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Abstract

Project Code: MRG-4980167
Project Title: Geometric Properties of Banach Spaces
Investigator: Dr. Narin Petrot
Department of Mathematics, Faculty of Science, Naresuan University
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E-mail Address: narinp@nu.ac.th (N. Petrot)

scmti005@chiangmai.ac.th (S. Suantai)
Project Period: July 1, 2006 —June 30, 2008

In this project, we present some results relate to the geometric properties of a
Banach space, namely Calder’'on-Lozanovskii space. We also giving some basic
properties of the general modular space, and Criteria for strictly monotone points,
extreme points and SU-points in such space are focused. Consequently, the sufficient

and necessary conditions for the rotundity properties are also given.

Moreover, by considering the three-step Noor iterative process, some results
relate to the fixed point theory (the topic which is related to the = geometric properties
of Banach spaces) are presented, i.e., we proved the strong convergence theorems for
the nonlinear operators and showed some method for finding the solution of the

nonlinear equation by using the fixed point theory.

Keywords: Generalized Calder’on—Lozanovskii spaces; Modular space; Geometric

properties; Fixed point theory; Three-step Noor iterative process.
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1. N. Petrot and S. Suantai, The criteria of strict monotonicity and rotundity

points in generalized Calderon-Lozanovskii spaces,

Theorem 1 Let X, be a modular space generated by a convex modular p and
z,y € B(X,). If {(z) <1 then & (&) < 1.

Theorem 2 Let X, be the modular space generated by a convex modular p and
r € B(X,) be such that {(z) < 1. If y is any element in B (X,) satisfying

|#8]| = 1, then p (242) = 1.

Theorem 3 For any = € E, and any measurable partition {7;}7, of T we

have,

§(x) = max{€(zx,)}-

1<i<n
Theorem 4 A point x € S(E7) is upper monotone if and only if
() op(z) =1;
() p{t €T :z(t) <al(t)}) =0;

(ili) ¢ oz is an upper monotone point of E.

Theorem 5 A point z € S(E]) is a lower monotone point if and only if

(i) () <L
(ii) p({t € supp x : x(t) < a(t)}) = 0;

(ii1)) ¢ o x is a lower monotone point of E.

Theorem 6 A point x € S(E,,) is an extreme point of B(E,) if and only if
(i) op(7) =1;
() p({t e T :|z(t)| <a(t)}) =0;

(iii) ¢ o |z| is an UM -point;



(iv) if u,v € S(E) satisfy “T% = ¢ o |z| then either

y+=z

1
u=uv or goo( )<§(gpoy—|—gooz),

where y(t) = o (¢, [u(t)]), 2(t) = ¢ (¢, |v(t)|) for all t € T.

Theorem 7 Let E be a strictly monotone Kothe space and « € S(E,,). Then «
is an SU-point of B(E,) if and only if:

(i) () <L
(i) p({t € supp z : |z|(t) < a(t)}) = 0;

(i) if uw € S(E™) satisfies ||u + ¢ o |z|||p = 2 then either

_ (|l”|+y)
u=polx| or po —5 )<

where y(t) = o7 (t,u(t)) for all t € T

1
5(@@ |z] + poy),

Theorem 8 Let £ be a Kothe space and ¢ be a Musielak-Orlicz function. Then
E, € (R) if and only if

(i) £ e (SM);
(ii) ¢ € AF;
(iii) if u,v € S(E™) with u # v then either

u+v r+y

2

1
<1 or gpo( )<§(goom+gpoy)7

E

where z(t) = ¢~ 1(t,u(t)) and y(t) = o~ 1(t,v(t)) for all t € T.

2. N. Petrot Modified Noor iterative process by non-Lipschitzian mappings

for nonlinear equations in Banach spaces,

Theorem 1 Let F be a real Banach space and C' be a nonempty closed

convex subset of E. Let 1,715, T5 be self maps of C. 17 is a $-hemicontractive

3



uniformly continuous mapping with bounded range and 75,75 are generalized
Lipschitzian mapping functions. For any =, € C, let {z,}22, be the three-step

iterative process defined by

Topr1 = (1 —ap)zn + anThyn

where {a,}52, C [0,3) and {3,}52, {7 }52, C [0,1] satisfying conditions:

lim a,, = 0= lim (3, and Zan = 00. 2)

n—00 n—00
n=0

If F(T1) N F(Tz) N F(T3) # 0, then the sequence {x,}>°, converges strongly
to the common fixed point of 77,75, 75.

Theorem 2 Let £ be a real Banach space and C' be a nonempty closed convex
subset of E. Let 11, T5, T3 be self maps of C. T} is a $-hemicontractive uniform-
ly continuous mapping with 7;(C'), T5(C') are bounded sets. Suppose that a se-
quence {x, }°2 is defined as (1) when {a,}22, C [0, 3) and {5, }°2, {7n}o2y C
[0, 1] satisfying the condition (2). If F/(T}) N F(Ty) N F(T3) # (), then the se-

quence {x,}>, converges strongly to the common fixed point of T%,7%,T5.

Theorem 3 Let £ be a real Banach space and C' be a nonempty closed convex
subset of F. Let 1" be a ®-hemicontractive uniformly continuous mapping with
bounded range self map of C. For any zy € C, let {z,}>°, be the three-step
iterative process defined by

Tpy1 = (1 - Oén).an + anTyn

where {a,}52, C [0,3) and {3,}52, {7 }52, C [0,1] satisfying conditions:

lim o, =0 = lim (3, and Zan:oo,

n—oo n—oo
n=0
then the sequence {x,}>°, converges strongly to the unique fixed point of 7.

4



Theorem 4 Let £/ be a real Banach space and 7' : £ — [E be uniformly
continuous operator. For a given f € F, let x* denote the unique solution of
the equation T'x = f. Define the operator H : £ — E by Hr = f +x — Tz,
and suppose that the range of H is bounded. For any z, € E let {z,}>°, be
the three-step iterative process defined by

Tpt1 = (1 —ap)x, + anHyp
zn = (1= vn)Tn + YuHzp

where {a,}22, C [0,3) and {3,}52, {7 }52, C [0,1] satisfying conditions:

(o]
lim o, = 0= lim (3, and E oy = 00.
n—oo n—oo 0

n—

If there exists a strictly increasing function ® : [0,00) — [0, 00) with ®(0) =0

such that for any « € E, there exists a j(x — 2*) € J(x — 2*) satisfying
(Te =T, j(x — 7)) = O(||lz — 2™ [D[lx — =7,

then the sequence {x, }°°, converges strongly to the unique solution of 7z = f.

Theorem 5 Let £ be a real Banach space and 7' : £ — [E be uniformly
continuous and ®-strongly accretive operator. For a given f € F, let x* denote
the unique solution of the equation Tz = f. Let H,{z,},{a,},{B.} and {7,}
be as in Theorem 4. Then the sequence {x,}>°, converges strongly to the

unique solution z* of Tz = f.

