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The use of evolutionary algorithms for structural topology optimisation is said to be ineffective due to
a considerably large number of topological design variables. However, such a problem can be alleviated
by using additional numerical techniques. This paper presents the applications of simulated annealing
(SA) for solving structural topology optimisation. The numerical technique termed multiresolution design
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1. Introduction

Topology optimisation is an effective design tool for a variety of
engineering applications. For example, it can be used in the concep-
tual design stage of structural, mechanical and automotive compo-
nents, e.g. in [1,2]. Also, it is applicable to the synthesis of compliance
mechanisms [3,4]. Much research work has been made towards this
design technology as mentioned in [5]. The design process is usually
carried out by using an optimiser for problem solving and finite ele-
ment (FE) analysis for function evaluation. The well-established ap-
proaches for topology optimisation are solid isotropic material with
penalisation (SIMP) [5], homogenisation method [6], and evolution-
ary structural optimisation [7].

The most preferable optimisers for the topological design prob-
lem are gradient-based methods such as optimality criteria method
(OCM) [8], the method of moving asymptotes (MMA) [5] and sequen-
tial linear programming (SLP) [9]. There have been some attempts
to use evolutionary algorithms (EAs) for this type of optimisation
problem [10,11] and it was found that their search performances are
incomparable to the gradient-based methods. This is because most

* Corresponding author.
E-mail address: sujbur@kku.ac.th (S. Bureerat).

0168-874X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.finel.2008.04.002

if not all of topology optimisation problems have a great many design
variables. Since the EAs somewhat base their searching strategies on
randomisation, they are not as powerful when solving such a large-
scale design problem.

As a result, a number of numerical strategies have been devel-
oped and employed so that the search performance of EAs for both
single and multiobjective topology optimisations is improved, such
asin [12-15]. Using an approximate density distribution (ADD) tech-
nique as presented in [16] was found to be powerful and effec-
tive for single objective design cases. It is a simple trick used for
reducing a number of design variables whilst slightly affecting a
topological design domain. It can also be used for suppression of
checkerboard patterns on the resulting topologies [3]. Furthermore,
from the numerical investigation in [16,17], it has been shown that
the mutation-based optimisation methods such as simulated anneal-
ing (SA) are more efficient than the other EAs when solving large-
scale topological design problems with single objective functions.
The results obtained from using such methods can even be com-
pared to the optimum results from the gradient-based approaches,
although they still require more function evaluations. With an im-
proved searching performance, using EAs for topology optimisation
would be advantageous since they can deal with unconventional
topological design problems, which may be difficult or even impos-
sible to be solved by using the gradient-based optimisers.

Finite Elem. Anal. Des. (2008), doi: 10.1016/j.finel.2008.04.002
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This paper presents the applications of SA for solving structural
topology optimisation. It is said to be the extension of the work pre-
sented in [16]. The numerical technique named MRDV is developed
as a numerical tool to enhance the searching performance of SA. The
chromosome repairing technique presented in [15] is employed to
repair a design solution that leads to multiple disconnected areas.
The SA strategies using various sets of MRDV are implemented to
solve a number of structural topology optimisation problems. The
results obtained from the various SA strategies are illustrated and
compared. The effect of using many resolutions of design variables
on SA's searching performance is examined. It is shown that the tech-
nique of MRDV is a powerful tool for the performance enhancement
of SA when solving structural topology optimisation.

2. Simulated annealing

SA can sometimes be classified as an EA. The method can be seen
as mimicking the random behaviour of molecules during an anneal-
ing process, which involves slow cooling from a high temperature.
As the temperature cools, the atoms line themselves up and form
a crystal, which is the state of minimum energy in the system. By
using SA, almost all kinds of design variables including binary codes
can be applied. The search procedure of SA starts with an initial so-
lution, which will be called the parent. The parent is then mutated
in some manner leading to a set of children or offspring. The best
offspring is said to be a candidate to challenge its parent. For min-
imisation, if the candidate has a lower objective value than that of
the parent, the parent is replaced by the candidate. In cases where
the candidate has a higher objective function value than its parent,
it still has a chance to replace the parent if accepted by a Boltzmann
probability. Since on each loop the worse candidate may replace its
parent, the best solution and the parent may not be the same so-
lution. Therefore, the best individual on each loop should be kept
along with a parent ensuring that the best solution of the search is
not lost. The best solution can also be used in the mutation strategy
of SA.

The SA algorithm used for minimisation in this paper can be
detailed as

1. Initialisation: initial solution Xparent =Xpest» fparent =/fpest» initial
temperature T.
2. Generate ns design solutions {x},x%,...,x,lls} and their corre-

sponding function values {f!. £}, ... f1} by mutating on Xparent.

3. Generate ns design solutions {x?,x2,....x3} and their corre-

sponding function values {f2,f2. ..., f2} by mutating on Xpe.
4. Find feandidate = min({fil} U {fiz}) and its corresponding design
solution X¢andidate-
5. If feandidate <fparent:
5.1. Set Xparent = Xcandidate- fparent = feandidate
5.2 lffcandidate < best» Xbest = Xcandidate- fbest :fcandidate
5.3. Go to step 7.
6. If feandidate > fparent. find PB:exp(jM), and generate
a random number rand.
6.1. If rand <Pp, set Xparent = Xcandidate: fparent =fcandidate and
Xpest and fhegr are not changed. Go to step 7.
6.2. If rand > Pp, Xparent, fparent, Xpest aNd fpese are not changed.
Go to step 7.
7. Reduce the temperature T if the condition is fulfilled.
8. If the termination criterion is met, stop the procedure. Otherwise,
go to step 2.

On each iteration ns individuals are created by mutating on
Xparent and other ng individuals are obtained from mutating on
Xpest- The solutions Xpege and Xparent are the same initially but they

can be different during the optimisation process. The parameter
rand < [0, 1] is a uniform random number sampled every time the
computational step 6 is operated. The reduction of temperature can
be scheduled by a designer. The use of SA for structural topology
optimisation has been studied by several researchers e.g. in [16—19].
For more details of SA algorithms, see [16] and [18-22].

3. Multi-resolution design variables

A topological design process of continuous structural systems can
be carried out by using FE analysis for function evaluation and a
numerical optimiser for solving the design problem. Fig. 1 demon-
strates the process of topology optimisation. The design domain is
a predefined region used to form a structural topology. There are
some parts of the structure that are not changed during the opti-
misation process. There can also be some predefined voids on the
domain. The domain is then discretised into a number of FEs, which
are called ground elements. Topological design variables are param-
eters that can be used to define a topology, e.g. elements' pseudo-
densities and thicknesses. Having obtained the optimum solution,
the elements that have low density values form holes while the el-
ements with high density values represent material existent on the
structure. One of the greatest difficulties when using this approach
is that the resulting topology is full of checkerboard patterns when
a low order FE model is implemented [5]. A number of numerical
techniques have been developed to deal with such a problem and
one of them is the ADD technique [16].

ADD is a simple numerical technique exploiting surface spline
interpolation for approximating the values of FE densities from the
known density distribution on another grid domain. The grid of de-
sign variables can be achieved by discretising the design domain with
a resolution different from the FEs grid resolution. Fig. 2 shows a
rectangular design domain being meshed into n ground FEs whereas
the design variables have m elements. Let r]Q be the position vectors
of the m centre points of the design variable grids (plus signs) and
r‘,; be the position vectors of the centre points of the n ground el-
ements (o' signs). By using radial-basis function interpolation, the
densities at the centre points of the ground FEs p can be computed
from the given density values at the design variables' centre points,

pADD 35

p:CAflpADD :TpADD (1)

|
Dedigh
omain
[ 1

Fixed Void /l F
boundary Unchanged
Optimum
topology

Fig. 1. Topology optimisation.
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0.5
Here we use the function f(x) = x. The resolution of the design
variables (or ADD grid) must be lower than that of the ground ele-
ments. The process can be seen as the densities of the ground ele-
ments being filtered by the densities value on the design variables
0 grid, thus, it is sometimes called a ground elements filter. For more
0 0.5 1 1.5 2 details see Refs. [3,16].
d ) In order to prevent intermediate densities on the resulting topol-
p domain ogy, binary design variables are used and the transformation in Eq.
1 T (1) needs to be modified. The components of p in (1) are refined to
be p® as
0. pi+p°<05
e __ 1
pi—{l, pi+p°>05 2)
0.5 where p9 € (0,0.5) is a constant value to be specified.
Eq. (2) can be expressed in a matrix form as
N p¢ = round(Tp"PP + p0) (3)
| where p0 is a vector sized n x 1 with all the elements being p°, and
0 0 05 ] 15 ) the function round(x) is used to round off the real number x to its

nearest integer.

Figs. 3—5 demonstrate the mapping of densities from the ADD
domain to the densities of the FEs where the density values in the
ADD domain form a checkerboard pattern. Note that the density

Fig. 3. Mapping between ADD grid and ground element densities p° = 0.05.

where values in both ADD and FE domains are set to be either ones (black
elements) or zeros (white elements). The ADD domain has 20 x
A = [Gjlmxm = [fd?, l‘]O))] = [f(d;)] 10 elements while the FE grid has 30 x 15 elements. In Fig. 3, the
value of p0 is set to be 0.05 while it is set to be 0.15 and 0.25 for
C = [Ckjlnxm = [f(d(rl‘é,rjp))] = [ftdi] the transformation shown in Figs. 4 and 5, respectively. It can be
seen that the transformation in Figs. 3 and 4 cannot totally suppress
and checkerboard patterns (or one-node connected part) whereas the
transformation in Fig. 5 results in no checkerboards. This implies that
dr, rj) =,/ (r; — j)T(rl- —Tj). the proper value of p0 needs to be determined in the pre-process.
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1 Fig. 6. Transformation of multiresolution design variables.
or
ADD3 ADD1
05 P500.1 = T300x08 158505001 ) (6)
The last transformation is carried out to find the values of ground
FE density, which can be computed as
ADD3 0
50051 = round(T300, 200050051 + P )- (7)
0

0 0.5

N

1.5 2

Fig. 5. Mapping between ADD grid and ground element densities p® = 0.25.

