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Abstract  
 

 We give some sufficient conditions for the Dominguez-Lorenzo condition for a 
Banach space X  in terms of the James constant, the Jordan-von Neumann constant, 
and the coefficient of weak orthogonality. As a consequence, we obtain fixed point 
theorems for multivalued nonexpansive mappings. For a uniformly convex Banach 
space X , let E  be a nonempty closed bounded convex subset of ,X  and :f E E→  
and  is an asymptotically nonexpansive mapping and a multivalued 
nonexpansive mapping respectively. Assume in addition 

:T E KC E→ ( )

f  and T  are commuting. 
Then f  and T  have a common fixed point, i.e., there exists a point x  in  such that E

( ) ( )x f x T x= ∈ . 
 
Keywords : James constant; Jordan-von Neumann constant; Weak orthogonality; 
Normal structure; Fixed point; Multivalued nonexpansive mapping; Asymptotically 
nonexpansive mapping  
 
 

บทคดัยอ่  
 

ในการศกึษาวจิยัน้ี ไดส้รา้งเงือ่นไขทีเ่พยีงพอสาํหรบัเงือ่นไขโดมงิเกซและลอเรนโซ 
สาํหรบัปรภิมูบิานาค X เงือ่นไขดงักล่าวอยูใ่นรปูของคา่คงทีเ่จมส ์คา่คงทีจ่อรแ์ดน ฟอนนอย
มนัน์และสมัประสทิธกิารตัง้ฉากแบบออ่น  ์ ทาํใหไ้ดท้ฤษฎบีทจุดตรงึสาํหรบัการสง่คา่เซตทีไ่ม่
ขยาย สาํหรบัปรภิมูบิานาค X ทีเ่ป็นปรภิมูนูินแบบเอกรปู เมือ่ เป็นยอ่ยปิด นูนและมี
ขอบเขต 

E

:f E E→ และ เป็นการสง่แบบไมข่ยายและการสง่คา่เซตแบบไม่
ขยายตามลาํดบั ถา้ 

:T E KC E→ ( )

f  และ T  มสีมบตัสิลบัทีแ่ลว้ f  และ  จะมจุีดตรงึรว่ม นัน่คอืจะมจุีด T

x E∈  ที ่ ( ) ( )x f x T x= ∈  
 

คาํสาํคญั : คา่คงทีเ่จมส;์ คา่คงทีจ่อรแ์ดน ฟอนนอยมนัน์; การตัง้ฉากแบบออ่น; โครงสรา้งปกต;ิ 
จุดตรงึ; การสง่คา่เซตแบบไมข่ยาย; การสง่ไมข่ยายแบบเชงิเสน้กาํกบั 
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เน้ือหาโครงการโดยสรปุ 
การวเคราะหเ์ชงคาเซตและเงื่อนไขทางเรขาคณติ ิ ิ่  

Executive Summary   
SET-VALUED ANALYSIS AND GEOMETRIC CONDITIONS 

 
1. ความสาํคญัและท่ีมาของปัญหา 
 ให ้  เป็นเซตยอ่ยปิด นูนและมขีอบเขต (bounded closed convex subset) ของ

ปรภิมูบิานาค 

E
( , )X ⋅ , ( )KC E  เป็นเซตของเซตยอ่ยของ ทีก่ระชบั (compact) และ

นูน (convex), 

E
( )K E  เป็นเซตของเซตยอ่ยของ ทีก่ระชบั (compact), และ 

 เป็นการสง่คา่เซตทีไ่มข่ยาย (non-expansive multivalued mapping) นัน่
คอื T  สอดคลอ้งกบัอสมการ 

E
: (T E K E→ )

( ( ), ( ))H T x T y x y≤ −    สาํหรบัทุกๆ    ,x y X∈  

เมือ่ ( , )H ⋅ ⋅  คอืเมตรกิของ Hausdorff (the Hausdorff metric) กาํหนดโดย 

{ }( , ) max supdist (a,B),supdist (b,A)
a A b B

H A B
∈ ∈

=   

เมือ่ ,A B  เป็นเซตปิดใน   เราสนใจเงือ่นไขทางเรขาคณติ (geometric condition) 
บนปรภิมู ิ  ทีเ่พยีงพอต่อการมจุีดตรงึ (fixed point) ของการสง่ T  นัน่คอืมจุีด 

X
X x  ใน  ที ่E

( )x T x∈  การศกึษาการมจุีดตรงึของการสง่คา่เซตทีไ่มข่ยายเป็นทีน่่าสนใจมาแลว้กวา่ 40 ปี
และพสิจูน์แลว้วา่มบีทประยกุตท์ีม่คีุณคา่ต่อทัง้คณติศาสตรเ์องและต่อวชิาอื่นเชน่ Control 
Theory, Economics, Approximation Theory และอื่นๆอกีมากมาย แต่งานวจิยัและระเบยีบวธิี
ทีเ่กีย่วขอ้งกบัเรือ่งน้ีมไีมม่ากและยงัมปีญหาทีย่งัหาคาํตอบไมไ่ดอ้กีไม่ั น้อย  งานวจิยัน้ีจะศกึษา
การมจุีดตรงึของการสง่ทีไ่มข่ยายและหา(หรอืสรา้ง)เงือ่นไขทางเรขาคณติทีเ่พยีงพอต่อการมจุีด
ตรงึของการสง่ทีไ่มข่ยาย ซึง่เป็นการขยายวงความรูแ้ละสรา้งระเบยีบวธิใีหมใ่นเรือ่งน้ี 
 
2.  วตัถปุระสงคข์องโครงการ 

1.  หาผลสรปุ (result) ของการมจุีดตรงึของการสง่คา่เซตทีไ่มข่ยาย T  ทีเ่กีย่วขอ้งกบั
สมบตัทิางเรขาคณติ 

2.   หาเงือ่นไขทางเรขาคณติทีเ่กีย่วขอ้งกบัคา่คงทีท่างเรขาคณติ ( geometric constant) 
ของปรภิมู ิ ทีเ่พยีงพอต่อการมจุีดตรงึของการสง่คา่เซตทีไ่มข่ยาย T  X

3.  เพือ่ขยายวงความรูข้องการมจุีดตรงึของการสง่คา่เซตทีไ่มข่ยาย T   
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3. ระเบียบวธีวจยัิ ิ   
1.  รวบรวมความรูพ้ืน้ฐานทีเ่กีย่วกบัทฤษฎจุีดตรงึ (fixed point theory) ของการสง่คา่เซต 

โดยเฉพาะอยา่งยิง่สมบตัทิางเรขาคณติ (geometric property) ต่างๆของปรภิมูทิีอ่าจมี
ผลต่อการเกดิจุดตรงึของการสง่คา่เซตทีไ่มข่ยาย 

2.   สรา้ง conjecture ทีค่าดวา่จะเป็นจรงิเพือ่หาบทพสิจูน์ หรอืหาตวัอยา่งแยง้เพือ่นําไปสู่
การปรบัปรงุ conjecture เพือ่สรา้งเป็นทฤษฎบีทต่อไป 

3.   สง่ผลงานใหน้กัวจิยัทีป่รกึษาตรวจสอบและใหค้าํแนะนํา 
4.   เขยีน paper และสง่ให ้International Journal ทางคณติศาสตรพ์จิารณาเพือ่ตพีมิพ์

ต่อไป 
 
4. แผนการดาํเนนงานวจยัตลอดโครงการในแตละชวง ิ ิ ่ ่ 6 เดือน 

ปีที1่
กจิกรรมและแผนการ

ดาํเนินงาน 
วตัถุประสงค ์ ชว่งเวลา ผลทีค่าดวา่จะได ้ 

(out put) 
ความ
กา้ว 
หน้า 

1-6 เดือน 

1. รวบรวมเอกสารทีม่ี
อยูท่ีเ่กีย่วขอ้งกบัหวัขอ้
วจิยั 

รวบรวมขอ้มลูทีจ่าํเป็น เดอืนที ่1-2 ไดท้บทวนความรูท้ีจ่าํเป็น
และเป็นปจจุบนัทัง้หมดที่ั

เกีย่วขอ้งกบัหวัขอ้วจิยั 

2% 

3. พบนกัวจิยัทีป่รกึษา เพือ่นําเสนอความรูท้ี่
เกีย่วขอ้งกบัหวัขอ้วจิยัและ
เสนอแผนวจิยัต่อนกัวจิยัที่
ปรกึษา 

