

รายงานวิจัยฉบับสมบูรณ์

การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็น
สารต้านจุลชีพ

**Development of Natural Product-based Compounds as New
Antimicrobial Agents**

สิรินร สเมสร และคณะ

มีนาคม 2551

รายงานวิจัยฉบับสมบูรณ์

การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็นสารต้านจุลชีพ

Development of Natural Product-based Compounds as New Antimicrobial Agents

คณะผู้วิจัย

1. สิริธร สโมสร	มหาวิทยาลัยศรีนครินทรวิโรฒ
2. อภิชาต สุขสำราญ	มหาวิทยาลัยรามคำแหง
3. เทอดศักดิ์ พรามณะนันทน์	ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ
4. John B. Bremner	University of Wollongong, Australia

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกอ.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณสำนักคณะกรรมการการอุดมศึกษา (สกอ.) และ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ได้พิจารณาให้ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ขอขอบคุณ คุณบางกช ตันวิรัตน์ และคุณนุสรา มุยะหมัด ที่ให้ความร่วมมือในการทำวิจัยอย่างมุ่งมั่นและอุตสาหะจนทำให้งานวิจัยประสบความสำเร็จตามความมุ่งหมาย

คณะผู้วิจัยขอขอบคุณ Dr.Grabriele Casadei, Dr.Danka Tomkiewicz และ Prof.Kim Lewis, Northeastern University, USA ที่ช่วยทดสอบฤทธิ์ทางชีวภาพของสารสังเคราะห์ ขอขอบคุณ University of Wollongong, Australia ที่ช่วยบันทึกข้อมูลทาง NMR Spectroscopy และ Mass Spectrometry และขอขอบคุณผู้บริหาร อาจารย์ และเจ้าหน้าที่ของมหาวิทยาลัยครีนคринทริวโรด ที่ได้ให้การสนับสนุนและช่วยเหลือทำให้งานวิจัยดำเนินไปได้ด้วยดี

สิริธร สโมสร และคณะ

บทคัดย่อ

Project Code: MRG4980158

Project Title: การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็นสารต้านจุลชีพ

Investigators : Principal investigator: สิริธร สโนสรา Co-investigators: อภิชาต สุขสำราญ,

เทอดศักดิ์ พรหมณะนันทน์ และ John B. Bremner

E-mail Address : siritron@swu.ac.th

Objective: ทำการสังเคราะห์ และทดสอบการออกฤทธิ์ต้านแบคทีเรียและฤทธิ์บยั้งปั๊ม NorA ของสารลูกผสม **SS104** ซึ่งเป็นสารอนุพันธ์ของสารต้นแบบ **SS14** ที่มีการเพิ่มความยาวของหมู่เชื่อมต่อโดยการเติมออกซิเจนเพิ่ม 1 อะตอม ระหว่าง berberine ที่ตำแหน่ง 13 และ **INF55** ที่ตำแหน่ง ortho บันวัล phenyl ของ **INF55**

Methodology: การสังเคราะห์สารลูกผสม berberine-**INF55** สามารถเตรียมได้จากปฏิกิริยา O-alkylation ของสารอนุพันธ์ phenol betaine ของ berberine กับสารอนุพันธ์ benzyl bromide ของ **INF55** ให้สารลูกผสมชนิดใหม่ **SS104** ที่มีผลผลิตปานกลาง

Results : การเพิ่มความยาวของหมู่เชื่อมระหว่าง berberine และ **INF55** ของสารต้นแบบ **SS14** โดยการเพิ่ม oxygen 1 อะตอมที่หมู่เชื่อมต่อให้สารผลิตภัณฑ์ **SS104** ที่มีฤทธิ์ต้านแบคทีเรีย และฤทธิ์บยั้ง การทำงานของ NorA efflux pump ในโมเลกุลเดียวกัน และมีฤทธิ์สูงกว่าสารต้นแบบ **SS14** ถึง 2-4 เท่า และสูงกว่าสารตั้งต้น berberine มากกว่า 378 เท่า ต่อเชื้อ *S. aureus* สายพันธุ์ดื้อยา

Discussion and Conclusion: การสังเคราะห์สารลูกผสม berberine-**INF55** ที่มีหมู่ methylene ether เป็นหมู่เชื่อมต่อ พบสารที่แสดงฤทธิ์ต้านแบคทีเรียที่สูงมาก และมีฤทธิ์บยั้งการทำงานของ NorA efflux pump ได้ในโมเลกุลเดียวกัน ซึ่งแนวคิดในการออกแบบสารลูกผสมที่มีการออกฤทธิ์ 2 ฤทธิ์ในโมเลกุลเดียวกันนี้สามารถนำไปประยุกต์ใช้ได้กับสารต้านจุลชีพอื่นๆ

Suggestions/ Further Implication/ Implementation: ควรนำสารลูกผสม **SS104** ที่มีฤทธิ์ต้านแบคทีเรียนี้ไปศึกษาการออกฤทธิ์ในสัตว์ทดลองต่อไป

Keywords : 13-Substituted berberine; Antibacterial; NorA efflux pump inhibitor; Dual action

Abstract

Project Code: MRG4980158

Project Title: Development of Natural Product-based Compounds as New Antimicrobial Agents

Investigators : Principal investigator: Siritron Samosorn; Co-investigators: Apichart Suksamrarn, Therdsak Prammananan, and John B. Bremner

E-mail Address : siritron@swu.ac.th

Objective: To synthesize a new hybrid **SS104**, an analogue of **SS14**, and to assess the effect on antibacterial activity of changing the length and nature of the linking group in **SS14** to a methylene ether motif in **SS104**.

Methodology: A berberine-**INF55** hybrid has been prepared as a potential dual-action antibacterial agent. The key synthetic precursor was the phenol betaine derived from the alkaloid berberine. O-Alkylation of the betaine with the benzyl bromide derivative of **INF55** afforded the new hybrid compound **SS104** in moderate yield.

Results: An increase of linker chain length of the hybrid **SS14** by introduction of oxygen atom produced **SS104** with strong antibacterial activity and NorA MDR pump inhibitory activity. **SS104** was more potent as an antibacterial than **SS14** with MIC values up to 2- to 4-fold greater, as well as being over 378-fold greater in activity than berberine itself against NorA overexpressing *S. aureus* strains.

Discussion and Conclusion: Synthesis of a berberine-**INF55** hybrid with a methylene ether linking group afforded **SS104** with excellent antibacterial activity and NorA MDR pump inhibitory activity. The design concept of having in the one molecule an MDR inhibitory moiety and an antibacterial moiety could be extended to other types of antimicrobial agents.

Suggestions/ Further Implication/ Implementation: Further *in vivo* antibacterial studies of the hybrid **SS104** should be conducted.

Keywords : 13-Substituted berberine; Antibacterial; NorA efflux pump inhibitor; Dual action.

สารบัญ

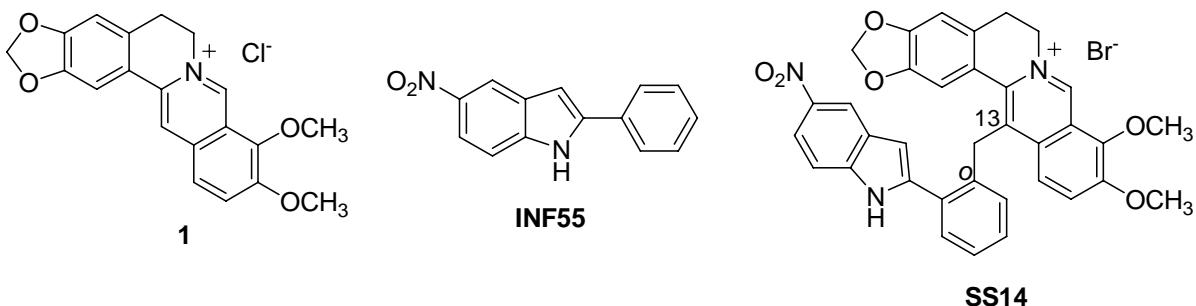
หน้า

กิตติกรรมประกาศ.....	i
บทคัดย่อ.....	ii
Abstract.....	iii
Executive Summary.....	v
การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็นสารต้านจุลชีพ.....	1
บทนำ.....	1
ผลการศึกษา.....	3
สรุปผลการศึกษาและวิจารณ์ผล.....	7
วัสดุและวิธีการ.....	8
วิธีการสังเคราะห์สาร.....	8
การทดสอบฤทธิ์ต้านแบคทีเรียและฤทธิ์ยับยั้งการทำงานของปั๊ม.....	13
เอกสารอ้างอิง.....	15
ภาคผนวก.....	16
ผลงานวิจัย.....	17
Manuscript.....	18

EXECUTIVE SUMMARY

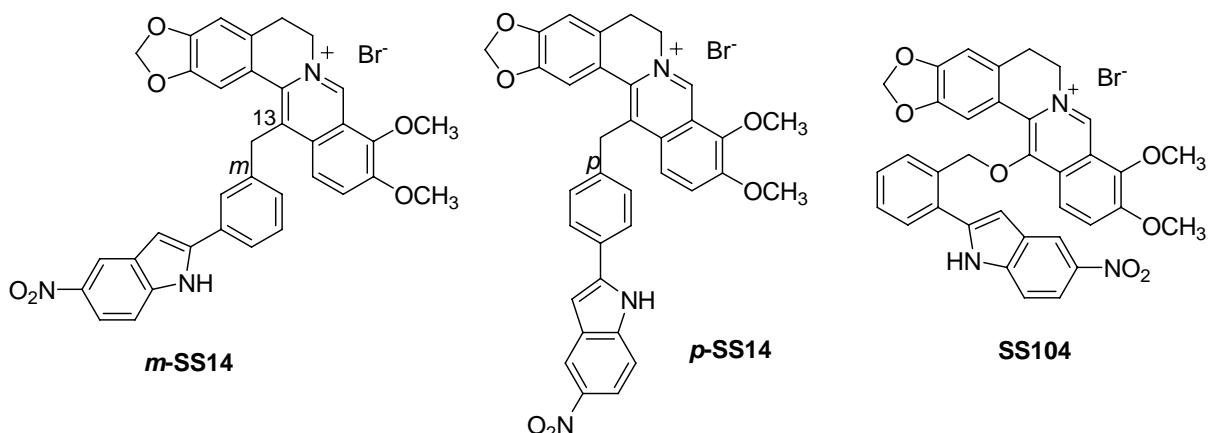
การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็นสารต้านจุลชีพ

โครงการวิจัยนี้เป็นการนำสารผลิตภัณฑ์ธรรมชาติ berberine ซึ่งมีฤทธิ์ต้านแบคทีเรีย มาพัฒนาให้มีประสิทธิภาพมากขึ้นเพื่อต่อสู้กับปัญหาการดื้อยาของเชื้อแบคทีเรียที่ใช้กลไกกำจัดยาออกจากเซลล์โดยการใช้ปั๊ม โดยนำ berberine มาเชื่อมต่อกับ 2-phenyl-5-nitro-1H-indole (**INF55**) ซึ่งมีฤทธิ์ยับยั้งกลไกการดื้อยาของเชื้อแบคทีเรีย (bacterial resistant mechanism inhibitor) โดยมีหมู่ methylene ether เป็นหมู่เชื่อมต่อ เพื่อให้ได้สารต้านแบคทีเรียชนิดใหม่ ซึ่งมีฤทธิ์ต้านแบคทีเรีย และ มีฤทธิ์ยับยั้งกลไกการดื้อยาของแบคทีเรียภายในโมเลกุลเดียวกัน พบว่า การสังเคราะห์สารลูกผสม berberine-**INF55** (**SS104**) สามารถเตรียมได้โดยผ่าน 3 ขั้นตอน เริ่มจากนำ berberine มาทำปฏิกิริยา Mannich กับ acetone และ sodium hydroxide ได้สารผลิตภัณฑ์ 8-acetonyldihydroberberine จากนั้น ทำปฏิกิริยา oxidation ต่อด้วยสารละลายน้ำ potassium permanganate ตามด้วย deprotonation ด้วยสารละลายน้ำ sodium hydroxide ให้สารผลิตภัณฑ์ phenol betaine สุดท้ายทำปฏิกิริยา O-alkylation ระหว่าง betaine กับ 2-(2-bromomethyl-phenyl)-5-nitro-1H-indole ให้สารลูกผสม **SS104** ตามต้องการ และพบว่า **SS104** แสดงฤทธิ์ต้านแบคทีเรียต่อเชื้อ *Staphylococcus aureus* สายพันธุ์ดื้อยา (MIC 1.7 μ M) ได้ดีกว่าสารลูกผสมต้นแบบ **SS14** 2-4 เท่า และดีกว่าสารตั้งต้น berberine 378 เท่า นอกจากนี้ **SS104** ยังออกฤทธิ์สูงมากต่อเชื้อ *Enterococcus faecalis* (MIC 3.4 μ M) ซึ่งเป็นเชื้อที่ดื้อยาสูงมากมีผลให้ต้องใช้ berberine ที่มีความเข้มข้นสูงถึง 650-1300 μ M จึงจะสามารถต้านเชื้อชนิดนี้ได้ (ได้เตรียมสิ่งผลงานวิจัยนี้เพื่อตีพิมพ์ในวารสาร Bioorganic & Medicinal Chemistry)


