
               
 

รายงานวิจัยฉบับสมบูรณ 
 
 

โครงการ : คุณสมบัติเรขาคณิตของปริภูมิบานาค 
                        Geometric Properties of Banach Spaces 

 
 
 

โดย ดร.นรินทร เพชรโรจน และคณะ 
 
 
 
 

30 มิถุนายน 2551 



 
สัญญาเลขที่ MRG4980167 

 
 

รายงานวิจัยฉบับสมบูรณ 
 

โครงการ : คุณสมบัติเรขาคณิตของปริภูมิบานาค 
                        Geometric Properties of Banach Spaces 

 
 

ผูวิจัย:   ดร.นรินทร เพชรโรจน 
     ภาควิชาคณิตศาสตร   คณะวิทยาศาสตร   

มหาวิทยาลัยนเรศวร 
นักวิจัยท่ีปรึกษา: ศ. ดร.สุเทพ สวนใต 

ภาควิชาคณิตศาสตร   คณะวิทยาศาสตร  
มหาวิทยาลัยเชียงใหม 

 
 
 

 

      สนับสนุนโดยสํานักงานกองทุนสนับสนุนการวิจัย 
         (ความเห็นในรายงานนี้เปนของผูวิจัย สกว.ไมจําเปนตองเห็นดวยเสมอไป) 

 
 



 
 
 

กิตติกรรมประกาศ 
 

 โครงการวิจัยน้ีได รับทุนสนับสนุนตามโครงการความรวมมือระหวางสํานักงาน
คณะกรรมการการอุดมศึกษากับสํานักงานกองทุนสนับสนุนการวิจัย เพ่ือเปนการพัฒนา
ศักยภาพในการทํางานวิจัยอาจารยรุนใหม ผูวิจัยขอขอบพระคุณเจาของทุนเปนอยางสูงมา ณ 
โอกาสน้ี 
 ขอขอบพระคุณ ศ.ดร.สุเทพ สวนใต เปนอยางสูง ที่ใหคําปรึกษาแนะนําแกผูวิจัยอยางดี
ยิ่ง  
 
 

       ดร.นรินทร เพชรโรจน 
 



 

Abstract  
 
Project Code:  MRG-4980167 
Project Title:  Geometric Properties of Banach Spaces  
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E-mail Address: narinp@nu.ac.th (N. Petrot) 
                            scmti005@chiangmai.ac.th (S. Suantai) 
Project Period:   July 1, 2006 –June 30, 2008 
 
 In this project, we present some results relate to the geometric properties of a 
Banach space, namely  Calder´on–Lozanovskii space. We also giving some basic 
properties of the general modular space, and Criteria for strictly monotone points, 
extreme points and SU-points in such space are focused. Consequently, the sufficient 
and necessary conditions for the rotundity properties are also given. 
 
 Moreover, by considering the three-step Noor iterative process, some results 
relate to the fixed point theory (the topic which is related to the    geometric properties 
of  Banach spaces) are presented, i.e., we proved the strong convergence theorems for 
the nonlinear operators and showed some method for finding the solution of the 
nonlinear equation by using the fixed point theory.  
 
  
 
Keywords: Generalized Calder´on–Lozanovskii spaces; Modular space; Geometric 
properties; Fixed point theory; Three-step Noor iterative process. 
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 ในงานวิจัยน้ี ผูวิจัยไดมุงที่จะศึกษาเกีย่วกับสมบัตเิรขาคณิตของปริภูมิบานาคที่สําคัญ
คือ ปริภูมิ รวมถึงการพิสูจนสมบัติเบื้องตนบางประการบนปริภูมิโมดุลารทั่วไป โดยหลังจากนั้น
จึงไดพิจารณาเกณฑสําหรับการเปนจุดทางเดียวโดยแท จุดสุดขีด และจุดเอส-ยู ในปริภูมิคารเด
รอน-ลอซานนอฟสกีวางนัยทั่วไป  ซ่ึงทําใหไดผลลพัธที่สําคัญตามมาคือ การทราบถึงเง่ือนไข
ความจําเปนและเพียงพอสําหรับการเปนปริภูมิโคงเปนวงของปริภูมิบานาคดังกลาว 
 
 ยิ่งกวาน้ัน ผูวิจัยยังไดทําการศึกษาเก่ียวกบัทฤษฎีบทจุดตรึง ซ่ึงนับเปนหัวขอที่มี
ความสัมพันธกับการศึกษาสมบัติเรขาคณิตเปนอยางยิ่ง โดยไดพิจารณากระบวนการกระทําซํ้า
สามขั้นตอนของนูร ซ่ึงทําใหไดผลลัพธเก่ียวกับทฤษฎีบทการลูเขาอยางเขมสําหรับการสงแบบ
ไมเชิงเสน ซ่ึงสามารถนําไปประยุกตใชในการหาคําตอบของสมการไมเชิงเสนได 
 
  
  
คําหลัก: ปริภูมิคารเดรอน-ลอซานนอฟสกีวางนัยทัว่ไป; ปริภูมิโมดุลาร; สมบัตเิรขาคณิต; 
ทฤษฎีบทจุดตรึง; กระบวนการกระทําซํ้าสามขั้นตอนของนูร 
 
 
 
 
 
 
 



 

บทนํา 
 

การศึกษาสมบัติทางเรขาคณิตของปริภูมิบานาค คือการศึกษาสมบัติทีไ่มเปลีย่นแปลง
ภายใตการสมมิติ (isometry)  ซ่ึงไดเริ่มมีการศึกษาอยางตอเน่ืองนับตั้งแตป ค.ศ. 1936    ซ่ึง
สามารถแบงสมบัติทางเรขาคณิตออกไดเปน  5 กลุม คือ 

1. สมบัติความโคงมน (rotundity properties) 
2. สมบัติความปรับเรียบ  (smooth properties) 
3. สมบัติทางเดียว (monotonicity  properties ) 
4. สมบัติความโคงมนเชิงซอน (complex rotundity properties) 
5. สมบัติเรขาคณิตที่มีความเกี่ยวของกับทฤษฎีจุดตรึง (fixed point theory) เชน 

nearly uniform rotundity, uniform Kadec-Klee property, nearly uniform 
smoothness, noncreaseness, uniform noncreaseness, Opial property, 
uniform Opial property เปนตน 

 
การศึกษาคุณสมบัติเรขาคณิตของปริภูมิบานาคในแนวดังกลาวขางตน   ทฤษฎีและ

องคความรูใหมๆที่ไดรับอาจแบงเปนสองแนวทางใหญๆ  คือ ทฤษฎีและองคความรูใหมๆ
เก่ียวกบัสมบตัิเรขาคณิตที่เปนสมบัตเิรขาคณิตในปริภูมิบานาคทัว่ไป (general Banach 
spaces) และปริภูมิบานาคเฉพาะเจาะจงที่นาสนใจ   

สมบัติทางเรขาคณิตสามารถนําไปประยกุตใชไดในหลายๆแขนงวิชา เชน  
approximation theory, fixed point theory, probability theory, ergodic theory, optimization 
theory, control theory, operator theory เปนตน ดังน้ันนักคณิตศาสตรจึงไดศึกษาและวิจัยใน
แขนงดังกลาวกันอยางตอเน่ือง        เพราะในการคดิคนทฤษฎีเพ่ือหาองคความรูใหม ๆ น้ัน
นับวามีประโยชนเปนอยางมากตอทางวชิาการ และ การพัฒนาประเทศ    ซ่ึงเปนที่ยอมรับวา
ทฤษฎีและองคความรูใหมๆ ที่เกิดจากการวิจัยน้ัน  นอกจากจะมีประโยชนอยางมากในการ
พัฒนาความรูเชิงวิชาการในสาขาและแขนงตางๆน้ันแลว   บางครั้งยังสามารถนําไปประยุกตใน
สาขาอ่ืนๆ  และเปนพ้ืนฐานสําคัญในการพัฒนาทางวทิยาศาสตรพ้ืนฐาน (Basic  science) ดัง
ตัวอยางขางตน อันถือเปนพ้ืนฐานในการพัฒนาประเทศชาตติอไป  

 

จุดประสงคของการวิจัย 
1. คิดคนทฤษฎีและองคความรูใหมๆ เก่ียวกบั สมบัติเรขาคณิต  ทั้งที่เปนสมบัติ

เรขาคณิตในปริภูมิบานาคทั่วไป (general Banach spaces) และ ปริภูมิบานาคเฉพาะเจาะจงที่
นาสนใจ)                     

2.  นําทฤษฎีและองคความรูใหมที่คิดคนในขอที่ 1 ไปประยุกตใชในแขนงวชิา
อ่ืนๆ ดังที่กลาวไวขางตน 



ผลการวิจัย
1. N. Petrot and S. Suantai, The criteria of strict monotonicity and rotundity
points in generalized Calderon-Lozanovskii spaces,

Theorem 1 Let Xρ be a modular space generated by a convex modular ρ and
x, y ∈ B(Xρ). If ξ(x) < 1 then ξ

(
x+y

2

)
< 1.

Theorem 2 Let Xρ be the modular space generated by a convex modular ρ and
x ∈ B (Xρ) be such that ξ(x) < 1. If y is any element in B (Xρ) satisfying∥∥x+y

2

∥∥
ρ

= 1, then ρ
(

x+y
2

)
= 1.

