

รายงานวิจัยฉบับสมบูรณ์

โครงการ : ผลของความเค้นเชิงกลและความบกพร่องเชิงโครงสร้างต่อสมบัติฮิส เทอรีซิสของฟิล์มแม่เหล็กเฟร์โรที่ความหนาระดับนาโน : การจำลอง ปัจจัยสำคัญเพื่อเพิ่มความจุฮาร์ดดิสก์

The Effect of Mechanical Stress and Structural Defects on the Hysteresis Properties of Ferromagnetic Films of Nano Scale Thickness: Simulation of the Crucial Factors to Enhance the Capacity of Hard Disk Drives.

โดย ผู้ช่วยศาสตราจารย์ ดร. ยงยุทธ เหล่าศิริถาวร และคณะ

เดือน ปี ที่เสร็จโครงการ มิถุนายน 2551

รายงานวิจัยฉบับสมบูรณ์

โครงการ : ผลของความเค้นเชิงกลและความบกพร่องเชิงโครงสร้างต่อสมบัติฮิส เทอรีซิสของฟิล์มแม่เหล็กเฟร์โรที่ความหนาระดับนาโน : การจำลอง ปัจจัยสำคัญเพื่อเพิ่มความจุฮาร์ดดิสก์

The Effect of Mechanical Stress and Structural Defects on the Hysteresis Properties of Ferromagnetic Films of Nano Scale Thickness: Simulation of the Crucial Factors to Enhance the Capacity of Hard Disk Drives.

คณะผู้วิจัย

ดร. ยงยุทธ เหล่าศิริถาวร ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์

มหาวิทยาลัยเชียงใหม่

ศ. ดร. จูเลี่ยน พอลเตอร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์

มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ผู้วิจัยใคร่ขอขอบพระคุณ สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักงาน กองทุนสนับสนุนการวิจัย (สกว.) ที่ได้ให้การสนับสนุนงานวิจัยและพัฒนาครั้งนี้ ผ่านทางทุนพัฒนา ศักยภาพการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี พ.ศ. 2549 ขอขอบพระคุณศาสตราจารย์ ดร. จูเลี่ยน พอลเตอร์ ที่ปรึกษาโครงการที่ได้ให้การสนับสนุนและคำแนะนำในทุกด้านเพื่อช่วยให้อาชีพ นักวิจัยของผู้วิจัยเริ่มต้นได้อย่างไม่ยากลำบาก ขอขอบคุณภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ช่วยอำนวยความสะดวกในการใช้เครื่องมือ อุปกรณ์ และ สถานที่ ขอขอบคุณผู้ร่วมงานทุกท่าน ที่มีส่วนช่วยเหลือผู้วิจัยให้ดำเนินงานโครงการนี้สำเร็จลุล่วงได้ดี โดยเฉพาะอย่างยิ่ง ผู้ช่วยศาสตราจารย์ ดร. รัตติกร ยิ้มนิรัญ และรองศาสตราจารย์ ดร. สุพล อนัน ตา ที่ได้ให้คำแนะนำ และความช่วยเหลือส่งเสริมเกื้อกูลในการทำงานเสมอมานับตั้งแต่วันเริ่มต้น ทำงานจนกระทั่งผู้วิจัยสามารถดำเนินชีวิตอยู่รอดได้ในฐานะอาชีพอาจารย์และนักวิจัยควบคู่กันไป

(ผู้ช่วยศาสตราจารย์ ดร. ยงยุทธ เหล่าศิริถาวร) หัวหน้าโครงการ

บทคัดย่อ

รหัสโครงการ: MRG4980190

ชื่อโครงการ: ผลของความเค้นเชิงกลและความบกพร่องเชิงโครงสร้างต่อสมบัติฮิสเทอรีซิสของ

ฟิล์มแม่เหล็กเฟร์โรที่ความหนาระดับนาโน : การจำลองปัจจัยสำคัญเพื่อเพิ่มความจุ

ฮาร์ดดิสก์

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. ยงยุทธ เหล่าศิริถาวร

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

ศาสตราจารย์ ดร. จูเลียน พอลเตอร์

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address : yongyut_laosiritaworn@yahoo.com ระยะเวลาโครงการ : 1 กรกฎาคม 2549 ถึง 30 มิถุนายน 2551

ในการวิจัยนี้ได้ทำการศึกษาผลของตัวแปรต่าง ๆ คือ อุณหภูมิ ความหนาของฟิล์ม ความเค้น เชิงกล และความบกพร่องเชิงโครงสร้าง ที่มีต่อสมบัติฮิสเทอรีซิสทางแม่เหล็กในฟิล์มบางขนาดนาโน นอก จากนี้ยังได้ขยายขอบเขตการศึกษาให้ครอบคลุมระบบเฟร์โรอิก โดยพิจารณาสารเฟร์โรอิเล็ก ทริกร่วมด้วย จากผลการศึกษาพบว่า ความไม่สม่ำเสนอเชิงโครงสร้างในแง่อุณหภูมิทำให้สมบัติ แม่เหล็กใกล้จุดวิกฤตมีการเปลี่ยนแปลงในช่วงอุณหภูมิกว้าง ความเค้นมีผลให้วงฮิสเทอรีซิสมีขนาด เล็กลงเนื่องจากไปลดสมบัติเฟร์โร ส่วนการเพิ่มจำนวนความบกพร่องแบบช่องว่างหรือการลด จำนวนชั้นฟิล์มจะทำให้อันตรกิริยาแม่เหล็กเฉลี่ยต่อสปินลดลง ทำให้ขนาดวงฮิสเทอรีซิสที่สูงสุด เลื่อนไปในทางความถี่ที่ต่ำลง นอกจากนี้ ยังสามารถสรุปผลในแง่ความสัมพันธ์ระหว่างสมบัติฮิสเทอรีซิสกับปัจจัยความหนา(หรือจำนวนเปอร์เซ็นต์จุดบกพร่องแบบช่อง) ความถี่และแอมปลิจูดของ สนาม ในรูปแบบฟังก์ชันเลขชี้กำลัง ทำให้สามารถสร้างความสัมพันธ์ระหว่างตัวแปรเกิดเป็นองค์ ความรูปใหม่สำหรับการนำไปใช้งานในทางประยุกต์ต่อไปในอนาคต

คำหลัก: การจำลองสถานการณ์มอนติคาร์โล, ฟิล์มบางแม่เหล็ก, ความเค้นเชิงกล, ความบกพร่อง เชิงโครงสร้าง, สมบัติฮิสเทอรีซิส

Abstract

Project Code: MRG4980190

Project Title: The Effect of Mechanical Stress and Structural Defects on the Hysteresis

Properties of Ferromagnetic Films of Nano Scale Thickness: Simulation

of the Crucial Factors to Enhance the Capacity of Hard Disk Drives.

Investigators: Dr. Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University

Prof. Dr. Julian Poulter

Department of Mathematics, Faculty of Science, Chiang Mai University

E-mail Address: yongyut_laosiritaworn@yahoo.com

Project Period: July 1, 2006 to June 30, 2008

In this study, effect of parameters i.e. temperature, films-thickness, mechanical stress and vacancy defects on magnetic hysteresis of magnetic thin-films in nano-range was investigated. In addition, the study extended to cover ferroic system by considering ferroelectrics material. From the results, the structure anisotropy in terms of temperature causes the magnetic properties close to critical point changes over a broad temperature range. On considering effect of mechanical stress, the hysteresis loop decreases as the cease in ferro-properties. On the increase of vacancy defects or the decrease of films-thickness, the average magnetic interaction per spins also reduce which causes the maximum hysteresis to shift to smaller frequency. In addition, the study also summarized the findings on relating hysteresis properties to films-thickness (or vacancy defects percentage), frequency and amplitude of the field in power-law relations. This provides the relationships among parameters which generates novel knowledge for applications in the future.

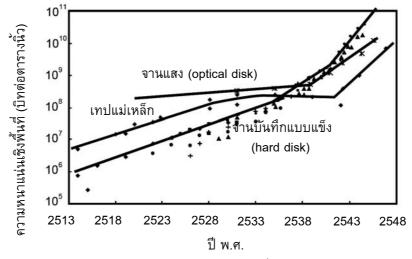
Keywords: Monte Carlo simulations, magnetic thin–films, mechanical stress, structural defects, hysteresis properties

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ. และ สกว.

- 1. บทความวิชาการที่ได้ตอบรับหรือเสนอเพื่อตีพิมพ์ในวารสารวิชาการนานาชาติ (International publications) <u>จำนวน 11 เรื่อง</u> แบ่งเป็น ได้ตอบรับตีพิมพ์แล้วโดยเป็นผู้วิจัยหลัก 3 เรื่อง เป็น ผู้วิจัยร่วม 7 เรื่อง และกำลังรอการพิจารณาตอบรับจำนวน 1 เรื่อง
 - 1.1 ผลงานวิจัยที่ได้รับการตีพิมพ์หรือตอบรับแล้ว 3 เรื่อง คือ

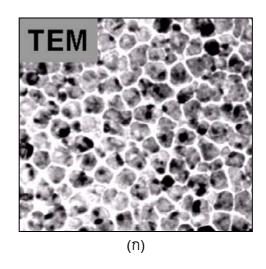
<u>(ผู้วิจัยหลัก)</u>

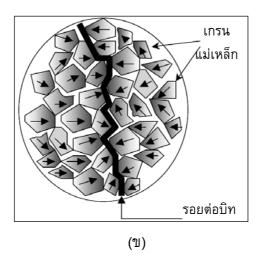
- 1.1.1 **Y. Laosiritaworn**, S. Ananta and R. Yimnirun, "Temperature effects in the magnetic properties of two-dimensional Ising square lattices: A Monte Carlo investigation", *Phys. Rev. B* 75, 054417 (2007). (Impact factor = 3.075) (ภาคผนวก ก.)
- 1.1.2 **Y. Laosiritaworn**, S. Ananta, J. Poulter and R. Yimnirun, "Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses", *Ceram. Int* (2007) (in press) doi:10.1016/j.ceramint.2007.10.034. (Impact factor = 1.128) (ภาคผนาก ป)
- 1.1.3 **Y. Laosiritaworn**, "Magnetic hysteresis properties in dilute Ising ultra-thinfilm: Monte Carlo investigation", *Adv. Mater. Res.* (2008) (accepted) (ภาคผนวก ค)
- (ผู้วิจัยร่วม) จำนวน 7 เรื่อง (เป็นงานร่วมเนื่องจากนำเทคนิคที่คิดค้นใช้วิเคราะห์วงฮิสเทอรี ซิสในโครงการ ไปวิเคราะห์วงฮิสเทอรีซิสทางไฟฟ้าของสารอิเล็กโทรเซรามิกส์ซึ่งก็ได้ผลที่ดี เช่นกัน แต่เนื่องจากไม่ใช่งานโดยตรงกับที่รับทุน คือ การจำลองสถานการณ์มอนติคาร์โล (Monte Carlo simulations) จึงไม่ได้ใส่ในภาคผนวก)
- 1.1.4 R. Yimnirun, **Y. Laosiritaworn**, S. Wongsaenmai, and S. Ananta, "Scaling behavior of dynamic hysteresis in soft lead zirconate titanate bulk ceramics", *Appl. Phys. Lett.* 89, 162901 (2006).
- 1.1.5 R. Yimnirun, S. Wongsaenmai, S. Ananta and Y. Laosiritaworn, "Stress-dependent scaling behavior of dynamic hysteresis in bulk soft ferroelectric ceramic", *Appl. Phys. Lett.* 89, 242901 (2006).
- 1.1.6 R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, and **Y. Laosiritaworn**, "Temperature scaling of dynamic hysteresis in soft lead zirconate titanate bulk ceramic", *Appl. Phys. Lett.* 90, 112906 (2007).
- 1.1.7 R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, and **Y. Laosiritaworn**, "Dynamic hysteresis and scaling behavior of hard lead zirconate titanate bulk ceramics", *Appl. Phys. Lett.* 90, 112908 (2007).
- 1.1.8 R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, and **Y. Laosiritaworn**, "Temperature scaling of dynamic hysteresis in hard lead zirconate titanate bulk ceramic", *Appl. Phys. A* 28, 737 (2007).
- 1.1.9 R. Yimnirun, S. Wongsaenmai, R. Wongmaneerung, N. Wongdamnern, A. Ngamjarurojana, S. Ananta and Y. Laosiritaworn, Stress- and temperature-

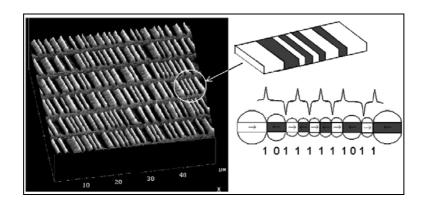

- dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics, *Phys. Scr. T* T129, 184 (2007).
- 1.1.10 R. Yimnirun, N. Wongdamnern, N. Triamnak, M. Unruan, A. Ngamjarurojana, S. Ananta and **Y. Laosiritaworn**, "Stress-dependent scaling behavior of subcoercive field dynamic ferroelectric hysteresis in Pb (Zn_{1/3} Nb_{2/3})O₃ -modified Pb (Zr_{1/2} Ti_{1/2}) O₃ ceramic", J. Appl. Phys. 103, 086105 (2008).
- 1.2 ผลงานวิจัยที่ได้ส่งไปตีพิมพ์และอยู่ในระหว่างการพิจารณา 1 เรื่อง คือ
 - 1.2.1 **Y. Laosiritaworn**, "Monte Carlo simulation on thickness dependence of hysteresis properties in Ising thin-films", submitted to Thin Solid Films. (ภาคผนวก ง)
- 2. การนำผลงานไปเสนอหรือกำลังจะนำเสนอในที่ประชุมวิชาการระดับนานาชาติ 4 เรื่อง
 - 2.1 **Y. Laosiritaworn**, "Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses", Poster presentation at "The 5th Asian Meeting on Electroceramics (AMEC-5)", 10-14 December 2006, Sofitel Central Plaza Hotel, Bangkok, Thailand. (ภาคผนวก จ)
 - 2.2 **Y. Laosiritaworn**, "Magnetic hysteresis properties in dilute Ising ultra-thin-film: Monte Carlo investigation", Poster presentation at "Smart/Intelligent Materials and Nano Technology 2008 (SmartMat'08)", 22-25 April 2006, Imperial Mae Ping Hotel, Chiang Mai, Thailand. (ภาคผนวก ฉ)
 - 2.3 **Y. Laosiritaworn**, "Monte Carlo Simulations in Advancing Magnetic Recording Applications", Oral presentation at "The Eighth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC2008)", 6 11 July 2008, HEC Montréal, Canada. (ภาคผนวก ช)
 - 2.4 Y. Laosiritaworn, "Monte Carlo simulation on thickness dependence of hysteresis properties in Ising thin-films", Poster presentation at "The 4th International Conference on Technological Advances of Thin Films & Surface Coating", 13 16 July 2008, Administration Building of Singapore Management University (SMU), Singapore. (ภาคผนวก ช)

Executive Summary

1. ที่มาและความสำคัญของปัญหา


ขณะที่โลกกำลังก้าวเข้าสู่ยุคเทคโนโลยีสารสนเทศ การเชื่อมต่อในระบบเครือข่าย อินเตอร์เน็ตได้ทวีความสำคัญขึ้นอย่างมาก ยิ่งไปกว่านั้นจากการเติบโตของอินเตอร์เน็ตความเร็วสูง ทั่วโลกส่งผลให้เกิดการแลกเปลี่ยนข้อมูลมหาศาล สิ่งที่ตามมา คือ ความต้องการที่พักสำหรับข้อมูล เหล่านั้นหรือที่เรียกว่าหน่วยเก็บสารสนเทศ (data storage) โดยการสำรวจข้อมูลที่แลกเปลี่ยนกันใน อินเตอร์เน็ตเฉพาะในปี พ.ศ. 2543 มีจำนวนถึง 5 เฮกซะไบต์ (10¹⁸ ไบต์) และเพิ่มเป็น 100 เฮกซะ ไบต์ในปลายปีพ.ศ. 2544 (Miura, 2001) ในช่วงเวลาเพียงหนึ่งปี ซึ่งแสดงถึงการเติบโตของข้อมูล ในอินเตอร์เน็ตอย่างก้าวกระโดด


หน่วยเก็บสารสนเทศที่ใช้กันอยู่ในปัจจุบันมีอยู่หลายรูปแบบไม่ว่าจะเป็น ซีดี ดีวีดี เทป แม่เหล็ก แต่หน่วยเก็บที่มีศักยภาพเพียงพอที่นำมาใช้จัดเก็บข้อมูลมหึมาในโลกอินเตอร์เน็ตนี้ คือ ฮาร์ดดิสก์ (hard disk) ในคอมพิวเตอร์นั่นเอง ฮาร์ดดิสก์นี้มีข้อดีเหนือหน่วยเก็บอื่น ๆ ในแง่ของความ จุข้อมูลต่อหน่วย(ดังแสดงในรูปที่ 1) ราคาต่อหน่วยความจุ และความเร็วในการเข้าถึงข้อมูล

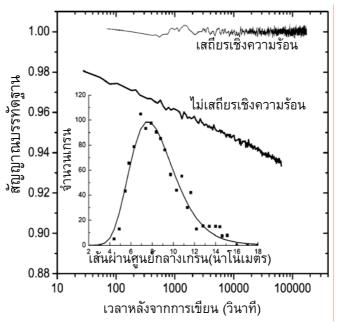

รูปที่ 1 ความจุของหน่วยเก็บสารสนเทศแบบต่างๆ ตามปีที่ผลิต (ดัดแปลงจาก Muira (2001))

การจัดเก็บข้อมูลลงฮาร์ดดิสก์ ในปัจจุบันจะทำโดยบันทึกทิศทางสภาพแม่เหล็กในแนว ตามยาว(แนวนอน)ลงในบริเวณเล็ก ๆ ซึ่งเป็นกลุ่มของเม็ดเกรนสารแม่เหล็กบนจานแม่เหล็กใน ฮาร์ดดิสก์ กลุ่มของเม็ดเกรนนี้(ดังแสดงในรูปที่ 2) จะมีทิศทางของสภาพแม่เหล็ก (จากผลเฉลี่ย สภาพแม่เหล็กของทุกเกรนภายใน) ภายหลังการบันทึกเพียงแค่สองทิศทางเท่านั้น ทิศทางทั้งสองนี้ จะสื่อถึงหน่วยย่อยที่สุดของข้อมูลแบบดิจิตอลที่เรียกว่าบิทข้อมูล (data bit) การอ่านบิทข้อมูลจากการเปลี่ยนทิศของสภาพแม่เหล็กนี้สามารถอธิบายได้โดยใช้รูปที่ 3

รูปที่ 2 (ก) ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) ของเม็ดเกรนสารแม่เหล็กใน ฮาร์ดดิสก์และ (ข) แสดงกลุ่มของเกรนแม่เหล็กที่ถูกบันทึกทิศทางสภาพแม่เหล็ก (บิทข้อมูล) และ ช่องว่างของกลุ่มเกรนซึ่งสื่อถึงรอยต่อบิท (ดัดแปลงจาก Litvinov (2002))

รูปที่ 3 ภาพจุลทรรศน์ของแรงแม่เหล็กของสื่อที่บันทึกข้อมูลในฮาร์ดดิสก์ จุดสูงสุดและจุดต่ำสุดของ สัญญาณ คือ ฟลักซ์แม่เหล็กที่เปลี่ยนแปลงฉับพลันจากการเลื่อนตำแหน่งจากขั้วเหนือไปขั้วใต้ (และในทางกลับกัน) ซึ่งตำแหน่งของจุดสูงสุดกับต่ำสุดของสัญญาณนี้จะแทนข้อมูลเป็นบิท '1' และ ตำแหน่งอื่นจะเป็นบิท '0' (Moser *et al.*, 2002)

ในการตอบสนองต่ออุตสาหกรรมข้อมูลในอินเตอร์เน็ตนี้ ฮาร์ดดิสก์จะต้องมีความจุเพิ่มขึ้น เรื่อยๆ โดยยังคงรักษาขนาดที่เท่าเดิมอยู่ ดังนั้นในการผลิตฮาร์ดดิสก์จึงต้องลดจำนวนเกรนแม่เหล็ก ที่ใช้ในการบันทึกข้อมูลหนึ่งบิทลงซึ่งจะทำให้สามารถอัดจำนวนบิทข้อมูลได้มากขึ้นลงไปในปริมาตร เท่าเดิม ผลที่ตามมาจากการลดจำนวนเกรนในข้อมูลแต่ละบิทก่อให้เกิดข้อเสีย คือ ความเข้มของ สภาพแม่เหล็กในข้อมูลแต่ละบิทลดลงจนตรวจวัดได้ยาก ซึ่งต้องใช้หัวอ่านข้อมูลคุณภาพสูงเช่น หัวอ่านความต้านสภาพแม่เหล็กยักษ์ (Giant Magneto Resistive : GMR) และอุณหภูมิของ สิ่งแวดล้อมจะมีอิทธิพลมากขึ้นซึ่งก่อให้เกิดความผันผวนของทิศทางสภาพแม่เหล็กของแต่ละเกรน กล่าวคือพลังงานอันตรกิริยาระหว่างโมเมนต์แม่เหล็กสามารถอธิบายได้ด้วยแบบจำลองของไฮเซน เบิรก์ (Heisenberg model)


$$H = -\sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j + \sum_{ij\sum} D_{ij} \left(\frac{\vec{S}_i \cdot \vec{S}_j}{r_{ij}^3} - \frac{\left(\vec{S}_i \cdot \vec{r}_{ij} \right) \left(\vec{S}_j \cdot \vec{r}_{ij} \right)}{r_{ij}^5} \right) - \sum_i \left(\vec{k}_i \cdot \vec{S}_i \right)^2$$

$$\tag{1}$$

โดยที่ J_{ij} คือ พลังงานแลกเปลี่ยน (exchange energy) ระหว่างโมเมนต์แม่เหล็ก และ \bar{S}_i คือ โมเมนต์แม่เหล็กของเม็ดเกรนที่ตำแหน่ง i D_{ij} คือ อันตรกริยาไดโพลแม่เหล็ก (magnetic dipolar interaction) ซึ่งมีสมบัติเป็นความไม่สม่ำเสมอของพลังงานเชิงรูปร่าง และ D_{ij} มีค่าน้อย กว่า J_{ij} มาก และท้ายสุด \bar{k}_i เป็นความไม่สม่ำเสมอของพลังงานประจำจุด (onsite anisotropy) ซึ่ง อาจจะเป็นสมบัติภายในอะตอมเอง ซึ่งเกิดการควบคู่ของฟังก์ชันคลื่นของอิเล็กตรอน หรือเป็นสมบัติ เชิงโครงสร้าง เช่น อะตอมแม่เหล็กที่พิจารณาอยู่ที่บริเวณผิวสสารทำให้มีสภาพแวดล้อมที่แตกต่าง จากอะตอมที่อยู่ภายในตัวสสารทำให้มีความแตกต่างเชิงพลังงานเกิดขึ้น อย่างไรก็ตาม ทั้งขนาด k_i

และ D_{ij} จะมีค่าน้อยกว่า J_{ij} มาก ดังนั้นในกรณีที่ต้องการวิเคราะห์หาสมบัติแม่เหล็กวิกฤตเป็นหลัก มักจะพิจารณาพจน์ที่มี J_{ij} เพียงพจน์เดียว

จากแบบจำลองนี้ถ้า $J_{ij}>0$ จะเห็นได้ว่าสภาวะที่เสถียรหรือมีพลังงานต่ำสุด โมเมนต์ แม่เหล็กในแต่ละเกรนต้องวางตัวในทิศขนานกันและเสถียรภาพของสภาพแม่เหล็กเฟร์โรของข้อมูล แต่ละบิทนี้จะขึ้นกับจำนวนคู่ของ (i,j) ของเม็ดเกรนแม่เหล็กที่อยู่ในบิทนั้น นั่นคือ ยิ่งถ้าจำนวนคู่ หรือจำนวนเม็ดเกรนมากข้อมูลบิทนั้นจะมีพลังงานยึดเหนี่ยวสูงและมีเสถียรภาพ อย่างไรก็ตามถ้า ลดจำนวนเกรนในแต่ละบิทลง พลังงานยึดเหนี่ยวในแต่ละบิทจะลดลงตามไปด้วยจนถึงจุดหนึ่งที่ พลังงานความร้อนจากอุณหภูมิของสิ่งแวดล้อมมีค่าสูงกว่าพลังงานยึดเหนี่ยวในบิทนั้น จะทำให้ ทิศทางของโมเมนต์แม่เหล็กของแต่ละเกรนในบิทไม่ขึ้นต่อกัน(วางตัวแบบสุม) เกิดการหักล้างกันจน สภาพแม่เหล็กมีขนาดลดลง ปรากฏการณ์เช่นเรียกว่า "แม่เหล็กพารายวดยิ่ง" (superparamagnetic) ซึ่งมีผลทำให้ข้อมูลที่บันทึกในแต่ละบิทเสื่อมไปตามเวลาดังแสดงในรูปที่ 4