เดอืนที ่3 ไดร้บัคาํแนะนําทีม่ ี
ประโยชน์และได้
แลกเปลีย่นความคดิเหน็
เกีย่วกบัแผนการ
ดาํเนินการวจิยัเพือ่ความ
สมบรูณ์แผนงานวจิยั 

5% 

4.  ศกึษาระเบยีบวธิทีีม่ ี
อยูเ่ดมิและหาระเบยีบ
วธิใีหมท่ีเ่กีย่วขอ้งกบั
การมจีุดตรงึการสง่คา่
เซตทีไ่มข่ยาย T  

สรา้งระเบยีบวธิเีพือ่ศกึษา
การมจีุดตรงึของการสง่คา่
เซตทีไ่มข่ยาย T  

เดอืนที ่4-6 ไดร้ะเบยีบวธิแีละขอ้สรปุ
เพือ่ศกึษาการมจีุดตรงึของ
การสง่คา่เซตทีไ่มข่ยาย 

  T

30% 

7-12 เดือน 

5. ศกึษาเงือ่นไขทาง
เรขาคณิตทีเ่กีย่วขอ้งกบั
คา่คงทีท่างเรขาคณิต ( 
geometric constant) 
ของปรภิมู ิ ที่
เพยีงพอต่อการมจีุดตรงึ

X

เพือ่ทราบแนวคดิและวง
ความรูท้ีเ่กีย่วขอ้งกบัคา่คงที่
ทางเรขาคณิต ( geometric 
constant) ของปรภิมู ิ ที่
เพยีงพอต่อการมจีุดตรงึของ
การสง่คา่เซตทีไ่มข่ยาย T  

X

เดอืนที ่7-9 ไดแ้นวคดิและวงความรูท้ี่
เกีย่วขอ้งกบัคา่คงทีท่าง
เรขาคณิต ( geometric 
constant) ของปรภิมู ิ
ทีเ่พยีงพอต่อการมจีุดตรงึ
ของการสง่คา่เซตทีไ่มข่ยาย 

X

40% 

Page 2



   

ของการสง่คา่เซตทีไ่ม่
ขยาย T  

T  

6. หา(หรอืสรา้ง)เงือ่นไข
ทางเรขาคณิตที่
เกีย่วขอ้งกบัคา่คงทีท่าง
เรขาคณิต ( geometric 
constant) ของปรภิมู ิ

ทีเ่พยีงพอต่อการมี
จุดตรงึของการสง่คา่เซต
ทีไ่มข่ยาย T  

X

เพือ่ไดเ้งือ่นไขทางเรขาคณิต
ทีเ่กีย่วขอ้งกบัค่าคงทีท่าง
เรขาคณิต ( geometric 
constant) ของปรภิมู ิ ที่
เพยีงพอต่อการมจีุดตรงึของ
การสง่คา่เซตทีไ่มข่ยาย T  

X

เดอืนที ่10-
12 

ไดเ้งือ่นไขทางเรขาคณิตที่
เกีย่วขอ้งกบัคา่คงทีท่าง
เรขาคณิต ( geometric 
constant) ของปรภิมู ิ
ทีเ่พยีงพอต่อการมจีุดตรงึ
ของการสง่คา่เซตทีไ่มข่ยาย 

 

X

T

55% 

 
ปีท่ี2
 

กจิกรรม วตัถุประสงค ์ ชว่งเวลา ผลทีค่าดวา่จะได ้ 
(out put) 

ความ
กา้ว 
หน้า 

เดือนท่ี 13-18 

1.  พบนกัวจิยัทีป่รกึษา รายงานความกา้วหน้าและ
ปรกึษาหารอืเกีย่วกบัผลงาน
ทีไ่ดแ้ละแนวทางการ
ดาํเนินงานต่อไป 

2. แลกเปลีย่น
แนวความคดิกบั
ผูเ้ชีย่วชาญทัง้ในและ
ต่างประเทศทาง
โทรศพัทแ์ละe-mail 

เพือ่ทราบความคดิเหน็ของ
ผูเ้ชีย่วชาญเกีย่วกบัผลงาน 

เดอืนที ่1 
 

1. ไดร้บัคาํแนะนําทัง้จาก
นกัวจิยัทีป่รกึษาและ
ผูเ้ชีย่วชาญ 
2. ไดท้ราบขอ้คดิเหน็ต่างๆ
เพือ่นําไปปรบัปรงุผลงาน
ใหด้ขีึน้ 
3. ทราบแนวทางการ
ดาํเนินการวจิยัต่อไป 
 

60% 

3. ศกึษาวงความรูข้อง
การมจีุดตรงึของการสง่
คา่เซตทีไ่มข่ยาย T  ที่
มอียูเ่ดมิ 

เพือ่ทราบวงความรูข้องการ
มจีุดตรงึของการสง่คา่เซตที่
ไมข่ยาย T  ทีม่อียูเ่ดมิ 

เดอืนที ่2-3 ทราบวงความรูข้องการมี
จุดตรงึของการสง่คา่เซตที่
ไมข่ยาย T  ทีม่อียูเ่ดมิ 

65% 
 

4.  สรา้งระเบยีบวธิเีพือ่
ขยายวงความรูข้องการ
มจีุดตรงึของการสง่คา่
เซตทีไ่มข่ยาย T  ทีม่ี
อยูเ่ดมิ 

  เพือ่ไดร้ะเบยีบวธิเีพือ่
ขยายวงความรูข้องการมจีุด
ตรงึของการสง่คา่เซตทีไ่ม่
ขยาย T  ทีม่อียูเ่ดมิ 

เดอืนที ่4-6 ไดร้ะเบยีบวธิเีพื่อขยายวง
ความรูข้องการมจีุดตรงึของ
การสง่คา่เซตทีไ่มข่ยาย 

 ทีม่อียูเ่ดมิ T

85% 

เดือนท่ี 19-24 

5.  พบนกัวจิยัทีป่รกึษา 1. รายงานความกา้วหน้า เดอืนที7่- 8 ไดแ้นวทางการพฒันาหรอื 90% 
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6. แลกเปลีย่น
แนวความคดิกบั
ผูเ้ชีย่วชาญทัง้ในและ
ต่างประเทศทาง
โทรศพัทแ์ละe-mail 

ของผลงานวจิยัทัง้หมด 
2. รายงานปญหาต่างๆและั

เพือ่ไดร้บัการแนะนํา
เกีย่วกบัปญหาั  
3. แลกเปลีย่นแนวคดิเพือ่
ปรบัปรงุผลงานใหด้ขีึน้ 

ปรบัปรงุผลงานวจิยัใหด้ขีึน้ 

7. ปรบัปรงุผลงานวจิยั
และพมิพผ์ลงานวจิยัที่
ได ้
 

เพือ่ปรบัปรุงผลงานวจิยั เดอืนที ่9-11 ไดผ้ลงานทีด่ขี ึน้และ
สมบรูณ์มากขึน้ทีค่าดวา่
น่าจะตพีมิพไ์ด ้

95% 

8. พบนกัวจิยัทีป่รกึษา 1. รายงานผลงานวจิยัที่
สมบรูณ์ 
2. สง่ผลงานวจิยัไปตพีมิพ ์

เดอืนที1่0-12 ไดผ้ลงานวจิยัทีห่าเงือ่นไข
ทางเรขาคณิตทีเ่พยีงพอต่อ
การมจีุดตรงึของการสง่คา่
เซตแบบไมข่ยายและขยาย
วงความรูข้องการมจีุดตรงึ
ของการสง่คา่เซตทีไ่มข่ยาย 

100% 

 

 
5. ผลงาน/หวัข้อเร่ืองท่ีคาดวาจะตีพมพใ์นวารสารวชาการระดบันานาชาตในแตละปี่ ่ิ ิ ิ  

ชื่อเรือ่งทีค่าดวา่จะตพีมิพ ์  :  “The geometric conditions that imply the existence of 
fixed point for nonexpansive multivalued mappings” 

ชื่อวารสารทีค่าดวา่จะตพีมิพ ์  : Journal of Mathematical Analysis and  Applications 
(impact factor = 2007: 0.872) 

 
6. งบประมาณโครงการ 

 
 เดอืนละ ปีที ่1 ปีที ่2 รวม 

1. หมวดคา่ตอบแทน    
     นายอรรถพล แกว้ขาว 

 
10,000 120,000 120,000 240,000 

2. หมวดคา่ใชส้อย     
    2.1  คา่เดนิทาง (พบนกัวจิยัทีป่รกึษา) 6,000 6,000 12,000 
    2.2  ทีพ่กั (พบนกัวจิยัทีป่รกึษา) 