Theorem 6 Let E be a real Banach space and 7' : £ — FE be uniformly
continuous and ®-strongly quasi-accretive operator. Let x* denote the unique
solution of the equation Tx = 0. Let H,{z,},{a,},{B.} and {v,} be as
in Theorem 4. Then the sequence {z,}>°, converges strongly to the unique

solution z* of Tx = 0.
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Abstract

In this paper, some basic properties of the general modular space are proven. Criteria for strictly monotone points, extreme points
and SU -points in generalized Calderén—Lozanovskii spaces are obtained. Consequently, the sufficient and necessary conditions for
the rotundity properties of such spaces are given.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction
Throughout the paper R, R* and N denote the sets of reals, nonnegative reals and natural numbers, respectively.
For a real vector space X, a function p : X — [0, oo] is called a modular if it satisfies the following conditions:

(1) p(0) =0 and x = 0 whenever p(Ax) = 0 for any A > 0;
(i) p(ax) = p(x) for all scalar o with || = 1;
@iii) p(ax + By) < p(x)+ p(y),forallx,y € Xandalle, 8 > Owitha + 8 = 1.

If we replace (iii) by
(i) p(ax + By) < ap(x) + Bo(y),forall x,y € X and all o, B > O witha + B =1,

then the modular p is called convex modular. Moreover, for arbitrary x € X we define
. X
E(x) :=1nf{k>0:p(x) <oo}.
We put inf § = oo by the definition.
* The present study was supported by the Thailand Research Fund (Project No. MRG4980167).
* Corresponding author.

E-mail addresses: narinp@nu.ac.th (N. Petrot), scmti005 @chiangmai.ac.th (S. Suantai).

0362-546X/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2008.02.120
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For any modular p on X, the space
X, = {x eX:p(Ax)—>OasA—>0+},

is called the modular space. If p is a convex modular, the functional
Ixll, = inf{k ~0:p (;) < 1},

is a norm on X,, which is called the Luxemburg norm (see [35]). A modular p is called right-continuous (left-
continuous) [continuous] if lim,_, ;+ p(Ax) = p(x) forall x € X, (lim,_, - p(Ax) = p(x) forall x € X,) [itis both
right- and left-continuous].

Remark 1.1. If p is a convex modular and p(X,x) < oo for some x € X, and A, > O, then p is right-continuous
at Ax for any A € [0, A,) and left-continuous at Ax for any A € (0, A,]. Indeed, this follows from the fact that the
function f(t) = p(tx) is convex on RT and has finite values on the interval [0, ,] so it is a continuous function on
[01 )"0]

A triple (T, 2, 1) stands for a nonatomic, positive, complete and o-finite measure space, while L = L%(u)
denotes the space of all (equivalence classes of) o-measurable functions x : 7 — R. In what follows we will identify
measurable functions which differ only on a set of measure zero. For x,y € L0, we write x < yif x(t) < y(¢) for
u-a.e. t € T and the notion x < y is used for x < y and x # y. Moreover, for any x € L°, we denote by |x| the
absolute value of x, i.e. |x|(t) = |x(¢)| for p-a.e.z € T.

By E we denote a Kothe space over the measure space (T, ¥, u), i.e. E C LY which satisfies the following
conditions:

() ifx € E,y € L% and |y| < |x| for u-a.e. then y € E and || y||£ < |Ix| £,
(ii) there exists a function x in E which is strictly positive on the whole T'.

A function ¢ : T xR — [0, 00) is said to be a Musielak—Orlicz function if ¢(t, -) is a nonzero function, it vanishes
at zero, it is convex and even for pu-a.e. r € T and ¢(-, u) as well as ¢! (-, u) are X-measurable functions for any
u € RT, where go’l (¢, -) is the generalized inverse function of ¢(¢, -) defined on [0, co) by

o (¢t u) =inflv > 0: ¢, v) > u)

foreach t € T (see [35]). For Musielak—Orlicz function ¢ we define a measurable function with respectto t € T by
a(t) =sup{u > 0: ¢(t,u) =0},

see [6, page 175].

Remark 1.2. Let ¢ : T x R — [0, 00) be a Musielak—Orlicz function. Then

@) (p_l (¢, -) vanishes only at zero;
(i) @(t, 9~ (t, u)) = u for all u € [0, c0) and

- 0, ifuel0,a()],
1 —
for yu-ae.t €T.
Given any Musielak—Orlicz function ¢, we define on L° a convex modular 0y by

_ lpox|lg ifpoxekE,

0p(¥) = {oo otherwise;

and the generalized Calderén—Lozanovskii space is defined by
E,={x¢€ L: ¢ o Ax € E for some A > 0}.

Then E, = (Ey, || - ly) becomes a normed space, where | - ||, denotes for the Luxemburg norm induced by o, (see
[4.9D).

Please cite this article in press as: N. Petrot, S. Suantai, The criteria of strict monotonicity and rotundity points in generalized
Calderén—Lozanovskil spaces, Nonlinear Analysis (2008), doi:10.1016/j.na.2008.02.120
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As for the investigations of generalized Calderén-Lozanovskii space we refer to [8—10,27].

In the case when ¢ is an Orlicz function, i.e. there is a set A € X' with u(A) = 0 such that ¢(¢1, -) = @(t2, -) for all
11,1 € T\ A, these Calderén—Lozanovskii spaces were investigated in [3,4,30] and the investigations were continued
in the papers [5,11,15,17,20,26,28,29,32-34,36,37].

We say a Musielak—Orlicz function ¢ satisfies the condition Af if there exist a set A € X with u(A) = 0, a
constant K > 0 and a nonnegative function & € E such that the inequality

@(t,2u) < Ko(t,u) + h(1)
holds forallr € T\ A and u € R (see [35] when E = L! and [9] in general).

Lemma 1.3 (/9, Lemma 5]). The property that ||x||, = 1 if and only if 0,(x) = 1 holds true for any x € E, if and
onlyif ¢ € AzE.

Lemma 1.4 ([19, Lemma 1]). For any Musielak—Orlicz function ¢ the inequality
o(t,u+v) > e, u)+ e, a(t) +v)

holds for u-a.e.t € T and any u > a(t),v > 0.

Lemma 1.5 (/9, Corollary 7]). If ¢ € Ag then u({t e T :a(t) > 0}) =0.

By S(E), B(E) and E*(= {x € E : x > 0}) we denote the unit sphere, the closed unit ball and the positive cone
of the Kothe space E. For any x € E, definesupp x = {t € T : x(¢) # 0}.

A point x € E™ is called a point of upper monotonicity (UM-point for short) if for every y € E™ \ {0} we have
lxllg < |lx + yllg. A point x € E™ \ {0} is called a point of lower monotonicity (LM-point for short) if for every
y € ET\ {0}, such that y < x, we have ||x — y||g < ||x||g. If every point of S(E™T) is a UM-point (or an LM-point),
then we say that the space E is strictly monotone. It is easy to see that x € E* \ {0} in any Kothe space E is a
UM-point (LM -point) if and only if x /|| x| is a UM-point (LM-point). Therefore, it is enough to formulate the criteria
of monotonicity for points in S(E™) only.

A point x € S(E) is said to be an extreme point of B(E) (x € ext B(E) for short) if for any y, z € B(E) such
that 2x = y 4+ z we have y = z. If any point of S(E) is an extreme point of B(E), we say that the space E is rotund
(X € (R)).