การพัฒนาสารผลิตภัณฑ์ธรรมชาติให้เป็นสารชนิดใหม่ที่มีฤทธิ์เป็นสารต้านจุลชีพ

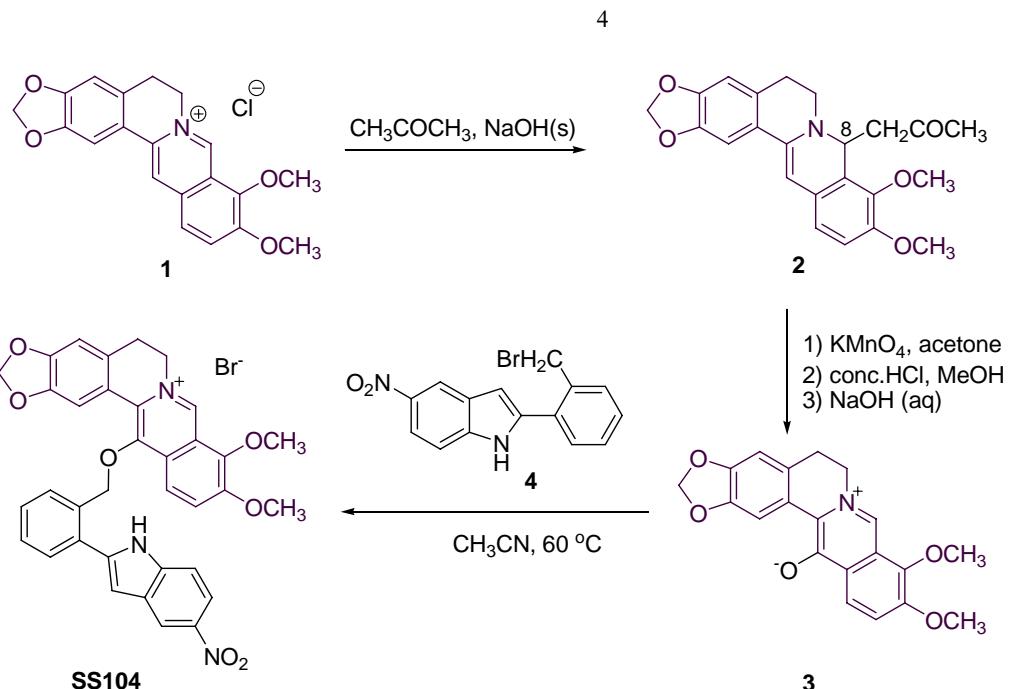
บทนำ

ปัญหาการต้องยาจากเชื้อแบคทีเรียที่ก่อให้เกิดโรคเป็นปัญหาใหญ่ด้านสุขภาพที่แพร่กระจายไปทั่วโลก ซึ่งมีผลทำให้การรักษาด้วยยาปฎิชีวนะที่มีอยู่เป็นไปได้ยากมากขึ้น และอาจรุนแรงถึงขั้นทำให้ติดเชื้อเสียชีวิตได้ สาเหตุที่เป็นเช่นนั้นเนื่องจากเชื้อแบคทีเรียมีการพัฒนาวิธีป้องกันตนเองให้รอดพ้นจากการทำลายล้างด้วยยาปฎิชีวนะชนิดต่างๆ ตัวอย่างเช่น การติดเชื้อแบคทีเรียนิดแกรมบวก *Staphylococcus aureus* ซึ่งเคยรักษาได้ด้วยยาปฎิชีวนะในกลุ่ม β -lactam เช่น ยา penicillin และ methicillin แต่ในปัจจุบันเชื้อชนิดนี้มีการดื้อต่อยาและเกิดเป็นสายพันธุ์ใหม่ที่ดื้อต่อยาในกลุ่มนี้ (methicillin-resistant *S. aureus* (MRSA) strain) และยังสามารถดื้อต่อยาปฎิชีวนะชนิดอื่นๆ อีกด้วย^{1, 2} นอกจากนี้ยังมีเชื้อแบคทีเรียอีกมากมายที่ดื้อต่อยาปฎิชีวนะ ซึ่งกลไก³หลักๆ ที่เชื้อแบคทีเรียใช้ในการต่อสู้กับยา มีอยู่ 4 กลไกคือ 1. การทำลายยาให้หมดประสิทธิภาพโดยการใช้เอนไซม์ 2. การปรับเปลี่ยนจุดเป้าหมายของยาที่ตัวแบคทีเรียเอง 3. การสร้างวิถีทางใหม่ (by-pass) ในการสั่งเคราะห์สารต่างๆ เพื่อการเจริญเติบโตเพื่อหลีกเลี่ยงการถูกทำลายด้วยยา 4. การลดปริมาณการสะสมของยาในเซลล์ของแบคทีเรียให้อยู่ในระดับที่ไม่สามารถทำอันตรายต่อเชื้อได้โดยการใช้ปั๊มซึ่งเป็นโปรตีนที่อยู่บริเวณ membrane (transmembrane protein-based efflux pump) ทำหน้าที่กำจัดยาออกจากเซลล์ ส่งผลให้ปริมาณยาที่สะสมภายในเซลล์มีความเข้มข้นไม่เพียงพอที่จะทำลายเชื้อแบคทีเรียได้ การต้องยาโดยการใช้ efflux pump นี้มีแพร่กระจายทั่วโลกในเชื้อแบคทีเรียแกรมบวกและแกรมลบ ทำให้เชื้อเหล่านี้เกิดการดื้อยาหลายชนิดที่มีโครงสร้างทางเคมีหลากหลายแตกต่างกัน ตัวอย่าง เช่น แบคทีเรียแกรมบวก *S. aureus* เป็นเชื้อที่ทำให้แพลติดเชื้อ และที่รุนแรงมากคือ ทำให้เกิดการติดเชื้อในกระเพาะเลือด แบคทีเรียนิดนี้ใช้กลไกดื้อยาด้วย efflux pump โดยมีปั๊ม NorA (NorA multidrug resistance pump) ซึ่งเป็นชนิดของปั๊มหลักที่มีมากที่สุดในเชื้อชนิดนี้ ทำหน้าที่กำจัดยาในกลุ่มอัลคาลอยด์

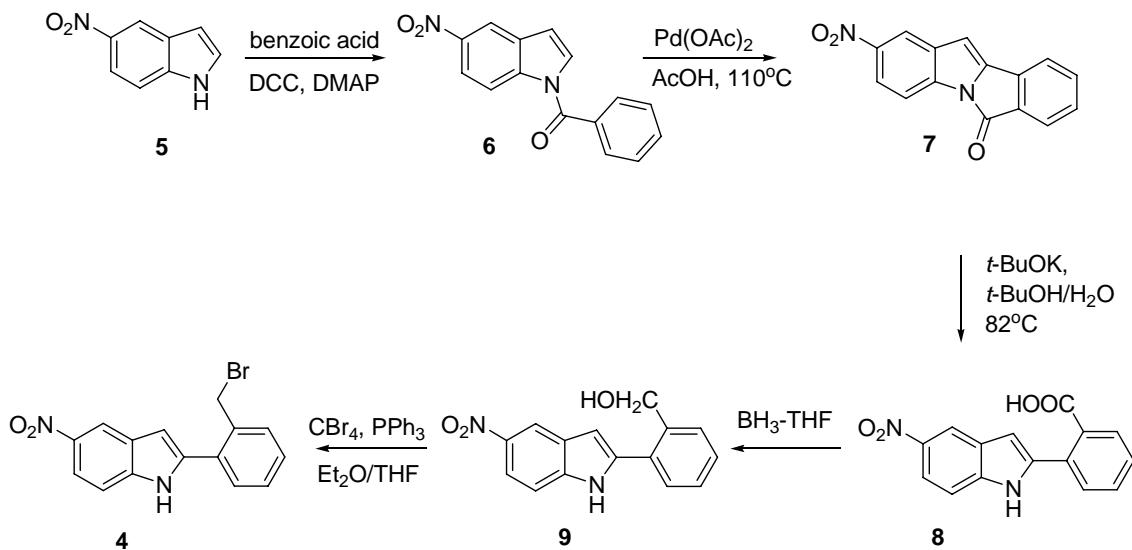

berberine ยานในกลุ่มควิโนโลน ciprofloxacin และ ยาชนิดอื่นๆอีกมากมาย ดังนั้น แนวทางที่สามารถ เจ้าชนาการดื้อยาของแบคทีเรียเหล่านี้ สามารถทำได้โดยการใช้สารที่มีฤทธิ์ยับยั้งกลไกการดื้อยาร่วมกับการ ใช้ยาต้านแบคทีเรียที่มีฤทธิ์ยับยั้งการเจริญเติบโตของแบคทีเรีย โดยสารทั้ง 2 ชนิดนี้ควรมีกลไกการออกฤทธิ์คันละชนิดแต่เสริมฤทธิ์ซึ้งกันและกัน (synergism)

สารผลิตภัณฑ์ธรรมชาติ Berberine (1) เป็นสาร alkaloid ที่มีอยู่มากในพืชตระกูล *Berberis* และมีฤทธิ์ยับยั้งการสังเคราะห์ DNA ในเชื้อแบคทีเรีย⁴ เช่น *S. aureus* แต่สารนี้ถูกทำให้มีประสิทธิภาพลดลง ถึงหมดประสิทธิภาพในการนำมาใช้เป็นยาต้านแบคทีเรีย เมื่อจากสารนี้ถูกขับออกจากการเซลล์ของแบคทีเรีย ด้วย efflux pump ทำให้ปริมาณการสะสมของสาร 1 ในเซลล์ของแบคทีเรียไม่เพียงพอที่จะออกฤทธิ์ทำลาย เชื้อแบคทีเรียได้ ซึ่งการแก้ไขปัญหานี้สามารถทำได้โดยการใช้ berberine ร่วมกับสารซึ่งมีฤทธิ์ยับยั้งการทำงานของ efflux pump (efflux pump inhibitor)⁵ เช่น 2-phenyl-5-nitro-1H-indole (**INF55**) มีผลให้สาร **INF55** เสริมการออกฤทธิ์ของสาร 1 ให้มีประสิทธิภาพในการทำลายแบคทีเรียเพิ่มขึ้น⁶

จากการนำ SS14 ที่ผ่านมาดูแลอย่างดี ได้ทำการสังเคราะห์สารลูกผสม (hybrid) SS14 โดยการนำ berberine ซึ่งเป็นสารต้านแบคทีเรียแต่ถูกจำกัดออกจากเซลล์ของแบคทีเรียด้วย NorA efflux pump และ INF55 ซึ่งเป็นสารยับยั้งการทำงานของ NorA efflux pump มาเชื่อมต่อกันด้วยหมุ่ methylene (-CH₂-) พบว่าสาร SS14 ผลการทดสอบฤทธิ์ต้านแบคทีเรียของ SS14 พบว่ามีฤทธิ์สูงกว่าสารตั้งต้น 1 มากกว่า 200 เท่า สามารถยับยั้งการเจริญเติบโตของแบคทีเรีย *S. aureus* ที่ดีอย่างด้วยกลไก efflux pump (สายพันธุ์ K2361 และ K2378) ที่ความเข้มข้น (Minimum Inhibitory Concentration หรือ MIC) ในช่วง 3-6 μM และพบว่า SS14 สามารถเข้าไปสะสมอยู่ภายในเซลล์ของเชื้อ *S. aureus* ได้อย่างรวดเร็ว และทำหน้าที่ยับยั้ง


การทำงานของ NorA efflux pump ทำให้ pump ไม่สามารถขับเอา **SS14** ออกไปจากเซลล์ มีผลให้ **SS14** สามารถเข้าไปจับกับ DNA ของแบคทีเรีย⁸ และออกฤทธิ์ยับยั้งการเจริญเติบโตของเชื้อดังกล่าวได้ ต่อมากelso และคณะ⁹ ได้รายงานการสังเคราะห์สารอนุพันธ์ของ **SS14** ที่มีหมู่ methylene เชื่อมต่อระหว่างสาร **1** ที่ตำแหน่ง 13 และ **INF55** ที่ตำแหน่ง *meta* และ *para* บวก phenyl ของ **INF55** ตามลำดับ พบว่าทั้ง 2 อนุพันธ์มีฤทธิ์น้อยกว่าสารต้นแบบ **SS14** ต่อเชื้อ *S. aureus*

โครงการวิจัยนี้ได้ทำการศึกษาการออกฤทธิ์ต้านแบคทีเรีย และฤทธิ์ยับยั้งปั๊ม NorAของสาร **SS104** ซึ่งเป็นสารอนุพันธ์ของ **SS14** ที่มีการเพิ่มความยาวของหมู่เชื่อมต่อระหว่างสาร **1** ที่ตำแหน่ง 13 และ **INF55** ที่ตำแหน่ง *ortho* บวก phenyl ของ **INF55** จากหมู่ methylene เป็นหมู่ methylene ether


