Kasetsart Journal (Natural Science), 40 (2006) 123-128 (Appendix 2).

เนื้อหางานวิจัย

1. Production of recombinant Thai rosewood β -glucosidase (dalcochinase)

The coding sequence of an N-terminally truncated form of recombinant dalcochinase was cloned with a polyhistidine-tag after the N-terminal alpha factor signal sequence, and expressed in *P. pastoris* under an inducible *AOX1* promoter. The recombinant enzyme could be efficiently purified via hydrophobic interaction chromatography and immobilized metal-ion affinity chromatography (IMAC) (Fig. 1). The enzymatic properties of recombinant dalcochinase were similar to those of natural dalcochinase. The production of recombinant dalcochinase enables further investigations into the structure-function relationships in this enzyme via site-directed mutagenesis. The procedures for cloning, expression, purification and enzymatic characterization have been reported in Toonkool et al. (2006). This preparation of recombinant dalcochinase will be used to test properties of native enzyme, compared with mutant enzymes.

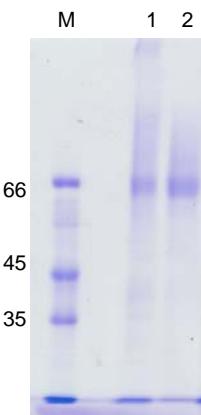


Figure 1: SDS-PAGE of purified recombinant dalcochinase. Lane M, protein standards (kD); lanes 1-2, recombinant wild-type dalcochinase.

2. Identification of amino acid residues for site-directed mutagenesis

Due to the lack of three-dimensional structures of the three β -glucosidases in this study, their three-dimensional models were generated using Geno3D (geno3d-pbil.ibcp.fr). The crystal structure of maize β -glucosidase ZmGlu1 (PDB code 1E56A), which showed ~40% sequence identity to these three enzymes, was used as a template. The overall structures of the models were checked by Ramachandran plot and z-score using PROCHECK and ProSA, respectively. The Ramachandran plot showed that 76.2% of amino acid residues of dalcochinase were located in the most favorable region and only 1.5% in the disallowed region. Generally, models in which less than 2% of amino acid residues were located in the disallowed region are considered as reliable and were chosen for further study. The z-score of selected dalcochinase model was

also within the acceptable range. The three-dimensional models of dalcochinase (Fig. 2), Dnbglu2 and linamarase (not shown) exhibited similar $(\beta/\alpha)_8$ barrel structures as expected for enzymes in glycosyl hydrolase family 1.

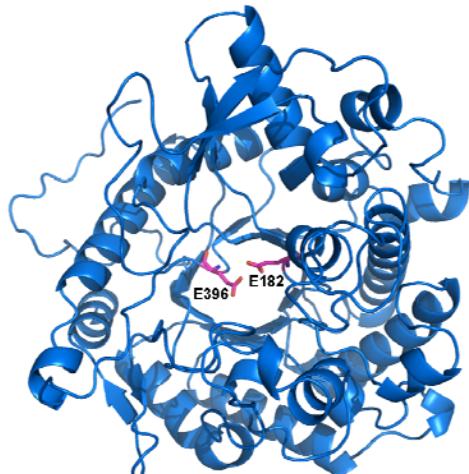


Figure 2: The three-dimensional model of dalcochinase. The catalytic acid/base residues (E182) and nucleophile residues (E396) of dalcochinase are shown as stick drawings with labels.

To identify the target residues in dalcochinase for site-directed mutagenesis, comparison has been made between amino acid sequences of dalcochinase, Dnbglu2 and linamarase using ClustalW 2.0.8 (Fig. 3). Dalcochinase showed 81% and 47% sequence identity to Dnbglu2 and linamarase, respectively. The highly conserved (L/F)NEP and (I/V)TENG motifs, with two glutamate residues acting as the acid/base catalyst and nucleophile in the hydrolysis, respectively, form parts of the glycone binding pocket.

As a result of sequence alignment and structural modeling, amino acid residues were chosen for site-directed mutagenesis based on 2 criteria: a) their location in the aglycone binding pocket, and (b) being different in the two enzymes. To study the differences in substrate specificity and transglucosylation between dalcochinase and linamarase, ten amino acid residues in dalcochinase, namely I185, N189, M195, H253, V255, N323, G367, K402, A454 and E455, were identified as targets for site-directed mutagenesis, and would be replaced with the residues of linamarase at the corresponding positions. This would generate ten single mutants of dalcochinase, which are I185A, N189F, M195V, H253F, V255F, N323Q, G367S, K402Y, A454N and E455I.

To study the differences in substrate specificity between dalcochinase and Dnbglu2, two amino acid residues in dalcochinase, namely A454 and E455, were identified as targets for site-directed mutagenesis, and would be replaced with the residues of Dnbglu2 at the corresponding positions. This would generate 2 single mutants (A454S and E455G) and one double mutant (A454S/E455G) of dalcochinase. This part of the project

has been done in collaboration with Associate Professor James R. Ketudat Cairns at Schools of Biochemistry and Chemistry, Suranaree University of Technology.

Dalcochinase	-----IDFAKEVRETI-----TEVPP-FNRSCFPSDFIFGTASSSYQYEGERV 44
Dnbglu2	-----IAFPKEVRATI-----TEVPP-FNRSCFPSDFIFGTASSSYQYEGERV 44
Linamarase	MLVLFISISSLALTRPAMGTDDDDNIPDDFSRKYFPDDFIFGTATSAQIEGEATAKGRAP 60
ZmGlu1	--SARVGSQLNGVQMLS----PSEIPQ---RDWFPSDFTFGAATSAQIEGAWNEDGKGE 50
Dalcochinase	SIWDNFTHQYPEKIAIDRSNGDVAVDQFHRYKKDIAIMKDMNLDAYRMSISWPRILPTGRV 104
Dnbglu2	SIWDNFTHQYPEKIAIDGSNGDVTIDQFHRYKEDVAIMKYMNLDAYRLSISWPRILPTGRA 104
Linamarase	SVWDIFSKETPDRILDGNSNGDVAVFYNRYIQDIKVNKKMGMNAFRMSISWSRVIPSGRR 120
ZmGlu1	SNWDHFCHNHPERILDGSNSDIDGANSYHMYKTDVRLKEMGMDAYRFSISWPRILPKG-T 109
Dalcochinase	SGGINQTGVDDYYNRLINESLANGITPFVTIFHWDLQALEDEYGGFLNH---SVVNDFQD 161
Dnbglu2	SGGINSTGVDDYYNRLINETLHNGITPYVTIFHWDLQALEDEYGGFLDR---RVVNDFRD 161
Linamarase	REGVNEEGIQFYNDVINEIIISNGLEPFVTIFHWDTQPAQLDKYGGFLSR---DIVYDYLQ 177
ZmGlu1	KGGINPDGIKYYRNLINLLENGIEPYVTIFHWDPQALEEKYGGFLDKSHKSIVEDYTY 169
Dalcochinase	YADLCFQLFGDRVKHWITLN <u>EPS</u> I FTANGYAYGMFAPGRCSPSYNPTCTGGDAGTETYLV 221
Dnbglu2	YADLCFKFFGDRVKHWITIN <u>EPS</u> P QVFTTNGTYGMFAPGRCSPSYDPCTCTGGDAGTEPYKV 221
linamarase	YADLLFERFGDRVKP威MTFN <u>EPS</u> A HDDGV V FAPGRCSSWVNROCLAGDSATEPYIV 237
ZmGlu1	FAKVCFDNFGDKVKWNLT <u>FP</u> QQTFTSFPSYGTGVFAPGRCSPGLDCA ^Y PTGNSLVEPYTA 229
	: * . * . * * : * * : * * . : . : * : * * * * . : * : * . * .
Dalcochinase	AHNLILSHAATQVYKRKYQEHQKGTIGISL H V YTTNYATKSDASTCCPP 281
Dnbglu2	AHNLLLSHAATQVYKEKYQKDQNGKIGITLDQRWVIPSNSTSDKAAQRYLDFTFGWF 281
Linamarase	AHNLLLSHAAAVHQYRKYYQGTQKGKIGITL F T WYEPLSDSKVQAAKTALDFMFGFW 297
ZmGlu1	GHNILLAHAEAVDLYNKHYKRDDT-RIGLAFDVMGRV ^P YGT ^S FLDKQAEERSWDINLGWF 288
Dalcochinase	MDPLTAGRYPDSMQYLVGDRLPKFTTDQAKLVGSFDFIGLNYYTTNYATKSDASTCCPP 341
Dnbglu2	MDPLTVGRYPDSMQYLVGNRLPKFTTYEAKLVGSFDFIGINYYTSNYATKSDASTCCPP 341
linamarase	MDPMTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGL Q YYTAYAEPIPPVDPKFR 357
ZmGlu1	LEPVVRGDYPFSMRSLARERLPFFKDEQKEKLAGSYNMLGLNYYTSRFSKNIDISPNSP 348
Dalcochinase	SYLTDPO-VTLL-QQRNGVFIGPVT ^P S <u>G</u> WMC ^I Y ^P KGLR ^D LLLYFKEKYN ^N PLVY ^I E NGI 399
Dnbglu2	SYLTDPO-VTLS-SQRNGVFIGPMT ^P S <u>G</u> W ^I C ^I Y ^P KGLR ^D LLLYI ^K ENYN ^N PLVY ^I E NGM 399
Linamarase	RYKTD ^S G-VNATPYDNGNLIGPQAYSS ^S W ^F Y ^I F ^P KGIRHFLNYTKDTYNDPVIY ^V TE ^E NGV 416
ZmGlu1	VLNTT ^D AYASQEVNGPDGKPIGPPMGNPWIY ^M PEGLK ^D LLM ^I M ^K KN ^Y GN ^P IY ^I E NGI 408
dalcochinase	DE K N --DASLSLEESLIDTYRIDSY ^R HLYVRYAIRS-GANVKGFFAWSL ^L DNF ^E A E 456
Dnbglu2	DET ^N --DPSLSLEESLMDTYRIDSY ^R HLYVLSAIKS-GANVKGFFAWTLMD ^D FEWSGG 456
Linamarase	D ^N Y ^N --NESQPIE ^E ALQDDFRISYYKKHMWNALG ^S SLKN ^Y GVKL ^G YFAWSYLDNF ^E WN ^I G 474
ZmGlu1	GDVDTKETPLPMEAALNDYKRLDYIQRHIA ^T LKESIDL-GSNVQGYFAWSL ^L DNF ^E WFAG 467
Dalcochinase	YTSRFGLYFVN ^Y T-TLNRYPKLSATWF ^K YFLARDQESAKLEILAPKARW ^S LSTM ^I KEEKT 515
Dnbglu2	FTSRFGLNFVDYN-TLNRYPKLSAKWF ^K YFLTRDQESAKLDISTPKASAAYQR----- 508
Linamarase	YTSRFGLY ^Y YDVKNNLTRYPKKSAHWF ^T KFLNISVNANNIYELTSKDSRKVGKFYVM--- 531
ZmGlu1	FTERYGIVVYDRNNNCTRYMKESAKWLKEFNTAKKPSKKILTPA----- 511
Dalcochinase	KPKRGIEGF 524
Dnbglu2	-----
Linamarase	-----
ZmGlu1	-----

Figure 3: Alignment of amino acid sequences of dalcochinase, Dnbglu2, linamarase and ZmGlu1 generated by ClustalW 2.0.8. The highly conserved (L/F)NEP and (I/V)TENG motifs are underlined, and the two catalytic glutamate residues are shown as white letters against black background. The residues that are targeted for site-directed mutagenesis are shaded.

3. Site-directed mutagenesis and production of mutant enzymes

Site-directed mutagenesis has been performed to make mutant forms of dalcochinase. All mutant constructs have been confirmed by DNA sequencing. The mutant constructs were transformed into *P. pastoris*, expressed, and purified to homogeneity according to the procedures used for wild-type recombinant dalcochinase (Toonkool et al., 2006). They were subjected to SDS-PAGE, western blot analyses and activity-stained non-denaturing PAGE analyses. Fig. 4 shows SDS-PAGE and western blot analysis of some of the purified dalcochinase mutants compared with the natural and recombinant wild-type dalcochinase. As expected, all dalcochinase mutants gave a broad band with an apparent molecular weight of approximately 66 kD on SDS-PAGE (Fig. 4, A, lanes 3-4), similar to recombinant wild-type dalcochinase (Fig. 4, A, lane 2). All mutants showed immunoreactivity against mouse monoclonal antibody against natural dalcochinase (Fig. 4, B, lanes 3-4), as seen with the natural and recombinant dalcochinase (Fig. 4, B, lanes 1-2). Mutant forms of dalcochinase showed variable activity when their non-denaturing PAGE was stained with 1 mM 4-MU-Glc (results not shown).

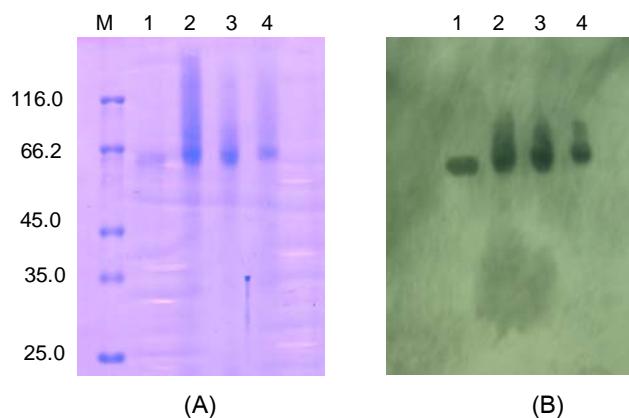


Figure 4: Example of SDS-PAGE of some purified enzymes. (A) coomassie stain and (B) western blot. Lane M, protein standards (kD); lane 1, natural dalcochinase; lane 2, recombinant wild-type dalcochinase; lane 3, A454N; lane 4, N189F.

4. Kinetic study of dalcochinase mutants

4.1 Dalcochinase versus linamarase

To study the differences in substrate specificity between dalcochinase and linamarase, the hydrolytic activities of ten dalcochinase mutants, each containing a residue of linamarase in its aglycone binding pocket, were characterised, and compared with natural and recombinant wild-type enzymes. Kinetic parameters of these enzymes toward *p*-nitrophenyl- β -D-glucopyranoside (*p*NP-Glc, a commercial substrate) and dalcochinin β -D-glucoside (a natural substrate of dalcochinase) are shown in Table 1.

The kinetic studies showed variable effects of mutations in the aglycone binding pocket of dalcochinase on enzyme specificity toward *p*NP-Glc and dalcochinin β -D-glucoside substrates (Table 1). Natural and recombinant wild-type dalcochinase showed similar kinetic properties as expected. For hydrolysis of *p*NP-Glc, natural linamarase was 3 times more efficient than the wild-type dalcochinase (natural and recombinant enzymes), with a 5.4-fold lowered K_m and a 1.7-fold lowered k_{cat} . Most mutants were less efficient in hydrolysis of *p*NP-Glc, especially a 70- and 34-fold reduction by I185A and G367S, respectively, compared with the recombinant wild-type dalcochinase. However, the efficiency for hydrolysis of *p*NP-Glc was increased by 5- and 2-fold in N189F and A454N, respectively, compared with the recombinant wild-type dalcochinase. While the effects on the affinity to *p*NP-Glc were rather variable and mild (less than an order of magnitude), the turn-over numbers of all dalcochinase mutants were lowered than the wild-type dalcochinase, following the same trend as natural linamarase. In particular, I185A and G367S showed 18- and 24-fold reduction in k_{cat} compared with the recombinant wild-type dalcochinase, while N189F and A454N gave similar k_{cat} values to linamarase. These effects indicate a change in steric and/or polar complementarities between the aglycone binding pocket of enzymes and the *p*NP moiety of substrate.

Table 1: Kinetic parameters of natural and recombinant dalcochinase, natural linamarase, and dalcochinase mutants toward *p*NP-Glc and dalcochinin β -D-glucoside.

Substrate	<i>p</i> NP-Glc			Dalcochinin β -D-glucoside		
	K_m (mM)	k_{cat} (s ⁻¹)	k_{cat}/K_m (s ⁻¹ M ⁻¹)	K_m (mM)	k_{cat} (s ⁻¹)	k_{cat}/K_m (s ⁻¹ M ⁻¹)
Enzymes						
Natural dalcochinase	3.92	274.43	70,000	6.78	90.63	13,000
Recombinant dalcochinase	3.91	225.49	58,000	5.67	62.25	11,000
Natural linamarase	0.72	131.91	183,000	-	-	-
I185A	14.33	12.29	860	1.62	0.74	500
N189F	0.59	172.51	292,000	0.63	4.00	6,300
M195V	1.77	36.38	20,500	6.25	31.44	5,000
H253F	2.69	58.01	21,600	4.35	21.92	5,000
V255F	2.67	10.60	4,000	1.74	1.55	900
N323Q	1.84	36.21	20,000	4.94	33.52	6,800
G367S	5.53	9.34	1,700	1.62	1.73	1,100
K402Y	2.61	15.49	6,000	3.60	4.00	1,100
A454N	1.34	157.90	118,000	4.69	9.19	2,000
E455I	11.83	49.85	4,200	3.63	192.39	53,000

The replacement of an amino acid residue of linamarase in the aglycone binding pocket of dalcochinase also showed variable effects on the specificity toward dalcochinin β -D-glucoside. Most mutants showed between 2-22 fold reduction in its specificity compared with the recombinant wild-type dalcochinase, following the same trend as natural linamarase, which could not appreciably hydrolyse dalcochinin β -D-glucoside. Most notable reduction was by I185A, V255F, G367S and K402Y (22-, 12-, 10- and 10-fold, respectively), suggesting close interactions between residues in the aglycone binding pockets of dalcochinase and the rotenoid moiety of substrate. Unexpectedly, E455I showed a 5-fold increase in specificity for dalcochinin β -D-glucoside, possibly indicating a preferable interaction between the rotenoid moiety of substrate and the hydrophobic side chain of isoleucine at this position. Again, the effects on the turn-over numbers were more pronounced than the effects on the affinity of enzymes for dalcochinin β -D-glucoside, which surprisingly was not significantly affected by the mutations (less than an order of magnitude). So interactions between residues in the aglycone binding pockets of dalcochinase and the rotenoid moiety of substrate seemed to be flexible in terms of binding, but contribute significantly in terms of catalysis.

For hydrolysis of linamarin (a natural substrate of linamarase), natural linamarase exhibited a K_m 2.28 mM, k_{cat} of 47.03 s^{-1} , and k_{cat}/K_m of 20,600 $s^{-1}M^{-1}$. However, none of the wild-type or mutant constructs of dalcochinase could hydrolyze linamarin, suggesting that the change in the overall conformation of the aglycone binding pocket, rather than site-specific changes, may be needed for the successful entry and hydrolysis of linamarin by dalcochinase mutants. Thus, it is expected that mutations at more than one position may generate new dalcochinase mutants with similar substrate specificity to linamarase.

4.2 Dalcochinase versus Dnbglu2

To study the differences in substrate specificity between dalcochinase and Dnbglu2, two residues in the aglycone binding pocket of dalcochinase were replaced with the corresponding residue of Dnbglu2, generating 2 single mutants (A454S and E455G) and one double mutant (A454S/E455G) of dalcochinase. The hydrolytic activities of dalcochinase mutants toward *p*NP-Glc, dalcochinin β -D-glucoside, and dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside (natural substrates of Dnbglu2), were characterised, and compared with natural and recombinant wild-type enzymes. This part of the project has been done in collaboration with Associate Professor James R. Ketudat Cairns at Schools of Biochemistry and Chemistry, Suranaree University of Technology.

The single mutants of dalcochinase showed similar hydrolysis of dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and half the rate of hydrolysis of dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside compared with the wild-type dalcochinase. The double mutant showed 4- and 6.8-fold increases in relative activity toward dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside, respectively. However, this

activity was only 3% that of Dnbglu2, indicating other determinants are important for isoflavanoid diglycoside hydrolysis.

5. Transglucosylation study of dalcochinase mutants

To study the differences in transglucosylation specificity between dalcochinase and linamarase, the transglucosylation activities of ten dalcochinase mutants, each containing a residue of linamarase in its aglycone binding pocket, were compared with natural and recombinant wild-type enzymes. The transglucosylation reaction used 10 mM *p*NP-Glc as a glucosyl donor and 0.9 M short chain alkyl alcohols as a glucosyl acceptor. The % mole of alkyl glucoside products are shown in Table 2.

Table 2: Percent mole of alkyl glucoside products from transglucosylation reactions.

Alcohol	Primary					Secondary		Tertiary
Enzymes	Methanol	Ethanol	<i>n</i> -Propanol	<i>n</i> -Butanol	<i>iso</i> -Butanol	<i>iso</i> -Propanol	<i>sec</i> -Butanol	<i>tert</i> -Butanol
Natural dalcochinase	24	38	66	83	69	4	12	-
Recombinant dalcochinase	22	42	68	79	71	4	12	-
Natural linamarase	52	51	73	71	74	60	65	35
I185A	20	40	73	92	90	18	25	-
N189F	43	64	86	96	90	7	11	-
M195V	24	46	68	90	71	3	10	-
H253F	29	44	66	87	75	6	11	-
V255F	40	54	80	92	84	15	21	-
N323Q	29	43	69	88	74	6	12	-
G367S	30	36	58	73	62	9	8	-
K402Y	25	40	65	89	74	6	13	-
A454N	29	50	68	85	75	4	15	-
E455I	26	40	67	87	80	7	10	-

In transglucosylation studies, natural and recombinant wild-type dalcochinase showed similar transglucosylation activities as expected. Natural linamarase was much better than any enzymes in transglucosylation to all primary, secondary and tertiary alcohols acceptors. Most mutants gave similar levels of % mole of alkyl glucosides from the reactions to the recombinant wild-type dalcochinase. Three mutants showed increased transglucosylation activities, namely I185A with long-chain primary and secondary alcohols, N189F with all primary alcohols, and V255F with both primary and secondary alcohols. Notably,

these three mutants gave higher yields of alkyl glucosides made from long-chain primary alcohols than natural linamarase, but those made from secondary alcohols were still lower. However, none of the dalcochinase mutants could transfer glucose to tertiary alcohols, the property that is unique to cassava linamarase. Again, the change in the overall conformation of the aglycone binding pocket, rather than site-specific changes, may be needed for the successful entry and transglucosylation of tertiary alcohols by dalcochinase mutants. Thus, it is expected that mutations at more than one position may generate new dalcochinase mutants with similar to transglucosylation activity to linamarase.