As mentioned in [16] that the ADD technique is not only capa-
ble of preventing checkerboards on a structural topology but it also
reduces the number of design variables. With the decreased num-
ber of design variables, the design results obtained from using the
EAs are improved. However, it has also been shown that the higher
resolution of topological design variables always results in the bet-
ter structural topology if the optimiser is powerful enough. Due to
this observation, the work in this paper presents the use of multiple
resolutions of the ADD design variables in one optimisation run. The
design strategy is to start with using the lowest resolution ADD de-
sign variables in the early iterations. Then, as the optimisation pro-
cess continues, the resolution of the design variables increases. Such
a design strategy is achievable by using the transformation equa-
tions (1) and (3). The use of Eq. (1) is for changing the resolution of
the design variables during the optimisation process while Eq. (3) is
used for checkerboard suppression.

Fig. 6 demonstrates the idea of how the MRDV work. The fig-
ure displays four different grid resolutions on the same rectangu-
lar design domain. The first and lowest resolution grid (defined as
pAPD1y js an ADD grid with 10 x 5 elements. The second ADD grid
(pAPD2) is the second set of ADD design variables, which has 14 x 7
elements. The third grid (pAPP3) with 20 x 10 elements is also an
ADD grid whereas the fourth grid having 30 x 15 elements is cre-
ated for ground FEs (p€). The transformation between the grids can
be achieved by using the transformation matrix in (1). For example,
with the known vector pAPP1, the values of pAPD2 on the second
ADD grid can be estimated as

ADD2 _ 712 ADD1
Pogx1 = T98x50P50x 1 (4)
where T!2 is a transformation matrix sized 98 x 50.

Similarly, the values of element density on the third ADD design
domain can be computed as

ADD3

D2
P5001 = 500080801 (5)

The pre-process is required for computing the ADD and ground
element grids as well as all the transformation matrices and the value
of p0. Fig. 6 shows the transformations from pAPP1 to pAPD2 and
then from pAPD2 to pAPD3 and finally from pAPDP3 to p€. A particular
binary design solution is defined on the pAPP! design domain. It is
then transformed to the second and third ADD domains as shown
in the figure. The last stage is the transformation of density values
from the third design domain to the ground element domain where
p0=0.25. It can be seen that checkerboard-like topologies can occur
on the ADD design domains but they disappear on the FE grid by
using the transformation (3).

For topology optimisation using SA, the search procedure starts
with the lowest resolution ADD design variables (here is pAPP1). As
the searching process continues for a number of iterations, it is ex-
pected that the SA algorithm using such low resolution design vari-
ables can quickly find the design solutions close to the optimum.
The higher resolution of design variables pAPD2 is then applied so
as to refine the optimum results obtained from using pAPP1. As the
optimisation process continues, the resolution of design variables is
increased. The procedure is terminated when the termination con-
dition is met. In the pre-processing step, a designer needs to define
how many grid resolutions of the ADD design variables should be
used. The resolution of each grid level and the resolution of ground
FEs are also predetermined. Apart from that, the number of itera-
tion and population size for each level of ADD design variables must
be assigned in the initial stage. The searching performance depends
on the aforementioned parameters and the evolutionary optimiser
being used. Since the ADD design variables are encoded as binary
strings, mutation of a vector of design variables can be achieved in
such a way that a randomly selected bit position is changed to “1' if
its current value is "0’ or vice versa. This is said to be a common mu-
tation for binary codes [16], which can be applied to any ADD grid
resolution.

4. Test problems

In order to examine the efficiency and effectiveness of the pro-
posed numerical strategy, five topology optimisation problems are

Finite Elem. Anal. Des. (2008), doi: 10.1016/].finel.2008.04.002
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assigned and used for performance comparison. The structural design
domains used for the five design problems are illustrated in Figs.
7-11. The problems are detailed as follows:

OPT1

. m \Wi/ ¢ \"2
min :
Mmax Cmax

where m is the structural mass, ¢ the structural compliance due to
the applied load F and wq and w, are the degrees of importance for
the mass and compliance, respectively.

Fig. 7 shows the structure used for the test problem OPT1. The
structure is made up of a material with E=200x 10° N/m? and v=0.3
where L =2m and H = 1 m. The elements' densities here mean the
elements' thicknesses since the four-node membrane FE model is
employed. The value of 0 is set to be 0.25. The thickness value of the
ith element is decoded to be 0.00001 if pf =0; otherwise, it is set to
be 1 (from thousands of FE analyses in the optimisation process, the
stiffness matrix is always invertible although the difference between
maximum and minimum thicknesses is large). The parameter mmax
is a structural mass where the vector p¢ is full of ones (p® =1). The
value cmax is a structural compliance where the vector p® is full of
zeros (p€ = 0). The degrees of importance for mass and compliance
are setas: wy=1and wy =1.

Figs. 8 and 9 show an MBB beam and 2D bridge used for the test
problems OPT2 and OPT3, respectively. The optimisation problems,
FE model, structural material and dimensions used in OPT2 and OPT3
are similar to those applied in OPT1 where the dimension h of the
2D bridge is set to be 1]—5 m

OPT4

. m \"M o \"2
min : -
Mmax Amax

where m is the structural mass, / is the first eigenvalue from solv-
ing free vibration of a structure and wy and w, are the degrees of
importance for the mass and eigenvalue, respectively.

The design domain of OPT4 is displayed in Fig. 10. The parameters
Mmax and Amax are the structural mass and eigenvalue at which all
of the elements' densities are equal to ones (p® =1). The FE model,
structural material, and dimensions are similar to those used in OPT1.
The dimension h is set to be ]]—5 m. The degrees of importance for
structural mass and eigenvalue are assigned as: wy =2 and wy =1.

OPT5

w w
. m \"1[ ¢ 2o 3
min :
Mmax €1, max €2, max

where m is the structural mass, cq the structural compliance due
to the applied load case Fq, ¢y the structural compliance due to
the applied load case F, and wy, wy and ws are the degrees of
importance for the mass and compliances due to the load cases F4
and F,, respectively.

This test problem has two applied load cases, F; and F,, as shown
in Fig. 11. The FE model, design domain, structural material and
dimensions are similar to those used in OPT1. The parameter mmax
is a structural mass where p® = 1. The values ¢1 4 and ¢y pax are
structural compliances due to F; and F;, respectively, where p¢ = 0.
The degrees of importance for mass and compliances are set as:
wy=5wy=1land w3 =1.

The first three design problems are said to be compliance minimi-
sation while the fourth topological design problem can be classified
as the maximisation of structural dynamic stiffness. The last prob-
lem is the minimisation of structural compliance due to two applied
load cases. FE grid resolution is set to be 30 x 15 elements. There
are three different resolutions of ADD design variables grid used in
this study, 10 x 5, 14 x 7 and 20 x 10 as displayed in Fig. 6. As the
mutation operator used with SA can result in multiple disconnected
parts on a topology, the chromosome repairing technique presented
in [15] is therefore employed to deal with this undesirable occur-
rence. The function evaluation starts with defining thickness values
on the ADD domain. They are then transformed to be FE thicknesses
by using the process detailed in Section 3. The chromosome repair-
ing operator is also activated in cases where the resulting topology
has many disconnected parts.

Finite Elem. Anal. Des. (2008), doi: 10.1016/j.finel.2008.04.002
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Fig. 12. Search history of OPT1 using design variables with 10 x 5 grid resolution.
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Fig. 13. Search history of OPT1 using design variables with 14 x 7 grid resolution.

In order to examine the impact of different resolutions of the ADD
design variables on the searching performance, a primary investi-
gation is made. Fig. 12 displays the search history of using SA with
the 10 x 5 ADD grid for solving OPT1 five times. The total number
of iterations is set to be 120 while five individuals are created from
mutating on Xparent and another five individuals are obtained from
mutating on Xpeg. From the five search histories, it can be seen that
the objective function value decreases rapidly in the early iterations
(say 20 iterations). Afterwards, it remains rather constant or slightly
decreased as the optimisation process carries on. The five search his-
tories of using SA with the ADD grid of 14 x 7 elements are plotted
in Fig. 13. Similarly to Fig. 12, it can be observed that the objective
function value reduces rapidly in the early iterations (say 40-60 it-
erations) and then remains rather constant or slightly reduced. For
the search histories of using SA with the 20 x 10 ADD grid for solving
OPT1 five times, the search histories tend to be similar to the first
two cases but it seems that 120 iterations are insufficient for these
high resolution design variables. From this comparison, it can be said
that the higher resolution needs more iterations to reach or become

Table 1
Design conditions

DSV ADD grid resolutions No. of iterations Population size SA strategies

DSVI 10x5 120 10 SA1
DSV2 14 x7 120 10 SA2
DSV3 20 x 10 120 10 SA3
DSV4 10x5, 14x 7 40,80 10 SA4
DSV5 10 x5, 20 x 10 40,80 10 SAS
DSV6 10x5,14x 7, 20 x 10 20,40,60 10 SAG
x 106
10.2 ¢

fi best

No. of iterations

Fig. 14. Search history of OPT1 using design variables with 20 x 10 grid resolution.
#1 #2 #3 #4 #5
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Fig. 15. Optimum topologies of OPT1 obtained from the various SA strategies.

close to the optimum. However, the higher resolution design vari-
ables provide wider design space and can lead to a better topology.

