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The use of evolutionary algorithms for structural topology optimisation is said to be ineffective due to

a considerably large number of topological design variables. However, such a problem can be alleviated

by using additional numerical techniques. This paper presents the applications of simulated annealing

(SA) for solving structural topology optimisation. The numerical technique termed multiresolution design

variables (MRDV) is proposed as a numerical tool to enhance the searching performance of SA when

dealing with topology optimisation. The approximate density distribution (ADD) and chromosome re-

pairing techniques are employed to deal with checkerboard patterns and multiple disconnected areas

on the structural topologies. The SA strategies using various sets of MRDV are implemented to solve a

number of structural topology optimisation problems. The results obtained from the various optimisation

strategies are illustrated and compared. The effect of using many resolutions of design variables on SA's

searching performance is investigated. It is shown that the technique of MRDV is a powerful tool for the

performance enhancement of SA when solving structural topology optimisation. The structural topologies

obtained from employing the presented approach are comparable to those obtained from the classical

gradient-based method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Topology optimisation is an effective design tool for a variety of

engineering applications. For example, it can be used in the concep-

tual design stage of structural, mechanical and automotive compo-

nents, e.g. in [1,2]. Also, it is applicable to the synthesis of compliance

mechanisms [3,4]. Much research work has been made towards this

design technology as mentioned in [5]. The design process is usually

carried out by using an optimiser for problem solving and finite ele-

ment (FE) analysis for function evaluation. The well-established ap-

proaches for topology optimisation are solid isotropic material with

penalisation (SIMP) [5], homogenisation method [6], and evolution-

ary structural optimisation [7].

The most preferable optimisers for the topological design prob-

lem are gradient-based methods such as optimality criteria method

(OCM) [8], the method of moving asymptotes (MMA) [5] and sequen-

tial linear programming (SLP) [9]. There have been some attempts

to use evolutionary algorithms (EAs) for this type of optimisation

problem [10,11] and it was found that their search performances are

incomparable to the gradient-based methods. This is because most

∗ Corresponding author.
E-mail address: sujbur@kku.ac.th (S. Bureerat).

0168-874X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.finel.2008.04.002

if not all of topology optimisation problems have a great many design

variables. Since the EAs somewhat base their searching strategies on

randomisation, they are not as powerful when solving such a large-

scale design problem.

As a result, a number of numerical strategies have been devel-

oped and employed so that the search performance of EAs for both

single and multiobjective topology optimisations is improved, such

as in [12--15]. Using an approximate density distribution (ADD) tech-

nique as presented in [16] was found to be powerful and effec-

tive for single objective design cases. It is a simple trick used for

reducing a number of design variables whilst slightly affecting a

topological design domain. It can also be used for suppression of

checkerboard patterns on the resulting topologies [3]. Furthermore,

from the numerical investigation in [16,17], it has been shown that

the mutation-based optimisation methods such as simulated anneal-

ing (SA) are more efficient than the other EAs when solving large-

scale topological design problems with single objective functions.

The results obtained from using such methods can even be com-

pared to the optimum results from the gradient-based approaches,

although they still require more function evaluations. With an im-

proved searching performance, using EAs for topology optimisation

would be advantageous since they can deal with unconventional

topological design problems, which may be difficult or even impos-

sible to be solved by using the gradient-based optimisers.

Please cite this article as: S. Bureerat, J. Limtragool, Structural topology optimisation using simulated annealing with multiresolution design variables,
Finite Elem. Anal. Des. (2008), doi: 10.1016/j.finel.2008.04.002
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This paper presents the applications of SA for solving structural

topology optimisation. It is said to be the extension of the work pre-

sented in [16]. The numerical technique named MRDV is developed

as a numerical tool to enhance the searching performance of SA. The

chromosome repairing technique presented in [15] is employed to

repair a design solution that leads to multiple disconnected areas.

The SA strategies using various sets of MRDV are implemented to

solve a number of structural topology optimisation problems. The

results obtained from the various SA strategies are illustrated and

compared. The effect of using many resolutions of design variables

on SA's searching performance is examined. It is shown that the tech-

nique of MRDV is a powerful tool for the performance enhancement

of SA when solving structural topology optimisation.

2. Simulated annealing

SA can sometimes be classified as an EA. The method can be seen

as mimicking the random behaviour of molecules during an anneal-

ing process, which involves slow cooling from a high temperature.

As the temperature cools, the atoms line themselves up and form

a crystal, which is the state of minimum energy in the system. By

using SA, almost all kinds of design variables including binary codes

can be applied. The search procedure of SA starts with an initial so-

lution, which will be called the parent. The parent is then mutated

in some manner leading to a set of children or offspring. The best

offspring is said to be a candidate to challenge its parent. For min-

imisation, if the candidate has a lower objective value than that of

the parent, the parent is replaced by the candidate. In cases where

the candidate has a higher objective function value than its parent,

it still has a chance to replace the parent if accepted by a Boltzmann

probability. Since on each loop the worse candidate may replace its

parent, the best solution and the parent may not be the same so-

lution. Therefore, the best individual on each loop should be kept

along with a parent ensuring that the best solution of the search is

not lost. The best solution can also be used in the mutation strategy

of SA.

The SA algorithm used for minimisation in this paper can be

detailed as

1. Initialisation: initial solution xparent=xbest, fparent= fbest, initial

temperature T.

2. Generate ns design solutions {x11 ,x1
2
, . . . ,x1ns

} and their corre-
sponding function values {f 1

1
, f 1
2

, . . . , f 1ns
} by mutating on xparent.

3. Generate ns design solutions {x21 ,x2
2
, . . . ,x2ns

} and their corre-
sponding function values {f 2

1
, f 2
2

, . . . , f 2ns
} by mutating on xbest.

4. Find fcandidate = min({f 1i } ∪ {f 2i }) and its corresponding design
solution xcandidate.

5. If fcandidate� fparent:

5.1. Set xparent = xcandidate, fparent = fcandidate
5.2. Iffcandidate� fbest, xbest = xcandidate, fbest = fcandidate
5.3. Go to step 7.

6. If fcandidate> fparent, find PB=exp( fparent−fcandidate
T

), and generate

a random number rand.

6.1. If rand �PB, set xparent = xcandidate, fparent = fcandidate and

xbest and fbest are not changed. Go to step 7.

6.2. If rand > PB, xparent, fparent, xbest and fbest are not changed.

Go to step 7.

7. Reduce the temperature T if the condition is fulfilled.

8. If the termination criterion is met, stop the procedure. Otherwise,

go to step 2.

On each iteration ns individuals are created by mutating on

xparent and other ns individuals are obtained from mutating on

xbest. The solutions xbest and xparent are the same initially but they

can be different during the optimisation process. The parameter

rand ∈ [0,1] is a uniform random number sampled every time the

computational step 6 is operated. The reduction of temperature can

be scheduled by a designer. The use of SA for structural topology

optimisation has been studied by several researchers e.g. in [16--19].

For more details of SA algorithms, see [16] and [18--22].