6. Cloning and expression of recombinant Dnbglu2

This part of the project has been done in collaboration with Associate Professor James R. Ketudat Cairns at Schools of Biochemistry and Chemistry, Suranaree University of Technology. In this part, a cDNA encoding Dnbglu2 was also cloned and expressed in *P. pastoris*. Purified recombinant Dnbglu2 showed similar enzymatic properties to those of natural enzyme. The recombinant Dnbglu2 was less efficient at hydrolysis of both dalpatein 7-O- β -D-apiosyl-1,6- β -D-glucoside and dalnigrein 7-O- β -D-apiosyl-1,6- β -D-glucoside compared to natural Dnbglu2 from seed. Nonetheless, recombinant Dnbglu2 maintains a high preference for both isoflavonoid diglycosides over dalcochinin β -D-glucoside (a natural substrate of dalcochinase).

7. Cloning and expression of recombinant cassava linamarase

Many isozymes of cassava linamarase exist, but only one cDNA sequence (pCAS5) has been reported thus far. In order to study the structure-function relationships in this enzyme, the cDNA of cassava linamarase was cloned and sequenced. Six different cDNA sequences of linamarase from cassava were amplified by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed from the sequence of pCAS5, which is the previously reported cDNA sequence of cassava linamarase by Hughes et al. (1992). Deduced amino acid sequences from four cDNA clones showed 98-99% sequence identity to that of pCAS5, while the other two cDNA clones contained nucleotide sequences that led to premature termination. The four full-length cDNA sequences were inserted into pPICZ α B for methanol-inducible expression in *P. pastoris* as a secretory protein with the alpha mating factor propeptide and the polyhistidine tag at the N-terminus, similar to the cloning strategies used for dalcochinase. However, none of them showed significant linamarase activities in *P. pastoris* culture media. A new cloning strategy has been devised to clone the four cDNA sequences in pYEX-BX as an N-terminal fusion product with the signal sequence of yeast *SUC2* invertase followed by a polyhistidine tag, and to express the recombinant protein in *Saccharomyces cerevisiae* under the control of yeast copper metallothionein (*CUP1*) promoter.

8. List of references

- Eksittikul, Y. and Chulavatanatol, M. Characterization of cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). *Arch. Biochem. Biophys.* 1988; 266: 263-269.
- Esen, A. β -glucosidases: overview. In: β -glucosidases Biochemistry and Molecular Biology. (A. Esen, Ed.) 1993; pp. 1-14. American Chemical Society, Washington D.C.
- Hughes, M.A., K. Brown, A. Pancoro, B.S., Murray, E. Oxtoby and Hughes, J. A molecular and biochemical analysis of the structure of the cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). *Arch. Biochem. Biophys.* 1992; 295: 273-279.
- Keresztesy Z., Kiss L. and Hughes M.A. Investigation of the active site of the cyanogenic β -D-glucosidase (linamarase) from *Manihot esculenta* Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center. *Arch. Biochem. Biophys.* 1994; 314: 142-152.
- Keresztesy Z., Kiss L. and Hughes M.A. Investigation of the active site of the cyanogenic β -D-glucosidase (linamarase) from *Manihot esculenta* Crantz (cassava). II. Identification of Glu-198 as an active site carboxylate group with acid catalytic function. *Arch. Biochem. Biophys.* 1994; 315: 323-330.
- Lirdprapamongkol, K. and Svasti, J. Alkyl glucoside synthesis using Thai rosewood β -glucosidase. *Biotechnol Letters* 2000; 22: 1889-1894.
- Srisomsap, C., Svasti, J., Surarit, R., Champattanachai, V., Boonpuan, K., Sawangareettrakul, P., Subhasitanont, P. and Chokchaichamnankit, D. Isolation and characterization of an enzyme with β -D-glucosidase/ β -D-fucosidase activities from *Dalbergia cochinchinensis* Pierre. *J. Biochem.* 1996; 119: 585-590.
- Svasti, J., Srisomsap, C., Techasakul, S. and Surarit, R. Dalcochinin-8'-O- β -D-glucoside and its β -glucosidase enzyme from *Dalbergia cochinchinensis*. *Phytochem.* 1999; 50: 739-743.
- Toonkool, P., Methenekul, P., Sujiwattanarat, S., Paiboon, P., Tongtubtim, N., Ketudat-Cairns, M., Ketudat-Cairns, J. and Svasti, J. Expression and purification of dalcochinase, a β -glucosidase from *Dalbergia cochinchinensis* Pierre, in yeast and bacterial hosts. *Protein Express. Purif.* 2006; 48: 195-204.
- Withers S.G. and Street I.P. Identification of a covalent β -D-glucopyranosyl enzyme intermediate formed on a β -glucosidase. *J. Am. Chem. Soc.* 1988; 110: 8551-8553.
- Withers S.G., Warren R.A.J., Street I.P., Rupitz K., Kempton J.B. and Aebersold R. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a retaining glycosidase. *J. Am. Chem. Soc.* 1990; 112: 5887-5889.

Output ที่ได้จากการ

Publications in international journal

Chuankhayan, P., Rimlumduan, T., Tantanuch, W., Mothong, N., Kongsaeree, P.T., Methenekul, P., Svasti, J., Jensen, O.N. and Ketudat Cairns, J.R. Functional and structural differences between isoflavanoid β -glycosidases from *Dalbergia* sp. Archives of Biochemistry and Biophysics 2007; 468: 205–216. (ภาคผนวก 1)

Kongsaeree, P.T., Ratananikom, K., Choengpanya, K., Sujiwattanarat, P., Porncharoennop, C., Onpium, A., Saparpakorn, P. and Svasti, J. Substrate specificity for hydrolysis and transglucosylation in glycosyl hydrolase family 1. (*in preparation*)

Publication in national journal

Toonkool, P. and Tongtubtim, N. Nucleotide and derived amino acid sequences of the cyanogenic beta-glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). Kasetsart Journal (Natural Science) 2006; 40: 123-128. (ภาคผนวก 2)

Presentations at national conferences

Toonkool, P. and Tongtubtim, N. Nucleotide and derived amino acid sequences of the cyanogenic beta-glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz) (Poster). Proceedings of the 44th Kasetsart University Conference (30 Jan. - 2 Feb. 2006). Bangkok, Thailand. (ภาคผนวก 3)

Onpium, A., Svasti, J. and Kongsaeree, P. Site-directed mutagenesis in the aglycone binding pocket of Thai rosewood beta-glucosidase (*Dalbergia cochinchinensis* Pierre) (Poster). Proceedings of the 32nd Congress on Science and Technology of Thailand (10-12 Oct. 2006). Bangkok, Thailand. (ภาคผนวก 4)

Porncharoennop, C., Svasti, J. and Kongsaeree, P. Production and Characterization of mutant forms of Thai rosewood β -glucosidase (Poster). Proceedings of the 32nd Congress on Science and Technology of Thailand (10-12 Oct. 2006). Bangkok, Thailand. (ภาคผนวก 5)

Sujiwattanarat, P., Svasti, J. and Kongsaeree, P. Effects of mutation in the aglycone binding pocket of Thai rosewood β -glucosidase (Oral presentation). Proceedings of the 32nd Congress on Science and Technology of Thailand (10-12 Oct. 2006). Bangkok, Thailand. (ภาคผนวก 6)

Porncharoennop, C. and Kongsaeree, P. Production and characterization of mutant forms of Thai rosewood β -glucosidase (Oral presentation). Proceedings of the 1st National Graduate Research Conference (1-2 Aug. 2007). Patumthanee, Thailand. (ภาคผนวก 7)

ภาคผนวก 1

Chuankhayan, P., Rimlumduan, T., Tantanuch, W., Mothong, N., Kongsaeree, P.T., Methenekul, P., Svasti, J., Jensen, O.N. and Ketudat Cairns, J.R. Functional and structural differences between isoflavanoid β -glycosidases from *Dalbergia* sp. Archives of Biochemistry and Biophysics 2007; 468: 205–216.

Functional and structural differences between isoflavanoid β -glycosidases from *Dalbergia* sp.

Phimonphan Chuankhayan ^{a,1}, Thipwarin Rimlumduan ^a, Waraporn Tantanuch ^b, Narumol Mothong ^a, Prachumporn T. Kongsaeere ^c, Pornphimon Methenekul ^a, Jisnuson Svasti ^d, Ole N. Jensen ^e, James R. Ketudat Cairns ^{a,*}

^a Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

^b National Synchrotron Research Center, Nakhon Ratchasima 30000, Thailand

^c Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand

^d Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

^e Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

Received 24 July 2007, and in revised form 10 September 2007

Available online 11 October 2007

Abstract

Among isoflavanoid β -glucosidases from *Dalbergia* species, that from *Dalbergia nigrescens* hydrolyzes isoflavanoid-7- O - β -D-apiosyl-1,6- β -D-glucosides more efficiently, while *Dalbergia cochinchinensis* β -glucosidase (dalcochinase) hydrolyzes its rotenoid glycoside substrate, dalcochinin β -D-glucoside (I), more efficiently. A cDNA encoding a glycosylated β -glucosidase with 81% identity with dalcochinase was cloned from *D. nigrescens* seeds, and its protein (Dnbglu2) expressed in *Pichia pastoris*. Purified Dnbglu2 hydrolyzed the *D. nigrescens* natural substrates dalpatein 7- O - β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside (II) and dalnigrein 7- O - β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside (III) at 400- and 5000-fold higher catalytic efficiency (k_{cat}/K_m) than I. Dalcochinase was mutated at two amino acid residues, A454S and E455G, that are homologous to previously described substrate binding residues and differ from the corresponding residues in Dnbglu2. The double mutant showed 4- and 6.8-fold increases in relative activity toward II and III, respectively. However, this activity was only 3% that of Dnbglu2 β -glucosidase, indicating other determinants are important for isoflavanoid diglycoside hydrolysis.

© 2007 Elsevier Inc. All rights reserved.

Keywords: *Dalbergia nigrescens*; *Dalbergia cochinchinensis*; β -Glucosidase; Isoflavanoid glycoside; Diglycosidase; Glycosyl hydrolase family 1; Substrate specificity; Glycosylation; Plant; 7- O - β -D-Apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside

Glycosyl hydrolase family 1 (GH1)² includes enzymes with a variety of glycose (sugar) specificities, including β -

glucosidases (EC 3.2.1.21), β -fucosidases (EC 3.2.1.38), β -galactosidases (EC 3.2.1.23), β -mannosidases (EC 3.2.1.25), phospho- β -glucosidases (EC 3.2.1.86), and phospho- β -galactosidases (EC 3.2.1.85) [1]. Some of these enzymes show very narrow sugar specificity, while others hydrolyze a range of sugars from glycosides. Recently, diglycosidases have been added to this list [2].

Monoglycosidases, such as β -glucosidases and β -galactosidases, have been widely reported in plants and microorganisms, but not many diglycosidases have been reported in higher plants. Diglycosidases that have been studied include *Camellia sinensis* β -primeverosidase (EC 3.2.1.149) [2,3], *Rhamnus dahurica* rhamnodiastase [4],

* Corresponding author. Fax: +66 44 224185.

E-mail address: cairns@sut.ac.th (J.R. Ketudat Cairns).

¹ Present address: Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC.

² Abbreviations used: GH1, glycosyl hydrolase family 1; PGO, glucose-oxidase/peroxidase mixture; PVPP, 2-mercaptoethanol, polyvinyl-poly-pyridone; PMSF, phenylmethylsulfonyl fluoride; TdT, terminal deoxy-nucleotidyl transferase; RACE, rapid amplification of cDNA ends; NCBI, National Center for Biotechnology Information; pNP-Fuc, *p*-nitrophenyl- β -D-fucopyranoside; pNP, *p*-nitrophenol; IMAC, immobilized metal affinity chromatography.

Viburnum furcatum furcatin hydrolase (EC 3.2.1.161) [5,6], *Fagopyrum esculentum* L. rutinase [7], *Fagopyrum tataricum* L. rutinase [8], and *Vicia angustifolia* vicianin hydrolase [9] in plants, and *Aspergillus flavus* (rutinase) in fungus [10].

Diglycosidases or disaccharide glycosidases directly hydrolyze the second β -glycosidic bond from the nonreducing end of disaccharide glycosides to liberate a disaccharide

unit and an aglycone. For example, furcatin hydrolase hydrolyzes furcatin (*p*-allylphenyl 6- O - β -D-apiofuranosyl- β -D-glucopyranoside, Fig. 1(IV)) into *p*-allylphenol and the disaccharide acuminose (1,6- β -apiofuranosyl-glucopyranose, [6]) and β -primeverosidase hydrolyzes β -primeverosides to release primeverose (6- O - β -D-xylopyranosyl- β -D-glucopyranose) and alcoholic floral aroma derivatives [2,3]. Furcatin hydrolase shows low activity toward mono-

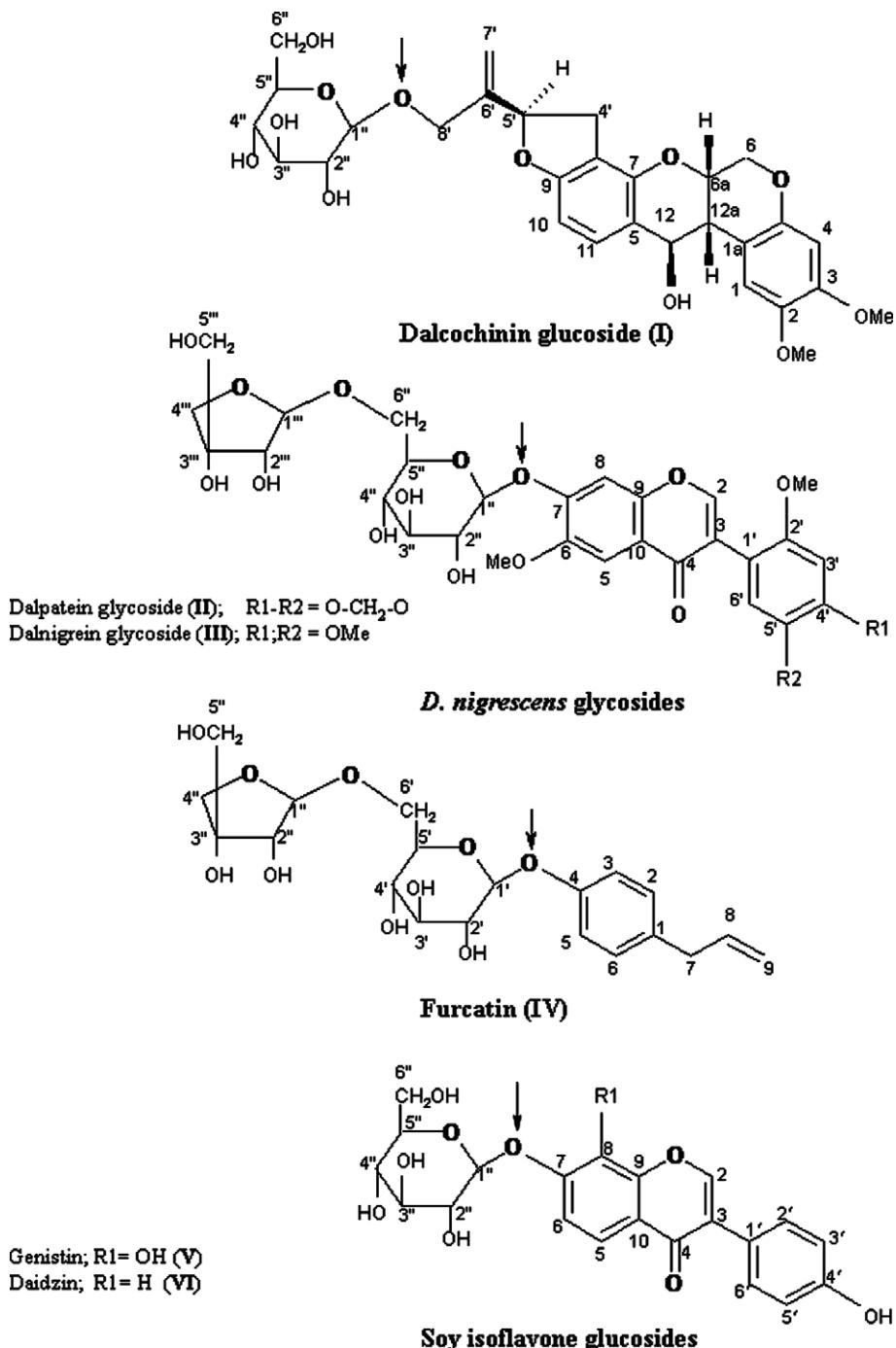


Fig. 1. Structures of natural substrates of *Dalbergia* β -glycosidase to show the different positions of the bonds that are hydrolyzed. The position of the bond that is hydrolyzed is indicated by the arrow for each substrate. The *Dalbergia* glycosides shown are (I) dalcochinin β -D-glucoside, (II) dalpatein 7- O - β -D-apiofuranosyl-(1 → 6)- β -D-glucopyranoside, and (III) dalnigrein 7- O - β -D-apiofuranosyl-(1 → 6)- β -D-glucopyranoside. For comparison, the structures of the disglycoside furcatin (VI) and the soy isoflavone glucosides genistin (V) and daidzin (VI) are included.

glycoside substrates [6]. It hydrolyzes *p*-allylphenol β -D-glucopyranoside at 43% of its rate toward furcatin, even though these substrates bear the same aglycone moieties. It hydrolyzes *p*NP- β -D-glucopyranoside (*p*NP-Glu) and *p*NP- β -gentiobioside at 3% and 4% of its furcatin hydrolysis activity, respectively, and does not hydrolyze other monosaccharide glycosides, such as *p*NP- β -D-xylopyranoside (*p*NP-Xyl), *p*NP- α -L-arabinopyranoside and *p*NP- β -D-galactopyranoside. Therefore, this enzyme has high substrate specificity for the disaccharide glycone, as well as the aglycone moiety. Similarly, β -primeverosidase was able to hydrolyze other compounds that have disaccharide moieties, such as β -visianoside, furcatin, and β -gentiobioside, but cannot efficiently hydrolyze monoglycosides (*p*NP-Glu and *p*NP-Xyl) [2]. In addition, its relative activity toward its natural substrate β -primeveroside was much higher than that toward the other natural disaccharide glycosides tested. Thus, furcatin hydrolase and β -primeverosidase are examples of unique disaccharide specific glycosidases, in that they showed highest specificity for their natural substrates, furcatin and β -primeverosides, respectively.

Hösel and Barz [11] isolated β -glucosidases from garbanzo bean (*Cicer arietinum* L.) roots, leaves, and hypocotyls that were specific for isoflavone 7-*O*-glucosides. These β -glucosidases had the greatest affinity for isoflavone 7-*O*- β -D-glucosides and were highly specific for the 7-position of the aglycone in isoflavanoid and flavonoid glycosides. In addition, these enzymes also removed the β -1,6-apiosyl-glucose of biochanin A 7-*O*- β -D-glucoapioside as a disaccharide, which was not further hydrolyzed, indicating they also act as diglycosidases.

Previously, we reported the purification of a β -glucosidase and its natural substrates from *Dalbergia nigrescens* Kurz seeds [12]. This *D. nigrescens* β -glucosidase (Dnbglu) was similar to *Dalbergia cochinchinensis* β -glucosidase (dalcochinase, also called Thai rosewood β -glucosidase) in its activity toward a variety of synthetic glycoside substrates [13]. However, unlike dalcochinase, Dnbglu had high activity toward its diglycoside natural substrates dalpatein 7-*O*- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside (II) and dalnigrein 7-*O*- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside (III) (Fig. 1), releasing β -1,6-apiosyl-glucose disaccharide and aglycones [12]. *D. nigrescens* β -glucosidase was better than dalcochinase at hydrolyzing isoflavanoid β -glucosides from soybean, such as genistin (V) and daidzin (VI), as well as six-conjugated glycosides, such as malonyl genistin [14], but poorer at hydrolyzing dalcochinin β -D-glucopyranoside (I), the natural substrate of the *D. cochinchinensis* β -glucosidase [12]. Sequencing of the N-terminus and four isolated peptides from Dnbglu indicated that its sequence is quite similar to that of dalcochinase, despite their functional differences.

In order to understand the structural basis of the activity differences between the closely related *Dalbergia* β -glucosidases, we cloned a *D. nigrescens* β -glucosidase cDNA, *Dnbglu2*. Recombinant expression of Dnbglu2 and

dalcochinase, in combination with mutagenesis of the latter allows us to more directly explore what differences in primary structure may explain their functional differences.

Materials and methods

Chemicals

Oligonucleotides were purchased from the BioService Unit of the National Science and Technology Development Agency of Thailand or from Proligo Inc. (Singapore). The pPICZ α B plasmid and Superscript II reverse transcriptase were purchased from Invitrogen (Carlsbad, CA, USA) and *Taq* and *Pfu* polymerases from Promega (Madison, WI, USA). Restriction enzymes were from New England Biolabs (Beverly, MA, USA). Synthetic substrates, glucose-oxidase/peroxidase mixture (PGO), 2-mercaptoethanol, polyvinyl-polypyrolidone (PVPP), phenylmethylsulfonyl fluoride (PMSF), and Dowex 2 \times 8 resin were obtained from Sigma Chemical (St. Louis, MO, USA). All other reagents for protein purification and characterization of enzyme kinetic were analytical grade or better.

Plant material and yeast strains

Dalbergia nigrescens seeds (mature and immature) were collected from a tree on the Suranaree University of Technology campus, Nakhon Ratchasima, Thailand. *Pichia pastoris* strain YM11430 was kindly provided by Dr. Joan Linn Cereghino, while strain GS115 was obtained from Invitrogen.

Purification of *Dalbergia* glycosidases and glycosides

The *D. nigrescens* glycosidase and glycosides were purified from *D. nigrescens* seeds as previously reported [12]. Dalcochinin β -D-glucoside (I) was purified from *D. cochinchinensis* seeds by ethanol extraction. Ten grams of seed powder was stirred overnight with ethanol at room temperature. The ethanol was removed by drying, and the solid residue was extracted with hexane 2–3 times and redissolved with methanol. This crude extract was separated on an LH-20 column with methanol as eluent. The pooled I fraction was further purified by HPLC on an XDB-C₁₈ reverse phase column eluted with 38% methanol on an Agilent 1100 series HPLC with detection by absorbance at 260 nm wavelength on a diode array detector. The I peak was collected and dried by speed vacuum. The mass of the purified glycoside was verified to match dalcochinin β -D-glucoside [15] by electrospray mass spectrometry ($[M+Na]^+$ = 597.13).