ผลการศึกษา

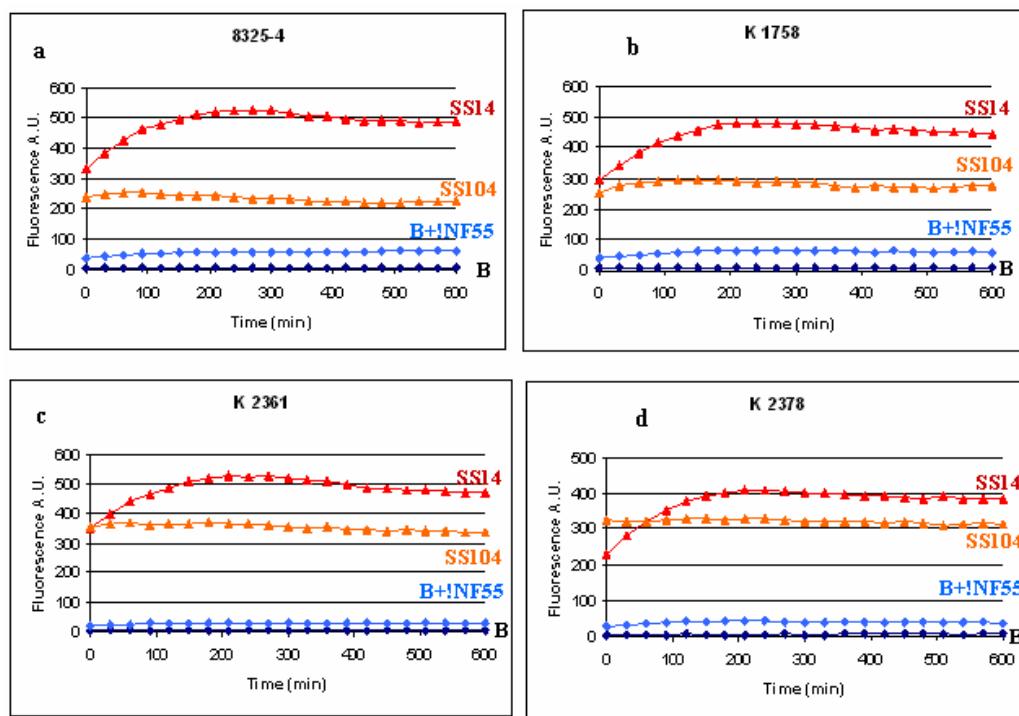
การสังเคราะห์สารอนุพันธ์ 13-O-arylmethyl-substituted berberine (**SS104**) สามารถเตรียมได้โดย ผ่าน 3 ขั้นตอน เริ่มจากนำ berberine มาทำปฏิกิริยา Mannich กับ acetone และ sodium hydroxide ได้สารผลิตภัณฑ์ 8-acetyl-8-phenyl-8,9-dihydro-5H-1,3-dioxolo[4,5-g]indole (2) จากนั้นทำปฏิกิริยา Oxidation ของสาร **2** ด้วยสารละลายน้ำ potassium permanganate ตามด้วย deprotonation ด้วยสารละลายน้ำ sodium hydroxide ให้สารผลิตภัณฑ์ phenol betaine (3)¹⁰ ซึ่งเป็นสารตัวกลางที่สำคัญ สุดท้ายทำปฏิกิริยา O-alkylation ของสาร **3** ด้วย สารอนุพันธ์ methylbromide ของ 2-aryl-5-nitro-1*H*-indole (**4**)⁷ ให้สารลูกผสม **SS104** ตามต้องการ (รูปที่ 1)

รูปที่ 1 การสังเคราะห์สารลูกผสม SS104

การสังเคราะห์สารอนุพันธ์ของ bromide 4 นั้นสามารถเตรียมได้โดยผ่าน 5 ขั้นตอน เริ่มจาก 5-nitro-1*H*-indole (5) ทำปฏิกิริยา *N*-acylation กับ benzoic acid จากนั้น ปิดวงด้วยสารประกอบ palladium ตามด้วยการเปิดวงด้วยปฏิกิริยา hydrolysis ให้สารอนุพันธ์ของกรดคาร์บอคซิลิก 8 นำสาร 8 มาทำปฏิกิริยา reduction ด้วยสารละลายนอร์บอราน-tetrahydrofuran complex ให้สารอนุพันธ์ของแอลกออล 9⁶ และสุดท้ายปฏิกิริยา bromination ของ 9 ได้สารอนุพันธ์ของ bromide 4⁷

รูปที่ 2 การสังเคราะห์สารอนุพันธ์ของ 2-Aryl-5-nitro-1H-indole (4)⁷

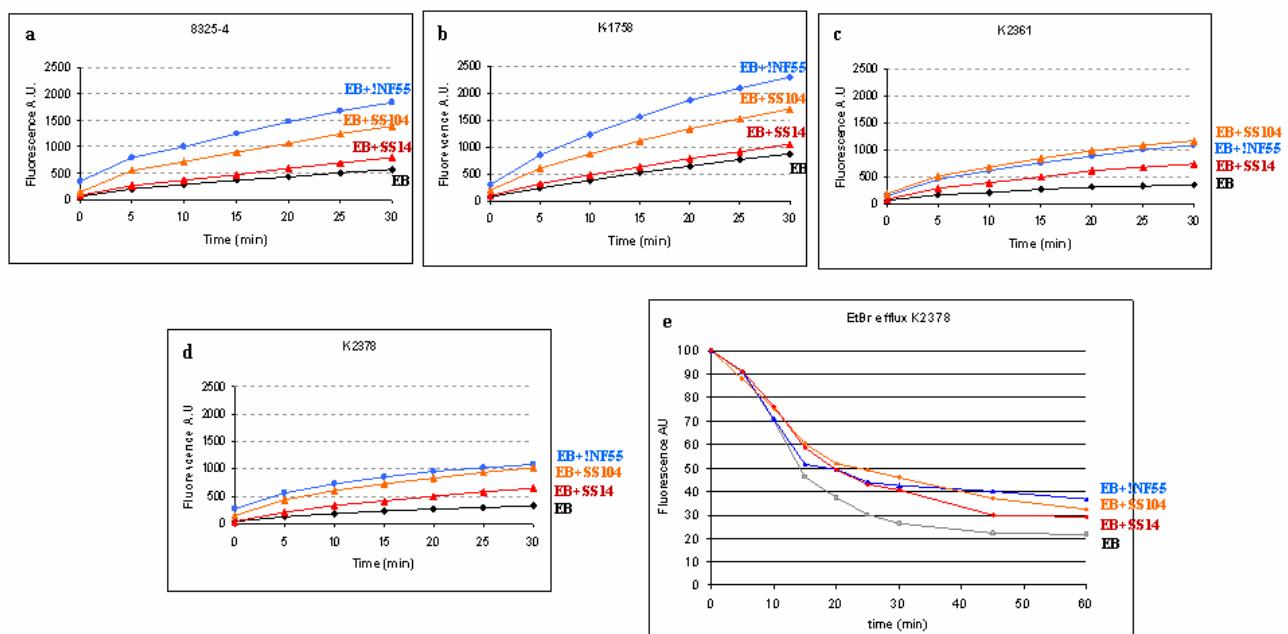
จากผลการทดสอบฤทธิ์ต้านแบคทีเรีย (ตารางที่ 1) และการรับสารเข้าสู่เซลล์ (Uptake assay) (รูปที่ 3) ของ **SS104** ต่อเชื้อ *S. aureus* 4 สายพันธุ์ คือ K1754 เป็นสายพันธุ์ที่ไม่ดื้อยาเนื่องจากมีการกำจัดເອງ *norA* gene ออกไปจากเซลล์ของแบคทีเรียแล้วทำให้ไม่มี NorA pump แต่ยังคงมีปั๊มน้ำดื่มอื่น (additional MDR pumps) ในเซลล์ที่ไม่ใช่ปั๊มหลักที่สามารถกำจัดยาออกจากเซลล์, 8325-4 เป็นสายพันธุ์ที่ไม่ดื้อยา, K2361 และ K2378 เป็นสายพันธุ์ที่ดื้อยาด้วยการใช้ efflux pump พบว่า **SS104** สามารถต่อฤทธิ์ต้านแบคทีเรียเหล่านี้ได้ดีกว่า **SS14** 2-4 เท่า และดีกว่า berberine 24-378 เท่า นอกจากนี้ **SS104** ออกฤทธิ์สูงมากต่อเชื้อ *Enterococcus faecalis* (MIC 3.4 μM) ซึ่งเป็นเชื้อที่ดื้อยาสูงมากมีผลให้ต้องใช้ berberine ที่มีความเข้มข้นสูงถึง 650-1300 μM จึงจะสามารถต้านเชื้อชนิดนี้ได้


Table1. Minimum inhibitory concentrations (MIC) in μM of berberine, **SS14**, and **SS104** against Gram-positive human pathogenic bacteria.

Strain	Berberine ^a	SS14 ^a	SS104
<i>S. aureus</i> K1754 Δ <i>norA</i>	40	3.1	1.7
<i>S. aureus</i> 8325-4 Wild-type	325	3.1	1.7
<i>S. aureus</i> K2361 NorA++	>650	6.3	1.7
<i>S. aureus</i> K2378 NorA++	>650	3.1	1.7
<i>E. faecalis</i> MMH594	650	6.3	3.4
<i>E. faecalis</i> OG1RF	650	6.3	3.4
<i>E. faecalis</i> V583	>650	6.3	3.4

^aValues are retrieved from Ball *et al.*⁷

จากค่า MIC (1.7 μM) ของ **SS104** ที่เท่ากันในทุกสายพันธุ์แสดงว่าสารตัวนี้ไม่เพียงแต่สามารถยับยั้งการทำงานของ NorA pump ได้แต่ยังสามารถยับยั้งการทำงานของ pump ชนิดอื่นที่มีในเชื้อ *S. aureus* ได้ เช่นเดียวกัน ซึ่งข้อมูลนี้สอดคล้องกับข้อมูลการรับสารเข้าสู่เซลล์ (รูปที่ 3) พบว่า **SS104** ถูกขนส่งเข้าสู่เซลล์


ได้อย่างรวดเร็ว และมีปริมาณการสะสมในเซลล์ของ *S. aureus* สูงมากพอๆ กันทั้ง 4 สายพันธุ์ และสูงกว่าปริมาณการสะสมของ berberine หรือ berberine ที่ผสมกับ **INF55** แสดงว่า **SS104** สามารถยับยั้งการทำงานได้ทั้ง NorA pump และ pump ชนิดอื่นที่มีใน *S. aureus* ซึ่งให้ผลเช่นเดียวกันกับ **SS14**

รูปที่ 3. Accumulation of berberine, berberine in the presence of **INF55**, **SS14**, and **SS104** by four strains of *S. aureus*. a) wild-type strain, 8325-4 b) NorA deletion strain, K1758 c) and d) NorA overexpression strains, K2361 and K2378, respectively. Accumulation was measured by an increase in fluorescence and expressed as relative fluorescence units (RFUs).

ethidium bromide (EtBr) เป็นสารซึ่ง NorA pump จะจำได้และถูกกำจัดออกจากเซลล์ได้ (NorA preferred substrate) ดังนั้น ในการศึกษาที่ยับยั้งการทำงานของปั๊มด้วย **SS104** นั้นจะประเมินการสะสมของ EtBr ในเซลล์เป็นตัวบ่งชี้ถึงความสามารถในการยับยั้งการทำงานของปั๊ม โดยการใช้ **SS104** ร่วมกับ EtBr เทียบกับการใช้สารยับยั้งตัวอื่นคือ **INF55** ผสมกับ EtBr และ **SS14** ผสมกับ EtBr (รูปที่ 4a-d) พบว่า ปริมาณการสะสมของ EtBr เพิ่มขึ้นเมื่อใช้สารผสมของ EtBr ร่วมกับสารยับยั้งการทำงานของปั๊ม โดยที่ **SS104** สามารถเพิ่มปริมาณการสะสมของ EtBr ได้ดีกว่าสารต้นแบบ **SS104** ประมาณ 1.7 เท่าต่อเชื้อ *S. aureus* ทั้ง 4 สายพันธุ์ และมีปริมาณการสะสมของ EtBr สูงมากในสายพันธุ์ที่กำจัด NorA pump ออกไปแล้ว (K1758) แสดงว่า **SS104** และ **INF55** สามารถยับยั้งการทำงานของปั๊มชนิดอื่นที่มีใน *S. aureus* ได้จริง

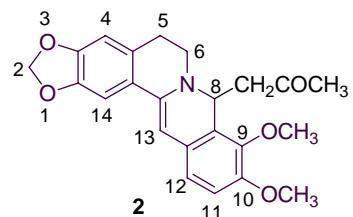
ในการศึกษาฤทธิ์ยับยั้งการทำงานของปั๊มเฉพาะต่อ NorA pump อย่างเดียวจึงได้ทำการประเมินการกำจัดของ EtBr ออกจากเซลล์ในสายพันธุ์ที่ดื้อยาเนื่องจากมีการแสดงออกของ NorA pump มากกว่าปกติ (K2378) พบว่า กำจัดของ EtBr ออกจากเซลล์ถูกยับยั้งโดยสารลูกผสม **SS104** และ **SS14** และพบว่า **SS104** มีฤทธิ์ดีกว่า **SS14** เพียงเล็กน้อยในการยับยั้งการกำจัด EtBr ออกจากเซลล์ (รูปที่ 4e)

รูปที่ 4. The uptake of ethidium bromide alone and in the presence of **INF55**, **SS14**, and **SS104**:
a) by *S. aureus* 8325-4, wild-type; b) by *S. aureus* K1758, deleting NorA pump;
c) by *S. aureus* K2361, overexpressing NorA pump; d) by *S. aureus* K2378, overexpressing NorA pump.
e) The efflux of ethidium bromide alone and in the presence of **INF55**, **SS14**, and **SS104** by *S. aureus* K2378, overexpressing NorA pump.