ปีละ 2 
ครัง้ 4,000 4,000 8,000 

3. คา่วสัดุและคา่จา้ง     
   3.1 ถ่ายเอกสารงานวจิยัต่างๆและหนงัสอื
รวมทัง้วสัดุอุปกรณ์ต่างๆเชน่ กระดาษ ปากกา 
หมกึเครือ่งพมิพ ์

2,000 24,000 24,000 48,000 
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   3.2  คา่ไปรษณยี ์โทรสาร 500 6,000 6,000 12,000 
   3.2 คา่สบืคน้และสัง่ซือ้วารสาร  10,000 10,000 20,000 
   3.3 คา่จา้งพมิพผ์ลงานวจิยั  2,000 2,000 4,000 
   3.4  คา่เขา้เล่มรปูเล่มงานวจิยั  -  2,000 2,000 

รวม  172,000 174,000 346,000 
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เน้ือหางานวจยัิ  
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Set-valued Analysis and Geometric Conditions

1 Introduction

In 1969, Nadler [27] extended the Banach Contraction Principle to multivalued contractive map-
pings in complete metric spaces. Since then some classical fixed point theorems for single valued
nonexpansive mappings have been extended to multivalued nonexpansive mappings. Let X be a
Banach space and let E be a nonempty bounded closed and convex subset of X. In 1974, Lim [24],
using Edelstein’s method of asymptotic centers, proved the existence of a fixed point for a nonempty
compact-valued nonexpansive self-mapping T : E → K(E) where X is uniformly convex. Kirk
and Massa [23] in 1990 extended Lim’s theorem by proving that every multivalued nonexpansive
self-mapping T : E → K(E) has a fixed point for a space X on which every asymptotic center in E

of each bounded sequence of X is nonempty and compact. In 2001, Xu [37] extended Kirk-Massa’s
theorem to a nonself-mapping T : E → KC(X) which satisfies the inwardness condition.

In 2004, Domı́nguez Benavides and Lorenzo [12] obtained a certain relationship between the
Chebyshev radius of the asymptotic center of a bounded sequence and the modulus of noncom-
pactness. With this result and a modification of the proof in Xu [37], they were able to solve an
open problem in [36] by proving that every nonempty compact and convex valued nonexpansive
self-mapping T : E → KC(E) has a fixed point where X is a nearly uniformly convex Banach space.
Their method was generalized by Dhompongsa, Kaewcharoen, and Kaewkhao [7], and by Dhom-
pongsa et al. [6]. In [7] the authors defined the Domı́nguez-Lorenzo condition ((DL)-condition, in
short) and proved the existence of a fixed point for a multivalued nonexpansive and 1−χ−contractive
mapping T : E → KC(X) such that T (E) is a bounded set and T satisfies the inwardness condi-
tion, where E is a nonempty bounded closed convex separable subset of a reflexive Banach space X

which satisfies the (DL)-condition. Very recently, the (DL)-condition has been studied by Wísnicki
and Wośko [32], Domı́nguez Benavides and Gavira [8], and Seajung [29]. It is worth to mention
the main results of the first two of these papers. Wísnicki and Wośko [32] introduced an ultrafilter
version of the (DL)-condition. Their approach enables them to drop the separability condition in
[7]. Domı́nguez Benavides and Gavira [8] proved that every uniformly smooth Banach space satisfies
the (DL)-condition and hence has the weak multivalued fixed point property (see [8, Theorem 2]).

Asymptotic fixed point theorems are those theorems from which the existence of fixed points of
a mapping f : X → X are derived from the behavior of the iterates fn for large n. A mapping
f : E → E is said to be asymptotically nonexpansive if there exists a sequence {kn} of real numbers
with lim

n
kn = 1 such that

‖fnx− fny‖ ≤ kn‖x− y‖ for x, y ∈ E and n = 1, 2, 3, ....

In 1972, Goebel and Kirk [17] proved the following theorem.

Theorem 1.1. (Goebel and Kirk [17]). Let X be a uniformly convex Banach space, E a nonempty
closed bounded convex subset of X, and f : E → E an asymptotically nonexpansive mapping. Then
f has a fixed point. Moreover, the set of fixed points of f is closed convex.

Some generalizations of this result were proved by Yu and Dai [38] when X is 2-uniformly rotund,
by Mart́ınez Yañez [26] and Xu [33] when X is k−uniformly rotund for some k ≥ 1, by Xu [35] when
X is nearly uniformly convex, by Lim, Tan and Xu [25] when X satisfies the uniform Opial condition
and by Kim, and Xu [22] when X has uniform normal structure.
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2 Preliminaries

In this section we are going to recall some concepts and results which will be used in the following
sections. For more details the reader may consult, for instance,[2] and [18].

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(E) the family of
nonempty bounded closed subsets of E, by KC(E) the family of nonempty compact convex subsets
of E. Let H(·, ·) be the Hausdorff distance on FB(X), i.e.,

H(A,B) := max
{

sup
x∈A

inf
y∈B

‖x− y‖, sup
y∈B

inf
x∈A

‖x− y‖
}

, A,B ∈ FB(X).

A multivalued mapping T : E → FB(X) is said to be a contraction if there exists a constant
k < 1 such that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ E,

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ E.

Let
χ(A) = inf {d > 0 : A can be covered by finitely many balls of radii ≤ d}

denote the Hausdorff measure of noncompactness of a bounded set A.

A multivalued mapping F : E → 2X is said to be 1− χ−contraction if, for each bounded subset
A of E with χ(A) > 0, F (A) is bounded and

χ(F (A)) ≤ χ(A).

Here F (A) =
⋃

x∈A Fx.

The inward set of E at x ∈ E is defined by

IE(x) = {x + λ(y − x) : λ ≤ 1, y ∈ E}.

Throughout the paper we let BX and SX denote, respectively, the closed unit ball and the unit
sphere of X. Let A be a nonempty bounded set in X. The number r(A) = inf{supy∈A ‖x− y‖ : x ∈
A} is called the Chebyshev radius of A. The number diam(A) = sup{‖x − y‖ : x, y ∈ A} is called
the diameter of A. A Banach space X has normal structure (resp. weak normal structure) if

r(A) < diam(A)

for every bounded closed (resp. weakly compact) convex subset A of X with diam(A) > 0.

The property WORTH was introduced by B. Sims in [30] as follows : X is said to satisfy property
WORTH if for any x ∈ X and any weakly null sequence {xn} in X,

lim sup
n→∞

‖xn − x‖ = lim sup
n→∞

‖xn + x‖.

In [19], A. Jiménez-Melado and E. Llorens-Fuster defined the coefficient of weak orthogonality µ(X),
which is defined as the infimum of the set of the real numbers r > 0 such that

lim sup
n→∞

‖x + xn‖ ≤ r lim sup
n→∞

‖x− xn‖
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for all x ∈ X and for all weakly null sequences {xn} in X. It is known that X satisfies property
WORTH if and only if µ(X) = 1.

For a Banach space X, the James constant, or the nonsquare constant was defined by Gao and
Lau [15] as

J(X) = sup {‖x + y‖ ∧ ‖x− y‖ : x, y ∈ BX} .

The Jordan-von Neumann constant CNJ(X) of X, introduced by Clarkson [4], is defined by

CNJ(X) = sup
{‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2) : x, y ∈ X not both zero
}

.

The following method and results deal with the concept of asymptotic centers. Let E be a
nonempty bounded subset of X and {xn} be a bounded sequence in X. We use r(E, {xn}) and
A(E, {xn}) to denote the asymptotic radius and the asymptotic center of {xn} in E, respectively,
i.e.,

r(E, {xn}) = inf
{

lim sup
n→∞

‖xn − x‖ : x ∈ E

}
,

A(E, {xn}) =
{

x ∈ E : lim sup
n→∞

‖xn − x‖ = r(E, {xn})
}

.

It is known that A(E, {xn}) is a nonempty weakly compact convex set whenever E is [18]. Let
{xn} and E be as above. Then {xn} is called regular relative to E if r(E, {xn}) = r(E, {xni}) for all
subsequences {xni} of {xn} and {xn} is called asymptotically uniform relative to E if A(E, {xn}) =
A(E, {xni}) for all subsequences {xni} of {xn}. Furthermore, {xn} is called regular asymptotically
uniform relative to E if {xn} is regular and asymptotically uniform relative to E. There always
exists a subsequence of {xn} which is regular relative to E (see [16] and [24]).

