
donor or nucleophile in GHF10 enzymes were conserved in GHF10-Pc1 and GHF10-Pc3 as E167 (putative catalytic acid/base) and E268 (putative catalytic nucleophile). Thus, we concluded that GHF10-Pc1 and GHF10-Pc3 is an enzyme belonging to GHF10. Conservation of the nucleophilic glutamate and the considerable sequence similarities between the other enzymes in glycosyl hydrolases family 10 suggested that the GHF10-Pc1 and GHF10-Pc3 should also be retaining enzymes.

Cellulolytic enzymes, on the basis of sequence similarities, can be classified into families. One of these families is known as the GHF10 (Henrissat 1991) or as the cellulase family F. This enzyme family is a large and diverse group of hydrolases that also comprises enzymes with a number of known activities; xylanase (EC 3.2.1.8), endo-l,3-β-xylanase (EC 3.2.1.32) and cellobiohydrolase (EC 3.2.1.91). It has been shown that known animal cellulases mostly belong to three glycosyl hydrolase families: GHF5 (plant parasitic nematodes), GHF9 (termites, cockroaches and crayfish) and GHF45 (mussels and beetles) but *A. crossean* EGX and *P. canaliculata* GHF10-*Pc*1 and GHF10-*Pc*3 possessed the family 10

230 C. Imjongjirak et al.

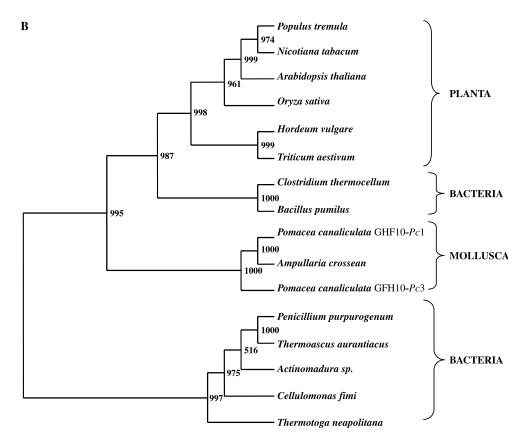


Figure 2. Multiple alignments of deduced amino acid sequence of catalytic GHF10 domain from various species (A) and a bootstrapped neighbour-joining tree (B). *P. canaliculata* cellulase gene (GHF10-*Pc*1 and GHF10-*Pc*3, this study), *A. crossean* (AAP31839), *Oryza sativa* (BAD52808), *Arabidopsis thaliana* (BAB83869), *Populus tremula* × *Populus tremuloides* (AAX33301), *Nicotiana tabacum* (AAZ79232), *Triticum aestivum* (AF156977), *Hordeum vulgare* (AAB51668), *Bacillus pumilus* (AF466829), *Clostridium thermocellum* (EAM47104), *Thermotoga neapolitana* (Q60041), *Actinomadura sp.* (AAA17888), *Penicillium purpurogenum* (AAF71268), *Cellulomanas fimi* (AAZ76373) and *Thermoascus aurantiacus* (AF 127529). Black indicates complete conservation. Grey indicates conservation in three or more species. The conserved catalytic nucleophile and proton donor of Glu268 and the Glu167 are arrowed. Values at the node of a bootstrapped neighbourjoining tree indicate the percentage of times that the particular node occurred in 1000 trees generated by bootstrapping the original deduced protein sequences.

GHF. Accordingly, *P. canaliculata* GHF10-*Pc*1 and GHF10-*Pc*3 *is* considered to be the second animal cellulase that belongs to family 10 GHF.

To determine the relatedness of the GHF10-Pc1 and GHF10-Pc3 with other sequences, a phylogenetic tree was constructed based on the amino acid sequence of catalytic GHF 10 domain of GHF10-Pc1 and GHF10-Pc3 and other GHF 10 members. A bootstrapped NJ tree constructed from a sequence divergence of deduced amino acids (Figure 2B) clearly indicates that GHF10-Pc1 and GHF10-Pc3 is more closely linked to mollusca (A. crossean) cellulase than with plant cellulases and bacterial cellulases.

Genomic organization of cellulase GHF10-Pc1 and GHF10-Pc3 genes

To identify the genomic structure of GHF10-Pc1 and GHF10-Pc3 genes and to confirm the existence of the GHF10-Pc1 and GHF10-Pc3 gene in the P. canaliculata chromosomal DNA, a genomic polymerase chain

reaction (PCR) approach was performed. The genomic PCR amplification generated two bands of approximately 4.6 and 5-kb fragment. PCR products were cloned and sequenced. The GHF10-Pc1 and GHF10-Pc3 gene sequences have been deposited in the GenBank nucleotide sequence database under the accession no. DQ848669 and DQ848670.

The GHF10-Pc1 and GHF10-Pc3 genomic sequences were 4937 and 4512 bp in length, respectively. The intron–exon boundaries of the GHF10-Pc1 and GHF10-Pc3 genes were determined by aligning the genomic DNA with cDNA of each corresponding gene (Figure 3A, B). Both genes were composed of 9 exons interrupted by 8 introns. The sequence of GHF10-Pc1 and GHF10-Pc3 gene was in good agreement with the cDNA sequence. The sixth intron was the shortest (234 bp in GHF10-Pc1 and 232 bp in GHF10-Pc3), the last eighth intron was the longest (1071 bp in GHF10-Pc1 and 671 bp in GHF10-Pc3) (Table II). The size of the introns between P. canaliculata GHF10 and A. crossean EGX was quite

different. The length of intron 2 in P. canaliculata GHF10-Pc1 and GHF10-Pc3 (283 and 418 bp, respectively) was approximately 3- or 2-fold smaller than that of intron 2 (1032 bp) in A. crossean EGX.