Mass spectrometric identification of tryptic peptides and their glycosylation

For the tryptic digest, 6 μ g (0.1 nm) of Dnbglu purified from *D. nigrescens* seeds was dissolved in 40 μ L of 100 mM NH₄HCO₃, mixed with 5 μ L of 10 mM DTT, and incubated for 30 min at 50 °C. The solution was chilled, 5 μ L of 100 mM iodoacetamide was added, and the solution was incubated in the dark at room temperature for 15 min. Then, 500 ng of sequence grade trypsin (Boehringer Mannheim, Germany) was added and incubated overnight at 37 °C. Trypsin-digested protein (0.08 nmol) was deglycosylated by incubation with 25 mU Endoglycosidase H (Roche, Mannheim, Germany) at 37 °C overnight. The sample was desalting and concentrated using GE Loader tip microcolumns packed with Poros R2 material (Applied Biosystems, Framingham, MA). Analysis of N-linked glycosylation sites was performed by automated nanoflow liquid chromatography/tandem mass spectrometric analysis on an ESI QTOF Ultima mass spectrometer (Waters/Micromass UK Ltd., Manchester, UK). The nanoLC system was run with a linear gradient from Solution A (0.6% acetic acid) to 40% of solution B (80% acetonitrile, 0.5% acetic acid) in 90 min. The mass spectrometer was operated in the positive ion mode with a resolution of 9000–11,000 full-width half-maximum (FWHM) using a

source temperature of 80 °C and a counter current nitrogen flow rate of 150 L/h. Data dependent analysis was employed (the four most abundant ions in each cycle were subjected to MS/MS): 1 s MS (*m/z* 350–1500), 4 × 1 s MS/MS (*m/z* 50–2000, continuum mode), and 30 s dynamic exclusion. Raw data were processed using ProteinLynx Global Server ProteinLynx 2.0.5 (smooth 5/3 Savitzky Golay and center 4 channels/80% centroid) and the resulting MS/MS data set exported in the Micromass.pkl format. The spectral data were searched against Viridiplantae (green plants) in the NCBI database with Mascot software (Matrix Sciences Ltd., Cheshire, UK).

MALDI-MS of the intact protein was performed on a Voyager STR (PerSeptive Biosystems, Framingham, MA) equipped with delayed extraction. Spectra were obtained in positive reflector or linear ion mode, and negative reflector ion mode, with an accelerating voltage of 20 kV.

Cloning of the *Dnbglu2* cDNA

The total RNA was isolated from immature seeds collected from a *D. nigrescens* tree 2–3 months after flowering. Typically, 0.1 g of immature seeds was ground in liquid nitrogen and extracted with Trizol reagent (Gibco-BRL, Invitrogen) according to the manufacturer's instructions. The total RNA pellet was resuspended in DEPC-treated water, and an aliquot (1–5 µg) was used as template for first strand cDNA synthesis catalyzed by Superscript II Reverse Transcriptase (Invitrogen) with Q_T primer [16], as recommended by Invitrogen.

The first-strand cDNA was used as template to amplify cDNA fragments with several combinations of the For.2, For.3, For.4, For.5, For.6, Rev.4, Rev.5, Rev.7, and Rev.8 primers designed from the *D. cochinchinensis* β-glucosidase cDNA sequence by Ketudat Cairns et al. [16]. The amplifications were performed using *Taq* polymerase, and the PCR products were gel purified and cloned into pGEM-T Easy vector (Promega) according to the supplier's recommendation. The nucleotide sequences of single clones were determined by automated sequencing with the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, CA). The sequence of the initial cDNA clones was used to design new specific primers, PBGF1 (CACCATTGTAACCATTTCATTG) and PBGrev2 (gTAAAGCAACAAATCTGAAgTCC), which were used in PCR to amplify a new fragment from germinating seed cDNA. This fragment was cloned and sequenced as described above, and designated the *Dnbglu2* cDNA.

The rapid amplification of cDNA ends (RACE) technique was used to amplify cDNAs from the 3' and 5' ends of the mRNA with the Q_T, Q_o, and Q_i end primers described by Frohman [17]. For 3' RACE, the first strand cDNA was synthesized from the Q_T primer and total *D. nigrescens* seed RNA as described above and used as template for nested PCR. For the *Dnbglu1* cDNA, the first PCR was done with *Taq* polymerase and the Q_o and PTDnF1 (ggTggCTTCTTAgATCgTAg) primers. Then, the PCR product was used as a template with the Q_i and PTDnF1 primers in a second PCR amplification. The 5' RACE was done by anchoring a poly A tail sequence at the 3' end of the first strand cDNA that had been reverse transcribed from the PTDnR1 (gCCATTGggTgAAgACTTg) primer with dATP and terminal deoxynucleotidyl transferase (TdT) according to the supplier's instructions (Promega). The anchored cDNA was used as template in a PCR with *Taq* polymerase, and the Q_T and PTDnR1 primers. A second amplification was performed with the product and the PTDnR2 (CgAAAATCATTACACCTAC) and Q_o primers. The RACE PCR products were cloned and sequenced, as described for the initial PCR products. The sequences of the 3' and 5' RACE products were used to design the 3' and 5' terminus primers. The full-length CDS *Dnbglu2* cDNA was amplified with the Dn2_3'UTRr1 (AAATgTACCAAAgCCACAAAC) and Dn2_5'UTRf1 (TCCTTCTTCATCTCATgATTg) primers and cloned and sequenced as described above.

Sequence analysis and homology modeling

Initial analysis of DNA sequences was done with BLAST [19] at the National Center for Biotechnology Information (NCBI: <http://www.ncbi.nlm.nih.gov>).

The N-terminal signal sequence was predicted with SignalP [20] and protein properties were predicted with the programs available at Expasy (<http://www.expasy.org>). *Dalbergia* β-glucosidases and related protein sequences were aligned with ClustalX, an implementation of ClustalW [21,22]. The alignments were adjusted with Genedoc, and the N-terminal signal sequence and nonconserved region were removed prior to phylogenetic analysis by the neighbor-joining tree implementation of ClustalX and the Protpars parsimony program of the PHYLIP package [23]. Homology models were produced by alignment of the sequences of the *Dalbergia* β-glucosidases with the 1CBG structure in the Swiss PDBViewer, followed by submission to SwissModel for optimized model building [24]. The active sites were superimposed and illustrated by ray tracing with the PovRay program.

Expression vector construction

The DnVPPFPstI (gTgCAACCATTCTgCAGTTCCTCCATTCAATCgAAG) and Dn2CTERMXbaI (ATCAAAATgCTTgAATggCCCCTT) primers were used in PCR to introduce the desired PstI site at the start of the sequence encoding the protein starting from the same position successful for dalcochinase expression with an N-terminal His-tag [18] and an XbaI site at the 3' end of the coding region. The reaction was done with a 1:1 unit mixture of Hot Star *Taq* and *Pfu* polymerases. Then, the PCR product was gel purified, reamplified with *Pfu* polymerase and cloned into Zero Blunt® TOPO PCR cloning vector (Invitrogen). The clones containing insert were digested with PstI and XbaI, and the insert was gel purified and cloned into the pPICZ- α NH₈ plasmid [18].

Mutagenesis of dalcochinase

The site directed mutagenesis of dalcochinase residues A454 to S, E455 to G, and A454/E455 to SG was performed with a QuikChange Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA, USA). The two primer pairs used to introduce the single mutations were DcA454Sf (ggACAACCTTgAATggTTATACATCACgATTg) and DcA454Sr (CAAATCgTgATgTATAACCCTCAGACCATTCAAAGTTgTCC) for A454S, and DcE455Gf (ggACAACCTTgAATggCTggggTTATACATCACgATTg) and DcE455Gr (CAAATCgTgATgTATAACCCCCAgCCATTCAAAGTTgTCC) for E454G and the pPICZ- α NH₈-trncTRBG clone [18] was used as the template. The double point mutation was generated by the same method with the A454S mutant as template and the Dc454/5Sf (ggACAACCTTgAATggTCTggggTTATACATCACgATTg) and Dc454/5SGr (CAAATCgTgATgTATAACCCCCAgACCATTCAAAGTTgTCC) primers. The mutated plasmid sequences were checked by DNA sequencing.

Recombinant expression and purification of *Dnbglu2* and wildtype and mutant dalcochinase

The selected plasmid clones were linearized with SacI restriction enzyme and then transformed into *P. pastoris* strain GS115 or YM11430 by electroporation. After transformation into *P. pastoris* strain GS115 for small-scale expression, the selected clones were expressed in BMGY medium and induced in BMGY medium with 1% methanol induction as described in the *Pichia* manual (Invitrogen). The media were tested for *p*-nitrophenyl-β-D-fucopyranoside (*p*NP-Fuc) activity using 5 µL of media incubated with 1 mM *p*NP-Fuc in 0.1 M sodium acetate, pH 5.0, 30 °C for 10 min. Then, the reaction was stopped with 2 volumes of 2 M Na₂CO₃ and the absorbance of the released *p*-nitrophenol (*p*NP) was measured at 405 nm. Once a construct was determined to produce active enzyme, it was expressed in YM11430 in the same way, and clones with highest levels of enzyme activity in the media were selected. These clones were expressed in a 1-L culture in a 2-L fermentor by methanol-limited fed-batch fermentation in defined media, as previously described by Charoenrat et al. [25]. The media were dialyzed and concentrated. Recombinantly expressed enzymes were purified from desalted, concentrated fermentor media with Talon Co²⁺ immobilized metal affinity chromatography (IMAC) resin,

according to the manufacturer's protocol (Clontech, Mountain View, CA, USA).

Determination of substrate specificity

To determine the kinetic properties of dalcochinase from seed and Dnbglu2 from *P. pastoris* media toward natural *D. nigrescens* substrates, the aglycone products were quantified by HPLC. The reactions were performed by incubating dalpatein 7-O- β -D-apiofuranosyl-(1,6)- β -D-glycopyranoside (II) and dalnigrein 7-O- β -D-apiofuranosyl-(1,6)- β -D-glucopyranoside (III) glycosides at various concentrations with 1.5 U of dalcochinase from seed and 0.01 U of Dnbglu2 β -glucosidase in 50 μ L of 50 mM sodium acetate, pH 5.5, at 30 °C for 10 min. The reactions were stopped by boiling for 5 min. The reactions were dried and resuspended in 50 μ L of methanol, and then 20 μ L of each sample was injected for HPLC analysis.

HPLC was performed on an Eclipse XDB-C18 (4.6 × 250 mm, 5 μ m) reverse phase column on an HP-Series 1100 HPLC (Agilent Corp., Palo Alto, CA, USA) at a flow rate of 0.8 mL/min at 30 °C. The column was equilibrated with aqueous 0.1% TFA. After the sample was injected, methanol was increased to 100% in a linear gradient from 0 to 20 min. The aglycone products were detected by measuring the absorbance at 320 nm. A standard curve of the aglycone of each glycoside substrate was produced under the same conditions over the range of 0.025–0.4 mM. Kinetic parameters were generated from nonlinear regression of the Michaelis–Menten curves and linear regression of [S]/v vs. [S] (Hanes) plots with Graftit 5.0 (Erithacus Software, Horley, UK).

The kinetics properties of the mutant dalcochinases and Dnbglu2 toward *p*NP-Glu and *p*NP-Fuc were determined by incubating approximately 0.1 pmol of mutant dalcochinase or Dnbglu2 with 0.4–18 mM *p*NP-Glu and 0.4–15 mM *p*NP-Fuc in 70 μ L of 50 mM sodium acetate, pH 5.5, at 30 °C for 10 min. The reactions were stopped by adding 2 volumes of 2 M Na₂CO₃ and their absorbance at 405 nm was measured. The amount of released *p*NP was calculated from a *p*NP standard curve ranging from 0 to 100 μ mol. One unit of enzyme is defined as the amount of enzyme releasing 1 μ mol *p*NP per minute from 1 mM *p*NP-Glu at 30 °C. The kinetic parameters with standard errors were calculated from nonlinear regression of the Michaelis–Menten equation curves with the Enzfitter 1.05 program (Elsevier Biosoft, Cambridge, UK). Values were compared with those from linear regression of the [S]/v vs. [S] curves for *p*NP-Glu, to validate the use of nonlinear regression where saturation curves could not be obtained due to substrate solubility.

Comparison of relative levels of hydrolysis of isoflavanoid glycosides

To evaluate the hydrolysis of I, II, and III by *Dalbergia* β -glucosidases, 0.01 U of an enzyme was incubated with 50 μ L of 1 mM substrate at 30 °C for 16 h. The reaction was stopped by boiling 5 min, dried and resuspended in 5 μ L of methanol. The released aglycones were analyzed on analytical Silica gel 60, F₂₅₄ aluminum TLC sheets with CHCl₃/MeOH/water (7.5:1:0.5) (v/v) solvent and UV absorbent spots were visualized under a UV box and compared with undigested glycosides. The plates were then sprayed with 10% sulfuric acid and heated at 110 °C for approximately 10 min to detect sugars.

The relative activities of Dnbglu2 and wildtype and mutant dalcochinases toward I and isoflavanoid glycosides from soybean were also compared by measuring the amount of glucose released. In 50- μ L reactions, 0.001 U of wildtype dalcochinase and 0.005 U of Dnbglu2 and mutant dalcochinases were incubated with 1 mM I in 0.1 M sodium acetate, pH 5.0, at 30 °C for 10 min. The reactions were stopped by boiling 5 min. One hundred microliters of PGO and 50 μ L of ABTS (1 mg/mL) were added, mixed and incubated at 37 °C for 30 min. The reactions were transferred to a microtiter plate and the absorbance was measured at 405 nm. Similarly, 0.001 U of wildtype and mutant dalcochinases and Dnbglu2 were incubated with 50 μ L of 1 mM daidzin or genistin for 10 min at 37 °C. The reactions were stopped by boiling 5 min and 5 μ L of

the reaction was taken to assay with glucose oxidase, as described above.

Results

Hydrolysis of *D. nigrescens* disaccharide glycosides by *D. cochinchinensis* dalcochinase

Initial attempts to hydrolyze dalpatein 7-O- β -D-apiofuranosyl-(1,6)- β -D-glycopyranoside (II) and dalnigrein 7-O- β -D-apiofuranosyl-(1,6)- β -D-glucopyranoside (III), natural substrates of Dnbglu, with dalcochinase did not show any hydrolysis. However, when the amount of enzyme was increased, hydrolysis could be detected on TLC, and the sugar product comigrated with 6-apiosyl- β -D-glucose (acuminose) produced by digestion of the substrates with Dnbglu, indicating that the dalcochinase has isoflavanoid 7-O-apiosylglucosidase (E.C. 3.2.1.161, acuminosidase) activity, though at a low level (results not shown). Dalcochinase had an apparent K_m of 4.3 mM, k_{cat} of 0.2 s⁻¹, and k_{cat}/K_m of 47 M⁻¹ s⁻¹ for II and an apparent K_m of 10 mM, k_{cat} of 0.5 s⁻¹, and k_{cat}/K_m of 49 M⁻¹ s⁻¹ for III. This compares with a K_m of 0.5 mM, k_{cat} of 465 s⁻¹, and k_{cat}/K_m of 9.9 × 10⁵ M⁻¹ s⁻¹ for II and a K_m of 0.7 mM, k_{cat} of 334 s⁻¹, and k_{cat}/K_m of 4.8 × 10⁵ M⁻¹ s⁻¹ for III hydrolysis by Dnbglu purified from *D. nigrescens* seeds [12], indicating Dnbglu is 21,000-fold more efficient in hydrolyzing II and 9800-fold more efficient in hydrolyzing III compared to dalcochinase.

cDNA cloning and sequence analysis

In order to determine the primary sequence of Dnbglu and identify the amino acid residues that may account for the functional differences between the two closely related *Dalbergia* β -glucosidases, cDNA were cloned from *D. nigrescens* seeds with PCR primers designed from the *D. cochinchinensis* β -glucosidase cDNA sequence [16]. RNA from immature seeds and germinating seeds were used as templates. Specific primers designed from the initial partial cDNA clones were used to clone the *Dnbglu2* cDNA (GenBank Accession No. AF163097).

The full-length *Dnbglu2* cDNA sequence consisted of 1964 nucleotides, which included a 1593-nucleotide ORF encoding a 531 amino acid precursor protein (Fig. 2). The Dnbglu2 protein was predicted to contain a 23 amino acid signal sequence by the SignalP program [20], giving a 508 amino acid mature protein with a calculated molecular mass of 60,509 Da. The predicted N-terminal sequence (I-A-F-P-K) corresponded to the mature N-terminus of *D. cochinchinensis* β -glucosidase (I-D-F-A-K) [13] (Fig. 2). However, N-terminal sequencing of Dnbglu purified from seeds previously showed the sequence A-T-I-T-E-V [12], which occurs eight residues later than the predicted sequence, possibly due to proteolysis after cleavage of the signal sequence, either in the plant or during purification. Using the N-terminal sequence determined by Edman deg-

>N-terminal seq		ATITEV	
Dnbglu2	-23	MIAMTFKIVLLLGLLALISTSTSIAFPKEVRATITEVPPFNRSFCPSDFIFGASSAYQY	37
Thai_rosewood	-23	MLAMTSKAIIILGLLALVTSASIDFAKEVRETITEVPPFNRSFCPSDFIFGTTASSYQY	37
1CBG	1	-----FKPLPISFDDFSDLNRSCFAPGFVFGTASSAFQY	34
ZM_Glu1	1	-----SARVGSQNGVQMLSPSEIPQ-RDWFPSDFTFGAATSAQYI	39
>peptide Tryp 1		g YMNLDAYR	
Dnbglu2	38	EG----EGRVPSIWDNFTHQYPEKIAADGSNGDVTIDQFHRKEDVAIMKYMNLDAYRLSI	93
Thai_rosewood	38	EG----EGRVPSIWDNFTHQYPEKIAADRSNGDVAQDFHRKEDIAIMKDMNLDAYRMSI	93
1CBG	35	EGAAAFEDGKGPSIWDFTFTHKYPEKIKDRTNGDVAIDEYHRYKEDIGIMKDMNLDAYRFSI	94
ZM_Glu1	40	EGAWNEDGKGESNWDHFCHNPERILDGSNSDIGANSYHMYKTDVRLKEMGMDAYRFSI	99
>peptides Tryp 2 & 3		g ASGGIISTGVD LINETLNGI	
Dnbglu2	94	SWPRILPTGRASGGINSTGVDYNNRLINETLHNGITPYVTFHWDLQALEDEYGGFLDR	153
Thai_rosewood	94	SWPRILPTGRVSGGINQGTVYNNRLLINESLANGITPYVTFHWDLQALEDEYGGFLNH	153
1CBG	95	SWPRVLPKGKLSGGVNRREGINYYNNLINEVLANGMQPVTLFHWDPQALEDEYRGFLGR	154
ZM_Glu1	100	SWPRILPKGTKEGGINPDGIKYYRNLLNLLENGIEPYVTFHWDPQALEEKYGGFLDK	159
>peptide Tryp 4		• ▽ ▽	
Dnbglu2	154	--- RVVNDFR DYADLCFKFFGDRVKHWITINEPQVFTTNGYTYGMFAPGRCSPSYDPTCT	210
Thai_rosewood	154	---SVVNDFQDYADLCFCQFLGDRVKHWITLNEPISFTANGYAGMFAPGRCSPSYNPTCT	210
1CBG	155	---NIVDDFRDYAELCFKEFGDRVKHWITLNEFWGVSMNAYAGTFAPGRCSDWLKLNC	211
ZM_Glu1	160	SHKSIVEDTYFAKVCFDNFGDKVKWNLT <u>TFNEPQTFTSFSYGTGVFAPGRCS</u> PGLDCAFP	219
Dnbglu2		g GGDAGTEPYKVVAHNLILSHAATVQVYKEKYQKDQNGKIGITLDQRWVPLSNSTSDDKAA	
Thai_rosewood	211	GGDAGTETYLVAHNLILSHAATVQVYKRKYQEHQKGTTIGISLHVWWVPLSNSTSDDQNAT	270
1CBG	212	GGDSGREPYLAHYQLLAHAAARLYKTKYQASQNGIIGITLVSHWFEPAKEDVDA	271
ZM_Glu1	220	TGNSLVEPYTAGHNILLAHAAEAVDLYNKHYKRDTR-IGLAFDVMGRVPYGTSFLDKQAE	278
Dnbglu2		▽ QRYLDFTFGWFMDPLTVGRY <u>YPSDSM</u> QYLVGNRLPKFTTYEAKLKGSDFDFIGINYTSYA	
Thai_rosewood	271	QRYLDFTCGWFMDPLTAGRYPDSM <u>QYLV</u> GDRLPKFTTDQAKLKGSDFDFIGLYNTSYA	330
1CBG	272	KRGLDFMLGWFMPHLTKGRYPSMRYLVRKRLPKFSTEESKELTGSFDLGLNYSSYYA	331
ZM_Glu1	279	ERSWDINLGWFLEPVVRGDYDPSMRSLARERLPLFFKDEQKEKLAGSYNMLGLNYTSRFS	338
Dnbglu2		▽ ▽	
Thai_rosewood	331	TKSDASTCCPPSYLTDQVTLSSQR--NGVFIGPMTSGWICIYPKGLRDLIYKENYN	388
1CBG	331	TKSDASTCCPPSYLTDQVTLSSQR--NGVFIGPVTSGWICIYPKGLRDLIYFKEKYN	388
ZM_Glu1	332	AKAPRIPNARPAIQTDSLINATFEH--NGKPLGPMAASSWLICYPQGIRKLLVVKHYN	389
ZM_Glu1	339	KNIDISPNSPVLNTDDAYASQEVNGPDGKPIGPPMGNPWIYMP EGLKDLIMKMKY	398
Dnbglu2		• NPLVYITENGMDETN--DPSLSEESLMDTYRIDSYYR <u>HLFV</u> VLSAIKSGANVKGFFAWT	
Thai_rosewood	389	NPLVYITENGIDEKN--DASLSEESLIDTYRIDSYYRHLFVRYAIRSGANVKGFFAWS	446
1CBG	390	NPVIYITENGREFN--DPTLQLQESLLDTPRIDYYRHLVYVLTAGDGVNVKGYFAWS	447
ZM_Glu1	399	NPPIYITENGIGDVDTKETPLPMEAALNDYKRLDYIQRHIATLKEIDLGSNVQGYFAWS	458
Dnbglu2		••VVV ▽	
Thai_rosewood	447	LMDDFEWGGFTSRFLNFVVDYN-TLNRYPKLSAKWFKYFLTRDQESAKLDISTPKASAA	505
1CBG	447	LLDNFEWAEGYTSRFLGFLYFVNYT-TLNRYPKLSSATWFKYFLARDQESAKLEILAPKARWS	505
ZM_Glu1	448	LFDNMEWDGSGYTVRFLGVFVDFKNNLKRHPKLSAHWFKSFLKK-----	490
ZM_Glu1	459	LLDNFEWFGAGTERYGYIVYVDRNNNCTRYMKESAKWLKEFNTAKPKSKKILTPA-----	512
Dnbglu2	506	YQR	508
Thai_rosewood	506	LSTMKEEKTKPKRGIEGF	524

Fig. 2. Protein sequence alignment of β -glucosidases from *D. nigrescens*, Dnbglu2; *D. cochinchinensis* (dalcochinase, Dcbglu), cyanogenic β -glucosidase from white clover, (PDB: 1CBG) and *Zea mays* β -glucosidase 1 (ZMGl1). N-terminal and tryptic peptide sequences obtained by Edman degradation of the purified protein are aligned above the full sequences [12]. Peptide sequences matching the masses of tryptic peptides in LCMS are shown with gray background. Sites shown to be glycosylated by LC/MS/MS are denoted with a small g above the glycosylated N. The sites indicated by Czjzek et al. [28] as interacting with the glycone (●) or aglycone (▽) of maize β -glucosidase are marked and the catalytic acid/base and nucleophile consensus sequences are underlined with the corresponding glutamates in bold. The single point and double point mutations of recombinant of *D. cochinchinensis* are in bold without underline.

radiation as the starting point, the predicted mature mass of Dnbglu2 is 59,571 Da. The shorter length of the predicted Dnbglu2 protein compared to dalcochinase, seen in Fig. 2, was due to a frame-shift in the C-terminal coding region at codon 526, which resulted in a stop codon 5 amino acids later. This sequence was confirmed by repeated sequencing.