A point x € S(E) is called a strong U-point (SU -point for short) of B(E) if for any y € S(E) with ||x + y| g = 2,
we have x = y. It is obvious that a Banach space E is rotund if and only if any x € S(FE) is an SU-point, but the
notions of an extreme point and an SU -point are different (see [7]).

It is well known that rotundity properties of Banach spaces have applications in various branches of mathematics,
such as, Fixed point Theory, Approximation Theory, Ergodic Theory, and many others. Moreover, if the focus of the
study is Banach lattices, then there are strong relationships between rotundity properties and monotonicity properties
(see [2,13,14,16,18,21,24,25]). Specially, in [17,20] the local rotundity and local monotonicity structures of a certain
Banach lattice, namely Calderén—Lozanovskii spaces, were studied. The results of our paper will be a generalization
of two such excellent papers [17,20] by considering Orlicz function with parameter called Musielak—Orlicz function
instead of Orlicz function. Of course, some ideas from those papers are also applied in our paper. However, because
of the different properties among functions, in many parts of the proofs of our results new methods and techniques are
developed.

Let us note that if £ has the Fatou property, i.e. for any x € L and (xn),2; in E such that 0 < x, /" x u-
a.e. and sup,, [lx,||g < oo we have that x € E and ||x||g = lim,— [|x,||£ (see [1,23,31]), then E,, also has this
property, and moreover, the modular g, is left-continuous (see [9, Theorem 12]). Consequently, E, is a Banach space.
So, in the whole paper we will assume that E is a Kothe space with the Fatou property. Moreover, we will denote
(pox)(t) = (t,x(t)) foreacht € T.

The paper is organized as follows. In Section 2 we give some basic auxiliary results of general modular space and
E,. Section 3 is devoted to the strictly monotone points of E,. We study rotundity points of E, in Section 4. Finally,
in Section 5 we give a characterization of rotundity structure in Ey,.
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2. Auxiliary lemmas

We start by proving some facts in any modular space.

Lemma 2.1. Let X, be a modular space generated by a convex modular p and x,y € B(X,). If £(x) < 1 then
§(554) <1

Proof. Since £(x) < 1, we take a real number a € (£(x), 1) and put ¢ = {+“ Then ¢ > 0 and (Hg)” + 1% =1.
Thus,

p((l—i—s)(x;y)) =p<1;—8-x+ 1—;8.)))

(I+¢ea x 1+¢
SCELIEMETIN

2 a 2
14+8&a /x 1+e¢
E% ()+TP(Y)<OO

which implies that & ()%) < 1. This completes the proof. O

Lemma 2.2. Let X, be the modular space generated by a convex modular p and x € B (Xp) be such that §(x) < 1.

If y is any element in B (X,) satisfying | *3> “ =1, then p (*5) = L

Proof. By £(x) < 1 and Lemma 2.1, we have & (X;y) <1.Putl = |:O, ﬁ) and define a function f : I — R
=

by f(t) = p ( Rl ) Then f is a convex function and has finite values on I, which imply that f is a continuous

function on /. Assummg that p (*32) < 1, there exists a A > 1 such that p (A*32) < 1 whence | *3* H 1<1,a
contradiction. [

We close this section by giving a basic result on the generalized Calderén—Lozanovskii space as follows:

Lemma 2.3. For any x € E, and any measurable partition {T;}!_, of T we have,

§(x) = max {E(XXT)}

Proof. Put o = max;<;<,{£§(xx7,)}, then it is obvious that o < £(x). We now show that the converse inequality
holds. If not, then a real number 8 € («, £(x)) can be found and consequently,
> oy (Gn) <o
= o\ 2 AT
E =l B

o (5) =l G, = [0 Gr)], =25l (i)

which contradicts the definition of the number £(x). O

n

=y

E i=1

3. Points of monotonicity in E,

In this section, we give some criteria for upper and lower monotonicity points in E,.

Theorem 3.1. A point x € S(E;;) is upper monotone if and only if

@) 0p(x) =1;
() u{t eT :x(t) <a@)}) =0;
(iii) ¢ o x is an upper monotone point of E.
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Proof. Necessity. If condition (i) does not hold, then g, (x) =: r < 1. Let D be a subset of A such that u(D) > 0 and
xp € E. Let u be a nonnegative measurable function defined by

_ 1—r
ut) =¢ <t, )XD(t)-
Ixplle

1—r

Then g ou = ol XD which implies ¢ o u € E, and moreover,
1-r
looulle =|i———xp| =1-r
Ixplle™ g

Since u > 0, there exist a real number A > 0 and a measurable function y > 0 with supp y = D satisfying

@t x(1) +y(0) < @2, x(0) + @, ut)), y) <2

for p-a.e. t € T. On the other hand, an ascending sequence (7,);,>, such that | J, 7, = T and sup;er, ¢(t, u) < 00
foreachn € Nand u € R™ can be found (see [22]), which allows us to obtain a nonnegative real number dj, such
that,

d) =sup{p(t, 1) : t € D}.
Consequently, ¢ o y < dj xp which implies that y € E,. Moreover,
Op(x +y) = llpoxxr\p+¢ox+xple <ll¢oxxrp+¢oxxp+eoule
=lpox+goullg <lgoxlg+llpoullg=r+1-r)=1

Hence, 1 = [|x]lyp < |lx + yl|lp < 1 and therefore, x is not an upper monotone point.
Suppose that (ii) is not satisfied. Then the set A = {t € T : x(¢) < a(¢)} has a positive measure. Let us define
y(@) =(a—x)#)x,@)forallt € T. We see that y € E(;f \ {0} and
Op(x+y)=llpo(x+ylEe = llgoxxrmateox+yx,le
= lpoxxma+eoax,le
= llgoxxmalle < 0p(x) < 1.

Hence, [|x + ylly < 1. But, since y € E(j \ {0} the fact that |[x + yll, > llxll, = 1 is always true, we obtain
lx + yll, = 1. This means that x is not an upper monotone point.

It remains to show the necessity of condition (iii). Let us assume that x € S(E ;’ ) is an upper monotone point. Since
the necessity of (i) has been proved, we may assume that ¢ ox € S(E) and suppose that condition (iii) is not satisfied,
i.e. there exists y € E* \ {0} such that [|p o x + y||g = 1. Let us define z € E/} \ {0} by z(t) = @~ (t, y(1)) for all
t € T. Hence there exists a nonnegative measurable function / such that supp 2 C supp z and

e, x@)+h@®) <, x@) + e, z0), h@) <A
forallt € T. Thus h € E, and
0p(x +h)=llgo(x+ Mg Zllgox+eozlg=llpox+yle=1,

which implies that ||x + h||, = 1. This contradicts the upper monotonicity of x and the proof is completed.
Sufficiency. Let x € S(E ; ) and assume that conditions (i)—(iii) are satisfied. Let y € E™ \ {0} be given. In view of
Lemma 1.4, condition (ii) gives

@, x(@) +y(@) = o, x(1)) + ¢, a(®) + y(1))

for pu-a.e.t € T.Since u({tr € T : p(t,a(t) + y(t)) > 0}) > 0 and ¢ o x is an upper monotone point in E, we have
Op(x+y)=lloox+ylE=llgox+gola+yle > llpoxle=0,(x) =1,

that is, ||x 4 y|l, > 1. This completes the proof. [

Theorem 3.2. A point x € S (E[p" ) is a lower monotone point if and only if
@ §(x) < Iy
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(i) u({r € suppx : x() < a(0)}) = 0;
(iii) ¢ o x is a lower monotone point of E.

