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Structural Properties and Nanohardness of ZrTiN Thin Films Grown
by D.C. Reactive Magnetron Sputtering

Satreerat Kampangkeaw Hodak Temo Seppéanen and Sukkanate Tungasmita

Abstract

This research work presents the structure properties and nanohardness of ZrTiN thin films
grown by d.c. reactive magnetron sputtering. The ternary nitride (Zr,Ti)N thin films were
grown on silicon substrates by ion-assisted dual d.c. reactive magnetron sputtering
technique. The substrates were exposed to ion bombardment with varying Kinetic energy
in the range of 3-103 eV under N/Ar ratio of 1:3. The (ZrosTio4)N was formed at all
growth conditions. X-ray diffraction measurement indicates the presence of (Zr,Ti)N solid
solution with (111) and (200) preferred orientations. The (200) orientation is only present
when the films are grown at ion bombardment energies higher than 33 eV. Optimum
conditions for film growth produced hardness in the range of 27-29 GPa.

Keywords: (Zr,Ti)N coatings, magnetron sputtering, ion-assisted
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UNAANED

The ternary nitride (Zr, Ti)N thin films were grown on silicon substrates by ion-assisted
dual d.c. reactive magnetron sputtering technique. The substrates were exposed to ion
bombardment with varying kinetic energy in the range of 3-103 eV under N/Ar ratio of 1:3. The
(Zr 06Ti 04)N was formed at all growth conditions. X-ray diffraction measurement indicates the
presence of (Zr,Ti)N solid solution with (111) and (200) preferred orientations. The (200)
orientation is only present when the films are grown at ion bombardment energies higher than 33
eV. Optimum conditions for film growth produced hardness in the range of 27-29 GPa.
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Abstract. The ternary nitride (Zr. T1)N thin films were grown on silicon substrates by 1on-assisted
dual d.c. reactive magnetron sputtering technique. The substrates were exposed to 1ion bombardment
with varving kinetic energy in the range of 3-103 eV under N/Ar ratio of 1:3. The (ZrgsT14)N was
formed ar all growth condirions X-ray diffraction measurement indicates the presence of (Zr TiN
solid solutton with (111) and (200) preferred omentations. The (200} orientation 15 only present
when the films are grown at 10n bombardment energies lugher than 33 eV. Optimum conditions for
film growth produced hardness in the range of 27-29 GPa.

INTRODUCTION

Zircomium nitrides (ZrN) and titanium nitnides (TiN) film coatings have been successfully applied
as a protacrive laver on the cutting tools, dies and some industrial machine components due to their
hardness and wear resistance [1-4]. Due to their low electrical resistivity and high melting point,
ZrIN and TiN have been used as electrical contacts 1m mucroelectronic applications [3]. Recently, the
ternary mitride (Zr. TON films have been extensively studied because they exlubit enhanced
hardness. These nitnides have attracted attention as decorative coating owing to their gold-like color
[6]. In addition. films of solid solutions of (Zr. Ti)N show composition tunable color. crystal
structure, surface morphology and the electrical resistivity [1.7-8]. In optoslectronic applications,
(Zr. T1)N 15 also used as the buffer laver for the epitaxial laver growth of In Al N material [9]. It
was found that highest hardness 1s obtained for films with nearly stoichiometry. The chemical
composition of the film can be varied to a verv small extent by using TiZr alloy targets in sputtering
process due to the fixed ratio To/'Zr. In tlus worlk, ternary (Zr. TN thun films were grown on silicon
{(100) substrates using dual d.c. reactive magnetron sputtering from separate metal targets of pure
zircomum and titanium. By controlling the individual fluxes. a solid solution with (ZrggTipa)IN
stoichiometry was obtained. Furthermore. the effects of the ion bombardment on the crystal
structure, microstructure and hardness of the (Zr. TN films were investigated.

