บทคัดย่อ

รหัสโครงการ: MRG4980136

ชื่อโครงการ: การประดิษฐ์แก้วเซรามิกที่ประกอบไปด้วยผลึกเฟอร์โรอิเล็กตริก

ระดับนาโน

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. กมลพรรณ เพ็งพัด

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ 50200

E-mail Address: kpengpat@gmail.com

ระยะเวลาโครงการ: 2 ปี

คำหลัก: บิสมัทเจอร์มาเนต สมบัติไดอิเล็กทริก แก้วเซรามิก โครงสร้างจุลภาค

ในงานวิจัยนี้ ได้ทำการปลูกผลึกบิสมัทเจอร์เมเนต ซึ่งเป็นสาร (Bi₂GeO₅)เฟอร์โรอิเล็กทริกไร้สารตะกั่วชนิดใหม่ลงในแก้วระบบ BiO_{1.5}-GeO₂-BO_{1.5} ในอัตราส่วนเท่ากับ $0.59 {
m BiO}_{1.5}$: $0.23 {
m GeO}_2$: $0.18 {
m BO}_{1.5}$ โดยทำการเตรียมด้วยวิธีการหลอมแบบดั้งเดิมใน 2 รูปแบบ คือ วิธีการหลอมโดยใช้ถ้วยอะลูมินา และวิธีการหลอมโดยใช้ถ้วยแพลทินัม ตามลำดับ จากนั้นจึงนำแก้วที่ได้ไปทำการวิเคราะห์ทางความร้อนด้วยเทคนิค DTA เหมาะสมในการปลูกผลึก Bi₂GeO₅ จากผลการตรวจสอบ พบว่า อุณหภูมิที่เหมาะสมต่อการตก ผลึกของแก้วที่หลอมด้วยถ้วยอะลูมินาและแพลทินัม คือ 545°C และ 475°C ตามลำดับ จากนั้นจึงนำชิ้นงานที่ผ่านการตกผลึกที่อุณหภูมิดังกล่าวไปทำการวิเคราะห์เฟสองค์ประกอบที่ เกิดขึ้นด้วยเทคนิค XRD และตรวจสอบสมบัติทางกายภาพ สมบัติทางไฟฟ้า โครงสร้างจุลภาค ตามลำดับ จากการทดลอง พบว่า แก้วเซรามิก Bi₂GeO₅ ที่เตรียมได้จากการ หลอมด้วยถ้วยหลอมแพลทินัมมีสมบัติทางไฟฟ้าที่สูงกว่าแก้วเซรามิกที่เตรียมด้วยถ้วยหลอม อะลูมินา โดยมีค่าคงที่ไดอิเล็กทริก ค่าการสูญเสียไดอิเล็กทริก และค่าสภาพนำไฟฟ้าเท่ากับ 73.9914 0.0063 และ 0.0698 S/m ตามลำดับ

Abstract

Project Code: MRG4980136

Project Title: The fabrication of glass ceramics consisting of ferroelectric

nanocrystals

Investigator: Asst. Prof. Dr. Kamonpan Pengpat

Department of Physics, Faculty of Science, Chiang Mai University

E-mail Address: kpengpat@gmail.com

Project Period: 2 회

Keywords: Bi₂GeO₅; Dielectric properties; Glass-ceramics; Microstructure

In this research, the fabrication of glass ceramics containing lead free Bi_2GeO_5 crystals has been carried out. The Bi_2GeO_5 crystals, having orthorhombic structures were precipitated in the $BiO_{1.5}$ - GeO_2 - $BO_{1.5}$ glass system. The study is focusing on the region of 59 mol% $BiO_{1.5}$: 23 mol% GeO_2 : 18 mol% $BO_{1.5}$. The glasses were prepared by conventional melt-quenching method. The composition of glasses was melted separately in an AI_2O_3 and Pt crucible in an air atmosphere. The resulting glasses were analyzed by using Differential thermal analysis (DTA) for determining the crystallization temperature (T_X). After that, the glasses were heat treated at their T_X (s). The as-received glass ceramics from both AI_2O_3 and Pt crucibles were investigated in terms of phase composition by X-ray diffraction (XRD). Physical properties, electrical properties and their morphologies of the Bi_2GeO_5 glass ceramics from different crucibles were also carried out. It was found that Bi_2GeO_5 glass ceramics melted from Pt crucible have better electrical properties than that of the Bi_2GeO_5 glass ceramics melted from AI_2O_3 crucible. Dielectric constant, dielectric loss and conductivity values of the optimum glass ceramics were 73.9914, 0.0063 and 0.0698 S/m, respectively.