3. Multi-resolution design variables

A topological design process of continuous structural systems can

be carried out by using FE analysis for function evaluation and a

numerical optimiser for solving the design problem. Fig. 1 demon-

strates the process of topology optimisation. The design domain is

a predefined region used to form a structural topology. There are

some parts of the structure that are not changed during the opti-

misation process. There can also be some predefined voids on the

domain. The domain is then discretised into a number of FEs, which

are called ground elements. Topological design variables are param-

eters that can be used to define a topology, e.g. elements' pseudo-

densities and thicknesses. Having obtained the optimum solution,

the elements that have low density values form holes while the el-

ements with high density values represent material existent on the

structure. One of the greatest difficulties when using this approach

is that the resulting topology is full of checkerboard patterns when

a low order FE model is implemented [5]. A number of numerical

techniques have been developed to deal with such a problem and

one of them is the ADD technique [16].

ADD is a simple numerical technique exploiting surface spline

interpolation for approximating the values of FE densities from the

known density distribution on another grid domain. The grid of de-

sign variables can be achieved by discretising the design domainwith

a resolution different from the FEs grid resolution. Fig. 2 shows a

rectangular design domain being meshed into n ground FEs whereas

the design variables have m elements. Let r0
j
be the position vectors

of the m centre points of the design variable grids (plus signs) and

rv
k
be the position vectors of the centre points of the n ground el-

ements (`o' signs). By using radial-basis function interpolation, the

densities at the centre points of the ground FEs � can be computed
from the given density values at the design variables' centre points,

�ADD, as

�= CA−1�ADD = T�ADD (1)

F
Unchanged

Fixed
boundary

Optimum
topology

Design
domain

Void

Fig. 1. Topology optimisation.
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Fig. 2. Ground finite elements and design variable grid.
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Fig. 3. Mapping between ADD grid and ground element densities �0 = 0.05.

where

A = [aij]m×m = [f(d(r0i , r0j ))] = [f(dij)]

C = [ckj]n×m = [f(d(rv
k
, r0j ))] = [f(dkj)]

and

d(ri, rj)=
√

(ri − rj)T(ri − rj).

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

ρρADD domain

ρ domain

Fig. 4. Mapping between ADD grid and ground element densities �0 = 0.15.

Here we use the function f(x) = x. The resolution of the design

variables (or ADD grid) must be lower than that of the ground ele-

ments. The process can be seen as the densities of the ground ele-

ments being filtered by the densities value on the design variables

grid, thus, it is sometimes called a ground elements filter. For more

details see Refs. [3,16].

In order to prevent intermediate densities on the resulting topol-

ogy, binary design variables are used and the transformation in Eq.

(1) needs to be modified. The components of � in (1) are refined to
be �e as

�e
i =

{
0, �i + �0�0.5
1, �i + �0>0.5

(2)

where �0 ∈ (0,0.5) is a constant value to be specified.

Eq. (2) can be expressed in a matrix form as

�e = round(T�ADD + �0) (3)

where �0 is a vector sized n× 1 with all the elements being �0, and
the function round(x) is used to round off the real number x to its

nearest integer.

Figs. 3--5 demonstrate the mapping of densities from the ADD

domain to the densities of the FEs where the density values in the

ADD domain form a checkerboard pattern. Note that the density

values in both ADD and FE domains are set to be either ones (black

elements) or zeros (white elements). The ADD domain has 20 ×
10 elements while the FE grid has 30 × 15 elements. In Fig. 3, the
value of �0 is set to be 0.05 while it is set to be 0.15 and 0.25 for
the transformation shown in Figs. 4 and 5, respectively. It can be

seen that the transformation in Figs. 3 and 4 cannot totally suppress

checkerboard patterns (or one-node connected part) whereas the

transformation in Fig. 5 results in no checkerboards. This implies that

the proper value of �0 needs to be determined in the pre-process.
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Fig. 5. Mapping between ADD grid and ground element densities �0 = 0.25.

As mentioned in [16] that the ADD technique is not only capa-

ble of preventing checkerboards on a structural topology but it also

reduces the number of design variables. With the decreased num-

ber of design variables, the design results obtained from using the

EAs are improved. However, it has also been shown that the higher

resolution of topological design variables always results in the bet-

ter structural topology if the optimiser is powerful enough. Due to

this observation, the work in this paper presents the use of multiple

resolutions of the ADD design variables in one optimisation run. The

design strategy is to start with using the lowest resolution ADD de-

sign variables in the early iterations. Then, as the optimisation pro-

cess continues, the resolution of the design variables increases. Such

a design strategy is achievable by using the transformation equa-

tions (1) and (3). The use of Eq. (1) is for changing the resolution of

the design variables during the optimisation process while Eq. (3) is

used for checkerboard suppression.

Fig. 6 demonstrates the idea of how the MRDV work. The fig-

ure displays four different grid resolutions on the same rectangu-

lar design domain. The first and lowest resolution grid (defined as

�ADD1) is an ADD grid with 10 × 5 elements. The second ADD grid
(�ADD2) is the second set of ADD design variables, which has 14× 7
elements. The third grid (�ADD3) with 20 × 10 elements is also an
ADD grid whereas the fourth grid having 30 × 15 elements is cre-
ated for ground FEs (�e). The transformation between the grids can

be achieved by using the transformation matrix in (1). For example,

with the known vector �ADD1, the values of �ADD2 on the second
ADD grid can be estimated as

�ADD298×1 = T1298×50�
ADD1
50×1 (4)

where T12 is a transformation matrix sized 98× 50.
Similarly, the values of element density on the third ADD design

domain can be computed as

�ADD3200×1 = T23200×98�
ADD2
98×1 (5)

ρADD1 grid ρADD2 grid

ρADD3 grid Finite elements grid

Fig. 6. Transformation of multiresolution design variables.

or

�ADD3200×1 = T23200×98(T
12
98×50�

ADD1
50×1 ). (6)

The last transformation is carried out to find the values of ground

FE density, which can be computed as

�e
300×1 = round(T300×200�ADD3200×1 + �0). (7)

The pre-process is required for computing the ADD and ground

element grids as well as all the transformationmatrices and the value

of �0. Fig. 6 shows the transformations from �ADD1 to �ADD2, and
then from �ADD2 to �ADD3 and finally from �ADD3 to �e. A particular

binary design solution is defined on the �ADD1 design domain. It is
then transformed to the second and third ADD domains as shown

in the figure. The last stage is the transformation of density values

from the third design domain to the ground element domain where

�0=0.25. It can be seen that checkerboard-like topologies can occur
on the ADD design domains but they disappear on the FE grid by

using the transformation (3).

For topology optimisation using SA, the search procedure starts

with the lowest resolution ADD design variables (here is �ADD1). As
the searching process continues for a number of iterations, it is ex-

pected that the SA algorithm using such low resolution design vari-

ables can quickly find the design solutions close to the optimum.

The higher resolution of design variables �ADD2 is then applied so
as to refine the optimum results obtained from using �ADD1. As the
optimisation process continues, the resolution of design variables is

increased. The procedure is terminated when the termination con-

dition is met. In the pre-processing step, a designer needs to define

how many grid resolutions of the ADD design variables should be

used. The resolution of each grid level and the resolution of ground

FEs are also predetermined. Apart from that, the number of itera-

tion and population size for each level of ADD design variables must

be assigned in the initial stage. The searching performance depends

on the aforementioned parameters and the evolutionary optimiser

being used. Since the ADD design variables are encoded as binary

strings, mutation of a vector of design variables can be achieved in

such a way that a randomly selected bit position is changed to `1' if

its current value is `0' or vice versa. This is said to be a common mu-

tation for binary codes [16], which can be applied to any ADD grid

resolution.