รูปที่ 4 สัญญาณบรรทัดฐานแสดงความเสถียรและไม่เสถียรเชิงความร้อนของข้อมูลเป็นฟังก์ชันกับ เวลา รูปเล็กแสดงการกระจายของขนาดเกรนของสื่อบันทึกที่เสถียรเชิงความร้อน ณ ความหนาแน่น ข้อมูล 35 กิกะบิทต่อตารางนิ้ว (ดัดแปลงจาก Lambeth (2000))

อย่างไรก็ตาม ในการที่จะเพิ่มความจุไปเรื่อย ๆจะประสบปัญหา เนื่องจาก ในการเพิ่มความจุ จะต้องเพิ่มจำนวนบิทข้อมูลลงบนแพลตเตอร์ (แผ่นจานในฮาร์ดดิกส์) ซึ่งสามารถทำได้โดยการลด ขนาดเกรน(กลุ่มของอะตอมที่มีสปินแม่เหล็ก)ที่มีทิศทางแม่เหล็กเดียวกันลง ดังนั้น เมื่อลดขนาดไป เรื่อย ๆจะทำให้อันตรกิริยาแม่เหล็กลดลงตามลงไป และทำให้เสถียรภาพทางแม่เหล็กเชิงความร้อนมี ขนาดลงด้วยเช่นกัน เมื่อถึงจุดหนึ่งที่ความร้อนจากภายนอกมีขนาดใกล้เคียงกับพลังงานขวางกั้น

(energy barrier) จะทำให้ทิศทางแม่เหล็กของเกรนแม่เหล็กสามารถเปลี่ยนทิศทางไปมาอย่างสุ่ม ทำ ให้เสถียรภาพของแม่เหล็กและข้อมูลที่บันทึกลงไปมีการเสื่อมหรือผิดพลาดเป็นเวลาผ่านไป ปรากฏการณ์เช่นนี้ เรียกว่า ปรากฏการณ์ แม่เหล็กพารายวดยิ่ง (superparamagnetic effect)

ทางออกหนึ่งของการแก้ปัญหานี้ คือ การเสาะแสวงหาวัสดุตลอดจนโครงสร้างที่เหมาะสม ของวัสดุนั้น ๆ ที่ทำให้ค่าพลังงานขวางกั้นอันสัมพันธ์กับสนามลบล้างแม่เหล็ก(coercive field) ซึ่ง ทำหน้าที่ต่อต้านการเปลี่ยนทิศทางแบบสุ่มอันเนื่องจากความร้อนของบิทข้อมูลใด ๆ มีค่าสูง พลังงานขวางกั้นนี้อาจอยู่ในรูปแบบพลังงานแอนไอโซโทรปี (anisotropy energy) ซึ่งพลังงานขวาง กั้นนี้จำเป็นต้องมีค่ามากกว่าพลังงานความร้อนจากสิ่งแวดล้อม(พลังงานความร้อนโบลทซ์มานน์ มี ค่าโดยประมาณ k_BT เมื่อ k_B คือ ค่าคงที่ของโบลทซ์มานน์ และ T คือ อุณหภูมิในหน่วยเคลวิน) ใน การที่จะให้ข้อมูลที่บันทึกมีเสถียรภาพเชิงเวลาสูง อย่างไรก็ตาม พลังงานขวางกั้นนี้ไม่ควรจะสูง เกินไปเนื่องจากจะทำให้สารแม่เหล็กมีอุณหภูมิคูรีสูงและต้องใช้สนามแม่เหล็กที่ตัวหัวเขียนสูงมาก

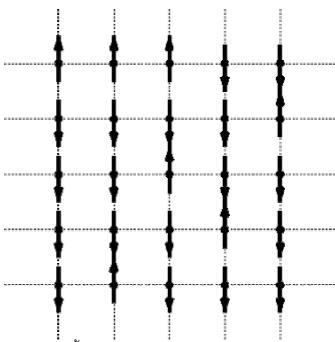
ดังนั้น ในงานวิจัยที่เสนอนี้จะมุ่งศึกษาผลของโครงสร้างของฟิล์มแม่เหล็กที่มีพลังงานขวาง กั้นในรูปแบบอุณหภูมิคูรีที่มีขนาดพอเหมาะในเชิงทฤษฎี โดยจะเน้นไปยังสภาวะเงื่อนไขสารจริงที่ การใช้งานสารแม่เหล็กในฮาร์ดดิกส์ซึ่งอยู่ในรูปฟิล์มบาง ทั้งนี้ สารแม่เหล็กที่ถูกใช้งานมักจะอยู่ ภายใต้สภาวะความเค้น (stress) ซึ่งจะเกิดจากความเค้นภายนอก หรือความเค้นภายในซึ่งอาจจะ เกิดจากการที่ฟิล์มแม่เหล็กที่ปลูกบนชั้นรอง(substrate) มีขนาดระยะห่างระหว่างแลตทิชไม่เท่ากัน ผลที่ตามมาความเค้นนี้จะทำให้สมบัติทางแม่เหล็กของสารแม่เหล็กดังกล่าวเปลี่ยนไปจากสภาวะ อุดมคติที่ไม่มีความเค้นมากระทำ ดังนั้นการวิจัยอิทธิพลของความเค้นจึงมีความสำคัญอย่างยิ่งต่อ การออกแบบและจัดสร้างอุปกรณ์ทางแม่เหล็กใด ๆ จากการวิจัยที่ผ่านมาพบว่าความเค้นนี้มีบทบาท ในการเพิ่ม-ลดประสิทธิภาพการใช้งานและคุณสมบัติของสารเซรามิก เนื่องจากสามารถไปเพิ่มหรือ ลดอุณหภูมิคูรีได้ และไปเปลี่ยนแปลงรูปร่างของวงฮิสเทอรีซิสและการเปลี่ยนเฟสได้ (Mendiola et al., 1998; Lu et al., 2000) กอปรกับการวิจัยเกี่ยวกับผลของความเค้นที่พิจารณาร่วมกับผลของ ขนาดสนามสูงสุดและผลของความถี่ของสนามต่อสมบัติฮิสเทอรีซิสยังมีปรากฏในวารสารงานวิจัยใน ระดับนานาชาติน้อย

นอกจากนั้น ในงานวิจัยนี้ ยังมุ่งศึกษาผลของความไม่สม่ำเสมอในเงื่อนของอุณหภูมิที่มัก เกิดในสสารทั่วไป ในกรณีของสารแม่เหล็กฟิล์มบางนี้อาจจะเกิดได้จากการที่สนามหัวอ่านจะส่งผล ให้ผิวบริเวณใกล้หัวอ่านมีอุณหภูมิกว่าที่อื่นๆ (Hu et al., 2006) ซึ่งจะทำให้อุณหภูมิมีค่าเปลี่ยนไป ตามระยะทางที่ออกจากหัวอ่าน ผลที่ตามมาจะทำให้เสถียรภาพของสภาพแม่เหล็กเชิงความร้อนใน ตำแหน่งต่างๆของฟิล์มแม่เหล็กมีค่าไม่เท่ากัน(เนื่องจากอุณหภูมิไม่เท่ากัน)ส่งผลให้สภาพแม่เหล็ก โดยรวมแปรเปลี่ยนไปจากอุดมคติ

ท้ายสุด จากสารแม่เหล็กทั่วไปที่เตรียมในสภาวะปกติมักจะพบว่าจุดบกพร่องแบบช่องว่าง ในระดับตั้งแต่ไมโครเมตรลงไปยังนาโนเมตร(ความพรุน)เกิดขึ้นและกระจายตัวอยู่ในสารแม่เหล็ก ผลจากจุดบกพร่องนี้เป็นที่ทราบกันดีว่าจะทำให้คุณสมบัติแม่เหล็กของสารแปรเปลี่ยนจากสภาวะ อุดมคติ และในการออกแบบใช้งานสารแม่เหล็กจะผิดพลาดไปหากไม่ได้คำนึงถึงจุดบกพร่องนี้ ในทางกลับกันจุดบกพร่องแบบช่องว่างนี้ในขนาดที่เหมาะสมซึ่งอยู่ในเรือนนาโนเมตรสามารถนำไป ปรับปรุงคุณสมบัติแม่เหล็กแบบควบคุมได้ เช่น ไปเพิ่มขนาดสนามหักล้างหรือนำไปควบคุม อุณหภูมิคูรีได้เนื่องจากอันตรกิริยาแม่เหล็กจะเป็นสัดส่วนกับจำนวนอะตอมที่อยู่ข้างเคียง ดังนั้น หากมีจุดบกพร่องแบบช่องว่างปรากฏอยู่ในสารแม่เหล็กจะทำให้อันตรกิริยาแม่เหล็กโดยรวม(โดย เฉลี่ย)มีค่าลดลงทำให้อุณหภูมิที่ต้องใช้เปลี่ยนเฟสแม่เหล็กจากสภาพแม่เหล็กเฟร์โรเป็นพาราลดลง ด้วย

ดังนั้น หากทราบหรือทฤษฎีพื้นฐานเกี่ยวกับผลของความเค้น ผลของความไม่สม่ำเสมอของ อุณหภูมิ และผลจุดบกพร่องแบบช่องว่างในเรือนนาโนเมตรที่มีต่ออุณหภูมิคูรี(และพลังงานขวางกั้น) และฮิสเทอรีซิสทางแม่เหล็กนี้จะเกิดองค์ความรู้ที่สำคัญอย่างยิ่งยวดต่อการแสวงหาวัสดุแม่เหล็ก สำหรับการประยุกต์ใช้ เช่น ฮาร์ดดิสก์ ที่มีความคุ้มทุนเชิงพาณิชย์มากที่สุดในช่วงการใช้งานจริง เพื่อค้นหาวัสดุที่มีความคุ้มทุนเชิงพาณิชย์มากที่สุด

อย่างไรก็ตาม เพื่อให้การศึกษานี้ มีความกว้างขวางเพิ่มขึ้น จะขยายขอบเขตงานโดยศึกษา และพิจารณาระบบสปินที่นอกจากจะอธิบายระบบไดโพลแม่เหล็กเฟร์โรได้แล้ว สามารถอธิบาย ระบบไดโพลไฟฟ้า(ระบบเฟร์โรอิเล็กทริก)ได้ด้วย ซึ่งทั้งสองระบบรวมเรียกได้ว่าระบบเฟร์โรอิก (ferroic system)


2. ทฤษฎีพื้นฐาน และ ระเบียบวิธีวิจัย

ในหัวข้อนี้ จะอธิบายทฤษฎีพื้นฐานทางด้านฮามิลโทเนียนของระบบสปินที่เลือกใช้ใน การศึกษา การจำลองสถานการณ์มอนติคาร์โล ผลการทดลอง(การคำนวณ)ที่ได้และข้อสรุปผล (พิจารณาบทความที่แนบในภาคผนวกประกอบ)

2.1 ฮามิลโทเนียนของสปิน

ในการศึกษานี้ ได้พิจารณาใช้การจำลองสถานการณ์มอนติคาร์โลเพื่อศึกษาพฤติกรรม แม่เหล็ก(โดยเน้นในโครงสร้างฟิล์มบาง) ซึ่งสามารถอธิบายได้ด้วยสปินแบบไอซิง (Ising spin) ที่มี ทิศทางเป็นไปได้สองรูปแบบ เช่น ขึ้นหรือลง ±1 ซึ่งเหมาะสมสำหรับระบบฟิล์ม(ทั้งนี้เป็นผล เนื่องจากความไม่สม่ำเสมอเชิงพลังงานในโครงสร้างของฟิล์มมีค่าสูง) (Bander and Mills, 1988; Binder and Hohenberg, 1974; Dunlavy and Venus, 2004; Elmers et al., 1994; Li and Baberschke, 1992) ทำให้เกิดแกนง่าย (easy axis) และสปินจะอยู่ในทิศนี้เป็นหลัก สปินไอซิงนี้จะ ใช้ในกรณีที่ศึกษาระบบแม่เหล็กเฟร์โร และสปินแบบไฮเซ็นเบิรก์ที่ถูกกำหนดทิศทางแบบตายตัว 14 รูปแบบตามโครงสร้างเททระโกนอล (tetragonal) และแบบ รอมโบฮีดรอล (rhombohedral) เมื่อศึกษาระบบเฟร์โรอิเล็กทริก(Haertling, 1999; Scott 2002) โดยสมมติให้สปินเหล่านี้ตั้งอยู่บน จุดแลตทิชที่มีไดโพลไฟฟ้าหรือแม่เหล็ก ตัวอย่างของระบบสปินไอซิงในสองมิติ(ฟิล์มบางยิ่ง)แสดง

ได้ดังรูปที่ 5 นอกจากนั้น ขนาดของสปินจะยุบรวมกับอันตรกิริยาแม่เหล็ก (exchange interaction) ในกรณีแม่เหล็กเฟร์โร หรือรวมกับอันตรกิริยาไดโพลไฟฟ้า (electric dipole interaction) ในกรณี เฟร์โรอิเล็กทริก และอันตรกิริยาทั้งสองรูปแบบนี้จะกำหนดค่าให้เป็น 1 เพื่อให้เป็นหน่วยของ พลังงานที่ใช้ในการคำนวณ

รูปที่ 5 แผนภาพแสดงสปินไอซึ้งตั้งอยู่บนจุดแลตที่ซจตุรัส

โดยการกำหนดฮามิลโทเนียน การศึกษาพิจารณาผลของอันตรกิริยาแลกเปลี่ยน(หรืออันตร กิริยาไฟฟ้า)เป็นหลัก ดังนั้น อันตรกิริยาระหว่างสปินเมื่อพิจารณาร่วมกับผลของสนามภายนอกที่ แปรเปลี่ยนตามเวลา คือ

$$H = -J \sum_{\langle i,j \rangle} \hat{s}_i \cdot \hat{s}_j - \vec{h}(t) \cdot \sum_i \hat{s}_i$$
(2)

โดยที่ J คือ อันตรกิริยาระหว่างสปิน และ <...> แสดงถึงว่าเฉพาะคู่สปินที่อยู่ใกล้กันมากที่สุด เท่านั้นที่พิจารณา ในที่นี้ จะพิจารณา J=1 ดังนั้น หน่วยของพลังงาน คือ J และหน่วยของ อุณหภูมิ T คือ J/k เมื่อ k คือ ค่าคงที่ของโบลทซ์มานน์ (Boltamann's constant) ซึ่งมีค่าเท่ากับ $1.38\times10^{-23}\,\mathrm{J/K}$ และสนามที่ใช้มีรูปแบบไซน์ คือ

$$h(t) = h_0 \sin(2p \ ft)\hat{z} \tag{3}$$

โดยที่ h_0 เป็นแอมปลิจูดของสนาม f เป็นความถี่ และ t เวลาในการจำลองสถานการณ์มอนติคาร์โล มีหน่วยเป็น จำนวนครั้งการอัพเดทสปินทุกตัวในระบบ (Monte Carlo step per site)

2.2 การจำลองสถานการณ์มอนติคาร์โล

ในการจำลองสถานการณ์มอนติคาร์โลกับระบบสปินในการศึกษานี้ มีขั้นตอนโดยทั่วไป ดังต่อไปนี้ (Binder and Heermann, 1997; Landau and Binder 2000; Newman and Barkema, 1999)

- 1. จะต้องทำการเลือกฮามิลโทเนียนและโครงสร้างของสสารก่อน (เช่น แบบลูกบาศก์อย่าง ว่าย (simple cubic) หรือ แลตทิซจตุรัส (square lattice)) ซึ่งจะต้องทราบขนาดของ ระบบด้วย เช่น ถ้าเป็นระบบเชิงปริมาตรแบบลูกบาศก์ที่มีด้านทั้งสามมีจำนวนแลตทิซ L จุด จะมีจำนวนจุดแลตทิซ(สปิน)ทั้งหมด $N=L\times L\times L$ หรือ ถ้าเป็นฟิล์มบางที่มีความหนา l และแต่ละชั้นมีขนาด $L\times L$ จะมี $N=L\times L\times l$
- 2. จากนั้นจะต้องกำหนดชนิดของเงื่อนไขขอบเขตว่าเป็นเงื่อนไขขอบเขตแบบอิสระ (free boundary) หรือเป็นซ้ำรอบ (periodic boundary)
- 3. ทำการสร้างสภาวะเริ่มต้น (initial configuration) คือ ขณะที่กำลังเริ่มทำการจำลอง สถานการณ์ ระบบสปินมีการวางตัวอย่างไร เช่น ทุกสปินอาจจะชี้ไปในทิศทาง z ทุกตัว หรือ แต่ละสปินก็ต่างวางตัวแบบสุ่มไม่ขึ้นต่อกัน เป็นต้น
- 4. เลือกใช้ขั้นตอนวิธี(algorithm)ในการจำลองสถานการณ์ ซึ่งในการศึกษานี้จะมีได้ 2 แบบ คือ
 - 4.1 แบบเมโทรโพลิส (Metropolis) (Metropolis et~al., 1953) โดยจะทำการเลือกสุ่ม สปินขึ้นมาหนึ่งสปิน จากนั้น กลับทิศสปินเป็นทิศทางสุ่มใด ๆ แล้วคำนวณหา พลังงานที่เปลี่ยนแปลงของระบบอันเนื่องจากการเปลี่ยนทิศนี้แล้วกำหนดให้เป็น ΔE จากนั้น ทำการสุ่มตัวเลขสุ่ม r ซึ่งมีการกระจายตัวสม่ำเสมออยู่ระหว่าง 0 ถึง 1 แล้ว ทำการเปรียบเทียบว่า ถ้า $r \leq \exp\left(-\frac{1}{kT}\Delta E\right)$ (โดยที่ k เป็นค่าคงที่ของโบลท์ มานน์) จะยอมรับการเปลี่ยนทิศนั้น แต่ถ้าไม่จะไม่ยอมรับแล้วเปลี่ยนสปินให้กลับมา เป็นทิศเริ่มตันดังเดิม จากนั้นทำเช่นนี้ทำไปเรื่อย ๆจนกว่าจะครบเวลาที่กำหนดไว้ใน การจำลองสถานการณ์
 - 4.2 แบบวอลฟ์ (Wolff) (Wolff, 1989) เป็นการกลับทิศสปินที่ละกลุ่ม คือ จะเลือกสปิน ขึ้นมาหนึ่งตัวเป็นสปินเริ่มต้น เช่น \hat{s}_i จากนั้น ทำการสุ่มเลือกทิศทางอิสระใหม่(ที่มี อิสระของทิศทางเช่นเดียวกับสปิน) ขึ้นมาหนึ่งทิศทาง เช่น \hat{R} และสุ่มเลือกเลขสุ่ม r ซึ่งมีการกระจายตัวสม่ำเสมออยู่ระหว่าง 0 ถึง 1 แล้ว และถัดไปพิจารณาสปิน ข้างเคียงเช่น \hat{s}_j ซึ่งถ้าหากพบว่า $r \leq P_{link} \equiv 1 \exp\left\{\min\left(0, -2\beta J_{ij}\left(\hat{R}\cdot\hat{s}_i\right)\left(\hat{R}\cdot\hat{s}_j\right)\right)\right\}$ จะทำการบันทึกสปิน \hat{s}_j ให้ อยู่ในกลุ่มเดียวกับ \hat{s}_i แต่ถ้าไม่ใช่ก็ไม่ต้องจัดเข้ารวมกลุ่ม จากนั้นพิจารณาสปินตัว ข้างเคียง \hat{s}_i ตัวอื่นๆต่อไปแล้วทำการรวมกลุ่มซ้ำ เมื่อพิจารณาสปินข้างเคียง \hat{s}_i จน

หมดทุกสปินแล้ว ให้ทำเช่นเดียวกับสปิน \hat{s}_{j} ที่เพิ่งจัดเข้ารวมกลุ่มในลักษณะ เดียวกัน จนไม่สามารถจัดสปินใด ๆเข้ารวมกลุ่มได้อีก (หมายเหตุ สปินตัวหนึ่ง ๆ อาจจะเคยถูกปฏิเสธจากเข้ารวมกลุ่ม แต่ก็สามารถเข้ารวมกลุ่มในภายหลังได้หากมี สปินตัวอื่นอนุญาต) จากนั้นทุกสปินที่อยู่ในกลุ่มเดียวกันจะเปลี่ยนทิศเป็น

$$s_i = \hat{s}_i - 2(\hat{s}_i \cdot \hat{r})\hat{r}, \tag{4}$$

ทั้งนี้ จะพบว่าวิธีแบบวอลฟ์มีความยุ่งยากกว่าวิธีเมโทรโปลิส แต่เนื่องจากธรรมชาติ ของวิธีวอลฟ์มีการปรับปรุงระบบที่ละหลาย ๆสปิน ทำให้แต่ละรูปแบบหลักการ อัพเดทมีความแตกต่างกันมากกว่ากรณีของเมโทรโพลิสที่อัพเดทสปินที่ละตัว ผลที่ ตามม ความคลาดเคลื่อนเชิงสถิติของวอลฟ์จะมีค่าน้อยกว่าของเมโทรโพลิสมาก ดังนั้นจะเป็นวิธีที่เหมาะสมหากใช้ในการศึกษาสมบัติสถิต(ไม่มีสนามที่แปรเปลี่ยน ตามเวลาภายนอกมากระทำ) แต่ถ้าต้องการศึกษาสมบัติพลวัตรเช่นสมบัติฮิสเทอรี ซิส จำเป็นต้องกลับมาใช้วิธีเมโทโพลิสที่มีความสะดวกในการเทียบเคียงจำนวน สปินที่อัพเดทกับเวลามากกว่า(เนื่องจากการอัพเดทกระทำกับสปินที่ละตัว จึง สามารถกำหนดเวลาในแต่ละช่วงของการเปลี่ยนแปลงค่าสนามตามเวลาในแง่ของ จำนวนสปินที่อัพเดทได้โดยง่าย)

- 5. หลักจากที่จำนวนสปินได้มีการอัพเดทไม่ว่าจะสำเร็จหรือไม่สำเร็จในกรณีของเมโทรโปลิส หรือ จำนวนที่สปินได้จัดเข้าอยู่ในกลุ่มในกรณีของวอลฟ์ มีค่าเท่ากับ 1 mcs จะทำการวัด ค่าสมบัติแม่เหล็กที่ต้องการศึกษา จากนั้นทำการวัดหลาย ๆครั้งและทำการหาค่าเฉลี่ย
- 6. สำหรับสมบัติสถิต สมบัติแม่เหล็กที่วัดในการศึกษานี้ คือ สภาพแม่เหล็ก (magnetization, m)

$$m(=\frac{1}{N}\sum_{i}s_{i}, \qquad (5)$$

เมื่อ N คือ จำนวนสปินทั้งหมดและสภาพรับไว้ทางแม่เหล็ก (magnetic susceptibility, γ) คือ

$$\chi = N\beta \left(\left\langle m^2 \right\rangle - \left\langle m \right\rangle^2 \right) \tag{6}$$

เมื่อ $\beta = \frac{1}{kT}$ และในการหาสมบัติวิกฤต เช่น อุณหภูมิคูรี จะหาจากคูมูแลนท์อันดับที่สี่ (fourth order cumulant) คือ (Binder, 1981)

$$U_L = 1 - \frac{1}{3} \left(\frac{\left\langle m^4 \right\rangle}{\left\langle m^2 \right\rangle^2} \right),\tag{7}$$

โดยที่หากอุณหภูมิที่คำนวณหา U_L เป็นอุณหภูมิวิกฤต ค่า U_L ไม่ว่าจะมาจาก L ใด ๆจะมี ค่าเท่ากับ แต่เนื่องจากผลของขนาดจำกัด U_L จาก L ที่ต่างกันอาจจะมีค่าต่างกันเล็กน้อย ดังนั้น จะทำการหาจุดตัดของ U_L กับ $U_{L'}$ เมื่อ L'>L และบันทึกค่าอุณภูมิ ณ ที่จุดตัดนี้

จากนั้น ทำการประมาณนอกช่วงระหว่าง อุณหภูมิที่จุดตัดเหล่านี้กับ $\ln^{-1}b$ เมื่อ b=L/L' (Binder, 1981) และจะได้อุณหภูมิคูรี จากจุดตัดแกน y คือ $\ln^{-1}b=0$ หรือ L' เข้าสู่อนันต์ จากนั้นจะคำนวณหาค่าเลขชี้กำลังวิกฤตของสมบัติแม่เหล็กจาก

$$\langle m(T,l) \rangle = L^{-(\beta/\nu)'} \tilde{m} (L^{1/\nu}t,l) \chi(T,l) = L^{(\gamma/\nu)'} \tilde{\chi} (L^{1/\nu}t,l)$$
 (8)