Theorem 3 For any x ∈ Eϕ and any measurable partition {Ti}n
i=1 of T we

have,
ξ(x) = max

1≤i≤n
{ξ(xχ

Ti
)}.

Theorem 4 A point x ∈ S(E+
ϕ ) is upper monotone if and only if

(i) %ϕ(x) = 1;

(ii) µ({t ∈ T : x(t) < a(t)}) = 0;

(iii) ϕ ◦ x is an upper monotone point of E.

Theorem 5 A point x ∈ S(E+
ϕ ) is a lower monotone point if and only if

(i) ξ(x) < 1;

(ii) µ({t ∈ supp x : x(t) ≤ a(t)}) = 0;

(iii) ϕ ◦ x is a lower monotone point of E.

Theorem 6 A point x ∈ S(Eϕ) is an extreme point of B(Eϕ) if and only if

(i) %ϕ(x) = 1;

(ii) µ({t ∈ T : |x(t)| < a(t)}) = 0;

(iii) ϕ ◦ |x| is an UM -point;

2



(iv) if u, v ∈ S(E) satisfy u+v
2

= ϕ ◦ |x| then either

u = v or ϕ ◦
(

y + z

2

)
<

1

2
(ϕ ◦ y + ϕ ◦ z),

where y(t) = ϕ−1(t, |u(t)|), z(t) = ϕ−1(t, |v(t)|) for all t ∈ T .

Theorem 7 Let E be a strictly monotone Köthe space and x ∈ S(Eϕ). Then x

is an SU-point of B(Eϕ) if and only if:

(i) ξ(x) < 1;

(ii) µ({t ∈ supp x : |x|(t) ≤ a(t)}) = 0;

(iii) if u ∈ S(E+) satisfies ‖u + ϕ ◦ |x|‖E = 2 then either

u = ϕ ◦ |x| or ϕ ◦
( |x|+ y

2

)
<

1

2
(ϕ ◦ |x|+ ϕ ◦ y),

where y(t) = ϕ−1(t, u(t)) for all t ∈ T .

Theorem 8 Let E be a Köthe space and ϕ be a Musielak-Orlicz function. Then
Eϕ ∈ (R) if and only if

(i) E ∈ (SM);

(ii) ϕ ∈ ∆E
2 ;

(iii) if u, v ∈ S(E+) with u 6= v then either
∥∥∥∥
u + v

2

∥∥∥∥
E

< 1 or ϕ ◦
(

x + y

2

)
<

1

2
(ϕ ◦ x + ϕ ◦ y),

where x(t) = ϕ−1(t, u(t)) and y(t) = ϕ−1(t, v(t)) for all t ∈ T .

2. N. Petrot Modified Noor iterative process by non-Lipschitzian mappings
for nonlinear equations in Banach spaces,

Theorem 1 Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let T1, T2, T3 be self maps of C. T1 is a Φ-hemicontractive

3



uniformly continuous mapping with bounded range and T2, T3 are generalized
Lipschitzian mapping functions. For any x0 ∈ C, let {xn}∞n=0 be the three-step
iterative process defined by

xn+1 = (1− αn)xn + αnT1yn

yn = (1− βn)xn + βnT2zn

zn = (1− γn)xn + γnT3xn (1)

where {αn}∞n=0 ⊂ [0, 1
2
) and {βn}∞n=0, {γn}∞n=0 ⊂ [0, 1] satisfying conditions:

lim
n→∞

αn = 0 = lim
n→∞

βn and

∞∑
n=0

αn = ∞. (2)

If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly
to the common fixed point of T1, T2, T3.
Theorem 2 Let E be a real Banach space and C be a nonempty closed convex
subset of E. Let T1, T2, T3 be self maps of C. T1 is a Φ-hemicontractive uniform-
ly continuous mapping with T1(C), T2(C) are bounded sets. Suppose that a se-
quence {xn}∞n=0 is defined as (1) when {αn}∞n=0 ⊂ [0, 1

2
) and {βn}∞n=0, {γn}∞n=0 ⊂

[0, 1] satisfying the condition (2). If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the se-
quence {xn}∞n=0 converges strongly to the common fixed point of T1, T2, T3.
Theorem 3 Let E be a real Banach space and C be a nonempty closed convex
subset of E. Let T be a Φ-hemicontractive uniformly continuous mapping with
bounded range self map of C. For any x0 ∈ C, let {xn}∞n=0 be the three-step
iterative process defined by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTzn

zn = (1− γn)xn + γnTxn (3)

where {αn}∞n=0 ⊂ [0, 1
2
) and {βn}∞n=0, {γn}∞n=0 ⊂ [0, 1] satisfying conditions:

lim
n→∞

αn = 0 = lim
n→∞

βn and

∞∑
n=0

αn = ∞,

then the sequence {xn}∞n=0 converges strongly to the unique fixed point of T .

4



Theorem 4 Let E be a real Banach space and T : E → E be uniformly
continuous operator. For a given f ∈ E, let x∗ denote the unique solution of
the equation Tx = f . Define the operator H : E → E by Hx = f + x − Tx,
and suppose that the range of H is bounded. For any x0 ∈ E let {xn}∞n=0 be
the three-step iterative process defined by

xn+1 = (1− αn)xn + αnHyn

yn = (1− βn)xn + βnHzn

zn = (1− γn)xn + γnHxn

where {αn}∞n=0 ⊂ [0, 1
2
) and {βn}∞n=0, {γn}∞n=0 ⊂ [0, 1] satisfying conditions:

lim
n→∞

αn = 0 = lim
n→∞

βn and
∞∑

n=0

αn = ∞.

If there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0

such that for any x ∈ E, there exists a j(x− x∗) ∈ J(x− x∗) satisfying

〈Tx− Tx∗, j(x− x∗)〉 ≥ Φ(‖x− x∗‖)‖x− x∗‖,

then the sequence {xn}∞n=0 converges strongly to the unique solution of Tx = f .
Theorem 5 Let E be a real Banach space and T : E → E be uniformly
continuous and Φ-strongly accretive operator. For a given f ∈ E, let x∗ denote
the unique solution of the equation Tx = f . Let H, {xn}, {αn}, {βn} and {γn}
be as in Theorem 4. Then the sequence {xn}∞n=0 converges strongly to the
unique solution x∗ of Tx = f .
Theorem 6 Let E be a real Banach space and T : E → E be uniformly
continuous and Φ-strongly quasi-accretive operator. Let x∗ denote the unique
solution of the equation Tx = 0. Let H, {xn}, {αn}, {βn} and {γn} be as
in Theorem 4. Then the sequence {xn}∞n=0 converges strongly to the unique
solution x∗ of Tx = 0.

5
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Abstract

In this paper, some basic properties of the general modular space are proven. Criteria for strictly monotone points, extreme points
and SU -points in generalized Calderón–Lozanovskiı̌ spaces are obtained. Consequently, the sufficient and necessary conditions for
the rotundity properties of such spaces are given.
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1. Introduction

Throughout the paper R, R+ and N denote the sets of reals, nonnegative reals and natural numbers, respectively.
For a real vector space X, a function ρ : X → [0, ∞] is called a modular if it satisfies the following conditions:

(i) ρ(0) = 0 and x = 0 whenever ρ(λx) = 0 for any λ > 0;
(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

If we replace (iii) by

(iii)′ ρ(αx + βy) ≤ αρ(x) + βρ(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1,

then the modular ρ is called convex modular. Moreover, for arbitrary x ∈ X we define

ξ(x) := inf
{
λ > 0 : ρ

( x

λ

)
< ∞

}
.

We put inf ∅ = ∞ by the definition.
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For any modular ρ on X , the space

Xρ =
{

x ∈ X : ρ(λx) → 0 as λ → 0+
}
,

is called the modular space. If ρ is a convex modular, the functional

‖x‖ρ = inf
{
λ > 0 : ρ

( x

λ

)
≤ 1

}
,

is a norm on Xρ , which is called the Luxemburg norm (see [35]). A modular ρ is called right-continuous (left-
continuous) [continuous] if limλ→1+ ρ(λx) = ρ(x) for all x ∈ Xρ (limλ→1− ρ(λx) = ρ(x) for all x ∈ Xρ) [it is both
right- and left-continuous].

Remark 1.1. If ρ is a convex modular and ρ(λox) < ∞ for some x ∈ Xρ and λo > 0, then ρ is right-continuous
at λx for any λ ∈ [0, λo) and left-continuous at λx for any λ ∈ (0, λo]. Indeed, this follows from the fact that the
function f (t) = ρ(t x) is convex on R+ and has finite values on the interval [0, λo] so it is a continuous function on
[0, λo].

A triple (T,Σ , µ) stands for a nonatomic, positive, complete and σ -finite measure space, while L0
= L0(µ)

denotes the space of all (equivalence classes of) σ -measurable functions x : T → R. In what follows we will identify
measurable functions which differ only on a set of measure zero. For x, y ∈ L0, we write x ≤ y if x(t) ≤ y(t) for
µ-a.e. t ∈ T and the notion x < y is used for x ≤ y and x 6= y. Moreover, for any x ∈ L0, we denote by |x | the
absolute value of x , i.e. |x |(t) = |x(t)| for µ-a.e. t ∈ T .

By E we denote a Köthe space over the measure space (T,Σ , µ), i.e. E ⊂ L0 which satisfies the following
conditions:

(i) if x ∈ E, y ∈ L0 and |y| ≤ |x | for µ-a.e. then y ∈ E and ‖y‖E ≤ ‖x‖E ,
(ii) there exists a function x in E which is strictly positive on the whole T .