The predicted Dnbglu2 protein sequence is slightly different from the four peptide sequences previously determined from β -glucosidase purified from *D. nigrescens* seeds [12] (Fig. 2). As noted, the chemically sequenced N-terminus matched the Dnbglu2 sequence, but the predicted N-terminus preceded it by eight residues. The Dnbglu2 sequence also matched that of tryptic peptide

1. With tryptic peptide 2, all residues matched, except that residue 6 showed absence of the expected Asn signal, and instead showed low levels of the preceding Ile residue, suggesting that residue 6 is likely to be glycosylated. The Dnbglu2 sequence showed one mismatch with tryptic peptide 3, at the 7th residue. Tryptic peptide 4 matched the sequence of Dnbglu2 at 19 out of 25 residues, with some minor signals matching the Dnbglu2 sequence for some residues where the primary signal was different. So, the purified Dnbglu might contain more than one isozyme with similar peptides eluting together in the HPLC tryptic map. It is also possible that some mutations could have occurred due to mutations during reverse-transcription and amplification, though the use of a high fidelity polymerase for amplification should have minimized this, so it could not have accounted for all the differences seen in the protein and DNA-derived sequences.

When nano-LC/MS/MS was used to further characterize the Dnbglu purified from seeds, 10 tryptic peptides with masses corresponding to Dnbglu2 were identified, as shown by the underlined regions in Fig. 2 and listed in Table 1. Though some of these peptides are identical to the corresponding peptides from dalcochinase, RVVNDFR, IADGS NGDVTIDQFHR, WVIPLSNSTSDKK, YPDSMQYLV GNR, and HLFYVLSAIK, which correspond to the m/z 453.29, 582.34, 560.02, 750.43, and 595.91 ($[M+H]^{2+}$), respectively (Table 1 and Fig. 1), are unique to Dnbglu2 and confirm the presence of Dnbglu2 in the enzyme purified from plant. However, the mass for one peptide that corresponds to residues 83–90: DMNLDAYR of dalcochinase and did not match Dnbglu2 was also identified: 996.56 amu (data not shown). So, the enzyme from *D. nigrescens* seeds appears to be a mixture of isozymes, though Dnbglu2 is likely prominent. In fact, application of the purified protein to a QAE ion exchange column and elution with a slow gradient revealed two closely spaced peaks, but these

could not be clearly distinguished by LC/MS/MS analysis of tryptic peptides (data not shown).

The Dnbglu2 protein sequence has five possible N-linked glycosylation sites, so the mature protein produced in the plant would be expected to be larger than the predicted values due to glycosylation. When the protein purified from the plant was analyzed by MALDI-MS, the ion peak was seen at 62,668 m/z , larger than the predicted mass of the protein and consistent with glycosylation. Analysis of endoglycosidase-F-treated tryptic peptides from the purified protein by nano-LC/MS/MS, identified three peptides matching predicted Dnbglu2 peptides plus *N*-acetyl hexosamine (*N*-HexNAc), which indicates *N*-acetyl glycosamine at N-linked glycosylation sites, as shown in Table 1. These were 1667.0 amu, which corresponds to residues 285–297 in the Dnbglu2 precursor: WVIPLSNSTSDKK plus *N*-HexNAc; 1776.0 amu, which corresponds to residues 132–146: ASGGINSTGVDYYNR plus *N*-HexNAc; and 2063.2 amu, which corresponds to residues 72–86: VPSIWDNFTHQYPEK plus *N*-HexNAc. The sequences of these peptides were confirmed by MS/MS sequencing, thereby showing that at least three of the five putative glycosylation sites in Dnbglu2 are glycosylated in the plant.

Dnbglu2 was compared to related β -glucosidases that had been previously studied by amino acid sequence alignment and was most similar to dalcochinase with 81% identity (Figs. 2 and 3). Phylogenetic analysis of these proteins showed that they are most closely related to legume isoflavanoid β -glucosidases and cyanogenic β -glucosidases, with a more distant relationship to the disaccharidases primeverosidase and furcatin hydrolase (Fig. 3). These enzymes group together and are more distant to other plant glycosyl hydrolase family 1 enzymes, such as rice BGlu1 and maize Glu1. Interestingly, the cyanogenic β -glucosidases from clover and cherry group more closely with the other legume β -glucosidases including soybean isoflavone conjugate β -glucosidase [26] than do the *Dalbergia* isofl-

Table 1

Identification of peptides and glycosylation sites in the mass fingerprint of β -glucosidase purified from *D. nigrescens* seeds and digested with trypsin and endoglycosidase H

Observed	M_r (expt)	M_r (calc)	Score	Expect	Peptide
453.293100	904.571648	904.487839	25	5.2	RVVNDFR
523.294700	1044.574848	1044.469833	16	36	YMNLDAYR
548.846200	1095.677848	1095.563385	53	0.0066	YKEDVAIMK
577.361200	1152.707848	1152.584839	(21)	15	YKEDVAIMK + carbamidomethyl (N-term)
595.914200	1189.813848	1189.685867	70	0.00023	HLFYVLSAIK
750.432700	1498.850848	1498.687408	15	54	YPDSMQYLVGNR + carbamidomethyl (N-term)
775.475200	1548.935848	1548.767120	16	58	WVIPLSNSTSDK + <i>N</i> -HexNac (Asn)
560.015300	1677.024072	1676.862076	41	0.21	WVIPLSNSTSDKK + <i>N</i> -HexNac (Asn)
839.529400	1677.044248	1676.862076	(16)	76	WVIPLSNSTSDKK + <i>N</i> -HexNac (Asn)
582.335900	1743.985872	1743.817566	39	0.27	IADGSNGDVTIDQFHR
888.996500	1775.978448	1775.796143	48	0.036	ASGGINSTGVDYYNR + <i>N</i> -HexNac (Asn)
622.082100	1863.224472	1863.036591	67	0.00068	VAHNLLLSHAATVQVYK
688.726300	2063.157072	2062.963577	56	0.0098	VPSIWDNFTHQYPEK + <i>N</i> -HexNac (Asn)

Peptides were identified from single run MS and MS/MS data by searching against Viridiplantae (green plants) of NCBI database using the Mascot software.

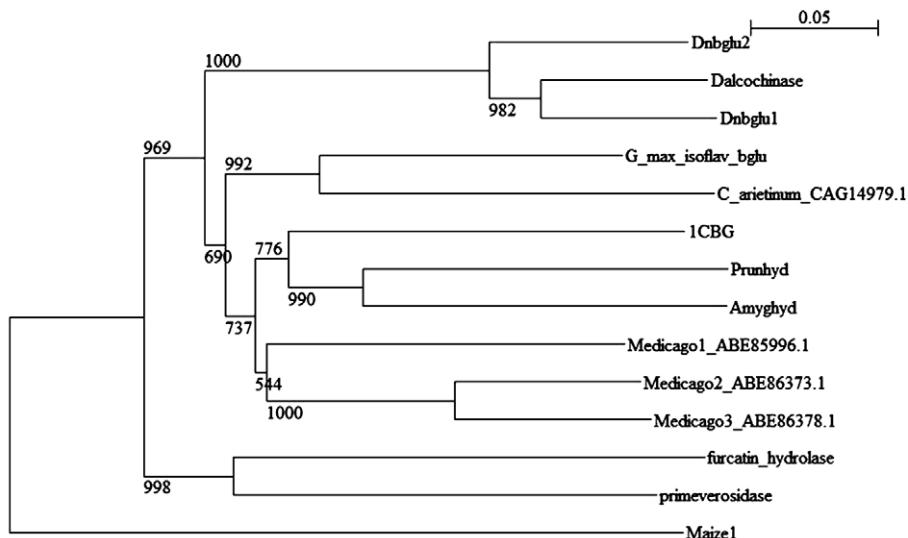


Fig. 3. Phylogenetic tree of *Dalbergia* isoflavanoid β-glucosidases with legume β-glucosidases and disaccharidases. The Maize Glu1 β-glucosidase (Maize1, Accession No. AAB03266) is included as an outgroup. The tree shows that the *Dalbergia* isoflavanoid β-glucosidases (*D. nigrescens* Dnbglu2 and *D. cochinchinensis* Dcblgu) group together, while the soybean isoflavanoid conjugate-specific β-glucosidase (*G. max* isoflav_bglu, Suzuki et al., 2006; Accession No. BAF3433.1) groups with chickpea β-glucosidase (*C. arrietinum*, Accession No. CAG14979) in another cluster. These enzymes are closely related to cyanogenic β-glucosidases from clover (1CBG, [27]) and cherry (*Prunus serotina* Prunhyd, prunacin hydrolase, Accession No. AAL07435; Amyghyd, amygdalin hydrolase, Accession No. AAL07489) than they are to furcatin hydrolase (*Viburnum furcatum*, Accession No. BAD14925), despite the latter showing more similar substrate specificity [6]. Also included are *Camellia sinensis* β-primeverosidase (Accession No. BAC78656) and three protein sequences derived from *Medicago trucatula* genes (Medicago1, 2, and 3), which include accession numbers in their names. This tree was produced by the neighbor-joining method, and the same branching was attained by the maximum parsimony method. Bootstrap values for reproducibility out of 1000 trials are given at the internal tree branches.

avonoid β-glucosidases, which fall in a somewhat more distantly related cluster. Thus, it would appear that the isoflavanoid β-glucosidases, which hydrolyze both glucosides and glycosides with 6-O-modified glucose residues, are derived from the same branch of GH1 as the defense-related glucosidases from other plants, and are more closely related to these than they are to the nonisoflavanoid diglycosidases.

Dnglu2 contains the catalytic acid/base E182 located in the consensus motif TINEP found in GH1 β-glucosidases, while the catalytic nucleophile residue E396 occurs within the sequence YITENG [27]. Czjzek et al. [28] identified four amino acid residues, W378, F198, F205, and F466 of maize β-glucosidase, which contact the substrate aglycone and were proposed to determine aglycone binding specificity. These amino acid residues correspond to W368, N189, F196, and S454 and A454 in Dnbglu2 and dalcochinase, respectively. An additional four residues of maize β-glucosidase were suggested to be involved in aglycone binding, T334, M374, Y473, and A467, which are equivalent to T326, T364, F461, and G455 and E455 in Dnbglu2 and dalcochinase, respectively. Homology modeling based on the white clover cyanogenic β-glucosidase structure (PDB: 1CBG, [27]), which is most closely related to Dnbglu2 among enzyme with known structures, confirmed that these residues are likely to be in the active site. Of these active site cleft residues, residues 454 and 455 show differences between the *Dalbergia* β-glucosidases and may thus

help to determine the differences in substrate specificity between these enzymes (Fig. 4). Residues Q38, H142, E191, E406, E464, and W465 of maize β-glucosidase, which are highly conserved in GH1 β-glucosidases and are thought to be critical for glucose binding [28], correspond to Q36, H136, E182, E396, E452, and W453, respectively, in Dnbglu2 and dalcochinase. The interaction of the sugars by hydrogen bonds between the sugar hydroxyls and polar side chains, as well as van der Waals interactions between the alkyl hydrogens of sugars and aromatic residues at the sugar binding site of proteins, has been suggested to provide binding affinity and specificity to the interaction [29].

Recombinant expression of Dnbglu2

When recombinant Dnbglu2 was expressed in fusion with yeast α-factor prepropeptide in *P. pastoris*, increased *p*NP-Fuc hydrolase activity appeared in the media, and an approximately 63 kDa protein could be purified from desalting media by adsorption to cobalt chelating resin (IMAC). The native molecular weight of recombinant Dnbglu2 β-glucosidase was estimated to be about 240 kDa by S-200 gel filtration chromatography, which suggests that this recombinant protein is composed of four subunits, as are the native β-glucosidases purified from *D. cochinchinensis* and *D. nigrescens* seeds [13,12]. Recombi-

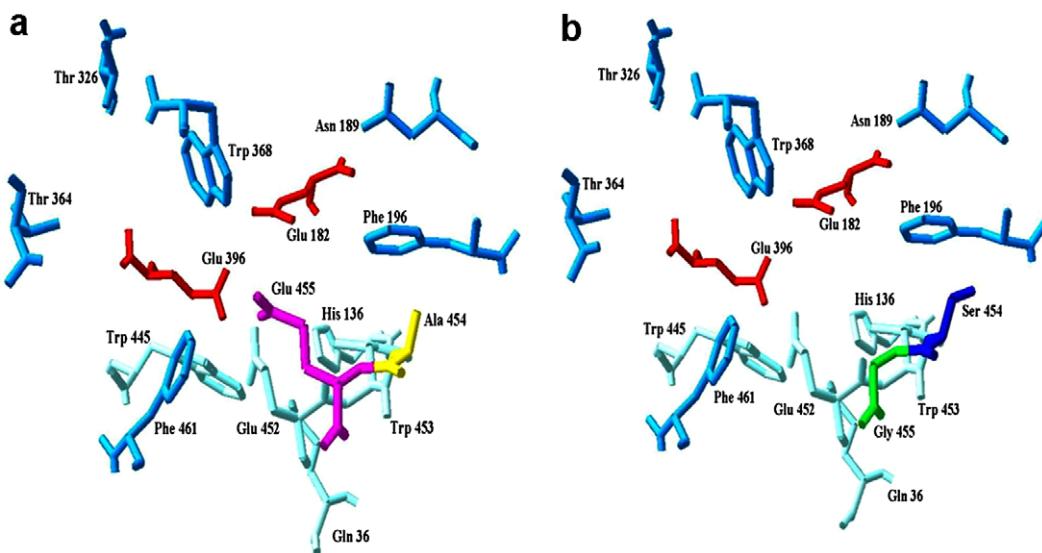


Fig. 4. Models of the active sites of dalcochinase (a) and Dnbglu2 (b) β -glucosidases. The models illustrate some differences between the *Dalbergia* β -glucosidases. Residues Ala454 (purple) and Glu455 (yellow) of Thai rosewood correspond to Ser454 (purple) and Gly455 (yellow) in Dnbglu2. The amino acid residues of the aglycone and glycone binding sites are in blue and light blue, respectively. The catalytic amino acid residues (Glu182 and Glu396) are indicated in red. The figure was produced with Pymol (DeLano scientific LLC).

nant dalcochinase was expressed and purified in the same way from the previously described construct [18].

Kinetic evaluation of *Dalbergia* β -glucosidases

The relative hydrolysis rates of the recombinant *Dalbergia* β -glucosidases toward *p*NP-glycoside substrates were determined. Relative hydrolysis rates of the enzymes expressed in *Pichia* were similar to those for enzymes purified from seeds, but Dnbglu2 gave slightly higher relative activity toward β -D-fucoside and β -D-xyloside and could not detectably hydrolyze β -D-mannoside, α -L-arabinoside, and β -D-thioglucoside (Table 2). The recombinant dalcochinase gave lower relative activity for *p*NP- β -D-galactoside, but showed higher relative activity toward *p*NP- β -D-mannoside compared to dalcochinase from seeds. Dnbglu2 had K_m values for both *p*NP-Glu and *p*NP-Fuc similar to those of natural *D. nigrescens* β -glucosidase from seeds

(Table 3, [12]). Similarly, the wildtype recombinant dalcochinase had K_m values for both *p*NP-Glu and *p*NP-Fuc similar to dalcochinase from seeds, as previously reported [18].

The activity of the recombinant Dnbglu2 was also studied with its own natural substrates from *D. nigrescens* Kurz seeds and with I, the natural substrate from *D. cochinchinensis* seeds. In contrast to Dnbglu purified from seed [12], Dnbglu2 hydrolyzed III better than II with apparent K_m , k_{cat} , and k_{cat}/K_m values of 3.8 mM, 20 s⁻¹, and 5.32 mM⁻¹ s⁻¹ for II and 4.0 mM, 229 s⁻¹ and 58.6 mM⁻¹ s⁻¹ for III. The recombinant enzyme was less efficient at hydrolysis of both of these substrates compared to Dnbglu from seed, with K_m values 5- to 10-fold higher and a k_{cat} for II 20-fold lower, though the k_{cat} for III was similar. Nonetheless, Dnbglu2 maintains a high preference for II and III over I, which has a similar apparent K_m of 5.3 mM, but a much lower apparent k_{cat} , 0.049 s⁻¹, and

Table 2

Hydrolysis of glycoside substrates with recombinant *D. nigrescens* β -glucosidase compared with *D. nigrescens* β -glucosidase purified from seed and *D. cochinchinensis* β -glucosidase

Substrates	% Relative activity			
	Natural Dnbglu	Dnbglu2	Natural <i>D. cochinchinensis</i>	Wildtype <i>D. cochinchinensis</i>
<i>p</i> NP- β -D-Glucoside	100	100	100	100
<i>p</i> NP- β -D-Fucoside	124	139	124	127
<i>p</i> NP- β -D-Galactoside	3.97	4.4	8.95	4.65
<i>p</i> NP- β -D-Xyloside	7.55	12.8	3.91	2.95
<i>p</i> NP- α -L-Arabinoside	1.91	nd	4.89	3.74
<i>p</i> NP- β -D-Thioglucoside	0.68	nd	0.02	—
<i>p</i> NP- β -L-Arabinoside	0.47	1.8	—	—
<i>p</i> NP- β -D-Mannoside	0.4	nd	0.26	5.91

nd: not detectable; —: not determined.

Assays were done with 5 mM substrate for 10 min under standard assay conditions.

Table 3

Kinetics of recombinant β -glucosidases toward *p*NP-glucoside and *p*NP-fucoside

Recombinant enzymes	<i>p</i> NP-Glucoside			<i>p</i> NP-Fucoside		
	K_m (mM)	k_{cat} (s $^{-1}$)	k_{cat}/K_m (s $^{-1}$ M $^{-1}$)	K_m (mM)	k_{cat} (s $^{-1}$)	k_{cat}/K_m (s $^{-1}$ M $^{-1}$)
Dnbglu2	26.1 ± 2.6	298 ± 19	(1.14 ± 0.19) × 10 ⁴	1.67 ± 0.08	92.8 ± 1.2	(5.57 ± 0.32) × 10 ⁴
Dalcochinase	8.35 ± 0.51	174.6 ± 4.5	(2.09 ± 0.18) × 10 ⁴	(7.87 ± 0.34) × 10 ⁻¹	96.03 ± 0.92	(1.220 ± 0.064) × 10 ⁵
A454S Dalcochinase	5.89 ± 0.51	128.1 ± 4.1	(2.18 ± 0.26) × 10 ⁴	(4.74 ± 0.42) × 10 ⁻¹	63.0 ± 1.0	(1.33 ± 0.14) × 10 ⁵
E455G Dalcochinase	5.26 ± 0.22	158.9 ± 2.4	(3.04 ± 0.17) × 10 ⁴	(5.30 ± 0.46) × 10 ⁻¹	(81.0 ± 1.4)	(1.53 ± 0.16) × 10 ⁵
Dalcochinase double mutant	6.82 ± 0.53	281.4 ± 7.7	(4.13 ± 0.43) × 10 ⁴	(5.93 ± 0.48) × 10 ⁻¹	103.6 ± 1.7	(1.75 ± 0.17) × 10 ⁵

All recombinant were expressed in *Pichia pastoris* strain Y11430. Enzymes listed are as follows: dalcochinase, wildtype *D. cochinchinensis* β -glucosidase; dalcochinase A454S, A454S mutant of dalcochinase; dalcochinase E455G, E455G mutant of dalcochinase; dalcochinase double mutant, A454S/E455G mutant of dalcochinase; and Dnbglu2 from *D. nigrescens*. The apparent kinetic parameters with standard errors were obtained from nonlinear regression of the Michaelis–Menten curves with Enzfitter 1.05 (Elsevier Biosoft, Cambridge, UK).

k_{cat}/K_m , 0.0094 mM $^{-1}$ s $^{-1}$. In contrast, the wildtype recombinant dalcochinase showed much less efficient hydrolysis of *D. nigrescens* substrates, as expected (Table 4).

The hydrolysis of I, II, and III by recombinant dalcochinase and Dnbglu2 was also compared by TLC (Fig. 5). The TLC confirmed that Dnbglu2 glucosidase could hydrolyze its natural substrates and release a disaccharide unit as does the β -glucosidase purified from *D. nigrescens* seeds [12], but it hydrolyzed I less efficiently. The recombinant dalcochinase was much more efficient at hydrolysis of I, and also hydrolyzed both natural substrates of *D. nigrescens*, although poorly. The sugar spots on the TLC indicated the disaccharide unit of β -D-apiofuranosyl- β -D-glucopyranose was released from II and III and had mobility similar to the standard disaccharide. No glucose or apiose was observed.