สรุปผลการศึกษาและวิจารณ์ผล

การเพิ่มความยาวของหมู่เชื่อมระหว่าง berberine และ **INF55** ของสารต้นแบบ **SS14** โดยการเพิ่ม oxygen เข้าไป 1 อะตอมให้สารผลิตภัณฑ์ **SS104** ที่มีฤทธิ์ต้านแบคทีเรีย และการยับยั้งการทำงานของ efflux pump ในโมเลกุลเดียวกัน และมีฤทธิ์สูงกว่าสารต้นแบบ **SS14** ถึง 2-4 เท่า และมีฤทธิ์สูงกว่าสารตั้งต้น berberine มากกว่า 378 เท่า ต่อเชื้อ *S. aureus* สายพันธุ์ที่ดื้อยาด้วยการใช้ efflux pump ซึ่งการออกแบบโมเลกุลของสารลูกผสมเหล่านี้ได้ใช้ความรู้ทางชีวโมเลกุลในการออกแบบ (rational design) ทำให้ได้สารที่สามารถพื้นฟูการออกฤทธิ์ต้านแบคทีเรียของสารตั้งต้น berberine (parent drug) ที่ถูกทำให้หมด

ฤทธิ์ไปเพิ่มกลับคืนมากกว่าเดิม และเป็นการยับยั้งกลไกการดื้อยาได้อย่างมีประสิทธิภาพและตรงจุด ซึ่งแนวคิดนี้สามารถนำไปประยุกต์ใช้ได้กับยาชนิดอื่นๆที่ทราบกลไกการดื้อต่อยาชนิดนั้นๆแล้ว


วัสดุและวิธีการ

วัสดุและวิธีการทั่วไป

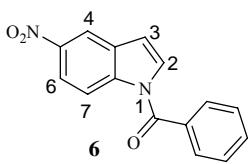
Berberine (เกลือ chloride) และ 5-nitro-1*H*-indole ที่ใช้เป็นสารตั้งต้นซื้อจากบริษัท Sigma-Aldrich Chemical Co. NMR สเปกตรัมบันทึกด้วยเครื่อง Varian Unity 300 MHz spectrometer และ Varian Inova 500 spectrometer ส่วนแมสสเปกตรัมบันทึกด้วยเครื่อง Micromass Qtof2 mass spectrometer ที่ค่า chemical shift ในข้อมูล NMR ของสารประกอบตัวเดียวกันที่มีตัวยกเหมือนกันสามารถสลับที่กันได้

วิธีการสังเคราะห์สาร

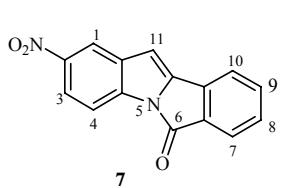

Preparation of 8-Acetyl dihydroberberine (2)¹¹

To a suspension of berberine hydrochloride (**1**) (1 g, 2.7 mmol) in acetone (100 mL), was added, with stirring, sodium hydroxide (324 mg, 8.1 mmol). The mixture was stirred for 12 h at 50 °C. Excess

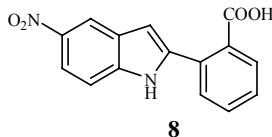
NaOH was removed and the mixture was then poured into ice water (200 mL). The precipitate was filtered and dried to give **2** (0.9 g, 85%). ¹H-NMR (300 MHz, CDCl₃) δ: 2.02 (s, 3H, COCH₃), 2.30 (dd, *J* = 14.7, 4.5 Hz, 1H, CH₂CO), 2.61-2.81 (m, 2H, 5-H), 2.91 (dd, *J* = 14.7, 4.5 Hz, 1H, H-8), 3.11-3.28 (m, 2H, H-6), 3.75 (s, 6H, OCH₃), 5.19 (dd, *J* = 6.3, 5.1 Hz, 1H, H-8), 5.98 (s, 2H, OCH₂O), 6.70 (d, *J* = 8.4 Hz, 1H, H-11), 6.74 (s, 1H, H-4), 6.85 (d, *J* = 8.4 Hz, 1H, H-12), 7.23 (s, 1H, H-14).


Preparation of berberine phenolbetaine (3)¹⁰

To a solution of 8-acetonyl dihydroberberine (**2**) (0.8 g, 2.02 mmol) in acetone (50 mL) was slowly added a solution of KMnO₄ (370 mg in H₂O 33 mL) at -20 °C. After vigorous stirring for 4h, the reaction mixture was filtered and washed with H₂O. The filtrate was evaporated and then crystallised from DCM-MeOH to give a pale yellow solid (0.6 g). The yellow solid was added MeOH (15 mL) and conc. HCl (0.75 mL). The yellow suspension was refluxed at 65 °C for 48 h. The mixture was allowed to cool at room temperature and the precipitate was filtered to give 13-hydroxyberberine (0.3 g, 50%) as an orange-yellow solid. ¹H-NMR (300 MHz, CD₃OD) δ: 3.15-3.18 (m, 2H, 5-H), 4.10 (s, 3H, OCH₃), 4.17 (s, 3H, OCH₃), 4.82 (m, 2H, H-6), 6.06 (s, 2H, OCH₂O), 6.94 (s, 1H, H-4), 7.98 (s, 1H, H-14), 8.05 (d, *J* = 10.0 Hz, 1H, H-11), 8.21 (d, *J* = 9.1 Hz, 1H, H-12), 9.40 (s, 1H, H-8). ESMS: *m/z*, [M]⁺: 351.9

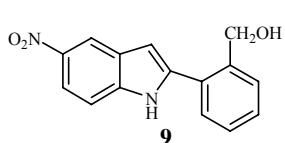

A yellow suspension of 13-hydroxyberberine (20 mg, 0.05 mmol) in 5% NaOH (10 mL) was extracted with CH₂Cl₂ (3 x 10 mL). A combined organic layer was washed with H₂O and dried with anhydrous Na₂SO₄, and then evaporated to yield **3** (15 mg, 83%). ¹H-NMR (300 MHz, CD₃OD) δ: 3.04-3.11 (m, 2H, 5-H), 4.03 (s, 3H, OCH₃), 4.06 (s, 3H, OCH₃), 4.78-4.91 (m, 2H, H-6), 5.97 (s, 2H, OCH₂O), 6.79 (s, 1H, H-14), 7.64 (d, *J* = 9.0 Hz, 1H, H-11), 8.21 (dd, *J* = 9.2, 0.8 Hz, 1H, H-12), 8.37 (s, 1H, H-4), 8.66 (s, 1H, H-8). ESMS: *m/z*, [MH]⁺: 351.9

Preparation of 1-Benzoyl-5-nitro-1*H*-indole (6**)⁶**


To a solution of 5-nitro-1*H*-indole (**5**) (32.4 mg, 0.2 mmol), DMAP (24.4 mg, 0.2 mmol) and benzoic acid (48.8 mg, 0.4 mmol) in dry DCM (2 mL) at 0 °C under a nitrogen atmosphere, was added a solution of DCC (82.5 mg, 0.4 mmol) in DCM (1 mL). The solution was then warmed to room temperature and stirred for 6 h. The resulting suspension was dried and to the crude residue was added MeOH (20 mL). The suspension was filtered and the precipitate then washed with cold MeOH and dried to give **6** (40.4 mg) as an opaque white solid. The filtrate was concentrated and recrystallized from MeOH to yield further **6** (8.0 mg) for a total yield of pure product of 48.4 mg (92%). ¹H NMR (300 MHz, CDCl₃) δ: 6.77 (dd, *J* = 3.8, 0.5 Hz, 1H, H-3), 7.50 (d, *J* = 3.9 Hz, 1H, H-2), 7.54-7.62 (m, 2H, H-3'), 7.63-7.70 (m, 1H, H-4'), 7.72-7.80 (m, 2H, H-2'), 8.26 (dd, *J* = 9.2, 2.3 Hz, 1H, H-6), 8.47 (dd, *J* = 9.0, 0.6 Hz, 1H, H-7), 8.52 (d, *J* = 2.1 Hz, 1H, H-4).

Preparation of 2-Nitro-isoindolo[2,1-*a*]indol-6-one (**7**)⁶

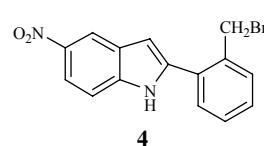
A solution of **6** (200 mg, 0.75 mmol) and palladium (II) acetate (167.8 mg, 0.75 mmol) in glacial acetic acid (20 mL) was heated at 110 °C under a nitrogen atmosphere for 11 h. The black suspension was filtered through celite and washed with acetone. The filtrate was then evaporated and added to ice water (200 mL). The precipitate was filtered, dried and chromatographed on silica gel by VLC (40-60% DCM in PS) to give **7** (100.1 mg, 50%) as yellow needles, m.p. 268.8 °C (decomp.). ¹H NMR (300 MHz, CDCl₃) δ: 6.79 (d, *J* = 0.6 Hz, 1H, H-11), 7.43-7.49 (ddd, *J* = 8.4, 5.9, 2.6 Hz, 1H, H-9) 7.62-7.65 (m, 2H, H-10, H-8), 7.84 (dt, *J* = 7.5, 0.9 Hz, 1H, H-7), 7.98 (d, *J* = 8.7 Hz, 1H, H-4), 8.23 (dd, *J* = 8.7, 2.1 Hz, 1H, H-3), 8.41 (d, *J* = 2.1 Hz, 1H, H-1).


Preparation of 2-(5-Nitro-1*H*-indol-2-yl)benzoic acid (8)⁶

A solution of *t*-BuOH (192 mL) and H₂O (19.2 mL) containing *t*-BuOK (4.25 g, 37.9 mmol) was added to **7** (1 g, 3.79 mmol) and heated at 82 °C for 12

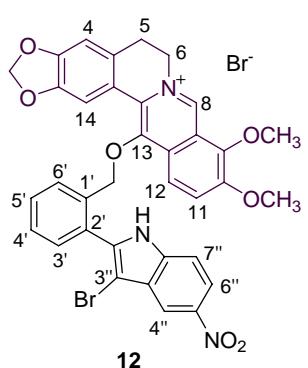
h. The mixture was evaporated and added to ice water (400 mL). The solution was acidified to pH1 with 5M HCl. The solution was stirred vigorously with solid NaCl for 2 h, and then extracted with diethyl ether (3 x 400mL). The combined diethyl ether extracts were dried and evaporated to give **8** (1.016 g, 95%) as a pale yellow solid, m.p. 250-252 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ: 6.98 (s, 1H, H-3), 7.33-7.45 (m, 2H, H-4', H-5'), 7.52 (d, *J* = 9.0 Hz, 1H, H-7), 7.67 (br d, *J* = 7.2 Hz, 1H, H-3'), 7.75 (br d, *J* = 7.5 Hz, 1H, H-6'), 7.94 (dd, *J* = 9.03, 2.4 Hz, 1H, H-6), 8.52 (d, *J* = 2.4, 1H, H-4).

Preparation of [2-(5-Nitro-1*H*-indol-2-yl)-phenyl]-methanol (9)⁶



To a solution of **8** (997.0 mg, 3.54 mmol) in dry THF (90 mL) was slowly added 1M BH₃-THF complex solution (7.1 mL, 7.1 mmol) at 0 °C under a nitrogen atmosphere. After vigorous stirring at room temperature for 2h,

the excess hydride was carefully destroyed by adding a solution of 50% THF in H₂O (20 mL) until the gas bubbling ceased. The aqueous layer was saturated with anhydrous K₂CO₃. The THF layer was separated and the aqueous layer was extracted with diethyl ether. The combined THF and diethyl ether extracts were dried, then evaporated, and chromatographed on silica gel by VLC (2% MeOH in DCM) to give **9** (940.5 mg, 99%) as bright yellow needles, m.p.132-134 °C. ¹H NMR (300MHz, CDCl₃) δ: 4.77 (s, 2H, CH₂O), 6.91 (d, *J* = 1.2 Hz, 1H, H-3), 7.36-7.47 (m, 4H, H-7, ArH),


7.79 (br d, J = 7.8 Hz, 1H, ArH), 8.12 (dd, J = 8.9, 2.4 Hz, 1H, H-6), 8.61 (d, J = 2.4 Hz, 1H, H-4), 10.92 (s, 1H, NH).

Preparation of 2-(2-(bromomethyl)phenyl)-5-nitro-1*H*-indole (4)⁷

To a yellow solution of the benzyl alcohol **9** (200 mg, 0.75 mmol) and carbon tetrabromide (746.2 mg, 2.25 mmol) in a 1:1 ratio of Et₂O:THF (2 mL) was quickly added triphenylphosphine (590.2 mg, 2.25 mmol) at 0°C under a nitrogen atmosphere. After stirring for 10 min, the yellow suspension was chromatographed on silica gel (20% EtOAc in PS) to give **4** (80.0 mg, 26%) as a yellow solid. (102.3mg, 41%) as a yellow solid, m.p. 164-166°C. ¹H NMR (300MHz, CDCl₃): δ 4.64 (s, 2H, CH₂Br), 6.93 (d, J = 1.2 Hz, 1H, H-3), 7.43-7.58 (m, 5H, H-7, aromatic), 8.16 (dd, J = 9.0, 2.1 Hz, H-6), 8.64 (d, J = 2.1 Hz, 1H, H-4), 9.14 (s, 1H, NH). ¹³C NMR (75MHz, CDCl₃): δ 33.0 (CH₂Br), 105.1 (C3), 111.1 (C7), 117.8 (C4), 118.6 (C6), 127.9 (C3a), 129.4 (aromatic), 129.6 (aromatic), 130.5 (aromatic), 131.7 (aromatic), 131.8 (C2), 135.6 (C1'), 139.3 (C7a), 139.6 (C2'), 142.3 (C5). HRMS (EI); *m/z* calcd for C₁₅H₁₁N₂O₂⁷⁹Br [M]⁺: 330.0003; found: 329.9982.

Preparation of 9,10-Dimethoxy-13-[2-(5-nitro-1*H*-indol-2-yl)-benzyloxy]-5,6-dihydrobenzo[g]-1,3-benzodioxolo[5,6-a] quinolizinium bromide (SS104)

A solution of the phenolbetaine **3** (40.0 mg, 0.11 mmol) and the benzylbromide **4** (37.0 mg, 0.09 mmol) in dry CH₃CN (1.5 mL), was heated at 60 °C for 6 h under a nitrogen atmosphere. The reaction mixture was then concentrated by evaporation of the CH₃CN. The

residue was chromatographed on silica gel (6% MeOH in DCM), followed by preparative TLC (multiple development, silica gel, 5% MeOH in DCM) of the main fraction from the column. Subsequently, the polar fraction was precipitated from 2% MeOH in DCM and then recrystallized from EtOH to give **SS104** (23.0 mg, 35 %) as a yellow solid; mp 201 °C (dec.). ¹H NMR (500 MHz, CDCl₃/CD₃OD) δ: 9.56 (s, 1H, H-8), 8.31 (s, 1H, H-4'), 7.97 (d, J = 8.5 Hz, 1H, H-6'), 7.68 (d, J = 8.5 Hz, 1H, H-7'), 7.64 (s, 1H, H-14), 7.53 (d, J = 9.5 Hz, 1H, H-12)^a, 7.37 (d, J = 7.0 Hz, 1H, H-6''), 7.25 (d, J = 7.0 Hz, 1H, H-5''), 7.14 (d, J = 8.0 Hz, 1H, H-3''), 7.08 (d, J = 9.5 Hz, 1H, H-11)^a, 6.90 (t, J = 7.3 Hz, 1H, H-4''), 6.63 (s, 1H, H-4), 6.21 (s, 1H, H-3'), 6.12 (s, 2H, OCH₂O), 5.18 (s, 2H, CH₂O), 4.75 (br s, 2H, H-6), 4.19 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 2.88 (t, J = 5.8 Hz, 2H, H-5). ¹³C NMR (126 MHz, CDCl₃/CD₃OD) δ: 149.7 (C14a), 149.6 (C10), 147.4 (C13), 146.9 (C3a), 144.5 (C9), 141.9 (C8), 141.6 (C5'), 139.7 (C7a'), 138.4 (2C, C13a, C2'), 133.6 (C2'')^a, 132.7 (C3''), 132.6 (C1'')^a, 132.4 (C13b), 130.1 (C5''), 129.6 (C6''), 128.2 (C12a), 127.5 (C4''), 127.0 (C3a'), 123.9 (C12)^b, 121.6 (C8a), 119.3 (C4a), 117.2 (C11)^b, 117.1 (C6'), 116.6 (C4'), 113.1 (C7'), 111.3 (C14), 108.1 (C4), 104.9 (C3'), 102.2 (OCH₂O), 74.1 (CH₂O), 62.2 (OCH₃), 57.0 (C6), 56.1 (OCH₃), 28.0 (C5). HRMS (ES); m/z calcd for C₃₅H₂₈N₃O₇ [M]⁺: 602.1927; found: 602.1910.