EXPERIMENTAL

The (Zr. T1)N thin films were grown on silicon (100) substrates by ion-assisted dual reactrve d.c.
magnetron sputtening deposition. Prior the growth, the substrates were ultrasomically cleaned;
subsequently rinsed with trichroloethylens (TCE). acetone. alcohol and deionized water. The thin
native oxide laver on the surface of the substrate was removed by an acid etching in 10% agqueous
HF for 20 sec. ninsed throughlv with detonized water, and dned under a stream of drv Na. The
substrates were mounted on a p-BIN coated heating stage and placed m a vacuum with base pressure
at about 2.0 x 107 Torr. The substrates were heated and maintained at a temperature of 600 °C.
Sputtering proceeded from separate metal targets of zircommum and ttanmwm with high purnty
(99.999%%). The chamber pressure was maintained at 4 mTorr with a N/Ar ratio of 1:3. The Zr and
Ti fluxes were adjusted to vield the closest possible composition to a 1:1 TiZr stoicluometry in the
films. The target-to-substrate separation was fixed at 10 cm. The sputtening was accomplished with
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a 300W radiofrequency generator under constant current mode. Films were deposited for a series of
substrate bias 0, -30V, -60V and -100V with respect to ground. By applying negative bias to the
substrate, an electric field was created above the substrate surface in which results in accelerating of
positive 1ons towards the substrate during the film growth. The deposition time was kept at 60
minutes for every sample.

The structure of the deposited (Zr. THN films was characterized by X-rav diffraction (XED) using a
Bmker D8 Discover X-ray Diffractometer. The chemical composition and topography of the films
were evaluated vsing Jeol TSM-6480LV scanning electron microscope (SEM), equipped with the
Oxford-Inca energy dispersive spectroscopy (EDS). The surface morphology and roughness of all
the samples were mvestigated by using a2 Veeco Nanoscope-V atomic force microscope {AFM)
equipped with a diamond Berkovich-tvpe indenter tip.

RESULTS AND DISCUSSION

Composition of the films. The maximum kinetic energy of the arriving 1ons { £,) can be varied

by contrelling the bias voltage according o |£| =g

V.- I| [10]. where I is the plasma potential

and I7, is bias voltage applied to the substrate. The substrate negative bias values used during film

growth correspond to ion kinetic energies of 3. 33, 63 and 103 eV. The elemental compositions of
the films obtained at different kinetic energy of the impinging ions are shown in Fig 1. The
(Z1gsTip4)N stoichiometry of the films was found to be nearly independent of the ton bombardment
energy in the studied range. In general the partial pressures of reactive gases strongly affect the
stoichiometry of the growing films. It has been found that nitrogen content in the films increases
almost linearly with increasing the partial pressure of Ny during growth [11]. The ratio between the
Ar and N, partial pressures used in owr experiments was found fo yield equimelar N fo metal
composition in (Zr, TN films. For our growth conditions, the Zr:Ti ratio in the films was about
322 2001, The small fluctuation in nitrogen content is within the error of the EDS measurement
which is typically large for light elements.
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Fig. 1. Chemical compositions of (Zr, T1)N film deposited on silicon (100} substrates at different
kinetic energy ( £ ) of the impinging ions.
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Crystal sirncture and morphology of the films. Figure 2 shows the X-ray diffraction patterns
of the (Zr TH)N films with varving kinetic energies of ions bombarding to the substrate. The
diffraction maxima occur in the vicinity of 28 =35". The (111} orientation for pure ZrN and TiN
have diffraction maxima at 26 =33.9° and 28 =36.1". respectively. This is consistent with the
small mismatch between the (face centered cubic) lattice parameter for bulk ZeN (4.574 47) and
Til¥ (4.242 4% It 15 then concluded that our films are a homogeneous solid solution rather than a
phase separated mixture of Z1N and TilN crystallites. The (111) orientation peak dominates the
diffraction pattern for all samples, indicating a strong (111) preferred orientation. The difference
between the growth temperamire and the melting point of the marterials is quite large. Therefore, our
film deposition conditions favor a kineticallv controlled growth. As the energy of the 1on irradiation
energy increased above ca. 33 eV, the more stable {200) orentation develops. The bombardment of
ions causes an increased mobility of the adatoms on the surface, allowing for a more efficient
sampling of the potential energy landscape. This leads to the minimization of the surface energy,
which 15 the combination between the surface free energy, s, and strain energy, Eg The strain
energy increases as the thickness of the film increases. Because the surface free energy remains
nearly constant, the total surface energy also increases with film thickness. Higher energy ion
bombardment. also assists in changing ornientation of small (Zr. T1)IN domains further lowering the
total surface free energy. The growth duration used in our film depositions produced thickness
larger than the critical thickness for which the film strain favers the formation of the (111)
orientation [12]. The lattice constant for the films first decreases and then it increases with the
mmpinging ion kinefic energy. The values obtained from fits to the diffractograms are 4441 4°,
443147 4451 A7and 4454 47 The deviation in lattice constant is consistent with the observed
variations in the T1/Zr ratio shown in Fig 1. The peak broadening is caused by the internal stress and
disorder induced by the appearance of the (200) orientation.
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Fig. 2 X-ray diffraction pattern of (Zr. T1)N films depeosited for a range of substrate bias (3 eV, 33
eV, 63 eV and 103 eV,
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Figure 3 shows the surface morphelogy and the cross-sectional internal microstructure of the film
for different impinging ion kinetic energies. The film thickness 1s in the range of 1.3-3.0 ym. Th