ซึ่งหาได้จากการวาดกราฟ $\log - \log \, s$ ะหว่าง $\log \, m \,$ หรือ $\log \, \chi \,$ กับ $\log \, L \,$ แล้วหาเลขชื้ กำลังวิกฤต $(\beta \! / \nu)'$ และ $(\gamma \! / \nu)'$ จากความชั้นของกราฟ

7. สำหรับสมบัติพลวัตร สมบัติแม่เหล็กที่วัดในการศึกษานี้ คือ สภาพแม่เหล็กที่แปรเปลี่ยน ตามเวลา คือ

$$m(t) = \frac{1}{N} \sum_{i} s_i(t) , \qquad (9)$$

แล้วนำมาวาดกราฟกับสนาม $h(\mathbf{t})$ ได้เป็นวงฮิสเทอรีซิส และจะคำนวณหาพื้นที่ใต้กราฟวง คือ

$$A = \oint mdh, \tag{10}$$

ซึ่งเป็นปริมาณสื่อให้เห็นถึงพลังงานที่สูญเสียในหนึ่งรอบของวงฮิสเทอรีซิสใด ๆ จากนั้นจะ ทำการหาความสัมพันธ์ระหว่างพื้นที่ \mathbf{A} นี้กับปริมาณปัจจัยภายนอก เช่น ถ้าปัจจัย ภายนอกคือ ความถี่ของสนาม f แอมปลิจูดของสนาม h_0 และเปอร์เซ็นต์ความบกพร่อง แบบจุดช่องว่าง c จะพิจารณาใช้ความสัมพันธ์

$$A \propto f^{\alpha} h_0^{\beta} \left(1 - c \right)^{\gamma} \tag{11}$$

แต่ถ้าปัจจัยภายนอกคือ ความถี่ของสนาม f แอมปลิจูดของสนาม h_0 และจำนวนชั้นฟิล์ม บาง l จะพิจารณาใช้ความสัมพันธ์

$$A \propto f^{\alpha} h_0^{\beta} l^{\delta} \tag{12}$$

ซึ่งความสัมพันธ์แบบเลขซี้กำลังนี้ (power law relation) จะบ่งบอกความสัมพันธ์ว่าพื้นที่ A นี้จะเปลี่ยนแปลงตามปัจจัยภายนอกอย่างไร ซึ่งจัดเป็นการสร้างฐานข้อมูลแบบหนึ่ง กล่าวคือ หากต้องการทราบว่าเมื่อปัจจัยภายนอกมีขนาดเท่านี้เท่านั้นจะมี A เท่าไร ก็ สามารถใช้สมการเลขซี้กำลังดังกล่าวในการทำนายหาค่า A ได้ทำให้เป็นการ ประหยัดเวลาและทรัพยากร และส่งผลให้การพัฒนาและวิจัยเป็นไปได้เร็วยิ่งขึ้น

2.3 ผลของความเค้นและการดัดแปลงฮามิลโทเนียน

ในการศึกษาผลของความเค้นนี้ ได้เลือกสปินเฟร์โรอิกแบบเฟร์โรอิเล็กทริก โดยอาศัย สมการแบบจำลองดิฟฟ์โฟร์ (DIFFOUR model) ที่ขนาดของโพราไรเซชันทางไฟฟ้า u_i แต่ละ ตำแหน่งมีขนาดใกล้เคียงกัน(จนไม่ต้องคิดถึงความผันผวนของขนาด) ซึ่งจะได้สมการ

$$H = \sum_{\langle ij \rangle} U_{ij} \left(\Delta l \right) \hat{u}_i \cdot \hat{u}_j - E(t) \sum_i u_{iz} , \qquad (13)$$

เมื่อ \hat{u}_i เป็นเวกเตอร์หนึ่งหน่วยที่มีทิศทางได้ 14 ทิศทาง (6 จากเททระโกนอลและ 8 จากรอมโบฮี ดรอล), $\langle ij \rangle$ บ่งบอกถึงว่าการรวมจะพิจารณาเฉพาะคู่สปินที่ใกล้เคียงกันมากสุด และ u_{iz} เป็นขนาด ของสปินในทิศทาง z ซึ่งเป็นทิศของการจ่ายความเค้น และสนาม $E(t) = E_0 \sin\left(2\pi ft\right)$ เมื่อ f และ E_0 เป็นความถี่และแอมปลิจูดของสนาม ในที่นี้ \hat{u}_i ไม่มีหน่วย ดังนั้นทั้ง U_{ij} และ E จะมีหน่วยของ พลังงาน และอันตรกิริยา $U_{ij}(\Delta l)$ เป็นฟังก์ชันของความเครียดหรือขนาดการเลื่อนของแลตทิช Δl , อันเป็นผลมาจากความเค้นที่จ่ายเข้าในระบบซึ่งสมมติว่ามีรูปแบบแบบศักย์เลนนาร์ด-โจนส์ คือ

$$U_{ij}(r_{ij}) = U_0 \left[\left(\frac{r_0}{r_{ij}} \right)^{12} - 2 \left(\frac{r_0}{r_{ij}} \right)^6 \right]. \tag{14}$$

โดยในที่นี้ r_0 คือ ระยะห่างระหว่างจุดแลตทิชที่สมดุลทางความร้อน U_0 เป็นอันตรกิริยาเฟร์โรอิ เล็กทริกที่ขึ้นกับระยะ r_0 (ที่ความเครียด $\Delta l=0$), และ r_{ij} คือ ระยะทางระหว่างจุด i และ j ทั้งนี้ สำหรับกรณีที่ไม่มีความเค้น(และความเครียด) $r_{ij}=r_0$ และ $U_{ij}=-U_0$ ดังนั้นระบบจะมีสมบัติเป็น เฟสเฟร์โรอิเล็กทริก จากนั้นเมื่อพิจาณาโมดูลัสของยังค์ (Young's modulus)

$$Y \equiv \frac{P}{\left(r_{ij} - r_0\right)/r_0} \tag{15}$$

โดยที่ P คือ ขนาดความเค้น(ความดัน) ซึ่งเมื่อจัดรูปใหม่จะได้

$$\frac{r_{ij}}{r_0} = 1 - \frac{P}{Y} \tag{16}$$

และสมการ (14) สำหรับอันตรกิริยาในทิศทางการใส่ความเค้น(ทิศทาง z) มีรูปแบบเป็น

$$U_{ij}^{z} = U_{0} \left[\left(1 - P/Y \right)^{-12} - 2 \left(1 - P/Y \right)^{-6} \right]. \tag{17}$$

อย่างไรก็ตาม ในทิศทาง xy จะมีการเลื่อนของจุดแลตทิชอันเนื่องมากจากความเค้นในแกน z ด้วย ดังนั้น จะต้องพิจารณาสัดส่วนของการเลื่อนนี้จากอัตราส่วนปัวช์ซอง (Poisson ratio) คือ

$$\varepsilon \equiv -\frac{\Delta r^{xy}}{\Delta r^z} \tag{18}$$

(โดยที่สำหรับระบบหลาย ๆระบบไล่จากโลหะไปถึงเซรามิกส์จะมีค่าarepsilon pprox 0.3) ดังนั้น จะเขียนได้ว่า

$$\varepsilon = -\frac{\Delta r^{xy}}{\Delta r^z} = -\frac{r_{ij}^{xy} - r_0}{r_{ij}^z - r_0} = \frac{1 - r_{ij}^{xy} / r_0}{r_{ij}^z / r_0 - 1}$$
(19)

ซึ่งจะได้

$$\frac{r_{ij}^{xy}}{r_0} = 1 - \varepsilon \left(\frac{r_{ij}^z}{r_0} - 1\right) = 1 + \varepsilon \frac{P}{Y}.$$
 (20)

ดังนั้น อันตรกิริยาในทิศทาง xy คือ

$$U_{ij}^{xy} = U_0 \left[\left(1 + \varepsilon P / Y \right)^{-12} - 2 \left(1 + \varepsilon P / Y \right)^{-6} \right]. \tag{21}$$

ผลที่ตามจะได้ จะได้ฮามิลโทเนียนในรูปแบบ

$$H = \sum_{\langle ij \rangle \in \text{in-plane}} U_{ij}^{xy} \hat{u}_i \hat{u}_j + \sum_{\langle ij \rangle \in \text{out-of-plane}} U_{ij}^z \hat{u}_i \hat{u}_j - E(t) \sum_i u_{iz}.$$
(22)

2.4 ผลของความไม่สม่ำเสมอเชิงอุณหภูมิ

ในกรณที่สองบริเวณใด ๆของระบบมีอุณหภูมิไม่เท่ากัน จะเกิดการส่งผ่านความร้อนเกิดขึ้น ซึ่งหาเป็นการนำความร้อน (heat conduction) อัตราการส่งผ่านความร้อนต่อเวลาจะมีรูปสมการ คือ

$$\frac{1}{A}\frac{\mathrm{d}Q}{\mathrm{d}t} = -K\frac{\mathrm{d}T}{\mathrm{d}x}\,,\tag{23}$$

โดยที่ K คือ สัมประสิทธิ์การนำความร้อน (thermal conductivity) A คือ พื้นที่หน้าตัดของการนำ ความร้อน และ $\mathrm{d}T/\mathrm{d}x$ คือ เกรเดียนท์ของอุณหภูมิในหนึ่งมิติ อย่างไรก็ตามหาเวลาผ่านไปนาน ๆจน เกิดสภาวะคงตัว อัตราส่วน $\mathrm{d}Q/\mathrm{d}t$ จะคงที่ ทำให้เกรเดียนท์ของอุณหภูมิคงที่ด้วย ดังนั้น อุณหภูมิ T จะแปรผันตรงกับระยะห่างจากส่วนปลายของระบบทั้งสองด้านที่มีอุณหภูมิต่างกัน เช่น กำหนดให้ เป็น T_1 และ T_2 โดยที่ $T_1 > T_2$ ซึ่งมีรูปสมการ คือ

$$T_{y} = T_{1} + \left(\frac{T_{2} - T_{1}}{L_{y} - 1}\right) y,$$
 (24)

เมื่อ y คือ ระยะห่างจากปลาย T_1 และ T_y คือ อุณหภูมิประจำที่ที่ตำแหน่ง y

ในการจำลองสถานการณ์มอนติคาร์โลสำหรับระบบนี้ จะใช้ขั้นตอนวิธีวอลฟ์ โดยมีความ น่าจะเป็นของการจัดสปินเข้ารวมกลุ่ม คือ

$$p = 1 - \exp\left(-\frac{2J}{k_B T_y}\right). \tag{25}$$

ในการวัดสมบัติแม่เหล็ก ได้ทำการคำนวณสภาพแม่เหล็กโดยรวม คือ

$$\langle m \rangle = \frac{1}{N'} \sum_{t}^{N'} |m_t| \tag{26}$$

และสภาพรับไว้ได้ทางแม่เหล็กโดยรวม คือ

$$\chi = \frac{1}{k_B T_v} N\left(\left\langle m^2 \right\rangle - \left\langle m \right\rangle^2\right). \tag{27}$$

นอกจากนี้ ได้ทำการศึกษาสมบัติแม่เหล็กประจำที่ โดยหาสภาพแม่เหล็กแม่เหล็กประจำที่จาก

$$m_{y} = (1/L) \sum_{i \in y} S_{i} \tag{28}$$

และสภาพรับไว้ได้ทางแม่เหล็กประจำที่ คือ

$$\chi_{y} = L\left(\left\langle m_{y}^{2}\right\rangle - \left\langle m_{y}\right\rangle^{2}\right) / k_{B}T_{y}. \tag{29}$$

2.5 ผลของความบกพร่องแบบช่องว่างต่อสมบัติฮิสเทอรี่ซิส

ในหัวข้อนี้ ได้ศึกษาระบบสปินไอซิงที่มีจุดบกพร่องแบบช่องว่างรวมอยู่ด้วยว่ามีผลอย่างไร ต่อสมบัติฮิสเทอรีซิส โดยใช้ฮามิลโทเนียนในรูปแบบ

$$H = -J \sum_{\langle i,j \rangle} s_i s_j - h(t) \sum_i s_i .$$
 (30)

ซึ่งในสมการ สปิน s_i มีค่า $\{0,+1,-1\}$ ขึ้นอยู่กับว่าตำแหน่งของสปินนั้นเป็นจุดช่องว่าง หรือมีสปิน ในทิศขึ้น หรือมีสปินในทิศลง ในการจำลองสถานการณ์มอนติคาร์โลนี้ พิจารณาระบบฟิล์มบางยิ่ง (สองมิติ)ที่มีจำนวนสปิน 80×80 สปิน และได้กำหนดให้อันตรกิริยา J เป็นหน่วยของพลังงาน ทำให้ อุณหภูมิ T มีหน่วย J/k_B และสนามที่ใช้มีรูปแบบไซน์ คือ $h(t)=h_0\sin(\omega t)=h_0\sin(2\pi ft)$ โดยที่ h_0 และ f เป็นแอมปลิจูดและความถี่ของสนามตามลำดับ จากนั้นในการอัพเดทสปินได้พิจารณาใช้ ความน่าจะเป็นเมโทร์ปลิส คือ

$$p = \exp(-\Delta E_i(t)/k_B T). \tag{31}$$

ชึ่งผลต่างพลังงาน คือ

$$\Delta E_i(t) = 2s_i \left[\sum_j s_j(t) + h(t) \right]$$
(32)

และทำการวัดสภาพแม่เหล็กที่เวลาใดๆ

$$m(t) = (1/N) \sum_{i} s_{i} \tag{33}$$

เมื่อ N คือ จำนวนสปินทั้งหมด และเมื่อวาดกราฟระหว่างสภาพแม่เหล็กกับสนามภายนอกจะได้วง ฮิสเทอรีซิสซึ่งสามารถคำนวณหาพื้นที่ใต้วงจาก

$$A = \oint mdh \tag{34}$$

และในการทดลอง ได้ทำการปรับเปลี่ยนค่า $f,\,h_0$ และเปอร์เซ็นต์จุดช่องว่าง c เพื่อศึกษาผลปัจจัย เหล่านี้ต่อรูปร่างวงและขนาดพื้นที่ A และหาความสัมพันธ์ในรูปแบบสมการ

$$A \propto f^{\alpha} h_0^{\beta} \left(1 - c \right)^{\gamma} \tag{35}$$

2.6 ผลของความหนาของฟิล์มบางต่อสมบัติฮิสเทอรีซิส

ในหัวข้อนี้ได้ทำการศึกษาในลักษณะเดียวกันกับที่ศึกษาผลความบกพร่องแบบช่องว่าง แต่ แทนที่จะใส่จุดบกพร่องแบบช่อง จะพิจารณาผลของความหนาของฟิล์มแทน ซึ่งฟิล์มจะมีขนาด ความหนาไล่ไปตั้งแต่ 1 ชั้น จนไปถึง 8 ชั้น แล้วทำการคำนวณหาสมบัติฮิสเทอรีซิสและหา ความสัมพันธ์ระหว่างสมบัติฮิสเทอรีซิสในรูปสมการ

$$A \propto f^{\alpha} h_0^{\beta} l^{\gamma}$$

$$m_r \propto f^{\alpha} h_0^{\beta} l^{\gamma}$$

$$h_c \propto f^{\alpha} h_0^{\beta} l^{\gamma}$$
(36)

เมื่อ m_r และ h_c คือ สภาพแม่เหล็กคงค้าง และสนามแม่เหล็กหักล้างตามลำดับ

3. ผลการทดลอง และการวิจารณ์ผล

พิจารณาภาคผนวก ก. ข. ค. และ ง. (เพื่อหลีกเลี่ยงความซ้ำซ้อน)

4. บทสรุปโครงการ

ในโครงการวิจัยนี้ ได้ใช้วิธีการจำลองสถานการณ์มอนติคาร์โลซึ่งจัดวิธีการศึกษาเชิงทฤษฎี
และคณนาที่มีประสิทธิภาพสูง (เนื่องจากคำนึงถึงความผันผวนเชิงความร้อนที่มีต่อระบบด้วย)กับ
การศึกษาระบบสปินแม่เหล็กในระบบฟิล์มบางที่มีความบกพร่องเชิงโครงสร้าง คือ มีจุดบกพร่อง
แบบช่องว่างและมีความไม่สม่ำเสมอเชิงอุณหภูมิ และระบบที่อยู่ภายใต้อิทธิพลของความเค้น โดย
ในการศึกษานี้ ได้พิจารณาใช้ฮามิลโทเนียน(สมการพลังงาน)ของสปิน ซึ่งสามารถอธิบายระบบเฟร์
โรอิกได้(ทั้งแม่เหล็กเฟร์โรและเฟร์โรอิเล็กทริก) ดังนั้นจึงได้ขยายผลการศึกษา คือ ไม่เพียงแต่ศึกษา
ระบบแม่เหล็กเฟร์โร แต่ยังได้ศึกษาระบบเฟร์โรอิเล็กทริกด้วย(เนื่องจากคณิตศาสตร์ที่ใช้มีลักษณะ
เดียวกัน)

จากการวางแผนการทดลอง ได้แบ่งลักษณะของการศึกษาออกเป็น 4 แบบ คือ

- 1. ผลของความสม่ำเสมอเชิงอุณหภูมิซึ่งทำให้บริเวณต่างๆ ของระบบสปินมีอุณหภูมิไม่ เท่ากัน ทำให้สภาพแม่เหล็กที่วัดได้มีการกระจายตัวออกจากปกติ และกราฟที่แสดง ยอดของสภาพรับไว้ทางแม่เหล็กมีความกว้างขึ้น เนื่องจากจุดวิกฤตของแต่ละส่วนของ บริเวณฟิล์มแม่เหล็กไม่ได้เกิดพร้อมกัน
- 2. ผลของความเค้นต่อระบบสปินเฟร์โรอิเล็กทริกซึ่งทำให้ระบบอยู่ภายใต้สภาวะความเค้น และความเครียด ซึ่งทำให้ฮามิลโทเนียนมีการเปลี่ยนแปลงไป ผลที่ตามมาส่งผลให้ สมบัติฮิสเทอรีซิสในแนวของความเครียดมีขนาดเปลี่ยนไป โดยโพลาเซชันมีขนาด ลดลงอย่างชัดเจน และเมื่อวาดกราฟของพื้นที่ใต้กราฟ(พลังงานที่สูญเสีย)กับความถึ่ พบว่า ที่ความถี่เดียวกันค่าพื้นที่มีค่าลดลง และจุดยอดของกราฟเลื่อนไปในทางที่ ความถี่สูงขึ้น อันเป็นผลมาจากความเค้นไปลดอันตรกิริยาเฟร์โรระหว่างสปิน ทำให้แต่ ละสปินมีอิสระจากกันมากขึ้น ดังนั้นที่ความต่างเฟสระหว่างสัญญาณโพลาไรเซชันกับ สัญญาณสนามภายนอกสูงสุดจึงเกิดที่ความถี่ที่สูงขึ้น
- 3. ผลของจุดบกพร่องแบบช่องว่าง(หรือจุดที่ไม่มีสปิน)ต่อสมบัติฮิสเทอรีซิส ซึ่งใน โครงสร้างฟิล์มบางยิ่งมีบางจุดแลตทิซที่ไม่มีสปินอยู่ ผลของการศึกษาพบว่าเมื่อเพิ่ม เปอร์เซ็นต์ของจุดบกพร่องนี้จะทำให้วงฮิสเทอรีซิสมีการเปลี่ยนแปลงแตกต่างกันในช่วง ความถี่ต่ำและสูง คือที่ช่วงความถี่ต่ำวงฮิสเทอรีซิสจะมีขนาดลดลง แต่ที่ช่วงความถี่สูง วงฮิสเทอรีซิสมีขนาดเพิ่มขึ้นและพื้นที่วงฮิสเทอรีซิสขนาดสูงสุดจะเลื่อนไปในทิศทางที่ ความถี่สูงขึ้น อันเนื่องจากผลของความบกพร่องนี้จะไปลดอันตรกิริยาโดยรวมในระบบ ทำให้สปินติดตามการเปลี่ยนแปลงของสนามได้ดีขึ้น ดังนั้นที่ความถี่ต่ำวงฮิสเทอรีซิสจึง

- มีขนาดเรียวบางลด(มีพื้นที่ลดลง) ส่งผลให้วงฮิสเทอรีซิสที่มีขนาดมากสุดจะเกิดขึ้นที่ ความถี่สูงขึ้น ส่งผลทำให้ที่ความถี่สูงพื้นที่วงมีขนาดสูงขึ้นเมื่อเพิ่มเปอร์เซ็นต์ความ บกพร่อง(เนื่องจากอยู่ใกล้จุดยอด)
- 4. ผลของความหนาของฟิล์มบางที่มีต่อสมบัติฮิสเทอรีซิส ซึ่งในการศึกษาจะมีการแปรค่า ความหนาของฟิล์มควบคู่กับความถี่และแอมปลิจูดของสนาม จากผลการทดลองพบว่า ที่อุณหภูมิหนึ่ง ๆ พื้นที่วงฮิสเทอรีซิสจะมีค่าเพิ่มขึ้นเมื่อเพิ่มจำนวนชั้นฟิล์มที่ความถี่ต่ำ แต่ที่ความถี่สูงพื้นที่วงกลับมีค่าลดลงเมื่อเพิ่มจำนวนชั้นฟิล์ม ทั้งนี้เป็นผลจากจำนวนชั้น ฟิล์มที่เพิ่มขึ้นจะไปเพิ่มอันตรกิริยาเฉลี่ยต่อสปินให้เพิ่มขึ้นนั่นเอง ดังนั้นที่ช่วงความถี่ ต่ำที่สปินมีเวลาสูงในการปรับเปลี่ยนทิศตามสนาม แต่เนื่องจากจำนวนชั้นที่เพิ่มขึ้นทำ ให้การปรับเปลี่ยนมีความหน่วงเพิ่มขึ้น ส่งผลให้ความต่างเฟสระหว่างสัญญาณสภาพ แม่เหล็กและสนามเพิ่มขึ้นพื้นที่วงจึงเพิ่มขึ้น แต่ที่ความถี่สูงซึ่งสปินติดตามการ เปลี่ยนแปลงของสปินได้น้อยอยู่แล้ว ยิ่งมีอันตรกิริยาที่สูง(เนื่องจากชั้นฟิล์มบางที่ เพิ่มขึ้น)จะยิ่งทำให้การเปลี่ยนแปลงเกิดขึ้นได้น้อยลงไปอีก ดังนั้นพื้นที่วงจึงมีค่าลดลง

จากการศึกษาในโครงการวิจัยนี้ได้ให้ข้อเสนอแนะเชิงทฤษฎีและคณนาสมบัติของสารเฟร์โร อีกทั้งแบบสถิตและพลวัตรเมื่อระบบที่พิจารณาเป็นฟิล์มบางและมีความบกพร่องหรือความเค้นแฝง อยู่ในระบบ ผลที่ได้เมื่อนำไปพิจารณาร่วมกับการทดลองได้ผลสอดคล้องกันดีในระดับหนึ่ง องค์ ความรู้ที่ได้นี้ คาดว่าจะช่วยให้การพัฒนาของสารเฟร์โรอิกเป็นไปได้เร็วมากขึ้นและอาจจะเป็น ประโยชน์ต่อเนื่องต่อไปเมื่อต้องการหาสารที่เหมาะเพื่อการประยุกต์ใช้หนึ่งๆในทางอุตสาหกรรม

เอกสารอ้างอิง

Bander, M., and D. L. Mills. 1988. Phys. Rev. B 38, 12015.

Binder K., and D. W. Heermann. 1997. *Monte Carlo Simulation in Statistical Physics* (Springer-Verlag, Germany).

Binder, K. 1981. Z. Phys. B 43, 119.

Binder, K., and P. C. Hohenberg. 1974. Phys. Rev. B 9, 2194.

Dunlavy, M.J., and D. Venus. 2004. Phys. Rev. B 69, 094411.

Elmers, H.J., J. Hauschild, H. Höche, U. Gradmann, H. Bethge, D. Heuer, and U. Köhler. 1994. Phys. Rev. Lett. 73, 898.

Haertling G. H. 1999. J. Am. Ceram. Soc. 82, 797.

Hu Shengbin, Baoxi Xu, Hongxing Yuan, Yunjie Chen, Jun Zhang, and Rong Ji. 2006. J. Magn. Magn. Mater. 303, e62.