Mutagenesis of *D. cochinchinensis* β -glucosidase to *D. nigrescens* β -glucosidase

Since protein sequence alignment and homology modeling identified residues 454 and 455 as the residues in the substrate binding site that differ between dalcochinase and Dnbglu2, these positions in dalcochinase were mutated to the amino acids found in Dnbglu2 to see if the activity could be converted to that of the latter enzyme. Although

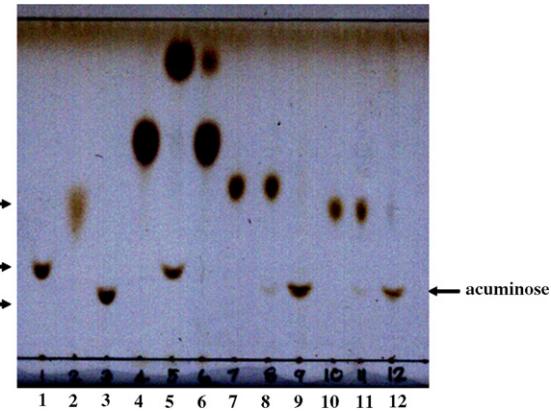


Fig. 5. TLC of I, II, and III hydrolysis by recombinant *D. nigrescens* Dnbglu2 and *D. cochinchinensis* dalcochinase. Digests were done with 0.01 U for 16 h at 30 °C. Lane 1, glucose std; lane 2, apiose std; lane 3, cellobiose std; lane 4, I std; lane 5, I hydrolyzed with recombinant *D. cochinchinensis*; lane 6, I hydrolyzed with Dnbglu2; lane 7, II std; lane 8, II hydrolyzed with recombinant dalcochinase; lane 9, II hydrolyzed with Dnbglu2; lane 10, III std; lane 11, III hydrolyzed with recombinant *D. cochinchinensis*; lane 12, III hydrolyzed with Dnbglu2. For definitions of I, II, and III, see Fig. 1.

Dnbglu2 has a 3-fold higher K_m for *p*NP-Glu and *p*NP-Fuc than dalcochinase, the effects on hydrolysis of *p*NP-Glu and *p*NP-Fuc of the A454S and E454G mutants were small and appeared to compensate each other in the double

Table 4

Rates of hydrolysis of isoflavonoid glycosides relative to wildtype dalcochinase

Enzyme	Isoflavonoid substrate				
	I	II	III	Daidzin (VI)	Genistin (V)
Wildtype dalcochinase	1.0	1.0	1.0	1.0	1.0
Dalcochinase A454S	0.94	1.4	0.44	0.99	0.88
Dalcochinase E455G	0.89	1.4	0.40	1.3	1.2
Dalcochinase double mutant	1.1	4.0	6.8	1.3	2.0
Dnbglu2	0.00031	290	210	3.1	2.8

Assays were done with 1 mM substrates for 10 min under standard conditions and release of *D. nigrescens* isoflavonoids from II (dalpatein 7-O- β -D-apiofuranosyl-1,6- β -D-glucopyranoside) and III (dalnigrein 7-O- β -D-apiofuranosyl-1,6- β -D-glucopyranoside) was quantified by HPLC, while glucose release from I (dalcochinin β -D-glucoside), VI (diadzin), and V (genistin) was quantified by glucose oxidase assay. The specific activities are given relative to wildtype dalcochinase. Enzymes listed are as follows: Dnbglu2 from *D. nigrescens*, wildtype dalcochinase, *D. cochinchinensis* dalcochinase; dalcochinase A454S, A454S mutant of dalcochinase; dalcochinase E455G, E455G mutant of dalcochinase; and dalcochinase double mutant, A454S/E455G mutant of dalcochinase.

mutant (Table 3). When the mutant enzymes were tested for hydrolysis of natural substrates, all mutants maintained the ability to efficiently hydrolyze I (Table 4). The single mutants showed similar hydrolysis of II and half the rate of hydrolysis III compared to wildtype dalcochinase. However, the double mutant showed 4-fold more rapid hydrolysis of II and 7-fold more rapid hydrolysis of III compared to wildtype dalcochinase. The double mutant also had a 2-fold increase in the hydrolytic rate for genistin, but showed little increase for daidzin. Therefore, the double mutation of A454S/E455G had little effect on hydrolysis of *p*NP glycosides, but improved hydrolysis of the *D. nigrescens* isoflavonoid glycoside substrates in a manner that could not be explained by a combination of the effects of the individual mutations.

Discussion

β -Glucosidases that hydrolyze isoflavonoid 7-*O*- β -glucosides and their 6'' conjugates have been found in chickpea [11] and soybean [26], in addition to *D. nigrescens* [12]. We have described the primary structure and activity of such a β -glucosidase from *D. nigrescens*, Dnbglu2, in this paper and started to identify the basis for this unique activity for the first time. The recombinantly expressed Dnbglu2 was able to hydrolyze isoflavonoid 7-*O*- β -D-apiosyl-1,6- β -D-glucosides and malonyl glucosides, and to release the disaccharide from the former. The Dnbglu2 expressed in *Pichia pastoris* media appeared to be similar to the enzyme purified from *D. nigrescens* seeds, but was less efficient in hydrolysis of the II and III substrates and showed a few other differences, possibly because a mixture of isozymes was likely to have been present in the preparation from seeds, due to a sequence difference in the recombinant enzyme and the primary seed isozyme or due to differences in post-translational modification of this glycoprotein. Nonetheless, Dnglu2 showed 400- and 5000-fold higher k_{cat}/K_m values in hydrolyzing II and III, respectively, compared to I, which is similar to the Dnbglu purified from seed. The closely related dalcochinase purified from *D. cochinchinensis* seeds or expressed in *Pichia* was also found to have isoflavonoid β -D-apiosyl-1,6- β -D-glucosidase activity, but at a much lower level than Dnbglu from seeds and Dnbglu2. Mutagenesis showed that differences in two residues found in the substrate binding cleft partially accounted for the difference in activity toward these disaccharide glycoside substrates.

Among the amino acid residues identified by Czjzek et al. [28] to be part of the ligand binding site of maize ZmGlu1, only two residues differ between Dnbglu2 and dalcochinase. Neither the A454S nor the E455G mutation of dalcochinase gave an improvement of the hydrolysis of *D. nigrescens* isoflavonoid substrates, but the combination of these two mutants allowed substantial hydrolysis. Mutation of either of the two sites had only slightly positive effects on hydrolysis of II and a 2-fold decrease in hydrolysis of III, rather than the larger positive effect on hydrolysis

seen in the double mutant. It could be surmised from the synergism of the double mutation that the effects of S454 and G455 are likely on the same reaction step and are completely cooperative, since the presence of either A454 or E455 completely negated this effect [30,31]. This is understandable for adjacent residues that likely interact. Perhaps the space created with the replacement of E455 with G allows a productive contact between the S454 hydroxyl and the isoflavonoid diglycosides.

Previously, Verdoucq et al. [32] did the corresponding double mutation of maize ZmGlu1 residues F466 and A467 to the corresponding residues in sorghum dhurrinase (S462 and S463). This mutation allowed hydrolysis of dhurrin at 3% of the level of sorghum dhurrinase, which is similar to the effect of the double mutation reported here. These residues are involved in dhurrin binding in the dhurrinase structure, where S462 makes an indirect hydrogen bond through a water molecule to the hydroxyl group on the phenol ring [33]. Interestingly, although the A454S/E455G double mutation significantly increased the ability to hydrolyze the *D. nigrescens* isoflavonoid substrates and had some effect on genistin hydrolysis, it did not affect the ability of dalcochinase to hydrolyze *p*NP-Glu and *p*NP-Fuc, despite a 3-fold difference in K_m between dalcochinase and Dnbglu2. Thus, it seems that other factors, such as the overall shape of the active site are perhaps more important for the subtle differences seen with other substrates.

Inspection of the substrate structures in Fig. 1 shows that relative position of the glycosidic bond to be hydrolyzed is much closer to the isoflavonoid moiety of II and III than that of I, the natural substrate of dalcochinase. Thus, Dnbglu2 must be optimized for binding the isoflavonoid moiety closer to the catalytic residues than in dalcochinase. The combined differences of S instead of A at residue 454 and G instead of E at residue 455 apparently help Dnbglu2 to bind the isoflavonoid ring in the proper position for hydrolysis of the 7-*O*-glycosyl ring more than when it is bound in this position by dalcochinase. However, the activity gained by the double mutation was only 2–3% of the activity of Dnbglu2 on *D. nigrescens* substrates, and the effect was less clear for soy isoflavonoids, for which the differences between the two *Dalbergia* enzymes are less pronounced. This may indicate that these differences help it to accommodate the larger glycone group found in II and III and conjugated isoflavonoid glycosides. Other differences in the active site shape are likely to contribute more, since Dnbglu2 is much more active toward these substrates than the dalcochinase double mutant. In principle differences in the -2 site, the position of the apiosyl residue 1,6-linked to the glucosyl residue, that allow for Dnbglu to better accommodate the larger glycone would appear to be good candidates to contribute to this. In fact, inspection of the dhurrin glucosyl residue in the 1vO3 sorghum dhurrinase structure shows that the 6-hydroxyl group points out toward the entry of the active site [33], so the apiosyl residue would be expected to sit in the entry cleft across from

or even against the aglycone, where it might interact with putative aglycone binding residues. However, the glucosyl O6 sits around 9–10 Å away from the position of S454, so any affects on apiosyl binding are likely to be indirect, and, unlike primeverosidase and furcatin hydrolase, Dnglu appears to hydrolyze isoflavone glucosides better than diglycosides [12], so such differences in the glycone site could be rather subtle.

Recently, Suzuki et al. [26] reported the characterization of a conjugated isoflavone glucoside-specific β -glucosidase from soybean roots. This enzyme preferred malonyl genistin and malonyl daidzin to genistin and daidzin, and hydrolyzed isoflavone glycosides with high efficiency, but could not hydrolyze other natural substrates, such as flavone glycosides. Given the similar substrate specificity, one might expect that the active sites of the soybean and Dnbglu2 would be similar. However, of the aglycone-binding residues identified from comparison to maize [28], Dnbglu2 residues N189, F196, T326, T364, S454, and G455 are replaced by G, T, S, A, F, and A, respectively, in the soybean enzyme, while only W368 and F461 are conserved. Though some of these differences are conservative, many are not, and Dnbglu2 is much more similar to dalcochinase at these positions than to the soybean protein. The soybean enzyme appears to be stricter in its specificity for soy isoflavone conjugates, which is hydrolyzed with very high efficiency, so it may have different binding requirements [26]. Nonetheless, it appears that even closely related enzymes may have different means of binding similar substrates.

Acknowledgments

The authors are grateful to Dr. Chantragan Srisomsap for help with protein analysis and discussion, Thepanya Charoenrat for assistance with *P. pastoris* fermentation, Por-ngam Prasert for help with substrate purification and assays, and Mariena Ketudat-Cairns and Rodjana Opassiri for suggestions and discussion. This work was supported by the Thailand Research Fund Grants BRG4780020 and RTA4780006 and by Suranaree University of Technology.

References

- [1] B. Henrissat, Biochem. J. 280 (1991) 309–316.
- [2] M. Mizutani, H. Nakanishi, J.I. Ema, S.J. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, K. Sakata, Plant Physiol. 130 (2002) 2164–2176.
- [3] K. Ogawa, Y. Ijima, W. Guo, N. Watanabe, T. Usui, S. Dong, Q. Tong, K. Sakata, J. Agric. Food Chem. 45 (1997) 877–882.
- [4] H. Suzuki, Arch. Biochem. Biophys. 99 (1962) 476–483.
- [5] H. Imaseki, T. Yamamoto, Arch. Biochem. Biophys. 92 (1961) 467–474.
- [6] Y.O. Ahn, M. Mizutani, H. Saino, K. Sakana, J. Biol. Chem. 279 (2004) 23405–23414.
- [7] R. Bourbouze, F. Pratviel-Sosa, F. Percheron, Phytochemistry 14 (1975) 1279–1282.
- [8] T. Yasuda, H. Nakagawa, Phytochemistry 37 (1994) 133–136.
- [9] T. Kasai, M. Kishimoto, S. Kawamura, Kagawa Daigaku Nogakubu Gakujutsu Houkoku 32 (1981) 111–119.
- [10] G.W. Hay, D.W.S. Westlake, F.J. Simpson, Can. J. Microbiol. 7 (1962) 921–93227.
- [11] W. Hösel, W. Barz, Eur. J. Biochem. 57 (1975) 607–616.
- [12] P. Chuankhayan, Y. Hua, J. Svasti, S. Sakdarat, P.A. Sullivan, J.R. Ketudat-Cairns, Phytochemistry 66 (2005) 1880–1889.
- [13] C. Srisomsap, J. Svasti, R. Surarit, V. Champattanachai, P. Sawangareetrakul, K. Boonpuan, P. Subhasitanont, D. Chokchaimankit, J. Biochem. 119 (1996) 585–590.
- [14] P. Chuankhayan, T. Rimlumduan, J. Svasti, J.R. Ketudat-Cairns, J. Agric. Food Chem. 55 (6) (2007) 2407–2412.
- [15] J. Svasti, C. Srisomsap, S. Techasakul, R. Surarit, Phytochemistry 50 (1999) 739–743.
- [16] J.R. Ketudat Cairns, V. Champattanachai, C. Srisomsap, B. Wittman-Liebold, B. Thiede, J. Svasti, J. Biochem. 128 (2000) 999–1008.
- [17] M. Frohman, Methods Enzymol. 218 (1993) 340–356.
- [18] P. Toonkool, P. Metheneukul, P. Sujiwattanarat, P. Paiboon, N. Tongtubtim, M. Ketudat-Cairns, J.R. Ketudat-Cairns, J. Svasti, Protein Expr. Purif. 48 (2006) 195–204.
- [19] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucleic Acids Res. 25 (1997) 3389–3402.
- [20] J.D. Bendtsen, H. Nielsen, G. Heijne, S. Brunak, J. Mol. Biol. 340 (2004) 783–795.
- [21] F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, T.J. Gibson, Trends Biochem. Sci. 23 (1998) 403–405.
- [22] J.D. Thompson, D.G. Higgins, T.J. Gibson, Nucleic Acids Res. 22 (1994) 4673–4680.
- [23] J. Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.6, Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, 2005.
- [24] N. Guex, M.C. Peitsch, Electrophoresis 18 (1997) 2714–2723.
- [25] T. Charoenrat, M. Ketudat-Cairns, H. Stendahl-Andersen, M. Jahic, S.O. Enfort, Bioprocess Biosyst. Eng. 27 (6) (2005) 399–406.
- [26] H. Suzuki, S. Takahashi, R. Watanabe, Y. Fukushima, N. Fujita, A. Noguchi, R. Yokoyama, K. Nishitani, T. Nihino, T. Nakayama, J. Biol. Chem. 281 (2006) 30251–30259.
- [27] T. Barrett, C.G. Suresh, S.P. Tolley, E.J. Dodson, M.A. Hughes, Structure 3 (1995) 951–960.
- [28] M. Czjzek, M. Cicic, V. Zamboni, D.R. Bevan, B. Henrissat, A. Esen, Proc. Natl. Acad. Sci. USA 97 (2000) 13555–13560.
- [29] N.K. Vyas, Curr. Opin. Struct. Biol. 1 (1991) 732–740.
- [30] A.S. Mildvan, D.J. Weber, A. Kuliopoulos, Arch. Biochem. Biophys. 294 (1992) 327–340.
- [31] A.S. Mildvan, Biochemistry (USA) 43 (2004) 14517–14519.
- [32] L. Verdoucq, M. Czjzek, J. Morinière, D.R. Bevan, A. Esen, J. Biol. Chem. 278 (2003) 25055–25062.
- [33] L. Verdoucq, J. Morinière, D.R. Bevan, A. Esen, A. Vasella, B. Henrissat, M. Czjzek, J. Biol. Chem. 279 (2004) 31796–31803.

Nucleotide and Derived Amino Acid Sequences of the Cyanogenic Beta-Glucosidase (Linamarase) from Cassava (*Manihot esculenta* Crantz)

Prachumporn Toonkool* and Nusra Tongtubtim

ABSTRACT

Many isozymes of cassava cyanogenic β -glucosidase (linamarase) exist, but only one cDNA sequence (pCAS5) has been reported thus far. In order to study the structure-function relationships in this enzyme, the cDNA of cassava linamarase was cloned and sequenced. In this report, six different cDNA sequences of linamarase from cassava were cloned by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed from the sequence of pCAS5. Nucleotide sequences of all six clones showed 98-99% sequence identity to the nucleotide sequence of pCAS5. Derived amino acid sequences from four cDNA clones showed 98-99% sequence identity to that of pCAS5, while the other two cDNA clones contained nucleotide sequences that led to premature termination.

Key words: beta-glucosidase, linamarase, cassava, nucleotide sequence, amino acid sequence

INTRODUCTION

Cassava (*Manihot esculenta* Crantz) is an important crop due to the large storage roots which are a staple carbohydrate source for many populations worldwide. Young cassava leaves are also consumed by humans or used as animal feeds (Yeoh, 1989). However, both leaves and roots of cassava are cyanogenic, posing a potential health hazard to consumers. Cyanogenesis in cassava involves two cyanogenic glucosides (linamarin and lotaustralin) and sequential action of two enzymes (β -glucosidase and hydroxynitrile lyase). Normally, the glucoside substrates and the enzymes are kept in separate compartments. Exposure of these two cyanogenic glucosides to β -glucosidase, following tissue damage, results in their hydrolysis to yield glucose and an aglycone,

which is acetone cyanohydrin or butanone cyanohydrin. These cyanohydrins may be broken down spontaneously or enzymatically by α -hydroxynitrile lyase to produce hydrogen cyanide (Eksittikul and Chulavatanatol, 1988; Hughes *et al.*, 1992). The cyanogenic β -glucosidase, or linamarase, which is responsible for the first step of cassava cyanogenesis, is present in many parts of the plant, including petioles, stem, leaves, peels and tuber cortex. Physiologically, the enzyme plays an important role as a host defense against biological predators. Furthermore, an *in vitro* study has discovered the unique ability of cassava linamarase in alkyl glucoside synthesis by transferring glucose to a large variety of alcohol acceptors, while β -glucosidases from Thai rosewood and almond could not (Svasti *et al.*, 2003). This difference in enzymatic action may

lie in slight variations in the amino acid sequences of β -glucosidases from various sources. So, it is of scientific interest to understand the molecular basis of enzymatic catalysis in cassava linamarase. To achieve this, cassava linamarase must be cloned and expressed as a recombinant protein, its nucleotide sequence mutated, and the effects of mutation characterized. These procedures will help to identify amino acid residues responsible for transglucosylation activity.

A number of studies have shown the existence of multiple forms of cassava linamarase (Eksittikul and Chulavatanatol, 1988; Yeoh, 1989), however, only a single cDNA clone of linamarase (pCAS5) from cassava has been isolated thus far (Hughes *et al.*, 1992). The identity of other cassava linamarase isozymes has not been reported. In this study, we reported the isolation of six different cDNA clones of cassava linamarase, and the amino acid sequences derived from four full-length cDNA sequences. The predicted polypeptides were very similar to that of the previously reported cassava linamarase, so they can be reasonably assumed to be catalytically active in cassava.

MATERIALS AND METHODS

Total RNA was isolated from young cassava leaves (local varieties) using RNeasy extraction kit (QIAGEN, USA) and concentration estimated by absorbance at 260 nm. Total RNA (0.2-5 μ g) was converted into single stranded first strand cDNA fragment using 200 U SuperScript II reverse transcriptase (Invitrogen, USA) in the reaction containing 0.5 μ g oligo(dT)₁₂₋₁₈ primer, 10 nmol dNTP mix, and 10 mM DTT at 42 °C for 50 min and at 70 °C for 15 min. The RNA strand of the RNA:cDNA duplex was degraded by 2 U RNase H at 37 °C for 20 min. The 1 μ L aliquot of the product was used as a template for PCR with 1 μ M each of CVLMF2 (5' TTC TTC AGC TAT CAG GGA TGC 3') and CVLMR2 (5' TGC TAG ATC ATT GGA GCT TCA 3') primers, 1.5 mM

MgCl₂, 50 mM KCl, 0.1% Triton X-100, 0.2 mM of each dNTP and 2.5 U Expand HiFi DNA polymerase (Boehringer, Germany) in a total volume of 50 μ L. All PCR reactions were done using a 94 °C initial denaturation for 2 min, 29 cycles of 94 °C for 60 s, 45 °C for 30 s, and 72 °C for 2 min, and a 72 °C final elongation for 8.5 min. The primer sequences correspond to bases 7-27 (sense) and bases 1677-1697 (antisense), respectively, of the cassava linamarase cDNA clone pCAS5 reported previously (Hughes *et al.*, 1992). The resulting RT-PCR product was gel-purified, ligated into pGEM-Teasy vector (Promega, USA) and transformed into *E. coli* DH5 α .

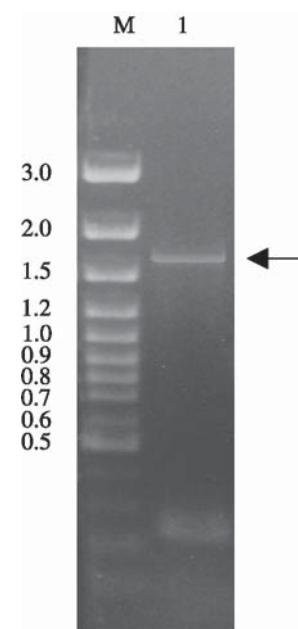
The nucleotide sequence of cDNA clones were determined by automated DNA sequencing (ABI 373A DNA sequencer). The nucleotide sequences obtained were translated into amino acid sequences using EMBOSS Transeq program. Alignment of nucleotide and amino acid sequences were done using ClustalW version 1.82. The physical and chemical parameters of the derived amino acid sequences were performed using ProtParam program.

RESULTS AND DISCUSSION

Cloning of cDNA of cassava linamarase

Total RNA was extracted from young cassava leaves. Approximately 500 ng total RNA was used to synthesized the first strand cDNA. PCR amplification of the first strand cDNA yielded 1.7 kb PCR product (Figure 1), which was then ligated into pGEM-Teasy vector and transformed into *E. coli* DH5 α . The nucleotide sequences of cloned RT-PCR products were determined by automatic sequencing, yielding six different cDNA clones, namely 2A.29, 2A.32, 2A.33, 2A.52, 2A.55 and 2A.62. Alignment of the nucleotide sequences from all six cDNA clones showed 98-99% sequence identity to the previously reported nucleotide sequence of the cassava linamarase

cDNA clone pCAS5 (Hughes *et al.*, 1992), and to each other (results not shown).


Alignment of nucleotide and derived amino acid sequences of cassava linamarase

The nucleotide sequences from 6 cDNA clones were translated and aligned. A thymine deletion in clone 2A.29, corresponding to position 570 in pCAS5, resulted in a frame-shift mutation from that position onward and a pre-mature

termination of 7 amino acids later. Also in clone 2A.33, an adenine-to-thymine substitution, corresponding to position 225 in pCAS5, resulted in a non-sense mutation at that position. So, only four cDNA clones, namely 2A.32, 2A.52, 2A.55 and 2A.62, encoded the full-length amino acid sequence of cassava linamarase. Alignment of the amino acid sequences derived from these four cDNA clones showed 98-99% sequence identity to the previously reported amino acid sequence of the cassava linamarase derived from pCAS5 (Hughes *et al.*, 1992), and to each other (Figure 2). All four predicted polypeptides contained the highly conserved TFNEP and VTENG motifs bearing the catalytic acid/base (Glu198) and catalytic nucleophile (Glu413), respectively. The five putative N-glycosylation motifs, NX(S/T), were also conserved. The polypeptides derived from cDNA clones were analyzed for their physical and chemical parameters (Table 1).