4. Test problems

In order to examine the efficiency and effectiveness of the pro-

posed numerical strategy, five topology optimisation problems are
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Fig. 10. Cantilever plate for dynamic stiffness maximisation.
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Fig. 11. Cantilever plate with two load-cases.

assigned and used for performance comparison. The structural design

domains used for the five design problems are illustrated in Figs.

7--11. The problems are detailed as follows:

OPT1

min :
(

m

mmax

)w1
(

c

cmax

)w2

where m is the structural mass, c the structural compliance due to

the applied load F and w1 and w2 are the degrees of importance for

the mass and compliance, respectively.

Fig. 7 shows the structure used for the test problem OPT1. The

structure is made up of a material with E=200×109 N/m2 and �=0.3
where L = 2m and H = 1m. The elements' densities here mean the
elements' thicknesses since the four-node membrane FE model is

employed. The value of �0 is set to be 0.25. The thickness value of the
ith element is decoded to be 0.00001 if �e

i
= 0; otherwise, it is set to

be 1 (from thousands of FE analyses in the optimisation process, the

stiffness matrix is always invertible although the difference between

maximum and minimum thicknesses is large). The parameter mmax
is a structural mass where the vector �e is full of ones (�e = 1). The
value cmax is a structural compliance where the vector �e is full of

zeros (�e = 0). The degrees of importance for mass and compliance
are set as: w1 = 1 and w2 = 1.
Figs. 8 and 9 show an MBB beam and 2D bridge used for the test

problems OPT2 and OPT3, respectively. The optimisation problems,

FE model, structural material and dimensions used in OPT2 and OPT3

are similar to those applied in OPT1 where the dimension h of the

2D bridge is set to be 1
15
m.

OPT4

min :
(

m

mmax

)w1
(

�

�max

)w2

where m is the structural mass, � is the first eigenvalue from solv-

ing free vibration of a structure and w1 and w2 are the degrees of

importance for the mass and eigenvalue, respectively.

The design domain of OPT4 is displayed in Fig. 10. The parameters

mmax and �max are the structural mass and eigenvalue at which all
of the elements' densities are equal to ones (�e = 1). The FE model,
structural material, and dimensions are similar to those used in OPT1.

The dimension h is set to be 1
15
m. The degrees of importance for

structural mass and eigenvalue are assigned as: w1 = 2 and w2 = 1.
OPT5

min :
(

m

mmax

)w1
(

c1
c1,max

)w2
(

c2
c2,max

)w3

where m is the structural mass, c1 the structural compliance due

to the applied load case F1, c2 the structural compliance due to

the applied load case F2 and w1, w2 and w3 are the degrees of

importance for the mass and compliances due to the load cases F1
and F2, respectively.
This test problem has two applied load cases, F1 and F2, as shown

in Fig. 11. The FE model, design domain, structural material and

dimensions are similar to those used in OPT1. The parameter mmax
is a structural mass where �e = 1. The values c1,max and c2,max are

structural compliances due to F1 and F2, respectively, where �e = 0.
The degrees of importance for mass and compliances are set as:

w1 = 5, w2 = 1 and w3 = 1.
The first three design problems are said to be compliance minimi-

sation while the fourth topological design problem can be classified

as the maximisation of structural dynamic stiffness. The last prob-

lem is the minimisation of structural compliance due to two applied

load cases. FE grid resolution is set to be 30 × 15 elements. There
are three different resolutions of ADD design variables grid used in

this study, 10 × 5, 14 × 7 and 20 × 10 as displayed in Fig. 6. As the
mutation operator used with SA can result in multiple disconnected

parts on a topology, the chromosome repairing technique presented

in [15] is therefore employed to deal with this undesirable occur-

rence. The function evaluation starts with defining thickness values

on the ADD domain. They are then transformed to be FE thicknesses

by using the process detailed in Section 3. The chromosome repair-

ing operator is also activated in cases where the resulting topology

has many disconnected parts.
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Fig. 12. Search history of OPT1 using design variables with 10× 5 grid resolution.
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Fig. 13. Search history of OPT1 using design variables with 14× 7 grid resolution.

In order to examine the impact of different resolutions of the ADD

design variables on the searching performance, a primary investi-

gation is made. Fig. 12 displays the search history of using SA with

the 10 × 5 ADD grid for solving OPT1 five times. The total number
of iterations is set to be 120 while five individuals are created from

mutating on xparent and another five individuals are obtained from
mutating on xbest. From the five search histories, it can be seen that

the objective function value decreases rapidly in the early iterations

(say 20 iterations). Afterwards, it remains rather constant or slightly

decreased as the optimisation process carries on. The five search his-

tories of using SA with the ADD grid of 14× 7 elements are plotted
in Fig. 13. Similarly to Fig. 12, it can be observed that the objective

function value reduces rapidly in the early iterations (say 40--60 it-

erations) and then remains rather constant or slightly reduced. For

the search histories of using SA with the 20×10 ADD grid for solving
OPT1 five times, the search histories tend to be similar to the first

two cases but it seems that 120 iterations are insufficient for these

high resolution design variables. From this comparison, it can be said

that the higher resolution needs more iterations to reach or become

Table 1
Design conditions

DSV ADD grid resolutions No. of iterations Population size SA strategies

DSV1 10× 5 120 10 SA1
DSV2 14× 7 120 10 SA2
DSV3 20× 10 120 10 SA3
DSV4 10× 5, 14× 7 40,80 10 SA4
DSV5 10× 5, 20× 10 40,80 10 SA5
DSV6 10× 5, 14× 7, 20× 10 20,40,60 10 SA6
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Fig. 14. Search history of OPT1 using design variables with 20× 10 grid resolution.
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Fig. 15. Optimum topologies of OPT1 obtained from the various SA strategies.

close to the optimum. However, the higher resolution design vari-

ables provide wider design space and can lead to a better topology.

From the primary study, the conditions for using MRDV are as-

signed as shown in Table 1. The sets of design variables DSV1, DSV2

and DSV3 use single resolution of design variables whereas DSV4,

DSV5 and DSV6 use multiple resolution grids of design variables as

detailed in the table. The sets of number of iterations assigned for

DSV4--6 are obtained from the observation on Figs. 12--14. The SA

strategy for the DSVi design variables set is termed SAi as in the table.
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Fig. 16. Comparison of objective function values of OPT1 from the various optimisers.
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Fig. 17. Optimum topologies of the design domain of OPT1 from using the SIMP

approach.

Each SA strategy is implemented to solve the test problems five

optimisation runs so that its convergence rate and consistency can

be measured and compared to the other SA search strategies. The

population size (the number of children created on each loop) is set

to be 10 as five solutions are created from mutating on xparent and
other five solutions are obtained from mutating on xbest. For each
test problem, the six optimisation strategies start with the same

initial solution. The solution xbest obtained at the last iteration is
said to be the optimum solution.