A function ϕ : T ×R → [0, ∞) is said to be a Musielak–Orlicz function if ϕ(t, ·) is a nonzero function, it vanishes
at zero, it is convex and even for µ-a.e. t ∈ T and ϕ(·, u) as well as ϕ−1(·, u) are Σ -measurable functions for any
u ∈ R+, where ϕ−1(t, ·) is the generalized inverse function of ϕ(t, ·) defined on [0, ∞) by

ϕ−1(t, u) = inf{v ≥ 0 : ϕ(t, v) > u}

for each t ∈ T (see [35]). For Musielak–Orlicz function ϕ we define a measurable function with respect to t ∈ T by

a(t) = sup{u ≥ 0 : ϕ(t, u) = 0},

see [6, page 175].

Remark 1.2. Let ϕ : T × R → [0, ∞) be a Musielak–Orlicz function. Then

(i) ϕ−1(t, ·) vanishes only at zero;
(ii) ϕ(t, ϕ−1(t, u)) = u for all u ∈ [0, ∞) and

ϕ−1(t, ϕ(t, u)) =

{
0, if u ∈ [0, a(t)],
u, if u ∈ (a(t), ∞);

for µ-a.e. t ∈ T .

Given any Musielak–Orlicz function ϕ, we define on L0 a convex modular %ϕ by

%ϕ(x) =

{
‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,

∞ otherwise;

and the generalized Calderón–Lozanovskiı̌ space is defined by

Eϕ = {x ∈ L0
: ϕ ◦ λx ∈ E for some λ > 0}.

Then Eϕ = (Eϕ, ‖ · ‖ϕ) becomes a normed space, where ‖ · ‖ϕ denotes for the Luxemburg norm induced by %ϕ (see
[4,9]).
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As for the investigations of generalized Calderón–Lozanovskiı̌ space we refer to [8–10,27].
In the case when ϕ is an Orlicz function, i.e. there is a set A ∈ Σ with µ(A) = 0 such that ϕ(t1, ·) = ϕ(t2, ·) for all

t1, t2 ∈ T \ A, these Calderón–Lozanovskiı̌ spaces were investigated in [3,4,30] and the investigations were continued
in the papers [5,11,15,17,20,26,28,29,32–34,36,37].

We say a Musielak–Orlicz function ϕ satisfies the condition ∆E
2 if there exist a set A ∈ Σ with µ(A) = 0, a

constant K > 0 and a nonnegative function h ∈ E such that the inequality

ϕ(t, 2u) ≤ Kϕ(t, u) + h(t)

holds for all t ∈ T \ A and u ∈ R (see [35] when E = L1 and [9] in general).

Lemma 1.3 ([9, Lemma 5]). The property that ‖x‖ϕ = 1 if and only if %ϕ(x) = 1 holds true for any x ∈ Eϕ if and
only if ϕ ∈ ∆E

2 .

Lemma 1.4 ([19, Lemma 1]). For any Musielak–Orlicz function ϕ the inequality

ϕ(t, u + v) ≥ ϕ(t, u) + ϕ(t, a(t) + v)

holds for µ-a.e. t ∈ T and any u ≥ a(t), v ≥ 0.

Lemma 1.5 ([9, Corollary 7]). If ϕ ∈ ∆E
2 then µ({t ∈ T : a(t) > 0}) = 0.

By S(E), B(E) and E+(= {x ∈ E : x ≥ 0}) we denote the unit sphere, the closed unit ball and the positive cone
of the Köthe space E . For any x ∈ E , define supp x = {t ∈ T : x(t) 6= 0}.

A point x ∈ E+ is called a point of upper monotonicity (UM-point for short) if for every y ∈ E+
\ {0} we have

‖x‖E < ‖x + y‖E . A point x ∈ E+
\ {0} is called a point of lower monotonicity (LM-point for short) if for every

y ∈ E+
\ {0}, such that y < x , we have ‖x − y‖E < ‖x‖E . If every point of S(E+) is a UM-point (or an LM-point),

then we say that the space E is strictly monotone. It is easy to see that x ∈ E+
\ {0} in any Köthe space E is a

UM-point (LM-point) if and only if x/‖x‖ is a UM-point (LM-point). Therefore, it is enough to formulate the criteria
of monotonicity for points in S(E+) only.

A point x ∈ S(E) is said to be an extreme point of B(E) (x ∈ ext B(E) for short) if for any y, z ∈ B(E) such
that 2x = y + z we have y = z. If any point of S(E) is an extreme point of B(E), we say that the space E is rotund
(X ∈ (R)).

A point x ∈ S(E) is called a strong U-point (SU -point for short) of B(E) if for any y ∈ S(E) with ‖x + y‖E = 2,
we have x = y. It is obvious that a Banach space E is rotund if and only if any x ∈ S(E) is an SU -point, but the
notions of an extreme point and an SU -point are different (see [7]).

It is well known that rotundity properties of Banach spaces have applications in various branches of mathematics,
such as, Fixed point Theory, Approximation Theory, Ergodic Theory, and many others. Moreover, if the focus of the
study is Banach lattices, then there are strong relationships between rotundity properties and monotonicity properties
(see [2,13,14,16,18,21,24,25]). Specially, in [17,20] the local rotundity and local monotonicity structures of a certain
Banach lattice, namely Calderón–Lozanovskiı̌ spaces, were studied. The results of our paper will be a generalization
of two such excellent papers [17,20] by considering Orlicz function with parameter called Musielak–Orlicz function
instead of Orlicz function. Of course, some ideas from those papers are also applied in our paper. However, because
of the different properties among functions, in many parts of the proofs of our results new methods and techniques are
developed.

Let us note that if E has the Fatou property, i.e. for any x ∈ L0 and (xn)∞n=1 in E such that 0 ≤ xn ↗ x µ-
a.e. and supn ‖xn‖E < ∞ we have that x ∈ E and ‖x‖E = limn→∞ ‖xn‖E (see [1,23,31]), then Eϕ also has this
property, and moreover, the modular %ϕ is left-continuous (see [9, Theorem 12]). Consequently, Eϕ is a Banach space.
So, in the whole paper we will assume that E is a Köthe space with the Fatou property. Moreover, we will denote
(ϕ ◦ x)(t) = ϕ(t, x(t)) for each t ∈ T .

The paper is organized as follows. In Section 2 we give some basic auxiliary results of general modular space and
Eϕ . Section 3 is devoted to the strictly monotone points of Eϕ . We study rotundity points of Eϕ in Section 4. Finally,
in Section 5 we give a characterization of rotundity structure in Eϕ .
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2. Auxiliary lemmas

We start by proving some facts in any modular space.

Lemma 2.1. Let Xρ be a modular space generated by a convex modular ρ and x, y ∈ B(Xρ). If ξ(x) < 1 then
ξ

( x+y
2

)
< 1.

Proof. Since ξ(x) < 1, we take a real number a ∈ (ξ(x), 1) and put ε =
1−a
1+a . Then ε > 0 and (1+ε)a

2 +
1+ε

2 = 1.
Thus,

ρ

(
(1 + ε)

(
x + y

2

))
= ρ

(
1 + ε

2
· x +

1 + ε

2
· y

)
= ρ

(
(1 + ε)a

2
·

x

a
+

1 + ε

2
· y

)
≤

(1 + ε)a

2
ρ

( x

a

)
+

1 + ε

2
ρ(y) < ∞,

which implies that ξ
( x+y

2

)
< 1. This completes the proof. �

Lemma 2.2. Let Xρ be the modular space generated by a convex modular ρ and x ∈ B
(
Xρ

)
be such that ξ(x) < 1.

If y is any element in B
(
Xρ

)
satisfying

∥∥ x+y
2

∥∥
ρ

= 1, then ρ
( x+y

2

)
= 1.

Proof. By ξ(x) < 1 and Lemma 2.1, we have ξ
( x+y

2

)
< 1. Put I =

[
0, 1

ξ(
x+y

2 )

)
and define a function f : I → R

by f (t) = ρ
(
t x+y

2

)
. Then f is a convex function and has finite values on I , which imply that f is a continuous

function on I . Assuming that ρ
( x+y

2

)
< 1, there exists a λ > 1 such that ρ

(
λ

x+y
2

)
< 1 whence

∥∥ x+y
2

∥∥
ρ

≤
1
λ

< 1, a
contradiction. �

We close this section by giving a basic result on the generalized Calderón–Lozanovskiı̌ space as follows:

Lemma 2.3. For any x ∈ Eϕ and any measurable partition {Ti }
n
i=1 of T we have,

ξ(x) = max
1≤i≤n

{ξ(xχTi )}.

Proof. Put α = max1≤i≤n{ξ(xχTi )}, then it is obvious that α ≤ ξ(x). We now show that the converse inequality
holds. If not, then a real number β ∈ (α, ξ(x)) can be found and consequently,

%ϕ

(
x

β

)
=

∥∥∥∥ϕ ◦

(
x

β

)∥∥∥∥
E

=

∥∥∥∥∥ n∑
i=1

ϕ ◦

(
x

β
χTi

)∥∥∥∥∥
E

≤

n∑
i=1

∥∥∥∥ϕ ◦

(
x

β
χTi

)∥∥∥∥
E

=

n∑
i=1

%ϕ

(
x

β
χTi

)
< ∞,

which contradicts the definition of the number ξ(x). �

3. Points of monotonicity in Eϕ

In this section, we give some criteria for upper and lower monotonicity points in Eϕ .