- Lambeth D. N. 2000. Vacuum 59, 522.
- Landau D.P., and K. Binder. 2000. A Guide to Monte Carlo Simulations in Statistical *Physics* (CUP,Cambridge)
- Laosiritaworn Y. 2008. Adv. Mater. Res. (accepted)
- Laosiritaworn Y. 2008. Thin Solid Films. (submitted)
- Laosiritaworn Y., S. Ananta and R. Yimnirun. 2007. Phys. Rev. B 75, 054417.
- Laosiritaworn Y., S. Ananta, J. Poulter and R. Yimnirun 2007. Ceram. Int. (*in press*) doi:10.1016/j.ceramint.2007.10.034.
- Li, Y., and K. Baberschke. 1992. Phys. Rev. Lett. 68, 1208.
- Litvinov D. and S. Khizroev. 2002. "Perpendicular Recording: A Future Technology or a Temporary Solution?", presentation slides at 10th NASA Goddard Conference on Mass Storage Systems and Technologies, Adelphi, Maryland.
- Lu X., J. Zhu, Z. Liu, X. Xu and Y. Wang. 2000. Thin Solid Films 375, 15.
- Mendiola J., M.L. Calzada, P. Ramos, M.J. Martin and F. Agulló-Rueda. 1998. Thin Solid Films 315, 195.
- Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H Teller, and E. Teller. 1953. J. Chem. Phys. 21, 1087.
- Miura Y., 2001. Fufitsu Sci. Tech. J. 37, 111.
- Moser A., K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E.E. Fullerton. 2002. J. Phys. D 35, R157.
- Newman M.E.J., and G.T. Barkema. 1999. *Monte Carlo Methods in Statistical Physics* (Oxford University Press, Oxford).
- Scott J. 2002. Ferroelectric Memories, Springer-Verlag, Berlin.
- Wolff, U. 1989. Phys. Rev. Lett. 62, 361.

ภาคผนวก ก.

บทความวิชาการที่ได้รับการตีพิมพ์เรื่อง

Temperature effects in the magnetic properties of two-dimensional Ising square lattices: A Monte Carlo investigation

โดย

Y. Laosiritaworn, S. Ananta and R. Yimnirun

ติพิมพ์ใน Phys. Rev. B 75, 054417 (2007)

Temperature effects in the magnetic properties of two-dimensional Ising square lattices: A Monte Carlo investigation

Yongyut Laosiritaworn,* Supon Ananta, and Rattikorn Yimnirun

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

(Received 3 November 2006; revised manuscript received 5 January 2007; published 22 February 2007)

The magnetic behavior of a two-dimensional nearest-neighbor Ising model with the presence of linear temperature variation in a thermal steady state was studied using the Wolff Monte Carlo simulation. The technique consists of fixing the temperatures of boundary spins, while the temperature field in the interior linearly varies with distance. It is found that with increasing the temperature difference between the two boundaries, the magnetization greatly reduces in magnitude while the susceptibility peaks tend to spread out over a temperature range. The detailed descriptions of these magnetization and susceptibility behaviors are elucidated from their spatial variation. The extraction of the "critical temperatures" is taken via the fourth-order cumulant of the magnetization. The critical temperatures are found to reduce slightly with increasing the temperature difference. This implies the vulnerability of the magnetization and susceptibility properties to the temperature variation in ferromagnetic materials, and to use such materials in temperature variation environments must be done with caution.

DOI: 10.1103/PhysRevB.75.054417 PACS number(s): 75.10.Dg, 05.10.Ln, 75.40.Cx

I. INTRODUCTION

Magnetic thin films have been known to be very important in terms of fundamental and technological interest, especially in the magnetic recording technology.^{1,2} Many contributions have been taken to provide understanding of these systems in detail.3,4 However, there are still incomplete pictures describing their magnetic properties especially in nonequilibrium states. For instance, the theoretical studies usually investigate the thin-film problems by considering the system in contact with only a single heat bath, which means that the temperature of the whole system is fixed. As a result, the conventional thermal equilibrium investigation may not be useful in understanding the magnetic materials used in some applications, which operate at some fluctuating temperatures. For instance, in heat-assisted magnetic recording, the media temperature is nonuniformly raised by laser irradiation.5 In such applications, there occurs a heat flux flowing among regions from high to low temperatures, resulting in local variation in temperature. Therefore, the approximation on using a single (average) temperature in the calculation is clearly inadequate since important thermodynamics is missing. On the other hand, magnetic properties strongly depend on thermal fluctuation. Therefore, the variation in temperatures makes the problem very complex, so experimental and theoretical investigations of this issue cannot be taken trivially. Consequently, it is of great interest and challenge to find how magnetic properties respond to the variation in temperature field. To date, there are few studies on this effect of temperature variation on magnetic systems; i.e., they are mainly restricted to the thermal properties such as heat conductivity.^{6,7} A particular study on the field uses nonequilibrium simulations to calculate thermal conductivity in a two-dimensional (2D) Ising system based on microcanonical algorithm,8 which was later extended to include external magnetic field.9

Therefore, in this study, the understanding of the effect of temperature variation, but restricted only to thermal steady

state, on magnetic system has been extended by performing Monte Carlo simulation to investigate magnetic properties, i.e., the magnetization and the magnetic susceptibility including their spatial resolution. The simulation considers the use of Ising model, which has been proven to be useful in many areas starting from biological systems 10,11 to financial problems^{12,13} and statistical mechanics, with the ultrathin film or 2D structure. Also, in magnetic material problems, both theoretical 14,15 and experimental investigations 16-18 have also shown, in terms of critical exponents, that the 2D Ising system is very useful for the study of magnetic behavior in thin ferromagnetic films. To outline, the study investigates how the overall average magnetic properties, such as the magnetization and the magnetic susceptibility, depend on temperature supplied to the boundary spins from the heat baths and heat bath temperature differences by means of Monte Carlo simulations. Next, the study investigates the variation of these magnetic properties in terms of spatial resolution to observe how local magnetic behavior plays a part in overall average magnetic properties. Then, the "critical temperature," which is defined to be the temperature (of a lower temperature heat bath) where the order parameter of the system vanishes at thermodynamic limit, is extracted to examine how the temperature variation affects the critical phenomena. These are followed by a conclusion, which summarizes a prominent finding from the study, and a suggestion on how the topic would benefit the community.

II. METHODOLOGY

In this study, we consider the Ising Hamiltonian

$$H = -J\sum_{\langle ij\rangle} S_i S_j, \qquad (1)$$

where the spins $S_{i(j)}$ take on the values ± 1 and the sum includes only first nearest-neighbor pairs. The units J and J/k_B are used for temperatures and energies, respectively. The

1098-0121/2007/75(5)/054417(9)

054417-1

©2007 The American Physical Society

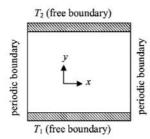


FIG. 1. The setup system structure showing its boundary conditions and its temperature constraint on the free boundaries, i.e., T_1 at y=1 and T_2 at y=L, where $T_1 \le T_2$.

considered system is a 2D structure where periodic and free boundary conditions are used for the x and y directions, respectively. The simulations are carried out with total number of spins $N=L_x\times L_y$, where L_x and L_y represent the number of magnetic (atomic) sites along the x and y directions of the system. A rule of thumb in performing Monte Carlo simulations is to choose L_x and L_y as large as possible to minimize finite-size effect. Therefore, in this study we use $L_x = L_y = L$ ranging from 40 to 100 in steps of 10, which are still computationally feasible and fairly large. Actually, these chosen L are picked from the L that the correction to scaling is not significantly needed in the investigation of critical properties. 19 In fact, the finite-size effect causes the deviation in any physical properties between those of the finite system and of the infinite system especially close to critical point. This can be described using the critical behavior of the magnetic interaction. For instance, in a paramagnetic phase, the correlation length of the same spin is small. However, on approaching the critical point from above, the correlation length starts to grow and blows up if the considered system is very large (L tends to infinity). Nevertheless, for finite L, the divergence of the correlation length is not permitted since the largest value of the correlation length itself is L. Furthermore, due to finite-size effect, which arises from the free surfaces (if there are any), or the periodic image (if the periodic boundary condition is chosen), the rate of correlation growing in the finite-size system and the infinite system is different, and this alters the magnetic properties in the finite system from the infinite system. For example, it is very obvious that the magnetization in the finite system does not cease down to zero at the critical point.

Next, in applying temperatures to the system, along the y direction, at y=1 and L_y , the fixed temperatures T_1 and T_2 where $T_1 < T_2$ (see Fig. 1) are supplied to the boundary spins. Due to the temperature variation, starting from the y=1 side, the temperature steadily increases from T_1 and reaches T_2 at the opposite side. In this nonequilibrium state, the heat flux passes from the T_2 side to the T_1 side, while local temperatures along the pathway can be determined from the heat conduction formula.

$$\frac{1}{A}\frac{dQ}{dt} = -K\frac{dT}{dx},$$
 (2)

where K is the thermal conductivity and dT/dx refers to the one-dimensional temperature gradient. However, when the system relaxes to its steady state, the ratio dQ/dt is maintained and the resulting temperature gradient becomes a constant. As a result, at this steady state, the temperature T is linearly proportional to the distance away from the T_1 side and it can be estimated that

$$T_y = T_1 + \left(\frac{T_2 - T_1}{L_y - 1}\right)y,$$
 (3)

where y is the distance away from T_1 and T_y is the local temperature at y. Because the study considers the system only in its steady state, the local temperature T_y is therefore fixed at the distance y throughout the simulation, giving rise to various local thermal equilibria for each specific distance y in the system.

In this study, we consider the temperature difference between the two heat baths $\Delta T = T_2 - T_1$ ranging from 0.0 to 2.8 J/k_B with steps of 0.4 J/k_B , and T_1 ranging from 0.1 to 3.4 J/k_B with steps of 0.1 J/k_B . With these ΔT and T_1 ranges, it is possible to investigate the system in several cases. For instance, both T_1 and T_2 are in ferromagnetic phase, T_1 is in ferromagnetic but T_2 is in paramagnetic phase, and both T_1 and T_2 are in paramagnetic phase. Note that without temperature variation, the 2D Ising critical temperature T_C , which splits paramagnetic out of ferromagnetic phase, is $T_C = 2/\ln(1 + \sqrt{2}) \approx 2.269 J/k_B$.

Next, in updating the spin configurations during Monte Carlo simulations, a series of successive spin configurations are chosen via importance sampling under the condition of ergodicity and detailed balance. A very popular algorithm, which satisfies these conditions, is the Metropolis algorithm,21 where a particular spin configuration is different from its previous configuration by only a single spin flip. The probability in accepting a new spin configuration, which is generated from the previous study, is $p = \exp(-\Delta E/k_B T_y)$, where ΔE is the energy difference associated with the flip and T_v is the local temperature attached to the flipped spin. However, instead of using the conventional Metropolis algorithm, we consider the Wolff algorithm22 because the Wolff greatly reduces the correlation time τ . This is due to the fact that the updated probability in Metropolis algorithm depends only on an energy difference from a single spin flip. Therefore, this results in a large correlation time τ among successive spin configurations.^{23,24} In the following, the large τ brings a large statistical error of the magnetization $\langle (\delta m)^2 \rangle$ because^{23,24}

$$\langle (\delta m)^2 \rangle = \frac{1}{n} (\langle m^2 \rangle - \langle m \rangle^2) \left(1 + 2 \frac{\tau}{\delta t} \right),$$
 (4)

where, at large enough n, $\tau = \Sigma(\langle m_0 m_i \rangle - \langle m^2 \rangle) / (\langle m^2 \rangle - \langle m \rangle^2)$ is the integrated correlation time and δt is the time interval between two successive configurations, and n is the number of configurations being sampled. As can be seen from the above equation, the smaller the τ , the lower the statistical

error. Therefore, one can see the benefit of using the Wolff algorithm upon the Metropolis algorithm since the Wolff provides a smaller τ in the same system. For example, close to critical temperature in 2D Ising model, the correlation time τ scales with the system size L as $\tau \propto L^z$, and the gives $z = 0.25 \pm 0.01$, while the Metropolis gives $z = 2.1665 \pm 0.0012$.

In using the Wolff algorithm to make configuration updates, a cluster of the same direction spins is made and flipped. In creating the cluster, a seed spin is randomly chosen and then its neighboring spins, at temperature $T_{\rm y}$, are added to form a group with a probability

$$p = 1 - \exp\left(-\frac{2J}{k_B T_y}\right). \tag{5}$$

Then, the procedure is repeated for the just added spins until no more spins are added to the cluster. Next all the spins in the cluster are flipped to their opposite directions, i.e., S_i to $-S_i$

In this Monte Carlo study, with the chosen Wolff algorithm, we first waited for each simulation at least for 1000 Monte Carlo steps per site (MCS) from its initial state (disordered state) to allow the system to relax to its steady state before taking any measurements. After that, during the simulation, the magnetization and the energy are measured when the number of flipped spins exceeds or is equal to N. The global average of the magnetization per spin is defined as $m=(1/N)\Sigma_tS_t$, and in each simulation, $N'=50\ 000\ \text{configurations}$ are used to calculate the expectation of the magnetization per spin, i.e.,

$$\langle m \rangle = \frac{1}{N'} \sum_{t=1}^{N'} |m_t|.$$
 (6)

It is also of interest to observe how the free boundaries play their roles on the microscopic magnetic properties. This is so since the effect of average exchange interaction on a single magnetic spin strongly depends on its neighboring. At the free boundary, the smaller number of nearest-neighbor sites causes the smaller magnitude of average exchange interaction, whereas in the interior the spin feels more bulklike (homogeneously). So the variation of magnetic properties from the free boundary to the interior of the system is expected. Therefore, the spatial dependence of the magnetic properties, i.e., m_y and χ_y , for distance y away from the T_1 side, is calculated to observe the free boundary effect (for which the temperature variation is not yet turned on) and the temperature variation effects on the local magnetic properties. Specifically, the study considers the variation of m_v and χ_y as a function of the distance y away from the T_1 side to the direction toward the T_2 side. For convenience, only y that is a multiple of lattice spacing unit is considered, and all spins at the same distance y are defined to have local magspins at the same distance y are defined to factorize an etization and local susceptibility per spins in the absence of external field as $m_y = (1/L)\Sigma_{t=y}S_t$ and $\chi_y = L(\langle m_y^2 \rangle$ $-\langle m_y \rangle^2 / k_B T_y$. Note that we have applied the thermal equilibrium formalism to microscopically investigate the thermal steady state because all spins at the same distance y are virtually attached to the same heat bath at temperature T_y . In this way, it means that we first consider the region to be small enough to experience only a single and stable temperature, and then the thermal equilibrium technique is applied to study this microscopic region. After that, the dependence of the magnetic properties on the spatial temperature is calculated and the overall magnetic properties are extracted by averaging the microscopic properties. Note that if the system has not yet arrived at the steady state, everywhere except at the boundary the spins we will notice the spatial temperatures to change in time and the thermal equilibrium technique cannot be applied to such case.

Next, based on the local magnetic susceptibility χ_y , the global (average) magnetic susceptibility at zero field is defined as

$$\chi \equiv \frac{\partial m}{\partial h} \bigg|_{h \to 0} = \frac{1}{L} \sum_{y} \frac{\partial m_{y}}{\partial h} \bigg|_{h \to 0} = \frac{1}{L} \sum_{y} \chi_{y}$$

$$= \sum_{y} \frac{1}{k_{B} T_{y}} (\langle m_{y}^{2} \rangle - \langle m_{y} \rangle^{2}). \tag{7}$$

Also in this study, the critical behavior is investigated via the critical temperature T_C . Note that the term critical temperature used in this context is the temperature that the magnetization of the whole system vanishes at the thermodynamic limit. In this temperature variation study, at a particular temperature, some parts of the system may already lie in paramagnetic state, but if there are still some other parts residing in ferromagnetic state, the whole system is categorized to be ferromagnetic since there still exists finite magnetization. Then, T_C is defined if and only if the magnetization is completely destroyed by the thermal fluctuation that spreads throughout the system (in the infinite sized system). However, due to computational limitation, the simulations have to be performed in finite sizes where their finitesize effects must be taken into account. Therefore, in this study, the temperature T_C is phenomenologically located via the fourth-order cumulant U_L of the magnetization per spin, 27

$$U_L = 1 - \frac{\langle m^4 \rangle}{3 \langle m^2 \rangle^2}, \qquad (8)$$

where, at critical point, U_L should be independent of L; i.e., for differing sizes L and L', $(U_L/U_L)_{T=T_C}=1$. The reason in using Eq. (8), which was created to study thermal equilibrium systems to extract the critical temperature T_C , is based on the fact that the correlation length of the magnetization diverges (or the spontaneous symmetry breaking occurs throughout the system) at the critical point. Thus, no matter how large the system size L is, U_L should be the same at the critical point. Therefore, in this study of thermal steady state, for a specific value of ΔT , the critical temperature is defined in terms of T_1 (the lower temperature heat bath), which allows the correlation length of global magnetization to diverge at the thermodynamic limit and results in $(U_L/U_L)_{T=T_C}=1$. In fact, instead of T_1 , one may define the critical temperature in terms of T_2 if it is desired. However, in this study, the lower temperature of the two heat baths is

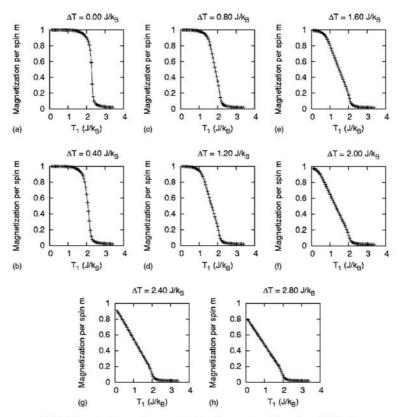


FIG. 2. Magnetization per spin m as a function of temperature T_1 for various $\Delta T = T_2 - T_1$.

preferred to define the critical temperature.

Nevertheless, owing to finite-size effects, the cumulant curves obtained from Eq. (8) for different L's do not exactly cross at the same temperature. Therefore, the critical temperature is estimated from $T_C(b=L/L')$ at the limit $(\ln b)^{-1} - 0.2^{4.27}$ To maximize the efficiency of this T_C calculation, for each system, a single long simulation is only performed at a temperature T_0 and the histogram method^{23,29} is used to extrapolate U_L to a temperature nearby in order to find the cumulant crossing points on a fine scale. The temperature T_0 is guessed from the temperature at the center of the cumulant crossing points. Approximately 2×10^5 spin configurations, which are found to compromise between calculation time and statistical error, are used to create the histograms. To exclude the data obtained from temperatures too far from the simulated temperature T_0 , the range of the extrapolation obeys $|U(T)-U(T_0)| \le \sigma_E$, where $U=\langle E \rangle$ is the average of the energy and σ_E is a standard deviation of E at T_0 .

III. RESULTS AND DISCUSSIONS

A. Overall magnetization and magnetic susceptibility profiles

From the simulations, the magnetization m and susceptibility χ profiles for various T_1 and temperature difference $\Delta T = T_2 - T_1$ are obtained and shown in Figs. 2 and 3. As can be seen from Fig. 2, with increasing ΔT , the magnetization m tends to decrease. This is because the larger ΔT is, the greater the temperature is at the hotter part of the system (close to the T_2 side). Then, at this hotter part, the magnetic spins experience larger thermal fluctuation, resulting in smaller local magnetization magnitude. Consequently, on the overall average, the magnetization reduces with increasing ΔT . Note that even the magnetization significantly reduces in magnitude at large ΔT , the critical point (the temperature where magnetization curve has the maximum slope) only slightly changes. This is due to the fact that there are still some parts of the system, connecting to lower temperature T_1 , which reside in ferromagnetic phase even magnetic order

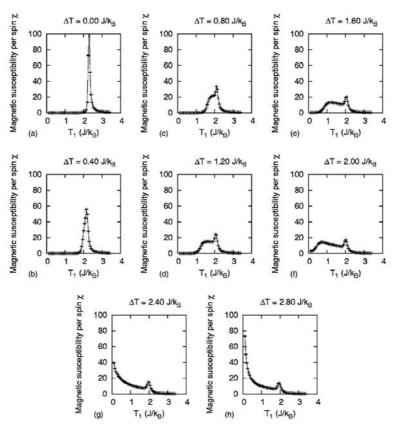
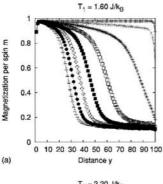



FIG. 3. Magnetic susceptibility per spin χ as a function of temperature T_1 for various $\Delta T = T_2 - T_1$.

of the other parts has already been destroyed. Therefore, the whole system presents some finite magnetization and preserves the overall ferromagnetic behavior. This phenomenon is similar to those found in magnetic thin films where exchange interaction varies from layer to layer. In Ref. 31, because of the differences in exchange interaction magnitude, the magnetic orders from different layers are not destroyed at the same temperature. Therefore, the true critical temperature is defined to be the largest eigenvalue (temperature) that allows the susceptibility to diverge (under the framework of mean-field theory), which is the first encounter of temperature in which the overall magnetization is completely destroyed by the thermal fluctuation if the system is heated from its ferromagnetic phase.

On the other hand, the results for magnetic susceptibility χ , as in Fig. 3, show a broader range of phase transition for $\Delta T > 0$. This is very different from the case $\Delta T = 0$ where the susceptibility blows up only at the normal 2D Ising critical temperature $T_C \approx 2.269\ J/k_B$. This is due to the fact that the

susceptibility is representative of magnetization fluctuation which severely increases in magnitude at the critical point. As for $\Delta T > 0$, there is temperature variation, making the temperature field rise in magnitude from T_1 to T_2 . Consequently, different parts of the system experience different local temperatures. Some parts may already reach the critical point where others may not. Each part of the system will not highlight the critical behavior at the same temperature T_1 . For example, at $T_1 \! = \! 1.60 \ J/k_B$ and $\Delta T \! = \! 0.6 \ J/k_B$, the spins close to the T_1 boundary are lying in ferromagnetic state and their local susceptibility will be very small. On the other hand, the spins close to the $T_2 \! = \! 2.00 \ J/k_B$ boundary will start to exhibit large thermal induced magnetization fluctuation since this temperature T_2 is close to T_2 . Therefore, the local susceptibility for spins close to T_2 will be fairly large. Another example is the case where $T_1 \! = \! 2.20 \ J/k_B$ and $\Delta T \! = \! 0.2 \ J/k_B$. The local susceptibility will be large for spins close to T_1 , but will be small for spins close to T_2 because these spins are already lying in paramagnetic state. These two examples

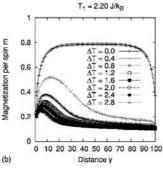
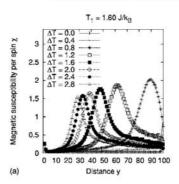



FIG. 4. Spatial variation of magnetization per spin m as a function of distance y away from the T_1 boundary for various ΔT at (a) T_1 =1.60 J/k_B and at (b) T_1 =2.20 J/k_B . The legends to symbols in (a), which are the same as those in (b), are removed for visual aids.

can be used to describe the susceptibility phenomena in Fig. 3. Even T_1 is smaller than the normal 2D T_C , but with help from ΔT , there will be some interior parts of the system which will exhibit critical behavior. This results in a broader range of the susceptibility peak on the temperature T_1 scale. Nevertheless, the peak is not as sharp as the ΔT =0 J/k_B system because in the case of ΔT =0 J/k_B , all spins contribute in magnetization fluctuation at the same temperature, i.e., T_C . A more detailed description of this broader range can be given by looking at spatial variation of the magnetic properties (see Figs. 4 and 5).

B. Spatial variation of magnetization and magnetic susceptibility

The study has found that the temperature variation has a strong effect on the local (spatial) magnetic properties. For example, Fig. 4 shows the spatial variation of magnetization per spin m as a function of distance y away from the T_1 boundary for various temperature differences ΔT =0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, and 2.8 JIk_B at (a) T_1 =1.60 JIk_B and at (b) T_1 =2.20 JIk_B . Starting with ΔT =0 JIk_B , all spins ex-

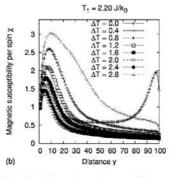


FIG. 5. Spatial variation of magnetic susceptibility per spin χ as a function of distance y away from the T_1 boundary for various ΔT at (a) T_1 =1.60 J/k_B and at (b) T_1 =2.20 J/k_B .

perience the same temperature throughout the system. All parts of the system have the same magnetic behavior; i.e., all local magnetization and local susceptibility show the critical behavior at the same T_C , which is about 2.269 J/k_B for normal infinite size 2D Ising system. The spins on both T_1 and T2 boundaries have a lower magnetization magnitude than those from other spins in the interior (see Fig. 4). This is due to the fact that the spins inside are coupled with four nearestneighbor spins, while spins at the edges (y=1 and y=L) experience the free boundary and are coupled with only three nearest-neighbor spins. Therefore, the spins close to the T_1 and T_2 boundaries are more susceptible to the thermal fluctuation and result in a smaller magnetization magnitude. On the other hand, the spins which reside in the interior experience a higher level of ferromagnetic interaction, causing more spins to point to the same direction and yield a higher magnitude of magnetization. These results agree well with previous Ising model investigations that the spins at the free boundaries have smaller magnetization magnitudes compared with those in the interior. 32,33

However, with increasing $\Delta T > 0$, the temperature variation induced by temperature gradient in the system linearly raises the temperature T from the T_1 boundary to T_2 boundary. This makes the local magnetic properties vary, which is

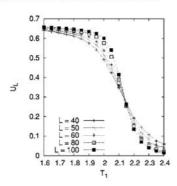


FIG. 6. The fourth-order cumulant of the magnetization for ΔT =1.20 JIk_B system as a function of T_1 . From the figure, it can be estimated that the crossing points take place between T_1 =2.10 and 2.20 JIk_B , therefore, the critical temperature will lie in this region.

very different from the ΔT =0 case. Looking at Fig. 4(a) as an example, at T_1 =1.60 J/k_B and ΔT <0.669 J/k_B , both T_1 and T_2 are smaller than the normal $T_C \approx 2.269 \ J/k_B$, and the whole system experiences ferromagnetic coupling. Therefore, finite magnetization behavior can be found throughout the system. Nevertheless, the magnetization reduces in magnitude from the T_1 boundary to the T_2 boundary due to a higher level of thermal fluctuation. On the other hand, for $\Delta T > 0.669 J/k_B$, the spins at and close to the T_2 boundary experience paramagnetic interaction because T_2 is greater than the normal 2D Ising T_C . Consequently, the magnetization reduces very sharply from the T_1 to the T_2 boundary. This detailed description can also be applied to understand the magnetization behavior in Fig. 4(b). Therefore, these are the reasons why the magnetization declines with increasing ΔT (e.g., see Fig. 2), which could be very useful in designing sensor applications such as the temperature sensor from mag-

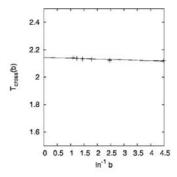


FIG. 7. The extraction of critical temperature T_C for ΔT = 1.20 I/k_B via the extrapolation of $T_{cross}(b)$ to the limit $\ln^{-1}(b)$ where T_{cross} is the temperature that $U_L=U_L$, where L' =40 and L=50, 60, 70, 80, 90, and 100, and b=L/L'. The line is drawn from linear least-squares fit, which gives T_C =2.14393±0.00393 I/k_B .