If C is a bounded subset of X, the Chebyshev radius of C relative to E is defined by

rE(C) = inf
{

sup
y∈C

‖x− y‖ : x ∈ E

}
.

The Domı́nguez-Lorenzo condition introduced in [7] is defined as follows :

Definition 2.1. [7, Definition 3.1] A Banach space X is said to satisfy the Domı́nguez-Lorenzo
condition ((DL)-condition, in short) if there exists λ ∈ [0, 1) such that for every weakly compact
convex subset E of X and for every bounded sequence {xn} in E which is regular relative to E,

rE(A(E, {xn})) ≤ λr(E, {xn}).

Theorem 2.2. [7, Theorem 3.3] Let X be a reflexive Banach space satisfying the (DL)-condition
and let E be a nonempty bounded closed convex separable subset of X. If T : E → KC(X) is a
nonexpansive and 1 − χ−contractive mapping such that T (E) is a bounded set which satisfies the
inwardness condition :

Tx ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

In 2001, Dominguez and Lorenzo proved a very interesting theorem which is a generalization of
the famous theorem of Buck [3]. Before stating the theorem, we need the following concepts.

We say that a nonempty closed convex subset D of E satisfies property (ω) with respect to a
mapping f : E → E if ωf (x) ⊆ D for every x ∈ D where

ωf (x) = {y ∈ E : y = w − lim
k

fnkx for some nk →∞}.
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Definition 2.3. [9] A mapping f : E → E is said to satisfy the (ω)−fixed point property ((ω)−fpp)
if f has a fixed point in every nonempty closed convex subset D of E which satisfies (ω).

In their theorem they concerned with the class of mappings that is larger than the class of
asymptotically nonexpansive mappings.

Definition 2.4. A mapping f : E → E is said to be weakly asymptotically nonexpansive if it satisfies
the condition

lim sup
n

‖fnx− fny‖ ≤ ‖x− y‖ for each x, y ∈ E.

Theorem 2.5. [9] Let X be a Banach space, E a nonempty weakly compact convex subset of X,

and f : E → E a weakly asymptotically nonexpansive mapping satisfying (ω)−fpp. Then there exists
a nonexpansive retraction R from E onto Fix(f) which satisfies :

(i) R ◦ f = R,

(i) every closed convex f−invariant subset of E is also R−invariant.

In connection with Definition 2.3 we can restate Theorem 1.1 as follows :

Theorem 2.6. (Goebel and Kirk [17]). Let X be a uniformly convex Banach space, E a nonempty
closed bounded convex subset of X, and f : E → E an asymptotically nonexpansive mapping. Then
f satisfies the (ω)−fpp. Moreover, the set of fixed points of f is closed convex.

We now present a formulation of an ultrapower of Banach spaces. Let U be a free ultrafilter on
the set of natural numbers. Consider the closed linear subspace of l∞(X) :

N =
{
{xn} ∈ l∞(X) : lim

U
‖xn‖ = 0

}
.

The ultrapower X̃ of the space X is defined as the quotient space l∞(X)/N . Given an element
x = {xn} ∈ l∞(X), x̃ stands for the equivalence class of x. The quotient norm in X̃ satisfies
‖x̃‖ = limU ‖xn‖. For more details about the construction of an ultrapower of a Banach space X,

see [1, Aksoy and Khamsi] and [29, Sims]. Since the ultrapower X̃ is finitely representable in X,

X̃ inherits all finite dimensional geometrical properties of X. In particular we obtain the following
result.

Theorem 2.7. A Banach space X is uniformly convex if and only if X̃ is uniformly convex.

Another property of a uniformly convex Banach space we will use is the following :

Proposition 2.8. [34] A Banach space X is uniformly convex if and only if, for each fixed number
r > 0, there exists a continuous function ϕ : [0,∞) → [0,∞), ϕ(t) = 0 ⇔ t = 0, such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖)

for all λ ∈ [0, 1] and all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.
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3 The James constant

We are going to give a sufficient condition for the (DL)-condition in terms of the James constant
and the coefficient of weak orthogonality. It is an easy consequence of the following important
inequality.

Theorem 3.1. Let X be a Banach space and let E be a weakly compact convex subset of X. Assume
that {xn} is a bounded sequence in E which is regular relative to E. Then

rE(A(E, {xn})) ≤
(

J(X)
1 + 1

µ(X)

)
r(E, {xn}).

Proof. See [21].

From the above theorem we immediately have the following

Corollary 3.2. If X is a Banach space with J(X) < 1+
1

µ(X)
, then X satisfies the (DL)-condition.

By applying Theorem 2.2, we obtain

Corollary 3.3. Let X be a Banach space with J(X) < 1 +
1

µ(X)
and let E be a nonempty bounded

closed convex separable subset of X. If T : E → KC(X) is a nonexpansive and 1 − χ−contractive
mapping such that T (E) is a bounded set which satisfies the inwardness condition :

Tx ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

Proof. See [21].

Remark 3.4. Corollary 3.2 and Corollary 3.3 cover Corollary 3.5 and Corollary 3.6 of Dhompongsa,
Kaewcharoen, and Kaewkhao [7], respectively. To see this, we point that the condition of being

uniformly nonsquare and having property WORTH of X imply the condition J(X) < 1 +
1

µ(X)
.

Remark 3.5. In [20, Theorem 2], Jiménez-Melado, Llorens-Fuster, and Saejung proved that if X

is a Banach space with J(X) < 1 +
1

µ(X)
, then X has normal structure, and it is proved in [7,

Theorem 3.2] that the (DL)-condition implies the weak normal structure. Thus our Corollary 3.2 is
stronger than Theorem 2 of [20].

4 The Jordan-von Neumann constant

In this section, we are going to give a sufficient condition for the (DL)-condition in terms of the
Jordan-von Neumann constant and the coefficient of weak orthogonality. Again, as in section 3, we
need a corresponding inequality.

Theorem 4.1. Let X be a Banach space and let E be a weakly compact convex subset of X. Assume
that {xn} is a bounded sequence in E which is regular relative to E. Then

rE(A(E, {xn})) ≤
(√

2µ(X)2CNJ(X)
µ(X)2 + 1

− 1

)
r(E, {xn}).
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Proof. See [21].

As a consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Let X be a Banach space. If CNJ(X) < 1 +
1

µ(X)2
, then X satisfies the (DL)-

condition.

Apply Theorem 2.2 and Corollary 4.2 to obtain the following corollary.

Corollary 4.3. Let X be a Banach space with CNJ(X) < 1+
1

µ(X)2
and let E be a nonempty bounded

closed convex separable subset of X. If T : E → KC(X) is a nonexpansive and 1 − χ−contractive
mapping such that T (E) is a bounded set which satisfies the inwardness condition :

Tx ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

Remark 4.4. It is shown in [29, Theorem 5] that if CNJ(X) <
4

1 + µ(X)2
, then X satisfies the

(DL)-condition. Clearly, 4
1+µ(X)2 ≤ 1 + 1

µ(X)2 . Thus our Corollary 4.2 is better than Theorem 5 of
[29].

Remark 4.5. Dhompongsa et al. proved in [6] that a Banach space X satisfies property (D), which
is implied by the (DL)-condition, whenever CNJ(X) < c0 = 1.273.... If we compare this result with
Corollary 4.2, we observe that for those spaces X with µ(X) close to 1, the result in [6] does not
apply but our Corollary 4.2 still gives information on the (DL)-condition of X.

Remark 4.6. As in Remark 3.5, Corollary 4.2 covers Theorem 1 of [20].

5 A common fixed point

Before stating our theorem we introduce the following concept.

Definition 5.1. Let E be a nonempty bounded closed convex subset of a Banach space X, f : E → X,

and T : E → FB(X). Then f and T are said to be commuting if for every x, y ∈ E such that x ∈ Ty

and fy ∈ E, there holds

fx ∈ Tfy.

Theorem 5.2. Let E be a nonempty bounded closed convex subset of a uniformly convex Banach
space X, f : E → E, T : E → KC(E) an asymptotically nonexpansive mapping and a multivalued
nonexpansive mapping respectively. Assume that f and T are commuting. Then f and T have a
common fixed point, i.e., there exists a point x in E such that x = fx ∈ Tx.

Proof. See [31].