Proof. Necessity. Let x € S(E™) be a lower monotone point. Suppose that condition (i) is not satisfied, i.e. £(x) = 1.
Take A, B € X, both of positive measure, such that AN B = ¢ and A U B = supp x. Thus by Lemma 2.3 we
obtain £(xx,) = 1 or £&(xxp) = 1. Without loss of generality we may assume that £(xx,) = 1, and it would be
&(x —xxp) =&(xx,) = 1. This implies ||x — x xglly > 1, a contradiction.

If condition (ii) does not hold, then the set A = {t € suppx : x(t) < a(t)} has positive measure. By (i), the
necessity of which has been already proved, we have £(x) < 1, and consequently g, (x) = 1 by Lemma 2.2. Define
y(t) = x(t)x, (), then we have 0 < y < x, and

0p(x —y) = llooxxmalle =llooxllg = 0y(x) = 1.
This implies that ||x — y|l, = 1, a contradiction.
Now we will show that condition (iii) holds. By (i), we have pox € S(E).Letustake y € E suchthat0 < y < gox

and choose a measurable function z such that ) < z < x withp ox —y < ¢ o (x — z). Since x is a lower monotone
point, we have

loox =ylle = llpox =2l =0px —2) < llx—zly < L.

This shows that ¢ o x is then a lower monotone point of E.

Sufficiency. Let x € S(E), y € E™ \ {0} be such that y < x and conditions (i)-(iii) are satisfied. Obviously, supp
y C supp x which together with condition (ii) imply that for z = ¢ o x — ¢ o (x — y) we have z > 0. Moreover, by
condition (i), we have g, (x) = 1. Since ¢ o x is a lower monotone point of £ and z < ¢ o x, 50

op(x—=y)=llgox =Yg =Illgox —zllg < llpoxllg = 0p(x) = 1. 3.1

Using Eq. (3.1) together with £ (x —y) < 1 (by condition (i)) and the continuity of @y, in light of Lemma 2.2, we have
lx — ¥l < 1. This completes the proof. [

4. Points of rotundity in E,,

We will study the points of rotundity, such as extreme point and SU-point in this Section. We begin with the
following definition:

A point x € S(E™T) is said to be an extreme point of B(E™T) (x € extB(E™) for short) if for any x, y € S(E™)
such that x = (y 4+ z)/2, we have y = 7 = x.

Lemma 4.1 ([17, Lemma 4]). In any Kothe space E,x € S(E) is an extreme point of B(E) if and only if |x| is a
UM-point of E and |x| € ext B(E™).

Theorem 4.2. A point x € S(E,) is an extreme point of B(Ey) if and only if

i) 0p(x) =1;
i) u({reT: x| <a®}) =0;
(>iii) ¢ o |x| is a UM-point;
@iv) if u, v € S(E) satisfy % = @ o |x| then either
y+z

1
U=1v or goo(T) <§(gooy+<poz),

where y(t) = ¢~ (¢, lu(1)]), 2(t) = ¢\ (t, [v(®)|) forall t € T.

Proof. Sufficiency. Assume that conditions (i)—(iv) are satisfied. Let x € S(Ey) and y,z € B(E) be such that
2x = y + z. We shall show that y = z. First, we will show that

ly 4zl Iyl + Izl
2 2
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for p-a.e. t € T. Note that, we always have
ly +z| [|y|+|z|

1
polx|t)=go=——@) =gpo > ] @) = Sl o yl(1) + ¢ olzl(®)]

forpu-ae.teT.LetA={teT:polx|(t) < %[(p o|y|(®) +¢olz|(?)]}. If w(A) > O then by conditions (i) and (iii)
we have

l=0y(x)=llgolx|lle <

1 1
F¥° [yl + F¥° |z]

E
1
=3 (lgolylle +ll@olzllle) < 1,

which is a contradiction. Consequently, Eq. (4.1) holds.

Let C, = {t € T : ¢(t,-)is aconvex and even function}. It is clear that u(7T \ Cy) = 0. Next for each
t € T we define (1) = ¢~ (t, o, |y(®)]) and 2(r) = @~ ', (o(z, |2()])). Using condition (ii) together with
Eq. (4.1), in light of Remark 1.2(ii), we have y(¢) = |y(¢)| and Z(¢) = |z(#)| for p-a.e. t € C,. Consequently, by
Eq. (4.1) and condition (iv) we conclude that ¢ o |y|(¥) = ¢ o |z|(?) for n-a.e. t € C,. We claim that |y| = |z|. Put
B = {t € Cy : |yl(t) # |z|(¢)} and suppose that (B) > 0. Thus, since ¢(z, -) is an injective function on the set
[a(t), co) forall t € Cy we should have

YOIV Iz@)] < a() and [yO)] A lz()] < a(f) 4.2)
forallt € B C Cyp. So

1
¢ o lx|(t) = Slpolylt) +¢olzl®)] =0

for all # € B. Combining this equation with Eq. (4.2) and the assumption that 2x = y 4z we obtain |x(¢)| < |a(¢)] for
all € B, which contradicts condition (ii). Hence, we have the claim. Finally, by condition (ii) and the fact that ¢(z, -)
is an injective function on [a(t), oo) for all t € Cy, in view of Eq. (4.1), we obtain that |y(¢) + z(1)| = [y ()| + |z(?)]
for u-a.e. t € T. This together with |y(#)| = |z(¢)| for n-a.e. t € T implies that y = z.

Necessity. Let x € S(Ey) be an extreme point of B(E,). By, Lemma 4.1 we obtain that |x| is a UM-point in E,.
Thus by Theorem 3.1 we have x(¢) > a(t) for u-ae. t € T, 0y(x) = 1 and ¢ o x is an upper monotone point of E.
Therefore, it remains only to prove that if x € ext B(E) then condition (iv) holds. If not, there are u, v € S(E) such
that
y+z ut) +v()

2 2 N

for u-a.e. t € T, where y(t), z(¢) are defined in condition (iv). Clearly, y, z € S(E,) with y # z. Consequently, |x| ¢
ext B(E;). Finally, Lemma 4.1 yields that x ¢ ext B(Ey). O

1
u(t) #v(t) and ¢o [ ] = 3 [poy(®)+@oz()] = @ o |x|(1),

Recall that a point x € S(E™) is called a strong U-point(an SU-point for short) of B(E™) if for any y € S(E™)
with ||x + y|lg = 2, we have x = y.

Remark 4.3 ({17, page 387]). If a point x € S(E™) is an SU-point of B(E™T), then x is a LM-point of E and x is an
UM-point of E.

Lemma 4.4 ([17, Lemma 7]). A point x € S(E) is an SU-point of B(E) if and only if |x| is an SU-point of B(E™).

Theorem 4.5. Let E be a strictly monotone Kithe space and x € S(Ey). Then x is an SU-point of B(Ey) if and only
() §() < 1;
@) u({t e suppx : |x|(¥) <a(t)}) =0;
(i) if u € S(E™) satisfies ||u + ¢ o |x|| g = 2 then either
X[+
2

where y(t) = ¢~ (¢, u(t)) forallt € T.