From the primary study, the conditions for using MRDV are as-
signed as shown in Table 1. The sets of design variables DSV1, DSV2
and DSV3 use single resolution of design variables whereas DSV4,
DSV5 and DSV6 use multiple resolution grids of design variables as
detailed in the table. The sets of number of iterations assigned for
DSV4-6 are obtained from the observation on Figs. 12—14. The SA
strategy for the DSVi design variables set is termed SAi as in the table.

Finite Elem. Anal. Des. (2008), doi: 10.1016/].finel.2008.04.002
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Fig. 16. Comparison of objective function values of OPT1 from the various optimisers.

Fig. 17. Optimum topologies of the design domain of OPT1 from using the SIMP
approach.

Each SA strategy is implemented to solve the test problems five
optimisation runs so that its convergence rate and consistency can
be measured and compared to the other SA search strategies. The
population size (the number of children created on each loop) is set
to be 10 as five solutions are created from mutating on Xparent and
other five solutions are obtained from mutating on Xpeg. For each
test problem, the six optimisation strategies start with the same
initial solution. The solution Xpeg obtained at the last iteration is
said to be the optimum solution.

5. Optimum results and performance comparison

The optimum topologies of OPT1 obtained from using the var-
ious SA strategies are displayed in Fig. 15. Five structural topolo-
gies are obtained from each SA strategy as it was operated for five
simulation runs. The comparison of the objective function values of
the various topologies is given in Fig. 16. In the figure there are six
groups of bar charts. In each group the first five bars represent the
normalised objective values of the five topologies from five optimi-

#1 #2 #3 #4 #5
svi P, [P I . P
#1 #2 #3 #4 #5
psv2 T, e, TR, ™. I
#1 #2 #3 #4 #5
osv: g BN T, BNa, N,
#1 #2 #3 #4 #5
Dsvs e, [y, D, T, T
#1 #2 #3 #4 #5
osvs (W, PP, D, B, I
#1 #2 #3 #4 #5
psve I, Phug M. [Py O

Fig. 18. Optimum topologies of OPT2 obtained from the various SA strategies.
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Fig. 19. Comparison of objective function values of OPT2 from the various optimisers.

sation runs. The sixth (white) bar is the mean value of the five nor-
malised objective values. From the bar chart comparison, SA with
DSV6 gives the best results while the second best results are from
using SA with DSV4. This implies that the use of multiple resolution
grids of design variables improve the search performance of SA. For
SA using the single resolution design variables (DSV1-3), SA2 gives
the best results while SA1 is the second best. This implies that the
predefined 120 iterations and population size 10 are suitable for the
DSV2 resolution while the resolution of DSV3 is too high for these
design conditions. Fig. 17 displays the topologies obtained from us-
ing the gradient-based OCM (the SIMP approach) [5,8] where the
ratio of mass reduction is set to be 40%, 50% and 60%. The topologies
in Fig. 17, although obtained from different design approaches, look
similar to most of the topologies depicted in Fig. 15.

The structural topologies obtained from solving OPT2 using the
various SA optimisers are shown in Fig. 18 whereas the bar charts
comparing their objective values are given in Fig. 19. According to
the comparison, the SA method using DSV6 gives the best results

Finite Elem. Anal. Des. (2008), doi: 10.1016/].finel.2008.04.002
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Fig. 20. Optimum topologies of the design domain of OPT2 from using the SIMP
approach.
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Fig. 21. Optimum topologies of OPT3 obtained from the various SA strategies.

whereas the close second and third best methods are SA4 and SA5,
respectively. The design variables grid DSV2 is the best in cases of
using a single resolution. The optimum topologies obtained from us-
ing OCM with mass reduction ratios of 40%, 50% and 60% are dis-
played in Fig. 20. It can be observed that the topologies in the figure
look similar to those shown in Fig. 18.

The optimum topologies of OPT3 obtained from using the various
SA strategies are shown in Fig. 21 while the performance compar-
ison is given in Fig. 22. According to their objective values, the SA
method using DSV5 is the best strategy while the very close second
and third best strategies are SA with DSV4 and DSV6, respectively.
The optimum topologies obtained from using OCM with the mass
reduction ratios of 40%, 50% and 60% are displayed in Fig. 23. The
topologies in Figs. 21 and 24, although obtained from the different
approaches, mostly look similar.

The topologies obtained from solving OPT4 by using the different
SA strategies are given in Fig. 24 while the comparison of their ob-
jective values is displayed in Fig. 25. According to the performance

Nomarlised function values

1 2 3 4 5 6 7 8 9
Sets of multiresolution design variables

Fig. 22. Comparison of objective function values of OPT3 from the various optimisers.

r=0.6
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Fig. 23. Optimum topologies of the design domain of OPT3 from using the SIMP
approach.

comparison, the best SA strategy is SA with the use of DSV6 while
the second best is SA with DSV4. The optimum topologies obtained
from the SIMP approach with the derivative filtering technique are
displayed in Fig. 26 where the mass reduction ratio is set to be 40%,
50% and 60%. It can be seen that the topologies obtained from the
present approach and from using OCM are slightly different.

The structural topologies obtained from solving OPT5 by using
different SA strategies are displayed in Fig. 27 whereas the perfor-
mance comparison is illustrated in Fig. 28. From the comparison, SA
with the use of DSV6 gives the best results while the SA using DSV5
is the second best. The optimum topologies from using OCM with
the mass reduction ratio of 40%, 50% and 60% are illustrated in Fig.
29. The topologies from Figs. 27 and 29 are slightly different. In this
design problem, the one-node connected part cannot be completely
suppressed.

Overall, the best method is SA using DSV6 which uses three reso-
lutions of design variables. The second best method is SA with DSV4
while the third best is SA with the use of DSV5. It can be said that
the use of multiple resolutions of design variables help enhancing

Finite Elem. Anal. Des. (2008), doi: 10.1016/].finel.2008.04.002
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Fig. 25. Comparison of objective function values of OPT4 from the various optimisers.
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Fig. 26. Optimum topologies of the design domain of OPT4 from using the SIMP
approach.
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Fig. 27. Optimum topologies of OPT6 obtained from the various SA strategies.
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Fig. 28. Comparison of objective function values of OPT6 from the various optimisers.

the searching performance of SA. The more resolutions used leads
to the better searching performance if the set of iteration numbers
and ADD grids are defined properly. For the SA methods using sin-
gle design variables grid DSV1-3, the best design variables grid is
DSV2 which has 14 x 7 variables. The second best design variables
set is DSV1. The total number of design variables of DSV3 which is
20 x 10 is too large for the proposed SA method with the given it-
eration number and population size.

The new design problems combining with the use of MRDV for
structural topology optimisation are said to be effective. The ap-
proach, however, has some drawbacks, i.e. we need some prior
knowledge to specify the degrees of importance used in the objective
functions, the design variables resolution and the iteration number
for each design variables resolution. Nevertheless, from Figs. 12—-14
and the observation on the other design test problems, it can be said
that the convergence rate of SA is somewhat related to the num-
ber design variables and population size. For example, with 10 x 5
design variables and population sized 10, the SA method can reach
or get close to the optimum approximately within 20 iterations. If

Finite Elem. Anal. Des. (2008), doi: 10.1016/].finel.2008.04.002
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Fig. 29. Optimum topologies of the design domain of OPT6 from using the SIMP
approach.

the number of design variables is increased to 14 x 7 variables, the
SA method needs at least 40—80 loops to become close to the opti-
mum topology. With sufficient prior knowledge and experience, the
MRDV and the iteration numbers can be set properly.

6. Conclusions and discussion

The algorithm of SA has been detailed and used for structural
topology optimisation. The ADD technique is used for checkerboard
suppression. MRDV are proposed to be used with SA for solving
topological design problems. From the numerical test, it can be con-
cluded that the use of MRDV results in the enhanced performance
of the SA optimisation method. The optimum results obtained from
using SA are said to be comparable to those obtained from using the
classical gradient-based approach. The checkerboard suppression by
means of the ADD technique is acceptable although there remain
some one-node connected parts on the resulting topologies of OPT5.
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Abstract. The work in this paper presents the use of population-based incremental learning
(PBIL), one of the classic single-objective population-based optimisation methods, as a tool for
multiobjective optimisation. The PBIL method with two different updating schemes of its prob-
ability vectors is presented. The performance of the two proposed multiobjective optimisers are
measured and compared with four other established multiobjective evolutionary algorithms i.e.
niched Pareto genetic algorithm, version 2 of non-dominated sorting genetic algorithm, version
2 of strength Pareto evolutionary algorithm, and Pareto archived evolution strategy. The opti-
misation methods are implemented to solve 8 bi-objective test problems where design variables
are encoded as a binary string. The Pareto optimal solutions obtained from the various methods
are compared and discussed. It can be concluded that, with the assigned test problems, the mul-
tiobjective PBIL methods are comparable to the previously developed algorithms in terms of
convergence rate. The clear advantage in using PBILs is that they can provide considerably
better population diversity.

Keywords: Multiobjective Evolutionary Optimisation, Population-Based Incremental
Learning, Non-dominated Solutions, Pareto Archive, Performance Comparison.

1 Introduction

In the past, the well-established optimisation methods were mostly developed for sin-
gle-objective optimisation. They can, however, be employed to solve a multiobjective
problem by using numerical strategies such as the weighted-sum technique [14],
global criteria method [9] and normalised normal constraint technique [15]. The prin-
ciple of such numerical strategies is to convert an optimisation problem with multiple
design objectives to be a single-objective problem to suit the available optimisers.
This means that the optimisation methods need to be performed for as many simula-
tion runs as the number of Pareto optimal points required.