Remark 5.3. Theorem 5.2 is a generalization of Theorem 4.2 of [7].
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Abstract

We give some sufficient conditions for the Domínguez–Lorenzo condition in terms of the James constant,
the Jordan–von Neumann constant, and the coefficient of weak orthogonality. As a consequence, we obtain
fixed point theorems for multivalued nonexpansive mappings.
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1. Introduction

In 1969, Nadler [14] extended the Banach Contraction Principle to multivalued contractive
mappings in complete metric spaces. Since then some classical fixed point theorems for single
valued nonexpansive mappings have been extended to multivalued nonexpansive mappings. Let
X be a Banach space and let E be a nonempty bounded closed and convex subset of X. In
1974, Lim [13], using Edelstein’s method of asymptotic centers, proved the existence of a fixed
point for a nonempty compact-valued nonexpansive self-mapping T :E → K(E) where X is
uniformly convex. Kirk and Massa [12] in 1990 extended Lim’s theorem by proving that every
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multivalued nonexpansive self-mapping T :E → K(E) has a fixed point for a space X on which
every asymptotic center in E of each bounded sequence of X is nonempty and compact. In 2001,
Xu [19] extended Kirk–Massa’s theorem to a nonself-mapping T :E → KC(X) which satisfies
the inwardness condition.

In 2004, Domínguez Benavides and Lorenzo [6] obtained a certain relationship between the
Chebyshev radius of the asymptotic center of a bounded sequence and the modulus of noncom-
pactness. With this result and a modification of the proof in [19], they were able to solve an
open problem in [18] by proving that every nonempty compact and convex valued nonexpansive
self-mapping T :E → KC(E) has a fixed point where X is a nearly uniformly convex Banach
space. Their method was generalized by Dhompongsa, Kaewcharoen, and Kaewkhao [4], and
by Dhompongsa et al. [3]. In [4] the authors defined the Domínguez–Lorenzo condition ((DL)-
condition, in short) and proved the existence of a fixed point for a multivalued nonexpansive and
(1 − χ)-contractive mapping T :E → KC(X) such that T (E) is a bounded set and T satisfies
the inwardness condition, where E is a nonempty bounded closed convex separable subset of a
reflexive Banach space X which satisfies the (DL)-condition. Very recently, the (DL)-condition
has been studied by Wiśnicki and Wośko [17], Domínguez Benavides and Gavira [5], and Sea-
jung [15]. It is worth to mention the main results of the first two of these papers. Wiśnicki and
Wośko [17] introduced an ultrafilter version of the (DL)-condition. Their approach enables them
to drop the separability condition in [4]. Domínguez Benavides and Gavira [5] proved that every
uniformly smooth Banach space satisfies the (DL)-condition and hence has the weak multivalued
fixed point property (see [5, Theorem 2]).

In this paper we give two sufficient conditions for the (DL)-condition in terms of the James
constant, the Jordan–von Neumann constant, and the weak orthogonality coefficient. Conse-
quently, we obtain two fixed point theorems for multivalued nonexpansive mappings.

2. Preliminaries

In this section we are going to recall some concepts and results which will be used in the
following sections. For more details the reader may consult, for instance, [1,9].

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(E) the family
of nonempty bounded closed subsets of E, by KC(E) the family of nonempty compact convex
subsets of E. Let H(·,·) be the Hausdorff distance on FB(X), i.e.,

H(A,B) := max
{

sup
x∈A

inf
y∈B

‖x − y‖, sup
y∈B

inf
x∈A

‖x − y‖
}
, A,B ∈ FB(X).

A multivalued mapping T :E → FB(X) is said to be a contraction if there exists a constant
k < 1 such that

H(T x,T y) � k‖x − y‖, x, y ∈ E,

and T is said to be nonexpansive if

H(T x,T y) � ‖x − y‖, x, y ∈ E.

Let

χ(A) = inf{d > 0: A can be covered by finitely many balls of radii � d}
denote the Hausdorff measure of noncompactness of a bounded set A.
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A multivalued mapping F :E → 2X is said to be (1 − χ)-contraction if, for each bounded
subset A of E with χ(A) > 0, F (A) is bounded and

χ
(
F(A)

)
� χ(A).

Here F(A) = ⋃
x∈A Fx.

The inward set of E at x ∈ E is defined by

IE(x) = {
x + λ(y − x): λ � 1, y ∈ E

}
.

Throughout the paper we let BX and SX denote, respectively, the closed unit ball and the unit
sphere of X. Let A be a nonempty bounded set in X. The number r(A) = inf{supy∈A ‖x − y‖:
x ∈ A} is called the Chebyshev radius of A. The number diam(A) = sup{‖x − y‖: x, y ∈ A}
is called the diameter of A. A Banach space X has normal structure (respectively weak normal
structure) if

r(A) < diam(A)

for every bounded closed (respectively weakly compact) convex subset A of X with diam(A)>0.
The property WORTH was introduced by B. Sims in [16] as follows: X is said to satisfy

property WORTH if for any x ∈ X and any weakly null sequence {xn} in X,

lim sup
n→∞

‖xn − x‖ = lim sup
n→∞

‖xn + x‖.
In [10], A. Jiménez-Melado and E. Llorens-Fuster defined the coefficient of weak orthogonality
μ(X), which is defined as the infimum of the set of the real numbers r > 0 such that

lim sup
n→∞

‖x + xn‖ � r lim sup
n→∞

‖x − xn‖
for all x ∈ X and for all weakly null sequences {xn} in X. It is known that X satisfies property
WORTH if and only if μ(X) = 1.

For a Banach space X, the James constant, or the nonsquare constant was defined by Gao and
Lau [7] as

J (X) = sup
{‖x + y‖ ∧ ‖x − y‖: x, y ∈ BX

}
.

The Jordan–von Neumann constant CNJ(X) of X, introduced by Clarkson [2], is defined by

CNJ(X) = sup

{‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X not both zero

}
.

The following method and results deal with the concept of asymptotic centers. Let E be a
nonempty bounded subset of X and {xn} be a bounded sequence in X. We use r(E, {xn}) and
A(E, {xn}) to denote the asymptotic radius and the asymptotic center of {xn} in E, respectively,
i.e.,

r
(
E, {xn}

) = inf
{

lim sup
n→∞

‖xn − x‖: x ∈ E
}
,

A
(
E, {xn}

) =
{
x ∈ E: lim sup

n→∞
‖xn − x‖ = r

(
E, {xn}

)}
.

It is known that A(E, {xn}) is a nonempty weakly compact convex set whenever E is [9].
Let {xn} and E be as above. Then {xn} is called regular relative to E if r(E, {xn}) =

r(E, {xni
}) for all subsequences {xni

} of {xn} and {xn} is called asymptotically uniform rela-
tive to E if A(E, {xn}) = A(E, {xni

}) for all subsequences {xni
} of {xn}. Furthermore, {xn} is
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called regular asymptotically uniform relative to E if {xn} is regular and asymptotically uni-
form relative to E. There always exists a subsequence of {xn} which is regular relative to E

(see [8,13]).
If C is a bounded subset of X, the Chebyshev radius of C relative to E is defined by

rE(C) = inf
{

sup
y∈C

‖x − y‖: x ∈ E
}
.

The Domínguez–Lorenzo condition introduced in [4] is defined as follows:

Definition 2.1. (See [4, Definition 3.1].) A Banach space X is said to satisfy the Domínguez–
Lorenzo condition ((DL)-condition, in short) if there exists λ ∈ [0,1) such that for every weakly
compact convex subset E of X and for every bounded sequence {xn} in E which is regular
relative to E,

rE
(
A

(
E, {xn}

))
� λr

(
E, {xn}

)
.

Theorem 2.2. (See [4, Theorem 3.3].) Let X be a reflexive Banach space satisfying the (DL)-
condition and let E be a nonempty bounded closed convex separable subset of X. If T :E →
KC(X) is a nonexpansive and (1 − χ)-contractive mapping such that T (E) is a bounded set
which satisfies the inwardness condition:

T x ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

3. The James constant

We are going to give a sufficient condition for the (DL)-condition in terms of the James
constant and the coefficient of weak orthogonality. It is an easy consequence of the following
important inequality.

Theorem 3.1. Let X be a Banach space and let E be a weakly compact convex subset of X.

Assume that {xn} is a bounded sequence in E which is regular relative to E. Then

rE
(
A

(
E, {xn}

))
�

(
J (X)

1 + 1
μ(X)

)
r
(
E, {xn}

)
.