5. Optimum results and performance comparison

The optimum topologies of OPT1 obtained from using the var-

ious SA strategies are displayed in Fig. 15. Five structural topolo-

gies are obtained from each SA strategy as it was operated for five

simulation runs. The comparison of the objective function values of

the various topologies is given in Fig. 16. In the figure there are six

groups of bar charts. In each group the first five bars represent the

normalised objective values of the five topologies from five optimi-
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Fig. 18. Optimum topologies of OPT2 obtained from the various SA strategies.
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Fig. 19. Comparison of objective function values of OPT2 from the various optimisers.

sation runs. The sixth (white) bar is the mean value of the five nor-

malised objective values. From the bar chart comparison, SA with

DSV6 gives the best results while the second best results are from

using SA with DSV4. This implies that the use of multiple resolution

grids of design variables improve the search performance of SA. For

SA using the single resolution design variables (DSV1--3), SA2 gives

the best results while SA1 is the second best. This implies that the

predefined 120 iterations and population size 10 are suitable for the

DSV2 resolution while the resolution of DSV3 is too high for these

design conditions. Fig. 17 displays the topologies obtained from us-

ing the gradient-based OCM (the SIMP approach) [5,8] where the

ratio of mass reduction is set to be 40%, 50% and 60%. The topologies

in Fig. 17, although obtained from different design approaches, look

similar to most of the topologies depicted in Fig. 15.

The structural topologies obtained from solving OPT2 using the

various SA optimisers are shown in Fig. 18 whereas the bar charts

comparing their objective values are given in Fig. 19. According to

the comparison, the SA method using DSV6 gives the best results
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Fig. 20. Optimum topologies of the design domain of OPT2 from using the SIMP

approach.
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Fig. 21. Optimum topologies of OPT3 obtained from the various SA strategies.

whereas the close second and third best methods are SA4 and SA5,

respectively. The design variables grid DSV2 is the best in cases of

using a single resolution. The optimum topologies obtained from us-

ing OCM with mass reduction ratios of 40%, 50% and 60% are dis-

played in Fig. 20. It can be observed that the topologies in the figure

look similar to those shown in Fig. 18.

The optimum topologies of OPT3 obtained from using the various

SA strategies are shown in Fig. 21 while the performance compar-

ison is given in Fig. 22. According to their objective values, the SA

method using DSV5 is the best strategy while the very close second

and third best strategies are SA with DSV4 and DSV6, respectively.

The optimum topologies obtained from using OCM with the mass

reduction ratios of 40%, 50% and 60% are displayed in Fig. 23. The

topologies in Figs. 21 and 24, although obtained from the different

approaches, mostly look similar.

The topologies obtained from solving OPT4 by using the different

SA strategies are given in Fig. 24 while the comparison of their ob-

jective values is displayed in Fig. 25. According to the performance
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Fig. 22. Comparison of objective function values of OPT3 from the various optimisers.
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Fig. 23. Optimum topologies of the design domain of OPT3 from using the SIMP

approach.

comparison, the best SA strategy is SA with the use of DSV6 while

the second best is SA with DSV4. The optimum topologies obtained

from the SIMP approach with the derivative filtering technique are

displayed in Fig. 26 where the mass reduction ratio is set to be 40%,

50% and 60%. It can be seen that the topologies obtained from the

present approach and from using OCM are slightly different.

The structural topologies obtained from solving OPT5 by using

different SA strategies are displayed in Fig. 27 whereas the perfor-

mance comparison is illustrated in Fig. 28. From the comparison, SA

with the use of DSV6 gives the best results while the SA using DSV5

is the second best. The optimum topologies from using OCM with

the mass reduction ratio of 40%, 50% and 60% are illustrated in Fig.

29. The topologies from Figs. 27 and 29 are slightly different. In this

design problem, the one-node connected part cannot be completely

suppressed.

Overall, the best method is SA using DSV6 which uses three reso-

lutions of design variables. The second best method is SA with DSV4

while the third best is SA with the use of DSV5. It can be said that

the use of multiple resolutions of design variables help enhancing
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Fig. 24. Optimum topologies of OPT4 obtained from the various SA strategies.
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Fig. 25. Comparison of objective function values of OPT4 from the various optimisers.
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Fig. 27. Optimum topologies of OPT6 obtained from the various SA strategies.
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Fig. 28. Comparison of objective function values of OPT6 from the various optimisers.

the searching performance of SA. The more resolutions used leads

to the better searching performance if the set of iteration numbers

and ADD grids are defined properly. For the SA methods using sin-

gle design variables grid DSV1--3, the best design variables grid is

DSV2 which has 14 × 7 variables. The second best design variables
set is DSV1. The total number of design variables of DSV3 which is

20 × 10 is too large for the proposed SA method with the given it-
eration number and population size.

The new design problems combining with the use of MRDV for

structural topology optimisation are said to be effective. The ap-

proach, however, has some drawbacks, i.e. we need some prior

knowledge to specify the degrees of importance used in the objective

functions, the design variables resolution and the iteration number

for each design variables resolution. Nevertheless, from Figs. 12--14

and the observation on the other design test problems, it can be said

that the convergence rate of SA is somewhat related to the num-

ber design variables and population size. For example, with 10 × 5
design variables and population sized 10, the SA method can reach

or get close to the optimum approximately within 20 iterations. If
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Fig. 29. Optimum topologies of the design domain of OPT6 from using the SIMP

approach.

the number of design variables is increased to 14× 7 variables, the
SA method needs at least 40--80 loops to become close to the opti-

mum topology. With sufficient prior knowledge and experience, the

MRDV and the iteration numbers can be set properly.

6. Conclusions and discussion

The algorithm of SA has been detailed and used for structural

topology optimisation. The ADD technique is used for checkerboard

suppression. MRDV are proposed to be used with SA for solving

topological design problems. From the numerical test, it can be con-

cluded that the use of MRDV results in the enhanced performance

of the SA optimisation method. The optimum results obtained from

using SA are said to be comparable to those obtained from using the

classical gradient-based approach. The checkerboard suppression by

means of the ADD technique is acceptable although there remain

some one-node connected parts on the resulting topologies of OPT5.
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Abstract. The work in this paper presents the use of population-based incremental learning 
(PBIL), one of the classic single-objective population-based optimisation methods, as a tool for 
multiobjective optimisation. The PBIL method with two different updating schemes of its prob-
ability vectors is presented. The performance of the two proposed multiobjective optimisers are 
measured and compared with four other established multiobjective evolutionary algorithms i.e. 
niched Pareto genetic algorithm, version 2 of non-dominated sorting genetic algorithm, version 
2 of strength Pareto evolutionary algorithm, and Pareto archived evolution strategy. The opti-
misation methods are implemented to solve 8 bi-objective test problems where design variables 
are encoded as a binary string. The Pareto optimal solutions obtained from the various methods 
are compared and discussed. It can be concluded that, with the assigned test problems, the mul-
tiobjective PBIL methods are comparable to the previously developed algorithms in terms of 
convergence rate. The clear advantage in using PBILs is that they can provide considerably  
better population diversity.  

Keywords: Multiobjective Evolutionary Optimisation, Population-Based Incremental  
Learning, Non-dominated Solutions, Pareto Archive, Performance Comparison. 