Optimisation methods can be classified as methods with and without using func-
tion derivatives. In comparison of EAs, the methods without using derivatives, to the
derivative-based methods, the latter are far superior in terms of convergence rate and
consistency. Nevertheless, using EAs are advantageous in that they can deal with all
kinds of design variables [2], and most importantly the multiobjective evolutionary
methods can search for a set of Pareto optimum points within one attempt whereas the

A. Saad et al. (Eds.): Soft Computing in Industrial Applications, ASC 39, pp. 223-232, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007



224 S. Bureerat and K. Sriworamas

gradient-based techniques need many operations. Although having such benefits, the
evolutionary methods are still not as powerful as expected due to a complete lack of
consistency and low convergence rate. Since there is no convergence guaranteed, the
results obtained from using an EA are mostly classified as an approximated Pareto
front.

In recent years, a number of evolutionary algorithms have been developed as mul-
tiobjective optimisers and they are termed multiobjective evolutionary algorithms
(MOEAs). In the early days, the well-known methods were, for example, vector
evaluation genetic algorithm (VEGA) [16], multiobjective genetic algorithm (MOGA)
[7] and none-dominated sorting genetic algorithm (NSGA) [18]. Later, there have
been numerous new algorithms developed. Some work on comparing their perform-
ance has been made e.g. in [20] and [22]. The development of new approaches, im-
provement of the existing algorithms, and implementation of the methods on real
world applications are still a great challenge.

The work in this paper is aimed at developing population-based incremental learn-
ing (PBIL), one of the classical single-objective EAs, as a tool for multiobjective
optimisation. The proposed algorithm is said to be a mix of some advantages of the
predecessors. Two PBIL algorithms with different probability vector updating proce-
dures are presented: one is modified from that presented in [12] while the other one
deals with the weighted-sum technique. The two proposed optimisers along with four
recently developed MOEAs including NPGA [4] [10] and [11], NSGAII [6], SPEA2
[21] and PAES [13] are implemented to solve 8 bi-objective test problems. Design
variables are encoded as a series of binary strings. The performances of the optimisers
are measured, compared and discussed. It can be concluded that, with the given de-
sign conditions, the PBILs are said to be as good as some of the existing MOEAs in
terms of convergence rate, and superior to them when considering population
diversity.

2 Multiobjective Optimisation

A particular multiobjective design problem can be posed as:
Find x such that

Min: f = {fi(X),.../u(X)}

Subject to

8i(x)<0

hi(x)=0

MOEAs are normally created to deal with unconstrained optimisation; however,
they can be applied to constrained problems by using a penalty function technique.
Moreover, the non-dominated scheme for constrained optimisation given in reference
[5] is found to be greatly efficient and effective. All of the evolutionary methods men-
tioned in this paper are categorised as Pareto-based methods. The basic concept of
exploring Pareto optimum points via such an algorithm is that, on each generation
while a new population is created, non-dominated solutions are classified and carried
on to the next generation. The term, non-dominated solutions, defines the local Pareto
solutions among the members of the current population during evolutionary search.
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3 PBIL for Multiobjective Design

The original PBIL algorithm is based upon binary searching space similar to GAs [1].
Later, there has been further development of PBIL for continuous and discrete design
spaces [8], [17] and [19]. The method is classified as an estimation of distribution
algorithm (EDA) that achieves its search through probability estimation and sampling
techniques. The application of PBIL to multiobjective design has been presented in
[12] where the approach is named MOSA. The principle of PBIL search can be
thought of as iteratively limiting the design space depending on current best design
variables and random process. The design space is iteratively narrowed until ap-
proaching the optimum. Rather than keeping all binary genes or a population as with
GA, the population in PBIL is represented by the probability vector of having ‘1’ at
each bit position in the binary strings. For more details, see [1].

Initially, for single objective optimisation, the search procedure starts with the ini-
tial probability vector whose elements are full of ‘0.5’. An initial population corre-
sponding to the probability vector is created. The binary population is decoded and
objective values are computed. The best gene, whether it is a minimum or maximum,
is chosen to update the next probability vector p using the relation

})inew — })inld (1—LR)+b,LR (1)

where LRe (0,1) is called the learning rate to be defined and b, is the i"™ bit of the best
binary solution. It is also useful to apply mutation to the probability vector at some
predefined probability such that

})inew — Pinld (1 _ ms) + rand(o or l)ms (2)

where ms is the amount of shift used in the mutation. The best solutions are carried
over into the next generation ensuring that the best solution during the search is not
lost. The probability vector is updated iteratively until convergence is achieved.

When employed as a multiobjective optimiser, more probability vectors should be
used in order to obtain a more diverse population; therefore, it is called a probability
matrix instead. The search starts with an (empty) external Pareto set and initial prob-
ability matrix whose elements are full of ‘0.5°. Each row of the probability matrix is a
probability vector that will be used to create a sub-population. Let N be the number of
design solutions in a population, / be the number of probability vectors and 7, be the
number of binary bits. The probability matrix, therefore, has the size of [ X n, where
each row of the matrix results in approximately N/[ design solutions as one sub-
population. Having generated the population and evaluated their corresponding objec-
tive values, the non-dominated members sorted from the union set of the current
population and the old external Pareto set are taken as a new external Pareto set. If the
external Pareto set is full (the number of non-dominated members exceeds the archive
size), some solutions are removed from the external Pareto set using the adaptive grid
algorithm [13]. The probability matrix and the non-dominated solutions are improved
iteratively until some termination criterion is met.

In this paper, two updating schemes for the probability matrix are proposed. The
first scheme is quite similar to that presented in [12]. To update a row vector of the
probability matrix, ny < N binary solutions from the current Pareto archive are
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selected at random. The mean value of each i bit position of the selected binary solu-
tions is computed and used as b; in equation (1). The mutation (2) is also performed
with the given probability.

The second scheme uses the weighted-sum technique. In updating each row of the
probability matrix, m weighting factors are generated randomly while the condi-
tionzW[ —1is preserved. A binary solution from the union set of the current popula-

tion and the external Pareto set, which gives the minimum value of the weighted-sum
function (3), is chosen to update the row probability vector. The mutation is also al-
lowed to occur by the predefined probability.

=3 w s, (3)

Selection is performed if the number of non-dominated solutions obtained exceeds
the predefined size of the external Pareto set. By using the adaptive grid algorithm,
one of the members in the most crowded region is removed from the archive. The
crowded regions are updated and the member in the most crowded region is removed
iteratively until the number of non-dominated solutions is equal to the size of the
archive.

4 Performance Testing

Numerical experiments were made to measure the performances of the proposed
PBIL. Six unconstrained bi-objective problems F;, F,, F;, F4, F5 and F¢ taken from
reference [20] are used to benchmark the presented approaches and the other MOEAs.
The optimisation problems are said to cover all aspects of difficulty in approximating
a Pareto front via MOEAs [20]. The number of design variables is 30. Two more un-
constrained bi-objective test problems, apart from the six test problems previously
mentioned, are: F; the FON problem in [6], and Fg the SPH-m problem in [21]. For
Fs, the bounds are set to be x; € [-5, 5].

The multiobjective evolutionary algorithms i.e. NPGA, NSGAII, SPEA2 and
PAES along with PBIL1 and PBIL2 are implemented to solve the bi-objective mini-
misation problems. The two PBIL strategies are PBIL1 the multiobjective PBIL using
the first probability matrix updating scheme, and PBIL2 the multiobjective PBIL us-
ing the second probability matrix updating scheme. The algorithms can be categorised
as using the crossover-based method (NPGA, NSGA and SPEA), the mutation-based
method (PAES) and the estimation of distribution method (PBIL). All of the methods
employ a population size of 100 and an iteration number of 100 for every design
problem except for the F; test-case where the population is sized 30 and the number
of iterations is 30. The methods that perform elitism have the archive size of 100.
Each design variable is encoded with 30 binary strings unless otherwise specified.
Design conditions set for each optimiser are detailed as followed.

NPGA the number of randomly selected individuals for tournament selection is 30,
the next generation consists of 50 (15 for F;) non-dominated solutions and 50 (15 for
F;) members from tournament selection, crossover probability is 1.0 and mutation
probability is 0.1.
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NSGAII crossover probability is 1.0 and mutation probability is 0.1.
SPEA2 crossover probability is 1.0 and mutation probability is 0.1.
PAES uses (1+1)-PAES and adaptive grid archiving technique.

PBIL1 uses the first probability matrix updating scheme similar to [12], learning
rate LR = 0.5 (constant), the number of probability vectors [ = 20, mutation shift ms =
0.2 and mutation probability is 0.02.

PBIL2 uses the second probability matrix updating scheme as in equation (3),
learning rate LR = 0.5 (constant), the number of probability vectors / = 20, mutation
shift ms = 0.2 and mutation probability is 0.02.

Each method is employed to solve each problem over 30 runs while on each opera-
tion the non-dominated solutions of the final iteration are taken as the optimal front.
The performance assessment is somewhat the same as presented in [20]. Two per-
formance parameters are as follows.

The first indicator is the C value defined as:

C(A.B) = [{b e B;ElsllBel A:a<bj

“

From the definition, if C(A, B) = 1, all the solutions in B are dominated by or equal
to solutions in A whereas C(A,B) = 0 implies that none of the solutions in A cover B.

The second criterion is the combination of M, M, and M; whose definitions were
given in [20] as

— Ml 5
M, +M, ®)

where M, is used to measure the average distance of a set of non-dominated solutions
to the true optimal front (lower is better), M, is used to measure the front distribution
(higher is better), and Mj; is used to measure the extent of the front (higher is better).

Form the relation, a lower value of M means a better Pareto front. Note that the pa-
rameter M is proposed as an attempt to have an additional prospective view in evalu-
ating a Pareto front.