1
u=golx| or <00< ><§(¢OIXI+¢>oy),
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Proof. Necessity. Assume that x is an SU-point of B(E,). Applying Lemma 4.4, Remark 4.3 and Theorem 3.2 we see

that the remainder is condition (iii). Suppose the converse, that is, there are u € S(E™) such that ||u + ¢ o |x|| g = 2,

u#g@olx|and ¢ o (@) = %[(p o |x| 4+ ¢ o y], where y(¢) is defined as in condition (iii). Then,

2s(y) =llgoyle =llulle =1,
and consequently,

2=lut+gpolxllle =llpoy+oolxlle
<llgoyle+llgolxlle
< 0p(¥) +0p(x) < 2.

o] x+y
¢ 2

[lgolxl+¢oylEl

This implies that

Xl +yY\ _
O¢p 5 =

E

— N =N =

(llgolxllle + lleoylEel
= E[Qw(|x|)+Q(p(y)] =1,

SO

@ H(p = 1. Since u # ¢ o |x|, we have |x| # y, which implies that |x| is not an SU-point of B(E(j). Thus,
Lemma 4.4 finishes the proof of the necessity.
Sufficiency. Let y € S(E) be such that

x+y
2

=1. (4.3)
¢

We shall show that x = y. Combining Eq. (4.3) with condition (i), and applying Lemma 2.2, we get o, (";y ) =1
This gives

| = X+y _ X+y
=0y > = |lpo >

E

< %IIwoxhpoyllE
< %[gw(www(y)]
<1, (4.4)
whence
lpox+goylg =2 4.5)

Using this equation together with the strict monotonicity of E, the fact g, (%) = 1 and the convexity of ¢(¢, -) on

Rforallt € Cy, where Cy, defined as in Theorem 4.2 it is easy to see that

o <IXI + |y|> n=2° lx[(1) + ¢ o [yI(1)

> 5 (4.6)

for p-ae. t € Cy. Put u(t) = @ o |yl(t) forallt € T. Thenu € ET and |ullg = l¢ o yllg = 0yo(y) = 1, by
Eq. (4.4). Moreover, by virtue of condition (iii), Egs. (4.5) and (4.6) imply that ¢ o |x|(f) = ¢ o |y|(¢) for u-a.e.
t € Cy. Since p({t € suppx : |x|(¥) < a(t)}) = 0 and ¢(t, -) is an injective function on the interval [a(z), co) for
n-a.e. t € Cy we get |x[(t) = |y|(¢) for p-a.e.t € T. Then |x + y| < x|+ |y| = 2|x[. If |x + y| < |x| + |y| = 2|x],
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then ||(x + y)/2ll, < 1 (since |x| is an LM-point of E, by Theorem 3.2). This contradicts Eq. (4.3) and proves that
|x + y| = |x| 4 |y|. Combining this equality with |x| = |y|,we getx =y. O

5. Rotundity of E,

In this final section we present a result concerning the rotundity structure of E,.

Theorem 5.1. Let E be a Kithe space and ¢ be a Musielak—Orlicz function. Then E, € (R) if and only if

(1) E e (SM);
(i) ¢ € AL,
(i) if u,v € S(E™) with u # v then either
1
utv <1 or (po<)ﬂ><—((pox+<poy),
. 2 2

where x(t) = ¢~ (t, u(t)) and y(t) = ¢~ (¢, v(t)) forall t € T.

Proof. Necessity. Suppose on the contrary that E, € (R) and E ¢ (SM). Then an element u € S(E™) which is not a
UM-point can be found. Put x(¢) = <p‘1 (t,u(t)). Then 0y(x) = [l o x||g = |lullg = 1,50 x € S(E,) and hence x €
ext B(E,). However, ¢ o x is not a UM-point in E, thus Theorem 4.2 yields a contradiction.

Suppose that E, € (R) and ¢ ¢ Ag. By Lemma 1.3, there exists x € S(E,) with g,(x) < 1. By Ey, € (R), x €
ext B(E,) and Theorem 4.2 yields a contradiction.

Suppose that condition (iii) is not satisfied. Then there are u, v € S(E™T) with u # v such that |lu + v||g = 2
and ¢ o ()%) = %(go ox+g@oy) = % where x(¢), y(t) are defined in condition (iii). Putting z = %, we have
0¢(z) = 1, thus z € ext B(Ey). Since x € ext B(E,), Theorem 4.2 yields a contradiction.

Sufficiency. Let x € S(E,) be arbitrary. We shall show that x € ext B(E), by proving that conditions (i)—(iv) in
Theorem 4.2 are satisfied. First, by ¢ € Ag we have g,(x) = 1 and |x(?)| > a(¢) for u-a.e. t € T by Lemmas 1.3
and 1.5, respectively. Next, ¢ o |x| is a UM-point in E, because E € (SM). Finally, we will show that condition (iv)
in Theorem 4.2 holds. Let u, v € S(E) be such that ”—'5” = ¢ o |x|. By condition (iii) in our assumptions, we get
@ o (%) < %((p oy+¢@oz),where ¢ oy = u and ¢ o z = v, which means that condition (iv) from Theorem 4.2 is
satisfied. Hence, our theorem is proved. O

Note that, if £ = L then E, ={x € LY fT o(t, Ax(t))du < oo for some A > 0} =: L%, which is called the
Musielak—Orlicz space. Therefore, a direct consequence of Theorem 5.1, we have the following result.

Corollary 5.2. Let ¢ be a Musielak—Orlicz function and L? be the Musielak—Orlicz space generated by ¢. Then
L? € (R) if and only if

(i) ¢ € A7';
({i) if u,v € S(LT) with u # v then

1
wo(x;y><5@ox+¢ow,

where x(t) = ¢~ (t, u(t)) and y(t) = ¢~ (t, v(t)) forallt € T.

Proof. Since L' € (SM) and for any u, v € S(L;r) we must have || # I, = 1, thus, the conclusion of Corollary 5.2
follows exactly from Theorem 5.1. This completes the proof. [

Remark 5.3. Rotundity properties of Musielak—Orlicz space, L¥, equipped with the Luxemburg norm were given
by Hudzik [12], in terms of the strict convexity of Musielak—Orlicz function ¢. Since condition (ii) in Corollary 5.2
means that ¢(¢, -) is a strictly convex Musielak—Orlicz function for p-a.e. t € T, therefore, Corollary 5.2 gives a result
from [12].
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Abstract

Let E be an arbitrary real Banach space, C be a nonempty closed convex subset of E and T, T, T3 be self maps of C. This
paper proves that, the three-step Noor iterative process converges strongly to the common fixed point of T, 75, 73 when T7 is a
@-hemicontractive uniformly continuous mapping with bounded range and 75, 73 are generalized Lipschitzian mapping functions.
The related result deals with the strong convergence of these sequences to the unique solution of the equation Tx = f when
T : E — E is uniformly continuous and @-strongly accretive operator. Such results improve and generalize recent known results
in the literature.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Three-step Noor iterative process; @ -hemicontractive mapping; Generalized Lipschitzian mapping; @-strongly accretive operator

1. Introduction

Let E be a real Banach space with norm | - || and E* be the dual space of E. Let J be the normalized duality
mapping from E to 2£" defined by

J(x)={x* € E*: (x,x*) = |x|* = Ix*|I*},

for all x € E, where (-,-) denotes the generalized duality pairing. We shall denote the single-valued duality map by ;.
An operator T with domain D(T') and range R(T) in E is said to be generalized Lipschitzian if there exists a
constant L > 0 such that

ITx = Tyll <L(1+llx = yll),

for every x, y € D(T). Without loss of generality, we may assume that L > 1.