Proof. Denote r = r(E, {xn}) and A = A(E, {xn}). Since {xn} ⊂ E is bounded and E is a
weakly compact set, we can assume, by passing through a subsequence if necessary, that xn

converges weakly to some element in E, say x. We note that since {xn} is regular, r(E, {xn}) =
r(E, {yn}) for any subsequence {yn} of {xn}. Let z ∈ A. Then we have

lim sup
n

‖xn − z‖ = r. (3.1)

Since (xn − x)
w→ 0 and by the definition of μ(X) (for short μ = μ(X)), we have the following

lim sup
n

‖xn − 2x + z‖ = lim sup
n

∥∥(xn − x) + (z − x)
∥∥

� μ lim sup
n

∥∥(xn − x) − (z − x)
∥∥

= μr. (3.2)
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Convexity of E implies that 2
μ+1x + μ−1

μ+1z ∈ E and thus we obtain

lim sup
n

∥∥∥∥xn −
(

2

μ + 1
x + μ − 1

μ + 1
z

)∥∥∥∥ � r. (3.3)

On the other hand, by the weak lower semicontinuity of the ‖ · ‖,

lim inf
n

∥∥∥∥
(

1 − 1

μ

)
(xn − x) −

(
1 + 1

μ

)
(z − x)

∥∥∥∥ �
(

1 + 1

μ

)
‖z − x‖. (3.4)

Fix ε > 0 sufficiently small. Then, using (3.1)–(3.4), we obtain an integer N such that

1. ‖xN − z‖ � r + ε.

2. ‖xN − 2x + z‖ � μ(r + ε).

3. ‖xN − ( 2
μ+1x + μ−1

μ+1z)‖ � r − ε.

4. ‖(1 − 1
μ
)(xN − x) − (1 + 1

μ
)(z − x)‖ � (1 + 1

μ
)‖z − x‖( r−ε

r
).

Now, put u = 1
r+ε

(xN − z) and v = 1
μ(r+ε)

(xN − 2x + z) and use the above estimates to
conclude that u,v ∈ BX, and so that

‖u + v‖ =
∥∥∥∥xN − x

r + ε
− z − x

r + ε
+ xN − x

μ(r + ε)
+ z − x

μ(r + ε)

∥∥∥∥
=

∥∥∥∥
(

1

r + ε
+ 1

μ(r + ε)

)
(xN − x) −

(
1

r + ε
− 1

μ(r + ε)

)
(z − x)

∥∥∥∥
=

(
1

r + ε

)(
1 + 1

μ

)∥∥∥∥(xN − x) −
(1 − 1

μ

1 + 1
μ

)
(z − x)

∥∥∥∥
=

(
1

r + ε

)(
1 + 1

μ

)∥∥∥∥xN −
(

2

μ + 1
x + μ − 1

μ + 1
z

)∥∥∥∥
�

(
1 + 1

μ

)(
r − ε

r + ε

)
,

‖u − v‖ =
∥∥∥∥xN − x

r + ε
− z − x

r + ε
− xN − x

μ(r + ε)
− z − x

μ(r + ε)

∥∥∥∥
=

(
1

r + ε

)∥∥∥∥
(

1 − 1

μ

)
(xN − x) −

(
1 + 1

μ

)
(z − x)

∥∥∥∥
�

(
1 + 1

μ

)(‖z − x‖
r

)(
r − ε

r + ε

)
.

Thus

J (X) � ‖ u + v‖ ∧ ‖u − v‖
�

(
1 + 1

μ

)(
r − ε

r + ε

)
∧

(
1 + 1

μ

)(‖z − x‖
r

)(
r − ε

r + ε

)
.

By the weak lower semicontinuity of the ‖ · ‖ again we conclude that ‖z − x‖ � r and hence(
1 + 1

)(
r − ε

)
∧

(
1 + 1

)(‖z − x‖)(
r − ε

)
=

(
1 + 1

)(‖z − x‖)(
r − ε

)
.

μ r + ε μ r r + ε μ r r + ε
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Therefore J (X) � (1 + 1
μ
)(

‖z−x‖
r

)( r−ε
r+ε

). Since ε is arbitrary small, we obtain

J (X) �
(

1 + 1

μ

)‖z − x‖
r

.

This holds for arbitrary z ∈ A. Hence we have

sup
z∈A

‖x − z‖ �
(

J (X)

1 + 1
μ

)
r,

and therefore,

rE(A) �
(

J (X)

1 + 1
μ

)
r. �

From the above theorem we immediately have the following

Corollary 3.2. If X is a Banach space with J (X) < 1+ 1
μ(X)

, then X satisfies the (DL)-condition.

By applying Theorem 2.2, we obtain

Corollary 3.3. Let X be a Banach space with J (X) < 1 + 1
μ(X)

and let E be a nonempty
bounded closed convex separable subset of X. If T :E → KC(X) is a nonexpansive and
(1 − χ)-contractive mapping such that T (E) is a bounded set which satisfies the inwardness
condition:

T x ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

Proof. Observe that J (X) < 2 since μ � 1. Thus, X is reflexive, and then every bounded closed
convex set is weakly compact. Now Theorem 2.2 and Corollary 3.2 can be applied to obtain a
fixed point. �
Remark 3.4. Corollaries 3.2 and 3.3 cover Corollaries 3.5 and 3.6 of Dhompongsa, Kaew-
charoen, and Kaewkhao [4], respectively. To see this, we point that the condition of being
uniformly nonsquare and having property WORTH of X implies the condition J (X) < 1+ 1

μ(X)
.

Remark 3.5. In [11, Theorem 2], Jiménez-Melado, Llorens-Fuster, and Saejung proved that if
X is a Banach space with J (X) < 1 + 1

μ(X)
, then X has normal structure, and it is proved in [4,

Theorem 3.2] that the (DL)-condition implies the weak normal structure. Thus our Corollary 3.2
is stronger than Theorem 2 of [11].

4. The Jordan–von Neumann constant

In this section, we are going to give a sufficient condition for the (DL)-condition in terms
of the Jordan–von Neumann constant and the coefficient of weak orthogonality. Again, as in
Section 3, we need a corresponding inequality.
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Theorem 4.1. Let X be a Banach space and let E be a weakly compact convex subset of X.

Assume that {xn} is a bounded sequence in E which is regular relative to E. Then

rE
(
A

(
E, {xn}

))
�

(√
2μ(X)2CNJ(X)

μ(X)2 + 1
− 1

)
r
(
E, {xn}

)
.

Proof. Let r , A, {xn}, x, z and μ be as in the proof of the previous theorem. Thus,

lim sup
n

‖xn − z‖ = r (4.1)

and

lim sup
n

‖xn − 2x + z‖ � μr. (4.2)

Since 2
μ2+1

x + μ2−1
μ2+1

z ∈ E and by the definition of r, we obtain

lim sup
n

∥∥∥∥xn −
(

2

μ2 + 1
x + μ2 − 1

μ2 + 1
z

)∥∥∥∥ � r. (4.3)

The semicontinuity of the ‖ · ‖ yields the following:

lim inf
n

∥∥(
μ2 − 1

)
(xn − x) − (

μ2 + 1
)
(z − x)

∥∥ �
(
μ2 + 1

)‖z − x‖. (4.4)

Now, fix ε > 0 sufficiently small. Then, using (4.1)–(4.4), we obtain an integer N such that

1. ‖xN − z‖ � r + ε.

2. ‖xN − 2x + z‖ � μ(r + ε).

3. ‖xN − ( 2
μ2+1

x + μ2−1
μ2+1

z)‖ � r − ε.

4. ‖(μ2 − 1)(xN − x) − (μ2 + 1)(z − x)‖ � (μ2 + 1)‖z − x‖( r−ε
r

).

Next, put u = μ2(xN − z) and v = (xN − 2x + z) and use the previous estimates to obtain
‖u‖ � μ2(r + ε), ‖v‖ � μ(r + ε), and so that

‖u + v‖ = ∥∥μ2((xN − x) − (z − x)
) + (xN − x) + (z − x)

∥∥
= (

μ2 + 1
)∥∥∥∥(xN − x) − μ2 − 1

μ2 + 1
(z − x)

∥∥∥∥
= (

μ2 + 1
)∥∥∥∥xN −

(
2

μ2 + 1
x + μ2 − 1

μ2 + 1
z

)∥∥∥∥
�

(
μ2 + 1

)
(r − ε),

‖u − v‖ = ∥∥μ2((xN − x) − (z − x)
) − (

(xN − x) + (z − x)
)∥∥

= ∥∥(
μ2 − 1

)
(xN − x) − (

μ2 + 1
)
(z − x)

∥∥
�

(
μ2 + 1

)‖z − x‖
(

r − ε

r

)
.