การทดสอบฤทธิ์ต้านแบคทีเรีย และฤทธิ์ยับยั้งการทำงานของปั๊ม

Bacterial Strains. The following bacterial strains were used in this study: *S. aureus* 8325-4 (wild-type), K1758 ΔnorA (8325-4 ΔnorA), K2378 NorA++ (K1758/pK374:norA, with norA from *S. aureus* SA1199) and *E. faecalis* MMH594.

Antimicrobial Susceptibility.

Cells (10^5 mL $^{-1}$) were inoculated into broth and dispensed at 50 μ L well $^{-1}$ in 384 well microtitre plates. MICs were determined in triplicate by serial 2-fold dilution of the test compound. The MIC was defined as the concentration of the agent that completely inhibited cell growth during an 18 h incubation at 37 °C. Growth was assayed with a microtitre plate reader (Spectramax PLUS384; Molecular Devices) by monitoring absorption at 600 nM.

Uptake Experiments.

Experiments were performed essentially as described previously,⁷ in which *S. aureus* cultures were grown at 37 °C until the optical density (OD) reached 1.5 (at 600 nm). Cells were pelleted by centrifugation, washed twice with PBS and resuspended in PBS containing 10 mM dextrose to obtain an OD ~0.8. Cells were then incubated for one hour at 37 °C (with aeration) before being washed twice with PBS (containing 10 mM dextrose) and further diluted to OD ~0.3 in PBS. The assay was performed in 96-well flat-bottom white microtiter plates in a final volume of 200 μ L. Compounds were added at a concentration of 3 μ M each. For ethidium bromide experiments, berberine or **SS104** or **INF55** were added first. Fluorescence was measured using a SpectraMax Gemini XS spectrofluorometer (Molecular Devices). Uptake experiments with berberine, **INF55** and hybrid **SS104** were performed at excitation/emission wavelengths of 355/517 nm. Experiments with ethidium bromide were performed at excitation/emission wavelengths of 530/600 nm. Background fluorescence for all compounds in the absence of cells was subtracted from the raw data.

Efflux Experiments.

The efflux assay was performed essentially as described previously⁶ with minor modifications for the use of ethidium bromide. *S. aureus* NorA overexpressing cells (K2378

NorA++) were grown at 37 °C to an OD ~0.9, pelleted, washed twice with PBS and then resuspended in PBS to an OD ~ 0.8. Cells were then loaded with 3 µM ethidium bromide and 30 µg/mL of reserpine and incubated at 37 °C for 20 min. After washing twice with ice-cold PBS, cells were added to a chilled 96-well flat-bottom black microtiter plate containing ice-cold PBS + 10mM dextrose at an OD of 0.3 in a total volume of 200 µl. Berberine, **SS14** and **SS104** were added before cells to give final concentrations of 3 µM. As a negative control (i.e. no ethidium efflux), PBS (without dextrose) containing 30 µg/mL of reserpine was added instead of **SS104**. Fluorescence was measured with a SpectraMax Gemini XS at excitation/emission wavelengths of 530/600 nm, respectively.

ເອກສາຮ້າງອົງ

1. Hiramatsu, K., *American Journal of Medicine* **1998**, *104*, 7S.
2. Auckland, C.; Teare, L.; Cooke, F.; Kaufmann, M. E.; Warner, M.; Jones, G.; Bamford, K.; Ayles, H.; Johnson, A. P., *J. Antimicrob. Chemother.* **2002**, *50*, 743.
3. Walsh, C., *Nature* **2000**, *406*, 775.
4. Schmeller, T.; Latz-Bruning, B.; Wink, M., **1997**, *44*, 257.
5. Stermitz, F. R.; Lorenz, P.; Tawara, J. N.; Zenewicz, L. A.; Lewis, K., *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 1433.
6. Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K., *Bioorg. Med. Chem* **2006**, *14*, 857.7.
7. Ball, A. R.; Casadei, G.; Samosorn, S.; Bremner, J. B.; Ausubel, F. M.; Moy, T. I.; Lewis, K., *ACS Chem. Biol.* **2006**, *1*, 594.
8. Gornall, K. C.; Samosorn, S.; Talib, J.; Bremner, J. B.; Beck, J. L., *Rapid Commun. Mass Spectrom.* **2007**, *21*, 1759.
9. Kelso, M. J.; Tomkiewicz, D.; Casadei, G.; Moi, T. I.; Garner, J.; Bremner, J. B.; Ausubel, F. M.; Lewis, K., *J. Med. Chem.* **2009**, *submitted*.
10. Iwasa, K.; Nanba, H.; Lee, D.-U.; Kang, S.-I., *Planta Med.* **1998**, *64*, 748.

ภาคผนวก

ผลงานวิจัย

Samosorn, S., Tunwirat, B., Muhamad, N., Casadei, G., Tomkiewicz, D., Lewis, K., Suksamrarn, S., Prammananan, T., Gornall, K.C., Beck, J.L., Bremner, J.B. 13-O-Arylmethyl-substituted berberinederivatives as antibacterial agents and NorA pump inhibitors, *Bioorganic and Medicinal Chemistry*, **2009**, *in preparation*. (โดยตีพิมพ์ร่วมกับสารประกอบ **BT80** **BT85** **BT88** และ **BT90** ซึ่งได้รับการสนับสนุนจากทุนรายได้มหาวิทยาลัยครินครินทริโอล ปีการศึกษา 2551)

13-O-Arylmethyl-substituted berberine derivatives as antibacterial agents and NorA pump inhibitors

Siritron Samosorn,^{a*} Bongkoch Tunwirat,^a Nusara Muhamad,^a Grabriele Casadei,^b Danka Tomkiewicz,^b Kim Lewis,^b Apichart Suksamrarn,^c Therdsak Prammananan,^d Karina C. Gornall,^e Jennifer L. Beck^e and John B. Bremner^e

^aDepartment of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110 Thailand

^bDepartment of Biology and Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts 02115 USA

^cDepartment of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 Thailand

^dBIOTEC Central Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani 10120 Thailand

^eSchool of Chemistry, University of Wollongong, NSW 2500 Australia

This is where the receipt/accepted dates will go; Received Month XX, 2000; Accepted Month XX, 2000 [BMC RECEIPT]

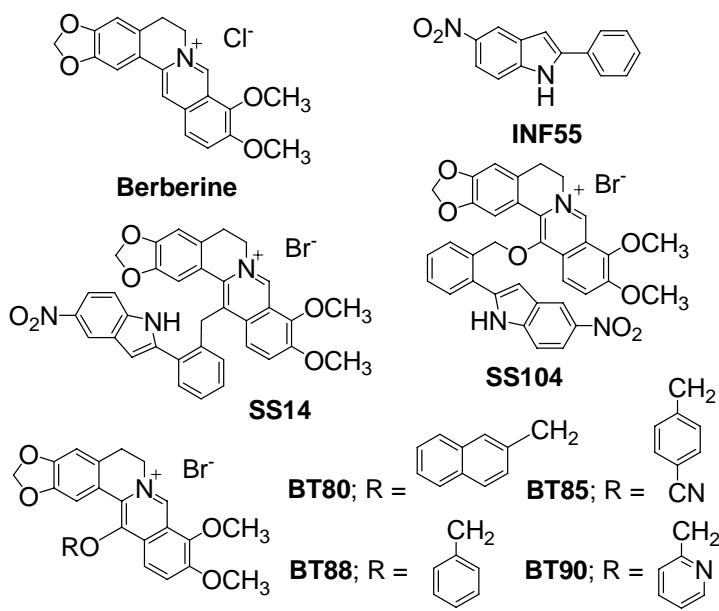
Abstract—Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1*H*-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, **SS104**. A series of simpler arylmethyl ether hybrid structures were also synthesized. **SS104** showed excellent antibacterial activity (MIC *Staphylococcus aureus*, 1.7 μ M), which was over 378-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in *S. aureus*.

Keywords: 13-Substituted berberine; Antibacterial; NorA efflux pump inhibitors; Dual action.

*Corresponding author. Tel.: 662 6495000; fax.: 662 2592097; email: siritron@swu.ac.th

©2007 Elsevier Ltd. All rights reserved.

1. Introduction


The problem of resistance by human pathogenic bacteria to antibacterial agents is a serious and growing health problem worldwide.¹ Bacteria employ a number of resistance mechanisms to

counter antibacterial challenge and one of these is the overexpression of transmembrane protein-based efflux pumps which can pump out various antibacterials from within the cells, thus lowering the antibacterial concentration to sub-lethal levels.^{2,3} The efflux pump mechanism is a very significant and widespread one occurring in a range of human pathogenic bacterial hosts including *Staphylococcus aureus*, a common cause of bacteremia, sepsis and wound infections. In *S. aureus*, the multidrug resistance (MDR) pump NorA, for example, can efflux structurally diverse antibacterials like berberine and ciprofloxacin.⁴

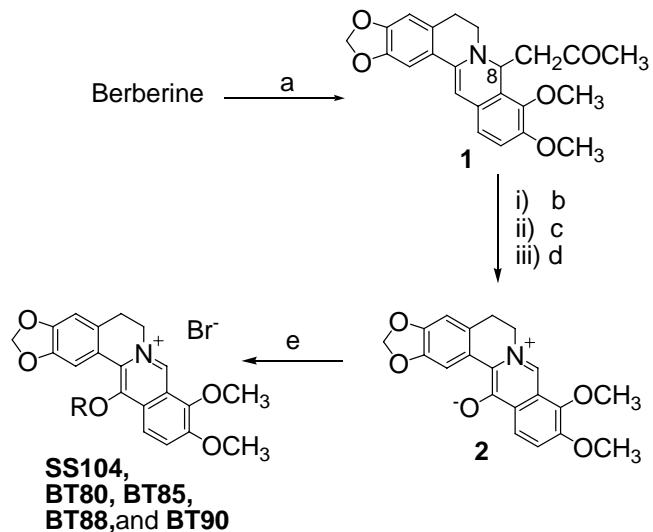
One strategy to attempt to contain the threat of resistant bacteria is to block a major resistance mechanism at the same time as blocking another bacterial biochemical pathway. One way this approach could be realised is by combining two drugs with the two actions proposed in the same molecule,^{5,6} as is done with the antibacterial hybrid **SS14**,⁷ which is a covalently linked combination of berberine and 2-phenyl-5-nitro-1*H*-indole, **INF55**, via a methylene linking group at the 13 position in berberine and the *ortho* position of the indolic 2-phenyl ring (Figure 1). Such a hybrid has the potential advantage over two separately administered drugs of synchronous or near-synchronous delivery to the respective biological target sites. Berberine is a natural antibacterial agent and a preferred substrate of the NorA pump, while **INF55** is a synthetic NorA inhibitor which potentiates the antibacterial activity of berberine by reducing the efflux of berberine from bacterial cells.⁸ **SS14** is the first hybrid of an anti-infective/multidrug-resistance (MDR) pump inhibitor conjugate. It was shown to be a superior antibacterial with over 200-fold greater activity than berberine itself against an *S. aureus* overexpressing NorA strain and is insensitive to MDR efflux.⁷

Recently, Kelso *et al.*⁹ have reported on some isomeric derivatives of **SS14** focusing on the linkage of the **INF55** moiety at the meta and para positions of the 2-phenyl ring to the 13-position of berberine. Both these isomeric derivatives, however, showed over two fold weaker antibacterial activity than **SS14** against *S. aureus* wild type.

Some studies have been undertaken on structure-activity relationships for INF55. A series of 2-arylbenzo[*b*]thiophenes¹⁰ related to INF55 were reported as NorA inhibitors suggesting that the indole-NH is not essential for NorA inhibitory activity. Replacement of the nitro group in **INF55** with other electron-withdrawing groups such as the cyano group gave a product which retained potentiation activity similar to **INF55**.¹¹ However, other electron withdrawing groups, like the sulfonamide group, resulted in a complete loss of activity.

Figure 1. Structures of antibacterial berberine, NorA inhibitor INF55, dual-action hybrid SS14, and 13-*O*-arylmethyl-substituted berberine derivatives.

In the current studies the effect on antibacterial activity of changing the length and nature of the linking group to a methylene ether motif in the **SS14** analogue, **SS104**, was investigated, together with analogous derivatives (**BT80**, **85**, **88**, and **90**) involving simplification of the indolic inhibitor moiety with arylmethyl and naphthylmethyl


groups. The results are now reported in this paper.