Theorem 3.1. A point x ∈ S(E+
ϕ ) is upper monotone if and only if

(i) %ϕ(x) = 1;
(ii) µ({t ∈ T : x(t) < a(t)}) = 0;

(iii) ϕ ◦ x is an upper monotone point of E.
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Proof. Necessity. If condition (i) does not hold, then %ϕ(x) =: r < 1. Let D be a subset of A such that µ(D) > 0 and
χD ∈ E . Let u be a nonnegative measurable function defined by

u(t) = ϕ−1
(

t,
1 − r

‖χD‖E

)
χD(t).

Then ϕ ◦ u =
1−r

‖χD‖E
χD which implies ϕ ◦ u ∈ E , and moreover,

‖ϕ ◦ u‖E =

∥∥∥∥ (1 − r)

‖χD‖E
χD

∥∥∥∥
E

= 1 − r.

Since u > 0, there exist a real number λ > 0 and a measurable function y > 0 with supp y = D satisfying

ϕ(t, x(t) + y(t)) ≤ ϕ(t, x(t)) + ϕ(t, u(t)), y(t) ≤ λ

for µ-a.e. t ∈ T . On the other hand, an ascending sequence (Tn)∞n=1 such that
⋃

n Tn = T and supt∈Tn
ϕ(t, u) < ∞

for each n ∈ N and u ∈ R+ can be found (see [22]), which allows us to obtain a nonnegative real number dλ such
that,

dλ = sup{ϕ(t, λ) : t ∈ D}.

Consequently, ϕ ◦ y ≤ dλχD which implies that y ∈ Eϕ . Moreover,

%ϕ(x + y) = ‖ϕ ◦ xχT \D + ϕ ◦ (x + y)χD‖E ≤ ‖ϕ ◦ xχT \D + ϕ ◦ xχD + ϕ ◦ u‖E

= ‖ϕ ◦ x + ϕ ◦ u‖E ≤ ‖ϕ ◦ x‖E + ‖ϕ ◦ u‖E = r + (1 − r) = 1.

Hence, 1 = ‖x‖ϕ ≤ ‖x + y‖ϕ ≤ 1 and therefore, x is not an upper monotone point.
Suppose that (ii) is not satisfied. Then the set A = {t ∈ T : x(t) < a(t)} has a positive measure. Let us define

y(t) = (a − x)(t)χA (t) for all t ∈ T . We see that y ∈ E+
ϕ \ {0} and

%ϕ(x + y) = ‖ϕ ◦ (x + y)‖E = ‖ϕ ◦ xχT \A + ϕ ◦ (x + y)χA‖E

= ‖ϕ ◦ xχT \A + ϕ ◦ aχA‖E

= ‖ϕ ◦ xχT \A‖E ≤ %ϕ(x) ≤ 1.

Hence, ‖x + y‖ϕ ≤ 1. But, since y ∈ E+
ϕ \ {0} the fact that ‖x + y‖ϕ ≥ ‖x‖ϕ = 1 is always true, we obtain

‖x + y‖ϕ = 1. This means that x is not an upper monotone point.
It remains to show the necessity of condition (iii). Let us assume that x ∈ S(E+

ϕ ) is an upper monotone point. Since
the necessity of (i) has been proved, we may assume that ϕ ◦ x ∈ S(E) and suppose that condition (iii) is not satisfied,
i.e. there exists y ∈ E+

\ {0} such that ‖ϕ ◦ x + y‖E = 1. Let us define z ∈ E+
ϕ \ {0} by z(t) = ϕ−1(t, y(t)) for all

t ∈ T . Hence there exists a nonnegative measurable function h such that supp h ⊂ supp z and

ϕ(t, x(t) + h(t)) ≤ ϕ(t, x(t)) + ϕ(t, z(t)), h(t) ≤ λ

for all t ∈ T . Thus h ∈ Eϕ and

%ϕ(x + h) = ‖ϕ ◦ (x + h)‖E ≤ ‖ϕ ◦ x + ϕ ◦ z‖E = ‖ϕ ◦ x + y‖E = 1,

which implies that ‖x + h‖ϕ = 1. This contradicts the upper monotonicity of x and the proof is completed.
Sufficiency. Let x ∈ S(E+

ϕ ) and assume that conditions (i)–(iii) are satisfied. Let y ∈ E+
\ {0} be given. In view of

Lemma 1.4, condition (ii) gives

ϕ(t, x(t) + y(t)) ≥ ϕ(t, x(t)) + ϕ(t, a(t) + y(t))

for µ-a.e. t ∈ T . Since µ({t ∈ T : ϕ(t, a(t) + y(t)) > 0}) > 0 and ϕ ◦ x is an upper monotone point in E , we have

%ϕ(x + y) = ‖ϕ ◦ (x + y)‖E ≥ ‖ϕ ◦ x + ϕ ◦ (a + y)‖E > ‖ϕ ◦ x‖E = %ϕ(x) = 1,

that is, ‖x + y‖ϕ > 1. This completes the proof. �

Theorem 3.2. A point x ∈ S(E+
ϕ ) is a lower monotone point if and only if

(i) ξ(x) < 1;
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(ii) µ({t ∈ supp x : x(t) ≤ a(t)}) = 0;
(iii) ϕ ◦ x is a lower monotone point of E.

Proof. Necessity. Let x ∈ S(E+) be a lower monotone point. Suppose that condition (i) is not satisfied, i.e. ξ(x) = 1.
Take A, B ∈ Σ , both of positive measure, such that A ∩ B = ∅ and A ∪ B = supp x . Thus by Lemma 2.3 we
obtain ξ(xχA ) = 1 or ξ(xχB) = 1. Without loss of generality we may assume that ξ(xχA ) = 1, and it would be
ξ(x − xχB) = ξ(xχA ) = 1. This implies ‖x − xχB‖ϕ ≥ 1, a contradiction.

If condition (ii) does not hold, then the set A = {t ∈ suppx : x(t) ≤ a(t)} has positive measure. By (i), the
necessity of which has been already proved, we have ξ(x) < 1, and consequently %ϕ(x) = 1 by Lemma 2.2. Define
y(t) = x(t)χA (t), then we have 0 < y < x , and

%ϕ(x − y) = ‖ϕ ◦ xχT \A‖E = ‖ϕ ◦ x‖E = %ϕ(x) = 1.

This implies that ‖x − y‖ϕ = 1, a contradiction.
Now we will show that condition (iii) holds. By (i), we have ϕ◦x ∈ S(E). Let us take y ∈ E such that 0 < y < ϕ◦x

and choose a measurable function z such that 0 < z < x with ϕ ◦ x − y ≤ ϕ ◦ (x − z). Since x is a lower monotone
point, we have

‖ϕ ◦ x − y‖E ≤ ‖ϕ ◦ (x − z)‖E = %ϕ(x − z) ≤ ‖x − z‖ϕ < 1.

This shows that ϕ ◦ x is then a lower monotone point of E .
Sufficiency. Let x ∈ S(E+

ϕ ), y ∈ E+
\ {0} be such that y < x and conditions (i)–(iii) are satisfied. Obviously, supp

y ⊂ supp x which together with condition (ii) imply that for z = ϕ ◦ x − ϕ ◦ (x − y) we have z > 0. Moreover, by
condition (i), we have %ϕ(x) = 1. Since ϕ ◦ x is a lower monotone point of E and z ≤ ϕ ◦ x , so

%ϕ(x − y) = ‖ϕ ◦ (x − y)‖E = ‖ϕ ◦ x − z‖E < ‖ϕ ◦ x‖E = %ϕ(x) = 1. (3.1)

Using Eq. (3.1) together with ξ(x − y) < 1 (by condition (i)) and the continuity of %ϕ , in light of Lemma 2.2, we have
‖x − y‖ϕ < 1. This completes the proof. �

4. Points of rotundity in Eϕ

We will study the points of rotundity, such as extreme point and SU -point in this Section. We begin with the
following definition:

A point x ∈ S(E+) is said to be an extreme point of B(E+) (x ∈ extB(E+) for short) if for any x, y ∈ S(E+)

such that x = (y + z)/2, we have y = z = x .

Lemma 4.1 ([17, Lemma 4]). In any Köthe space E, x ∈ S(E) is an extreme point of B(E) if and only if |x | is a
UM-point of E and |x | ∈ ext B(E+).

Theorem 4.2. A point x ∈ S(Eϕ) is an extreme point of B(Eϕ) if and only if

(i) %ϕ(x) = 1;
(ii) µ({t ∈ T : |x(t)| < a(t)}) = 0;

(iii) ϕ ◦ |x | is a UM-point;
(iv) if u, v ∈ S(E) satisfy u+v

2 = ϕ ◦ |x | then either

u = v or ϕ ◦

(
y + z

2

)
<

1
2
(ϕ ◦ y + ϕ ◦ z),

where y(t) = ϕ−1(t, |u(t)|), z(t) = ϕ−1(t, |v(t)|) for all t ∈ T .