1   Introduction 

In the past, the well-established optimisation methods were mostly developed for sin-
gle-objective optimisation. They can, however, be employed to solve a multiobjective 
problem by using numerical strategies such as the weighted-sum technique [14], 
global criteria method [9] and normalised normal constraint technique [15]. The prin-
ciple of such numerical strategies is to convert an optimisation problem with multiple 
design objectives to be a single-objective problem to suit the available optimisers. 
This means that the optimisation methods need to be performed for as many simula-
tion runs as the number of Pareto optimal points required. 

Optimisation methods can be classified as methods with and without using func-
tion derivatives. In comparison of EAs, the methods without using derivatives, to the 
derivative-based methods, the latter are far superior in terms of convergence rate and 
consistency. Nevertheless, using EAs are advantageous in that they can deal with all 
kinds of design variables [2], and most importantly the multiobjective evolutionary 
methods can search for a set of Pareto optimum points within one attempt whereas the 
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gradient-based techniques need many operations. Although having such benefits, the 
evolutionary methods are still not as powerful as expected due to a complete lack of 
consistency and low convergence rate. Since there is no convergence guaranteed, the 
results obtained from using an EA are mostly classified as an approximated Pareto 
front. 

In recent years, a number of evolutionary algorithms have been developed as mul-
tiobjective optimisers and they are termed multiobjective evolutionary algorithms 
(MOEAs). In the early days, the well-known methods were, for example, vector 
evaluation genetic algorithm (VEGA) [16], multiobjective genetic algorithm (MOGA) 
[7] and none-dominated sorting genetic algorithm (NSGA) [18]. Later, there have 
been numerous new algorithms developed. Some work on comparing their perform-
ance has been made e.g. in [20] and [22]. The development of new approaches, im-
provement of the existing algorithms, and implementation of the methods on real 
world applications are still a great challenge. 

The work in this paper is aimed at developing population-based incremental learn-
ing (PBIL), one of the classical single-objective EAs, as a tool for multiobjective  
optimisation. The proposed algorithm is said to be a mix of some advantages of the 
predecessors. Two PBIL algorithms with different probability vector updating proce-
dures are presented: one is modified from that presented in [12] while the other one 
deals with the weighted-sum technique. The two proposed optimisers along with four 
recently developed MOEAs including NPGA [4] [10] and [11], NSGAII [6], SPEA2 
[21] and PAES [13] are implemented to solve 8 bi-objective test problems. Design 
variables are encoded as a series of binary strings. The performances of the optimisers 
are measured, compared and discussed. It can be concluded that, with the given de-
sign conditions, the PBILs are said to be as good as some of the existing MOEAs in 
terms of convergence rate, and superior to them when considering population 
diversity. 

2   Multiobjective Optimisation 

A particular multiobjective design problem can be posed as: 

Find x such that 

Min: f = {f1(x),…,fm(x)} 
Subject to 
gi(x) ≤ 0 
hi(x) = 0 

MOEAs are normally created to deal with unconstrained optimisation; however, 
they can be applied to constrained problems by using a penalty function technique. 
Moreover, the non-dominated scheme for constrained optimisation given in reference 
[5] is found to be greatly efficient and effective. All of the evolutionary methods men-
tioned in this paper are categorised as Pareto-based methods. The basic concept of 
exploring Pareto optimum points via such an algorithm is that, on each generation 
while a new population is created, non-dominated solutions are classified and carried 
on to the next generation. The term, non-dominated solutions, defines the local Pareto 
solutions among the members of the current population during evolutionary search. 
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3   PBIL for Multiobjective Design 

The original PBIL algorithm is based upon binary searching space similar to GAs [1]. 
Later, there has been further development of PBIL for continuous and discrete design 
spaces [8], [17] and [19]. The method is classified as an estimation of distribution  
algorithm (EDA) that achieves its search through probability estimation and sampling 
techniques. The application of PBIL to multiobjective design has been presented in 
[12] where the approach is named MOSA. The principle of PBIL search can be 
thought of as iteratively limiting the design space depending on current best design 
variables and random process. The design space is iteratively narrowed until ap-
proaching the optimum. Rather than keeping all binary genes or a population as with 
GA, the population in PBIL is represented by the probability vector of having ‘1’ at 
each bit position in the binary strings. For more details, see [1]. 

Initially, for single objective optimisation, the search procedure starts with the ini-
tial probability vector whose elements are full of ‘0.5’. An initial population corre-
sponding to the probability vector is created. The binary population is decoded and 
objective values are computed. The best gene, whether it is a minimum or maximum, 
is chosen to update the next probability vector new

iP  using the relation  

LRbLRPP i
old

i
new

i +−= )1(  (1)

where LR∈(0,1) is called the learning rate to be defined and bi is the ith bit of the best 
binary solution. It is also useful to apply mutation to the probability vector at some 
predefined probability such that 

msmsPP old
i

new
i ).1or  0(rand)1( +−=  (2)

where ms is the amount of shift used in the mutation. The best solutions are carried 
over into the next generation ensuring that the best solution during the search is not 
lost. The probability vector is updated iteratively until convergence is achieved. 

When employed as a multiobjective optimiser, more probability vectors should be 
used in order to obtain a more diverse population; therefore, it is called a probability 
matrix instead. The search starts with an (empty) external Pareto set and initial prob-
ability matrix whose elements are full of ‘0.5’. Each row of the probability matrix is a 
probability vector that will be used to create a sub-population. Let N be the number of 
design solutions in a population, l be the number of probability vectors and nb be the 
number of binary bits. The probability matrix, therefore, has the size of l × nb where 
each row of the matrix results in approximately N/l design solutions as one sub-
population. Having generated the population and evaluated their corresponding objec-
tive values, the non-dominated members sorted from the union set of the current 
population and the old external Pareto set are taken as a new external Pareto set. If the 
external Pareto set is full (the number of non-dominated members exceeds the archive 
size), some solutions are removed from the external Pareto set using the adaptive grid 
algorithm [13]. The probability matrix and the non-dominated solutions are improved 
iteratively until some termination criterion is met.  

In this paper, two updating schemes for the probability matrix are proposed. The 
first scheme is quite similar to that presented in [12]. To update a row vector of the 
probability matrix, n0 < N binary solutions from the current Pareto archive are  
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selected at random. The mean value of each ith bit position of the selected binary solu-
tions is computed and used as bi in equation (1). The mutation (2) is also performed 
with the given probability.  

The second scheme uses the weighted-sum technique. In updating each row of the 
probability matrix, m weighting factors are generated randomly while the condi-
tion 1=� iw is preserved. A binary solution from the union set of the current popula-

tion and the external Pareto set, which gives the minimum value of the weighted-sum 
function (3), is chosen to update the row probability vector. The mutation is also al-
lowed to occur by the predefined probability. 

�
=

=
m

i
iiw fwf

1

)(b
 

(3)

Selection is performed if the number of non-dominated solutions obtained exceeds 
the predefined size of the external Pareto set. By using the adaptive grid algorithm, 
one of the members in the most crowded region is removed from the archive. The 
crowded regions are updated and the member in the most crowded region is removed 
iteratively until the number of non-dominated solutions is equal to the size of the  
archive. 