By the definition of CNJ(X) we see that
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CNJ(X) � ‖u + v‖2 + ‖u − v‖2

2(‖u‖2 + ‖v‖2)

�
(

μ2 + 1

2μ2

)(
1 +

(‖z − x‖
r

)2)(
r − ε

r + ε

)2

.

Letting ε → 0+ we obtain that CNJ(X) � (
μ2+1
2μ2 )(1 + (

‖z−x‖
r

)2). Then we have

‖z − x‖ �
(√

2μ2CNJ(X)

μ2 + 1
− 1

)
r.

This holds for arbitrary z ∈ A, hence we have

rx(A) �
(√

2μ2CNJ(X)

μ2 + 1
− 1

)
r

and therefore,

rE(A) �
(√

2μ2CNJ(X)

μ2 + 1
− 1

)
r. �

As a consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Let X be a Banach space. If CNJ(X) < 1 + 1
μ(X)2 , then X satisfies the (DL)-

condition.

Apply Theorem 2.2 and Corollary 4.2 to obtain the following corollary.

Corollary 4.3. Let X be a Banach space with CNJ(X) < 1 + 1
μ(X)2 and let E be a nonempty

bounded closed convex separable subset of X. If T :E → KC(X) is a nonexpansive and (1−χ)-
contractive mapping such that T (E) is a bounded set which satisfies the inwardness condition:

T x ⊂ IE(x) for all x ∈ E,

then T has a fixed point.

Remark 4.4. It is shown in [15, Theorem 5] that if CNJ(X) < 4
1+μ(X)2 , then X satisfies the

(DL)-condition. Clearly, 4
1+μ(X)2 � 1 + 1

μ(X)2 . Thus our Corollary 4.2 is better than Theorem 5
of [15].

Remark 4.5. Dhompongsa et al. proved in [3] that a Banach space X satisfies property (D),
which is implied by the (DL)-condition, whenever CNJ(X) < c0 = 1.273 . . . . If we compare this
result with Corollary 4.2, we observe that for those spaces X with μ(X) close to 1, the result
in [3] does not apply but our Corollary 4.2 still gives information on the (DL)-condition of X.

Remark 4.6. As in Remark 3.5, Corollary 4.2 covers Theorem 1 of [11].
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Abstract

Let X be a uniformly convex Banach space, E a nonempty closed bounded convex

subset of X, and f : E → E and T : E → KC(E) is an asymptotically nonexpansive

mapping and a multivalued nonexpansive mapping respectively. Assume in addition f

and T are commuting. Then f and T have a common fixed point, i.e., there exists a

point x in E such that x = fx ∈ Tx.

Keywords: Asymptotically nonexpansive mappings, Fixed point theory, Multivalued non-

expansive mappings.

1 Introduction

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(E) the
family of nonempty bounded closed subsets of E, by K(E) the family of nonempty compact
subsets of E, by FC(E) the family of nonempty closed convex subsets of E, and by KC(E)
the family of nonempty compact convex subsets of E. Let H(·, ·) be the Hausdorff distance
on FB(X), i.e.,

H(A,B) = max{ sup
a∈A

dist(a,B), sup
b∈B

dist(b, A) }, A, B ∈ FB(X),

where dist(a,B) = inf{‖a − b‖ : b ∈ B} is the distance from the point a to the subset B.

A multivalued mapping T : E → F (X) is said to be a contraction if there exists a constant
k ∈ [0, 1) such that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ E. (1.1)
∗This work was completed with the support of the Commission on Higher Education and The Thailand

Research Fund under grant MRG4980192. The first author also supported by the Commission on Higher

Education.
†Corresponding author.
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In this case, we also say that T is k−contractive.

If (1.1) is valid when k = 1, then T is called nonexpansive. A point x is a fixed point
for a multivalued mapping T if x ∈ Tx. Banach’s contraction Principle was extended to a
multivalued contraction in 1969 by Nadler [23].

One of the most celebrated results about multivalued mappings was given by T. C. Lim in
1974. By using Edelstein’s method of asymptotic centers [11].

Theorem 1.1. (Lim [21]). Let E be a nonempty closed bounded convex subset of a uniformly
convex Banach space X and T : E → K(E) a nonexpansive mapping. Then T has a fixed.
point.

Some results for multivalued nonexpansive mappings were obtained by many authors, for
instance [4], [5], [6], [7], [8], [9], [12], [13], [16], [18], [25], [26], and [29].

Asymptotic fixed point theorems are those theorems from which the existence of fixed
points of a mapping f : X → X are derived from the behavior of the iterates fn for large n.

A mapping f : E → E is said to be asymptotically nonexpansive if there exists a sequence
{kn} of real numbers with lim

n
kn = 1 such that

‖fnx− fny‖ ≤ kn‖x− y‖ for x, y ∈ E and n = 1, 2, 3, ....

In 1972, Goebel and Kirk [14] proved the following theorem.

Theorem 1.2. (Goebel and Kirk [14]). Let X be a uniformly convex Banach space, E a
nonempty closed bounded convex subset of X, and f : E → E an asymptotically nonexpansive
mapping. Then f has a fixed point. Moreover, the set of fixed points of f is closed convex.

Some generalizations of this result were proved by Yu and Dai [31] when X is 2-uniformly
rotund, by Mart́ınez Yañez [22] and Xu [27] when X is k−uniformly rotund for some k ≥ 1,

by Xu [28] when X is nearly uniformly convex, by Lim, Tan and Xu [20] when X satisfies the
uniform Opial condition and by Kim, and Xu [19] when X has uniform normal structure.

Motivated by Theorem 1.1 and Theorem 1.2, it is the objective of this paper to prove that if
E is a nonempty closed bounded convex subset of a uniformly convex Banach space and if f :
E → E and T : E → KC(E) is an asymptotically nonexpansive mapping and a multivalued
nonexpansive mapping respectively. Assume in addition f and T are commuting. Then f

and T have a common fixed point, i.e., there exists a point x in E such that x = fx ∈ Tx.

2 Preliminaries

Let X be a Banach space with the norm ‖ · ‖ and E be a nonempty subset of X. We shall
write x = w − lim

n
xn when the sequence {xn} converges weakly to x. The Kuratowski,

separation, and Hausdorff measures of noncompactness of a nonempty bounded subset B of
X are respectively defined as the numbers:

α(B) = inf{d > 0 : B can be covered by finitely many sets of diameters ≤ d},
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β(B) = sup{ε > 0 : there exists a sequence {xn} in B such that sep({xn}) ≥ ε},
where sep({xn}) = inf{‖xn − xm‖ : n 6= m},

χ(B) = inf{d > 0 : B can be covered by finitely many balls of radii ≤ d}.

A multivalued mapping T : E → 2X is called φ−condensing (resp. 1 − φ−contractive)
where φ is a measure of noncompactness if, for each bounded subset B of E with φ(B) > 0,

there holds the inequality

φ(T (B)) < φ(B) (resp. φ(T (B)) ≤ φ(B)).

Here T (B) = ∪x∈BTx.

Definition 2.1. Let E be a nonempty closed subset of X. The inward set of E at x ∈ E is
given by

IE(x) = {x + λ(y − x) : λ ≥ 1, y ∈ E}.
In case E is a nonempty closed convex subset of X, we have

IE(x) = {x + λ(y − x) : λ ≥ 0, y ∈ E}.

A multivalued mapping T : E → 2X is said to be inward (resp. weakly inward) on E if

Tx ⊂ IE(x) (resp. Tx ⊂ IE(x)) for all x ∈ E.

In our main theorem, we rely heavily on the following result.

Theorem 2.2. [3, Deimling] Let E be a nonempty bounded closed convex subset of X and
T : E → FC(X) be an upper semicontinuous χ−condensing mapping. Assume Tx∩IE(x) 6= ∅
for all x ∈ E. Then T has a fixed point.

In 2001, Dominguez and Lorenzo proved a very interesting theorem which is a generalization
of the famous theorem of Buck [2]. Before stating the theorem, we need the following concepts.

We say that a nonempty closed convex subset D of E satisfies property (ω) with respect
to a mapping f : E → E if ωf (x) ⊆ D for every x ∈ D where

ωf (x) = {y ∈ E : y = w − lim
k

fnkx for some nk →∞}.

Definition 2.3. [10] A mapping f : E → E is said to satisfy the (ω)−fixed point property
((ω)−fpp) if f has a fixed point in every nonempty closed convex subset D of E which satisfies
(ω).