The value of the C indicator is used to compare a pair of evolutionary methods.
Therefore, there are 6x5 comparisons for a test problem. When solving a test problem,
there are 30 M values for each method. The mean value of M is used to interpret the
convergence performance.

5 Comparison Results

Fig. 1 (a) displays plots of approximate Pareto fronts of F; obtained from the various
optimisers. Note that the approximate Pareto front from each method is the best of 30
runs sorted by using C values. Dashed lines are the true optimal Pareto front of F;.
From the figure, the Pareto fronts obtained from PBIL1 and PBIL2 are more evenly
distributed than the rest. The Pareto fronts of F, from the various methods are
shown in Fig. 1 (b). For this design case, the fronts from PBIL1 and PBIL2 are more
evenly distributed than those from the other methods. Fig. 2 (a) shows the Pareto
fronts of F5 from the various optimisers. The true optimal front for this problem is
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non-contiguous. It is shown that PBIL1 and PBIL2 can explore all the Pareto sub-
fronts whereas the fronts obtained from other optimisers cannot cover all sub-fronts.

The Pareto fronts of F,, multimodal problem, are displayed in Fig. 2 (b). For this
test problem, SPEA2 totally outperforms the rest while the second best is PBIL1 and
the third best is PBIL2. The fronts from PAES, PBIL1 and PBIL2 are the most evenly
distributed. Fig. 3 (a) illustrates the Pareto fronts of the deceptive problem explored
by the various optimisers. From the figure, it can be said that using SPEA2 and
NSGAII results in better fonts. The approximate Pareto fronts from SPEA2, NSGAII
and PAES are the most evenly distributed. Fig. 3 (b) displays the Pareto fronts of Fg
test problem explored by the six algorithms. In this figure, the best Pareto front is that
obtained from PBIL1 while the second best is from SPEA2. Fig. 4 (a) displays the
Pareto front of F; obtained from using the various algorithms. All of the optimisation
methods give poor front distribution with PBIL1 being the best. This is caused by the
number of iterations and population size being used. The non-dominated fronts of Fg
from using the various optimisers are given in Fig. 4 (b). It can be seen that PBIL2
gives the best front considering the front distribution and the distance from the true
optimal front.

The comparison made in the previous two paragraphs is based on observation. The
boxplots of C values comparing 6x5 pairs of optimisers are shown in Fig. 5 and 6.
From the results, NPGA is less efficient than the others. According to the boxplots,
for the first three test problems, all of the methods with the exception of NPGA are
said to be equally good. In the F, test problem, PBIL1 gives the best results whereas
NSGAII and SPEA2 give the best results in the Fs test problem. NSGAII, SPEA2,
PAES and PBIL1 are said to be equally good for the Fy test problem. SPEA2 is the
best method for the case of F; while PBIL1 is the close second best. For the Fg prob-
lem, PAES the mutation-based method give the best results whereas PBIL2 is the
close second best.

The bar-chart illustration of the M criterion is shown in Fig. 7. A bar graph repre-
sents the average of 30 M values obtained from using a particular optimiser for solv-
ing a test problem. Based upon this measure, in cases of F;, F, and F; the methods
that give the best Pareto sets are PBIL1 and PBIL2 whereas PAES is the third best
and NPGA has the worst results. In the F, case, the best method is PBIL1 but from
Fig. 2 the obviously best method is SPEA2. This shows that the population diversity
has more weight in the M value. The best results of the problem F5 are from SPEA2
and NSGAII while the best results of Fg are from SPEA2, NSGAII, PBIL1 and
PBIL2. PBIL2 gives the best M value in the case of F; whereas PAES, PBIL1 and
PBIL?2 are equally good and considered the best for the Fg problem.

Fig. 1. Pareto front of (a) F; and (b) F, from the various methods



Population-Based Incremental Learning for Multiobjective Optimisation 229

NPGA NSGAN
HPGA NeGal o o _'m N
e \._\___\ P @ & oe
_________ T S e " . s
. * SPEAZ PAES
SPEAZ PAES - >
L - - & ""-_——__mu
P - Pz == i) e
\._\__ \._\__ _: I
D S -y S ey S ———

MPGA HSGAN

- “P_GA HAGAI
(O

\ G {

M DO | . e
o - m’ - - . e - - FA.ES - PAES
. | -—

L { |
1% | % "\
_ ) DB‘_;LI ; g DB_J.LI I ; .PB:LQI e
% | e T, |

o q"""‘ ¥ (i St O S it ) . 18

Fig. 3. Pareto front of (a) F5 and (b) F¢ from the various methods

NPGA NEGAN NPGA NEGAN
N N ! e

SPEA2 PAES . SPEA2 R PAES

--------------------- > : =) o

~ ! ~u | ~— .

ry % N T T " ~gamac r % . T3 _‘--.""h-_.

PRILY PEIL2 PRILY PEIL2

Fig. 5. Boxplot of C values F; F, F; & F,



230 S. Bureerat and K. Sriworamas

.m |m||

Fig. 7. Comparison of M values

6 Conclusions and Discussion

According to the numerical experiment results and several comparative criteria, it can
be said that PBIL is one of the most powerful tools for multiobjective optimisation.
The method is overall superior to or as good as the other established multiobjective
optimisers in most of the test-cases except for the F, and F; test problems. It can be
concluded that PBIL1 is as good as PBIL2 or vice versa although PBIL1 is better than
PBIL2 in terms of front distribution. The most outstanding capability of PBIL is its
unmatched ability in providing population diversity.

The conclusions drawn in this paper cannot, nonetheless, be applied to all kinds of
optimisation problems as the performance of evolutionary search is rather dependent
on the type of design problem. For examples, a crossover-based method is the best for
global optimisation whereas a mutation-based method is far superior to others when
dealing with some large-scale problem e.g. in references [14] and [3].

The multiobjective PBIL is said to be the simplest form of the estimation of distri-
bution algorithm for multiobjective design. The effect of parameters e.g. the number
of probability vectors n, on the searching performance needs to be investigated. It has
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not yet been compared to the more advanced EDAs like the Bayesian network. Fur-
thermore, the test of the presented technique in solving real world problems needs to
be proven before being accepted as well-established.
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Passive Vibration Suppression of a Walking Tractor Handlebar
Structure Using Multiobjective PBIL

Siwadol Kanyakam, and Sujin Bureerat

Abstract—This paper is concerned with vibration
suppression of a walking tractor handlebar structure using
multiobjective population-based incremental learning (PBIL).
Two bi-objective optimisation problems are assigned aiming at
vibration alleviation as well as structural mass reduction.
Design variables are structural shape and sizing parameters
whereas the objective functions include structural weight,
natural frequencies, and frequency response function. The
problems are posed to minimise the objectives whilst meeting
structural safety requirement. The PBIL multiobjective
optimiser is detailed and implemented to solve the optimization
problems. The optimum results obtained are compared,
illustrated and discussed. It is shown that a simple but effective
passive vibration control of a handlebar structure can be
achieved through the implementation of the proposed
multiobjective PBIL.

1. INTRODUCTION

two-wheel ground vehicle called a power tiller or

walking tractor, shown in Fig. 1, has long been used in

several countries. In Thailand, it has been reported that
the number of walking tractors used by Thai farmers is
increasing annually. The power tiller consists of
approximately five main parts i.e. a single-cylinder engine,
tractor frame and wheels, transmission and brake systems, a
handlebar system, and an accessory for agricultural or
transportation purpose. This kind of tractor has some
advantages as it is simple to use and maintain whereas the
price is inexpensive. It can be used in a variety of
agricultural applications as well as transportation. However,
there are some weak points of this vehicle. The user must
walk following the tractor in order to use it, which often
leads to some foot injuries. It is always dangerous for users
who are inexperienced to control it. The power transmission
system of Thai power tillers still needs more improvement.
Another inevitable problem is the vibration transmission
from a reciprocating engine to a user and this can cause
some serious cumulative illness. As a result, the vibration
transmission from the engine and other external dynamic
loads to the user needs to be suppressed.

The work in this paper investigates the use of the PBIL
multiobjective algorithm on passive vibration design of the
skeleton handlebar structure of a walking tractor. Design
function evaluation is carried out by using finite element
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S. Burerat is with the Department of Mechanical Engineering, Faculty of
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analysis. Design variables are structural shape and beams
cross-sectional areas. The design objectives consist of
structural mass, natural frequency, and frequency response
function. The design constraint is that the structure must be
safe under the applied static loads. The combination of
design objective functions leads to 2 bi-objective
optimisation problems. The proposed PBIL optimiser is
detailed and implemented to solve the 3 design problems.
The results obtained from the optimisation method are
illustrated, compared and discussed. It is shown that the
simple but effective strategy of passive vibration control of
the structure can be achieved through multiobjective
evolutionary optimisation.

pemns. a—handlebars
R
P

. ~

transmission
system

Fig. 1. Walking tractor.

II.  VIBRATION ANALYSIS

A structural dynamic model can be described as a structure
being in a dynamic equilibrium state. It is the state at which
the system has minimum potential energy (the potential
energy herein means the sum of the work done by external,
inertial and restoring forces). The equations of motion
basically comprise kinetic energy, structural restoration
(spring and damping) and external dynamic forces. By using
a finite element approach, the structural dynamic model is
represented by

M&+ Kb =F,, (1) (1)
where 8 is the vector of structural displacements

M is a structural mass matrix

K is a structural stiffness matrix

F., is the vector of dynamic forces acting upon the structure.
The computation is traditionally carried out using finite
element analysis. With the boundary conditions (say 8, = 0)
being assigned, equation (1) can be partitioned as
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where the subscript 4 indicates the known displacements and
unknown reactions, and the subscript @ denotes the unknown
displacements and predefined external forces.