4   Performance Testing 

Numerical experiments were made to measure the performances of the proposed 
PBIL. Six unconstrained bi-objective problems F1, F2, F3, F4, F5 and F6 taken from 
reference [20] are used to benchmark the presented approaches and the other MOEAs. 
The optimisation problems are said to cover all aspects of difficulty in approximating 
a Pareto front via MOEAs [20]. The number of design variables is 30. Two more un-
constrained bi-objective test problems, apart from the six test problems previously 
mentioned, are: F7 the FON problem in [6], and F8 the SPH-m problem in [21]. For 
F8, the bounds are set to be xi ∈ [-5, 5]. 

The multiobjective evolutionary algorithms i.e. NPGA, NSGAII, SPEA2 and 
PAES along with PBIL1 and PBIL2 are implemented to solve the bi-objective mini-
misation problems. The two PBIL strategies are PBIL1 the multiobjective PBIL using 
the first probability matrix updating scheme, and PBIL2 the multiobjective PBIL us-
ing the second probability matrix updating scheme. The algorithms can be categorised 
as using the crossover-based method (NPGA, NSGA and SPEA), the mutation-based 
method (PAES) and the estimation of distribution method (PBIL). All of the methods 
employ a population size of 100 and an iteration number of 100 for every design 
problem except for the F7 test-case where the population is sized 30 and the number 
of iterations is 30. The methods that perform elitism have the archive size of 100. 
Each design variable is encoded with 30 binary strings unless otherwise specified. 
Design conditions set for each optimiser are detailed as followed. 

NPGA the number of randomly selected individuals for tournament selection is 30, 
the next generation consists of 50 (15 for F7) non-dominated solutions and 50 (15 for 
F7) members from tournament selection, crossover probability is 1.0 and mutation 
probability is 0.1.  
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NSGAII crossover probability is 1.0 and mutation probability is 0.1. 
SPEA2 crossover probability is 1.0 and mutation probability is 0.1. 
PAES uses (1+1)-PAES and adaptive grid archiving technique. 

PBIL1 uses the first probability matrix updating scheme similar to [12], learning 
rate LR = 0.5 (constant), the number of probability vectors l = 20, mutation shift ms = 
0.2 and mutation probability is 0.02. 

PBIL2 uses the second probability matrix updating scheme as in equation (3), 
learning rate LR = 0.5 (constant), the number of probability vectors l = 20, mutation 
shift ms = 0.2 and mutation probability is 0.02. 

Each method is employed to solve each problem over 30 runs while on each opera-
tion the non-dominated solutions of the final iteration are taken as the optimal front. 
The performance assessment is somewhat the same as presented in [20]. Two per-
formance parameters are as follows. 

The first indicator is the C value defined as: 

{ }
B

AB
BAC

baab �:;
:),(

∈∃∈
=  (4)

From the definition, if C(A, B) = 1, all the solutions in B are dominated by or equal 
to solutions in A whereas C(A,B) = 0 implies that none of the solutions in A cover B. 

The second criterion is the combination of M1, M2 and M3 whose definitions were 
given in [20] as 
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where M1 is used to measure the average distance of a set of non-dominated solutions 
to the true optimal front (lower is better), M2 is used to measure the front distribution 
(higher is better), and M3 is used to measure the extent of the front (higher is better). 

Form the relation, a lower value of M means a better Pareto front. Note that the pa-
rameter M is proposed as an attempt to have an additional prospective view in evalu-
ating a Pareto front.  

The value of the C indicator is used to compare a pair of evolutionary methods. 
Therefore, there are 6×5 comparisons for a test problem. When solving a test problem, 
there are 30 M values for each method. The mean value of M is used to interpret the 
convergence performance. 

5   Comparison Results 

Fig. 1 (a) displays plots of approximate Pareto fronts of F1 obtained from the various 
optimisers. Note that the approximate Pareto front from each method is the best of 30 
runs sorted by using C values. Dashed lines are the true optimal Pareto front of F1. 
From the figure, the Pareto fronts obtained from PBIL1 and PBIL2 are more evenly 
distributed than the rest. The Pareto fronts of F2 from the various methods are  
shown in Fig. 1 (b). For this design case, the fronts from PBIL1 and PBIL2 are more  
evenly distributed than those from the other methods. Fig. 2 (a) shows the Pareto 
fronts of F3 from the various optimisers. The true optimal front for this problem is  
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non-contiguous. It is shown that PBIL1 and PBIL2 can explore all the Pareto sub-
fronts whereas the fronts obtained from other optimisers cannot cover all sub-fronts. 

The Pareto fronts of F4, multimodal problem, are displayed in Fig. 2 (b). For this 
test problem, SPEA2 totally outperforms the rest while the second best is PBIL1 and 
the third best is PBIL2. The fronts from PAES, PBIL1 and PBIL2 are the most evenly 
distributed. Fig. 3 (a) illustrates the Pareto fronts of the deceptive problem explored 
by the various optimisers. From the figure, it can be said that using SPEA2 and 
NSGAII results in better fonts. The approximate Pareto fronts from SPEA2, NSGAII 
and PAES are the most evenly distributed. Fig. 3 (b) displays the Pareto fronts of F6 
test problem explored by the six algorithms. In this figure, the best Pareto front is that 
obtained from PBIL1 while the second best is from SPEA2. Fig. 4 (a) displays the 
Pareto front of F7 obtained from using the various algorithms. All of the optimisation 
methods give poor front distribution with PBIL1 being the best. This is caused by the 
number of iterations and population size being used. The non-dominated fronts of F8 
from using the various optimisers are given in Fig. 4 (b). It can be seen that PBIL2 
gives the best front considering the front distribution and the distance from the true 
optimal front. 

The comparison made in the previous two paragraphs is based on observation. The 
boxplots of C values comparing 6×5 pairs of optimisers are shown in Fig. 5 and 6. 
From the results, NPGA is less efficient than the others. According to the boxplots, 
for the first three test problems, all of the methods with the exception of NPGA are 
said to be equally good. In the F4 test problem, PBIL1 gives the best results whereas 
NSGAII and SPEA2 give the best results in the F5 test problem. NSGAII, SPEA2, 
PAES and PBIL1 are said to be equally good for the F6 test problem. SPEA2 is the 
best method for the case of F7 while PBIL1 is the close second best. For the F8 prob-
lem, PAES the mutation-based method give the best results whereas PBIL2 is the 
close second best. 

The bar-chart illustration of the M criterion is shown in Fig. 7. A bar graph repre-
sents the average of 30 M values obtained from using a particular optimiser for solv-
ing a test problem. Based upon this measure, in cases of F1, F2 and F3 the methods 
that give the best Pareto sets are PBIL1 and PBIL2 whereas PAES is the third best 
and NPGA has the worst results. In the F4 case, the best method is PBIL1 but from 
Fig. 2 the obviously best method is SPEA2. This shows that the population diversity 
has more weight in the M value. The best results of the problem F5 are from SPEA2 
and NSGAII while the best results of F6 are from SPEA2, NSGAII, PBIL1 and 
PBIL2. PBIL2 gives the best M value in the case of F7 whereas PAES, PBIL1 and 
PBIL2 are equally good and considered the best for the F8 problem. 