TABLE I. Critical temperature T_C obtained from Monte Carlo simulation for various temperature differences between the two free boundaries.

$\Delta T = T_2 - T_1$	T_C
0.0	2.26926±0.00018
0.4	2.19187±0.00312
0.8	2.16802±0.00273
1.2	2.14393±0.00393
1.6	2.13046±0.00367
2.0	2.11466±0.00406
2.4	2.09977±0.00640
2.8	2.08514±0.00510

netic materials.³⁴ In addition, as one may see in Fig. 4, the distance y away from the T_1 boundary is a "thermometer," which indicates the rise of temperature from T_1 to T_2 . This is why the results in Fig. 4 are more or less similar to some subfigures in Fig. 2. Note that the magnetization does not completely reduce to zero because of the finite-size effect.

Apart from the magnetization results, the temperature variation has a similar effect on the spatial magnetic susceptibility. For instance, at ΔT =0 in Fig. 5(a), the whole system experiences the same temperature T= T_1 = T_2 =1.60 J/k_B , which is smaller than T_C . The system is then far from the critical point and the thermally induced magnetization fluctuation (the susceptibility) is small. However, for $\Delta T=0$ in Fig. 5(b), the temperature $T=T_1=T_2=2.20 J/k_B$ is close to T_C , so the magnetization starts to fluctuate strongly and the susceptibility starts growing (resulting in peaks) near the boundary T_1 and T_2 ends. In this ΔT =0 case, the interior spins have a smaller susceptibility because there are more (average) number of neighbor spins which provides a higher magnetic interaction, and this interaction behaves as a buffer to the magnetization fluctuation. Similar to magnetization results, for $\Delta T > 0$, the distance y indicates the rise of temperature. In Fig. 5, with increasing ΔT , the susceptibility peaks move toward the T_1 boundary since some parts inside the system have already reached T_C and this T_C moves towards the T_1 end with increasing ΔT .

C. Critical temperatures

On the other hand, in looking at the critical property, i.e., T_C , the fourth-order cumulant in Eq. (8) is found useful. The crossing of U_L is found for the whole range ΔT =0.0–2.8 J/k_B in this study. An example for the cumulant crossing for ΔT =1.2 J/k_B is shown in Fig. 6. As mentioned earlier, to minimize the finite-size effect, an extrapolation of $T_C(b = L/L')$ to the limit $(\ln b)^{-1} \rightarrow 0$ is performed (e.g., see Fig. 7). The critical temperatures T_C at this thermodynamic limit are presented in Table I and plotted as a function of temperature difference ΔT = T_2 - T_1 (see Fig. 8). As can been seen, for ΔT =0 which is in the absence of temperature variation, the value of T_C agrees well with the exact solution, which is about 2.269 J/k_B for normal infinite size 2D Ising model. This definitely assures the validity of the simulation codes.

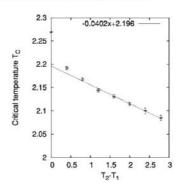


FIG. 8. Critical temperatures T_C obtained from 2D Ising simulations for various $\Delta T = T_2 - T_1$. The straight line is a linear least-squares fit to the data for $T_2 - T_1 \ge 0.8 \ J/k_B$.

However, for $\Delta T > 0$, T_C reduces very sharply from $\Delta T = 0$ to ΔT =0.8 $J/k_{\rm p}$ and afterward reduces slightly for ΔT >0.8 J/k_B . As can be seen in Fig. 8, it is possible to assign a linear fit to T_C for the range $\Delta T > 0.8 \ J/k_B$, which gives $T_C(\Delta T) =$ $-0.0402(\Delta T) + 2.196$. As evident from the linear fit in Fig. 8, the slope to the fitted function $dT_C/d(\Delta T) = -0.0402$ is rather small. This indicates that even if T_C reduces with increasing ΔT , it does not significantly change in magnitude. This implies that the temperature variation has some minor effects on the critical point by shifting T_C to a smaller value with increasing ΔT . This is so since the greater temperature difference brings more thermal fluctuation into the system so the transition from a ferromagnetic state to the parameter magnetic state occurs at a lower temperature. However, the change is not substantial because the paramagnetic state is defined for a magnetic state that all finite magnetizations are destroyed. Nevertheless, though the temperature variation brings a higher thermal fluctuation to the T_2 boundary causing the spins to align randomly and the local average magnetization close to this T_2 ceases down to zero, the spins close to the lower temperature side T_1 is still intact to the

heat bath T_1 with a temperature smaller than the normal T_C . Therefore, some parts of the system still lie in ferromagnetic state. Hence, the overall average magnetization is not completely destroyed resulting in finite magnetization. As a result, unlike other magnetic properties, such as the sharp reduction in magnetization magnitude and the spreading out of susceptibility peaks over a temperature range, T_C changes very slightly.

IV. CONCLUSION

In this study, the effects of linear temperature variation on magnetic properties, i.e., the magnetization, the magnetic susceptibility, and the critical temperature, in the thermal steady state are investigated. In the absence of temperature difference (ΔT =0 or T_1 = T_y = T_2), the result (e.g., T_C) was found to agree well with the theoretical exact solution of the thermal equilibrium 2D Ising problem. This assures the validity of the simulation codes. However, when the temperature variation is turned on, the temperature difference at the boundaries supplies thermal fluctuation to the spins in the system with different magnitudes, and this makes the magnetization and the susceptibility become spatially dependent. The hotter and the colder parts of the system tend to show paramagnetic and ferromagnetic behaviors, respectively. The interference between these two behaviors turns out to be the reason why the average magnetization sharply reduces and the susceptibility peak becomes broader, while the critical temperature slightly decreases with increasing the temperature difference. The detailed descriptions of the phenomena are given via the investigation of spatial variation of the corresponding magnetic properties. To conclude, the study provides a detailed understanding of how the magnetic properties behave in response to the temperature variation in thermal steady state in ultrathin film, which may be another step closer in modeling real magnetic materials.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Commission on Higher Education (Thailand) and the Thailand Research Fund for financial support.

^{*}Corresponding author. FAX: +66 53 943445. Email address: yongyut laosiritaworn@yahoo.com

¹A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D 35, rl57 (2002).
²T. Osaka, T. Asahi, J. Kawaji, and T. Yokoshima, Electrochim. Acta 50, 4576 (2005).

³P. J. Jensen and K. H. Bennemann, Surf. Sci. Rep. 61, 129 (2006).

⁴F. Aguilera-Granja and J. L. Morán-López, Solid State Commun. 74, 155 (1990).

Shengbin Hu, Baoxi Xu, Hongxing Yuan, Yunjie Chen, Jun Zhang, and Rong Ji, J. Magn. Magn. Mater. 303, e62 (2006).

⁶R. Harris and M. Grant, Phys. Rev. B 38, 9323 (1988).

⁷M. Neek-Amal, R. Moussavi, and H. R. Sepangi, Physica A 371, 424 (2006).

⁸M. Creutz, Phys. Rev. Lett. 50, 1411 (1983).

⁹S. S. Mak, Phys. Lett. A 196, 318 (1995).

¹⁰S. V. Buldyrev, N. V. Dokholyan, A. L. Goldberger, S. Havlin, C.-K. Peng, H. E. Stanley, and G. M. Viswanathan, Physica A 249, 430 (1998).

¹¹H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, Z. D. Goldberger, S. Havlin, R. N. Mantegna, S. M. Ossadnik, C.-K. Peng, and M. Simons, Physica A 205, 214 (1994).

¹²D. Horváth, M. Gmitra, and Z. Kuscsik, Physica A **361**, 589

¹³A. Krawiecki and J. A. Holyst, Physica A 317, 597 (2003).

- ¹⁴K. Binder and P. C. Hobenberg, Phys. Rev. B 9, 2194 (1974).
- Binder and P. C. Hollenberg, Phys. Rev. B 3, 2124 (1974)
 M. Bander and D. L. Mills, Phys. Rev. B 38, 12015 (1988).
 Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).
- 17 H. J. Elmers, J. Hauschild, H. Höche, U. Gradmann, H. Bethge, D. Heuer, and U. Köhler, Phys. Rev. Lett. 73, 898 (1994).
- ¹⁸M. J. Dunlavy and D. Venus, Phys. Rev. B 69, 094411 (2004). ¹⁹A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081
- (1991). ²⁰B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model
- (Harvard University Press, Cambridge, MA, 1973).
 ²¹N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
- 22 U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
- ²³ H. Müller-Krumbhaar and K. Binder, J. Stat. Phys. 8, 1 (1973).
- ²⁴K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1992).
- ²⁵P. D. Coddington and C. F. Baillie, Phys. Rev. Lett. 68, 962

- (1992).
- ²⁶M. P. Nightingale and H. W. J. Blöte, Phys. Rev. Lett. 76, 4548 (1996).
- ²⁷K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981).
- ²⁸A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
- ²⁹A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991).
- ³⁰M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon, Oxford, 1999).
- ³¹S. S. A. Razee, J. B. Staunton, L. Szunyogh, and B. L. Györffy, Phys. Rev. B 66, 094415 (2002).
- 32Q. Hong, Phys. Rev. B 41, 9621 (1990).
- 33 Y. Laosiritaworn, J. Poulter, and J. B. Staunton, Phys. Rev. B 70, 104413 (2004).
- ³⁴H. Osada, S. Chiba, H. Oka, H. Hatafuku, N. Tayama, and K. Seki, J. Magn. Magn. Mater. 272-276, e1761 (2004).

ภาคผนวก ข. บทความวิชาการที่ได้ตอบรับตีพิมพ์เรื่อง

Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses

โดย

Y. Laosiritaworn, S. Ananta, J. Poulter and R. Yimnirun

ติพิมพ์ใน

Ceram. Int (2007) (in press) doi:10.1016/j.ceramint.2007.10.034

ARTICLE IN PRESS

Available online at www.sciencedirect.com

CERAMICSINTERNATIONAL

Ceramics International xxx (2008) xxx-xxx

www.elsevier.com/locate/ceramint

Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses

Y. Laosiritaworn a,*, S. Ananta a, J. Poulter b, R. Yimnirun a

^a Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ^b Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Accepted 1 October 2007

Abstract

The uniaxial stress dependence of the hysteresis behavior of ferroelectric films was studied. The DIFFOUR model was modified to include the uniaxial stress effect. Both the uniaxial stress and the external electric field were applied on the out-of-plane direction of the films. The polarization was measured with varying the magnitude of the applied stress and the electric field frequency via the dynamics of the polarization reversal in terms of hysteresis. The study was taken by means of Monte Carlo simulations using the spin-flip Metropolis algorithm. From the results, the district dependence of hysteresis behavior on frequency between low frequency and high frequency was prominent. On the other hand, the remanent and the coercivity significantly decreased with increasing applied stresses. Moreover, the areas under the hysteresis loops also decreased indicating smaller magnitude of energy dissipation. The results agree well with related experiments where applicable.

© 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Ferroelectric thin-films; Monte Carlo; Uniaxial stress; Hysteresis

1. Introduction

Ferroelectric thin-films have recently been of wide interest in view of both technological and fundamental importance [1,2]. Of a particular interest is the technological applicability such as high-speed ferroelectric recording media in which high areal densities and high reliability are in demand [1]. Therefore, it is necessary to understand the response of ferroelectric domain switching to electric field corresponding to specific material structures in detail. Nevertheless, for the sake of simplicity, theoretical studies on ferroelectric multi-layers are usually performed on an ideal stress-free system. However, real materials used in many applications are often affected by crystalline anisotropy caused by external mechanical stress, or internal strain induced by misfit in lattice spacing at the interfaces between ferroelectric layers and the substrate. Furthermore, ferroelectric thin-films under stresses were found to have their polarization behavior altered leading to substantial changes in phase transition between ferroelectric and paraIn this work, the uniaxial stress dependence of the ferroelectric dynamic properties in thin-films was studied. To outline, the study was firstly done by proposing the DIFFOUR Hamiltonian that includes the uniaxial stress effect. Then, by means of Monte Carlo simulations, the polarization along the out-of-plane direction is investigated with varying the field frequency and uniaxial stress via the dynamics of the hysteresis. Finally, all the descriptions to these results are given in detail.

2. Methodologies

2.1. Spin Hamiltonian

In this study, the DIFFOUR Hamiltonian [5-7]

$$H = \sum_{i} \left(\frac{P_0^2}{2m} - \frac{a}{2}u_i^2 + \frac{b}{2}u_i^4 \right) - \sum_{\langle ij \rangle} U_{ij}\vec{u}_i \cdot \vec{u}_j - E(t) \sum_{i} u_{ik}$$
(1)

0272-8842/\$34.00 © 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved. doi:10.1016/j.ceramint.2007.10.034

Please cite this article in press as: Y. Laosiritaworn, et al., Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses, Ceram. Int. (2008), doi:10.1016/j.ceramint.2007.10.034

electric phases [3,4]. Consequently, it is very important to include the applied stress to model real materials.

was considered where \vec{u}_i is the ferroelectric dipole spin at site i, $P_0^2/2m$ is the kinetic energy, a and b are the double-well

^{*} Corresponding author. Fax: +66 53943445.

E-mail address: yongyut_laosiritaworn@yahoo.com (Y. Laosiritaworn).

potential parameters for the ferroelectric spins, and U_{ij} is the ferroelectric interaction. However, in this study, only the case that \vec{u}_i is constant in magnitude was considered to underline the dynamics of the spin orientation in response to the field. Therefore, by proposing appropriate reference energy and introducing the stress effect, the Hamiltonian can be rewritten as

$$H = \sum_{\langle ij \rangle} U_{ij}(\Delta l) \hat{u}_i \cdot \hat{u}_j - E(t) \sum_i u_{iz}, \qquad (2)$$

where \hat{u}_i is a unit vector referring to one of the possible 14 ferroelectric spin directions (6 from tetragonal and 8 from rhombohedral structures), $\langle ij \rangle$ represents summation over the nearest pairs, and u_{iz} is the spin's z component. $E(t)=E_0\sin(2\pi ft)$ is the electric field acting only on the out-of-plane direction of the films, where f and E_0 refer to frequency and amplitude respectively. Helical and free-boundary conditions were used for the in-plane (xy) and the out-of-plane (z) directions. In this picture, the magnitude of \hat{u}_i is dimensionless, so both U_{ij} and E have a unit of energy. $U_{ij}(\Delta I)$ is a function of lattice distortion ΔI , arising from the applied stress, and assumed to take a Lennard–Jones potential-like [8], i.e.

$$U_{ij}(r_{ij}) = U_0 \left[\left(\frac{r_0}{r_{ij}} \right)^{12} - 2 \left(\frac{r_0}{r_{ij}} \right)^6 \right]. \tag{3}$$

Here, r_0 is the lattice spacing at a specific thermal equilibrium, U_0 is the ferroelectric interaction associated to r_0 ($\Delta l=0$), and r_{ij} is the distance between site i and j. For zero stress (strain), $r_{ij}=r_0$ and $U_{ij}=-U_0$ so the system prefers ferroelectric phase. Since the Young's modulus is defined as $Y\equiv P/((r_{ij}-r_0)/r_0)$ where P is the stress (pressure), it is possible to write $r_0=1-(P/Y)$ and Eq. (3) as $U_{ij}^2=U_0[(1-(P/Y))^{-12}-2(1-(P/Y))^{-6}]$. However, along the xy direction, there also exists the lattice distortion caused by the stress along the z direction. The ratio of the distortions between these two directions is defined as the Poisson ratio $\varepsilon\equiv -\Delta r^{xy}/\Delta r^z$ (where for many systems ranging from metal to examine, $\varepsilon\approx0.3$ [9]). As a result, it is possible to write $\varepsilon=-\Delta r^{xy}/\Delta r^z=-(r^{xy}_{ij}-r_0)/(r^2_{ij}/r_0)=((1-r^{xy}_{ij})/r_0)/(r^2_{ij}/(r_0-1))$ which gives $r^{xy}_{ij}/r_0=1-\varepsilon((r^2_{ij}/r_0)-1)=1+\varepsilon(P/Y)$. Consequently, the ferroelectric interaction along the xy direction is $U^{xy}_{ij}=U_0[(1+(\varepsilon P/Y))^{-12}-2(1+(\varepsilon P/Y))^{-6}]$. As a result, the Hamiltonian can be written as

$$\begin{split} H &= \sum_{\langle ij \rangle \in \text{ in -plane}} U^{\text{xy}}_{ij} \hat{u}_i \hat{u}_j + \sum_{\langle ij \rangle \in \text{ out-of-plane}} U^{\text{z}}_{ij} \hat{u}_i \hat{u}_j \\ &- E(t) \sum_i u_{iq}. \end{split} \tag{4}$$

2.2. Monte Carlo simulation

Throughout this study, U_0 was set as 1, so this re-defines the unit of temperature T as J/k_B (where k_B is the Boltzmann's constant), and electric field amplitude E_0 as a unit of U_0 . The simulations were done at a temperature in the ferroelectric

phase (where there exists hysteresis loops), i.e. $T = 1.0 J/k_B$. The ratio P/Y was varied from 0.00 to 0.16. The simulation was done on bi-layer ferroelectric films where each single layer consists of ferroelectric unit cells connecting along the in-plane direction. The ferroelectric spins are assumed to reside in the unit cells and the system consists of $N = L \times L \times 2$ spins where $L \times L$ refers to number of spins in one monolayer. To minimize finite size effect, large L is required so in this study L = 40 was chosen. Trial simulations for larger sizes were also performed and it is found that for the range of parameters used in this study, the difference in hysteresis behavior is not significant. The unit time step was defined from one full simulation update of all sites of the lattice, i.e. 1 Monte Carlo step per site (mcs). The field frequency was varied from 0.001 to 4 mcs⁻¹ and the field amplitude is fixed at $E_0/U_0 = 4$.

With the Hamiltonian proposed in Eq. (3), each system was assigned an initial random configuration and later on was passed to the thermal Monte Carlo updates, using the Metropolis algorithm [10]. In updating the system, each spin is assigned a new random direction, and the probability of accepting that new direction is proportional to

$$probability = exp\left(-\frac{\Delta H}{k_{\rm B}T}\right) \tag{5}$$

where ΔH is the energy differences between of the original and the new updating state. If the energy difference is less than zero, or a uniform random number in the range [0,1) is less than the probability given in Eq. (5), the new direction is accepted and the system is successfully updated, or else the considered spin is left untouched. The whole procedure is repeated until the simulation ends.

In measuring, with varying the uniaxial stress and the applied field frequency, each simulation waited for a few cycles to obtain steady hysteresis loops, and then the polarization per spin along the z direction was calculated, i.e.

$$p_{\rm r} = \frac{1}{N} \left[\sum_i u_{iz} \right]. \tag{6}$$

Then, 1000 steady hysteresis loops were used to calculate average hysteresis loop for each condition.

3. Results and discussion

From the simulation results, with varying field frequency and stress, significant changes to the hysteresis loop were found. Fig. 1a shows the patterns for hysteresis loops for frequencies ranging from 0.001 to 0.320 mcs $^{-1}$. As can be seen, 2 distinct behaviors can be found for low frequency region, e.g. $f \leq 0.125 \, \mathrm{mcs}^{-1}$ and for high frequency region, e.g. $f > 0.125 \, \mathrm{mcs}^{-1}$. At low frequencies, the loops get bigger with increasing frequency. This is because, at low frequency, the field period is high and hence the sweeping time of the field per one hysteresis cycle is large. Ferroelectric spins then have time to follow the field leading to low phase-lag between the polarization and field and hence to a small hysteresis loop.

Please cite this article in press as: Y. Laosiritaworn, et al., Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses, Ceram. Int. (2008), doi:10.1016/j.ceramint.2007.10.034

-0.6

-0.8

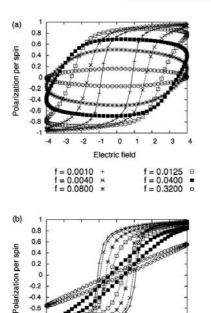


Fig. 1. Hysteresis loops of the bi-layered films (a) at zero-stress but varying frequency from f = 0.0010 to f = 0.3200 mcs⁻¹, and (b) at f = 0.0010 mcs⁻ varying stress from P/Y = 0.00 to P/Y = 0.16.

Electric field

2 3

P/Y = 0.12 □ P/Y = 0.14 ■ P/Y = 0.16 Θ

-2 -1 0

P/Y = 0.00 + P/Y = 0.06 × P/Y = 0.10 *

However, with increasing the frequency in the low frequency region, the phase lag gets bigger and hence the hysteresis loop becomes larger. However, if the frequency is still increased, the loop reaches a maximum size at a certain frequency. Beyond this point, the frequency is very high which limits the dynamics of the spins and results in a smaller loop with an oval shape-like.

However, with a non-zero stress, e.g. in Fig. 1b, the decrease of the remanent p_r , the coercivity E_C , and the hysteresis looparea were found. The reason is that the stress causes the z direction to become a 'hard axis'. As a result, the spins prefer to align in the xy direction or have their z-components align in an anti-parallel pattern to lower the energy. Consequently, both $p_{\rm r}$ and E_C reduce. In comparison with experiments, qualitatively, the decrease of the coercivity and the loop-area with increasing stress has trends that agree reasonably well with an experiment on ferroelectric material [11].

On the other hand, Fig. 2 shows the hysteresis loop area as a function of frequency for various stresses. The loop area increases for low frequency region and decreases for high

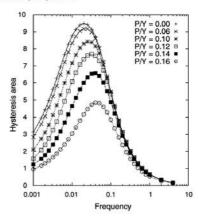


Fig. 2. Stress dependent of the hysteresis areas (arbitrary unit) of the bi-layered films as a function of the electric field frequency (mcs⁻¹ unit) with varying stresses from P/Y = 0.00 to P/Y = 0.16.

frequency region with increasing frequency. At a particular frequency, the loop area is smaller for larger stresses. This is because the z direction is the stress induced 'hard axis'. In this way, the spins are loosely coupled along the z direction and hence it will be easier for the spins to catch up with the field so the inclined oval loop occurs with small loop area. However, with increasing the frequency at low frequencies, the phase lag gets larger but with higher stresses it will require higher frequency to reach the loop-area maximum point. This is why the frequency at the maximum area shifts to higher frequency for larger stress. Notice that the maximum area is smaller for larger stress because of smaller p_r and E_C .

4. Conclusions

In this study, Monte Carlo simulations were performed to study ferroelectric thin-films under the influence of uniaxial stress on ferroelectric hysteresis properties. The objective is to investigate the behavior of the spin-reversal along the outof-plane direction with changes in the magnitude of the stress and the electric field frequency. With increasing frequency, it is found that the hysteresis area increases for low frequency and decreases for high frequency. On the other hand, the applied stress reduces p_r , E_C and the hysteresis area. This is due the stress causing the out-of-plane direction to be a 'hard axis' and the hysteresis results in smaller loop-area. The results qualitatively agree well with experiments where applicable.