The sequences of all the exon-intron boundaries conformed to the typical eukaryotic splice sites, including an invariant GT at the intron 5' boundary and an invariant AG at its 3' boundary. In contrast, the exon-intron boundaries of corresponding introns in A. crossean EGX conformed to GT-AG rule only in intron number 1, 5, 7 and 8 (Wang et al. 2003). Therefore, in spite of the high similarity of P. canaliculata GHF10-Pc1 and GHF10-Pc3 cDNA to A. crossean EGX cDNA, the difference in genomic organization of these genes was observed.

Itakura et al. (2006) reported successful identification of termite species by using cDNA and genomic DNA sequences of termite origin. A pair of common primers that amplified 381-bp fragments from cDNAs encoding the endo-β-1,4-glucanases (EGases) of Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe). The cDNAs from C. formosanus and R. speratus and genomic DNA from R. speratus, were amplified by using this primer pair and then cloned and sequenced. Sequences amplified from

C. formosanus cDNA displayed 97-99% identity to cDNA encoding the EGase of C. formosanus (CfEG), and 92-94% identity to cDNA encoding the EGase of R. speratus (RsEG). By contrast, cDNA from R. speratus displayed 99-100% identity to RsEG cDNA and 93-94% identity to CfEG cDNA. CfEG and RsEG cDNAs can therefore be used as markers for the identification of these termite species. Accordingly, the different in intron size of the cellulase genes in two snail species may be used as markers for species identification.

The GC content analysis showed a slightly greater thermal stability in exons (31-58%) than in introns (26-35%) (Table II). Intron 1, 4 and 5 interrupt ORFs after the 2nd of the codons (type 2 intron) whereas the remaining introns interrupt ORFs between two codons (type 0 intron).

All of intron sequences from GHF10-Pc1 and GHF10-Pc3 genes were examined to identify potential homology between introns. A strong sequence homology existed between the corrresponding intron of GHF10-Pc1 and GHF10-Pc3. Intron numbers 1, 4–7 of GHF10-Pc1 and GHF10-Pc3 shared 86-97% identical internal sequence as well as similarity in size. In contrast, the size of the last GHF10-Pc1 intron

A CGACGCTTCAGTCAAGCGCAATGCCCGCTGGTGCTGCTGGTGCTGGGGTGACCAGCGACAT M P A G A A G A G V T S D I	
CGACAGACTGAGAAGAAGCGACATAACGGTTCAgtgcgtgctgctttcaatatataacaa	120
D R L R R S D I T V H	
cctcacttagttctgcattgataaaatatctcqtcaqtagtgtaccaattctqtqtgtat	180
caaqaaaqtaacaccqttqttataccatttttaaaqtaaaqcqaatttaatctqqaataq	
tacaatacttqtatqtaatqcatatataattcatqattttqqtaqtaataataaqtataa	
ttgtaacataaacggatagaatattaataacaatcttatgtcacgggtcatttcaagttt	
gcacgatatcctggaatcaagaaccgaaatagtaattaaggccgaacgttgcggcgtaga	
aaatcqtqtqcaqcccqtcatqqqatqttaatactaaaqaaacacaataacatccqqcaq	
ccgtcgtcaagtgtgtaaaatctgacctgaaatccattcacgaagttgatgatttcttat	
atcaqCGTGAATGTTGGTGGTAACATCAACCACGGTCAAGTGAGCATTCGTqtaaqtcat	
V N V G G N I N H G O V S I R	, 000
agatgagagcatcatccgcctgaggacagggggcaataaaaaagagcaagctcatcaaaagg	660
tqtcaacctcqaqaatqtqccttaaqtaaacttqattqcqaqqtacaqttqaccacqtqa	
acaqataqqaqaqaqaqacaaaaaatqaaqqatacaataqaaqatqtaqqaataata	
ttaattttaatacttattttatattttaatqttaatqtataaaqqcacccaqactaaat	
ctttgttcttcaaggtaactgtcgttgattacagGTGTTACAAAAGAAAAAGGCATTCCC	
V L O K K A F P	
GTTCGGGACATGTGTGGCCGCCTGGGCCTACAACGATGGGTCCAAAGGAGCATACCGGGA	
F G T C V A A W A Y N D G S K G A Y R D	
TTTCATCCACCAGCACTACAACTGGGCCGTGCCAGAAAACTCACTC	
F I H O H Y N W A V P E N S L K W A S I	1020
CGAACCTAACAGGgtacattttttattaatgagatttataaaatttaacataaattgatag	1080
E P N R	1000
tatattaataaaaatcttctttaacqttttacttccaqtttqcacqataqtctttaatca	1140
agaactgaaatatttttcaatactgaatgttqctqcqcataaaatcqtttqcaqcctqtc	
atttgatgttactactaaaqaaatacaataacatatattgaaatgttttaaqqqqtct	
tctgatttatatctgttcagggagagaatagtttaaaaggtactccattcacagcaagga	
aagacaaagttacccgttgtcatattcatagttttactttctaaatcgtgtgtgt	
tatatatatttatqtctqaqcqcqttqaatqcttaaqtcqacaacttaatqtaacaqat	
tagttttattaagagtatactaaaaactgggttgttcctgctagccaaagaaatggggtt	
ttgggggtatttgataatcqcacqtqtqtcttccttqtqaataaaataa	
ttctggagggaacatacttttgaggcactcgacattgaggcttccgttatgatcgccatt	
taatgcttqcctctcctcttqqacatataqaaqqqqaaaatataatqactqttqattqtq	
ttttcagGGACAAAAGAATTATCAGCCTGGCCTAAACATGCTTCACGGACTGAGAAATC	
G O K N Y O P G L N M L H G L R N	1/40
ACGGqttaqtaaacattaqqatactqcaacccccatcaccqacattataatcatcqt	1800
H G	1800
<u>. </u>	