Equation (1) can be rearranged leading to 2 systems of
equations

M, & +K 5, =F, 3
and

M, 8, +K;.8, =F,. “
When damping is introduced to the system, a damping
matrix can be included into (3) yielding

M, & +C,8, +K,5, =F,. ®)
Rayleigh damping or proportional damping is used in this
work. By letting

equation (5) can be formed as a state-space model
£=Az+F 6)
where

0 1
A Mk, -MIK

aa aa

}is a state matrix

and

0
F=| . |
MIJZIFCI

Frequency Response Function (FRF) is defined as the ratio
of steady-state harmonic output to steady-state harmonic
input at any given frequency. The FRF here is the ratio of
displacement response to input force or receptance. From
(7), it can be determined using the relation [1]

HU”'gh,M' @)

where @ is the frequency of the input forces and
displacements.

The relation between displacement response and input force
is

3, =H(iw)F,0rd, = 8, =H(iw)F,e" . (8)

U is the matrix of the eigenvectors and As are the
eigenvalues of the state-space matrix A. U, can be
computed from

U= Uupper — UMMWV (9)
Uluwer Y upper [dlag (A/ )]

and the inverse of U, is partitioned from

U =[Upy Up

H(iw) = Uupl)erl:diag[ o — ﬂ/

uppes

(10)

Note that there are several ways to compute the FRF values
other than using (8). Fig. 2 illustrates how to measure H(r,s)
which represents the ratio of displacement response at the A
degree of freedom to harmonic excitation at the s degree of
freedom at the same frequency.

Apart from FRF, by defining force transmissibility T(iw) as
the ratio of output harmonic reaction forces to the input
external harmonic forces, it can be written as
F, = T(io)F,OTF, = F,e'” =T(io)F,e .

an
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Substituting (12) and (9) into (4), the force transmissibility
(FT) can be obtained as

T(io)= - 0’M,, +K,, H- (12)
Some research work on passive vibration control of skeleton
structures using genetic algorithms has been made [2-5]. In
structural vibration design, FRF and FT determine structural
merit. Lower magnitude of FRF or FT at a particular
frequency means better structural vibration design.
Therefore, the design objective can be assigned in such a
way that the values of FRF or FT at a frequency range of
interest are minimised. Moreover, maximising structural
natural frequency is an alternative criterion for the design of
structures under dynamic loadings.

Output displacement
Response at the 1"
d.o.f.

Input force
at the s™ d.o.f

Fig. 2. Harmonic response.

III. PBIL MULTIOBJECTIVE OPTIMISER

A particular multiobjective design problem can be defined
as:

Find x such that

Min: f= {f{(X),..../u(X)}

Subject to

g(x)<0

h{(x)=0

where x is the vector of » design variables
/i are the m objective functions

g; are inequality constraints

and 4, are equality constraints.

In the past, most optimisers were developed to deal with a
single objective problem. They can however be modified to
use in multiobjective design by introducing additional
numerical schemes that can convert the multiobjective
problem to be a single objective case. The disadvantage in
using such strategies is that the optimisation method needs
to be performed as many times as the number of Pareto
points required. This inferiority can be sorted out by the use
of MOEAs, which can explore a Pareto front within a single
run of the algorithms. Furthermore, using MOEAs is
advantageous as they can deal with all kinds of design
variables and functions without the requirement of
functional derivatives in searching. They however have a
complete lack of consistency and low convergence rate.
Thus, the non-dominated front obtained from using these
methods is often classified as an approximate Pareto front.
The basic concept of exploring Pareto optimum points via
MOEA search is that, at each generation while a new
population is created, non-dominated solutions are classified

(13)
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and carried on to the next generation. The term non-
dominated solutions define the local Pareto solutions among
the members in the current population during evolutionary
search. The non-dominated solutions obtained at each
generation are saved to the external Pareto archive.

The multiobjective evolutionary optimiser used in this paper
is the multiobjective version of PBIL. The PBIL method is
probably the simplest form of the estimation of distribution
methods (EDM) [6]. The PBIL algorithm proposed for
multiobjective optimisation here is a modification from [7].
The PBIL search procedure is based upon binary searching
space, and can be thought of as iteratively limiting the
design spaces depending on the current non-dominated
solutions and randomisation. Rather than keeping all binary
solutions or a population as with genetic algorithms, the
population in PBIL is represented by the probability vector
of having ‘1’ of each bit position of the binary strings. Fig. 3
shows three probability vectors producing three binary
populations where each row vector of the populations
represents a design solution. It is shown that one probability
vector can form a variety of populations. A probability of 1
indicates that all the bits in its corresponding column of the
population are ‘1° whereas a probability of ‘0’ means that
the column is full of zeros.

population 1 population2  population 3

00 1 1,1 1 1 00 00 1
11 1 0 0 1 0 00 100
01 0 1,1 01 1,1 001
100 00 0 0 1,0 1 01

Probability Vectors
[0.5,0.5,0.5,0.5] [0.5, 0.5, 0.5, 0.5] [0.25, 0.5, 0, 0.75]

Fig. 3. PBIL probability vectors and corresponding populations.

When employed in multiobjective optimisation, more
probability vectors should be used in order to obtain the
more diverse population; therefore, it is called a probability
matrix instead. The PBIL search starts with an (empty)
external Pareto archive and initial probability matrix whose
elements are full of ‘0.5’. Each row of the matrix is a
probability vector used to create a sub-population. Let Np be
the number of design solutions in a population, / be the
predefined number of probability vectors, and n, be the
number of binary bits for each solution. The probability
matrix, therefore, has the size of / x n, where each row
produces Np/l design solutions as one sub-population. Each
design variable is represented by a binary string with n,/n
elements.

Having generated the current population and
evaluated their corresponding objective values, the external
Pareto archive is replaced by the non-dominated members of
the union set of the current population and the old external
Pareto archive. If the number of non-dominated members
obtained is larger than the predefined archive size, some
solutions are removed from the new external Pareto archive
and here the use of a Pareto archiving technique is required.
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The probability matrix is updated in such a way that n, <
N, binary solutions are randomly selected from the current
Pareto archive to modify the i row of the probability
matrix. Note that N, is the number of solutions in the current
external archive. The i row of the probability matrix is
updated using the relation

P =P (1-LR) +b,LR (14)

where LR is called the learning rate, andb ;is the

mean value of the /" column of the n, selected binary
solutions. In this paper the learning rate is set as
LR =0.5+rand - (+0.10or - 0.1) (15)

where rand € [0,1] is a uniform random number. It is
also useful to, afterwards, apply mutation to the i row of
the probability matrix at some predefined probability such

that
P = P2 (1 - ms) + rand(0 or 1).ms (16)

where ms is the amount of shift used in the mutation.

The updating process is completed when all rows of
the probability matrix are changed. The probability matrix is
updated and the external Pareto archive is improved
iteratively until convergence is achieved.
As previously mentioned, in cases where the total number of
the non-dominated solutions is greater than the archive size,
the archiving operator is activated to remove some solutions
from the archive. The archiving technique presented here is
called the normal line method which borrows some concepts
from the so-called normalised normal constraint technique
[7]. Tt should be noted that the proposed normal line
archiving technique is not the same thing as the normalised
normal constraint technique but they share some ideas and
some technical terms. Let N be the total number of the
current non-dominated solutions (which exceeds the archive
size) and all of them are normalised as:

~min
e a7
1 1
h

where f™"are the minimum values of the i" objective
function sorted from the current non-dominated solutions,
and f™are the maximum values of the i™ objective

function.

The numerical procedure in cases of bi-objective
optimisation is displayed in Fig. 4. The points that give the
minimum values of each objective are taken as the anchor
points [7]. The line connecting between the two anchor
points is called the Utopia line while N, reference points are
evenly spaced on the Utopia line. The normal lines are the
lines that are normal to the Utopia line, and pass the
reference points as shown. A non-dominated point is
archived if it is the closest point to a particular normal line.
The non-dominated point is iteratively selected until the
external Pareto set is full. Six selected non-dominated points
are bounded by a dashed rectangle as shown in Fig. 4. The
computational steps can be given as:
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1. Normalise the objective values of all the non-
dominated solutions

2. Find N, reference points

3. Fori=1toN,

4. Compute the distances of the non-dominated
solutions to the i normal line

5. Find the solution having minimum distance to the i
line

6. Save the solution to the archive

Remove the selected solution from the selecting pool

8. Nexti

~

Note that the normal line method may look similar to the
strip method presented in [7] but they are two different
approaches and the obtained results are different.

Utopia Line

normal line

v

Fig. 4. Normal line archiving method.

IV. DESIGN PROBLEMS

A walking tractor handlebar taken from the local
manufactory is displayed in Fig. 5 and named as
Structure(. The structure is stiffened to be Structurel as
shown in Fig. 6. The structure is stiffened by adding to it
some beam elements so as to have a better design. The
simple finite element model of Structurel is shown in Fig. 7.
It consists of 16 nodes and 27 elements with four nodes
being fixed. The 2-node 3-dimensional 12 d.o.f. beam
element is employed. The structure is subjected to two static
load cases, one is the load for turning the tractor and the
other is the load for balancing and controlling the tractor.
The design objectives are

FUNI: structural mass

FUN2: 1/(@) + @n + ws)

FUNS3: the mean value of FRF crest parameters at @,, @, and
;.