* The present studies were supported by The Thailand Research Fund (Project No. MRG4980167) and Faculty of Science, Naresuan University,
Thailand.
E-mail address: narinp@nu.ac.th.
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We remark immediately that, if T either is Lipschitzian or has bounded range, then it is generalized Lipschitzian.
On the other hand, in general, every generalized Lipschitzian operator neither is Lipschitzian nor has the bounded
range. For example, let E = (—o00, 00) and T : E — E be defined by

x—1, if x € (—o0, —1),
x—y1—(x+12 ifxe[-1,0),
x+J1—@x—-12, ifxel0,1],
x+1, if x € (1,400).

Tx =

Clearly T is generalized Lipschitzian, but T is not Lipschitzian and its range is not bounded.
An operator T : E — E is said to be strongly pseudocontractive if there exists a constant k € (0, 1) such that for
any x, y € E, there exists a j(x — y) € J(x — y) satisfying

(Tx =Ty, j(x — y)) <Kkllx — ylI.

An operator T:E — E is said to be @-strongly pseudocontractive if there exists a strictly increasing function
@ :[0, 00) — [0, co) with @(0) =0 such that for any x, y € E, there exists a j(x — y) € J(x — y) satisfying

(Tx =Ty, j(x =) <lx = yI> = @ (lx — yl)lIx = yll.

An operator T : E — E is said to be strongly accretive if there exists a constant k € (0, 1) such that forany x,y € E,
there exists a j(x — y) € J(x — y) satisfying

(Tx =Ty, j(x —y)) =1 —-b)x—yl|* (1.1)

An operator T is said to be @-strongly accretive if there exists a strictly increasing function @ : [0, co) — [0, co) with
@ (0) =0 such that for any x, y € E, there exists a j(x — y) € J(x — y) satisfying

(Tx =Ty, jx— )= & (lIx = ylI)(Ix = yl). (1.2)

Let N(T)={x € E: Tx =0}. If N(T) # 0 and inequalities (1.1)—(1.2) hold for any x € D(T) and y € N(T), then
the corresponding operator 7T is called strongly quasi-accretive and @ -strongly quasi-accretive, respectively.

Let F(T)={x e D(T): Tx =x}. Amapping T : E — E is said to be a @-hemicontractive if (I —T) is @-strongly
quasi-accretive, where I is the identity mapping on E. It is very clear that, if T is hemicontractive, then F(T') # ¢ and
there exists a strictly increasing function @ : [0, co) — [0, co) with @ (0) = 0 such that for any x € D(T),y € F(T),
there exists a j(x — y) € J(x — y) satisfying

(Tx =Ty, jx =) <lx = yI> =@ (lx = yl)Ix = yll. (1.3)

The class of strongly @-pseudocontractive mappings includes the class of strongly pseudocontractive mappings by
setting @ (s) = ks for all s € [0, 0o). However, the converse is not true. An example by Hirano and Huang (see [7, Ex-
ample 1, p. 1462]) showed that a strongly pseudocontractive operator 7 is not always a strongly @ -pseudocontractive
operator.

In recent year, much attention has been given to solve the nonlinear operator equations in Banach spaces by using
the two-step and the one-step iterative schemes, see [2-4,8-10,17] for examples. Noor [12,13] has suggested and
analyzed three-step iterative methods for finding the approximate solutions of the variational inclusions (inequalities)
in a Hilbert space by using the techniques of updating the solution and the auxiliary principle. These three-step
schemes are similar to those of the so-called 6-schemes of Glowinski and Le Tallec [5] for finding a zero of the sum
of two (more) maximal monotone operators, which they have suggested by using the Lagrange multiplier method.
Glowinski and Le Tallec [5] used these three-step iterative schemes for solving elastoviscoplasticity, liquid crystal
and eigenvalue problems. They have shown that the three-step approximations perform better than the two-step and
one-step iterative methods. Haubruge et al. [6] have studied the convergence analysis of the three-step schemes of
Glowinski and Le Tallec [5] and applied these three-step iterations to obtain new splitting type algorithms for solving
variational inequalities, separable convex programming and minimization of a sum of convex functions. They have
also proved that three-step iterations lead also to highly parallelized algorithms under certain conditions. It has been
shown in [6,12,13] that three-step schemes are a natural generalization of the splitting methods for solving partial
differential equations (inclusions). For the applications of the splitting and decomposition methods, see [1,5,6,12—14]
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and the references therein. Thus we conclude that three-step schemes play an important and significant part in solving
various problems, which arise in pure and applied sciences.

In 2002, Noor et al. [15] suggested the following three-step iteration process for solving the nonlinear equations
Tu=0.

Let E is a real normed space and C be a nonempty closed convex subset of E.

Algorithm (NRH). Let 7' : C — C be a mapping. For given xo € C, compute the sequence {x,}°, by the iterative
schemes

X1 =1 —ap)xy +ayTyp,
Yo =0 = B)xn + BuT zy,
=0 —=v)xn+vuTx,, n=0, (1.4)

which is called the three-step iterative process, where {a,}7° . {8}, and {y,};°, are three real sequences in [0, 1]

satisfying some certain conditions.
If y,, = 0 Algorithm (NRH) becomes:

Algorithm (Is). For given xo € C, compute the sequence {x, }>, by the iterative schemes

Xn1 = (1 —ap)xn +anTyn,

Yo =0 = B)xn + BnTxn, n=0, (1.5)
which is called the two-step Ishikawa iterative process, and {a,};2, and {B,}°°, are two real sequences in [0, 1]
satisfying some certain conditions.

If y, =0 and B, =0, then Algorithm (NRH) reduces to:

Algorithm (Ma). For given xo € C, compute the sequence {x, }7 , by the iterative schemes
Xpr1 =1 —ap)xy +anTy,, n2=0, (1.6)

which is called the Mann iterative process and {a, },~ , is a real sequences in [0, 1] satisfying some certain conditions.
Recently, A. Rafiq [16] has proved the following theorem which is an extension of the result in [15] as following:

Theorem 1.1. (See [ 16, Theorem 2].) Let E be a real Banach space and C be a nonempty closed convex subset of E.
Let Ty, T», T3 be strongly pseudocontractive self maps of C with T1(C) bounded and Ty, T3 be uniformly continuous.
Let {x,,}72 , be the sequence defined by

Xn+1 = (1 —ap)xy +anTiyn,

Yo =1 = Bu)xn + BnTrzn,

Zn = = Y)xu + vuT3xn,

where {0, }0° o, {Bn}oe o and {yn ), are three real sequences in [0, 1] satisfying the conditions:

o0
lim o, =0= lim B, and Zan = 00.
n— o0 n— o0
n=0
If F(Ty) N F(T2) N F(T3) # O, then the sequence {x,},° , converges strongly to the common fixed point of Ty, Tz, T.