cgacttcattatcgtataataatgaaagaattggcgaattttaattatttaagaattatt	1860
aacataaatttaattaacatttaataaatcaaagaaagtttagcgtttcagagattgctc	1920
ctccccatgtattttactatttctatcacttcgttaaaagcaagtctcagactcagttc	1980
tgtctttttgataattccttaaaatagtcctacaaatgaaatagtaactgaaatgtctca	2040
cattgatacgaaattaagaaaatattcacttacactaagagttaacacatgtcgtgtaca	2100
gaggtgtttgtagaaatgtttgttatagttttcttgcatccactcgagatgtttaaaaaca	2160
gGATTAAGGTGAGAGGTCACAACCTGGTGTGGTCTGTCGACAATACGGTGCAGAACTGGG	2220
I K V R G H N L V W S V D N T V Q N W TGAAGGCTCTGCATGGGGATGAGCTGCGAAAGGTTGTCCATGACCACATCGTGGAAACCA	2280
V K A L H G D E L R K V V H D H I V E T TCAACACATTTAAGGGCCTgtaagtttatatcatttqttactttcttaaaatqtcag	2340
INTFKGL	
tagtttattttttatttttatcttgttatttggagaaacaaaatttactgttctacata	2400
caccaaaccagatgataccagttacaatactgaattttatgttgtaaaaatatgtttgaa	2460
ccttatagcaatagactgccactaatttaagaagtcacgttgtcaagtgttagtttttaa	2520
${\tt ctcactcatcaacagatcaagcaagaggttttttctgttttgaccagAGTGGAGCACTGG} \\ {\tt V} {\tt E} {\tt H} {\tt W} \\$	2580
GATGTGAACAACGAGAACCTGCATGGCCAGTGGTACCAGCATCAACTGAATGACAATGGC	2640
D V N N E N L H G Q W Y Q H Q L N D N G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2700
AACGACTACAACGTTGTGTCCAACAGTTATTCAACAAACgtgagtgaatgagaaaacttg	2760
N D Y N V V S N S Y S T N	2020
cttctacatcacctgagaacaaatgtttgcaagcatcgtatgctttatttctgcctaaaa	2820
tatactcttgttgtctttagcattatagtcttctgtgccttgctatgttgccgaacaatg	2880
caacttgtactgctccatactagtctgtagtgtctatttttttt	2940
atcatcttcacaagtctttgcggtgtgtgacagGACTATCTTCGACAAGGTCAACAGTTT	3000
D Y L R Q G Q Q F AAGGCCGCTAATGTGGGTCTTTACGGTTTGGGTGCTCAATGCCACTTTGGCGACGAAGCC	3060
K A A N V G L Y G L G A Q C H F G D E A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3120
ccccattttattattctaaaaaataaaacaaaggtacgcacaacaatgaattagttc	3180
tacaatgcagtaagatacaagatttcagcttctgtccgtatccttttttctatttagtta	3240
tttgcatttttttactattatttgttaatttacgttaaatggaataacatatctttatgt	3300
	3360
tgagaaatcaaaaagtcttcattttatagctgtggatgtaaaaaatactcatctaacgtcttctatactccaaaagctgttttagctacatgtgggtttttttctaatctcagCAACGTC	3420
Q R	
TGGATACTTTAGCTCAAGTGGGCGTGCCCATCTGGGCCACTGAGTTGGATGTGGTAGCTT L D T L A Q V G V P I W A T E L D V V A	3480
$\tt CGGATGAGAACAGACGAGCGGATTTCTACGAGCACGCGCTGACAGTCCTGTACGGCCATC$	3540
S D E N R R A D F Y E H A L T V L Y G H ATGCCGTGGAGGGCATCCTGATGTGGGGCCTTCTGGGACAAGGCCCACTGGCGTGGTGCCA	3600
HAVEGILMWGFWDKAHWRGA	
GAGCTGCTCTTGTTGTCGGAGACAACCTGCAGgtgtgtttgggttacaattaacctaatgg R A A L V V G D N L Q	3660
qaatcttacaqqtattataqcacaqccaqcatccaqacaqa	3720
tgatgagaacacattggattcttcttttattagaatttctacccagaactacccttgact	3780
tcaactttttcttttccttataaqaqacatctqacaaatqcttactcaqtqtacctatqq	3840
ttagtccagattatgcgtgtatgtttttccattttagaattactttagcacaaacacgac	3900
caaaacgattaccatctatgtgaggacaaagatacgtgttctgcttgtttataatgaata	3960
atattgttatgataaaactgcaaaatactcagtttgaagtagacattttttccatgaaaa	4020
ttcgcaaaaaaaaagaaccggaaatgaacccatttgaacgagtttaaaaaaattgttta	4080
cagcaaagtcctttatctctgctataaatgtgttgaaggtaaatgtatattcacatcagt	4140
attatttgactgagaatgttttcggctgttttcttcatatataatcaaaagtatcacaat	4200
gttcattgaagaaacgaggacacctggttgtagccaacgacattgtttgacattaatgca	4260
aataataacqtqttacaacaatctaaqcqqtactttqacaqaaqtqtaaaaaattaatatt	4320
gagacttcatcaacgcttaaacaattccaagactttaaaattgcaagaatcaagcttgcg	4380
cgctttttttcacatcgataaggatgatgttataatgtaaccagctggtaaagtgaaaca	4440
ctgtttaaattactattggttgcggcagaagagttatgacgttgtaaaggacattgtctt	4500
acttaaggattgcttcattcgaaatacttctgatagtgaatgcgaaacgcacattccatc	4560
aataataaaagtataagatatgagaattgttactgaaatatgtctgttttagtctccatg	4620
attagccaaatgattgctttcgttaaagttcatgaaacaccgggtgtttgtgggtagacat	4680
aaaataaatgtttgattctatagCTGACGGCGGCCGGACGTCGCGGGCTCTTTTG	4740
L T A A G R R V L E L F	
AGCACAGGTGGATGACAGACGAGACGCACAACCTGGCAGCGGGCACCCAGTTCACAGTAC	4800
E H R W M T D E T H N L A A G T Q F T V	
GCGGTTTCCATGGCGACTACGAGGTCAAGTCATCGTCCAGGGTCAAGAGCACACCC R G F H G D Y E V Q V I V Q G Q E H T N	4860
${\tt TGAGGCAGACGTTCTCGTTGGGCAACGGTCCCCACACCGTCAACATTAACATTAGC \underline{\textbf{T}\underline{\textbf{A}\underline{\textbf{G}}}\underline{\textbf{A}}}$	4920
L R Q T F S L G N G P H T V N I N I S * GCGACACTCAGAGGGCA	4937