2. Results and Discussion

2.1 Chemistry

The synthesis of the 13-*O*-arylmethyl-substituted berberine derivatives involved three steps (Scheme 1). Treatment of commercially available berberine with acetone and sodium hydroxide gave 8-acetonyldihydroberberine (**1**) and subsequent oxidation with potassium permanganate followed by deprotonation with aqueous sodium hydroxide solution then afforded the key

synthetic precursor phenol betaine **2**.¹² Finally *O*-alkylation of the betaine **2** with 2-(2-bromomethyl-phenyl)-5-nitro-1*H*-indole^{7, 13} provided **SS104** in modest yield. In the same way *O*-alkylation of **2** with the appropriate commercially available arylmethyl bromide gave the salts **BT80, 85, 88, and 90** in low to moderate yields. The structures of all the final substituted berberine salts were substantiated by spectroscopic means, with the low field chemical shift for the H8 berberine proton singlet, the absence of a signal for H13 in the berberine nucleus, and the downfield singlet signal for the methylene ether moiety in the linker group being particularly diagnostic in the ¹H NMR spectra.

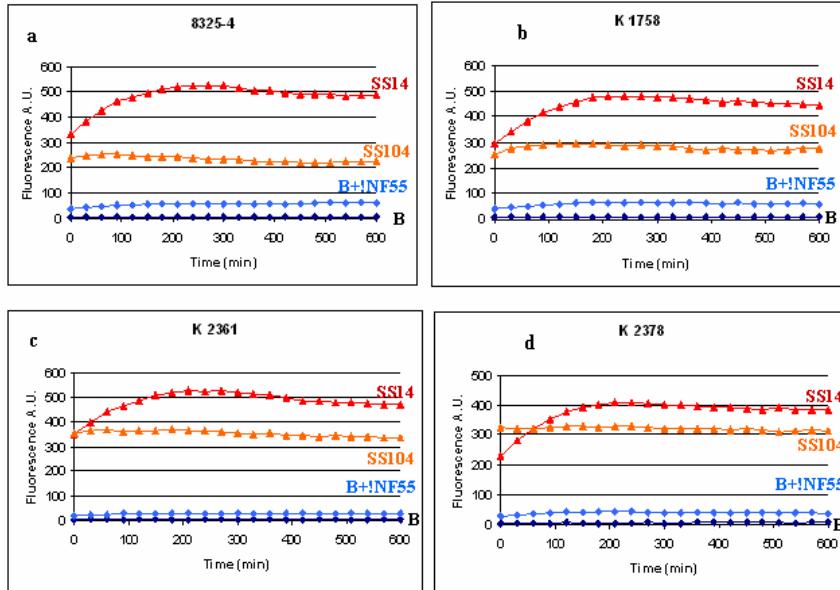
Scheme 1. Reagents and conditions: (a) acetone, NaOH (s), 50°C; (b) KMnO₄ (aq), acetone, -20°C; (c) HCl (conc), MeOH, reflux; (d) 5% NaOH (aq), DCM, rt; (e) RBr, CH₃CN, 60°C.

2.2 Antibacterial activity and cell uptake studies of **SS104**

The antibacterial activity of **SS104** was evaluated only against Gram-positive bacteria with four strains of *S. aureus* and three antibiotic resistant strains of *Enterococcus faecalis*, since it was known from our previous studies⁷ that the related hybrid **SS14** had limited antibacterial activity against Gram-negative bacteria (MIC up to 96 μM against *Escherichia coli*) possibly due

to the **INF55**-insenstive RND pumps present. Since **BT80-90** do not contain the **INF55** moiety, they were tested against both *S. aureus* and *E. coli* (Section 2.4). The results are given in Table 1. **SS104** was more potent as an antibacterial than **SS14** with MIC values up to 3.8-fold greater, as well as being over 378-fold greater in activity than berberine itself against NorA overexpressing *S. aureus* strains K2361 and K 2378. The MIC of **SS104** was essentially the same, 1.7 μ M, in a mutant strain of *S. aureus* lacking the NorA MDR pump (K1758), in the wild type (8325-4), and in two strains overexpressing the NorA pump (K2361 and K 2378). **SS104** thus seems to block not only the NorA pump but also the additional MDR pumps^{14, 15} in *S. aureus*. Furthermore **SS104** had excellent antibacterial activity (MIC 3.4 μ M, Table 1) against *E. faecalis* which is known for its high levels of “intrinsic antibiotic resistance”^{16, 17} and was resistant to berberine with an MIC of 650-1300 μ M.

Table 1.

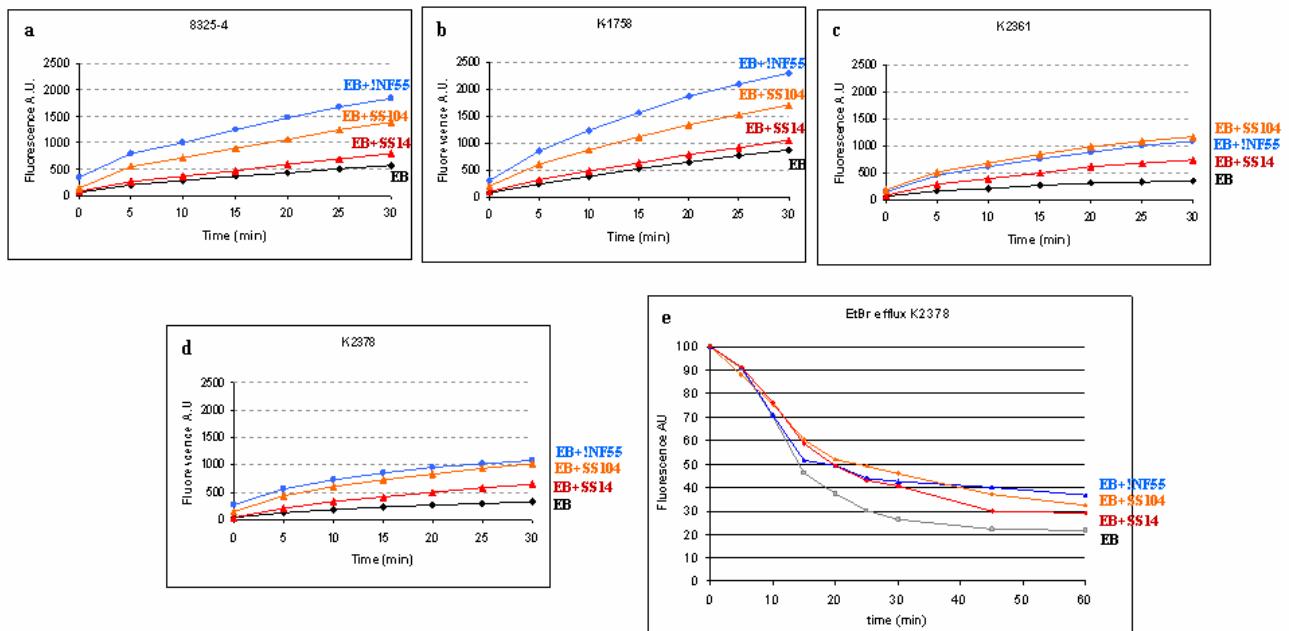

Minimum inhibitory concentrations in μ M of **berberine**, **SS14**, **SS104**, **BT80**, **BT85**, **BT88**, and **BT90** against Gram-positive and Gram-negative human pathogenic bacteria.

Strain	Berberine	SS14 ^a	SS104	BT80	BT85	BT88	BT90
<i>S. aureus</i> K1754 Δ norA	40 ^a	3.1	1.7	5.5	91.4	12.0	191.2
<i>S. aureus</i> 8325-4 Wild-type	325 ^a	3.1	1.7	10.9	182.8	24.0	>191.2
<i>S. aureus</i> K2361 NorA++	>650 ^a	6.3	1.7	21.9	>182.8	95.8	>191.2
<i>S. aureus</i> K2378 NorA++	>650 ^a	3.1	1.7	21.9	>182.8	95.8	>191.2
<i>E. coli</i> BW25113 Δ TolC	325	nt ^b	nt	10.9	91.4	12.0	191.2
<i>E. coli</i> ECM1668 marR1642 Δ acrAB	325	nt	nt	21.9	45.7	24.0	191.2
<i>E. coli</i> K12 Wild-type	>2600	nt	nt	>174.8	>182.8	>191.6	>191.2
<i>E. coli</i> ECM1668 marR1642 arcAB+	>2600	nt	nt	>174.8	>182.8	>191.6	>191.2
<i>E. faecalis</i> MMH594	650 ^a	6.3	3.4	nt	nt	nt	nt
<i>E. faecalis</i> OG1RF	650 ^a	6.3	3.4	nt	nt	nt	nt
<i>E. faecalis</i> V583	>650 ^a	6.3	3.4	nt	nt	nt	nt

^aValues are retrieved from Ball *et al.*⁷ ^bNot tested.

It is also pertinent that **SS104** can be transported rapidly into the bacterial cells, which can be seen in the uptake assay results (Figure 2). Both hybrids, **SS14** and **SS104**, show a higher level of accumulation than berberine alone or in the presence of the MDR inhibitor **INF55** (Figures 2a-2d). No difference in uptake of both hybrids was observed in norA-deleted (Figure 2b) and

overexpressed (Figures 2c and 2d) strains of *S. aureus*, which suggests an inhibition of the NorA

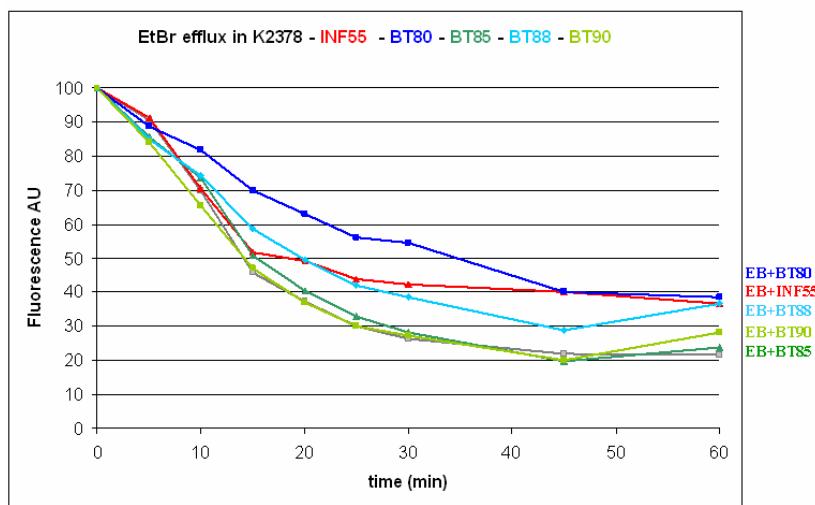

Figure 2. Accumulation of berberine, berberine in the presence of **INF55**,⁹ **SS14**,⁹ and **SS104** by four strains of *S. aureus*. a) wild-type strain, 8325-4 b) NorA deletion strain, K1758 c) and d) NorA overexpression strains, K2361 and K2378, respectively. Accumulation was measured by an increase in fluorescence and expressed as relative fluorescence units (RFUs).

pump and also is consistent with the antibacterial activity data. The increase in berberine fluorescence on binding to DNA is used to monitor berberine accumulation in the cell.¹⁸ However, berberine hybrids **SS14** and **SS104** contain an additional group which could affect

their fluorescence properties and/or binding to DNA. The fluorescence spectra of **SS14** in the presence or absence of DNA (results not shown) indicated that the fluorescence properties were changed due to the attachment of **INF55**. The maximum fluorescence in the absence of DNA shifted from 560 nm in the case of berberine to 530 nm for **SS14**⁹ and **SS104**. Interestingly the intrinsic fluorescence of **SS104** was around 36 times higher than that of berberine at the same concentration. The presence of DNA has a different effect on the hybrids, with **SS104** showing no effect on the fluorescence spectra, while the fluorescence maximum of **SS14** increased around 3.5 times. Importantly **SS14** and **SS104** showed no significant difference in maximum fluorescence due to different DNA concentrations.

2.3 Pump inhibitory studies

In order to assess the MDR pump inhibitory activity of the studied compounds, the uptake and efflux of ethidium bromide, EtBr, in the presence of the berberine hybrids or NorA inhibitor was examined with the results presented in Figure 3. The previous data⁹ for **INF55** and **SS14** is shown here for comparison purposes. EtBr is a known substrate for the major MDR pump, NorA, in *S. aureus*.¹⁹ The increased accumulation of EtBr in the presence of the hybrid suggests an inhibition of MDR transporter(s) (Figure 3a-d). Hybrid **SS104** potentiates EtBr uptake around 1.7 times stronger than **SS14** in all strains. Similar EtBr uptake in the *S. aureus* norA overexpressing strains K2361 and K2378 and wild type 8325-4 suggests that the hybrids effectively inhibit the NorA pump. However **SS104** and **INF55** show a 2- and 2.6-fold increase respectively in EtBr uptake in the strain with a norA knockout, which implies that these compounds can also inhibit other MDR transporters in *S. aureus* in addition to NorA.


Figure 3. The uptake of ethidium bromide alone and in the presence of **INF55**, **SS14**, and **SS104**:
a) by *S. aureus* 8325-4, wild-type; b) by *S. aureus* K1758, deleting NorA pump;
c) by *S. aureus* K2361, overexpressing NorA pump; d) by *S. aureus* K2378, overexpressing NorA pump.
e) The efflux of ethidium bromide alone and in the presence of **INF55**, **SS14**, and **SS104** by *S. aureus* K2378, overexpressing NorA pump.

In order to elucidate the specificity towards the NorA pump, we studied the efflux levels in the overexpressing NorA *S. aureus* strain K2378 (Figure 3e). The result shows that the efflux of

EtBr from this strain is inhibited by both berberine hybrids, although **SS104** is a little more potent than **SS14**.