Remark 1.2. It has been observed that Theorem 1.1 contains an error. The proof of such theorem at line 15, p. 593,
presented as:

lvn = Xns1ll = | =BnCin — Tozn) + an(tn — T1yn) | < Bullxn — Tozall + ctullxn — Tiynll < 2M (an + Bn),
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where M = sup, > llx, — pll + sup, > 71y, — pll < co. Since we have no assumption on operator 7>, we see that
the last inequality is not assuredly hold and this is a point which may break down the conclusion of Theorem 1.1.
Because, if the last inequality is not true, then the equation

lim |y, — xp41/=0 (%)
n—0o0

would be failed, but it is an important tool in the proof of such theorem.
On the other hand, let us observe that if 75(C) is a bounded set then Eq. () must hold. In fact, by the boundness
of T1(C), T»(C) and {x, — p}>°, we have

lyn — xn+1ll < Bullxn — Tazull + o llxXn — Trynll
< Ballxn — Pl + 1T2z0 — U] + an[llxn — Pl + 1T1yn — pll] <2M' (@0 + B,
where M’ = M + sup, >0 72z, — pll, and consequently (x) is obtained. Evidently, the boundness of 75(C) should be
added in the hypothesis of Theorem 1.1.

In this paper, we study the strong convergence of three-step Noor iterative scheme for @-hemicontractive mapping
under some suitable conditions and this is the main motivation of this paper.

2. Main results
For the purpose we need the following lemmas.

Lemma 2.1. (See [3, Lemma 2.1].) Let J : E — 2F be the normalized duality mapping. Then for any x,y € E, we
have
I+ yI2 < Ixl? +20y. jxr+ ). Vix+y) el +y).

Lemma 2.2. (See [11, Lemma 2.1].) Let ¥ : [0, o00) — [0, 00) be a strictly increasing function with ¥ (0) = 0 and
{an}, {bn}, {cn} be nonnegative real sequences such that

n— oo

o
lim b, =0, cn = o(by), > by =o0.
n=1
Suppose that for alln > 1,

2 2
Ay <a, — Y (an+1)bn + cns

then lim,_, 5o a, = 0.
Now we are in position to prove our main results.

Theorem 2.3. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let Ty, Tz, T3 be self
maps of C. Ty is a @-hemicontractive uniformly continuous mapping with bounded range and T», T3 are generalized
Lipschitzian mapping functions. For any xo € C, let {x,}7> | be the three-step iterative process defined by

Xp1 = (1 —ay)x, +apTiyn,

yn =1 = Bu)xn + BnTrzn,

2 =1 = Yu)xn + vaT3xy, 2.1
where {a,}2°  C [0, %) and {Bn}2 o \Vnloeo C [0, 1] satisfy conditions:

o0
lim B, and ) oy =o00. (2.2)

n—00
n=0

If F(Ty) N F(T2) N F(T3) # W, then the sequence {x,},- | converges strongly to the common fixed point of Ty, Tz, T5.

lim o, =0=
n— 00
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Proof. Firstly, we show that F(T7) is a singleton set. Otherwise, there exist two distinct elements, say p, g € F(T1),
then by 77 is @-hemicontractive mapping, there exist a strictly increasing function @ :[0, cc) — [0, 0c0) with
@0)=0anda j(p —q) € J(p — q) such that

lp—ql>=(Tip—Tiq, j(p =) <llp —qlI> = @(Ip —ql)Ip — gl < Ip — g,

which is a contradiction, so we get a result. Also, if F'(7T7) N F(T2) N F(T3) # @, then it must be a singleton. Let p be
the unique common fixed point of 71, 7>, T3.
Now, we will show that {x,, — p}fj":0 is a bounded sequence. Since 77 has bounded range, we set

K =|lxo — pll +sup | T1y, — pl.
n=0

We will prove by induction that ||x, — p|| < K for all n € N. Suppose ||x, — p|| < K, we consider
IXp+1 — pll < (L —ap)lxn — pll + anllTiyn — pll < (1 —ap) K + an K =K,

this show that {x, — p}>° is a bounded sequence. As a consequence of this one it may easily show, by using 73 is a
generalized Lipschitzian mapping, that the sequence {z, — p};2 is also bounded.
Next, observe that

Xn+l — P = (1 —oap)(x, — P) + o, (Th Yn — Tlxn+1) + an(Tlxn-H - Tlp) (2.3)
then it follows from (1.3), (2.3) and Lemma 2.1 that
2 .
X041 — P”2 < [(1 —an)llxn — pll + anllTryn — Tixn1 ”] + Zan(T]anrl =Tip, jOny1 — P))
<= ap)?llxn — plI* + 20, (1 — at)l1xn — Il - 1 T1yn — Tixns1 |
+ oI T1yn — Tixns 1 I + 20 [ X041 =PI = @ (Ixns1 = plI) - 3051 — Pl

then
2
2 (I —ay) 2 2a,
— <—" — — 19)) — . —
bt = PIP < o=l = I = 75 @ (bt = p) - s = p
20, (1 — aty) o?
= 2l 1 Thyn = Tixpst |+ ——2— 1 Tiyn — Tixns1 I
1—2q, 1 -2,
2« 2Ka, (1 — ay)
<xp — pl? - ——w — — L Ty, —T
I = pI? = 509 (e = pl) + == =T = T
o 2 2
+ - [K + 1T1yn — Tixn+1l ]’ 2.4
1—-2a,

where ¥ : [0, co) — [0, 0o) is defined by ¥ (t) = ¢t P (), moreover, ¥ is a strictly increasing function with ¥ (0) = 0.
Let us denote

2a,
= — . b = ,
(2 ”xn P” n 1—2a,
and
2Kan (1 —ay) a?
en= "N T1yp — Tixns1ll + —2—[K? + IT1y0 — Tixas11%].

1 —2a, 1 —2a,
Of course, we will complete our work by using Lemma 2.2. By the way, in light of condition (2.2), we see that the
remainder is

lim |71y, — Tixp41/l =0. (2.5)
n—>00

In fact, by uniform continuity of 77, in order to obtain (2.5) we need only show that lim,_, o || ¥4, —Xn+1]| = 0. Since T»
is a generalized Lipschitzian mapping, there exists L > 0 such that ||Tou — Thv|| < Lo(1 4+ |lu — v||) forall u,v € C.
Put

L=K+Ly+sup|z, — pll
n=0
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we have

lyn = xXn+1ll < @nllxny — Tiyull + Bullxn — Tozull < 2Lay +,3n[L + L1+ llzn — P||)]
<2Loy + Bu(L* +2L).

Combining this with condition (2.2), we deduce lim,,— o ||y — Xn+1]/| = 0 and consequently (2.5) holds. Finally, in
view of (2.4), by using Lemma 2.2 we have

lim |x, — pll= lim a, =0,
n—o0 n— o0
which completes the proof. O

Theorem 2.4. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let T, Tz, T3 be self
maps of C. Ty is a @-hemicontractive uniformly continuous mapping with T1(C), To(C) are bounded sets. Suppose
that a sequence {x,}>° | is defined as (2.1) when {a,}72, C [0, %) and {(Bn}o2 o {valneo C [0, 1] satisfy the condi-

tion (2.2). If F(Ty) N F(T2) N F(T3) # W, then the sequence {x,}7> | converges strongly to the common fixed point
of Ty, Tz, T.