$\label{eq:BCGACGCTTCAGTCAGCCGCGGGTGCTGCTGCTGCTGATGTGAGCAGCGAGAT} B \ CGACGCTTCAGTCAGCGAGATGCCCGCGGGTGCTGCTGCTGCTGATGTGAGCAGCGAGAT$	60
M P A G A A A D V S S E I	
CGACAGACTGAGAAGAAGCAACATAGTGGTTCAgtgcgtgctgctttcaatatataacaa D R L R R S N I V V H	120
cctcacttagttctgcattgataaaatatctcgtcagtagtgtaccaattctgtgtgtat	180
caataaaqtaacactgttgttataccatttttaaattaaa	240
acaatattqtatqtaatcatatataattcattatttttattaataatatttataattt	300
	360
aacataaatggatagtatattaataacaatcttatttcacggcttatttcaagtttgcac	
gatgttctttaatcaagaacttaaatatttttcaaatcagaatgttgctgcgtataaaag	420
cgttttcagcctgtcattggatgttactactagacaaacacaataacatcttcatccttc	480
$\tt gttaaatgtgtaaaatctgacctgaaatccattcacgaccttgctgattttgttttcagC$	540
GTGACAGCTGGTGGTAACATCAGCCACGGTGAAGTAAACATACGGGtaagtcatagttga V T A G G N I S H G E V N I R	600
tatcatcatccgcctgaggacagagtacaacaaactaaagagctactttaccgcaagctc	660
cacctggtgtcaccccgatttgccttcgttatggctttagtagttatttgaatattctt	720
tgtcactttgtcactagagacatctgtagcgacaagaccaaaattcagcatactcttatg	780
ttgaaacataatcatttcaattctaatacatgtgtaaactgtgttgtgaggcacatttga	840
ccacgtgaacagttagtagagaagagatacacaaaataaaagatacagtagaagatttgg	900
ggttaatattaattttaatacttattttatatttttaatattaatgtataaaaaatcacc	960
${\tt agactaagtctttgttcttcaagctaactgtcgttgattacag} {\tt GTGGTACAAAAGAAGAAGAA}$	1020
V V Q K K K	
GTCGTTCCCGTTCGGAACCGCTGTGGCCGCCTGGGCCTACAACAATGATTCCAAGACAAA	1080
S F P F G T A V A A W A Y N N D S K T K	
ATACCGGGATTTCATCCACCAGCACTACAACTGGGCGGTGCCAGAAAACGAACTCAAGTG Y R D F I H Q H Y N W A V P E N E L K W	1140
GCGCACCATCGAACCTACCAGGgtacactttttattaatatgatttataattttaacata	1200
RTIEPTR	
aattgatagcataatgataacaatcttatttaacgttttacttccagtttgcatgatagt	1260
ctttaatcaagaacttaaatatttttcaatgctgaatgttgctgcgcataaaatcgtgtg	1320
cagccgtctttgtatgttactactaaagaaatacattaacatacat	1380
${\tt aggggtcttgtgatttgcatttgttcaggtaatatagtttaaaaggtacagattaatttt}$	1440
attaagactatactaaaaactgggtagtttctgctagccaaagaaatggggttttggggg	1500
catttgataatcgcacgtgtgtcttccttgtgaataaaataaacaagtaaaaattctgga	1560
gaaaaatacttttgatgcactcgacattgaggcttccgttatgatcgccatttaatgctt	1620
acctctcctcttggtcacatcactccacaaatagaggaggaaaatataacagttgattgt	1680
ggttttcagGGACATAAGAACTATCAGCCTGCCCTGACCATGATTCACGGACTGAAAAGT	1740
G H K N Y Q P A L T M I H G L K S	
CACGGgttagtaaacattaagatttagcaaccaccatcaccgacattataatcatcctct H G	1800
${\tt tcgacttcattattgtatgataatgaaagaattggtgaattttagttataaaacatttat}$	1860
taaatgaaagagatttagcgtttcagagattgctcctcccccatgtattttactatttt	1920
tcgtacttcgttaaaagcaagtcgcagactcagttctgactttttgataattccttaaag	1980
tagtcctacaaatgaaatagtaactgcaaatgtctcacactgatacgaaatgaagaaaat	2040
attcgcttacactaagagtcagcacatgtcgtgtacagaggtgtttgtagagatgtttgt	2100
tatagttttcttgcattcactcgagatgtttaaaatagGATTAAGGTGAGAGGTCACAAC I K V R G H N	2160
CTGGTGTGGTCTGTCAATTCAACGGTGCAGAGCTGGGTCAAAGCTCTGCATGGGGATGAG	2220
LVWSVNSTVQSWVKALHGDE	
CTGCGAAAGGTTGTCCATGACCACATTGTGGAAACCGTCAACACATTTAAGGGCTTgtaa L R K V V H D H I V E T V N T F K G L	2280
gtttatttcatttatttctttctaaaatgtcagtagtttatttgtttatgttttgtattg	2340
ttgcgttatgtggagaaacaaaatttactattctacataca	2400
ttacaatactgaattttatgttgtaaaaatatgtttgaaccttttagcaatagactgcca	2460
ctaatgaaagaagtcacgttgtgaagtgttagtttttaactcattcat	2520
taagagtgttttctgttttgaccagAGTGGAGCACTGGGACGTGAACAACGAGAACCTGC	2580
V E H W D V N N E N L ATGGCCAGTGGTACCAGCAACTAGAACTAGAACTGTTCCGTA	2640
H G Q W Y Q Q L N D P N Y N I E L F R	
TCGCACACGCTGCCGACCCCAACGTCAAACTCTTCCTCAACGACTACAACGTGGTGGCTT I A H A A D P N V K L F L N D Y N V V A	2700
ACGGTGCCGCAACCAATgtcagtggatgagaaaacttgcttctatatcacctgagaacaa Y G A A T N	2760
atgtttccaagcatagtatgcttcatttctgcataaaatatactcttgttgtctttagca	2820
ttatagtcttctgtgccttgctatgttcccgaacaatgcaacttgtactgctccatacta	2880
gtctgtagtctttgttttaatctgtaaaaacgaatatcatcttcacacagtctttatggt	2940
gtgtgacagGCCTATCTTCAGCAAGGTCAACAGTTTAAGGCCGCTAATGTGAGTCTTTAC	3000
g cy cyacay GCCTATCTTCAGCAAGGTCAACAGTTTAAGGCCGCTAATGTGAGTCTTTAC	3000