Acknowledgement

The authors would like to acknowledge financial supports from the Commission on Higher Education and the Thailand Research Fund (TRF)

Please cite this article in press as: Y. Laosiritaworn, et al., Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses, Ceram. Int. (2008), doi:10.1016/j.ceramint.2007.10.034

+ Models CERI-2925; No of Pages 4

ARTICLE IN PRESS

Y. Laosiritaworn et al./Ceramics International xxx (2008) xxx-xxx

References

- [1] J.F. Scott, Ferroelectric Memories, Springer-Verlag, Berlin, 2002.
- G.H. Haertling, Ferroelectric Ceramics: History and Technology, Journal of American Ceramic Society 82 (1999) 797–818.
 X. Lu, J. Zhu, Z. Liu, X. Xu, Y. Wang, Phase transition related
- [3] X. Lu, J. Zhu, Z. Liu, X. Xu, Y. Wang, Phase transition related stress in ferroelectric thin films, Thin Solid Films 375 (2000) 15–18.
- [4] J. Mendiola, M.L. Calzada, P. Ramos, M.J. Martin, F. Agulló-Rueda, On the effects of stresses in ferroelectric (Pb,Ca)TiO₃ thin films, Thin Solid Films 315 (1998) 195–201.
- [5] T. Janssen, J.A. Tjon, One-dimensional model for a crystal with displacive modulation, Physical Review B 24 (1981) 2245–2248.
- [6] J.-M. Liu, Q.C. Li, W.M. Wang, X.Y. Chen, G.H. Cao, X.H. Liu, Z.G. Liu, Scaling of dynamic hysteresis in ferroelectric spin
- systems, Journal of Physics: Condensed Matter 13 (2001) L153-L161.
- [7] J.-M. Liu, W.M. Wang, Z.G. Liu, H.L. Chan, C.L. Choy, Dynamic hysteresis in ferroelectric systems: experiment and Monte Carlo simulation, Applied Physics A 75 (2002) 507–514.
- [8] S.J. Mitchell, D.P. Landau, Phase separation in a compressible 2D Ising model, Physical Review Letter 97 (2006) 025701.
- [9] W.D. Callister, Materials Science and Energineering: An Introduction, John Wiley & Sons. New York, 2003.
- John Wiley & Sons, New York, 2003.
 [10] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical Physics 21 (1953) 1087-1092.
- [11] R. Yimminu, Y. Laosiritaworn, S. Wongsaenmai, Effect of uniaxial compressive pre-stress on ferroelectric properties of soft PZT ceramics, Journal Physics D 39 (2006) 759–764.

Please cite this article in press as: Y. Laosiritaworn, et al., Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses, Ceram. Int. (2008), doi:10.1016/j.ceramint.2007.10.034

ภาคผนวก ค.

ต้นฉบับบทความวิชาการที่ได้ตอบรับตีพิมพ์เรื่อง

Magnetic hysteresis properties in dilute Ising ultra-thin-film: Monte Carlo investigation

โดย

Y. Laosiritaworn

ติพิมพ์ใน

Adv. Mater. Res. (2008) (accepted)

Magnetic hysteresis properties in dilute Ising ultra-thin-film: Monte Carlo investigation

Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand yongyut_laosiritaworn@yahoo.com

Keywords: Monte Carlo, Dilute magnetic, Ising films, Hysteresis

Abstract. Monte Carlo simulation was used to observe the dynamic magnetic behavior of dilute Ising ultra-thin-film. The hysteresis properties were investigated as varying the non-magnetic concentration, field frequency and field amplitude where the Metropolis algorithm was used. From the results, at fixed temperature and field amplitude, the hysteresis loop increases in size with increasing frequency at low frequency region but reduces at high frequency region due to the increase of the phase-lag between magnetization and external field signals. With the inclusion of non-magnetic sites, the phase-lag shifts to higher frequency as a result of weaker magnetic interaction. In addition, the scaling relation among the hysteresis area, the field parameters and non-magnetic concentration was proposed to provide general information of how the dilution affects hysteresis properties of dilute magnetic in ultra-thin-film structure.

Introduction

Ferromagnetic thin-films have been a subject of intensive interests in view of applications especially in magnetic recording area [1-3]. In addition, in terms of fundamental interest, the physical mechanisms involved in these reduced structure systems are different from those in the bulk. Therefore, the magnetic hysteresis in thin-films is thoroughly different from the bulk even at a same set of parameters. As a result, one may control the films thicknesses or structures to obtain the magnetic hysteresis at a right shape which may suit desired technological applications [2–3]. However, the description of how the hysteresis and their influence on the magnetic properties of ferromagnetic thin-films are affected by the external applied field is not quite well set up due to the complexity of the micro-structures. For examples, in determining the properties of real materials, the importance of defects, especially the non-magnetic inclusion, should not be avoided which makes the problems become complicated. However, in general, direct observations of the effect of non-magnetic interactions to hysteresis properties are difficult to obtain. Consequently, in this study, the dynamic magnetic behavior was modeled numerically using Monte Carlo simulation to investigate magnetic behavior in ultra-thin-film structure.

Experimental procedure: Monte Carlo simulation

In this study, Ising model was considered with an inclusion of non-magnetic-sites. This is since the Ising model is known to be a model with an infinite anisotropy along its easy axis direction which is suitable for magnetic thin-films problems. The Ising Hamiltonian can be written as

$$H = -J \sum_{\langle i,j \rangle} s_i s_j - h(t) \sum_i s_i \,. \tag{1}$$

In the equation, the spin s_i (= ±1) represents the direction of an Ising spin at site i where its magnetic moment is absorbed into the exchange interaction J. The exchange interaction J is used as a unit of energy which redefines the unit of the external field as J and unit of temperature as J/k_B . The symbol $\langle i,j \rangle$ denotes that the sites i and j appearing in the sum are nearest-neighbor pairs, and the external magnetic field is $h(t) = h_0 \sin(\omega t) = h_0 \sin(2\pi j t)$ where h_0 and f are the field amplitude and frequency respectively.

In performing the simulations, the lattice size of 80×80 spins with periodic boundary conditions on all edges were prepared (where results from larger systems were not significantly different for the considered parameters in this study). Then, the non-magnetic sites with concentration c ranging from 0 to 20 percent were included into the structure. In this way, the normal Ising spins were randomly substituted by the non-magnetic sites. In dilute structure, the Hamiltonian in Eq. (1) still holds but one has to substitute the normal Ising spins from original values ±1 to 0 for the nonmagnetic sites. Next, an initial magnetic configuration was set with all available spins pointing into the up direction (+1). To update the configuration, the single spin flip Metropolis algorithm [4] was used where the spin at site i (si) was flipped to its opposite direction with a probability $p = \exp(-\Delta E_i(t)/k_BT)$. The energy difference $\Delta E_i(t) = 2s_i \left[\sum_j s_j(t) + h(t)\right]$ is due to the update at site i and time t. During the simulation, the s_i was flipped (updated) if $\Delta E_i \leq 0$ or a uniform random number $r \in [0,1)$ is less than probability p. The unit time step is defined from one full scan all sites of the Ising lattice, i.e., 1 Monte Carlo step per site (mcs). From the magnetic configuration at time t, after the steady state of the hysteresis loop had been reached, the magnetization per spin at time t was measured i.e. $m(t) = (1/N) \sum_i s_i$ where N is the total number of available Ising. Next, hysteresis loop (m-h relation) was drawn and the loop area $A = \oint mdh$ was calculated to investigate how the area A responds to the amplitude h_0 , the frequency f and the nonmagnetic concentration c. In this work, f varied from 0.010 to 1.000 mcs⁻¹, h_0 varied from 2.0 to 5.0 J, and c varied from 0 to 20%. All simulations were done at temperature $T = 2 J/k_B$ which is below the Curie temperature of the two-dimensional Ising model ($T_C \approx 2.269 \text{ J/k}_B \text{ [5]}$) to emphasize the effect of non-magnetic inclusion on ferromagnetic hysteresis.

Results and Discussion

From the results, the response of the magnetic hysteresis to the non-magnetic inclusion is found i.e. Figs. 1 and 2. In Fig. 1, the hysteresis loops for various f at c = 0%, 10% and 20% are presented. At a fixed c, it can be seen that the hysteresis loop has a saturated s-shape and tends to increase in size with increasing f at low frequency region e.g. f < 0.025 mcs⁻¹. However, on further increasing f, the loop gets its maximum area and later reduces to an oval-shape with its major axis parallel to the field axis. This is the result of phase-lag between the magnetization and the field signal. At very low f, the field period is large and the magnetic spins have sufficient time to follow the field signal so the phase-lag between the magnetization and the field signal is small and the hysteresis loop looks like a slim s-shape. However, on increasing f, the field sweeps faster and the spin have less time in following the field. Thus, the phase-lag gets larger and so does the hysteresis. At one point, when the phase-lag is approaching π , the hysteresis gets its optimum size. After that, if f is still increasing, the spins feel very difficult in catching with the field so the overall magnetization does not change much as the field changes. Therefore the hysteresis turns its shape in the oval-shape with its major axis lying along the field axis. On the other hand, at a fixed f, on increasing c, the hysteresis loop becomes smaller at low f but larger at high f. This is since for the larger c, there are more non-magnetic sites in the systems which cause smaller magnetic interaction in the whole system. With a weaker magnetic interaction in the system, the phase-lag at π shifts to a higher f for larger c.

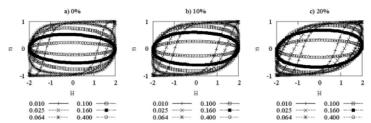


Figure 1. The hysteresis loops of the dilute Ising spins with varying frequency f from 0.010 to 0.400 mcs⁻¹ at $T = 2J/k_B$, $h_0 = 2.0 J$ and the concentration c ranges from a) 0% to b) 10% and c) 20%.

With the hysteresis trend suggested in Fig. 1, the hysteresis area A as a function of h_0 , f and c were calculated. One example is shown in Fig. 2 where it presents several peaks of A (as changing c) as a function of f. At a fixed c, A gets increasing at low f but reducing at high f. This is consistent with the hysteresis results in Fig. 1 where frequency at the peak (f_0) corresponds to the phase-lag at π . This f_0 shifts to higher f as increasing the concentration c due to the weaker magnetic interaction. Notice that, at a fixed f and on increasing c, A reduces for low f but increases for high f.

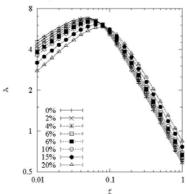


Figure 2. Hysteresis area A of the dilute Ising spins as a function of field frequency f at $T = 2 J/k_B$ and $h_0 = 2 J$) for various concentration c.

It is also of interest to consider the scaling of the area A to analytically investigate how it relates with f, h_0 and c. Therefore, the scaling relation in a power law form

$$A \propto f^{\alpha} h_0^{\beta} (1-c)^{\gamma}, \tag{2}$$

was considered where α , β and γ are the exponents to scaling. These exponents tell how the dissipation energy (the hysteresis area) relates to the external perturbation. Generally, since the behavior of the area A is very different between the low f and the high f regions. Therefore, in this work, the scaling relation Eq. (2) is considered to fit the hysteresis area obtained from low f and high f regions separately, where the low f region is for f < 0.025 mcs⁻¹ and the high f region is for f > 0.250 mcs⁻¹. The results from the fit are listed in Table 1 and quality of the fit is shown in Fig. 3.

Table 1. Exponents obtained from the fit using the scaling relation Eq. (2) and R^2 (R-square) of the corresponding fit for both hysteresis area from both high f and low f regions.

	α	β	γ	R^2
$\operatorname{High} f$	-0.9365	1.638671	-1.34195	0.995763
Low f	0.401094	0.607942	1.743747	0.995841

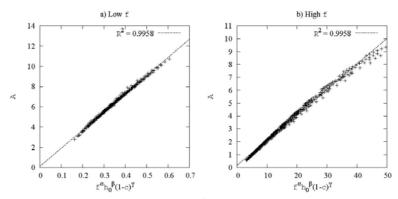


Figure 3. The scaling relation between A and $f^{\alpha}h_0^{\beta}(1-c)^{\gamma}$ based on Eq. (2) using the exponents listed in Table 1. The linear lines and the R^2 to the fits show that scaling relation Eq. (2) is applicable.

Summary

Monte Carlo simulation was performed on the dilute Ising ultra-thin-film to investigate the effect of field parameters and non-magnetic concentrations on hysteresis properties. With increase frequency, the hysteresis loop and its area were found to increase and decrease in low and high frequency regions respectively. Consequently, the area results in peak over frequency domain. On considering the non-magnetic inclusion, the weaker magnetic interaction shifts the low and high frequency boundary to a higher frequency since it is easier for the spins to catch the change in field signal in dilute system. Finally, the empirical scaling relation among the area, field amplitude and frequency and the non-magnetic concentration in a power law form is successfully extracted. Therefore, hysteresis properties under external field perturbation in dilute magnetic ultra-thin-film can be predicted from this scaling relation.

Acknowledgment

This work is supported by the Commission on Higher Education (Thailand) and the Thailand Research Fund (TRF)

References

- A.Murayama, K. Hyomi, J. Eickmann and C. M. Falco: Phys. Rev. B Vol. 61 (2000), p. 8984 and references therein.
- [2] M.Plummer, J. van Ek and D. Weller: The Physics of Ultra-High-Density Magnetic Recording (Springer, Berlin, 2000).
- [3] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries: Rep. Prog. Phys. Vol. 59 (1996), p. 1409.
- [4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H Teller and E. Teller: J. Chem. Phys. Vol 21 (1953), p. 1087.
- [5] B. M. McCoy and T. T. Wu: The Two-Dimensional Ising Model (Harvard University Press, Cambridge, MA, 1973).

ภาคผนวก ง.

ต้นฉบับบทความวิชาการที่ส่งเพื่อขอรับการตีพิมพ์เรื่อง

Monte Carlo simulation on thickness dependence of hysteresis properties in Ising thin-films

โดย

Y. Laosiritaworn

ส่งไปที่ Thin Solid Films (submitted) Monte Carlo simulation on thickness dependence of hysteresis properties in Ising thin-

films

Yongyut Laosiritaworn*

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200,

Thailand

*Corresponding author. Tel +66 53 943367; fax: +66 53 943445.

E-mail address: yongyut_laosiritaworn@yahoo.com.

Abstract

In this work, Monte Carlo simulation was used to model the dynamic hysteresis

behavior of ferromagnetic Ising thin-films using the spin-flip algorithm. The purpose is to

investigate the thickness dependence of ferromagnetic hysteresis properties while varying

frequency and amplitude of the external field. From the results, with increasing the films

thickness, the calculated hysteresis properties significantly change due to the stronger

ferromagnetic coupling in thicker films. In addition, the universal power law relations

among the hysteresis properties, the thickness and the field parameters were found. The

scaling exponents were also reported which agree well with a previous experiment on

ferromagnetic thin-films.

Keywords: Monte Carlo; Ising thin-films; Hysteresis

45

1. Introduction

The ferromagnetic thin-films have been a subject of intensive interest due to a broad range of applications especially in recording applications [1]. For instance, one may control the films thickness to obtain the magnetic hysteresis at a right shape to suit desired technological purpose [2]. Therefore, the reasons why physical mechanisms involved in these reduced structures are different from the bulk have become a topic of frequent investigating issues. However, the description of how the hysteresis and their influences on the magnetic properties of ferromagnetic thin-films are affected by the external applied field is not quite well set up due to the underlying complexity of the reduced dimension. For example, multilayered systems are known to change from two- to three-dimensional class with increasing numbers of layers. Magnetic films, however, should belong to a two dimensional universality class owing to the magnetic correlation lengths being constrained by the films thickness. Therefore, this issue highlights the importance of the dimensional pinning to the topic. Nevertheless, as direct observations are quite difficult to obtain, this work models the dynamic magnetic hysteresis behavior using Monte Carlo simulation which is a sophisticate technique for investigating statistical physics problems [3-5].

2. Methodologies

In the study, Ising model was used to investigate the dynamic magnetic properties of the films. This is since the Ising model is known to be a model with an infinite anisotropy along its easy axis direction which is suitable for magnetic thin-films structures [6-9]. This Ising Hamiltonian can be written as

$$H = -J \sum_{\langle i,j \rangle} s_i s_j - h(t) \sum_i s_i . \tag{37}$$

In the equation, the spin s_i (= ±1) represents the direction of an Ising spin at site i where its magnetic moment is absorbed into the exchange interaction J. In this work, the exchange interaction J is used as a unit of energy. Therefore, this redefines the unit of the external field as J and unit of temperature as J/k_B . The symbol $\langle i,j \rangle$ denotes that sites i and j appearing in the sum are nearest-neighbor pairs. The external magnetic field takes a sinusoidal form i.e. $h(t) = h_0 \sin(\omega t) = h_0 \sin(2\pi f t)$ where h_0 and f are the field amplitude and frequency respectively.

In preparing the systems, the lattice sizes of $L \times L \times l$ spins were considered with periodic boundary conditions along the in-plane (xy) directions, but free boundary condition along the out-of-plane (z) direction. In this work the films thickness l ranges from 1 to 8 layers and L=120 was considered. Results obtained from larger L (e.g. 240) were not significantly different for the range of parameters used in this study. Next, an initial magnetic configuration was set with all available spins pointing into the up direction (+1). In updating the configuration, the single spin flip algorithm [10] was used where the spin at site i (s_i) was updated (flipped to its opposite direction) with a probability

$$p = \exp(-\Delta E_i(t)/k_B T). \tag{38}$$

The energy difference $\Delta E_i(t) = 2s_i \left[\sum_j s_j(t) + h(t) \right]$ is due to the update at site i and time t. During the simulation, s_i was flipped (updated) if $\Delta E_i \leq 0$ or a uniform random number $r \in [0,1)$ is less than the probability p. The unit time step is defined from one full visit of all Ising spins, i.e. 1 Monte Carlo step per site (mcs). From the magnetic

configuration at time t, after the steady state of the hysteresis loop had been reached, the response magnetization per spin at time t was measured i.e.

$$m(t) = (1/N) \sum_{i} s_{i} \tag{39}$$

where N is the total number of Ising spins. Next, hysteresis loop (m-h relation) was drawn and the loop area

$$A = \int mdh, \tag{40}$$

the magnetic coercivity h_c and the remnant magnetization m_r were calculated to investigate how the hysteresis properties respond to the amplitude h_0 , the frequency f and the thickness l, where f ranges from 0.010 to 1.000 mcs⁻¹ and h_0 ranges from 4.0 to 10.0 J. All simulations were performed at temperature $T = 2.0 \ J/k_B$ which is below the Curie temperatures of all considered films [11] to emphasize the effect of thickness on ferromagnetic hysteresis.

3. Results and Discussions

From the results, the response of the hysteresis loops to external fields for various Ising thin-films were found. For instance, Fig. 1 shows examples of hysteresis loops for various frequencies f at thickness l = 1, 2 and 8 layers. At a fixed l, it can be seen that the hysteresis loop has a saturated s-shape and tends to increase in size with increasing f at low frequency region e.g. $f < 0.025 \text{ mcs}^{-1}$. However, on further increasing f, the loop gets its maximum area and later reduces to an oval-shape with its major axis parallel to the field axis. This is the result of phase-lag between the magnetization and the field signal. At very low f, the field period is large and the magnetization and the field signals is small and the hysteresis loop looks like a slim s-shape. However, on increasing f, the field

sweeps faster and the spins have less time in following the field. Consequently, the phase-lag gets larger and so does the hysteresis. At one point, when the phase-lag is approaching π , the hysteresis gets its maximum size. After that, if f is still increasing, the spins feel very difficult in following the field so the overall magnetization does not change much as the field changes. Therefore the hysteresis turns its shape in the oval-shape with its major axis lying along the field axis. On the other hand, at a fixed f but on increasing l, the hysteresis loop becomes larger at low f but slightly smaller at high f. This is since for the larger l, there are more neighboring per magnetic-sites in the systems which cause larger magnetic interaction in the whole system. With a stronger magnetic interaction in the system, it becomes more difficult for spins to follow the field, so the phase-lag at π reduces to a lower f for larger l.

Next, the hysteresis area A, the magnetic coercivity h_c and the remnant magnetization m_r as functions of h_0 , f and l were calculated to investigate relations among parameters. An example is shown in Fig. 2 where it presents several peaks of A (as changing l) as a function of f for amplitudes $h_0 = 4.0$ and 10.0 J. At a fixed l, with increasing f, A gets increasing at low f but reducing at high f in good agreement with those observed in experiments [12,13]. This is consistent with the hysteresis results in Fig. 1 where frequency at the peak (f_0) corresponds to the phase-lag at π . This f_0 shifts to lower f as increasing the thickness l due to the stronger magnetic interaction. With a same reason, at a fixed f, A increases (especially at low f) with increasing l.

In addition, in Fig. 2, the area A increases with increasing the field amplitude h_0 and its peak moves to a higher f. This is since the higher amplitude provides higher magnetic energy to the system and this higher energy provides more magnetic force in causing the spins to follow the field. As a result, the frequency at the peak (f_0) shifts to

higher f as the phase-lag between magnetization and field signals is smaller for the higher amplitude.

It is also of interest to consider the scaling of the area A to analytically investigate how it relates with f, h_0 and l. Therefore, the empirical scaling relations in power law forms

$$A \propto h_0^{\alpha} f^{\beta} l^{\gamma}, \tag{5}$$

$$h_{c} \propto h_{0}^{\alpha} f^{\beta} l^{\gamma}, \tag{6}$$

and $m_r \propto h_0^{\alpha} f^{\beta} l^{\gamma}$, (7)

were considered where α , β and γ are the exponents to the scaling. These exponents tell how the hysteresis properties relate to the external perturbation and the system geometry. Generally, the behavior of the hysteresis is very different between the low f and the high f regions. Therefore, in this work, the scaling relation Eqs. (5-7) were considered to fit the hysteresis area obtained from low f and high f regions separately, where the low f region is for $f \le 0.050 \text{ mcs}^{-1}$ and the high f region is for $f \ge 0.250 \text{ mcs}^{-1}$. Results from the fit and their R^2 are listed in Table 1. Note that, exponents for m_r are only presented for the high f as the non-linear fits for low f do not converge. However, as can be seen from Table 1, at low f, the exponents for both A and h_c are somewhat of the same magnitude. Therefore, based on the assumption that $A \propto m_r h_c$, the exponents of m_r should be close to 1. This is in accordance with hysteresis loop results where m_r does not change much with changing the films' thickness and field parameters (e.g. see Fig. 1). On the other hand, for the high f, the assumption $A \propto m_r h_c$ has proved its validity as $\alpha_A \approx \alpha_{h_c} + \alpha_{m_r}$, and so do β and γ . Furthermore, the quality of the fit e.g. $A \propto h_0^{\alpha} f^{\beta} l^{\gamma}$ is shown in Fig. 3 where its good R^2 shows that scaling equations are applicable. Furthermore, there was an experiment on thin Fe/Au (001) films (at low frequencies) which give $\alpha = 0.59 \pm 0.07$ and $\beta = 0.31 \pm 0.05$ [13]

while this study reports $\alpha = 0.543\pm0.026$ and $\beta = 0.302\pm0.018$. This good agreement (within error bars) confirms the validity of this work and implies its success on modeling ferromagnetic hysteresis in thin-films via Monte Carlo simulation.

4. Summary

In this work, Monte Carlo simulation was used to investigate the dynamic magnetic hysteresis behavior of Ising thin-films using the spin-flip algorithm. As varying the thickness, the frequency and the amplitude of the external field, the dynamic hysteresis was extracted, discussed and compared with previous works. In addition, the empirical power law relations among the hysteresis properties, the films thickness and the field parameters are suggested. Therefore, based on these scaling relations and its agreement with experiments, hysteresis properties under external perturbation can be predicted which provide another successful step in modeling ferromagnetic materials.

Acknowledgment

This work is supported by the Commission on Higher Education (Thailand) and the Thailand Research Fund (TRF)

References

- [1] T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Electrochim. Acta 50 (2005) 4576.
- [2] J-S Suen, M. H. Lee, G. Teeter, J. L. Erskine, Phys. Rev. B 59 (1999) 4249.
- [3] M. E. J. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, Oxford, 1999.
- [4] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2000.

- [5] K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics (4th Edition), Springer-Verlag, Berlin, 2002.
- [6] M. Bander, D.L. Mills, Phys. Rev. B 38 (1988) 12015.
- [7] M. J. Dunlavy, D. Venus, Phys. Rev. B 69 (2004) 094411.
- [8] H. J. Elmers, J. Hauschild, H. Höche, U. Gradmann, H. Bethge, D. Heuer, U. Köhler, Phys. Rev. Lett. 73 (1994) 898.
- [9] K. Binder, P. C. Hohenberg, Phys. Rev. B 9 (1974) 2194.
- [10] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087
- [11] Y. Laosiritaworn, J. Poulter, J. B. Staunton, Phys. Rev. B 70 (2004) 104413.
- [12] Q. Jiang, H.-N. Yang, G.-C. Wang, Phys. Rev. B 52 (1995) 14911.
- [13] Y.-L. He, G.-C. Wang, Phys. Rev. Lett. 70 (1993) 2336.