Proof. Sufficiency. Assume that conditions (i)–(iv) are satisfied. Let x ∈ S(Eϕ) and y, z ∈ B(Eϕ) be such that
2x = y + z. We shall show that y = z. First, we will show that

ϕ ◦ |x |(t) = ϕ ◦
|y + z|

2
(t) = ϕ ◦

[
|y| + |z|

2

]
(t) =

1
2

[ϕ ◦ |y|(t) + ϕ ◦ |z|(t)] (4.1)
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for µ-a.e. t ∈ T . Note that, we always have

ϕ ◦ |x |(t) = ϕ ◦
|y + z|

2
(t) ≤ ϕ ◦

[
|y| + |z|

2

]
(t) ≤

1
2

[ϕ ◦ |y|(t) + ϕ ◦ |z|(t)]

for µ-a.e. t ∈ T . Let A = {t ∈ T : ϕ ◦ |x |(t) < 1
2 [ϕ ◦ |y|(t) + ϕ ◦ |z|(t)]}. If µ(A) > 0 then by conditions (i) and (iii)

we have

1 = %ϕ(x) = ‖ϕ ◦ |x |‖E <

∥∥∥∥1
2
ϕ ◦ |y| +

1
2
ϕ ◦ |z|

∥∥∥∥
E

≤
1
2

(‖ϕ ◦ |y|‖E + ‖ϕ ◦ |z|‖E ) ≤ 1,

which is a contradiction. Consequently, Eq. (4.1) holds.
Let Cϕ = {t ∈ T : ϕ(t, ·) is a convex and even function}. It is clear that µ(T \ Cϕ) = 0. Next for each

t ∈ T we define ŷ(t) = ϕ−1(t, ϕ(t, |y(t)|)) and ẑ(t) = ϕ−1(t, (ϕ(t, |z(t)|))). Using condition (ii) together with
Eq. (4.1), in light of Remark 1.2(ii), we have ŷ(t) = |y(t)| and ẑ(t) = |z(t)| for µ-a.e. t ∈ Cϕ . Consequently, by
Eq. (4.1) and condition (iv) we conclude that ϕ ◦ |y|(t) = ϕ ◦ |z|(t) for µ-a.e. t ∈ Cϕ . We claim that |y| = |z|. Put
B = {t ∈ Cϕ : |y|(t) 6= |z|(t)} and suppose that µ(B) > 0. Thus, since ϕ(t, ·) is an injective function on the set
[a(t), ∞) for all t ∈ Cϕ we should have

|y(t)| ∨ |z(t)| ≤ a(t) and |y(t)| ∧ |z(t)| < a(t) (4.2)

for all t ∈ B ⊂ Cϕ . So

ϕ ◦ |x |(t) =
1
2
[ϕ ◦ |y|(t) + ϕ ◦ |z|(t)] = 0

for all t ∈ B. Combining this equation with Eq. (4.2) and the assumption that 2x = y + z we obtain |x(t)| < |a(t)| for
all t ∈ B, which contradicts condition (ii). Hence, we have the claim. Finally, by condition (ii) and the fact that ϕ(t, ·)
is an injective function on [a(t), ∞) for all t ∈ Cϕ , in view of Eq. (4.1), we obtain that |y(t) + z(t)| = |y(t)| + |z(t)|
for µ-a.e. t ∈ T . This together with |y(t)| = |z(t)| for µ-a.e. t ∈ T implies that y = z.

Necessity. Let x ∈ S(Eϕ) be an extreme point of B(Eϕ). By, Lemma 4.1 we obtain that |x | is a UM-point in Eϕ .
Thus by Theorem 3.1 we have x(t) ≥ a(t) for µ-a.e. t ∈ T, %ϕ(x) = 1 and ϕ ◦ x is an upper monotone point of E .
Therefore, it remains only to prove that if x ∈ ext B(Eϕ) then condition (iv) holds. If not, there are u, v ∈ S(E) such
that

u(t) 6= v(t) and ϕ ◦

[
y + z

2

]
(t) =

1
2

[ϕ ◦ y(t) + ϕ ◦ z(t)] =
u(t) + v(t)

2
= ϕ ◦ |x |(t),

for µ-a.e. t ∈ T , where y(t), z(t) are defined in condition (iv). Clearly, y, z ∈ S(Eϕ) with y 6= z. Consequently, |x | 6∈

ext B(E+
ϕ ). Finally, Lemma 4.1 yields that x 6∈ ext B(Eϕ). �

Recall that a point x ∈ S(E+) is called a strong U -point(an SU -point for short) of B(E+) if for any y ∈ S(E+)

with ‖x + y‖E = 2, we have x = y.

Remark 4.3 ([17, page 387]). If a point x ∈ S(E+) is an SU -point of B(E+), then x is a LM-point of E and x is an
UM-point of E .

Lemma 4.4 ([17, Lemma 7]). A point x ∈ S(E) is an SU-point of B(E) if and only if |x | is an SU-point of B(E+).

Theorem 4.5. Let E be a strictly monotone Köthe space and x ∈ S(Eϕ). Then x is an SU-point of B(Eϕ) if and only
if:

(i) ξ(x) < 1;
(ii) µ({t ∈ supp x : |x |(t) ≤ a(t)}) = 0;

(iii) if u ∈ S(E+) satisfies ‖u + ϕ ◦ |x |‖E = 2 then either

u = ϕ ◦ |x | or ϕ ◦

(
|x | + y

2

)
<

1
2
(ϕ ◦ |x | + ϕ ◦ y),

where y(t) = ϕ−1(t, u(t)) for all t ∈ T .
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Proof. Necessity. Assume that x is an SU -point of B(Eϕ). Applying Lemma 4.4, Remark 4.3 and Theorem 3.2 we see
that the remainder is condition (iii). Suppose the converse, that is, there are u ∈ S(E+) such that ‖u + ϕ ◦ |x |‖E = 2,

u 6= ϕ ◦ |x | and ϕ ◦

(
|x |+y

2

)
=

1
2 [ϕ ◦ |x | + ϕ ◦ y], where y(t) is defined as in condition (iii). Then,

%ϕ(y) = ‖ϕ ◦ y‖E = ‖u‖E = 1,

and consequently,

2 = ‖u + ϕ ◦ |x |‖E = ‖ϕ ◦ y + ϕ ◦ |x |‖E

≤ ‖ϕ ◦ y‖E + ‖ϕ ◦ |x |‖E

≤ %ϕ(y) + %ϕ(x) ≤ 2.

This implies that

%ϕ

(
|x | + y

2

)
=

∥∥∥∥ϕ ◦

(
x + y

2

)∥∥∥∥
E

=
1
2

[‖ϕ ◦ |x | + ϕ ◦ y‖E ]

=
1
2

[‖ϕ ◦ |x |‖E + ‖ϕ ◦ y‖E ]

=
1
2
[%ϕ(|x |) + %ϕ(y)] = 1,

so
∥∥∥ |x |+y

2

∥∥∥
ϕ

= 1. Since u 6= ϕ ◦ |x |, we have |x | 6= y, which implies that |x | is not an SU -point of B(E+
ϕ ). Thus,

Lemma 4.4 finishes the proof of the necessity.
Sufficiency. Let y ∈ S(Eϕ) be such that∥∥∥∥ x + y

2

∥∥∥∥
ϕ

= 1. (4.3)

We shall show that x = y. Combining Eq. (4.3) with condition (i), and applying Lemma 2.2, we get %ϕ

( x+y
2

)
= 1.

This gives

1 = %ϕ

(
x + y

2

)
=

∥∥∥∥ϕ ◦

(
x + y

2

)∥∥∥∥
E

≤
1
2

‖ϕ ◦ x + ϕ ◦ y‖E

≤
1
2

[
%ϕ(x) + %ϕ(y)

]
≤ 1, (4.4)

whence

‖ϕ ◦ x + ϕ ◦ y‖E = 2. (4.5)

Using this equation together with the strict monotonicity of E , the fact %ϕ

( x+y
2

)
= 1 and the convexity of ϕ(t, ·) on

R for all t ∈ Cϕ , where Cϕ defined as in Theorem 4.2 it is easy to see that

ϕ ◦

(
|x | + |y|

2

)
(t) =

ϕ ◦ |x |(t) + ϕ ◦ |y|(t)

2
(4.6)

for µ-a.e. t ∈ Cϕ . Put u(t) = ϕ ◦ |y|(t) for all t ∈ T . Then u ∈ E+ and ‖u‖E = ‖ϕ ◦ y‖E = %ϕ(y) = 1, by
Eq. (4.4). Moreover, by virtue of condition (iii), Eqs. (4.5) and (4.6) imply that ϕ ◦ |x |(t) = ϕ ◦ |y|(t) for µ-a.e.
t ∈ Cϕ . Since µ({t ∈ supp x : |x |(t) ≤ a(t)}) = 0 and ϕ(t, ·) is an injective function on the interval [a(t), ∞) for
µ-a.e. t ∈ Cϕ we get |x |(t) = |y|(t) for µ-a.e. t ∈ T . Then |x + y| ≤ |x | + |y| = 2|x |. If |x + y| < |x | + |y| = 2|x |,
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then ‖(x + y)/2‖ϕ < 1 (since |x | is an LM-point of Eϕ by Theorem 3.2). This contradicts Eq. (4.3) and proves that
|x + y| = |x | + |y|. Combining this equality with |x | = |y|, we get x = y. �

5. Rotundity of Eϕ

In this final section we present a result concerning the rotundity structure of Eϕ .