			Α	Y	L	0	0	G	0	0	F	K	Α	Α	N	V	S	I	,	Y	
GGI	TTG	GGT	GCC	CAG	TGC	CAC	TTT	GGC	GAT	GAA	GCT	AAC	CCA	AAC	GTC	GCT	GGG	rA	'GA	AG	3060
G	L	G	Α	Q	С	Н	F	G	D	E	Α	N	P	N	V	Α	G	M	ī	K	
gta	aga	aaa	ata	ata	tca	taa	aca	tcc	ttc	gcc.	ttt	ctc	att	ttc	ctt	ctc	cta	att	at	ta	3120
tta	ittc	taa	aaa	atg	aaa	caa	atg	tac	gca	caa	caa	tga	agta	agt	tct	aca	ata	aca	ıgt	aa	3180
gat	aaa	aqa	ttt	tag	att	ttq	tct	gta	tca	ttt	ttt	ctt	ttta	agt:	tat	ctq	cat	tt	tt	ta	3240
cca	ittt	tac	ttt	aca	tgg	aat	aac	ata	tct	tta [.]	tgt	tga	gaaa	atca	aga	aag	tct	tc	at	tt	3300
tat	agc	tgt	gga	ttt	aaa	aaa	tat	tct	tct	cac	ttc	ttc	tata	acto	cca	taa	gct	gt	tt	ta	3360
gto	aca	tct	ggg	ttt	ttt	cta	atc	tca	gCA.	ACA'	гст	GGA	TAT:	rtt.	AGC	TCA	ĀGI	'GG	GG	TT	3420
									_ Q	Н	L	D	I	L	Α	Q	7	7	G	L	
GCC	CAT	CTG	GGC	CAC	TGA	GTT	GGA'	TGT	GTT.	AGC'	TAC	GGA	CGA	GAA	CAA	ACG	AGC	CGG	AC	TT	3480
F	PI	W	Α	. Т	E	L	D	V	L	Α	Т	D	E	N	K	R	I	A	D	F	
CTA	CGA	GCA	CGC	GCT	GAC	AGC	CCT	GTA	CAG	CCA'	ГCА	TGC	CGT	GGA	GGG	CAT	CCI	'GA	ΤG	TG	3540
Y	. E	Н	A	. L	Т	Α	L	Y	s	Н	Н	Α	V	E	G	I	Ι	_	М	W	
GGG	CTT	CTG	GGA	CAA	.GGC	CCA	CTG	GCG	GCA'	TGA.	ACG	AGC	TGC:	rct'	гст	TGT	CGG	SAG	AC	AA	3600
G	F	W	D	K	A	Н	W	R	Н	E	R	A	Α	L	L	V	(3	D	N	
CCI	GCA	Ggt	gtg	ttg	ggt	tac	aat	taa	cca	aat	agg	gat	ctta	aca	ggc	att	ata	ago	ac	ag	366
Ι	. Q																	_		_	
cca	gta	tcc	aga	cag	acg	ttt	tgt	aat	cac	tgt	cat	gat	gaga	aaca	aca	ttg	gat	tc	tt	ct	3720
tct	att	aga	att	tct	acc	cag	aac	tat	cct	tga	ctt	caa	cat	ttt	ttt	ttc	tat	aa	ıga	ga	378
aat	ccg	aca	aat	gct	tac	tga	gtg	tac	cta	tgg	tta	gtc	caaa	atta	atg	cgg	gca	ato	ıct	tt	384
ttt	cca	ttc	tag	aat	tac	ttt	agc	aca	aat	acg	acc	aaa	atga	atta	acc	atc	taa	gt	ct	ca	390
aca	atta	gtt	ttt	aca	ttt	ttc	atc	aac	gct	taa	aca	ctt	taaa	aga	ctt	tta	aat	tç	ŗta	ag	3960
aat	caa	gct	ttt	cac	agc	gat	aag	gat	tct	ttt	aga	tgt	aac	cago	ctg	gta	aaç	jta	ιaa	ac	402
agt	tta	aat	tac	tat	tgg	tag	agg	caa	agg	agt	tat	gat	gtt	gta	aag	gac	att	gt	ct	ta	408
cat	aag	gaa	tgc	ttc	att	caa	agt	act	tct	gat	agt	gaa	tgc	gaa	aca	cat	tto	at	ta	at	414
aat	aaa	aaa	ata	aga	tat	gag	aat	tgt	tac	taa	aat	atg	tct	gtt	tag	tct	cca	ato	gat	ta	420
ata	aaaa	tgt	ttg	ctt	cgt	taa	agt	tca	tga	aac	acc	ggg	tgt	ttg	tgg	tag	aca	ata	ıaa	at	426
aaa	acgt	ttg	att	gta	tag	CTG.	ACG	GCG	GCC	GGA	CGT	CGC	GTG	CTG	GAG	CTC	TAT	'GA	GC	AC	432
						L	\mathbf{T}	Α	Α	G	R	R	V	L	Ε	L	Y	E	;	H	
AGC	TGG	ATG	ACA	.GAC	GAG	ACG	CAC.	AAC	CTG	GCA	GCG	GGC	ACC	CAG	TTC	ACA	GTI	ACG	CG	GT	438
R	W	M	T	D	E	T	H	N	L	Α	Α	G	T	Q	F	T	V	F	:	G	
гтс	CAT	GGC	GAC	TAC	GAG	GTG	CAC	GTG.	ATC'	TAC	CAA	GGT	CAG	GAG	CGC	ACC	AAC	CI	'GA	AG	444
F	Η	G	D	Y	E	V	H	V	I	Y	Q	G	Q	E	R	${f T}$	N	Ι	,	K	
CAG	ACG	TTC	ACG	TTG	GGC	AAC	GCA	GCC	CAC.	ACC	GTC	AAC	ATC	AAC	TTA	AGC	TAC	AC	GCG	AC	450
Q	T	F	\mathbf{T}	L	G	N	Α	Α	H	\mathbf{T}	V	N	I	N	Ι	S	*				
ACI	CAG	AGG	GCA																		4512