@; denotes the i™ natural frequency of the structure. All of
the objective functions are treated for minimisation.
Minimising FUN1 is somewhat proportional to structural
cost reduction. Fig. 8 depicts a particular FRF plot. In this
paper, the crest parameter at a natural frequency w; is the
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average of H,, magnitudes in the frequency interval [@; - A,
@; + A]. The objective FUN3 is set to reduce the z-direction
point FRF at the tip of the handlebar structure. The
optimisation problem is to minimise the design objectives
while the design constraint is that the structure under static
loading has to meet safety requirements. The design
variables are nodal positions of some selected nodes and
beam cross-sectional areas of some selected elements. This
implies that the design variables determine structural shape
and element diameters simultaneously. Two bi-objective
design problems which yield the minimisation of mass and
vibration in three different ways are assigned as:

16
Fig. 5. Structure0: original structure from the local manufactory.

OPTI
Min: [FUN1, FUN2]

Subject 10 0; < Gullowable

OPT2
Min: [FUN1, FUN3]
Subject to 0; < Gaowable

The PBIL optimiser is implemented to solve the design
problems where N,/n is set to be 10. The number of search
iterations is set to be 150. The population size is 100 while
the Pareto archive size is 100. Each design variable is
encoded by 10 binary bits. The non-dominated sorting
proposed in [8] is applied for dealing with the constraints.

Fig. 6. Structurel: stiffened structure.

n
13

bl £

Py

Fig. 7. Finite element model.
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Fig. 8. FRF crest parameters.

V. DESIGN RESULTS

Apart from the use of PBIL, other well-established

multiobjective evolutionary algorithms i.e. version 2 of
Non-dominated Sorting Genetic Algorithm (NSGA) [10],
Pareto Archive Evolution Strategy (PAES) [11-12] and
version 2 of Strength Pareto Evolutionary Algorithm
(SPEA) [13] are employed so as to measure the performance
of multiobjective PBIL. All of the method use binary strings
for encoding the design variables and they are employed to
solve the optimisation problems 5 simulation runs with the
same population size and total number of iterations as used
by PBIL. It should be noted that the main work in this paper
is not comparative performance of MOEAs but it is
concerned with the use of multiobjective PBIL for vibration
suppression. The comparison results are presented merely to
show that the PBIL method is sufficiently powerful for
solving the design problems.
Fig. 9 displays the approximate Pareto fronts of OPT1
obtained from using the various optimisers. Each non-
dominated front is the best obtained from 5 runs of each
method. It is shown that the front obtained from PBIL is the
best front.

x 10
2ol © O NSGA
O PAES
) v SPEA
* PBIL

0.5t

Fig. 9. Pareto fronts of OPT1 from the various MOEAs.

Fig. 10 shows the approximate Pareto fronts of OPT2
obtained from using the various optimisers. It is shown that
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the front obtained from PBIL is also the best for the design
case.

x 10°
P o NSGA
5 O PAES
8 v SPEA
7 * PBIL
ol
k(\l
5

]

x10*

Fig. 10. Pareto fronts of OPT2 from the various MOEAs.

The box-plots of C-indicators [14] comparing the non-
dominated fronts from the various optimisation methods are
given in Fig. 11. From C-comparison, it is shown that PBIL
is the best multiobjective optimiser for the proposed design
problems.

0 0 : 0
1 2 1 2 1 2
1 1 1
0.5F - — — |- PAES 05 —— — -]+ 05—~~~
obi O 0 % 0
1 2 1 2 1 2
1 1 1
0.5F — — — — — 05 % - —%f B SPEA 05F — — — — —
ol 0 0 L
1 2 1 2 1 2
1 é 11— 1 ?
ot Bl o] - 1]  pau
0 0 0
1 2 1 2 1 2

Fig. 11. C-comparison of the MOEAs for OPT1 and OPT2.

The optimum results in solving OPT1 are illustrated in Fig.
12-14. In Fig. 12, the approximate Pareto front obtained
from performing the PBIL multiobjective optimiser is
displayed along with the objective values of Structure0 and
Structurel. The diamond and pentagram markers represent
Structuct0 and Structurel respectively. It can be seen that
the weight of Structure0 is lighter than that of the stiffened
structure, Structurel, while the vibration merit of Structurel
is superior. The two solutions are totally dominated by all of
the solutions obtained from the optimisation process. This
implies that, with the use of the multiobjective evolutionary
algorithm, the better passive design of a structure is
achievable. Fig. 13 displays the front where 6 design points
are selected. The handlebar structures corresponding to
those design points are shown in Fig. 14. It can be seen that
the structures have various shapes and sizes.
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Fig. 12. Approximate Pareto front of OPT1 from PBIL.

%

B

W 2
%

. %&%

5
L D@% 6
o "y un omg o

o L L
a5 o a5

x10°

L
€5 7 75 0
f

Fig. 13. Approximate Pareto front of OPT1 with 6 selected design

points.
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Fig. 14. Corresponding structures of the point in Fig.13.

The Pareto optimal solutions of the second design
problem obtained from using the PBIL optimiser along with
the design points of Structure0 and Structurel are illustrated
in Fig. 15. Similarly to the OPT1 problem, Structuctl has
better vibration merit than Structure0. Both of them are
totally dominated by all of the non-dominated solutions
obtained from the optimisation process. The approximate
Pareto front of the second design case is displayed in Fig. 16
where 6 design points are selected. The handlebar structures
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corresponding to the selected design points are displayed in
Fig. 17. It can be seen that the 6 structures have various
shapes and sizes.

210°
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0.2
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Fig. 15. Approximate Pareto front of OPT2.
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Fig. 16. Approximate Pareto front of OPT2 with 6 selected design

points.
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Fig. 17. Corresponding structures.of the points in Fig 16

Fig. 18 displays the FRF of Structuel as well as the 1* and
6" design points of OPT1, which are said to be the anchor
points of the obtained Pareto front. The FRF of Structurel
and the 1% and 6™ design solutions of OPT2 are shown in
Fig 19. It can be seen that the FRF of the optimum solutions
are far superior to the FRF of Structurel if the lower FRF
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magnitude means the better design. In comparing the
structures from OPT1 and OPT2, the first three natural
frequencies of the structures from OPT1 are overall higher
than the natural frequencies of the two structures form
OPT2. However, based on the magnitude of the point FRF,
the structures from OPT2 are superior to the structures from
OPTI1. The preference between OPT1 and OPT2 is
dependent on the designer’s objective. For example, if
minimising the magnitude of vibration response due to a
harmonic external force is more important than maximising
natural frequencies, OPT2 is chosen.

Fig. 20 shows the FT of Structurel, and the 1% and 6"
design points of OPTI. The FT here is the force
transmissibility from the grips to the fixed points at the
tractor frame. The FT graphs of Structurel and the 1% and 6™
structures of OPT2 are given in Fig. 21. Similarly to the
FREF plots, the FT graphs of the structures obtained from the
optimisation processes are far superior to Structurel. In
comparing the structures from the two design problems
based on FT, the structures from OPT1 are slightly better
than the structures from OPT2. However, it should be noted
that the magnitude of FT can also be assigned as an
objective function. Therefore, if structures with minimised
FT magnitude are required, the new optimisation problem
with FT crest parameter being one of the objective functions
should be used rather than using OPT1 or OPT2.

FRF plots

IHesy

=]

s
Fig. 18. FRF of Structurel & the 1% and 6" design points of OPT2
o FRF plots

|Mrs|

=, radls

Fig. 19. FRF of Structurel & the 1* and 6" design points of OPT1
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Fig. 20. FT of Structurel & the 1* and 6™ design points of OPT1
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Fig. 21. FT of Structurel & the 1* and 6™ design points of OPT2

VI. CONCLUSIONS

The proposed multiobjective PBIL is a powerful tool for
passive vibration alleviation of a walking tractor handle bar
structure. The design approaches presented in this paper can
be applied to passive vibration control of skeleton-type
structures. The searching performance of the proposed
multiobjective PBIL should be compared to other
established multiobjective evolutionary algorithms.
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Abstract

In this paper, an unconventional topological
design problem was posed to find structural
topologies of a cantilever plate while design
objectives are weight and compliance with stress and
displacement constraints. Multiobjective population-
based incremental learning (MOPBIL) in combining
with an approximate density distribution technique is
employed to explore a Pareto optimal front of the
design problem. The design results show that
MOPBIL is a powerful tool for multiobjective
topology optimisation although its convergence rate is
not as good as the gradient-based optimality criteria
method. With the use of MOPBIL, multiple structural
configurations can be obtained within one
optimisation run, and any unconventional design
problem can be dealt with.

Keywords: Multiobjective  Population-Based
Incremental Learning, Evolutionary Algorithms,
Pareto Front, Approximate Density Distribution,
Topology Optimisation

1. Introduction

Topology optimisation is regarded as one of the
most effective and powerful tools for the conceptual
design of several engineering systems. This design
technology has been significantly developed in the
past two decades. The design strategy for structural
conceptual design can be thought of as how to make
the best use of material available while achieving the
optimum design objective. A topological design
process can be carried out by using finite element
analysis for function evaluation and an optimisation
method for searching the optimum solution. The
topological design problem is usually a simplified
constrained  optimisation problem. The most
preferable optimiser for such a design problem is the
optimality criteria method (OCM) [6], [14]. Some
other gradient-based optimisation method such as
sequential linear programming (SLP) [3] and the
method of moving asymptotes (MMA) [14] have also
been implemented successfully. The applications of
population-based  optimisers  or  evolutionary
algorithms, however, are said to be ineffective for this

type of design problem due to a considerably large
number of topological design variables [2], [4], [11].