Theorem 5.1. Let E be a Köthe space and ϕ be a Musielak–Orlicz function. Then Eϕ ∈ (R) if and only if

(i) E ∈ (SM);
(ii) ϕ ∈ ∆E

2 ;
(iii) if u, v ∈ S(E+) with u 6= v then either∥∥∥∥u + v

2

∥∥∥∥
E

< 1 or ϕ ◦

(
x + y

2

)
<

1
2
(ϕ ◦ x + ϕ ◦ y),

where x(t) = ϕ−1(t, u(t)) and y(t) = ϕ−1(t, v(t)) for all t ∈ T .

Proof. Necessity. Suppose on the contrary that Eϕ ∈ (R) and E 6∈ (SM). Then an element u ∈ S(E+) which is not a
UM-point can be found. Put x(t) = ϕ−1(t, u(t)). Then %ϕ(x) = ‖ϕ ◦ x‖E = ‖u‖E = 1, so x ∈ S(Eϕ) and hence x ∈

ext B(Eϕ). However, ϕ ◦ x is not a UM-point in E , thus Theorem 4.2 yields a contradiction.
Suppose that Eϕ ∈ (R) and ϕ 6∈ ∆E

2 . By Lemma 1.3, there exists x ∈ S(Eϕ) with %ϕ(x) < 1. By Eϕ ∈ (R), x ∈

ext B(Eϕ) and Theorem 4.2 yields a contradiction.
Suppose that condition (iii) is not satisfied. Then there are u, v ∈ S(E+) with u 6= v such that ‖u + v‖E = 2

and ϕ ◦
( x+y

2

)
=

1
2 (ϕ ◦ x + ϕ ◦ y) =

u+v
2 , where x(t), y(t) are defined in condition (iii). Putting z =

x+y
2 , we have

%ϕ(z) = 1, thus z ∈ ext B(Eϕ). Since x ∈ ext B(Eϕ), Theorem 4.2 yields a contradiction.
Sufficiency. Let x ∈ S(Eϕ) be arbitrary. We shall show that x ∈ ext B(Eϕ), by proving that conditions (i)–(iv) in

Theorem 4.2 are satisfied. First, by ϕ ∈ ∆E
2 we have %ϕ(x) = 1 and |x(t)| ≥ a(t) for µ-a.e. t ∈ T by Lemmas 1.3

and 1.5, respectively. Next, ϕ ◦ |x | is a UM-point in E , because E ∈ (SM). Finally, we will show that condition (iv)
in Theorem 4.2 holds. Let u, v ∈ S(E) be such that u+v

2 = ϕ ◦ |x |. By condition (iii) in our assumptions, we get
ϕ ◦

( y+z
2

)
< 1

2 (ϕ ◦ y + ϕ ◦ z), where ϕ ◦ y = u and ϕ ◦ z = v, which means that condition (iv) from Theorem 4.2 is
satisfied. Hence, our theorem is proved. �

Note that, if E = L1 then Eϕ = {x ∈ L0
:
∫

T ϕ(t, λx(t))dµ < ∞ for some λ > 0} =: Lϕ , which is called the
Musielak–Orlicz space. Therefore, a direct consequence of Theorem 5.1, we have the following result.

Corollary 5.2. Let ϕ be a Musielak–Orlicz function and Lϕ be the Musielak–Orlicz space generated by ϕ. Then
Lϕ

∈ (R) if and only if

(i) ϕ ∈ ∆L1
2 ;

(ii) if u, v ∈ S(L+

1 ) with u 6= v then

ϕ ◦

(
x + y

2

)
<

1
2
(ϕ ◦ x + ϕ ◦ y),

where x(t) = ϕ−1(t, u(t)) and y(t) = ϕ−1(t, v(t)) for all t ∈ T .

Proof. Since L1
∈ (SM) and for any u, v ∈ S(L+

1 ) we must have ‖
u+v

2 ‖L1 = 1, thus, the conclusion of Corollary 5.2
follows exactly from Theorem 5.1. This completes the proof. �

Remark 5.3. Rotundity properties of Musielak–Orlicz space, Lϕ , equipped with the Luxemburg norm were given
by Hudzik [12], in terms of the strict convexity of Musielak–Orlicz function ϕ. Since condition (ii) in Corollary 5.2
means that ϕ(t, ·) is a strictly convex Musielak–Orlicz function for µ-a.e. t ∈ T , therefore, Corollary 5.2 gives a result
from [12].
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Abstract

Let E be an arbitrary real Banach space, C be a nonempty closed convex subset of E and T1, T2, T3 be self maps of C. This
paper proves that, the three-step Noor iterative process converges strongly to the common fixed point of T1, T2, T3 when T1 is a
Φ-hemicontractive uniformly continuous mapping with bounded range and T2, T3 are generalized Lipschitzian mapping functions.
The related result deals with the strong convergence of these sequences to the unique solution of the equation T x = f when
T :E → E is uniformly continuous and Φ-strongly accretive operator. Such results improve and generalize recent known results
in the literature.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be a real Banach space with norm ‖ · ‖ and E∗ be the dual space of E. Let J be the normalized duality
mapping from E to 2E∗

defined by

J (x) = {
x∗ ∈ E∗: 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},

for all x ∈ E, where 〈·,·〉 denotes the generalized duality pairing. We shall denote the single-valued duality map by j .
An operator T with domain D(T ) and range R(T ) in E is said to be generalized Lipschitzian if there exists a

constant L > 0 such that

‖T x − Ty‖ � L
(
1 + ‖x − y‖),

for every x, y ∈ D(T ). Without loss of generality, we may assume that L � 1.
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We remark immediately that, if T either is Lipschitzian or has bounded range, then it is generalized Lipschitzian.
On the other hand, in general, every generalized Lipschitzian operator neither is Lipschitzian nor has the bounded
range. For example, let E = (−∞,∞) and T :E → E be defined by

T x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − 1, if x ∈ (−∞,−1),

x − √
1 − (x + 1)2, if x ∈ [−1,0),

x + √
1 − (x − 1)2, if x ∈ [0,1],

x + 1, if x ∈ (1,+∞).

Clearly T is generalized Lipschitzian, but T is not Lipschitzian and its range is not bounded.
An operator T :E → E is said to be strongly pseudocontractive if there exists a constant k ∈ (0,1) such that for

any x, y ∈ E, there exists a j (x − y) ∈ J (x − y) satisfying〈
T x − Ty, j (x − y)

〉
� k‖x − y‖2.

An operator T :E → E is said to be Φ-strongly pseudocontractive if there exists a strictly increasing function
Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for any x, y ∈ E, there exists a j (x − y) ∈ J (x − y) satisfying〈

T x − Ty, j (x − y)
〉
� ‖x − y‖2 − Φ

(‖x − y‖)‖x − y‖.
An operator T :E → E is said to be strongly accretive if there exists a constant k ∈ (0,1) such that for any x, y ∈ E,

there exists a j (x − y) ∈ J (x − y) satisfying〈
T x − Ty, j (x − y)

〉
� (1 − k)‖x − y‖2. (1.1)

An operator T is said to be Φ-strongly accretive if there exists a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 such that for any x, y ∈ E, there exists a j (x − y) ∈ J (x − y) satisfying〈

T x − Ty, j (x − y)
〉
� Φ

(‖x − y‖)(‖x − y‖). (1.2)

Let N(T ) = {x ∈ E: T x = 0}. If N(T ) 	= ∅ and inequalities (1.1)–(1.2) hold for any x ∈ D(T ) and y ∈ N(T ), then
the corresponding operator T is called strongly quasi-accretive and Φ-strongly quasi-accretive, respectively.

Let F(T ) = {x ∈ D(T ): T x = x}. A mapping T :E → E is said to be a Φ-hemicontractive if (I −T ) is Φ-strongly
quasi-accretive, where I is the identity mapping on E. It is very clear that, if T is hemicontractive, then F(T ) 	= ∅ and
there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for any x ∈ D(T ), y ∈ F(T ),
there exists a j (x − y) ∈ J (x − y) satisfying〈

T x − Ty, j (x − y)
〉
� ‖x − y‖2 − Φ

(‖x − y‖)‖x − y‖. (1.3)

The class of strongly Φ-pseudocontractive mappings includes the class of strongly pseudocontractive mappings by
setting Φ(s) = ks for all s ∈ [0,∞). However, the converse is not true. An example by Hirano and Huang (see [7, Ex-
ample 1, p. 1462]) showed that a strongly pseudocontractive operator T is not always a strongly Φ-pseudocontractive
operator.

In recent year, much attention has been given to solve the nonlinear operator equations in Banach spaces by using
the two-step and the one-step iterative schemes, see [2–4,8–10,17] for examples. Noor [12,13] has suggested and
analyzed three-step iterative methods for finding the approximate solutions of the variational inclusions (inequalities)
in a Hilbert space by using the techniques of updating the solution and the auxiliary principle. These three-step
schemes are similar to those of the so-called θ -schemes of Glowinski and Le Tallec [5] for finding a zero of the sum
of two (more) maximal monotone operators, which they have suggested by using the Lagrange multiplier method.
Glowinski and Le Tallec [5] used these three-step iterative schemes for solving elastoviscoplasticity, liquid crystal
and eigenvalue problems. They have shown that the three-step approximations perform better than the two-step and
one-step iterative methods. Haubruge et al. [6] have studied the convergence analysis of the three-step schemes of
Glowinski and Le Tallec [5] and applied these three-step iterations to obtain new splitting type algorithms for solving
variational inequalities, separable convex programming and minimization of a sum of convex functions. They have
also proved that three-step iterations lead also to highly parallelized algorithms under certain conditions. It has been
shown in [6,12,13] that three-step schemes are a natural generalization of the splitting methods for solving partial
differential equations (inclusions). For the applications of the splitting and decomposition methods, see [1,5,6,12–14]
Please cite this article in press as: N. Petrot, Modified Noor iterative process by non-Lipschitzian mappings for nonlinear equations in Banach
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and the references therein. Thus we conclude that three-step schemes play an important and significant part in solving
various problems, which arise in pure and applied sciences.