Figure 3. Genomic structures of GHF10-Pc1 (A) and GHF10-Pc3 (B). Coding nucleotides and deduced amino acids of each exon are capitalized. Introns are shaded and illustrated with lower letters.

is 1071 bp as compared to that of GHF10-*Pc*3, which is 671 bp.

Expression analysis by reverse transcription-polymerase chain reaction

To examine the expression pattern of GHF10-Pc1 and GHF10-Pc3 in P. canaliculata, RT-PCR was carried out against the first-stranded cDNA synthesized from total RNAs of different ages of juvenile snails. Results showed that none of GHF10-Pc1 and GHF10-Pc3 transcripts was detected at the egg stage whereas the fragment of approximately 1200 bp RT-PCR product was amplified in 1- and 10-day-old snails (Figure 4A). Elongation factor generated band la 150 bp (Figures 4B and 5B). The undetectable of mRNA transcripts encoded by the GHF10-Pc1 and GHF10-Pc3 genes from the eggs suggested that the expression of both genes should start during or after the hatching period.

From sequence analysis, both GHF10-Pc1 and GHF10-Pc3 cDNA sequences contain Rsa I recognition sites at different location. Therefore, this enzyme can be used to differentiate the family

of GHF10-Pc1 and GHF10-Pc3 cDNAs. The Rsa I digested GHF10-Pc1 showed restriction fragments of approximately 519, 227, 196, 124 and 122 bp, respectively whereas Rsa I digested GHF10-Pc3 gave fragments of 395, 354, 196, 124 and 122 bp, respectively (Figure 5A). The result showed that the Rsa I digested PCR product of 1- day-old snails revealed restriction fragments that corresponded well to both the GHF10-Pc1 and GHF10-Pc3 pattern. In contrast, Rsa I digested PCR product of 10-day-old snails corresponded only with the GHF10-Pc1 pattern. The restriction profile indicated that the GHF10-Pc1 was expressed in both ages of juvenile P. canaliculata whereas GHF10-Pc3 was observed in 1-day old snails but not in 10-day-old snails. Our result suggested that the GHF10-Pc3 transcripts should have expressed in the early development of juvenile snail. However, the expression of cellulase GHF10-Pc1 and GHF10-Pc3 transcripts was investigated in pooled cDNA of the whole body of 1 and 10day-old juvenile P. canaliculata. Therefore, it is interesting for further studies to examine the cellular type involved in cellulase GHF10-Pc1 and GHF10-Pc3 expression using in situ hybridisation.