In their theorem they concerned with the class of mappings that is larger than the class of
asymptotically nonexpansive mappings.

Definition 2.4. A mapping f : E → E is said to be weakly asymptotically nonexpansive if it
satisfies the condition

lim sup
n

‖fnx− fny‖ ≤ ‖x− y‖ for each x, y ∈ E.
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Theorem 2.5. [10] Let X be a Banach space, E a nonempty weakly compact convex subset of
X, and f : E → E a weakly asymptotically nonexpansive mapping satisfying (ω)−fpp. Then
there exists a nonexpansive retraction R from E onto Fix(f), the fixed point set of f, which
satisfies :

(i) R ◦ f = R,

(i) every closed convex f−invariant subset of E is also R−invariant.

In connection with Definition 2.3 we can restate Theorem 1.2 as follows :

Theorem 2.6. (Goebel and Kirk [14]). Let X be a uniformly convex Banach space, E a
nonempty closed bounded convex subset of X, and f : E → E an asymptotically nonexpansive
mapping. Then f satisfies the (ω)−fpp. Moreover, the set of fixed points of f is closed convex.

We now present a formulation of an ultrapower of Banach spaces.

Let U be a free ultrafilter on the set of natural numbers. Consider the closed linear subspace
of l∞(X) :

N =
{
{xn} ∈ l∞(X) : lim

U
‖xn‖ = 0

}
.

The ultrapower X̃ of the space X is defined as the quotient space l∞(X)/N . Given an
element x = {xn} ∈ l∞(X), x̃ stands for the equivalence class of x. The quotient norm in
X̃ satisfies ‖x̃‖ = limU ‖xn‖. For more details about the construction of an ultrapower of a
Banach space X, see [1, Aksoy and Khamsi],[15, Geobel and Kirk], and [24, Sims]. Since
the ultrapower X̃ is finitely representable in X, X̃ inherits all finite dimensional geometrical
properties of X. In particular we obtain the following result.

Theorem 2.7. A Banach space X is uniformly convex if and only if X̃ is uniformly convex.

Another property of a uniformly convex Banach space we will use is the following :

Proposition 2.8. [30] A Banach space X is uniformly convex if and only if, for each fixed
number r > 0, there exists a continuous function ϕ : [0,∞) → [0,∞), ϕ(t) = 0 ⇔ t = 0, such
that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖)
for all λ ∈ [0, 1] and all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

3 Main result

Before stating our main theorem we introduce the following concept.

Definition 3.1. Let E be a nonempty bounded closed convex subset of a Banach space X,
f : E → X, and T : E → FB(X). Then f and T are said to be commuting if for every
x, y ∈ E such that x ∈ Ty and fy ∈ E, there holds

fx ∈ Tfy.
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Theorem 3.2. Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X, f : E → E, T : E → KC(E) an asymptotically nonexpansive mapping and
a multivalued nonexpansive mapping respectively. Assume that f and T are commuting. Then
f and T have a common fixed point, i.e., there exists a point x in E such that x = fx ∈ Tx.

Proof. Theorem 1.2 guarantees that the fixed point set of f , denoted by Fix(f), is nonempty,
closed, and convex. Let x ∈ Fix(f). Since f and T are commuting, we have fy ∈ Tx for each
y ∈ Tx. We see that, for x ∈ Fix(f), Tx∩ Fix(f) 6= ∅. For a fixed element x0 ∈ Fix(f), define
a contraction Tn : Fix(f) →KC(E) by

Tnx =
1
n

x0 + (1− 1
n

)Tx, x ∈ Fix(f).

It is easy to see that for each x ∈ Fix(f), Tnx∩ Fix(f) 6= ∅ as T does.

Theorem 2.6 together with Theorem 2.5 guarantee that Fix(f) is a nonexpansive retract
of E. Then we can show that Tn : Fix(f) →KC(E) is χ−condensing. Indeed, let B be a
bounded subset of Fix(f) and χ(B) > 0. Given d > 0 be such that

B ⊂ ∪n
i=1B(xi, d), xi ∈ E.

Let R be a nonexpansive retraction of E onto Fix(f). For each a ∈ B(xi, d) ∩B, we have

‖Rxi − a‖ = ‖Rxi −Ra‖ ≤ ‖xi − a‖ ≤ d.

Therefore B(xi, d) ∩B ⊂ B(Rxi, d) for each i ∈ {1, ..., n}, and hence

B ⊂ ∪n
i=1B(Rxi, d).

Since Tn is (1− 1
n )−contractive,

Tn(B) ⊂ ∪n
i=1(TnRxi + (1− 1

n
)dB(0, 1)).

Thus
χ(Tn(B)) ≤ (1− 1

n
)χ(B) < χ(B),

and Tn is χ−condensing.

Now we can apply Theorem 2.2 to conclude that Tn has a fixed point, say xn. Moreover,
we can show that

dist(xn, Txn) → 0.

Let X̃ be a Banach space ultrapower of X and

˙Fix(f) = {ẋ = (̃xn) : xn ≡ x ∈ Fix(f)}.

Then ˙Fix(f) is a nonempty closed convex subset of X̃. Now, for each n ∈ N, let yn be the
unique nearest point of xn in Txn, i.e., ‖xn−yn‖ = dist(xn, Txn). Consequently, (̃xn) = (̃yn).
We show now that yn ∈ Fix(f) for each n ∈ N. Indeed, by Proposition 2.8, we have, for all
integers l, m ≥ 1,

∥∥∥∥xn − f lyn + fmyn

2

∥∥∥∥
2

≤ 1
2
‖xn − f lyn‖2 +

1
2
‖xn − fmyn‖2 − 1

4
ϕ

(‖f lyn − fmyn‖
)
.
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Since xn ∈ Fix(f) and Fix(f) ⊆ Fix(f2) ⊆ Fix(f3) ⊆ · · · , we have
∥∥∥∥xn − f lyn + fmyn

2

∥∥∥∥
2

≤ 1
2
k2

l ‖xn − yn‖2 +
1
2
k2

m‖xn − yn‖2

−1
4
ϕ

(‖f lyn − fmyn‖
)
. (3.1)

However,

‖xn − yn‖2 ≤
∥∥∥∥xn − f lyn + fmyn

2

∥∥∥∥
2

for all l, m. So we get from (3.1)

ϕ
(‖f lyn − fmyn‖

) ≤ 4
[(

1
2

(
k2

l + k2
m

)− 1
)
‖xn − yn‖2

]
→ 0

as l, m →∞. Hence, {f iyn} is norm-Cauchy. Let

z = lim
i→∞

f iyn.

Since f is asymptotically nonexpansive, we have, for all i,

‖fz − f i+1yn‖ ≤ k1‖z − f iyn‖.

Letting i →∞ yields ‖fz − z‖ ≤ 0; that is z ∈ Fix(f). Now letting l,m →∞ in (3.1) yields

‖xn − z‖2 ≤ ‖xn − yn‖2.

It follows from the uniqueness of yn that yn = z ∈ Fix(f).

Since ˙Fix(f) is a closed convex subset of a uniformly convex Banach space X̃, (̃xn) has a
unique nearest point v̇ ∈ ˙Fix(f), i.e., ‖(̃xn)− v̇‖ = dist((̃xn), ˙Fix(f)).

As Tv is closed and convex, we can find vn ∈ Tv satisfying

‖yn − vn‖ = dist(yn, T v) ≤ H(Txn, T v).

By the similar idea of above argument, we note here that vn ∈Fix(f) for each n.

It follows from the nonexpansiveness of T that

‖yn − vn‖ ≤ ‖xn − v‖.

This means
‖(̃yn)− (̃vn)‖ ≤ ‖(̃xn)− v̇‖.

Since (̃xn) = (̃yn), we have

‖(̃xn)− (̃vn)‖ ≤ ‖(̃xn)− v̇‖. (3.2)

Because of the compactness of Tv, there exists w ∈ Tv such that w = limU vn. It follows that
(̃vn) = ẇ. This fact and (3.2) imply

‖(̃xn)− ẇ‖ ≤ ‖(̃xn)− v̇‖. (3.3)

Moreover, w ∈Fix(f) and then ẇ ∈ ˙Fix(f). Hence ẇ = v̇ and so v = fv = fw = w ∈ Tv

which then completes the proof. ¤
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Remark 3.3. 1. Theorem 3.2 is a generalization of Theorem 4.2 of [5].

2. The idea that we use to verify that yn ∈ Fix(f) in the above argument comes from the
proof of Theorem 3.5 of Kirk and Xu [19].
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