In 2002, Noor et al. [15] suggested the following three-step iteration process for solving the nonlinear equations
T u = 0.

Let E is a real normed space and C be a nonempty closed convex subset of E.

Algorithm (NRH). Let T :C → C be a mapping. For given x0 ∈ C, compute the sequence {xn}∞n=0 by the iterative
schemes

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnT zn,

zn = (1 − γn)xn + γnT xn, n � 0, (1.4)

which is called the three-step iterative process, where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0,1]
satisfying some certain conditions.

If γn = 0 Algorithm (NRH) becomes:

Algorithm (Is). For given x0 ∈ C, compute the sequence {xn}∞n=0 by the iterative schemes

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnT xn, n � 0, (1.5)

which is called the two-step Ishikawa iterative process, and {αn}∞n=0 and {βn}∞n=0 are two real sequences in [0,1]
satisfying some certain conditions.

If γn = 0 and βn = 0, then Algorithm (NRH) reduces to:

Algorithm (Ma). For given x0 ∈ C, compute the sequence {xn}∞n=0 by the iterative schemes

xn+1 = (1 − αn)xn + αnTyn, n � 0, (1.6)

which is called the Mann iterative process and {αn}∞n=0 is a real sequences in [0,1] satisfying some certain conditions.

Recently, A. Rafiq [16] has proved the following theorem which is an extension of the result in [15] as following:

Theorem 1.1. (See [16, Theorem 2].) Let E be a real Banach space and C be a nonempty closed convex subset of E.
Let T1, T2, T3 be strongly pseudocontractive self maps of C with T1(C) bounded and T1, T3 be uniformly continuous.
Let {xn}∞n=0 be the sequence defined by

xn+1 = (1 − αn)xn + αnT1yn,

yn = (1 − βn)xn + βnT2zn,

zn = (1 − γn)xn + γnT3xn,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0,1] satisfying the conditions:

lim
n→∞αn = 0 = lim

n→∞βn and
∞∑

n=0

αn = ∞.

If F(T1) ∩ F(T2) ∩ F(T3) 	= ∅, then the sequence {xn}∞n=0 converges strongly to the common fixed point of T1, T2, T3.

Remark 1.2. It has been observed that Theorem 1.1 contains an error. The proof of such theorem at line 15, p. 593,
presented as:

‖yn − xn+1‖ = ∥∥−βn(xn − T2zn) + αn(xn − T1yn)
∥∥ � βn‖xn − T2zn‖ + αn‖xn − T1yn‖ � 2M(αn + βn),
Please cite this article in press as: N. Petrot, Modified Noor iterative process by non-Lipschitzian mappings for nonlinear equations in Banach
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where M = supn�0 ‖xn − p‖ + supn�0 ‖T1yn − p‖ < ∞. Since we have no assumption on operator T2, we see that
the last inequality is not assuredly hold and this is a point which may break down the conclusion of Theorem 1.1.
Because, if the last inequality is not true, then the equation

lim
n→∞‖yn − xn+1‖ = 0 (∗)

would be failed, but it is an important tool in the proof of such theorem.
On the other hand, let us observe that if T2(C) is a bounded set then Eq. (∗) must hold. In fact, by the boundness

of T1(C),T2(C) and {xn − p}∞n=0 we have

‖yn − xn+1‖ � βn‖xn − T2zn‖ + αn‖xn − T1yn‖
� βn

[‖xn − p‖ + ‖T2zn − p‖] + αn

[‖xn − p‖ + ‖T1yn − p‖] � 2M ′(αn + βn),

where M ′ = M + supn�0 ‖T2zn − p‖, and consequently (∗) is obtained. Evidently, the boundness of T2(C) should be
added in the hypothesis of Theorem 1.1.

In this paper, we study the strong convergence of three-step Noor iterative scheme for Φ-hemicontractive mapping
under some suitable conditions and this is the main motivation of this paper.

2. Main results

For the purpose we need the following lemmas.

Lemma 2.1. (See [3, Lemma 2.1].) Let J :E → 2E be the normalized duality mapping. Then for any x, y ∈ E, we
have

‖x + y‖2 � ‖x‖2 + 2
〈
y, j (x + y)

〉
, ∀j (x + y) ∈ J (x + y).

Lemma 2.2. (See [11, Lemma 2.1].) Let Ψ : [0,∞) → [0,∞) be a strictly increasing function with Ψ (0) = 0 and
{an}, {bn}, {cn} be nonnegative real sequences such that

lim
n→∞bn = 0, cn = o(bn),

∞∑
n=1

bn = ∞.

Suppose that for all n � 1,

a2
n+1 � a2

n − Ψ (an+1)bn + cn,

then limn→∞ an = 0.

Now we are in position to prove our main results.

Theorem 2.3. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let T1, T2, T3 be self
maps of C. T1 is a Φ-hemicontractive uniformly continuous mapping with bounded range and T2, T3 are generalized
Lipschitzian mapping functions. For any x0 ∈ C, let {xn}∞n=1 be the three-step iterative process defined by

xn+1 = (1 − αn)xn + αnT1yn,

yn = (1 − βn)xn + βnT2zn,

zn = (1 − γn)xn + γnT3xn, (2.1)

where {αn}∞n=0 ⊂ [0, 1
2 ) and {βn}∞n=0, {γn}∞n=0 ⊂ [0,1] satisfy conditions:

lim
n→∞αn = 0 = lim

n→∞βn and
∞∑

n=0

αn = ∞. (2.2)

If F(T1)∩F(T2)∩F(T3) 	= ∅, then the sequence {xn}∞ converges strongly to the common fixed point of T1, T2, T3.
Please cite this article in press as: N. Petrot, Modified Noor iterative process by non-Lipschitzian mappings for nonlinear equations in Banach
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Proof. Firstly, we show that F(T1) is a singleton set. Otherwise, there exist two distinct elements, say p,q ∈ F(T1),
then by T1 is Φ-hemicontractive mapping, there exist a strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0 and a j (p − q) ∈ J (p − q) such that

‖p − q‖2 = 〈
T1p − T1q, j (p − q)

〉
� ‖p − q‖2 − Φ

(‖p − q‖)‖p − q‖ < ‖p − q‖2,

which is a contradiction, so we get a result. Also, if F(T1) ∩ F(T2) ∩ F(T3) 	= ∅, then it must be a singleton. Let p be
the unique common fixed point of T1, T2, T3.

Now, we will show that {xn − p}∞n=0 is a bounded sequence. Since T1 has bounded range, we set

K = ‖x0 − p‖ + sup
n�0

‖T1yn − p‖.

We will prove by induction that ‖xn − p‖ � K for all n ∈ N. Suppose ‖xn − p‖ � K , we consider

‖xn+1 − p‖ � (1 − αn)‖xn − p‖ + αn‖T1yn − p‖ � (1 − αn)K + αnK = K,

this show that {xn − p}∞n=0 is a bounded sequence. As a consequence of this one it may easily show, by using T3 is a
generalized Lipschitzian mapping, that the sequence {zn − p}∞n=0 is also bounded.

Next, observe that

xn+1 − p = (1 − αn)(xn − p) + αn(T1yn − T1xn+1) + αn(T1xn+1 − T1p) (2.3)

then it follows from (1.3), (2.3) and Lemma 2.1 that

‖xn+1 − p‖2 �
[
(1 − αn)‖xn − p‖ + αn‖T1yn − T1xn+1‖

]2 + 2αn

〈
T1xn+1 − T1p, j (xn+1 − p)

〉
� (1 − αn)

2‖xn − p‖2 + 2αn(1 − αn)‖xn − p‖ · ‖T1yn − T1xn+1‖
+ α2

n‖T1yn − T1xn+1‖2 + 2αn

[‖xn+1 − p‖2 − Φ
(‖xn+1 − p‖) · ‖xn+1 − p‖],

then

‖xn+1 − p‖2 � (1 − αn)
2

1 − 2αn

‖xn − p‖2 − 2αn

1 − 2αn

Φ
(‖xn+1 − p‖) · ‖xn+1 − p‖

+ 2αn(1 − αn)

1 − 2αn

‖xn − p‖ · ‖T1yn − T1xn+1‖ + α2
n

1 − 2αn

‖T1yn − T1xn+1‖2

� ‖xn − p‖2 − 2αn

1 − 2αn

Ψ
(‖xn+1 − p‖) + 2Kαn(1 − αn)

1 − 2αn

‖T1yn − T1xn+1‖

+ α2
n

1 − 2αn

[
K2 + ‖T1yn − T1xn+1‖2], (2.4)

where Ψ : [0,∞) → [0,∞) is defined by Ψ (t) = tΦ(t), moreover, Ψ is a strictly increasing function with Ψ (0) = 0.
Let us denote

an = ‖xn − p‖, bn = 2αn

1 − 2αn

,

and

cn = 2Kαn(1 − αn)

1 − 2αn

‖T1yn − T1xn+1‖ + α2
n

1 − 2αn

[
K2 + ‖T1yn − T1xn+1‖2].