columnar microstructure 15 apparent from the crossectional SEM images for all our growt
conditions. These SEM micrographs are in consistent with the resulis from transmission electror
microscopy {data not shown). The thickest film was obtained when the substrate was at grouw
potential. In contrast, with no external energy which could allow the species to hop around, th
deposited species spend less time to find the minimum energy before more material arrives
However the film grown at zero bias appears to be more crystalline than the film grown at lugl
negative bias, as evidenced by the X-rav peak broadening. Structural defects and pores may b
formed by re-sputtering under high negative bias [13], especially when the ion-assisted energ
exceeds a critical energy [2]. The crystal facets on the surface of the film also are bigger for film
that have grown thicker, in parficular at high impinging ion kinetic energies. The average root
mean-square ronghness of films obtained quantitatively by atomic force microscopy analvsis 15 o
the range of 7-11 nm.

Fig 3. Plane view and cross-sectional scanning electron micrographs of (Zr, Ti)N films
deposited with different impinging ion energy ( ) : Plane view (a) 3 eV, (b) 33 eV, (c) 63 eV
and (d) 103 eV. Cross section (&) 3 eV, (f) 33 eV, {g) 63 eV and (h) 103 V.
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Hardness of the film: The hardness of the films obfained from nanoindentation measurements
also shows the effects of the impinging ion kinetic energy. The average value of the hardness for
each film was obtained from six indentations performed on separate points of each sample. To
minimize the influence of the substrate on the measurements, the indentation depth was chosen to
be less than 1/10%™ of the film thickness in which the average film thickness 15 2.5 ym. The
calculated hardness using the method of Oliver and Pharr [14] as a function of impinging ion kinetic
energy are presented in Fig 4. The hardness of the films mcreased from 23 GPa to 29 GPa as the
kinetic energy of bombarded 1ons to the film varied in the 3-103 eV.
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Fig. 4. Effect of the substrate bias voltage on the hardness of the (Zr, T1) films.

The increase in hardness of the films is rather gradual as the bias of the substrate 1z set to more
negative values. We believe that the kinetic energy and momentom of 1ons in the plasma nearby the
substrate surface transferring to the surface atoms increases with increasing the bias voltage, in
which 1t was attributed to the enhancement of film hardness by increasing the adatom surface
mobility and promote the domain boundary annihilation as film thickness increases. These can
result in a denser mucrostructure of the films, bigger domain size and reduce the defect density,
However, increasing the energy of 1on irradiation more than a critical energy can cause an influence
on porosity of the film which affects the properties of the films due to re-crystallization and re-
sputter processes, which can increase the defect density in the film microstmucture [12].

Summary: The nearly stoichuometry of ZrpgTipgyN films on silicon (100} substrates can be
aclueved at our growth condition by ion-assisted dual d.c. reactive magnetron sputtering technique.
Ton-assisted energy corresponding to the substrate bias i1s an important growth parameter which can
be used to modify microstructure and mechanical properties of the {Zr, TN film coatings via the
growth mechanism. The film thickness reached a few microns cansing a predeminance of the (111)
crystal orientation. The strain energy becomes the dominant factor for the film microstructure. The
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(200 orientation was seen to occur at intermediate to high energy of the impinging ion kinetic
energy. The deviation in lattice constant and peak broadening of the film were observed at higher
bias voltage resulting from the increase of the stress and possible void defects in the film. However,
the hardness of the films gradually immcreases with increasing assisted ion energy or negative
substrate bias. The number and the size of growth defects could be reduced and also the denser
films can be achieved when the ion bombardment with optimum kinetic energy was applied to the
substrate. Although the microstructure of the films may have deteriorated due to the formation of
voids or inter-domain stresses, the film hardness was enhanced. Lastly. by increasing £ . the surface
mobility during the film formation can be modified without increasing the deposition temperatre,
leaving an extra degree of freedom for film fabrication.
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