Genomic DNA (Number of nucleotides)	GC content (%)	Intron	Genomic DNA (Number of nucleotides)	GC content (%)
1-93 (93 bp)	53	1	94-545 (452 bp)	34
546-591 (46 bp)	36	2	592-874 (283 bp)	35
875-1033 (159 bp)	50	3	1034-1688 (655 bp)	32
1689-1744 (56 bp)	35	4	1745-2161 (417 bp)	30
2162-2299 (138 bp)	48	5	2300-2567 (268 bp)	27
2568-2729 (172 bp)	48	6	2740-2973 (234 bp)	35
2974-3081 (108 bp)	48	7	3082-3413 (332 bp)	27
3414-3632 (219 bp)	56	8	3633-4703 (1071 bp)	33
4704-4937 (234 bp)	56			
1-93 (93 bp)	48	1	94-539 (446 bp)	27
540-585 (46 bp)	38	2	586-1003 (418 bp)	33
1004-1162 (159 bp)	49	3	1163-1689 (527 bp)	31
1690-1745 (56 bp)	31	4	1746-2138 (393 bp)	32
2139-2276 (138 bp)	48	5	2277-2545 (269 bp)	28
2546-2717 (172 bp)	51	6	2718-2949 (232 bp)	28
2950-3060 (111 bp)	46	7	3061-3388 (328 bp)	26
3389-3607 (219 bp)	55	8	3608-4278 (671 bp)	32
4279-4512 (234 bp)	58			
	1-93 (93 bp) 546-591 (46 bp) 875-1033 (159 bp) 1689-1744 (56 bp) 2162-2299 (138 bp) 2568-2729 (172 bp) 2974-3081 (108 bp) 3414-3632 (219 bp) 4704-4937 (234 bp) 1-93 (93 bp) 540-585 (46 bp) 1004-1162 (159 bp) 1690-1745 (56 bp) 2139-2276 (138 bp) 2546-2717 (172 bp) 2950-3060 (111 bp) 3389-3607 (219 bp)	(Number of nucleotides) (%) 1-93 (93 bp) 53 546-591 (46 bp) 36 875-1033 (159 bp) 50 1689-1744 (56 bp) 35 2162-2299 (138 bp) 48 2568-2729 (172 bp) 48 2974-3081 (108 bp) 48 3414-3632 (219 bp) 56 4704-4937 (234 bp) 56 1-93 (93 bp) 48 540-585 (46 bp) 38 1004-1162 (159 bp) 49 1690-1745 (56 bp) 31 2139-2276 (138 bp) 48 2546-2717 (172 bp) 51 2950-3060 (111 bp) 46 3389-3607 (219 bp) 55	(Number of nucleotides) (%) Intron 1-93 (93 bp) 53 1 546-591 (46 bp) 36 2 875-1033 (159 bp) 50 3 1689-1744 (56 bp) 35 4 2162-2299 (138 bp) 48 5 2568-2729 (172 bp) 48 6 2974-3081 (108 bp) 48 7 3414-3632 (219 bp) 56 8 4704-4937 (234 bp) 56 1-93 (93 bp) 48 1 540-585 (46 bp) 38 2 1004-1162 (159 bp) 49 3 1690-1745 (56 bp) 31 4 2139-2276 (138 bp) 48 5 2546-2717 (172 bp) 51 6 2950-3060 (111 bp) 46 7 3389-3607 (219 bp) 55 8	(Number of nucleotides) (%) Intron (Number of nucleotides) 1-93 (93 bp) 53 1 94-545 (452 bp) 546-591 (46 bp) 36 2 592-874 (283 bp) 875-1033 (159 bp) 50 3 1034-1688 (655 bp) 1689-1744 (56 bp) 35 4 1745-2161 (417 bp) 2162-2299 (138 bp) 48 5 2300-2567 (268 bp) 2568-2729 (172 bp) 48 6 2740-2973 (234 bp) 2974-3081 (108 bp) 48 7 3082-3413 (332 bp) 3414-3632 (219 bp) 56 8 3633-4703 (1071 bp) 4704-4937 (234 bp) 56 8 3633-4703 (1071 bp) 4704-4937 (234 bp) 56 8 2 586-1003 (418 bp) 400-585 (46 bp) 38 2 586-1003 (418 bp) 49 3 1163-1689 (527 bp) 1690-1745 (56 bp) 31 4 1746-2138 (393 bp) 2139-2276 (138 bp) 48 5 2277-2545 (269 bp) 2546-2717 (172 bp) 51 6 2718-2949 (232 bp)<

Table II. GC content and length of exons and introns in GHF10-Pc1 and GHF10-Pc3 genes.

Figure 4. RT-PCR of GHF10-Pc (1200 bp; A) and EF1 α (150 bp; B) was examined in the egg (lane 1–3), 1- day-old (lane 4–6), and 10-day-old (lane 7–9) juveniles of Pc canaliculata. Lanes M are 100-bp DNA marker.

Here we show that in spite of the high similarity of GHF10-Pc1 and GHF10-Pc3, the two cellulase genes revealed different expression patterns. The differential expression of the two isoforms supports the idea that

these forms may play different physiological roles in *P. canaliculata*. However, the functional role of the cellulase gene and its catalytic properties remains to be elucidated.

In summary, we have successfully cloned two full-length cDNAs of cellulase GHF10-Pc1 and GHF10-Pc3 belonging to GHF10 from the fresh water golden apple snail, P. canaliculata. We also report here the gene structures of two endogenous GHF10-Pc1 and GHF10-Pc3 genes. Both genes contained nine exons and eight introns. The endogenous origin of these cellulase genes in P. canaliculata was unambiguously verified in this study. The expression analysis of GHF10-Pc1 and GHF10-Pc3 during several ages of P. canaliculata was analysed by RT-PCR. The result showed that GHF10-Pc1 and GHF10-Pc3 transcripts were developmentally expressed.