Proof. As following the arguments in Theorem 2.3, we infer that the boundness of {x, — p};'zozO and Eq. (2.4) still
obtain. Now, we show

lim |71y, — Tixp+11 =0. (2.6)

n—o0
Since, T; is uniformly continuous to obtain (2.6) we show lim, . ||y — Xp+1]] = 0 is enough. Since T1(C), T>(C)
are bounded sets we have

Iy — Xn+1ll < onllxXn = Tiynll + Bullxn — Taznll < (@n + B X0 — Pl + @nllTiyn — Pl + Bull T2zn — Pl

< (on + B llxn — pll +an K1 + Bn K1,

where K1 =sup, > [I71yn — pll +sup, > 172z, — pl|. Combining this with condition (2.2) we get (2.6), as required.
Finally, the result

lim ||x, — pll= lim a, =0
n—00 n—o00
now follows as in the proof of Theorem 2.3. 0O

Remark 2.5. It is clear that every strongly pseudocontractive operator is @-strongly pseudocontractive, and every @-
strongly pseudocontractive operator with a nonempty fixed point set is @-hemicontractive. Therefore, Theorem 2.4
contains Theorem 1.1 as a special case, but it is worth noting that the uniform continuity assumption on operator 73
is not imposed here.

We also get the following result immediately.

Corollary 2.6. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let T be a
& -hemicontractive uniformly continuous mapping with bounded range self map of C. For any xo € C, let {x,};2,
be the three-step iterative process defined by

Xnp1 = (I = an)xn + n Ty,
yn =1 = Bu)xn + BnTzn,
Zn =1 = Yu)xn + yuTxn, 2.7
where {a,}2°  C [0, %) and {Bn};2 o (Vnloeo C [0, 1] satisfy conditions:
o
nlgrgoan =0=n1£20ﬁn and ’;)an =00,

o0

then the sequence {x,}7° | converges strongly to the unique fixed point of T .
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Example 2.7. Let E = R with the usual norm and let a,b,d € R* witha —d > 0, put C = [u, 00). Define

T:C— C by Tx = - for all x € C. Observe that (I — T)x = baltxd=a) g N(I — T) = {4}, Define
y bx+d bx+d b

@:[0,00) — [0,00) by &(1) = tbita—d) Hence, @ is strictly increasing and @ (0) = 0. Now, for all x € C and
bx +d b

bt+a
_a —d‘)
X b .
=& (lx — yl)lx — yl,

which implies that T is a @-hemicontractive operator. For each n € N, put o, = 3Ln’ Bn = nl, for some r > 1 and y,, is

any sequence in [0, 1] then we have {)c,,}flo

y= % we have

2 — p—
<(I—T)x—(I—T)y,x—y)=(w)(x—a d>=<1§<

o as define in (2.7) converges strongly to the unique fixed point “;d eC.

3. Applications

Theorem 3.1. Let E be a real Banach space and T : E — E be uniformly continuous operator. For a given f € E,
let x* denote the unique solution of the equation Tx = f. Define the operator H: E — E by Hx = f +x — Tx, and
suppose that the range of H is bounded. For any xo € E let {x,};° | be the three-step iterative process defined by

Xn1 = (1 —an)xn + an Hyy,

Yo =1 = Bu)xn + BnHzn,

Zn =0 = y)xu + ynHxp,

where {a,}2° o C [0, %) and {Bn};2 0 (vnlney C 0, 1] satisfy conditions:

oo
lim o, =0= lim B, and » a,=oc.
n—oo n—oo
n=0
If there exists a strictly increasing function @ : [0, 0o) — [0, 00) with @ (0) = 0 such that for any x € E, there exists a
jx —x*) e J(x — x*) satisfying
(Tx = T, jx = x%) > @ (lx —x* 1) llx — x*].,

then the sequence {x,},° | converges strongly to the unique solution of Tx = f.

Proof. Observe that the operator H is uniformly continuous with bounded range and x* is the unique fixed point of H.
Now, we show H is a @-hemicontractive operator. For this purpose, we define an operator S: E — Eby Sx =Tx — f.
Then it is easy to see that N (S) contains exactly one element, such as x*, and S is @-strongly quasi-accretive operator.
Indeed, by assumption on 7', for each x € E we have

(S = Sx*, j(x —x®))=(Tx = Tx*, j(x —x*)) = @ (Ilx —x*|) (Ix — x*|)).
Hence, for each x € E we have
<Hx — Hx*, j(x —x*)>=<f+x —Tx—x" j(x —x*)):(x —x*, j(x —x*)>—<Sx,j(x —x*))
<l =512 = @ (lr = 2* 1) (Ilx = 1),
showing that H is actually a ¢@-hemicontractive operator with x* € F(H). Therefore, the conclusion of Theorem 3.1
follows exactly from Corollary 2.6. This completes the proof. O

A direct consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let E be a real Banach space and T : E — E be uniformly continuous and ®-strongly accretive
operator. For a given f € E, let x* denote the unique solution of the equation Tx = f. Let H, {x,}, {o}, {8} and
{yn} be as in Theorem 3.1. Then the sequence {x,},_ | converges strongly to the unique solution x* of Tx = f.

Please cite this article in press as: N. Petrot, Modified Noor iterative process by non-Lipschitzian mappings for nonlinear equations in Banach
spaces, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.04.065




8 N. Petrot/ J. Math. Anal. Appl. eee (eeee) eee—see

Furthermore, if f = 0 then a condition on operator T is relaxed.

Corollary 3.3. Let E be a real Banach space and T : E — E be uniformly continuous and @ -strongly quasi-accretive
operator. Let x* denote the unique solution of the equation Tx = 0. Let H, {x,}, {a,}, {B,} and {y,} be as in Theo-
rem 3.1. Then the sequence {x,}, , converges strongly to the unique solution x* of Tx = 0.

Proof. Now, let us observe that, the operator S which defined in Theorem 3.1 is nothing but a @-strongly quasi-
accretive operator 7. Therefore, the conclusion now follows as in the proof of Theorem 3.1. O

Remark 3.4. Corollaries 2.6 and 3.2 extend and improve, excellent results, as in [4] in its four aspects:

(1) extended to the slightly more general @-hemicontractive and @-strongly accretive operators;

(2) from the Ishikawa and Mann iteration schemes to the Three-step Noor iterative process introduced in [15];

(3) abolish the boundedness of subset C in E which imposed in [4, Theorems 3.4 and 4.2];

(4) abolish the uniform smoothness of E and the Lipschitz condition on the operator 7" which imposed in [4, Theo-
rem 5.2].

Remark 3.5. This paper extends and improves all related papers appeared, such as [15,16] and references therein in
the following senses:

(1) form strongly pseudocontractive and strongly accretive operators to slightly more general @-hemicontractive and
@-strongly accretive operators;
(2) the boundedness assumption on 7' (C) is relaxed to the generalized Lipschitzian condition of operator.
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