Nevertheless, the use of evolutionary algorithms
for topology optimisation is still attractive to
engineering designers since the methods can deal with
almost all kinds of design objective functions and
constraints. There recently has been some research
work on how to improve the searching performance of
the evolutionary algorithms. The use of graph
representation approach was proposed by Wang and
Kang [8]. S. Bureerat and J. Lintragool [1] presented
the design strategy employing a numerical technique
called approximate density distribution (ADD), which
can improve the search performance of several
evolutionary algorithms as well as can suppress
checkerboard formation on the resulting topologies.
The use of multiobjective evolutionary algorithm for a
topology design problem was proposed in [5] where
the design problem has two objective functions and
one equality constraint. The numerical scheme named
chromosome repairing was proposed in the work to
repair a design solution such that it results in a better.
The results in this work show that the use of
multiobjective evolutionary algorithms for structural
topology optimisation is advantageous since many
topologies can be obtained within one optimisation
run.

This article demonstrates the application of a
multiobjective evolutionary algorithm for structural
topology optimisation. An unconventional topological
design problem was posed to find structural
topologies of a cantilever plate while design
objectives are weight and compliance with stress and
displacement constraints. Multiobjective population-
based incremental learning (MOPBIL) [7], [9] one of
the most powerful and robust multiobjective
evolutionary algorithms (MOEAs) is employed to
explore a Pareto optimal front of the design problem.
The design results show that MOPBIL is a powerful
tool for multiobjective topology optimisation although
its convergence rate is not as good as OCM. With the
use of MOPBIL, an unconventional design problem
can be dealt with.



2. Topology Optimisation

A structure achieved by means of topology
optimisation is the best structural layout that
optimises a predefined objective function while
meeting all design constraints. The traditionally used
objective functions are weight, system compliance,
deflection and natural frequency while design
constraint is a mass or volume constraint. Stress
constraint is not added to a design problem because it
results in some difficulties in finding the optimum
solution. It is usually considered in the later stage of a
deign process.

Figure 1 illustrates the concept of topology
optimisation. The design process is initialised with a
predefined design domain and what application a
designer needs to use the structure for. The optimum
structural configuration is defined in the design
domain. In practice, a topological design process can
be carried out by using finite element analysis in
combining with a numerical optimisation method. For
plate structure, the design domain is discretised into a
number of finite elements as many as possible.
Topological design variables are the thicknesses of
the elements. It can be said that the distribution of
elements’ thicknesses determines a structural

topology. Having obtained the optimum solution, the
elements with nearly zero thicknesses represent holes
or voids on the structure whereas other elements
indicate the existence of the structural material as
shown in Figure 2.

Design

domain?

‘ Load

Before

Load
After

Figure 1. Topology optimisation

F,

A

=

>

Fixed boundary

Initial Optimum topology

Figure 2. Topology design using finite element
analysis

The design problem used in this study can be
expressed as:

min: f(p) = {w, ¢}” (1)
subject to

ai(p) < o,

5< 6,

pi G {pl_mln’ pl_maX}

where KU =F

c=UKU

p is a vector of topological design variables, which
herein are the finite elements’ thicknesses

w is structural weight

¢ is structural compliance

U is the vector of nodal displacements of a structure
due to applied forces F

K is a structural stiffness matrix

o; is the equivalent stress on the /™ element

o, 1s an allowable stress

Jis a maximum deflection

o, 1s an allowable deflection

pi™ is the lower bound of the i design variable

and p;"™ is the plate thickness at the /" element.

The design problem is said to be unconventional
since stress and deflection constraints are added to the
problem. When using a lower order finite element
formulation, checkerboard formation can occur on the
resulting topology due to numerical instability. It is
also found that, with a grate number of finite
elements, an evolutionary algorithm always has an
unacceptable convergence rate and complete lack of
consistency. In this paper, we use the ADD technique
[1] (also known as a ground eclement filtering
technique, GEF [12]) to reduce the total number of
design variables to a reasonable amount that the
evolutionary algorithm can cope with. The technique
can also suppress checkerboard patterns as the
secondary advantage. The design problem with the
use of ADD technique therefore becomes

H}len {c(pADD)’ W(pADD) } )

subject to

oip) < o,

55 5(1

pi€ {0, 1}

where p””” is the vector of new design variables
being either 0 or 1. The transformation between p and
can be expressed as:

p=T pADD.

In cases that we need to use the ADD technique
to suppress checkerboard pattern, the transformation
needs to be modified leading to

ADD pO)

p =round(Tp™™" +



where p’ is a constant vector needs to be
specified. For more details of the ADD technique, see
references [1] and [12].

3. Multiobjective Population-Based
Incremental Learning

Population-based incremental learning (PBIL) is
a simple version of the estimation of distribution
algorithm (EDA). The method was first proposed by
Beluja [13] for single objective optimisation. It has
been developed as one of the MOEAs as presented in
[7] and [10]. It has been found that the multiobjective
version of PBIL is among the most powerful MOEAs
using binary string as design variables.

For MOPBIL, the search procedure starts with
an initial probability matrix and an empty external
Pareto archive. A binary population is then generated
according to the current probability matrix. The non-
dominated solutions of the population are then sorted
and put into an external Pareto archive. The
probability matrix is updated based upon the non-
dominated binary solutions in the Pareto archive and a
new population according to the updated probability
matrix is then created. The external Pareto archive is
updated by replacing the members in the archive with
the non-dominated solutions sorted from the
combination of the new population and the members
in the previous archive. In cases that the number of
non-dominate solutions in the archive exceeds the
predefined archive size, the normal line technique is
activated to remove some of the members from the
archive while maintaining population diversity. The
computational steps are repeated until the termination
criterion is met. For more details of MOPBIL, see [7]
and [10].

4. Design Test-Case

A cantilever plate is used for a design case
study. Figure 3 illustrates the design domain of the
cantilever plate while a point load is applied at the top
right-hand corner of the plate. All details of the
material properties that are used to solve the problem
are as follows:

- The structure is made of material with 205 x
10° N/m* young’s modulus and 0.3
Poisson’s ratio.

- The structure has the dimensions of L = 0.3
mand H=0.1 m.

- The yield stress is set to be 250x10° N/m*
and 0.005 m deflection.

- The structure is meshed to have 38 x12
finite elements while the ADD design
variables have 19x6 elements.

- The finite element domain and the ADD or
design variables grids are shown in Figure
4.

- The values of p;™" and p,™** are set to be
0.000001 m and 0.015 m respectively.

in ax

F
L=03m —1
y
Design
domain / Ij{ 0.Im

Figure 3. Design domain of a cantilever plate
Firilte element grid

Design variables grid

Figure 4. Finite element and design variable grids

5. Design Results

The effect of generation number and population
size on the searching performance of MOPBIL is
investigated. Note that the archive size is set to be100
for all simulation runs. Figure 5 shows the structural
topologies of some selected non-dominated solutions
where the number of generations is set to be 50 and
the population size is 50. It can be observed that the
obtained non-dominated front is still far from the real
Pareto optimum front. The non-dominated topologies
obtained from setting the iteration number as 50 with
the population sizes of 100 and 150 are illustrated in
Figures 6 and 7 respectively. The optimum topology
obtained from using the solid isotropic material with
penalisation (SIMP) approach and OCM [14] is
illustrated in Figure 8. It can be seen that the bigger
population size results in the better non-dominated
front. However, the obtained results from running
MOPBIL are still far from practicality compared to
that obtained from OCM.
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Figure 8. Topology structure from OCM

Figure 9 displays the approximate Pareto front
obtained from using MOPBIL where the population
size is set to be 100 and the generation number is set
to be 50, 100, 150, 200, 250 and 300. The non-
dominated topologies from using the generation
numbers of 50, 100, 150, 200,250 and 300 are

displayed in Figures 10, 11, 12, 13, 14 and 15
respectively. It can be seen that, with the same
population size, the larger number of generations
leads to the better Pareto front. The results obtained
from MOPBIL with more than 100 generations are
said to be comparable to the topology obtained from
using OCM. Nevertheless, it should be note that the
topologies obtained from using MOPBIL and OCM
are the design solutions the different optimisation

problems.
Pareto fornt using MOPEIL:50 100 150 200 250 and 300 generation and 100 population
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Figure 9. Pareto fronts at 50, 100, 150, 200, 250 and
300 generations with 100 population size
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Figure 10. Topology results: 50 generations and
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Figure 11. Topology results: 100 generations and 10
population size
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Figure 13. Topology results: 200 generations and 100
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Figure 14. Topology results: 250 generations and 100
population size
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Figure 15. Topology results: 300 generations and 100
population size

The test in measuring the consistency of
MOPBIL is made by running the optimisation method
three times with the number of iterations being 250
and population sized 100. The approximate Pareto
fronts from the three runs are plotted in Figure 16.
The structural topologies corresponding to the fronts
from the first, second and third runs are illustrated in
Figures 17, 18 and 19 respectively. It can be observed
that the MOPBIL search is somewhat inconsistent as
we obtain three different Pareto fronts from three
runs. All of the fronts however have reasonable and
realisable topologies.

Pareto front results from runring 3 times

Compliance
.

e“|‘g‘ ht
Figure 16. Pareto fronts from running MOPBIL 3
times
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19 Results from the third running

From the results, it can be said that the effective
conceptual design of a cantilever plate can be obtain
by the use of MOPBIL. Pareto optimal solutions can
be obtained within one optimisation run. The
structures from using MOPBIL are almost ready to be
manufactured since the safety constraints have been
added to the design problem during the topology
optimisation process.

6. Conclusions

The multiobjective optimisation problem of the
topology design for cantilever plate is introduced.
MOPBIL is implemented for solving the compliance
and structural weight minimisation problem. The
element stresses and system defection of the structure
are used to the constraints where design variables
represent a structural topology. The topology
optimisation results of the structure show that
MOPBIL is effective and powerful for this problem.
Multiple structural topologies can be obtained within
one optimisation run and the method can deal with an
unconventional topology optimisation problem.
However, it is considerably time-consuming
compared to OCM. As a result, MOPBIL searching
performance should be enhanced so that it can be used
for the real-world applications.
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