The cDNA sequences reported here were synthesized from young cassava leaves, which had been shown to be the site of cassava linamarase synthesis (Poncoro and Hughes, 1992). This is likely to produce different linamarase transcripts from the previously reported cassava linamarase cDNA sequence, pCAS5, which was extracted from yellow cotyledons (Hughes *et al.*, 1992). The four polypeptides predicted from the four cDNA clones were very similar to the previously reported cassava linamarase, in terms of sequence identity, physico-chemical properties as well as the presence of the key motifs essential for catalytic activity. So, these four predicted polypeptides can

Figure 1 The cDNA of cassava linamarase (analyzed on 1% (w/v) agarose and stained with ethidium bromide). Lane 1, the 1.7 kb RT-PCR product (indicated by an arrow); M, DNA size marker (kb).

Table 1 Physical and chemical parameters of the polypeptides derived from four cDNA clones.

cDNA	Number of amino acids	Molecular weight	Theoretical pI
pCAS5	531	61,372.9	5.52
2A.32	531	61,461.0	5.44
2A.52	531	61,488.1	5.62
2A.55	531	61,323.8	5.44
2A.62	531	61,370.8	5.35

pCAS5	MLVLFISLALLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGFTATSAQIEGEATAKGRAP	60
2A.32	MLVLFISLALLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGFTATSAQIEGEATAKGRAP	60
2A.52	MLVLFISLALLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGFTATSAQIEGEATAKGRAP	60
2A.55	MLVLFISLALLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGFTATSAQIEGEATAKGRAP	60
2A.62	MLVLFISLALLTRPAMGTDDDDDIPGDFNRRNYPFPDDFIFGFTATSAQIEGEATAKGRAP	60
	*****	*****
pCAS5	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGMFNAFRMSISWSRVIPSGRR	120
2A.32	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGMFNAFRMSISWSRVIPSGRK	120
2A.52	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGMFNAFRMSISWSRVIPSGRR	120
2A.55	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGMFNAFRMSISWSRVIPSGRR	120
2A.62	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGMFNAFRMSISWSRVIPSGRR	120
	*****	*****
pCAS5	REGVNEEGIQFYNDVINEIISNGLEPFVTIFHWDTPQALQDKYGGFLSRDIVYDLYQAD	180
2A.32	REGVNEEGIQFYNDVINEIISNGLEPFVTIFHWDTPQALQDKYGGFLSRDIVYDLYQAD	180
2A.52	REGVNEEGIQFYNDVINEIISNGLEPFVTIFHWDTPQALQDKYGGFLSRDIVYDLYQAD	180
2A.55	REGVNEEGIQFYNDVINEIISNGLEPFVTIFHWDTPQALQDKYGGFLSRDIVYDLYQAD	180
2A.62	REGVNEEGIQFYNDVINEIISNGLEPFVTIFHWDTPQALQDKYGGFLSRDIVYDLYQAD	180
	*****	*****
pCAS5	LLFERFGDRVVKP威TNEPSAYVGFHDDGVFAPGRCSSWVRQCLAGDSATEPYIVAHN	240
2A.32	LLFERFGDRVVKR威TNEPSAYVGFHDDGVFAPGRCSSWVRQCLAGDSATEPYIVAHN	240
2A.52	LLFERFGDRVVKR威TNEPSAYVGFHDDGVFAPGRCSSWVRQCLAGDSATEPYIVAHN	240
2A.55	LLFERFGDRVVKR威TNEPSAYVGFHDDGVFAPGRCSSWVRQCLAGDSATEPYIVAHN	240
2A.62	LLFERFGDRVVKR威TNEPSAYVGFHDDGVFAPGRCSSWVRQCLAGDSATEPYIVAHN	240
	*****	*****
pCAS5	LLLSHAAAVHQRKYYQGTQKGKIGITLFTFWYEP LSDSKV DVQA AKTALDFMFLWMDP	300
2A.32	LLLSHAAAVHQRKYYQGTQKGKIGITLFTFWYEP LSDSE DVQA AKTALDFMFLWMDP	300
2A.52	LLLSHAAAVHQRKYYQGTQKGKIGITLFTFWYEP LSDSE DVQA AKTALDFMFLWMDP	300
2A.55	LLLSHAAAVHQRKYYQGTQKGKIGITLFTFWYEP LSDSE DVQA AKTALDFMFLWMDP	300
2A.62	LLLSHAAAVHQRKYYQGTQKGKIGITLFTFWYEP LSDSE DVQA AKTALDFMFLWMDP	300
	*****	*****
pCAS5	MTYGRYPTMVLADGKLIBGTDEESQLLRSYDFVGLQYYTAYYAEP I P P V D P K F R R Y K	360
2A.32	MTYGRYPTMVLADGKLIBGTDEESQLLRSYDFVGLQYYTAYYAEP I P P V D P K F R R Y K	360
2A.52	MTYGRYPTMVLADGKLIBGTDEESQLLRSYDFVGLQYYTAYYAEP I P P V D P K F R R Y K	360
2A.55	MTYGRYPTMVLADGKLIBGTDEESQLLRSYDFVGLQYYTAYYAEP I P P V D P K F R R N K	360
2A.62	MTYGRYPTMVLADGKLIBGTDEESQLLRSYDFVGLQYYTAYYAEP I P P V D P K F R R Y K	360
	*****	*****
pCAS5	TDSGVNATPYDLNGNLIGPQAYSSWFYIIFPKGIRHFLN YTKDTYNDPVIYVTENGVDNYN	420
2A.32	TDSGVNATPYDLNGNLIGPQAYSSWFYIIFPKGIRHFLN YTKDTYNDPVIYVTENGVDNYN	420
2A.52	TDSGVNATPYDLNGNLIGPQAYSSWFYIIFPKGIRHFLN YTKDTYNDPVIYVTENGVDNYN	420
2A.55	TDSGVNATPYDLNGNLIGPQAYSSWFYIIFPKGIRHFLN YTKDTYNDPVIYVTENGVDNYN	420
2A.62	TDSGVNATPYDLNGNLIGPQAYSSWFYIIFPKGIRHFLN YTKDTYNDPVIYVTENGVDNYN	420
	*****	*****
pCAS5	NESQPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENWNI GYTSRFG	480
2A.32	NESQPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENWNI GYTSRFG	480
2A.52	NESQPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENWNI GYTSRFG	480
2A.55	NESQPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENWNI GYTSRFG	480
2A.62	NESQPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENWNI GYTSRFG	480
	*****	*****
pCAS5	LYYVDYKNNLTRYPKKSAAHWFTRKFLNISVNANNIYELTSKDSRKVGKFYVM	531
2A.32	LYYVDYKNNLTRYPKKSAAHWFTRKFLNISVNANNIYELTSKDSRKVGKFYVM	531
2A.52	LYYVDYKNNLTRYPKKSAAHWFTRKFLNISVNANNIYELTSKDSRKVGKFYVM	531
2A.55	LYYVDYKNNLTRYPKKSAAHWFTRKFLNISVNANNIYELTSKDSRKVGKFYVM	531
2A.62	LYYVDYKNNLTRYPKKSAAHWFTRKFLNISVNANNIYELTSKDSRKVGKFYVM	531
	*****	*****

Figure 2 Multiple sequence alignment of derived amino acid sequences from four cDNA clones and pCAS5. The highly conserved TFNEP and VTENG motifs, containing the catalytic acid/base (Glu198) and catalytic nucleophile (Glu413), respectively, are underlined. The putative N-glycosylation sites are boxed. % ID indicates percent sequence identity to the amino acid sequence derived from pCAS5. *, single, fully conserved residue; :, conservation of strong group; ., conservation of weak group; -, no consensus.

be reasonably assumed to be catalytically active in cassava. Previously, three isozymes of cassava linamarase, with *pI* values of 4.3, 3.3 and 2.9 and a single molecular weight of 63,000, were identified by chromatofocusing column chromatography (Eksittikul and Chulavatanatol, 1988). However, the chromatofocusing procedure was done in pH ranged between 5-1, which did not cover the *pI* values of the four polypeptides derived in this study and that of the polypeptide derived from pCAS5, which exhibited *pI* values between 5.3-5.6. There may be many other isoforms of linamarase, which are expressed at different times or in different parts of the plant. So, the four cDNA sequences isolated in this report (2A.32, 2A.52, 2A.55 and 2A.62) would represent only a subset of a large number of glycosidase sequences presented in the cassava genome. The two other cDNA sequences (2A.29 and 2A.33) that contained mutations and hence premature terminations could represent "pseudogenes", or "dead genes". Pseudogenes are defined as genes of similar sequences to normal genes but contain disablements, such as frameshifts or stop codons in the middle of the coding region, such that their translation would result in non-functional products. So, it is noteworthy that pseudogenes can be transcribed, but the functions of some transcripts are not known (Snyder and Gerstein, 2003).

It is not uncommon to observe in plant genomes the existence of multigene family of family 1 β -glycosidase enzymes, of which cyanogenic β -glucosidases are a member. Indeed, at least 48 sequences (including 8 probable pseudogenes) of glycosidase have been identified in the genome of *Arabidopsis thaliana*. There may be 50 members of these enzymes in the rice genome, whereas at least 16 members were recognized in the maize genome (Xu *et al.*, 2004). The presence of multiple forms of enzymes may reflect functional redundancy among the gene products. On the other hand, plant may require a

variety of β -glycosidase enzymes, with distinct aglycone specificities or expression patterns, for catabolism of diverse β -glycosidic metabolites for their normal growth and development (Xu *et al.*, 2004).

In summary, six different cDNA clones of linamarase from cassava have been isolated by RT-PCR. Only four clones encode full-length polypeptides of linamarase. The nucleotide and amino acid sequences of these four clones revealed high sequence identity to the previously reported sequence of cassava linamarase. The full-length cDNA sequences obtained from this study will be used for further recombinant protein expression, site-directed mutagenesis and characterization in order to elucidate the structure-function relationships in this enzyme.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial supports from Kasetsart University Research and Development Institute and Thailand Research Fund, which have made this project possible.

LITERATURE CITED

- Eksittikul, T. and M. Chulavatanatol. 1988. Characterization of cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). *Arch. Biochem. Biophys.* 266: 263-269.
- Hughes, M.A., K. Brown, A. Poncoro, B.S. Murray, E. Oxtoby and J. Hughes. 1992. A molecular and biochemical analysis of the structure of the cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). *Arch. Biochem. Biophys.* 295: 273-279.
- Poncoro, A. and M.A. Hughes. 1992. *In-situ* localization of cyanogenic β -glucosidase (linamarase) gene expression in leaves of

- cassava (*Manihot esculenta* Crantz) using non-isotopic riboprobes. **Plant J.** 2: 821-827.
- Snyder, M. and M. Gerstein. 2003. Defining genes in the genomics era. **Science** 300: 258-260.
- Svasti, J., T. Phongsak and R. Sarnthima. 2003. Transglucosylation of tertiary alcohols using cassava β -glucosidase. **Biochem. Biophys. Res. Comm.** 305: 470-475.
- Xu, Z., L.L. Escamilla-Trevino and L. Zeng. 2004. Functional genomic analysis of *Arabidopsis thaliana* glycoside hydrolase family 1. **Plant Mol. Biol.** 55: 343-367.
- Yeoh, H.-H. 1989. Kinetic properties of β -glucosidase from cassava. **Phytochem.** 28: 721-724.

ลำดับนิวคลีโอไทด์และลำดับกรดอะมิโน
ของเอนไซม์ไซยาโนเจนิกเบต้า-กลูโคซิเดส (ลินามาราส) จากมันสำปะหลัง
Nucleotide and derived amino acid sequences of the cyanogenic beta-glucosidase (linamarase)
from cassava (*Manihot esculenta* Crantz)

ประชุมพร ทุนกุล และ นุสรา ทองทับทิม
Prachumporn Toonkool and Nusra Tongtubtim

บทคัดย่อ

มันสำปะหลังมีเอนไซม์ไซยาโนเจนิก เบต้า-กลูโคซิเดสหลายชนิด แต่ได้มีการรายงานลำดับนิวคลีโอไทด์ของ cDNA เพียงชนิดเดียวเท่านั้น (pCAS5) ในการศึกษาความสัมพันธ์ระหว่างโครงสร้างและการทำงานของเอนไซม์ไซยาโนเจนิก เบต้า-กลูโคซิเดส (ลินามาราส) ผู้จัดได้ทำการคลอน cDNA ของเอนไซม์ไซยาโนเจนิก เบต้า-กลูโคซิเดส จากมันสำปะหลังทั้งหมด 6 โคลน ด้วยปฏิกริยา reverse transcription-polymerase chain reaction โดยใช้ไพรเมอร์ที่มีลำดับเบสเหมือนกับลำดับเบสของ pCAS5 พบว่าลำดับนิวคลีโอไทด์ของทั้งหมด 6 โคลนที่ได้มีความเหมือนกับลำดับนิวคลีโอไทด์ของ pCAS5 ถึง 98-99% และพบว่า cDNA 4 โคลน จาก 6 โคลน จะมีลำดับกรดอะมิโนที่เหมือนกับลำดับกรดอะมิโนที่แปลผลได้จาก pCAS5 ถึง 98-99% ส่วน cDNA อีก 2 โคลน พบว่ามีลำดับนิวคลีโอไทด์ที่ทำให้แปลรหัสได้สายไปลีบเป็นไทด์ที่สั้นกว่าปกติ (เนื่องจากเกิด premature termination)

Abstract

Many isozymes of cassava cyanogenic β -glucosidase (linamarase) exist, but only one cDNA sequence (pCAS5) has been reported thus far. In order to study structure-function relationships in this enzyme, the cDNA of cassava linamarase was cloned for further expression and characterization. In this report, six different cDNA sequences of cyanogenic β -glucosidase from cassava were cloned by reverse transcription-polymerase chain reaction using primers designed from the sequence of pCAS5. Nucleotide sequences of all six clones showed between 98-99% sequence identity to the nucleotide sequence of pCAS5. Derived amino acid sequences from four cDNA clones showed between 98-99% sequence identity to that of pCAS5, while the other two cDNA clones contained nucleotide sequences that led to premature termination.

Key words: beta-glucosidase, linamarase, cassava, nucleotide sequence, amino acid sequence

Email address: fscippt@ku.ac.th

¹ ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

Department of Biochemistry, Faculty of Science, Kasetsart University.

Introduction

Cassava (*Manihot esculenta* Crantz) is an important crop due to the large storage roots which are a staple carbohydrate source for many populations worldwide. Young cassava leaves are also consumed by humans or used as animal feeds (Yeoh, 1989). However, both leaves and roots of cassava are cyanogenic, posing a potential health hazard to consumers. Cyanogenesis in cassava involves two cyanogenic glucosides (linamarin and lotaustralin) and sequential action of two enzymes (β -glucosidase and hydroxynitrile lyase). Normally, the glucoside substrates and the enzymes are kept in separate compartments. Exposure of these two cyanogenic glucosides to β -glucosidase, following tissue damage, results in their hydrolysis to yield glucose and an aglycone, which is acetone cyanohydrin or butanone cyanohydrin. These cyanohydrins may be broken down spontaneously or enzymatically by α -hydroxynitrile lyase to produce hydrogen cyanide (Eksittikul and Chulavatanatol, 1988 and Hughes *et al.*, 1992). The cyanogenic β -glucosidase, or linamarase, which is responsible for the first step of cassava cyanogenesis, is present in many parts of the plant, including petioles, stem, leaves, peels and tuber cortex. Physiologically, the enzyme plays an important role as a host defense against biological predators. Furthermore, an *in vitro* study has discovered the unique ability of cassava β -glucosidase in alkyl glucoside synthesis transferring glucose to a large variety of alcohol acceptors, while β -glucosidases from Thai rosewood and almond could not (Svasti *et al.*, 2003). This difference in enzymatic action may lie in slight variations in the amino acid sequences of β -glucosidases from various sources. So, it is of scientific interest to understand the molecular basis of enzymatic catalysis in cassava β -glucosidase. To achieve this, cassava β -glucosidase must be cloned and expressed as a recombinant protein, its nucleotide sequence mutated, the effects of mutation characterized. These procedures will help to identify amino acid residues responsible for transglucosylation activity.

A number of studies have shown the existence of multiple forms of cassava β -glucosidase (Eksittikul and Chulavatanatol, 1988 and Yeoh, 1989), however only a single cDNA clone of cyanogenic β -glucosidase (pCAS5) from cassava has been isolated thus far (Hughes *et al.*, 1992). The identity of other cassava β -glucosidase isozymes has not been reported. In this study, six different cDNA clones of cyanogenic β -glucosidase from cassava have been isolated by RT-PCR. Only four clones encode full-length polypeptides of cyanogenic β -glucosidase. The nucleotide and amino acid sequences of these four clones revealed high sequence identity to the previously reported sequence of cassava β -glucosidase. The full-length cDNA sequences obtained from this study will be used for further recombinant protein expression, site-directed mutagenesis and characterization in order to elucidate the structure-function relationship in this enzyme.

Materials and Methods

Total RNA was isolated from young cassava leaves (local varieties) using RNeasy extraction kit (QIAGEN, USA) and concentration estimated by absorbance at 260 nm. 0.2-5 μ g total RNA was converted into single stranded first strand cDNA fragment using 200 U SuperScript II reverse transcriptase (Invitrogen, USA) in the reaction containing 0.5 μ g oligo(dT)₁₂₋₁₈ primer, 10 nmol dNTP mix, and 10 mM DTT at 42 °C for 50 min and at 70 °C for 15 min. The RNA strand of the RNA:cDNA duplex was degraded by 2 U RNase H at 37 °C for 20 min. 1 μ L aliquot of the product was used as a template for PCR with 1 μ M each of CVLMF2 (5' TTC TTC AGC TAT CAG GGA TGC 3') and CVLMR2 (5' TGC TAG ATC ATT GGA GCT TCA 3') primers, 1.5 mM MgCl₂, 50 mM KCl, 0.1% Triton X-100, 0.2 mM of each dNTP and 2.5 U Expand HiFi DNA polymerase (Boehringer, Germany) in a 50- μ L reaction. All PCR reactions were done using a 94 °C initial denaturation for 2 min, 29 cycles of 94 °C for 60 s, 45 °C for 30 s, and 72 °C for 2 min, and a 72 °C final elongation for 8.5 min. The primer sequences correspond to bases 7-27 (sense) and bases 1677-1697 (antisense), respectively, of the cassava cyanogenic β -glucosidase cDNA clone pCAS5 reported previously (Hughes, *et al.*, 1992). The resulting RT-PCR product was gel-purified, ligated into pGEM-Teasy vector (Promega, USA) and transformed into *E. coli* DH5 α .

The nucleotide sequence of cDNA clones were determined by automated DNA sequencing (ABI 373A DNA sequencer). The nucleotide sequences obtained were translated into amino acid sequences using EMBOSS Transeq program. Alignment of nucleotide and amino acid sequences were done using ClustalW version 1.82. The physical and chemical parameters of the derived amino acid sequences were performed using ProtParam program.

Results and Discussion

Cloning of cDNA of cassava cyanogenic β -glucosidase

Total RNA (48 ng/ μ L) was extracted from young cassava leaves. Approximately 500 ng total RNA was used to synthesized first strand cDNA. PCR amplification of first strand cDNA yielded 1.7 kb PCR product (Fig. 1), which was then ligated into pGEM-Teasy vector and transformed into *E. coli* DH5 α . The nucleotide sequences of cloned RT-PCR products were determined by automatic sequencing, yielding six different cDNA clones, namely 2A.29, 2A.32, 2A.33, 2A.52, 2A.55 and 2A.62. Alignment of the nucleotide sequences from all six cDNA clones shows between 98-99% sequence identity to the previously reported nucleotide sequence of the cassava cyanogenic β -glucosidase cDNA clone pCAS5 (Hughes, *et al.*, 1992), and to each other (results not shown).

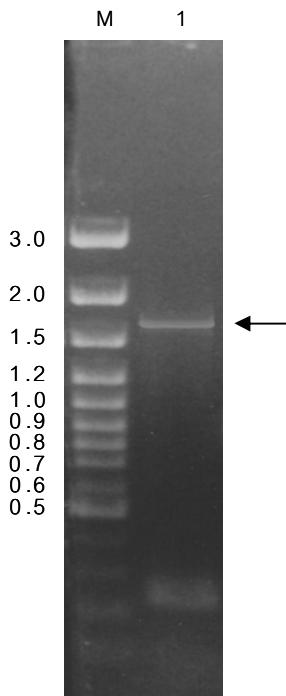


Fig. 1: cDNA of cyanogenic β -glucosidase from cassava (analyzed on 1% (w/v) agarose and stained with ethidium bromide). Lane 1, the 1.7 kb RT-PCR product (indicated by an arrow); M, DNA size marker.