Table 1. Exponents obtained from the fit using the scaling relation Eqs. (5-7) and the R^2 (R-square) of the corresponding fit for hysteresis area A, magnetic coercivity h_c and remnant magnetization m_r for both high f and low f regions. However, exponents for m_r at low f are not available as the fit does not converge.

		α	β	γ	R^2
A	Lowf	0.543±0.026	0.302±0.018	0.142±0.005	0.9655
	High f	1.260±0.009	-0.907±0.007	-0.017±0.004	0.9954
h_c	Low f	0.465±0.027	0.303±0.018	0.152±0.005	0.9657
	High f	0.976±0.003	0.021±0.002	0.006±0.001	0.9991
m_r	$\operatorname{High} f$	0.334±0.009	-0.873±0.007	-0.029±0.004	0.9913

Figure 1

Fig. 1. The hysteresis loops of the Ising films with varying frequency f from 0.010 to 1.000 mcs^{-1} at $T = 2.0 \text{ J/k_B}$, $h_0 = 4.0 \text{ J}$ and the thickness l ranges from a) 1 layer to b) 2 layers and c) 8 layers.

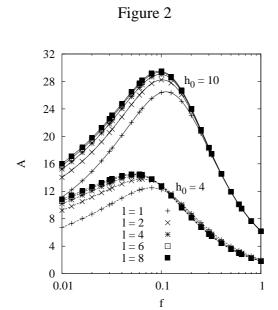


Fig. 2. Hysteresis area A of the Ising films as a function of field frequency f at T=2.0 J/k_B for $h_0=2$ and $h_0=10$ J.

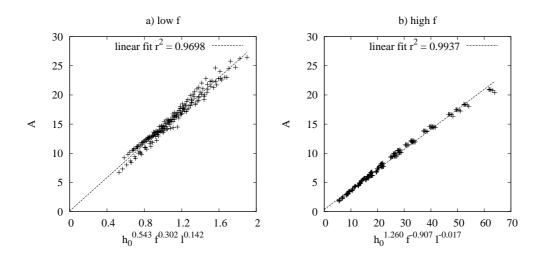
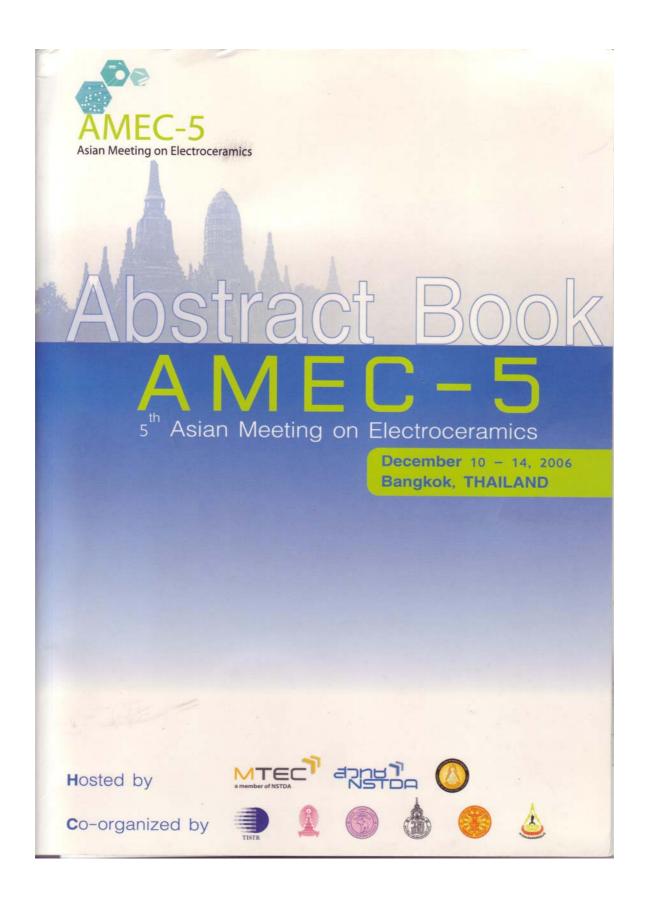



Fig. 3. The scaling relation between A and $h_0^{\alpha} f^{\beta} l^{\gamma}$ based on Eq. (5) using the exponents listed in Table 1. The linear dependence and good R^2 show that the scaling relation is applicable.

ภาคผนวก จ. เอกสารประกอบงานประชุมวิชาการที่เข้าร่วมเรื่อง

Monte Carlo investigation of hysteresis properties in ferroelectric thin-films under the effect of uniaxial stresses

นำเสนอแบบ Poster presentation
"The 5th Asian Meeting on Electroceramics (AMEC-5)"
10-14 December 2006,
Sofitel Central Plaza Hotel, Bangkok, Thailand.

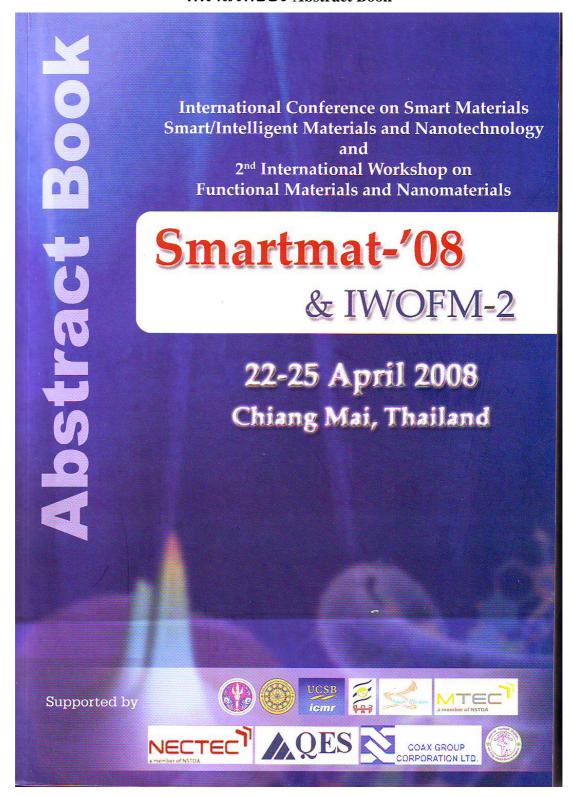
NP-5

Monte Carlo Investigation of Stress Dependence Hysteresis Properties in Ferroelectric Thin-Films

Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, E-mail address: yongyut | laosiritaworn/a yahoo.com

Of a particular interest in ferroelectric ceramics is the technological applicability as ferroelectric memories, in which high areal densities and reduced access time are in demand. Consequently, the understanding of how hysteresis characteristics correspond to material structures and operating environment is important. Nevertheless, theoretical studies are usually performed on ideal stress-free conditions, whereas real materials, especially in thin-films structures, are affected from crystalline anisotropy from mechanical stress, and this may lead to inappropriate application designs. Therefore, the objective of this study is to model such a situation. The uniaxial stress dependence of the ferroelectric hysteresis properties of thin-films is studied via the DIFFOUR model and Monte Carlo simulations. The stress and electric field are applied onto the z direction of the systems. The polarization is measured via the hysteresis dynamic. The preliminary results show hysteresis properties decrease with increasing stresses. The results are in good agreement with previous experimental investigation.


Keywords: C. Ferroelectric properties. Monte Carlo.

ภาคผนวก ฉ. เอกสารประกอบงานประชุมวิชาการที่เข้าร่วมเรื่อง

Magnetic hysteresis properties in dilute Ising ultra-thin-film: Monte Carlo investigation

นำเสนอแบบ Poster presentation
"Smart/Intelligent Materials and Nano Technology 2008 (SmartMat'08)"
22-25 April 2006
Imperial Mae Ping Hotel, Chiang Mai, Thailand.

หน้าแรกของ Abstract Book

าเดคัดย่อ

Magnetic Hysteretic Properties in Dilute Thin-films: Monte Carlo Investigation

Y. Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

The ferromagnetic magnetic thin-films has been a subject of intensive interests and investigations in view of a broad range of applications especially in recording applications featuring from high magnetic anisotropies [1-3]. In addition, in terms of fundamental interests in understanding, that the physical mechanisms involved in those reduced structure systems are quite different from bulk properties has become a topic of frequently investigating issues. For instance, the magnetic hysteresis shape of the system under an applied field in thin-films is thoroughly different from the bulk's at a set of fixed parameters. As a result, one may control the films' thicknesses to obtain the magnetic hysteresis, or the relaxation delay (lag response) between the external magnetic field and the response magnetization, at a right shape which may suit desired technological applications, e.g. transformer and magnetic storage media, fascinating lots of innovative applications [2-3]. However, the description of how the hysteresis and their influence on the magnetic properties of ferromagnetic thin-films are affected by the external applied field is not quite well set up due to the underlying complexity of the micro-structural influences. For examples, in determining the properties of real materials, the importance of defects, especially the vacancy, should not be avoided. This highlights the importance of the anisotropic interface which makes the problem very complicate. Generally, however, direct observations of defect interactions to hysteresis properties are difficult to obtain. One is therefore restricted to computer simulation methods to gain further insight. Consequently, in this study, the dynamic magnetic behavior was modeled in magnetic thin-films simplifying to ultra-thin-film structure. To understand ferromagnetic materials numerically, in this work, the magnetic properties and its dynamic magnetization switching (hysteresis) are investigated by means of Monte Carlo simulations with an inclusion of defects at nano-scale level, e.g. vacant atoms at concentrations ranging from 0 to 20 percents of all available magnetic sites. The model being used is the Ising type, which has been proved to be a useful model for magnetic thin-films [4-7], and the spin-flip algorithm is used to update the magnetic configurations. As varying the vacancy concentrations, temperatures, and the frequencies of the external field, the observables i.e. the magnetization as a function of the magnitude of magnetic field are taken. From the results, it is found that by increasing the vacancy concentration, at a fixed temperature and magnetic field frequency, both the coercivity and the remanence reduces due to the weaker ferromagnetic interaction in the system. Further investigation of how the hysteresis area varies with vacancy concentration is carrying out to extract the scaling relation at fixed temperatures and field parameters.

References

- [1] A.Murayama, et al., Phys. Rev. B 61 (2000) 8984 and references therein.
- [2] M.Plummer(Ed.), The Physics of Ultra-High-Density Magnetic Recording, Springer, Berlin. 2000.
- [3] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59,1409 (1996).
- [4] M. Bander and D. L. Mills, Phys. Rev. B 38, 12 015 (1988).
- [5] K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 (1974).
- [6] H. J. Elmers, J. Hauschild, H. Hilche, U. Gradmann, H. Bethge, D. Heuer, and U. K\(\text{Ghler}\). Phys. Rev. Lett. 73, 898 (1994).
- [7] Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).

— 22 - 25 April 2008-

โปสเตอร์ที่นำเสนอ

Magnetic hysteretic properties in dilute thin-films: Monte Carlo investigation

Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

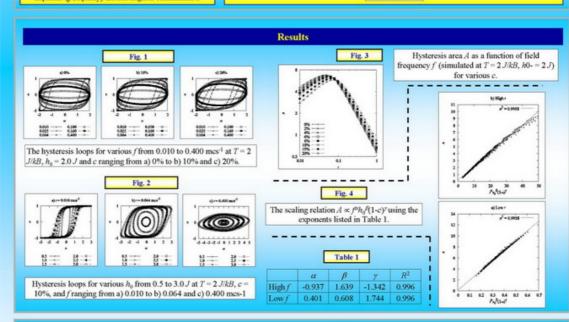
Abstract

Monte Carlo simulation was used to observe the magnetic behavior of Ising spins in dilute ultra-thin-filmed structure. The magnetic hysteresis properties are investigated as varying the non-magnetic-site concentration, specifying the magnitude of dilution, and both magnetic field frequencies and amplitudes close to phase transition region where the single spin flip Metropolis algorithm is used. From the results, at a fixed temperature and field amplitude, the hysteresis tends to increase in shape with increasing frequency at low frequency region but reduce at high frequency region due to the increase of the phase-lag. However, when non-magnetic inclusion is taken into account, the phase-lag tends to shift to higher frequency as a result of weaker magnetic interaction. In addition, the scaling relation among the hysteresis area, the field parameters and dilution concentration is proposed in providing general information of how hysteresis behavior responses to external field in dilute magnetic ultra-thin-film.

Introduction

- The response of a magnetic system under an external field leads to many novel physical phenomena with intriguing physics and important technical applications [1-3]
 Most studies concentrated on ideal structure whereas how
- Most studies concentrated on ideal structure whereas how external perturbation (field amplitude h₀ and frequency f) affects the dynamic hysteresis properties in dilute magnet (magnetic material with non-magnetic atoms inclusion) is less understood.
- In this work, the dynamic behavior of the hysteresis loops in dilute magnetic ultra-thin-film is investigated with vary amplitude h₀, frequency f and non-magnetic concentration c.

Methodology


In the study, Monte Carlo simulation was used to investigate the hysteresis properties of the Ising model with Hamiltonian

$$H = -J \sum_{ij,j} s_i s_j - h(t) \sum_i s_i$$

where J is the exchange interaction, s_i (= ± 1.0) represents the Ising or non-magnetic spins at site i and h(t) is the magnetic field.

- The Ising system in an external magnetic field was updated using single spin flip Metropolis algorithm [4] with varying j from 0.01 to 1.00 mcs⁻¹, J₆ from 0.5 to 5.0 J, and e from 0 to 20% at T = 2.00 JR₆.
- In addition, the scaling form of how hysteresis loop area A relates to f, h₀ and (1-c) is considered in the power law form i.e.

 $A \propto f^{\alpha} k_0^{\beta} (1-c)^{\gamma}$

Discussions and Conclusions

- With increasing f, the hysteresis loop increases at low f(f < 0.025 mcs⁻¹) but decrease at high f(f > 0.25 mcs⁻¹) due to the increase of phase-lag between magnetization and magnetic field signal (Fig. 1). On the other hand, with increasing h₀ the saturated hysteresis tends to stabilize due to stronger magnetic driving force.
 With increasing c, at a fixed f, the hysteresis loop decreases at low f but increases at high f due to the weaker magnetic
- with increasing e_i at a tixed j, the hysteresis soop occreases at low j our increases at right j due to the weaker magnetic interaction. As a result, the frequency at the maximum area $A(f_0)$ in Fig. 3 shifts to a higher frequency while reduces in magnitude.
- On performing scaling relation between area A and other parameters in a power law form, the exponents to the scalin
 are extracted with good R⁰. This indirectly tells how dissipation energy scales material density and field parameters.

References

- A.Murayama, et al., Phys. Rev. B 61 (2000) 8984 and references therein.
- [2] M.Plummer (Ed.), The Physics of Ultra-High-Density Magnetic Recording, Springer, Berlin, 2000.
- [3] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
- [4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).

Acknowledgement: This work is supported by the Thailand Research Fund (TRF) and Commission on Higher Education (Thailand).

ภาคผนวก ช. เอกสารประกอบงานประชุมวิชาการที่เข้าร่วมเรื่อง

Monte Carlo Simulations in Advancing Magnetic Recording Applications

น้าเสนอแบบ Oral presentation

"The Eighth International Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing (MCQMC2008)"

6-11 July 2008

HEC Montréal, Canada

รายละเอียดการประชุม

MCQMC'08

Eighth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

July 6-11, 2008

Home Background Program & Tutorials Organization Call for Contributions Registration Venue Housing Contact Français

Program & Tutorials

July 6: Parallel advanced tutorials in the afternoon, three hours each.

Monte Carlo and Quasi -Monte Carlo Methods in Finance: Jeremy Staum (Northwestern University)
Monte Carlo and Quasi-Monte Carlo Methods in Computer Graphics: Alexander Keller (mental images GmbH, Berlin)

Monte Carlo and Quasi-Monte Carlo Methods in Statistics: Art B. Owen (Stanford University)

July 7 - 11: Five days of conference with 10 invited onehour plenary talks, and several 30-minute talks organized in

sessions of 3 or 4 talks, including some special thematic sessions, with at most three parallel sessions at a time. A selection of papers from the conference will be published after the conference, most likely as a Springer-Verlag book, as was the case for the seven previous editions.

Call for contributions

Dealines:

- *March 4, 2008* : submissions of abstracts for contributed talks
- March 14, 2008: notification of acceptance
- January 25, 2008 : proposals for special sessions
- January 28, 2008: notification of acceptance for special sessions
 More information...

Invited Plenary Speakers

Josef Dick (UNSW)

Arnaud Doucet (UBC)

Daan Frenkel (AMOLF)

Paul Glasserman (Columbia)

Christiane Lemieux (Waterloo)

Jun Liu (Harvard)

Klaus Ritter (TU Darmstadt)

Jeffrey Rosenthal (Toronto)

Wolfgang Ch. Schmid (Salzburg)

Andrew Stuart (Warwick)

CRM | Web site: www.crm.umontreal.ca/mcqmc08 | Update 10.01.08 | Photo source: Université de Montréal

จดหมายเชิญประชุม

HEC Montréal

École Polytechnique

Université McGill

Université du Québec à Montréal April 4, 2008

Yongyut Laosiritaworn Department of Physics, Faculty of Science Chiang Mai University 239 Huay Kaew Road, Suthep Muang, Chiang Mai Thailand 502000

Dear Yongyut Laosiritaworn,

I am pleased to invite you to give an oral presentation entitled "Monte Carlo Simulations in Advancing Magnetic Recording Applications" at the conference Eighth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, at HEC Montréal, Canada, on July 6-11, 2008.

To attend at the conference, you will need to pay the air fares, the full registration fees and the accommodation fees by your own or by your institution.

Practical details (venue, hotels, etc.) can be found on our Website (http://www.crm.umontreal.ca/mcqmc08/).

Please do not hesitate to contact me for any further information you may need.

I look forward to welcome you in Montréal.

Best regards,

GERAD HEC Montréal 3000, ch. de la Côte-Sainte-Catherine Montréal (Québec) Canada H3T 2A7 (514)340-6053
(514)340-5665

Pierre L'Ecuyer

Université de Montréal, Canada

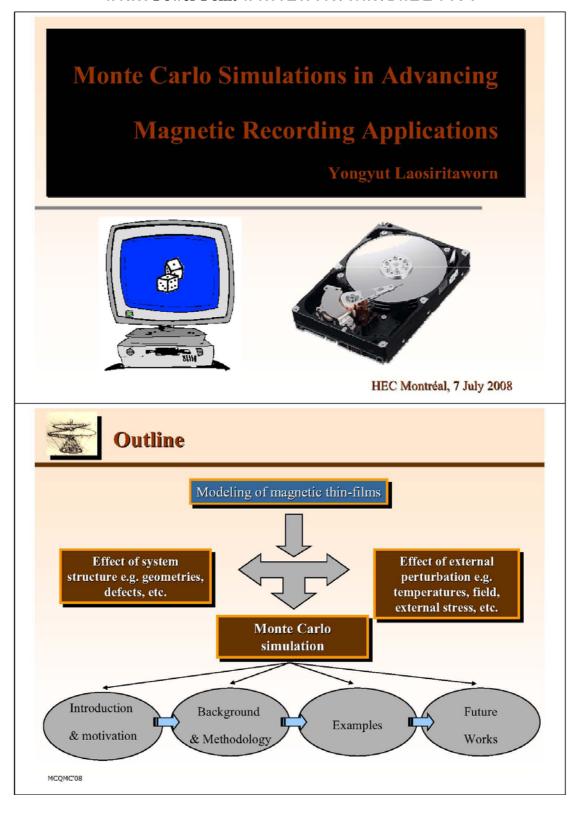
In Ign

บทคัดย่อ

Monte Carlo Simulations in Advancing Magnetic Recording Applications

Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand


yongyut_laosiritaworn@yahoo.com

The ferromagnetic thin films have been a subject of intensive interests in view of both technological applications [1] and fundamental interests, where physics in reduced structure is different from those in bulk. However, the description of how the magnetic behavior in films structure are affected by the external field is not quite well set up due to complexity of the reduced dimension. For example, multilayered systems are known to change from two to three dimensional class with increasing numbers of layers [2]. Magnetic films, however, should belong to a two dimensional universality class owing to dimensional ratio. Therefore, this discrepancy highlights the importance of the dimensional pinning to the problem. Nevertheless, direct observations are difficult to obtain; consequently, many numerical techniques have been used to understand the ferromagnetic behavior e.g. the mean-field method or the first principles electronic structure calculation. However, these two methods have not vet properly taken the thermal fluctuation into account. Therefore, that the results obtained from these methods are applicable and correct for a wide range of temperatures is still of some curiosities. On the other hand, the Monte Carlo simulation (based on a stochastic method) has proved to be a useful model in cooperating with thermal disturbance. For example, the Monte Carlo simulations in two-dimension Ising model agree very well with the exact solutions. Therefore, the Monte Carlo is expected to be a promising technique when considering the effect of thermal fluctuation on magnetic properties in various structures.

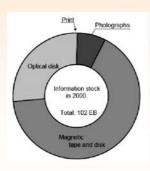
In this talk, the Monte Carlo techniques used in statistical physics especially in magnetic thin-films modeling are introduced [3]. A few algorithms which follow the stochastic detailed balance and ergodicity in thermal equilibrium are given and briefly described. Then, the applications of this Monte Carlo in some ferromagnetic thin-films systems are presented. Based on its results, these have provided another fruitful step in understanding the ferromagnetic phenomena and suggest Monte Carlos role in advancing the magnetic recording applications. Finally, as an addition to ferromagnetic studies, an extension of this Monte Carlo technique to other ferroic topics such as ferroelectric applications is also suggested and discussed.

- T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Electrochim. Acta 50, 4576 (2005).
- [2] Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).
- [3] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon, Oxford, 1999).

สไลด์ Power Point สำหรับการนำเสนอแบบวาจา

Introduction and motivation

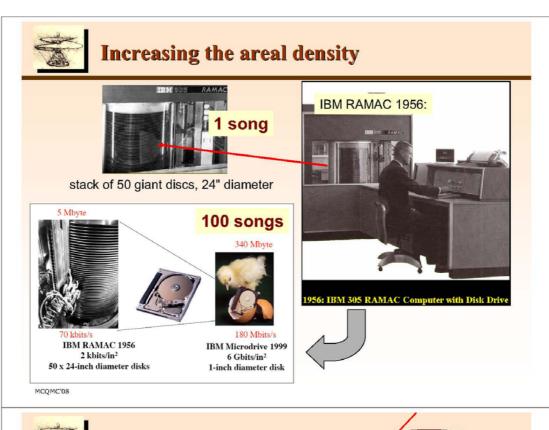
❖ Technological and fundamental importance (Johnson et al. 1996)

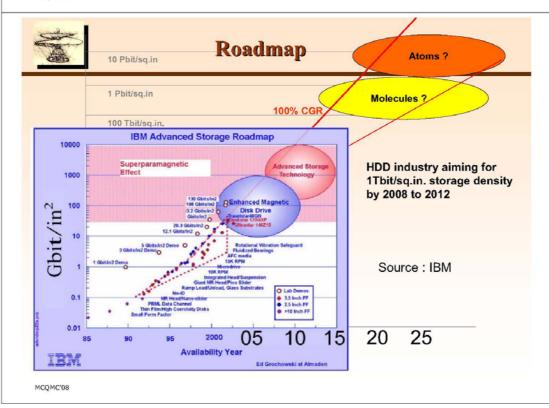


Especially in memory application.

- * The blooming of information technology era.
- Among digital storage, the magnetic storage is of preferable in terms of cost-effectiveness.

Source: Muira (2001)

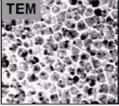


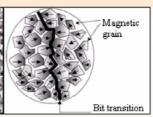


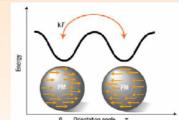
MCQMC'08

But!

"The Superparamagnetic Limit has Entered the Building."

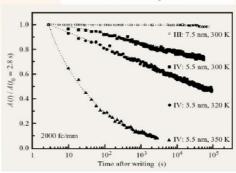

Richie Lary


MCQMC'08



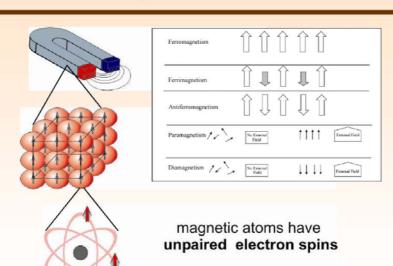
Superparamagnetic effect.

Magnets get unstable if they get too small!



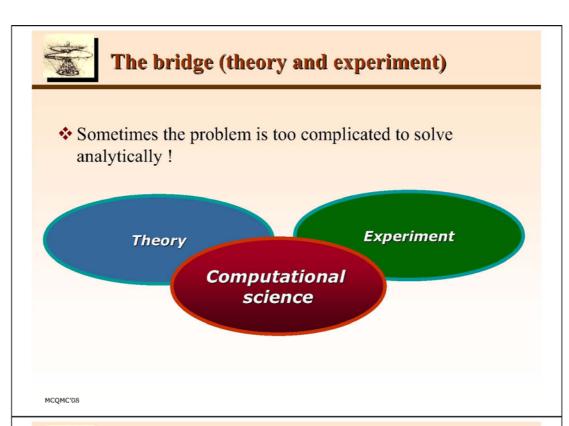
- * Stability depends on:
 - Magnetic domain
 - Magnetic coercivity
 - Temperature
 - · Surrounding polarity

MCOMC'08


A way out ?