Of course, we will complete our work by using Lemma 2.2. By the way, in light of condition (2.2), we see that the
remainder is

lim
n→∞‖T1yn − T1xn+1‖ = 0. (2.5)

In fact, by uniform continuity of T1, in order to obtain (2.5) we need only show that limn→∞ ‖yn −xn+1‖ = 0. Since T2
is a generalized Lipschitzian mapping, there exists L2 > 0 such that ‖T2u − T2v‖ � L2(1 + ‖u − v‖) for all u,v ∈ C.
Put

L = K + L2 + sup ‖zn − p‖
Please cite this article in press as: N. Petrot, Modified Noor iterative process by non-Lipschitzian mappings for nonlinear equations in Banach
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we have

‖yn − xn+1‖ � αn‖xn − T1yn‖ + βn‖xn − T2zn‖ � 2Lαn + βn

[
L + L(1 + ‖zn − p‖)]

� 2Lαn + βn

(
L2 + 2L

)
.

Combining this with condition (2.2), we deduce limn→∞ ‖yn − xn+1‖ = 0 and consequently (2.5) holds. Finally, in
view of (2.4), by using Lemma 2.2 we have

lim
n→∞‖xn − p‖ = lim

n→∞an = 0,

which completes the proof. �
Theorem 2.4. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let T1, T2, T3 be self
maps of C. T1 is a Φ-hemicontractive uniformly continuous mapping with T1(C),T2(C) are bounded sets. Suppose
that a sequence {xn}∞n=1 is defined as (2.1) when {αn}∞n=0 ⊂ [0, 1

2 ) and {βn}∞n=0, {γn}∞n=0 ⊂ [0,1] satisfy the condi-
tion (2.2). If F(T1) ∩ F(T2) ∩ F(T3) 	= ∅, then the sequence {xn}∞n=1 converges strongly to the common fixed point
of T1, T2, T3.

Proof. As following the arguments in Theorem 2.3, we infer that the boundness of {xn − p}∞n=0 and Eq. (2.4) still
obtain. Now, we show

lim
n→∞‖T1yn − T1xn+1‖ = 0. (2.6)

Since, T1 is uniformly continuous to obtain (2.6) we show limn→∞ ‖yn − xn+1‖ = 0 is enough. Since T1(C),T2(C)

are bounded sets we have

‖yn − xn+1‖ � αn‖xn − T1yn‖ + βn‖xn − T2zn‖ � (αn + βn)‖xn − p‖ + αn‖T1yn − p‖ + βn‖T2zn − p‖
� (αn + βn)‖xn − p‖ + αnK1 + βnK1,

where K1 = supn�0 ‖T1yn − p‖ + supn�0 ‖T2zn − p‖. Combining this with condition (2.2) we get (2.6), as required.
Finally, the result

lim
n→∞‖xn − p‖ = lim

n→∞an = 0

now follows as in the proof of Theorem 2.3. �
Remark 2.5. It is clear that every strongly pseudocontractive operator is Φ-strongly pseudocontractive, and every Φ-
strongly pseudocontractive operator with a nonempty fixed point set is Φ-hemicontractive. Therefore, Theorem 2.4
contains Theorem 1.1 as a special case, but it is worth noting that the uniform continuity assumption on operator T3
is not imposed here.

We also get the following result immediately.

Corollary 2.6. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let T be a
Φ-hemicontractive uniformly continuous mapping with bounded range self map of C. For any x0 ∈ C, let {xn}∞n=1
be the three-step iterative process defined by

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnT zn,

zn = (1 − γn)xn + γnT xn, (2.7)

where {αn}∞n=0 ⊂ [0, 1
2 ) and {βn}∞n=0, {γn}∞n=0 ⊂ [0,1] satisfy conditions:

lim
n→∞αn = 0 = lim

n→∞βn and
∞∑

n=0

αn = ∞,

then the sequence {xn}∞ converges strongly to the unique fixed point of T .
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Example 2.7. Let E = R with the usual norm and let a, b, d ∈ R
+ with a − d � 0, put C = [ a−d

b
,∞). Define

T :C → C by T x = ax
bx+d

for all x ∈ C. Observe that (I − T )x = bx2+x(d−a)
bx+d

and N(I − T ) = { a−d
b

}. Define

Φ : [0,∞) → [0,∞) by Φ(t) = t (bt+a−d)
bt+a

. Hence, Φ is strictly increasing and Φ(0) = 0. Now, for all x ∈ C and

y = a−d
b

we have

〈
(I − T )x − (I − T )y, x − y

〉 =
(

bx2 + x(d − a)

bx + d

)(
x − a − d

b

)
= Φ

(∣∣∣∣x − a − d

b

∣∣∣∣
)

·
∣∣∣∣x − a − d

b

∣∣∣∣
= Φ

(|x − y|)|x − y|,
which implies that T is a Φ-hemicontractive operator. For each n ∈ N, put αn = 1

3n
, βn = 1

nr for some r > 1 and γn is
any sequence in [0,1] then we have {xn}∞n=0 as define in (2.7) converges strongly to the unique fixed point a−d

b
∈ C.

3. Applications

Theorem 3.1. Let E be a real Banach space and T :E → E be uniformly continuous operator. For a given f ∈ E,
let x∗ denote the unique solution of the equation T x = f . Define the operator H :E → E by Hx = f + x − T x, and
suppose that the range of H is bounded. For any x0 ∈ E let {xn}∞n=1 be the three-step iterative process defined by

xn+1 = (1 − αn)xn + αnHyn,

yn = (1 − βn)xn + βnHzn,

zn = (1 − γn)xn + γnHxn,

where {αn}∞n=0 ⊂ [0, 1
2 ) and {βn}∞n=0, {γn}∞n=0 ⊂ [0,1] satisfy conditions:

lim
n→∞αn = 0 = lim

n→∞βn and
∞∑

n=0

αn = ∞.

If there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for any x ∈ E, there exists a
j (x − x∗) ∈ J (x − x∗) satisfying〈

T x − T x∗, j (x − x∗)
〉
� Φ

(‖x − x∗‖)‖x − x∗‖,
then the sequence {xn}∞n=1 converges strongly to the unique solution of T x = f .

Proof. Observe that the operator H is uniformly continuous with bounded range and x∗ is the unique fixed point of H .
Now, we show H is a Φ-hemicontractive operator. For this purpose, we define an operator S :E → E by Sx = T x−f .
Then it is easy to see that N(S) contains exactly one element, such as x∗, and S is Φ-strongly quasi-accretive operator.
Indeed, by assumption on T , for each x ∈ E we have〈

Sx − Sx∗, j (x − x∗)
〉 = 〈

T x − T x∗, j (x − x∗)
〉
� Φ

(‖x − x∗‖)(‖x − x∗‖).
Hence, for each x ∈ E we have

〈
Hx − Hx∗, j (x − x∗)

〉 = 〈
f + x − T x − x∗, j (x − x∗)

〉 = 〈
x − x∗, j (x − x∗)

〉 − 〈
Sx, j (x − x∗)

〉
� ‖x − x∗‖2 − Φ

(‖x − x∗‖)(‖x − x∗‖),
showing that H is actually a Φ-hemicontractive operator with x∗ ∈ F(H). Therefore, the conclusion of Theorem 3.1
follows exactly from Corollary 2.6. This completes the proof. �

A direct consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let E be a real Banach space and T :E → E be uniformly continuous and Φ-strongly accretive
operator. For a given f ∈ E, let x∗ denote the unique solution of the equation T x = f . Let H, {xn}, {αn}, {βn} and
{γn} be as in Theorem 3.1. Then the sequence {xn}∞ converges strongly to the unique solution x∗ of T x = f .
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Furthermore, if f = 0 then a condition on operator T is relaxed.

Corollary 3.3. Let E be a real Banach space and T :E → E be uniformly continuous and Φ-strongly quasi-accretive
operator. Let x∗ denote the unique solution of the equation T x = 0. Let H, {xn}, {αn}, {βn} and {γn} be as in Theo-
rem 3.1. Then the sequence {xn}∞n=0 converges strongly to the unique solution x∗ of T x = 0.

Proof. Now, let us observe that, the operator S which defined in Theorem 3.1 is nothing but a Φ-strongly quasi-
accretive operator T . Therefore, the conclusion now follows as in the proof of Theorem 3.1. �
Remark 3.4. Corollaries 2.6 and 3.2 extend and improve, excellent results, as in [4] in its four aspects:

(1) extended to the slightly more general Φ-hemicontractive and Φ-strongly accretive operators;
(2) from the Ishikawa and Mann iteration schemes to the Three-step Noor iterative process introduced in [15];
(3) abolish the boundedness of subset C in E which imposed in [4, Theorems 3.4 and 4.2];
(4) abolish the uniform smoothness of E and the Lipschitz condition on the operator T which imposed in [4, Theo-

rem 5.2].

Remark 3.5. This paper extends and improves all related papers appeared, such as [15,16] and references therein in
the following senses:

(1) form strongly pseudocontractive and strongly accretive operators to slightly more general Φ-hemicontractive and
Φ-strongly accretive operators;

(2) the boundedness assumption on T (C) is relaxed to the generalized Lipschitzian condition of operator.
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