2.4 Antibacterial activity of the BT compound series

In the case of the simplified hybrid structural series, **BT80** and **BT88** showed strong antibacterial activity whereas **BT85** and **BT90** had much lower activity in both *S. aureus* and *E. coli* (Table 1). All compounds in this series had stronger activity than berberine alone and seemed to be dependent on the presence of NorA (in *S. aureus*) and AcrAB (in *E.coli*). The antibacterial activity of all compounds against the antibiotic resistant strains of *E. faecalis* was not pursued. The effect on EtBr efflux in the presence of the NorA inhibitor, **INF55**, or the **BT** compounds in an overexpressing NorA *S. aureus* K2378 was also studied (Figure 4). **BT80** and **BT88** had an inhibitory effect on the MDR pumps, whereas **BT85** and **BT90** did not show significant effects through MDR inhibition, a result also commensurate with the antibacterial trends observed.

Figure 4. The efflux of ethidium bromide by *S. aureus* K2378, overexpressing NorA pump, in the presence of **INF55**, **BT80**, **BT85**, **BT88**, and **BT90**.

2.5 DNA binding of **BT80**

The antibacterial activity of berberine is believed to be mediated, at least in part, through a DNA binding process. It is thus possible such an interaction may also have some significance for the antibacterial action of our 13-*O*-arylmethyl berberine derivatives, and in this context and to obtain further information on this binding, the DNA binding affinity, selectivity and stoichiometry of the most active compound from the simplified hybrid structure series, **BT80**, was examined. This study involved the assessment of binding to a 6-mer single strand DNA, to 16-mer double-stranded (ds) DNA (D1, D2, and F10), and to 8-mer tetrameric quadruplex (Q1, Q2, and Q3) DNA using negative electrospray ionization mass spectrometry (ESI-MS).²⁰ The quadruplex forms were included for selectivity purposes and to enable a comparison with previous work²⁰ on **SS14**.

The results showed that **BT80**, which contains a planar intercalating naphthyl moiety can bind to all DNA types tested. While 8-Mer tetrameric quadruplex was able to bind a greater number of **BT80** molecules than 16-mer double-stranded (ds) DNA, binding to the latter was still significant. This would suggest that the naphthylmethoxy group at the 13-position could participate in DNA interaction and might thus be involved in the mediation of the antibacterial activity.

3. Conclusions

In summary an increase of linker chain length of the hybrid **SS14** by introduction of oxygen atom produced **SS104** with stronger antibacterial activity and MDR pump inhibitory potency than **SS14**. Removal of indole moiety of **SS104** produced compounds with lower dual activity. Structural simplification of **SS104**, thus, gave molecules with loss of some antibacterial activity. Substitution of the aryl ring in the 13-substituent with electron-withdrawing groups (**BT85** and **BT90**) was unfavorable for both antibacterial and NorA inhibitory activities. Although the

antibacterial activity of **BT80** and **BT88** is lower than that of **SS104**, they still retained NorA pump inhibitory activity. It is more likely that indole nucleus is not necessary for NorA pump inhibition, but it is required for high antibacterial activity of the hybrid 13-substituted berberines.

4. Experimental

4.1. Chemistry

Solvents were removed under reduced pressure using a rotary evaporator. Berberine (chloride salt), benzyl chloride, 4-cyanobenzyl bromide, 2-(bromomethyl)pyridine, and 2-(bromomethyl)naphthalene were purchased from Sigma-Aldrich Chemical Co. and were used as supplied. Melting points were obtained using a Griffin melting point apparatus and are uncorrected. Thin layer chromatography (TLC) on aluminium backed sheets of Merck Silica Gel 60 F₂₅₄ plates were used to follow the progress of chemical reactions. Preparative TLC was performed on 20 x 20 cm plates. Compounds were detected by examination under UV light. Column chromatography was performed under medium pressure on silica gel 60 (230-400 mesh). All solvent proportions were vol/vol. NMR spectra were obtained on a Varian Unity 300 MHz spectrometer, where proton (¹H) and carbon (¹³C) spectra were obtained at 300 MHz and 75 MHz, respectively, or on a Varian Inova 500 spectrometer, where the ¹H and ¹³C were obtained at 500 MHz and 126 MHz, respectively. Spectra were recorded in CDCl₃ (unless otherwise indicated) and were referenced to the residual non-deuterated solvent signal or TMS. Hydrogen and carbon assignments were also made using gradient correlation spectroscopy (gCOSY), gradient heteronuclear single quantum correlation (gHSQC) and gradient heteronuclear multiple bond correlation (gHMBC) spectroscopic techniques. Superscript letters refer to interchangeable

chemical shift assignments. Positive ion high resolution electrospray mass spectra, HRMS(ES), were obtained with a Micromass Qtof2 mass spectrometer using a cone voltage of 30V and polyethylene glycol (PEG) as an internal reference. Compounds for testing were > 95 % pure on the basis of TLC and ¹H NMR analysis. Compounds **2**²¹ and 2-(2-bromomethyl phenyl)-5-nitro-1*H*-indole⁷ were synthesized according to previous methods.

4.1.1 General procedure for the preparation of **SS104** and **BT80 85, 88, and 90**.

A solution of the phenolbetaine **2** (1 mmol) and the arylmethylbromide (2 - 10 mmol) in dry acetonitrile (1 - 2 mL) was heated at 60 °C for 2 - 6 h under a nitrogen atmosphere. The reaction mixture was then concentrated by evaporation of the CH₃CN. The residue was chromatographed on silica gel (6 - 10 % MeOH in DCM), followed by preparative TLC (multiple development, silica gel, 5% MeOH in DCM) of the main fraction from the column. Subsequently, the polar fraction was precipitated from 2% MeOH in DCM and then recrystallized from EtOH to give the desired product.

4.1.1.1. 9,10-Dimethoxy-13-[2-(5-nitro-1*H*-indol-2-yl)-benzyloxy]-5,6-dihydrobenzo[*g*]-1,3-benzodioxolo[5,6-*a*] quinolizinium bromide (**SS104**).

Compound **2** was treated with 2-(2-bromomethyl phenyl)-5-nitro-1*H*-indole according to the general procedure to give the desired bromide salt (**SS104**) as a yellow solid, yield 35 %; mp 201 °C (dec.). ¹H NMR (500 MHz, CDCl₃/CD₃OD) δ: 9.56 (s, 1H, H-8), 8.31 (s, 1H, H-4'), 7.97 (d, J = 8.5 Hz, 1H, H-6'), 7.68 (d, J = 8.5 Hz, 1H, H-7'), 7.64 (s, 1H, H-14), 7.53 (d, J = 9.5 Hz, 1H, H-12)^a, 7.37 (d, J = 7.0 Hz, 1H, H-6''), 7.25 (d, J = 7.0 Hz, 1H, H-5''), 7.14 (d, J = 8.0 Hz, 1H, H-3''), 7.08 (d, J = 9.5 Hz, 1H, H-11)^a, 6.90 (t, J = 7.3 Hz, 1H, H-4''), 6.63 (s, 1H, H-4), 6.21 (s,

1H, H-3'), 6.12 (s, 2H, OCH₂O), 5.18 (s, 2H, CH₂O), 4.75 (br s, 2H, H-6), 4.19 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 2.88 (t, *J* = 5.8 Hz, 2H, H-5). ¹³C NMR (126 MHz, CDCl₃/CD₃OD) δ: 149.7 (C14a), 149.6 (C10), 147.4 (C13), 146.9 (C3a), 144.5 (C9), 141.9 (C8), 141.6 (C5'), 139.7 (C7a'), 138.4 (2C, C13a, C2'), 133.6 (C2'')^a, 132.7 (C3''), 132.6 (C1'')^a, 132.4 (C13b), 130.1 (C5''), 129.6 (C6''), 128.2 (C12a), 127.5 (C4''), 127.0 (C3a'), 123.9 (C12)^b, 121.6 (C8a), 119.3 (C4a), 117.2 (C11)^b, 117.1 (C6'), 116.6 (C4'), 113.1 (C7'), 111.3 (C14), 108.1 (C4), 104.9 (C3'), 102.2 (OCH₂O), 74.1 (CH₂O), 62.2 (OCH₃), 57.0 (C6), 56.1 (OCH₃), 28.0 (C5). HRMS (ES); *m/z* calcd for C₃₅H₂₈N₃O₇ [M]⁺: 602.1927; found: 602.1910.

4.1.1.2. 9,10-Dimethoxy-13-(2-naphthylmethoxy)-5,6-dihydrobenzo[g]-1,3-benzodioxolo[5,6-*a*]quinolizinium bromide (BT80).

Compound **2** was treated with 2-(bromomethyl)naphthalene according to the general procedure to give the desired product **BT80** as a yellow solid, yield 16 %; mp 175-177 °C. ¹H NMR (500 MHz, CDCl₃/CD₃OD) δ: 10.11 (s, 1H, H-8), 8.00 (d, *J* = 9.5 Hz, 1H, H-12), 7.92 (s, 1H, H-14), 7.80-7.88 (m, 3H, H-4', H-6', H-8')^a, 7.81 (d, *J* = 9.5 Hz, 1H, H-11), 7.72 (s, 1H, H-1'), 7.48-7.58 (m, 2H, H-5', H-7')^a, 7.36 (d, *J* = 8.5 Hz, 1H, H-3'), 6.72 (s, 1H, H-4), 6.02 (s, 2H, OCH₂O), 6.00 (s, 2H, CH₂O), 5.08 (t, *J* = 5.5 Hz, 2H, H-6), 4.32 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃), 3.17 (t, *J* = 5.5 Hz, 2H, H-5). ¹³C NMR (126 MHz, CDCl₃/CD₃OD) δ: 151.1 (C10), 150.0 (C13), 149.8 (C3a)^a, 147.2 (C14a)^a, 145.8 (C9), 143.0 (C8), 133.3 (C4a')^b, 132.9 (C8a')^b, 132.0 (C4a)^c, 131.8 (C2'), 131.6 (C13a), 129.8 (C12a), 128.4 (C1', C4')^d, 128.0 (C8'), 127.6 (C6')^d, 126.7 (C5')^d, 126.5 (C7')^d, 126.1 (C3'), 125.5 (C11), 122.8 (C8a), 118.4 (C13b)^c, 118.0 (C12), 109.0 (C14), 108.1 (C4), 101.9 (OCH₂O), 77.7 (CH₂O), 62.8 (OCH₃), 57.1 (C6), 56.9 (OCH₃), 27.8 (C5). HRMS (ES); *m/z* calcd for C₃₁H₂₆NO₅ [M]⁺: 492.1811; found: 492.1825.

4.1.1.3. 13-(4-Cyanobenzyloxy)-9,10-dimethoxy-5,6-dihydrobenzo[*g*]-1,3-benzodioxolo[5,6-*a*] quinolizinium bromide (BT85).

Compound **2** was treated with 4-cyanobenzyl bromide according to general procedure to give the desired product **BT85** as a yellow solid, yield 35 %; mp 132-134 °C. ¹H NMR (500 MHz, CDCl₃/CD₃OD) δ: 10.03 (s, 1H, H-8), 7.88 (d, J = 9.5 Hz, 1H, H-11), 7.83 (s, 1H, H-14), 7.81 (d, J = 9.5 Hz, 1H, H-11), 7.69 (d, J = 8 Hz, 2H, H-3'), 7.52 (d, J = 8 Hz, 2H, H-2'), 6.87 (s, 1H, H-4), 6.08 (s, 2H, OCH₂O), 5.05 (t, J = 6 Hz, 2H, H-6), 4.99 (s, 2H, CH₂O), 4.32 (s, 3H, OCH₃), 4.08 (s, 3H, OCH₃), 3.33 (t, J = 6 Hz, 2H, H-5). ¹³C NMR (126 MHz, CDCl₃/CD₃OD) δ: 151.2 (C10), 150.1 (C3a)^a, 149.7 (C13), 147.4 (C14a)^a, 145.9 (C9), 143.4 (C8), 140.0 (C1'), 132.5 (2C, C3'), 132.4 (C4a), 131.3 (C13a), 129.5 (C12a), 128.8 (2C, C3'), 125.5 (C11), 122.8 (C8a), 118.3 (CN), 118.1 (C13b), 117.6 (C12), 112.6 (C4'), 108.4 (C4, C14), 102.0 (OCH₂O), 75.8 (CH₂O), 62.7 (OCH₃), 57.0 (C6), 56.9 (OCH₃), 27.8 (C5). HMRS (ES); *m/z* calcd for C₂₈H₂₃N₂O₅ [M]⁺: 467.1607; found: 467.1618

4.1.1.4. 13-Benzylxy-9,10-dimethoxy-5,6-dihydrobenzo[*g*]-1,3-benzodioxolo[5,6-*a*] quinolizinium bromide (BT88).

Compound **2** (1 mmol) was treated with benzyl chloride (10 mmol) and sodium bromide (10 mmol) initially, for bromide exchange purposes, and then the general procedure was used to give the desired product **BT88** as a yellow solid, yield 19 %; mp 141-143 °C. ¹H NMR (300 MHz, CDCl₃) δ: 10.39 (s, 1H, H-8), 7.95 (s, 1H, H-14), 7.92 (d, J = 9.3 Hz, 1H, H-11), 7.79 (d, J = 9.3 Hz, 1H, H-12), 7.34-7.37 (m, 3H, H-2', H-4'), 7.27-7.30 (m, 2H, H-3'), 6.83 (s, 1H, H-4), 6.09 (s, 2H, OCH₂O), 5.24 (t, J = 6 Hz, 2H, H-6), 4.89 (s, 2H, CH₂O), 4.35 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃), 3.26 (t, J = 6 Hz, 2H, H-5). ¹³C NMR (75 MHz, CDCl₃) δ: 151.2 (C10)^a, 149.9 (C3a)^b, 149.8 (C13), 147.4 (C14a)^b, 146.2 (C9)^a, 143.7 (C8), 134.4 (C1'), 132.2 (C4a)^c, 131.3 (C13a), 129.7 (C12a), 129.1 (C4'), 128.8 (2C, C2'), 128.7 (2C, C3'), 125.4 (C11), 122.9 (C8a),

118.5 (C13a)^c, 118.0 (C12), 108.9 (C14), 108.3 (C4), 102.0 (OCH₂O), 77.2 (CH₂O), 63.1 (OCH₃), 57.0 (OCH₃), 56.9 (C6), 28.1 (C5). HRMS (ES); *m/z* calcd for C₂₇H₂₄NO [M]⁺: 442.1654; found: 442.1660.