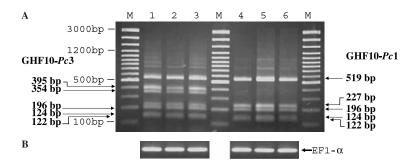


Figure 5. Restriction patterns of the Rsa I-digested RT-PCR products of GHF10-Pc1 and GHF10-Pc3 (A) and EF1 α (B). The 1-day old juveniles (lane 1–3) of Pc canaliculata revealed restriction patterns corresponding to both the GHF10-Pc1 (519, 227, 196, 124 and 122 bp) and GHF10-Pc3 (395, 354, 196, 124 and 122 bp) whereas the 10-day old juveniles (lane 4–6) corresponded only with the GHF10-Pc1 pattern. Lanes M are 100-bp DNA marker.

Acknowledgements

This work was supported by grant from the Thailand Research Fund (TRF), grant number MRG4980168. It was also supported by Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University, awarded to Chanprapa Imjongjirak.

References

- Amparyup P, Jitvaropas R, Pulsook N, Tassanakajon A. 2007. Molecular cloning, characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp *Penaeus monodon*. Fish Shellfish Immunol 22:535–546.
- Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58.
- Brummell DA, Lashbrook CC, Bennett AB. 1994. Plant endo-l,4β-D-glucanases. ACS Symp Ser 566:100–129.
- Byrne KA, Lehnert SA, Johnson SE, Moore SS. 1999. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish *Cherax quadricarinatus*. Gene 239:317–324.
- Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ. 1991. Domains in microbial β-l,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol Rev 55: 303–315.
- Henrissat BA. 1991. Classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316.
- Imjongjirak C, Klinbunga S, Sittipraneed S. 2005. Cloning, expression and genomic organization of genes encoding major royal jelly protein 1 and 2 of the Honey 20 Bee (*Apis cerana*). J Biochem Mol Biol 38:49–57.
- Imjongjirak C, Amparyup P, Tassanakajon A, Sittipraneed S. 2007.
 Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: Molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain.
 Mol Immunol 44:3195–3203.
- Itakura S, Masuta T, Tanaka H, Enoki A. 2006. Identification of two subterranean termite species (Isoptera: Rhinotermitidae) using cellulase genes. J Econ Entomol 99:123–128.
- Keawjam RS, Upatham ES. 1990. Shell morphology, reproductive anatomy and genetic patterns of three species of apple snails of the genus *Pomacea* in Thailand. J Med Appl Malacol 2:45–57.
- Moriya S, Ohkuma M, Kudo T. 1998. Phylogenetic position of symbiotic protist *Dinemympha exilis* in the hindgut of the termite *Reticulitermes speratus* inferred from the protein phylogeny of elongation factor lα. Gene 210:221–227.
- Nathan L, Watanabe H, Sugimura M. 2003. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B (Suppl.) 270:S69–S72.

- Smant G, Stokkermans JPWG, Yan Y, De Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J. 1998. Endogenous cellulases in animals: Isolation of β-l,4-glucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95: 4906-4911.
- Suzuki M, Watanave Y, Tanaka A, Ohnishi T. 1986. Bull Tokai Reg Fish Res Lab 120:53.
- Suzuki K, Ojima T, Nishita K. 2003. Purification and cDNA cloning of a cellulase from abalone *Haliotis discus hannai*. Eur J Biochem 270:771–778.
- Thaewnon-ngiw B, Klinbunga S, Phanwichien K, Sangduen N, Lauhachinda N, Menasveta P. 2004. Genetic diversity and molecular markers in introduced and Thai native apple snails (*Pomacea* and *Pila*). J Biochem Mol Biol 37:493–502.
- Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H. 1999. Metazoan cellulase genes form termites: Intron/exon structure and sites of expression. Biochem Biophys Acta 1447: 146–159.
- Tomme P, Warren RAJ, Gilkes NR. 1995. Cellulose hydrolysis by bacteria and fungi. Adv Microbiol Physiol 37:1–81.
- Wang H, Jones RW. 1995a. Cloning, characterization and functional expression of an endoglucanase-encoding gene from the phytopathogenic fungus *Macrophomina phaseolina*. Gene 158: 125–128.
- Wang H, Jones RW. 1995b. A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus *Macrophomina phaseo-lina*. Appl Environ Microbiol 61:2004–2006.
- Wang J, Ding M, Li YH, Chen QX, Xu GJ, Zhao FK. 2003. Isolation of a multi-functional endogenous cellulase gene from mollusc, *Ampullaria crossean*. Acta Biochim Biophys Sin 35: 941–946.
- Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H. 1997. Site of secretion and properties of endogenous endo-β-l,4-glucanase components from *Reticulitermes speratus* (Kolbe), a Japanese subterranean termite. Insect Biochem Mol Biol 27:305–313.
- Xue XM, Anderson AJ, Richardson NA, Anderson AJ, Xue GP, Mather PB. 1999. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (*Cheraxquadricarinatus*). Aquaculture 180:373–386.
- Xu B, Ersson B, Hellman U, Janson JC. 2000. Purification, characterization and amino acid sequence analysis of a thermostable, low molecular mass endo-β-1,4-glucanase from blue mussel, *Mytilus edulis*. Eur J Biochem 267:4970–4977.
- Xu B, Janson JC, Sellos D. 2001. Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, *Mytilus edulis*. Eur J Biochem 268:3718–3727.
- Yan Y, Smant G, Stokkermans J, Qin L, Helder J, Baum T, Schots A, Davis E. 1998. Genomic organization of four β -l,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene 220:61–70.