Alignment of nucleotide and derived amino acid sequences of cassava cyanogenic β -glucosidase

The nucleotide sequences from 6 cDNA clones were translated and aligned. A thymine deletion in clone 2A.29, corresponding to position 570 in pCAS5, results in a frame-shift mutation from that position onward and a pre-mature termination 7 amino acids later. Also in clone 2A.33, an adenine-to-thymine substitution, corresponding to position 225 in pCAS5, results in a non-sense mutation at that position. So, only four cDNA clones, namely 2A.32, 2A.52, 2A.55 and 2A.62, encode the full-length amino acid sequence of cassava cyanogenic β -glucosidase. Alignment of the amino acid sequences derived from these four cDNA clones shows between 98-99% sequence identity to the previously reported amino acid sequence of the cassava cyanogenic β -glucosidase derived from pCAS5 (Hughes, *et al.*, 1992), and to each other (Fig. 2). All four predicted polypeptides contain the highly conserved TFNEP and VTENG motifs bearing the catalytic acid/base (Glu198) and catalytic nucleophile (Glu413), respectively. The five putative N-glycosylation motifs, NX(S/T), are also conserved. The polypeptides derived from cDNA clones were analyzed for their physical and chemical parameters (Table 1).

pCAS5	MLVLFISLLALTRPAMGTDDDDNIPDDFSRKYFPDDFIFGTATSAYQIEGEATAKGRAP	60	
2A.32	MLVLFISLLVLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGTATSAYQIEGEATAKGRAP	60	
2A.52	MLVLFISLLVLTRPAMGTDDDDNIPDDFSRKYFPDDFIFGTATSAYQIEGEATAKGRAP	60	
2A.55	MLVLFISLLALTRPAMGTDDDDNIPDDFSRKYFPDDFIFGTATSAYQIEGEATAKGRAP	60	
2A.62	MLVLFISLLALTPAMGTDDDDDI PGDFNRNYFPDDFIFGTATSAYQIEGEATAKGRAP	60	
	*****	*****	
pCAS5	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGNARFRMSISWSRVIPSGRR	120	
2A.32	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGNARFRMSISWSRVIPSGRK	120	
2A.52	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGNARFRMSISWSRVIPSGRR	120	
2A.55	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGNARFRMSISWSRVIPSGRR	120	
2A.62	SVWDIFSKETPDRILDGSGNDVAVDFYNRYIQDIKVNKKMGNARFRMSISWSRVIPSGRR	120	
	*****	*****	
pCAS5	REGVNEEGIQFYNDVINEIIISNGLEPFTVTFHWDPQALQDKYGGFLSRDIVYDYLQYAD	180	
2A.32	REGVNEEGIQFYNDVINEIIISNGLEPFTVTFHWDPQALQDKYGGFLSRDIVYDYLQYAD	180	
2A.52	REGVNEEGIQFYNDVINEIIISNGLEPFTVTFHWDPQALQDKYGGFLSRDIVYDYLQYAD	180	
2A.55	REGVNEEGIQFYNDVINEIIISNGLEPFTVTFHWDPQALQDKYGGFLSRDIVCDYLQYAD	180	
2A.62	REGVNEEGIQFYNDVINEIIISNGLEPFTVTFHWDPQALQDKYGGFLSRDIVYDYLQYAD	180	
	*****	*****	
pCAS5	LLFERFGDRVKPWMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQRQCLAGDSATEPYIVAHN	240	
2A.32	LLFERFGDRVKRWMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQRQCLAGDSATEPYIVAHN	240	
2A.52	LLFERFGDRVKRWMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQRQCLAGDSATEPYIVAHN	240	
2A.55	LLFERFGDRVKRWMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQRQCLAGDSATEPYIVAHN	240	
2A.62	LLFERFGDRVKRWMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQRQCLAGDSATEPYIVAHN	240	
	*****	*****	
pCAS5	LLLSHAAAVHQYRKYYQGTQKGKIGITLFTFWYEP LSDSKVVDVQAAKTALDFMFGLWMDP	300	
2A.32	LLLSHAAAVHQYRKYYQGTQKGKIGITLFTFWYEP LSDSEVDVQAAKTALDFMFGLWMDP	300	
2A.52	LLLSHAAAVHQYRKYYQGTQKGKIGITLFTFWYEP LSDSEVDVQAAKTALDFMFGLWMDP	300	
2A.55	LLLSHAAAVHQYRKYYQGTQKGKIGITLFTFWYEP LSDSEVDVQAAKTALDFMFGLWMDP	300	
2A.62	LLLSHAAAVHQYRKYYQGTQKGKIGITLFTFWYEP LSDSEVDVQAAKTALDFMFGLWMDP	300	
	*****	*****	
pCAS5	MTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGLQYYTAYYAEPIPPVDPKFRRYK	360	
2A.32	MTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGLQYYTAYYAEPIPPVDPKFRRYK	360	
2A.52	MTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGLQYYTAYYAEPIPPVDPKFRRYK	360	
2A.55	MTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGLQYYTAYYAEPIPPVDPKFRRNK	360	
2A.62	MTYGRYPRTMVDLAGDKLIGFTDEESQLLRSYDFVGLQYYTAYYAEPIPPVDPKFRRYK	360	
	*****	*****	
pCAS5	TDSGV[NAT]PYDLNGNLIGPQAYSSWFYIFPKGIRHFL[NYT]KDTYNDPVIYVTENGVDNYN	420	
2A.32	TDSGV[NAT]PYDLNGNLIGPQAYSSWFYIFPKGIRHFL[NYT]KDTYNDPVIYVTENGVDNYN	420	
2A.52	TDSGV[NAT]PYDLNGNLIGPQAYSSWFYIFPKGIRHFL[NYT]KDTYNDPVIYVTENGVDNYN	420	
2A.55	TDSGV[NAT]PYDLNGNLIGPQAYSSWFYIFPKGIRHFL[NYT]KDTYNDPVIYVTENGVDNYN	420	
2A.62	TDSGV[NAT]PYDLNGNLIGPQAYSSWFYIFPKGIRHFL[NYT]KDTYNDPVIYVTENGVDNYN	420	
	*****	*****	
pCAS5	NES[QPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENIGYTSRFG	480	
2A.32	NES[QPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENIGYTSRFG	480	
2A.52	NES[QPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENIGYTSRFG	480	
2A.55	NES[QPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENIGYTSRFG	480	
2A.62	NES[QPIEEALQDDFRISYYKKHMWNALGSLKNYGVKLKGYFAWSYLDNFENIGYTSRFG	480	
	*****	*****	
pCAS5	LYYVDYKN[NL]TRYPKKSAHWFTKFL[NL]VNANNIYELTSKDSRKVGKFYVM	531	% ID
2A.32	LYYVDYKN[NL]TRYPKKSAHWFTKFL[NL]VNANNIYELTSKDSRKVGKFYVM	531	99
2A.52	LYYVDYKN[NL]TRYPKKSAHWFTKFL[NL]VNANNIYELTSKDSRKVGKFYVM	531	99
2A.55	LYYVDYKN[NL]TRYPKKSAHWFTKFL[NL]VNANNIYELTSKDSRKVGKFYVM	531	99
2A.62	LYYVDYKN[NL]TRYPKKSAHWFTKFL[NL]VNANNIYELTSKDSRKVGKFYVM	531	98
	*****	*****	

Fig. 2: Multiple sequence alignment of derived amino acid sequences from four cDNA clones and pCAS5. The highly conserved TFNEP and VTENG motifs, containing the catalytic acid/base (Glu198) and catalytic nucleophile (Glu413), respectively, are underlined. The putative N-glycosylation sites are boxed. % ID indicates percent sequence identity to the amino acid sequence derived from pCAS5. *, single, fully conserved residue; :, conservation of strong group; ., conservation of weak group; -, no consensus.

Table 1: Physical and chemical parameters of the polypeptides derived from four cDNA clones.

Name	Number of amino acids	Molecular weight	Theoretical p/
pCAS5	531	61,372.9	5.52
2A.32	531	61,461.0	5.44
2A.52	531	61,488.1	5.62
2A.55	531	61,323.8	5.44
2A.62	531	61,370.8	5.35

The cDNA sequences reported here were synthesized from young cassava leaves, which had been shown to be the site of cassava cyanogenic β -glucosidase synthesis (Poncoro and Hughes, 1992). This is likely to produce different cyanogenic β -glucosidase transcripts from the previously reported cassava cyanogenic β -glucosidase cDNA sequence, pCAS5, which was extracted from yellow cotyledons (Hughes *et al.*, 1992). The four polypeptides predicted from the four cDNA clones are very similar to the previously reported cassava cyanogenic β -glucosidase, in terms of sequence identity, physico-chemical properties as well as the presence of the key motifs essential for catalytic activity. So, these four predicted polypeptides can be reasonably assumed to be catalytically active in cassava. Previously, three isozymes of cyanogenic β -glucosidase, with p/ values of 4.3, 3.3 and 2.9 and a single molecular weight of 63,000, were identified by chromatofocusing column chromatography (Eksittikul and Chulavatanatol, 1988). However, the chromatofocusing procedure was done in pH ranges between 5-1, which did not cover the p/ values of the four polypeptides derived in this study, as well as the previously reported sequence of cassava cyanogenic β -glucosidase (all exhibiting p/ values between 5.3-5.6). There may be many other isoforms of cyanogenic β -glucosidase, which are expressed at different times or in different parts of the plant. So, the four cDNA sequences isolated in this report (2A.32, 2A.52, 2A.55 and 2A.62) would represent only a subset of a large number of glycosidase sequences present in the cassava genome. The two cDNA sequences (2A.29 and 2A.33) that contain mutations and hence premature terminations could represent "pseudogenes", or "dead genes". Pseudogenes are defined as genes of similar sequences to normal genes but containing disablements, such as frameshifts or stop codons in the middle of the coding region, such that their translation would result in non-functional products. So, it is noteworthy that pseudogenes can be transcribed, and functions of some transcripts are not known (Snyder and Gerstein, 2003).

It is not uncommon to observe in plant genomes the existence of multigene family of family 1 β -glycosidase enzymes (of which cyanogenic β -glucosidases are a member). Indeed, at least 48

sequences (including 8 probable pseudogenes) of glycosidase have been identified in the genome of *Arabidopsis thaliana*. There may be 50 members of these enzymes in the rice genome, whereas at least 16 members were recognized in the maize genome (Xu *et al.*, 2004). The presence of multiple forms of enzymes may reflect functional redundancy among the gene products. On the other hand, plant may require a variety of β -glycosidase enzymes, with distinct aglycone specificities or expression patterns, for catabolism of diverse β -glycosidic metabolites for their normal growth and development (Xu *et al.*, 2004).

In summary, four full-length cDNA sequences of cassava cyanogenic β -glucosidase have been cloned. These cDNA clones will be subcloned into expression vectors, expressed as recombinant proteins and their functions tested. Active recombinant enzymes may be used for future protein engineering studies.

Acknowledgement

The authors would like to acknowledge the financial supports from Kasetsart University Research and Development Institute and Thailand Research Fund, which have made this project possible.

References

- Eksittikul, T., and M. Chulavatanatol. 1988. Characterization of cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). Arch. Biochem. Biophys. 266: 263-269.
- Hughes, M.A., K. Brown, A. Poncoro, B.S. Murray, E. Oxtoby, and J. Hughes. 1992. A molecular and biochemical analysis of the structure of the cyanogenic β -glucosidase (linamarase) from cassava (*Manihot esculenta* Crantz). Arch. Biochem. Biophys. 295: 273-279.
- Poncoro, A. and M.A. Hughes. 1992. *In-situ* localization of cyanogenic β -glucosidase (linamarase) gene expression in leaves of cassava (*Manihot esculenta* Crantz) using non-isotopic riboprobes. Plant J. 2: 821-827.
- Snyder, M. and M. Gerstein. 2003. Defining genes in the genomics era. Science. 300: 258-260.
- Svasti, J., T. Phongsak, and R. Sarnthima. 2003. Transglucosylation of tertiary alcohols using cassava β -glucosidase. Biochem. Biophys. Res. Comm. 305: 470-475.
- Xu, Z. L.L. Escamilla-Trevino, L. Zeng, et al. 2004. Functional genomic analysis of *Arabidopsis thaliana* glycoside hydrolase family 1. Plant Mol. Biol. 55: 343-367.
- Yeoh, H.-H. 1989. Kinetic properties of β -glucosidase from cassava. Phytochem. 28: 721-724.

การกลายพันธุ์ที่ตำแหน่งจำเพาะในช่องจับอะไกลโคนของเอนไซม์เบต้า-กลูโคซิเดสจากพะยูง

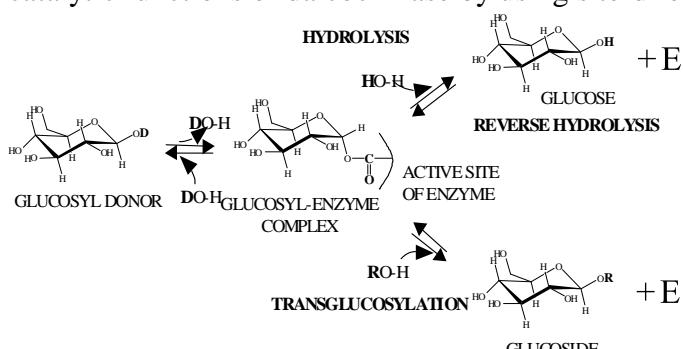
(*Dalbergia cochinchinensis* Pierre)

Site-directed Mutagenesis in the Aglycone Binding Pocket of Beta-Glucosidase from Thai Rosewood (*Dalbergia cochinchinensis* Pierre)

อมรรัตน์ อ่อนเปี่ยม¹, ชัยณุสรร สวัสดิวัตน์² และ ประชุมพร คงเสรี¹

Amornrat Onpium¹, Jisnuson Svasti² and Prachumporn Kongsaeree¹

¹ Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand.


E-mail: g4764163@ku.ac.th, Fax: (662) 561-4627

² Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 Thailand.

บทคัดย่อ: เอนไซม์เบต้า-กลูโคซิเดสไม่เพียงแต่สลายพันธะไกลโคนซึ่งเอนไซม์บังหนิดยังสามารถเร่งปฏิกิริยาข้อนการสลายและปฏิกิริยาการข้ามหมู่กลูโคสได้อีกด้วย ดัลโคชินส์ช่องเป็นเอนไซม์เบต้า-กลูโคซิเดสจากพะยูงทำหน้าที่กว่าในปฏิกิริยาข้อนการสลาย แต่เยกกว่าในปฏิกิริยาการข้ามหมู่กลูโคส เมื่อเปรียบเทียบกับลินามารส ซึ่งเป็นเอนไซม์เบต้า-กลูโคซิเดสจากมันสำปะหลัง เอนไซม์ทั้งสองต่างมีความจำเพาะกับสับสเตรทที่ต่างกัน (ดัลโคชินนิกลูโคไซด์และลินามาริน ตามลำดับ) ดังนั้นเอนไซม์ทั้งสองจึงมีความแตกต่างทั้งในเรื่องปฏิกิริยาและความจำเพาะต่อสับสเตรท ทั้งที่มีลำดับกรดอะมิโนคล้ายกันถึง 70% งานวิจัยนี้มีวัตถุประสงค์เพื่อหากรดอะมิโนที่มีความสำคัญต่อการทำงานของดัลโคชินส์ โดยการแทนที่กรดอะมิโนในช่องจับอะไกลโคนของดัลโคชินส์ด้วยกรดอะมิโนของลินามารส (H253F และ N323Q) ดัลโคชินส์กลায์พันธุ์ทั้งสองชนิดมีลักษณะคล้ายกับดัลโคชินส์ก่อนกลายพันธุ์ เมื่อพิจารณาจาก SDS-PAGE, western blot และ การขึ้นกิจกรรมเอนไซม์บน non-denaturing PAGE จากการเปรียบเทียบกิจกรรมของดัลโคชินส์กลায์พันธุ์และดัลโคชินส์ที่ต่างๆ พบว่ามีค่าลดลง แสดงว่าทั้ง H253 และ N323 อาจมีความสำคัญในการกำหนดความจำเพาะต่อสับสเตรท และการเร่งปฏิกิริยาของเอนไซม์ดัลโคชินส์

Abstract: β -Glucosidases not only hydrolyze of β -glucosidic linkage, but some also catalyze reverse hydrolysis and transglucosylation. Dalcochinase (Thai rosewood β -glucosidase) was better for reverse hydrolysis, but poorer for transglucosylation, when compared with linamarase (cassava β -glucosidase). Both enzymes also exhibit specificities for their natural substrates (dalcochinin glucoside and linamarin, respectively). So they show differences in catalytic properties and substrate preferences, despite sharing 70% amino acid sequence identity. This research aims to identify key amino acid residues for function of dalcochinase by replacing the residues in the aglycone binding pocket of dalcochinase with the corresponding residues of linamarase (H253F and N323Q). Mutant enzymes were expressed by *Pichia pastoris* and purified. Both mutants appeared similar to wild-type dalcochinase as judged by SDS-PAGE, western blot and activity staining on non-denaturing PAGE. The decrease in relative hydrolytic activities of both mutants towards various substrates, compared with natural dalcochinase, suggested that both H253 and N323 may play important roles in determining substrate specificity and catalytic functions of dalcochinase.

Introduction: β -Glucosidases catalyze the hydrolysis of β -glucosidic linkage between glycone (glucose) and aglycone group or other sugars. Furthermore, some of them exhibit additional capabilities in catalyzing reverse hydrolysis and transglucosylation reactions (Scheme 1). Different enzymes show a variety of natural substrate specificities. For example, Thai rosewood β -glucosidase, or dalcochinase, hydrolyzes dalcochinin glucoside, which is its natural substrate, but does not hydrolyze linamarin. In contrast, cassava β -glucosidase, or linamarase, hydrolyzes linamarin, which is its natural substrate, but does not hydrolyze dalcochinin glucoside. In terms of catalytic activities, dalcochinase catalyzes reverse hydrolysis well, but acts moderately in transglucosylation. In contrast, linamarase is poor in catalyzing reverse hydrolysis, but highly efficient in catalyzing transglucosylation. So these two enzymes show differences in catalytic properties and diverse substrate preferences even though they show 70% amino acid sequence identity. Therefore, we are interested in identifying the specific amino acid residues that play important roles in determining substrate specificity and catalytic functions of dalcochinase by using site-directed mutagenesis.

Scheme 1: Hydrolysis, reverse hydrolysis and transglucosylation reactions of β -glucosidases

Methodology: The three-dimensional structure of *Trifolium repens* β -glucosidase (1CBG) and the alignment of 1CBG, dalcochinase and linamarase were used to determine the amino acid residues that are different between dalcochinase and linamarase, and are likely located in the aglycone binding pocket. Site-directed mutagenesis was used to replace the amino acid residues of dalcochinase with the corresponding amino acid residues of linamarase, generating H253F and N323Q dalcochinase mutants. The mutant enzymes were expressed in *Pichia pastoris*, which were grown in minimal media plus 1% glycerol overnight at 30 °C, 200 rpm, and inoculated into minimal media plus 0.5% methanol and 0.5% casamino acid for 15 days for expression. The mutant enzymes were purified from culture media via phenyl sepharose chromatography, immobilized metal affinity chromatography (IMAC) and ultrafiltration centrifuge, respectively. The purified enzymes were characterized by SDS-PAGE and detected by monoclonal antibody against natural dalcochinase. Activities of purified enzymes on non-denaturing PAGE were detected by 1 mM 4-methylumbelliferyl- β -D-glucoside (4-MU-Glc). The activities of mutant and wild-type enzymes towards *p*-nitrophenyl glucoside (*p*NP-Glc), linamarin and dalcochinin glucoside were determined by incubating 20 mU enzyme with 2 mM substrate in 0.1 M sodium acetate, pH 5.0, at 30 °C for 5 min, and stopping the reaction by boiling for 2 min. The liberated glucose was measured by using glucose oxidase reagent and reading absorbance at 505 nm.

Results, Discussion, and Conclusion: H253 and N323 of dalcochinase were chosen for site-directed mutagenesis because their corresponding positions (V254 and N324,

respectively) are located in the aglycone binding pocket of 1CBG. Site-directed mutagenesis was used to replace H253 and N323 of dalcochinase into F and Q, which are the corresponding residues in linamarase (Fig. 1), thereby generating H253F and N323Q mutants, respectively. The mutant enzymes were cloned, expressed in *P. pastoris* and purified as described above. The purified mutant enzymes showed a broad protein band around 66 kD by SDS-PAGE, which were detected by monoclonal antibody against natural dalcochinase (Fig. 2, a and b). Both mutants were active when staining with 4-MU-Glc on non-denaturing PAGE (Fig. 3, a and b). The relative hydrolytic activities towards *p*NP-Glc, linamarin and dalcochinin glucoside of both mutant enzymes decreased when compared with natural dalcochinase (Table 1), suggesting that both H253 and N323 may play important roles in determining substrate specificity and catalytic functions of dalcochinase. Also, both mutants showed lower hydrolytic activities towards linamarin than linamarase, suggesting that F and Q were not involved in substrate specificity and catalytic functions of linamarase.

1CBG	240	250	260	270	280	290		
	238	KTKYQASQNGIIGITLVSHWFEPASKEKADVDAAKRGLDFMLGWFHPLTKGRYPESMRY					297	
TRglu	237	KRKYQEHQKGTIGISLHVWVPIPLSNSTSQNATQRYLDFTCGWFMDPLTAGRYPDSMQY					296	
CVLM	253	RKYYQGTQKGKIGITLFTFWYEPILSDSKVVDQAAKTA					312	
		LDMFGLWMDPMTYGRYPRTMVD						
			300	310	320	330	340	350
1CBG	298	LVRKRLPKFSTEESKELTGSFDFLGLNYSSYYAAKAPRIPNARPAIQTDSLINAT-FE-						355
TRglu	297	LVGDRLPKFTTDQAKLVKGSDFIGLNYYTTNYATKSDASTCCPPSYLTDPQVTLL-QQ-						354
CVLM	313	LAGDKLIGFTDESQLLRGSYDFVGLQYYTAYYAEPIPPVDPKFRRYKTDGVNATPYD-						371

Fig. 1: The alignment of 1CBG, dalcochinase (TRglu) and linamarase (CVLM). The shadow indicate the target sites for site-directed mutagenesis.



Fig. 2: SDS-PAGE of purified enzymes. (a) Coomassie stain; (b) Western blot.

Fig. 3: Non-denaturing PAGE of purified enzymes. (a) Coomassie stain; (b) staining with 1 mM 4-MU-Glc.

Table 1: Relative hydrolytic activities of dalcochinase, linamarase, and H253F and N323Q mutants, with respect to hydrolytic activity of dalcochinase towards *p*NP-Glc.

Substrates (2 mM)	Dalcochinase	Linamarase	H253F	N323Q
<i>p</i> NP-Glc	100.00	74.11	84.04	34.22
Linamarin	2.130	21.10	0.35	1.06
Dalcochinin glucoside	124.65	1.42	97.34	58.33

References:

- (1) Svasti, J., Phongsak, T. and Sarnthima, R.. (2003). *Biochem. Biophys. Res. Commun.* 305, 470-475.
- (2) Esen, A. (1993) β -glucosidase: overview. In β -Glucosidase Biochemistry and Molecular Biology. 1-14. American Chemical Society, Washington D.C.

Keywords: β -glucosidase, *Dalbergia cochinchinensis* Pierre, site-directed mutagenesis, substrate specificity, Thai rosewood, transglucosylation

การผลิตและการศึกษาคุณลักษณะของเอนไซม์เบ็ต้า-กลูโคซิเดสก์ไลพ์พันธุ์จากพะยุง

PRODUCTION AND CHARACTERIZATION OF MUTANT FORMS OF THAI ROSEWOOD β -GLUCOSIDASE

ឧមពុនធឌ ព្រែរិឈុនិ^១ ិមុំសរ សារិកិវិត្យ^២ និង ប្រជុំមនុស្ស គង់ស្រី^៣

Chompoonuth Porncharoennop¹, Jisnuson Svasti² and Prachumporn Kongsaeree³

¹ Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok 10900 Thailand.