4.1.1.5. 9,10-Dimethoxy-13-(2-pyridylmethoxy)-5,6-dihydrobenzo[g]-1,3-benzodioxolo[5,6-*a*]quinolizinium bromide (BT90).

Compound **2** was treated with 2-(bromomethyl)pyridine according to general procedure to give the desired product **BT90** as a yellow solid, yield 8 %; mp 134-136 °C. ¹H NMR (300 MHz, CDCl₃) δ: 10.34 (s, 1H, H-8), 8.59 (dd, *J* = 4.8, 0.9 Hz, 1H, H-3'), 8.07 (d, *J* = 9.0 Hz, 1H, H-12), 7.94 (s, 1H, H-14), 7.81 (d, *J* = 9.3 Hz, 1H, H-11), 7.76 (td, *J* = 7.5, 1.8 Hz, 1H, H-5'), 7.42 (d, *J* = 8.1 Hz, 1H, H-6'), 7.29 (td, *J* = 4.8, 0.9 Hz, 1H, H-4'), 6.82 (s, 1H, H-4), 6.06 (s, 2H, OCH₂O), 5.24 (t, *J* = 5.9 Hz, 2H, H-6), 5.01 (s, 2H, CH₂O), 4.34 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃), 3.30 (t, *J* = 5.9 Hz, 2H, H-5). ¹³C NMR (75 MHz, CDCl₃) δ: 154.2 (C1'), 151.2 (C10), 149.9 (C3a)^a, 149.8 (C13), 149.6 (C3'), 147.5 (C14a), 146.0 (C9), 143.7 (C8), 137.1 (C5'), 132.1 (C4a)^b, 131.2 (C13a), 129.5 (C12a), 125.5 (C11), 123.7 (C4'), 123.1 (C6'), 122.8 (C8a), 118.3 (C13b)^b, 118.2 (C12), 108.8 (C14), 108.3 (C4), 102.0 (OCH₂O), 76.6 (CH₂O), 63.1 (OCH₃), 57.1 (C6), 57.0 (OCH₃), 28.1 (C5). HRMS (ES); *m/z* calcd for C₂₆H₂₃N₂O₅ [M]⁺: 443.1607; found: 443.1626.

4.2. Antibacterial testing

Bacterial Strains. The following bacterial strains were used in this study: *S. aureus* 8325-4 (wild-type), K1758 *ΔnorA* (8325-4 *ΔnorA*), K2378 NorA++ (K1758/pK374:*norA*, with *norA* from *S. aureus* SA1199) and *E. faecalis* MMH594.

4.2.1. Antimicrobial Susceptibility.

Cells (10^5 mL $^{-1}$) were inoculated into broth and dispensed at 50 μ L well $^{-1}$ in 384 well microtitre plates. MICs were determined in triplicate by serial 2-fold dilution of the test compound. The MIC was defined as the concentration of the agent that completely inhibited cell growth during an 18 h incubation at 37°C. Growth was assayed with a microtitre plate reader (Spectramax PLUS384; Molecular Devices) by monitoring absorption at 600 nM.

4.2.2. Uptake Experiments.

Experiments were performed essentially as described previously,⁷ in which *S. aureus* cultures were grown at 37°C until the optical density (OD) reached 1.5 (at 600 nm). Cells were pelleted by centrifugation, washed twice with PBS and resuspended in PBS containing 10 mM dextrose to obtain an OD ~0.8. Cells were then incubated for one hour at 37 °C (with aeration) before being washed twice with PBS (containing 10 mM dextrose) and further diluted to OD ~0.3 in PBS. The assay was performed in 96-well flat-bottom white microtiter plates in a final volume of 200 μ l. Compounds were added at a concentration of 3 μ M each. For ethidium bromide experiments, berberine or **SS104** or **INF55** were added first. Fluorescence was measured using a SpectraMax Gemini XS spectrofluorometer (Molecular Devices). Uptake experiments with berberine, **INF55** and hybrid **SS104** were performed at excitation/emission wavelengths of 355/517 nm. Experiments with ethidium were performed at excitation/emission wavelengths of 530/600 nm. Background fluorescence for all compounds in the absence of cells was subtracted from the raw data.

4.2.3. Efflux Experiments.

The efflux assay was performed essentially as described previously¹³ with minor modifications for the use of ethidium bromide. *S. aureus* NorA overexpressing cells (K2378 NorA++) were grown at 37 °C to an OD ~0.9, pelleted, washed twice with PBS and then resuspended in PBS to an OD ~ 0.8. Cells were then loaded with 3 µM ethidium bromide and 30 µg/mL of reserpine and incubated at 37 °C for 20 min. After washing twice with ice-cold PBS, cells were added to a chilled 96-well flat-bottom black microtiter plate containing ice-cold PBS + 10mM dextrose at an OD of 0.3 in a total volume of 200 µl. Berberine, **SS14** and **SS104** were added before cells to give final concentrations of 3 µM. As a negative control (i.e. no ethidium efflux), PBS (without dextrose) containing 30 µg/mL of reserpine was added instead of **SS104**. Fluorescence was measured with a SpectraMax Gemini XS at excitation/emission wavelengths of 530/600 nm, respectively.

4.3. DNA binding

Materials

MilliQTM water (Millipore, Bedford, USA) was used in all experiments. Ammonium acetate, methanol and acetonitrile were purchased from Ajax Finechem (Seven Hills, Australia). Berberine chloride were obtained from Sigma-Aldrich (St Louis, MO, USA).

Oligonucleotides

Complementary strands of two duplex DNA sequences (d(CCTCTCTGGACCTTCC), D1A, M_r 4744.1 Da; d(GGAAGGTCCAGAGAGG), D1B, M_r 5020.3 Da; d(GCTGCCAAATACCTCC), D2A, M_r 4786.2 Da; and d(GGAGGTATTTGGCAGC), D2B, M_r 4977.3 Da) and the quadruplex DNA strand (d(TTGGGGGT), Q1, M_r 2496.7 Da) were purchased from Geneworks (South

Australia) as “trityl-off” and purified by chromatography on a Waters C18 Delta Pak radial cartridge high-performance liquid chromatography (HPLC) column. The column was equilibrated with 10 mM ammonium acetate, and the DNA was eluted from the column using a gradient of 0-60% acetonitrile in 10 mM ammonium acetate over 30 min (1 mL min⁻¹). The purified DNA strands were freeze-dried using a Savant Speed-Vac and redissolved in MilliQTM water giving a concentration of 1-2 mM prior to storage at -20°C. The concentrations of the oligonucleotides were determined by measuring the UV absorbance at 260 nm using molar absorption coefficients for D1A, D1B, D2A, D2B and Q1 of 137,620, 194,580, 159,363, 177,368 and 85,250 M⁻¹ cm⁻¹, respectively, obtained from the website “Oligonucleotide Properties Calculator”.

4.3.1. Preparation of duplex and quadruplex DNA

The duplexes D1 and D2 were prepared by annealing the complementary single strands (D1A and D1B or D2A and D2B) in 0.1 M ammonium acetate as previously described, to give a stock concentration of 1 mM. The quadruplex Q1, d(TTGGGGGT)₄, was prepared by dissolving an appropriate quantity of freeze-dried Q1 in 0.15 M ammonium acetate (NH₄OAc), pH 7. This solution was heated to 56°C for 15 min and allowed to cool to room temperature. The resulting tetrameric Q1 (1 mM) was stored at -20°C.

4.3.2. Preparation of drug/DNA complexes

Stock **BT80** and berberine solutions (1 mM) were prepared in 0.1 M NH₄OAc, pH 8.5. SS14 was insoluble under these conditions, so the stock solution (1 mM) was prepared in 0.1 M NH₄OAc, pH 8.5, 40% in methanol. Appropriate volumes of 0.1 M NH₄OAc, D1 or D2, and each of the compounds berberine and **BT80**, were mixed to give reaction mixtures containing 10 µM dsDNA and drug in the dsDNA/drug ratios of 1:1, 1:6, 1:12, 1:24 and 1:48. The final volume was

100 μ L. Reaction mixtures containing the ssDNA strands D2A or D2B and drugs in the ratios 1:6 and 1:12 were prepared in the same way with a final concentration of ssDNA of 10 μ M. The same reaction mixtures were set up for the quadruplex Q1. For these solutions, an appropriate volume of stock drug solution was freeze-dried using a Savant Speed-Vac followed by addition of tetrameric Q1 in 0.15 M NH₄OAc, pH 7, to give Q1/drug ratios of 1:1, 1:6, 1:12, 1:24 and 1:48 in a final volume of 100 μ L. The ssDNA, D1, D2 and Q1 reaction mixtures were diluted with an equal volume of 0.1 M NH₄OAc (or 0.15 M for Q1) prior to ESI-MS analysis.

4.3.3. Electrospray ionization mass spectrometry (ESI-MS)

Negative ion ESI mass spectra of DNA and the drug/DNA complexes were acquired using a Waters extended mass range Q-ToF UltimaTM (Wyntheshawe, UK) mass spectrometer, fitted with a Z-spray ESI source.²² The capillary, RF lens 1 and collision cell were at 2.5 kV, 70 V and 4 V, respectively. The cone voltage was 100 V for experiments involving ss- and dsDNA and 150 V for experiments involving Q1, and the transport and aperture in all experiments were each at 5 V. The pressure in the ion optics region was 3×10^{-6} mbar. Thirty acquisitions were combined and the resulting spectrum was baseline subtracted and smoothed using a Savitzky Golay algorithm. The instrument was calibrated using 1 mg/mL cesium iodide.

Acknowledgements

We wish to thank The Thailand Research Fund (MRG 4981058), the Commission on Higher Education, Srinakharinwirot University, Ramkhamhaeng University, Thailand, and the University of Wollongong, Australia, and Northeastern University, USA for supporting this work. The work was also supported by Grant R21 AI059483 from the NIH awarded to K. Lewis. The award of an APA scholarship to K. Gornall and an Endeavour Award to S. Samosorn is gratefully acknowledged.

References and notes

- Craft, A. C.; D'Antoni, A. V.; Terzulli, S. L., *Med. Sci. Mon.* **2007**, *13*, RA103.
- Gonzales, R. D.; Schreckenberger, P. C.; Graham, M. B.; Kelkar, S.; DenBesten, K.; Quinn, J. P., **2001**, *357*, 1179.
- Lomovskaya, O.; Zgurskaya, H. I.; Bostian, K. A.; Lewis, K., In *Bacterial resistance to antimicrobials*. (2nd Ed.). Wax, R. G.; Lewis, K.; Salyers, A. A.; Taber, H., Eds.; CRC Press-Taylor and Francis Group: Florida, **2008**; pp 45.
- Ines Borges-Walmsley, M.; Walmsley, A. R., *Trends Microbiol.* **2001**, *9*, 71.
- Bremner, J. B.; Joseph, A. I.; Samosorn, S., *Curr. Med. Chem.* **2007**, *14*, 103.
- Barbachyn, M. R., In *Ann. Rep. Med. Chem.* Macor, J. E., Eds.; Elsevier Academic Press: San Diego, **2008**; Vol. 43, pp 281.
- Ball, A. R.; Casadei, G.; Samosorn, S.; Bremner, J. B.; Ausubel, F. M.; Moy, T. I.; Lewis, K., *ACS Chem. Biol.* **2006**, *1*, 594.
- Lomovskaya, O.; Zgurskaya, H. I.; Totrov, M.; Watkins, W. J., *Nat. Rev. Drug Discov.* **2007**, *6*, 56.
- Kelso, M. J.; Tomkiewicz, D.; Casadei, G.; Moi, T. I.; Garner, J.; Bremner, J. B.; Ausubel, F. M.; Lewis, K., *J. Med. Chem.* **2009**, submitted.
- Fournier dit Chabert, J.; Marquez, B.; Neville, L.; Joucla, L.; Broussous, S.; Bouhours, P.; David, E.; Pellet-Rostaing, S.; Marquet, B.; Moreau, N.; Lemaire, M., *Bioorg. Med. Chem.* **2007**, *15*, 4482.
- Ambrus, J. I.; Kelso, M. J.; Bremner, J. B.; Ball, A. R.; Casadei, G.; Lewis, K., *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4294.
- Iwasa, K.; Nanba, H.; Lee, D.-U.; Kang, S.-I., *Planta Med.* **1998**, *64*, 748.
- Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K., *Bioorg. Med. Chem.* **2006**, *14*, 857.
- Hsieh, P.-C.; Siegel, S. A.; Rogers, B.; Davis, D.; Lewis, K., *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 6602.
- Price, C. T. D.; Kaatz, G. W.; Gustafson, J. E., *Int. J. Antimicrob. Agents* **2002**, *20*, 206.
- Lynch, C.; Courvalin, P.; Nikaido, H., *Antimicrob. Agents Chemother* **1997**, *41*, 869.
- Gilmore, M. S.; Sahm, D. F.; Huycke, M. M., *Emerging Infect. Dis.* **1998**, *4*, 239.
- Stermitz, F. R.; Lorenz, P.; Tawara, J. N.; Zenewicz, L. A.; Lewis, K., *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 1433.
- Nelson, M. L., *Curr. Med. Chem.: Anti-Infective Agents* **2002**, *1*, 35.
- Gornall, K. C.; Samosorn, S.; Talib, J.; Bremner, J. B.; Beck, J. L., *Rapid Commun. Mass Spectrom.* **2007**, *21*, 1759.
- Iwasa, K.; Kamigauchi, M.; Ueki, M.; Taniguchi, M., *Eur. J. Med. Chem.* **1996**, *31*, 469.
- Sobott, F.; Hernandez, H.; Mc Cammon, M. G.; Tito, M. A.; Robinson, C. V., *Anal. Chem.* **2002**, *74*, 1402.