- Try to understand the magnetic behavior especially in reduced structure e.g. films to investigate
 - how the properties depend on magnetic structure
 - 2D to Films to 3D
 - Defects (vacancy defects, dislocation, etc.)
 - how the properties change in response to external perturbation e.g.
 - Temperatures
 - External field (frequency and amplitude)
 - External stress
- May be able to obtain or design a better magnetic recording applications.

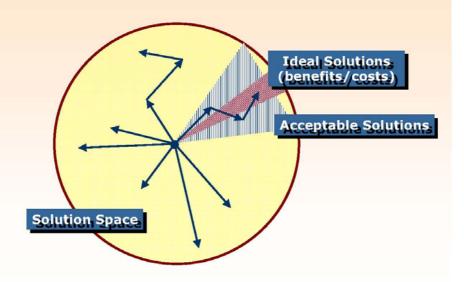
MCQMC'08



Inside of the magnet

MCQMC'08

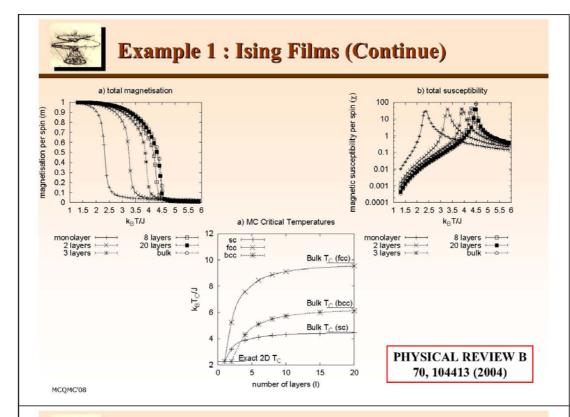
magnet = arrangement of atoms with aligned spins



Solution searching

MCQMC'08

Example 1: Ising Films


The use of Ising Hamiltonian

$$H = -\sum_{\langle ij \rangle} J_{ij} \hat{s}_i \cdot \hat{s}_j \qquad \qquad \hat{s}_i = (0, 0, \pm 1)$$

Methodology

- \diamond Create an array where each element represent the Ising spins (± 1).
- * Choose a spin S_i and flip it to $-S_i$ and calculate the energy difference ΔE (or ΔH_i).
- Pick a uniform random number r and accept the new spin S_i if $r ext{ } ext{exp}(-\Delta E/kT)$. (Metropolis algorithm).
- Repeat steps 2 and 3 until the simulation ends.
- During the simulation, discards some mcs (Monte Carlo step per sites) to reduce initial memory before making measurements which are

$$m = \frac{1}{N} \sum_{i} S_{i}; \quad \langle m \rangle = \frac{1}{t_{max}} \sum_{i} |m_{i}|; \qquad \chi = \frac{N}{kT} (\langle m^{2} \rangle - \langle m \rangle^{2})$$

Example 2: The stress effect

Modified classical Heisenberg model

$$H = -\sum_{\langle ij \rangle} J_{ij} \left(\Delta l \right) \hat{s}_i \cdot \hat{s}_j - \sum_i K_i s_{iz}^2$$

Taylor's series expansion $J_{ij}(\Delta l) = J_{ij} + (\Delta l)J'_{ij}$

Uniformity assumption : so $J'_{ij} = J' = J/a$

$$H = -\sum_{\langle j \rangle} \left[J \left(s_{ix} s_{jx} + s_{iy} s_{jy} \right) + \left(J - \left(\Delta I \right) J / a \right) s_{iz} s_{jz} \right] - \sum_{i} K_{i} s_{iz}^{2}$$

NOTE: The in-plane interaction is left unaltered.

Example 2: The stress effect (Continue)

From Young's modulus $Y = P/(\Delta l/a)$

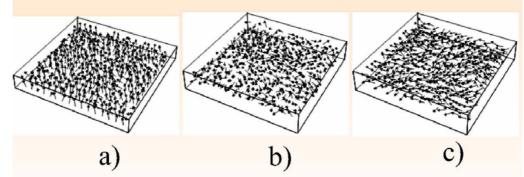
$$\frac{\Delta l}{a} = \frac{P}{Y}$$
 where P is a compressive pressure

Then
$$H = -\sum_{\langle ij \rangle} \hat{s}_i \cdot \mathbf{J} \cdot \hat{s}_j - \sum_i K_i s_{iz}^2$$
where
$$\mathbf{J} = \begin{bmatrix} J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J(1 - P/Y) \end{bmatrix}$$

The exchange parameter J is usually set to 1 and cover only nearest neighboring

MCQMC'08

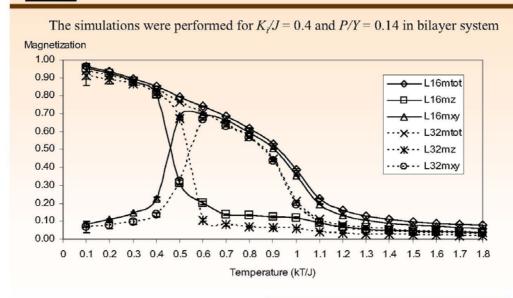
Example 2: The stress effect (Continue)


* The magnetization per spin

$$m_{\alpha} = \frac{1}{N} \left[\sum_{i} \left| s_{i}^{\alpha} \right| \right]$$
 $\left\langle m_{\alpha} \right\rangle = \frac{1}{M} \sum_{i=1}^{M} m_{\alpha}(t)$

❖ With varying the temperature T, anisotropic constant K and the compressive pressure ration P/Y on the thin-films structure 16×16 ×1 and 32×32 ×1 where the thickness l ranging from 2 to 4 layers,

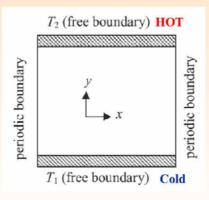
Example 2: The stress effect (Continue)



The microscopic view of the orientation of spins of bilayer films with kT/J = 0.45, Ki/J = 1.0 and a) P/Y = 0.30, b) P/Y = 0.35 and c) P/Y = 0.45.

MCQMC'08

Example 2: The stress effect (Continue)

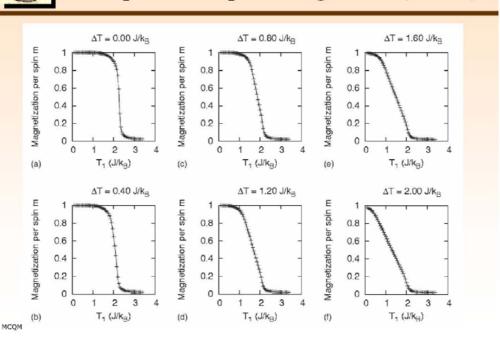


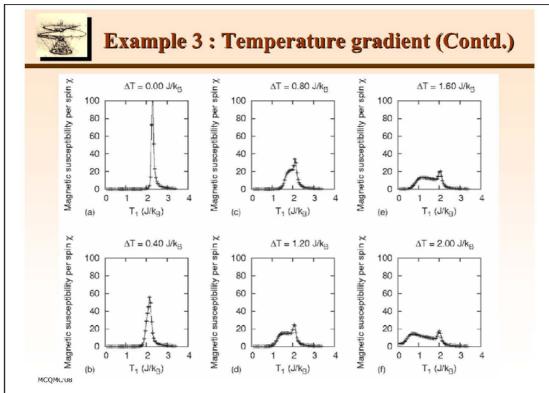
MCQMC'08

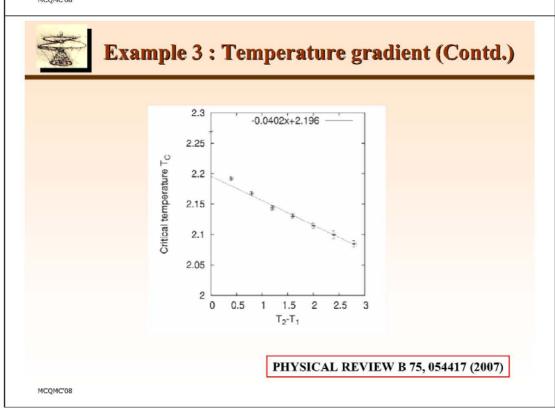
Current Applied Physics 6, 469-473 (2006)

Example 3: Temperature gradient

$$H = -J \sum_{\langle ij \rangle} S_i S_j,$$


$$\frac{1}{A}\frac{dQ}{dt} = -K\frac{dT}{dx},$$


$$\frac{1}{A}\frac{dQ}{dt} = -K\frac{dT}{dx}, \qquad T_y = T_1 + \left(\frac{T_2 - T_1}{L_y - 1}\right)y,$$


MCQMC'08

Example 3: Temperature gradient (Contd.)

There comes another problem.

The energy and the temperature are measure in the unit of J and $J/k_{\rm B}$

MCQMC'08

Example 4: Ab initio and Monte Carlo simultaions on Fe/W (001) Films

* The anisotropic Heisenberg Hamiltonian

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \hat{S}_i \cdot \hat{S}_j + \frac{1}{2} \sum_{i \neq j} D_{ij} \left(\frac{\hat{S}_i \cdot \hat{S}_j}{r_{ij}^3} - 3 \frac{\left(\hat{S}_i \cdot \hat{r}_{ij}\right) \left(\hat{S}_j \cdot \hat{r}_{ij}\right)}{r_{ij}^3} \right)$$

- * Both the exchange parameter J_{ij} , the dipolar interaction D_{ij} , were extracted from the 'First Principles'.
- * Taking the Fe/W thin-films as a case-study.
- ❖ The simulation was carried on the system size of $N = L \times L \times l$ with the linear dimension each layer L varying from 20 to 120, and the thickness l ranges from 2 to 8 layers.

Example 4: Measuring the properties

- The observables were taken from the thermal equilibrium which were
 - the magnetization per spin

$$m_{\alpha} = N^{-1} \sum \left| S_i^{\alpha} \right|$$

 $m_{\alpha} = N^{-1} \sum_{i=1}^{n} \left| S_i^{\alpha} \right|$ • the susceptibility per spin

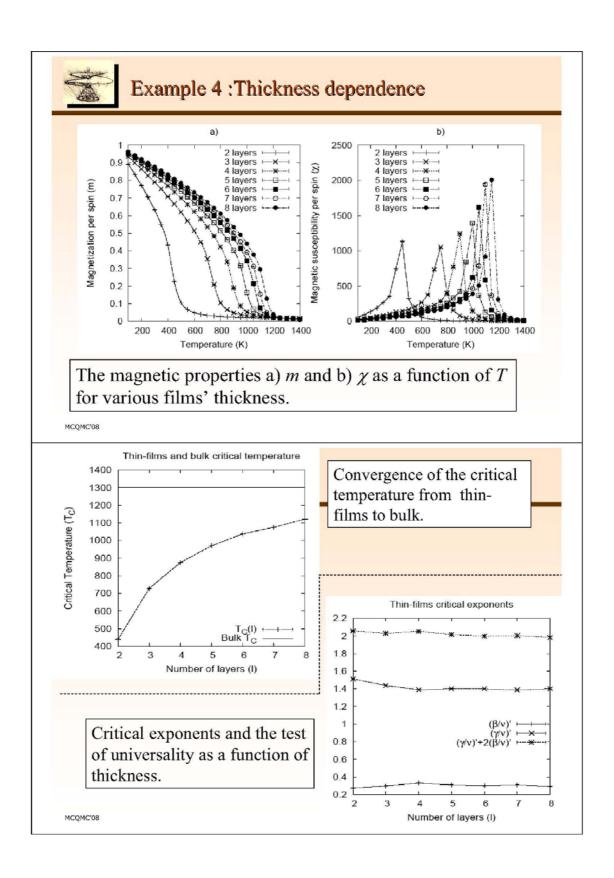
$$\chi_{\alpha} = N(\langle m_{\alpha}^2 \rangle - \langle m_{\alpha} \rangle^2)$$

where α is either the in-plane or out-of-plane direction.

• The critical temperatures $T_c(l)$ for each thickness l was extracted via the fourth order cumulant of the magnetization

$$U_L^{\alpha} = 1 - \left\langle m_{\alpha}^4 \right\rangle / 3 \left\langle m_{\alpha}^2 \right\rangle^2$$

MCQMC'08



Example 4: Critical behavior investigation

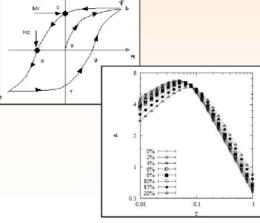
- ***** Based on finite size effect, for $T \rightarrow T_C$, empirical forms of scaling function that are
 - $\langle m(T,l)\rangle = L^{-(\beta'/\nu')}\widetilde{m}(L^{1/\nu'}t,l)$
 - $\chi(T,l) = L^{(\gamma'/\nu')} \widetilde{\chi}(L^{1/\nu'}t,l)$

The critical exponents $(\beta'/\nu', \gamma'/\nu')$ were extracted via the log-log plot.

• Finally, the universality relation $d_{eff} = 2(\beta/\nu) + \gamma/\nu$ was tested and a separate bulk simulation was done for comparison.

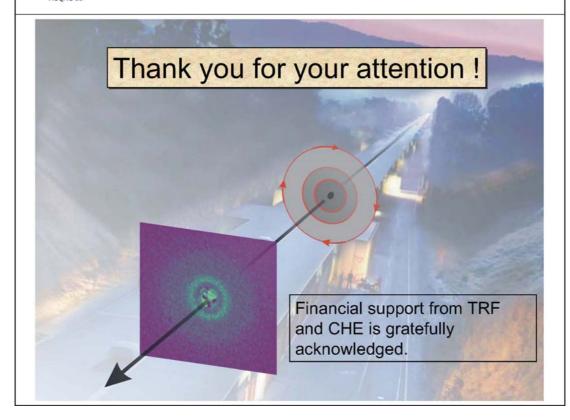
Example 4: Summary of results

monolayers	T_C^{MC}	T_C^{MF}	$(\beta/\nu)'$	$(\gamma/\nu)'$	$d = 2(\beta/\nu)' + (\gamma/\nu)'$
2	439±1	969	0.272 ± 0.003	1.512±0.002	2.06±0.01
3	728±1	1363	$0.296 {\pm} 0.002$	1.437±0.003	$2.03{\pm}0.01$
4	874±1	1484	0.332 ± 0.003	1.389 ± 0.003	$2.05{\pm}0.01$
5	970±1	1551	0.308 ± 0.003	1.400±0.004	2.02 ± 0.01
6	1037±1	1595	0.299 ± 0.003	1.399 ± 0.004	2.00 ± 0.01
7	1076±1	1603	0.309 ± 0.004	$1.386 {\pm} 0.005$	2.01 ± 0.01
8	1121±1	1642	0.291 ± 0.004	1.401±0.005	1.98±0.01
bulk	1300±1	1687	$0.536 {\pm} 0.001$	2.002 ± 0.004	$3.07{\pm}0.01$


^{*}The mean-field T_C were taken from Razee et al. (2002)

MCQMC'08

Ongoing and Future works


- Try to model the "more real" materials e.g.
 - Roughness films
 - Impurity inclusion (non-magnetic, antiferromagnetic, or static spins) ↑ M Ho
 - · Magnetostriction.
- * Hysteresis modeling
 - · Area (energy dissipation)
 - · Coercive field
 - · Remnant magntization
 - · Scaling equations
- . Etc.

Summary

- With Monte Carlo techniques, it is now possible to investigate how the thermodynamics, system structures, external perturbations affects the magnetic properties.
- Though parameters used are from a "guess", one can improve the results by incorporating with Ab-initio electronics structure calculations (Quamtum Mechanics) to extracts magnetic properties in real units.
- With the Monte Carlo results, magnetic recording technologists will have some ideas on magnetic properties
 - How high is the Curie temperature in a particular films
 - How the magnetic films responds to external parameters (e.g. temperature, system structure, etc.)
 - Get some ideas if one wants to increase the areal density (e.g what materials and how thick of the magnetic films to choose)

ภาคผนวก ซ. เอกสารประกอบงานประชุมวิชาการที่เข้าร่วมเรื่อง

Monte Carlo simulation on thickness dependence of hysteresis properties in Ising thin-films"

นำเสนอแบบ Poster presentation

"The 4th International Conference on Technological Advances of Thin Films
& Surface Coating"

13 – 16 July 2008

Administration Building of Singapore Management University (SMU), Singapore

Yahoo! Mail - yongyut_laosiritaworn@yahoo.com

Page 1 of 1

YAJ	HOO! MAIL Classic	Print - Close Window
From:	ASSDNG@ntu.edu.sg	
To:	yongyut_laosiritaworn@yahoo.com	
CC:	yongyut_laosiritaworn@yahoo.com	
Subject:	ThinFilms conference: Abstract 4615 review result (ONF symposium).	
Date:	Mon, 31 Mar 2008 17:52:54 +0800	

Dear Yongyut Laosiritaworn,

Symp code: ONF, Paper ID: 4615 - "MONTE CARLO SIMULATION ON THICKNESS DEPENDENCE OF HYSTERESIS PROPERTIES IN ISING THIN-FILMS", Yongyut Laosiritaworn.

Thank you for submitting your work to ThinFilms2008.

On behalf of the Organising Committee of The 4th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms2008), I would like to inform you that your paper has been ACCEPTED as a POSTER presentation at the Ordered nanostructural thin films (ONF) Symposium. Oral presentation is alocated 15 minutes including questions and answers, Invited oral 25 minutes and Keynotes 40 minutes. Separate sessions will be held for the Posters presentation. Note that during the Poster sessions, it is expected that the presenter be there to explain/answer questions.

The full length manuscripts for Oral and Poster presentation receive the same privilege. The deadline for the manuscript submission is on the 20 June 2008. Submission should follow the format indicated at http://www.ntu.edu.sg/mae/thinfilms/manuscript.asp. The submitted manuscript (in PDF format) will be published in a CD-ROM and will be considered, after the conference, for publication in special issues of JNN and TSF. Please format the submitted manuscript according to the format of the journal you choose to submit to.

IMPORTANT: Please note our "one registration, one paper" policy. Only accepted paper with paid registration will be considered for conference presentation and possible journal publication. Online registration will start soon and the early bird promotional rate will end on 31st May 2008.

You can submit your manuscript, edit your particulars and withdraw your paper from your Author Page (http://www.ntu.edu.sg/mae/thinfilms/AuthorPage.asp?ID=4615&email=yongyut_laosiritaworn@yahoo.com).

Thank you for your contribution to the success (we have more than 800 abstracts by the closing date!) of yet another great ThinFilms conference. We are looking forward to seeing you at the Conference in Singapore!

Yours sincerely,

Wong Chee Cheong Symposium Chair, Ordered nanostructural thin films, 4th ThinFilms Conference

WongCC@ntu.edu.sg

PS: Please remember to cite your (1) symposium code and (2) paper ID in all communications.

PPS: Please inform us if you need a formal letter for visa application. Note that many countries do not need visa to enter Singapore. Please refer to http://www.ntu.edu.sg/mae/thinfilms/visa.asp or http://app.ica.gov.sg/travellers/entry/visa_requirements.asp for details of visa requirement and a list of countries where visa application is necessary.

http://us.f533.mail.yahoo.com/ym/ShowLetter?box=Conference2008&MsgId=1565 0... 11/6/2551

บดคัดย่อ

MONTE CARLO SIMULATION ON THICKNESS DEPENDENCE OF HYSTERESIS PROPERTIES IN ISING THIN-FILMS

Yongyut Laosiritaworn

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

KEY WORDS: Monte Carlo, Ising thin-films, Hysteresis

Abstract:

The ferromagnetic thin-films at nano-ranged thicknesses have been a subject of intensive interests due to a broad range of applications especially in recording applications [1]. In terms of fundamental interests, the physical mechanisms involved in these reduced nanostructure systems are quite different from bulk properties has become a topic of frequent investigating issues, as one may control the films' thicknesses to obtain the magnetic hysteresis at a right shape to suit desired technological applications [2]. However, the description of how the hysteresis and their influences on the magnetic properties of ferromagnetic thin films are affected by the external applied field is not quite well set up due to the underlying complexity of the reduced dimension. For example, multilayered systems are known to change from two- to three-dimensional class with increasing numbers of layers. Magnetic films, however, should belong to a two dimensional universality class owing to the magnetic correlation lengths being constrained by the films thickness. This is not apparent from experiments on nickel films which a dimensional crossover of a critical exponent from two- to three-dimension is found [3]. Therefore, this discrepancy highlights the importance of the dimensional pinning to the problem. Nevertheless, as direct observations are difficult to obtain, this work tries to model the dynamic magnetic hysteresis behavior by means of Monte Carlo simulations and spin-flip algorithm. As varying the thicknesses and the frequencies of the external field, the magnetization as a function of the applied magnetic field are taken. The results show that with increasing the thicknesses, at fixed frequencies, the hysteresis area, the coercivity and the remanence increase due to the stronger ferromagnetic coupling, and the power law relations between the thicknesses and the hysteresis properties are suggested. On investigating the universal scaling law of how dynamic hysteresis area responses to field frequencies, the results agree well with previous experiments on ferromagnetic thin-films, where applicable. In addition, the thickness dependence of the hysteresis area on the frequencies in a power law form is also successfully obtained which provides another fruitful step in understanding the hysteresis scaling phenomena in ferromagnetic thinfilms.

References:

- 1. T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Electrochim. Acta 50, 4576 (2005).
- 2. J-S Suen, M. H. Lee, G. Teeter and J. L. Erskine, Phys. Rev. B 59, 4249 (1999).
- 3. Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).

โปสเตอร์ที่นำเสนอ

ThinFilms2008

THINFILMS2008

nanoMan2008

The 4th International Conference on Technological Advances of Thin Films & Surface Coatings

in conjunction with 13th -16th July 2008, Singapore The 1st International Conference on nanoManufacturing

Abstract

Monte Carlo simulation was used to investigate thickness dependence of hysteresis properties. With increasing the films thickness, the hysteresis area, the coercive field and the remnant magnetization increase at low but decrease at high frequencies due to the stronger ferromagnetic coupling which agrees well with experiments. In addition, the universal power law scaling between the hysteresis properties, the thickness and the field parameters were also reported.

Introduction

- Response of magnetic films under external field leads to important technical applications.
- Due to complexity in reduced structure (e.g. films), the explanation on how perturbations (field amplitude h₀ and frequency f) affects the hysteresis properties in ferromagnetic films is still not completed.
- Therefore, Monte Carlo simulations is used to in this work.

Methodologies, Results and Discussions

- Ising spins were prepared on thin-films and simulated via spin flipped Metropolis algorithm in the Monte Carlo simulation.
- Ferromagnetic hysteresis loops were extracted with varying frequencies f, amplitudes h₀ and films thickness I.
- In Fig. 1, the hysteresis loop get larger and smaller at high f and low frespectively due to the different types of phase-lag.
- In thicker films, there is larger magnetic coupling strength, the phase-lag at largest area then moves to higher frequency.
- Example of area A as varying frequency f can be shown in Fig. 2 where the area scaling in the power law form A
 A
 A f a h f l'

for both low f and high f regions are found (see Table 1 and Fig. 3)

Table 1. Fitted exponents from the scaling relations of hysteresis area A, magnetic coercivity h_c and remnant magnetization m_r both high f ($f \ge 0.250 \, \mathrm{mcs}^{-1}$) and low f ($f \le 0.050 \, \mathrm{mcs}^{-1}$) regions.

		α	β	7
A	Low f	0.30±0.02	0.54±0.03	0.14±0.01
	High f	-0.91±0.01	1.26±0.01	-0.02±0.01
h _e	Low f	0.30±0.02	0.47±0.03	0.15±0.01
	High f	0.02±0.01	0.98±0.01	0.01±0.01
m,	High f	-0.87±0.01	0.33±0.01	-0.03±0.01
	Make The St. C.	was at the Change	k commercia	

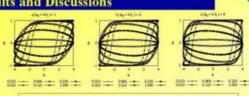


Figure 1. The hysteresis loops with varying frequency from 0.010 to 1.000 mcs⁻¹ and the thickness / ranges from a) 1 layer to b) 2 layers and c) 8 layers.

Figure 2. Hysteresis area A of Ising films as a function of field frequency f.

Figure 3. The scaling relation between A and $f^{\alpha}h_{\beta}^{\beta}I'$ using the exponents in Table 1. The linear fit and good R^2 show confirm the scaling relation .

Yongyut Laosiritaworn
Department of Physics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand

Acknowledgement

This work is supported by the Thailand Research Fund (TRF) and Commission on Higher Education (Thailand).