E-mail: ddddeeeear@hotmail.com, Fax: (662) 561-4627

² Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 Thailand.

³ Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand.

บทคัดย่อ: เอนไซม์เบต้า-กลูโคซิเดสจากสิ่งมีชีวิตชนิดต่างๆ มีความจำเพาะต่อสับสเตรทที่ต่างกัน ด้ล็อกอชินสชีง เป็นเอนไซม์เบต้า-กลูโคซิเดสจากพะยูง มีความจำเพาะต่อดล็อกอชินนิ่น เบต้า-กลูโคไซด์ ขณะที่ลินามาราสชีงเป็นเอนไซม์เบต้า-กลูโคซิเดสจากมันสำปะหลัง มีความจำเพาะต่อลินามาริน ดล็อกอชินสามารถเร่งปฏิกิริยาข้อการสลายได้ดีแต่ร่างปฏิกิริยาการข้ายาน้ำกลูโคสได้ปานกลาง ในทางตรงข้ามลินามาราสสามารถเร่งปฏิกิริยาการข้ายาน้ำกลูโคสได้มากแต่ร่างปฏิกิริยาข้อการสลายได้น้อย งานวิจัยนี้จะทำการกลาษพันธุ์ดล็อกอชินส 2 ตำแหน่ง คือ I185A และ E455I โดยการแทนที่กรดอะมิโนในบริเวณที่คาดว่าทำหน้าที่จับหมู่อะไอลโคนของดล็อกอชินส ด้วยกรดอะมิโนของลินามารส ทำการโคลนดล็อกอชินสกลาษพันธุ์และให้มีการแสดงออกในเชลล์ *Pichia pastoris* แล้วสกัดให้บริสุทธิ์จากอาหารเลี้ยงเชื้อ ดล็อกอชินสกลาษพันธุ์ทั้ง 2 ตัว มีลักษณะคล้ายกัน ดล็อกอชินสกลาษพันธุ์ เมื่อวิเคราะห์โดย SDS-PAGE, western blot และ ย้อมกิจกรรมเอนไซม์บน non-denaturing PAGE ผลจากการเปรียบเทียบกิจกรรมการสลายสับสเตรทชนิดต่างๆ ของดล็อกอชินสกลาษพันธุ์ กับดล็อกอชินสกลาษพันธุ์และลินามารส ชี้ให้เห็นว่า เกาะ I185 เพียงตัวเดียวเท่านั้นที่น่าจะมีความสำคัญใน การจับกัน ดล็อกอชินนิ่น เบต้า-กลูโคไซด์ และ *p*-nitrophenyl β -glucoside

Abstract: β -Glucosidases from different organisms exhibit diverse substrate specificities. Dalcochinase (a β -glucosidase from Thai rosewood) shows specificity for dalcochinin β -glucoside, while linamarase (a β -glucosidase from cassava) has specificity for linamarin. Dalcochinase is capable of catalyzing reverse hydrolysis, but modest in catalyzing transglucosylation. In contrast, linamarase is excellent in catalyzing transglucosylation, but poor in catalyzing reverse hydrolysis. In this project, we constructed 2 dalcochinase mutants, namely I185A and E455I, by replacing amino acid residues that are likely located in the aglycone binding site of dalcochinase with the corresponding residues of linamarase. Mutant enzymes were cloned and expressed in yeast *Pichia pastoris*, and purified from culture media. Both mutants are similar to wild-type dalcochinase as shown by SDS-PAGE, western blot and activity staining on non-denaturing PAGE. Comparison of hydrolytic activities of mutant and wild-type enzymes towards various substrates suggested that only I185 may be important for binding to dalcochinin β -glucoside and *p*-nitrophenyl β -glucoside.

Introduction: β -Glucosidases (EC 3.2.1.21) are present in a wide range of organisms. They catalyze the hydrolysis of β -O-glucosidic linkage between D-glucose and

aglycone or another sugar. Apart from hydrolysis, β -glucosidases can catalyze reverse hydrolysis, giving glucose disaccharides and trisaccharides as products when using free glucose as substrate. They also catalyze transglucosylation reaction by transferring glucose from donor (*p*-nitrophenyl β -glucoside, pNP-Glc) to acceptor (alcohol) and giving alkyl glucoside as product. All β -glucosidases are similar in specificity for the glycone moiety, but some enzymes, especially plants' enzymes, show variable specificities for different aglycone moieties. For example, dalcochinase from Thai rosewood (*Dalbergia cochinchinensis* Pierre) is specific for dalcochinin β -glucoside, while linamarase from cassava (*Manihot esculenta* Crantz) is specific for linamarin. In addition, dalcochinase has high efficiency in catalyzing reverse hydrolysis, but linamarase has high efficiency in catalyzing transglucosylation. As a result of the differences in substrate specificities and abilities in catalyzing reverse hydrolysis and transglucosylation reactions, we are interested in delineating the structure-function relationships in plants β -glucosidases by using dalcochinase and linamarase as models.

Methodology: From the sequence alignment of *Trifolium repens* β -glucosidase (1CBG), dalcochinase and linamarase, and from the three-dimensional structure of 1CBG, the different residues between dalcochinase and linamarase that are likely located in the aglycone binding site were identified. Mutant enzymes, namely I185A and E455I, were generated by replacing amino acid residues of dalcochinase with the corresponding residues of linamarase by using QuickChang®II Site-Directed Mutagenesis Kit. Mutant enzymes were cloned in *Escherichia coli*, sequenced, and expressed in yeast *Pichia pastoris* under methanol induction. The cultures were grown in minimal media containing 1% glycerol overnight at 30 °C, 200 rpm. Then, they were inoculated into minimal media containing 0.5% methanol and 0.5% casamino acid and grown for 12 days for expression. The mutant enzymes were secreted into culture medium, and purified via phenyl sepharose column and Ni^{2+} ion affinity chromatography, respectively. Purified mutant enzymes were characterized by SDS-PAGE, western blot using monoclonal antibody against natural dalcochinase, as well as non-denaturing PAGE and staining with 1 mM 4-methylumbelliferyl- β -D-glucoside (4-MU-Glc). The hydrolytic activities of mutant enzymes and wild-type dalcochinase and linamarase were studied by incubating 0.02 U enzyme with 2 mM substrate (dalcochinin β -glucoside, linamarin and pNP-Glc) in 0.1 M sodium acetate, pH 5.0, in 0.1 ml reaction at 30 °C for 5 min. The reactions were stopped by boiling for 2 min. The glucose released was detected by adding 1 ml glucose oxidase reagent and measuring absorbance at 505 nm.

Results, Discussion, and Conclusion: The alignment of 1CBG, dalcochinase and linamarase identified several residues that are different between dalcochinase and linamarase (Fig. 1). Of these, we selected I185 and E455 in dalcochinase as our target sites for site-directed mutagenesis because their corresponding residues in 1CBG (G186 and S466) are located in the aglycone binding pocket in the structure of 1CBG. I185 and E455 were mutated into A and I, which were the corresponding residues in linamarase, generating I185A and E455I mutants, respectively. These mutants were cloned, expressed and purified as described. SDS-PAGE showed both mutants as a broad band with apparent molecular weight of 66-69 kD, which were detected by antibody against natural dalcochinase (Fig. 2, a and b). Both mutants showed activity towards 4-MU-Glc on non-denaturing PAGE (Fig. 3, a and b). Thus, these mutants are similar to wild-type dalcochinase. The hydrolytic activities of mutant enzymes towards

various substrates were compared with wild-type dalcochinase and linamarase (Table 1). I185A had lower ability for hydrolysis of dalcochinin β -glucoside and pNP-Glc than wild-type dalcochinase, but weakly hydrolyzed linamarin. E455I showed comparable activity towards dalcochinin β -glucoside and pNP-Glc to wild-type dalcochinase, but little activity towards linamarin. Thus, I185, but not E455, may be important for binding to dalcochinin β -glucoside and pNP-Glc.

	182	190	200	210	220	230	
1CBG	178WITLNEPWCVSMNAYAYGTFAPGRCSDWLKLNCTGGDSGREPYLAHYQLLAHAAAARLY						237
TRglu	177WITLNEPSIFTANGYAYGMFAPGRCSPSYNPTCTGGDAGTETYLVAHNLILSHAATVQVY						236
CVLM	193WMTFNEPSAYVGFAHDDGVFAPGRCSSWVNQCLAGDSATEPYIVAHNLLSHAAAVHQY						252
	420	430	440	450	460		
1CBG	414LLDTPRIDYYYRHLYYVLTAIG-DGVNVKGYFAWSLFDNMEWD	SGY	TVRFLVDFKNN				472
TRglu	413LIDTYRIDSYRHLFYVRYAIR-SGANVKGFFAWSLLDNFEWAEGYTSRFLYFVNYYTT-						470
CVLM	430LQDDFRISYYKKHMWNALGSLKNYGVKLGYFAWSYLDNFEN	GY	TSRFLYFVNYYDVKNN				489

Fig. 1 Sequence alignment of 1CBG, dalcochinase (TRglu) and linamarase (CVLM).

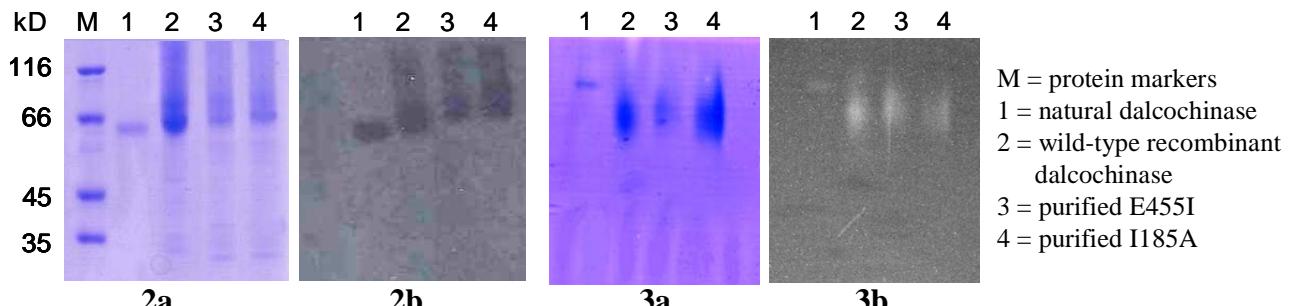


Fig. 2. SDS-PAGE of purified mutant enzymes. (a) Coomassie stain; (b) Western blot.

Fig. 3. Non-denaturing PAGE of purified mutant enzymes. (a) Coomassie stain; (b) staining with 4-MU-Glc.

Table 1. Hydrolytic activities of different β -glucosidases towards various substrates relative to activity of natural dalcochinase towards pNP-Glc.

Substrate (2 mM)	Natural dalcochinase	Linamarase	W/T recombinant dalcochinase	I185A	E455I
Dalcochinin β -glucoside	124.65	1.42	129.79	64.72	123.05
Linamarin	2.13	21.10	3.19	3.19	4.08
pNP-Glc	100.00	74.11	113.83	86.88	110.11

References:

- (1) Ketudat-Cairn, J.R., Champattanachai, V., Sriomsap, C., Wittman-Liebold, B., Thiede, B. and Svasti, J. (2000) *J. Biochem* **123**, 999-1008.
- (2) Srisomsap, C., Subhasitanont, P., Techasakul, S., Surarit, R. and Svasti, J. (1999). *Biotechnology Letters* **21**, 947-951.
- (3) Svasti, J., Srisomsap, C., Techasakul, S. and Surarit, R. (1999) *Phytochemistry* **50**, 739-743.
- (4) Svasti, J., Phongsak, T. and Sarnthima, R. (2003) *Biochemical and Biophysical Research Communications* **305**, 470-475.

Keywords: β -glucosidase, Thai rosewood, substrate specificity, transglucosylation, Site-directed mutagenesis

ผลจากการเกิดการกลายพันธุ์ในบริเวณจับอะไกโลโคนของเอนไซม์เบต้า-กลูโคซิเดสจากพะยูง
EFFECTS OF MUTATION IN THE AGLYCONE-BINDING POCKET OF THAI ROSEWOOD β -GLUCOSIDASE.

เพ็ญพร สุจิวัตนารัตน์¹, ชัยณุสรร สวัสดิวัตน์² และ ประชุมพร คงเสรี³

Penporn Sujiwattanarat¹, M.R. Jisnuson Svasti², Prachumporn Kongsaeree³

¹ Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok 10900 Thailand.

E-mail:beer_penporn@yahoo.com, Fax: (662) 561-4627

² Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400 Thailand

³ Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand

บทคัดย่อ: ตัดโโคชินสเป็นเอนไซม์เบต้า-กลูโคซิเดสจากพะยูง สามารถสลาย dalcochinin β -glucoside ซึ่งเป็นสับสเตรทธรรมชาติได้ ขณะที่ลินามาราสเป็นเอนไซม์เบต้า-กลูโคซิเดสจากมันสำปะหลัง จะสลายลินามารินได้ ตัดโโคชินสสามารถรับประภูมิริยาข้อนการสลายได้ดี แต่รับประภูมิริยาข้วยหมู่กลูโคสได้น้อย ในขณะที่ลินามารสรับประภูมิริยาข้วยหมู่กลูโคสได้ดี แต่ไม่มีประสิทธิภาพในการรับประภูมิริยาข้อนการสลาย ทั้งๆที่เอนไซม์ทั้งสองมีค่าดั้นกรดอะมิโนคล้ายคลึงกัน 60% ดังนั้นงานวิจัยนี้จึงสนใจศึกษาความสัมพันธ์ระหว่างโครงสร้างและหน้าที่ของเอนไซม์เบต้า-กลูโคซิเดส โดยหาตำแหน่งกรดอะมิโนที่สำคัญสำหรับรับประภูมิริยาการสลายสับสเตรทและประภูมิริยาข้วยหมู่กลูโคส งานวิจัยนี้ได้ทำการโคลนยีนของเอนไซม์ตัดโโคชินส ให้มีการแสดงออกในเชื้อ *Pichia pastoris* และทำเอนไซม์ให้บริสุทธิ์ เมื่อศึกษาค่าจลนพลศาสตร์ของรีกอมบิเนนต์ตัดโโคชินส พบว่ามีค่าคล้ายคลึงกับตัดโโคชินสธรรมชาติ จากนั้นทำการกลายพันธุ์ที่ตำแหน่งจำเพาะของยีนตัดโโคชินส โดยการแทนที่กรดอะมิโนในบริเวณจับอะไกโลโคนของตัดโโคชินสด้วยกรดอะมิโนที่ตำแหน่งที่ตรงกันของลินามาราส นั้นคือเอนไซม์กลายพันธุ์ N189F และ A454N จากการศึกษาจลนพลศาสตร์ของเอนไซม์กลายพันธุ์ทั้งสองชนิด พบว่าตำแหน่ง N189 และ A454 ของเอนไซม์ตัดโโคชินสไม่น่าจะมีส่วนเกี่ยวข้องกับการขับสลายลินามาริน แต่ตำแหน่ง N189 น่าจะเป็นตำแหน่งที่สำคัญต่อการย่อยสลาย *para-nitrophenyl- β -D-glucoside* และ *dalcochinin β -glucoside* เมื่อศึกษาการรับประภูมิริยาข้วยหมู่กลูโคสพบว่า เอนไซม์กลายพันธุ์ N189F มีประสิทธิภาพดีขึ้น ในการรับประภูมิริยาข้วยหมู่กลูโคสกับแอลกอฮอล์ชนิดปฐมภูมิ แต่ตำแหน่ง N189 และ A454 ของเอนไซม์ตัดโโคชินสไม่น่าจะมีส่วนเกี่ยวข้องกับการรับประภูมิริยาข้วยหมู่กลูโคสกับแอลกอฮอล์ชนิดที่二ภูมิและตติภูมิ

Abstract: Dalcochinase, a β -glucosidase from Thai rosewood, can hydrolyze dalcochinin β -glucoside that is its natural substrate, whereas linamarase, a β -glucosidase from cassava, hydrolyzes its natural substrate linamarin. Dalcochinase can catalyze reverse hydrolysis well, but shows low efficiency in transglucosylation. On the other hand, linamarase catalyses transglucosylation better than dalcochinase, but was not efficient in catalyzing reverse hydrolysis. Despite these differences, both enzymes have 60% amino acid sequence homology. Thus, this project is interested in studying the relationship between structure and function of β -glucosidase, particularly the identification of the amino acid residue that is important for hydrolysis and transglucosylation. The coding sequence of dalcochinase was cloned, expressed in yeast

Pichia pastoris, and purified. The recombinant enzyme exhibits similar enzymatic properties to natural dalcochinase. Mutant forms of dalcochinase (namely N189F and A454N) were generated by replacing amino acid residues located in the aglycone binding pocket of dalcochinase with the corresponding residues of linamarase. Kinetic analysis of both enzymes showed that both N189 and A454 were not involved in hydrolysis of linamarin, but N189 could be important for hydrolysis of *para*-nitrophenyl- β -D-glucoside and dalcochinin β -glucoside. In transglucosylation studies, N189F mutant could improve transglucosylation efficiency using primary alcohols as acceptors. However, neither N189 nor A454 was likely to be involved in transglucosylation using secondary and tertiary alcohols as acceptors.

References:

- (1) Chantragan Srisomsap et al. (1996) *Journal of Biochemistry*, **119**, 585-590.
- (2) Chantragan Srisomsap et al. (1999) *Biotechnology Letters*, **21**, 947-951.
- (3) Kriengsak Lirdprapamongkol and Jisnuson Svasti (2000) *Biotechnology Letters*, **22**, 1889-1894.
- (4) Mirjam Czjzek et al. (2000) *Proc. Natl. Acad. Sci. U.S.A.*, **97**, 13555-13560.
- (5) James R. Ketudat-Cairns et al. (2000) *Journal of Biochemistry*, **128**, 999-1008.
- (6) Jisnuson Svasti et al. (2003) *Biochemical and Biophysical Research Communications*, **305**, 470-475.

Keywords: β -glucosidase, Site-directed mutagenesis, Structure-function relationship, Dalcochinase, Transglucosylation

ชื่อเรื่อง: การผลิตและการศึกษาคุณลักษณะของเอนไซม์เบต้า-กลูโคซิเดสกัลยพันธุ์จากพะยูง

ผู้แต่ง: นางสาวชนพูนพ พรเจริญนพ

สังกัด: บัณฑิตมหาวิทยาลัยเกษตรศาสตร์

บทคัดย่อ: เออนไซม์เบต้า-กลูโคซิเดสจากสิ่งมีชีวิตชนิดต่างๆ จะมีความจำเพาะต่อสับสเตรทที่แตกต่างกัน โดยเฉพาะในส่วนของหมู่อะไอลโคน เออนไซม์ดัลโโคชีนส์ซึ่งเป็นเอนไซม์เบต้า-กลูโคซิเดสจากพะยูงมีความจำเพาะต่อคัลโโคชินินกลูโคไซด์ ขณะที่เอนไซม์ลินามาเรสซึ่งเป็นเอนไซม์เบต้า-กลูโคซิเดสจากมันสำปะหลัง มีความจำเพาะต่อลินามาริน เออนไซม์ดัลโโคชีนส์สามารถเร่งปฏิกิริยาขั้นการสลายได้ดี แต่เร่งปฏิกิริยาขั้ยหมู่กลูโคสได้ปานกลาง ในทางตรงกันข้ามเอนไซม์ลินามาเรสสามารถเร่งปฏิกิริยาขั้ยหมู่กลูโคสได้ค่อนข้างมาก แต่เร่งปฏิกิริยาขั้นการสลายไม่ได้ งานวิจัยนี้จึงสนใจที่จะศึกษาถึงความสัมพันธ์ระหว่างโครงสร้าง และการทำงานของเอนไซม์เบต้า-กลูโคซิเดส เพื่อหาตัวแหน่งของกรดอะมิโนในบริเวณช่องจับกับหมู่อะไอลโคน ที่น่าจะมีความสำคัญต่อความจำเพาะต่อสับสเตรท และการเร่งปฏิกิริยาขั้ยหมู่กลูโคส ในงานวิจัยนี้ได้สร้างเอนไซม์ดัลโโคชีนสกัลยพันธุ์ 4 ชนิด คือ I185A V255F G367S และ E455I โดยการแทนที่กรดอะมิโนในบริเวณที่คาดว่าทำหน้าที่จับกับหมู่อะไอลโคนของเอนไซม์ดัลโโคชีนส์ด้วยกรดอะมิโนของเอนไซม์ลินามาเรส ทำการโคลน และให้มีการแสดงออกในยีสต์ *Pichia pastoris* จากนั้นสกัดให้บริสุทธิ์จากอาหารเลี้ยงเชื้อ จากการศึกษาค่าจลนพลศาสตร์ของเอนไซม์ดัลโโคชีนสกัลยพันธุ์ทั้ง 4 ชนิด พบว่าเอนไซม์กลাযพันธุ์ I185A V255F G367S และ E455I ไม่ทำให้เอนไซม์สลายลินามารินได้ แต่ลดค่า K_m ในการสลายดัลโโคชินินกลูโคไซด์ เออนไซม์กลাযพันธุ์ I185A และ E455I ทำให้ค่า K_m ในการสลาย *para*-nitrophenyl- β -D-glucopyranoside (*p*NP-Glc) เพิ่มขึ้น นอกจากนี้เอนไซม์กลাযพันธุ์ทั้ง 4 ชนิดทำให้เอนไซม์มีประสิทธิภาพในการสลายดัลโโคชินินกลูโคไซด์ และ *p*NP-Glc น้อยลงมาก เมื่อศึกษาการเร่งปฏิกิริยาขั้ยหมู่กลูโคสพบว่าเอนไซม์กลাযพันธุ์ I185A และ V255F เพิ่มความสามารถในการเร่งปฏิกิริยาขั้ยหมู่กลูโคสโดยใช้แอลกอฮอล์ปฐมภูมิ และแอลกอฮอล์ทุติยภูมิเป็นตัวรับ อย่างไรก็ตามเอนไซม์ดัลโโคชีนสกัลยพันธุ์ทั้ง 4 ชนิด ยังไม่สามารถเร่งปฏิกิริยาขั้ยหมู่กลูโคสโดยใช้แอลกอฮอล์ตติยภูมิเป็นตัวรับได้เลย

คำสำคัญ: เออนไซม์เบต้า-กลูโคซิเดส, ความจำเพาะต่อสับสเตรท, ปฏิกิริยาการสลาย, ปฏิกิริยาขั้นการสลาย, ปฏิกิริยาขั้ยหมู่กลูโคส

ผู้เขียนที่สามารถติดต่อได้: นางสาวชนพูนพ พรเจริญนพ

E-mail: chom_poonuth@hotmail.com, c.porncharoennop@gmail.com