 

Fig. 1. Pareto front of (a) F1 and (b) F2 from the various methods 
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Fig. 2. Pareto front of (a) F3 and (b) F4 from the various methods 

 

Fig. 3. Pareto front of (a) F5 and (b) F6 from the various methods 

 
Fig. 4. Pareto front of (a) F7 and (b) F8 from the various methods 

 

Fig. 5. Boxplot of C values F1 F2 F3 & F4 
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Fig. 6. Boxplot of C values F5 F6 F7 & F8 

 

Fig. 7. Comparison of M values 

6   Conclusions and Discussion 

According to the numerical experiment results and several comparative criteria, it can 
be said that PBIL is one of the most powerful tools for multiobjective optimisation. 
The method is overall superior to or as good as the other established multiobjective 
optimisers in most of the test-cases except for the F4 and F5 test problems. It can be 
concluded that PBIL1 is as good as PBIL2 or vice versa although PBIL1 is better than 
PBIL2 in terms of front distribution. The most outstanding capability of PBIL is its 
unmatched ability in providing population diversity. 

The conclusions drawn in this paper cannot, nonetheless, be applied to all kinds of 
optimisation problems as the performance of evolutionary search is rather dependent 
on the type of design problem. For examples, a crossover-based method is the best for 
global optimisation whereas a mutation-based method is far superior to others when 
dealing with some large-scale problem e.g. in references [14] and [3]. 

The multiobjective PBIL is said to be the simplest form of the estimation of distri-
bution algorithm for multiobjective design. The effect of parameters e.g. the number 
of probability vectors nb on the searching performance needs to be investigated. It has  
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not yet been compared to the more advanced EDAs like the Bayesian network. Fur-
thermore, the test of the presented technique in solving real world problems needs to 
be proven before being accepted as well-established. 
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Abstract 
 In this paper, an unconventional topological 
design problem was posed to find structural 
topologies of a cantilever plate while design 
objectives are weight and compliance with stress and 
displacement constraints. Multiobjective population-
based incremental learning (MOPBIL) in combining 
with an approximate density distribution technique is 
employed to explore a Pareto optimal front of the 
design problem. The design results show that 
MOPBIL is a powerful tool for multiobjective 
topology optimisation although its convergence rate is 
not as good as the gradient-based optimality criteria 
method. With the use of MOPBIL, multiple structural 
configurations can be obtained within one 
optimisation run, and any unconventional design 
problem can be dealt with.          
 
Keywords:  Multiobjective Population-Based 
Incremental Learning, Evolutionary Algorithms, 
Pareto Front, Approximate Density Distribution, 
Topology Optimisation  
 
1. Introduction 
 Topology optimisation is regarded as one of the 
most effective and powerful tools for the conceptual 
design of several engineering systems. This design 
technology has been significantly developed in the 
past two decades. The design strategy for structural 
conceptual design can be thought of as how to make 
the best use of material available while achieving the 
optimum design objective. A topological design 
process can be carried out by using finite element 
analysis for function evaluation and an optimisation 
method for searching the optimum solution. The 
topological design problem is usually a simplified 
constrained optimisation problem. The most 
preferable optimiser for such a design problem is the 
optimality criteria method (OCM) [6], [14]. Some 
other gradient-based optimisation method such as 
sequential linear programming (SLP) [3] and the 
method of moving asymptotes (MMA) [14] have also 
been implemented successfully. The applications of 
population-based optimisers or evolutionary 
algorithms, however, are said to be ineffective for this 

type of design problem due to a considerably large 
number of topological design variables [2], [4], [11].  
 Nevertheless, the use of evolutionary algorithms 
for topology optimisation is still attractive to 
engineering designers since the methods can deal with 
almost all kinds of design objective functions and 
constraints. There recently has been some research 
work on how to improve the searching performance of 
the evolutionary algorithms. The use of graph 
representation approach was proposed by Wang and 
Kang [8]. S. Bureerat and J. Lintragool [1] presented 
the design strategy employing a numerical technique 
called approximate density distribution (ADD), which 
can improve the search performance of several 
evolutionary algorithms as well as can suppress 
checkerboard formation on the resulting topologies. 
The use of multiobjective evolutionary algorithm for a 
topology design problem was proposed in [5] where 
the design problem has two objective functions and 
one equality constraint. The numerical scheme named 
chromosome repairing was proposed in the work to 
repair a design solution such that it results in a better. 
The results in this work show that the use of 
multiobjective evolutionary algorithms for structural 
topology optimisation is advantageous since many 
topologies can be obtained within one optimisation 
run.   
 This article demonstrates the application of a 
multiobjective evolutionary algorithm for structural 
topology optimisation. An unconventional topological 
design problem was posed to find structural 
topologies of a cantilever plate while design 
objectives are weight and compliance with stress and 
displacement constraints. Multiobjective population-
based incremental learning (MOPBIL) [7], [9] one of 
the most powerful and robust multiobjective 
evolutionary algorithms (MOEAs) is employed to 
explore a Pareto optimal front of the design problem. 
The design results show that MOPBIL is a powerful 
tool for multiobjective topology optimisation although 
its convergence rate is not as good as OCM. With the 
use of MOPBIL, an unconventional design problem 
can be dealt with.  
 
 



 

2. Topology Optimisation 
 A structure achieved by means of topology 
optimisation is the best structural layout that 
optimises a predefined objective function while 
meeting all design constraints. The traditionally used 
objective functions are weight, system compliance, 
deflection and natural frequency while design 
constraint is a mass or volume constraint. Stress 
constraint is not added to a design problem because it 
results in some difficulties in finding the optimum 
solution. It is usually considered in the later stage of a 
deign process.  
 Figure 1 illustrates the concept of topology 
optimisation. The design process is initialised with a 
predefined design domain and what application a 
designer needs to use the structure for. The optimum 
structural configuration is defined in the design 
domain. In practice, a topological design process can 
be carried out by using finite element analysis in 
combining with a numerical optimisation method. For 
plate structure, the design domain is discretised into a 
number of finite elements as many as possible. 
Topological design variables are the thicknesses of 
the elements. It can be said that the distribution of 
elements’ thicknesses determines a structural 
topology. Having obtained the optimum solution, the 
elements with nearly zero thicknesses represent holes 
or voids on the structure whereas other elements 
indicate the existence of the structural material as 
shown in Figure 2.                           
                   
 

 
Before                              After 

 
Figure 1. Topology optimisation 

 
Initial                       Optimum topology 

 
Figure 2. Topology design using finite element 

analysis 
 
 
 
 
 
 

The design problem used in this study can be 
expressed as:  
 
        min: f(�) = {w, c}T                                            (1) 
        subject to 
              �i(�) � �a 
 
 � 
a 
               �i � {�i

min, �i
max} 

 
where KU = F 

c = U
T
KU 

� is a vector of topological design variables, which 
herein are the finite elements’ thicknesses 
w is structural weight 
c is structural compliance 
U is the vector of nodal displacements of a structure 
due to applied forces F 
K is a structural stiffness matrix 
�i is the equivalent stress on the ith element 
�a is an allowable stress 

 is a maximum deflection 

a is an allowable deflection  
�i

min is the lower bound of the ith design variable 
and �i

max is the plate thickness at the ith element. 
 
 The design problem is said to be unconventional 
since stress and deflection constraints are added to the 
problem. When using a lower order finite element 
formulation, checkerboard formation can occur on the 
resulting topology due to numerical instability. It is 
also found that, with a grate number of finite 
elements, an evolutionary algorithm always has an 
unacceptable convergence rate and complete lack of 
consistency. In this paper, we use the ADD technique 
[1] (also known as a ground element filtering 
technique, GEF [12]) to reduce the total number of 
design variables to a reasonable amount that the 
evolutionary algorithm can cope with. The technique 
can also suppress checkerboard patterns as the 
secondary advantage. The design problem with the 
use of ADD technique therefore becomes 
        

� �)(,)(:min ADDADD wc
ADD

��
�

                             (2) 

subject to 
�i(�) � �a 

 � 
a 
�i � {0, 1} 
 

 where �ADD is the vector of new design variables 
being either 0 or 1. The transformation between � and 
can be expressed as: 

 
� = T�ADD. 
 

 In cases that we need to use the ADD technique 
to suppress checkerboard pattern, the transformation 
needs to be modified leading to 

 

� = round(T�ADD + �0) 

Design  
domain? 

Load Load

F F 

Fixed boundary 



 

 where �0 is a constant vector needs to be 
specified. For more details of the ADD technique, see 
references [1] and [12]. 
        
3. Multiobjective Population-Based 

Incremental Learning  
 Population-based incremental learning (PBIL) is 
a simple version of the estimation of distribution 
algorithm (EDA). The method was first proposed by 
Beluja [13] for single objective optimisation. It has 
been developed as one of the MOEAs as presented in 
[7] and [10]. It has been found that the multiobjective 
version of PBIL is among the most powerful MOEAs 
using binary string as design variables.  
 For MOPBIL, the search procedure starts with 
an initial probability matrix and an empty external 
Pareto archive. A binary population is then generated 
according to the current probability matrix. The non-
dominated solutions of the population are then sorted 
and put into an external Pareto archive. The 
probability matrix is updated based upon the non-
dominated binary solutions in the Pareto archive and a 
new population according to the updated probability 
matrix is then created. The external Pareto archive is 
updated by replacing the members in the archive with 
the non-dominated solutions sorted from the 
combination of the new population and the members 
in the previous archive. In cases that the number of 
non-dominate solutions in the archive exceeds the 
predefined archive size, the normal line technique is 
activated to remove some of the members from the 
archive while maintaining population diversity. The 
computational steps are repeated until the termination 
criterion is met. For more details of MOPBIL, see [7] 
and [10]. 
 
4. Design Test-Case 
 A cantilever plate is used for a design case 
study. Figure 3 illustrates the design domain of the 
cantilever plate while a point load is applied at the top 
right-hand corner of the plate. All details of the 
material properties that are used to solve the problem 
are as follows:  

- The structure is made of material with 205 × 
109 N/m2 young’s modulus and 0.3 
Poisson’s ratio. 

- The structure has the dimensions of L = 0.3 
m and H = 0.1 m. 

- The yield stress is set to be 250×106 N/m2 
and 0.005 m deflection.      

- The structure is meshed to have 38 ×12 
finite elements while the ADD design 
variables have 19×6 elements. 

- The finite element domain and the ADD or 
design variables grids are shown in Figure 
4.  

- The values of �i
min and �i

max are set to be 
0.000001 m and 0.015 m respectively. 

 

 
 

         Figure 3. Design domain of a cantilever plate 

 
Figure 4. Finite element and design variable grids 

 
5. Design Results 
 The effect of generation number and population 
size on the searching performance of MOPBIL is 
investigated. Note that the archive size is set to be100 
for all simulation runs. Figure 5 shows the structural 
topologies of some selected non-dominated solutions 
where the number of generations is set to be 50 and 
the population size is 50. It can be observed that the 
obtained non-dominated front is still far from the real 
Pareto optimum front. The non-dominated topologies 
obtained from setting the iteration number as 50 with 
the population sizes of 100 and 150 are illustrated in 
Figures 6 and 7 respectively. The optimum topology 
obtained from using the solid isotropic material with 
penalisation (SIMP) approach and OCM [14] is 
illustrated in Figure 8. It can be seen that the bigger 
population size results in the better non-dominated 
front. However, the obtained results from running 
MOPBIL are still far from practicality compared to 
that obtained from OCM.  
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L = 0.3 m 
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Figure 5. Topology results: 50 generations and 50 

population size 
 

 
Figure 6. Topology results: 50 generations and 100 

population size 
 

 
Figure 7. Topology results: 50 generations and 150 

population size 

 
Figure 8. Topology structure from OCM 

 
 Figure 9 displays the approximate Pareto front 
obtained from using MOPBIL where the population 
size is set to be 100 and the generation number is set 
to be 50, 100, 150, 200, 250 and 300. The non-
dominated topologies from using the generation 
numbers of 50, 100, 150, 200,250 and 300 are 

displayed in Figures 10, 11, 12, 13, 14 and 15 
respectively. It can be seen that, with the same 
population size, the larger number of generations 
leads to the better Pareto front. The results obtained 
from MOPBIL with more than 100 generations are 
said to be comparable to the topology obtained from 
using OCM. Nevertheless, it should be note that the 
topologies obtained from using MOPBIL and OCM 
are the design solutions the different optimisation 
problems. 

 
Figure 9. Pareto fronts at 50, 100, 150, 200, 250 and 

300 generations with 100 population size 
 

 
Figure 10. Topology results: 50 generations and 

100 population size 
 

 
Figure 11. Topology results: 100 generations and 100 

population size 



 

 
Figure 12. Topology results: 150 generations and 100 

population size 
 

 
Figure 13. Topology results: 200 generations and 100 

population size 
 

 
Figure 14. Topology results: 250 generations and 100 

population size 
 

 
Figure 15. Topology results: 300 generations and 100 

population size 
 
 The test in measuring the consistency of 
MOPBIL is made by running the optimisation method 
three times with the number of iterations being 250 
and population sized 100. The approximate Pareto 
fronts from the three runs are plotted in Figure 16. 
The structural topologies corresponding to the fronts 
from the first, second and third runs are illustrated in 
Figures 17, 18 and 19 respectively. It can be observed 
that the MOPBIL search is somewhat inconsistent as 
we obtain three different Pareto fronts from three 
runs. All of the fronts however have reasonable and 
realisable topologies.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Pareto fronts from running MOPBIL 3 
times 

 



 

 
Figure 17. Results from the first running 

 

 
Figure 18. Results from the second running 

 

 
19 Results from the third running 

 
 From the results, it can be said that the effective 
conceptual design of a cantilever plate can be obtain 
by the use of MOPBIL. Pareto optimal solutions can 
be obtained within one optimisation run. The 
structures from using MOPBIL are almost ready to be 
manufactured since the safety constraints have been 
added to the design problem during the topology 
optimisation process.       

 
 
 

6. Conclusions 

 The multiobjective optimisation problem of the 
topology design for cantilever plate is introduced. 
MOPBIL is implemented for solving the compliance 
and structural weight minimisation problem. The 
element stresses and system defection of the structure 
are used to the constraints where design variables 
represent a structural topology. The topology 
optimisation results of the structure show that 
MOPBIL is effective and powerful for this problem. 
Multiple structural topologies can be obtained within 
one optimisation run and the method can deal with an 
unconventional topology optimisation problem. 
However, it is considerably time-consuming 
compared to OCM. As a result, MOPBIL searching 
performance should be enhanced so that it can be used 
for the real-world applications.  
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