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Abstract

We give some sufficient conditions for the Dominguez-Lorenzo condition for a
Banach space X in terms of the James constant, the Jordan-von Neumann constant,
and the coefficient of weak orthogonality. As a consequence, we obtain fixed point
theorems for multivalued nonexpansive mappings. For a uniformly convex Banach
space X, let E be a nonempty closed bounded convex subset of X, and f:E > E
and T:E — KC(E) is an asymptotically nonexpansive mapping and a multivalued
nonexpansive mapping respectively. Assume in addition f and T are commuting.
Then f and T have a common fixed point, i.e., there exists a point X in E such that
x=Ff(X)eT(x).

Keywords : James constant; Jordan-von Neumann constant; Weak orthogonality;
Normal structure; Fixed point; Multivalued nonexpansive mapping; Asymptotically

nonexpansive mapping
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SET-VALUED ANALYSIS AND GEOMETRIC CONDITIONS
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Set-valued Analysis and Geometric Conditions

1 Introduction

In 1969, Nadler [27] extended the Banach Contraction Principle to multivalued contractive map-
pings in complete metric spaces. Since then some classical fixed point theorems for single valued
nonexpansive mappings have been extended to multivalued nonexpansive mappings. Let X be a
Banach space and let E be a nonempty bounded closed and convex subset of X. In 1974, Lim [24],
using Edelstein’s method of asymptotic centers, proved the existence of a fixed point for a nonempty
compact-valued nonexpansive self-mapping 7' : E — K(F) where X is uniformly convex. Kirk
and Massa [23] in 1990 extended Lim’s theorem by proving that every multivalued nonexpansive
self-mapping T : F — K(F) has a fixed point for a space X on which every asymptotic center in E
of each bounded sequence of X is nonempty and compact. In 2001, Xu [37] extended Kirk-Massa’s
theorem to a nonself-mapping T : E — KC(X) which satisfies the inwardness condition.

In 2004, Dominguez Benavides and Lorenzo [12] obtained a certain relationship between the
Chebyshev radius of the asymptotic center of a bounded sequence and the modulus of noncom-
pactness. With this result and a modification of the proof in Xu [37], they were able to solve an
open problem in [36] by proving that every nonempty compact and convex valued nonexpansive
self-mapping T': F — KC(F) has a fixed point where X is a nearly uniformly convex Banach space.
Their method was generalized by Dhompongsa, Kaewcharoen, and Kaewkhao [7], and by Dhom-
pongsa et al. [6]. In [7] the authors defined the Dominguez-Lorenzo condition ((DL)-condition, in
short) and proved the existence of a fixed point for a multivalued nonexpansive and 1— x—contractive
mapping T : F — KC(X) such that T(E) is a bounded set and T satisfies the inwardness condi-
tion, where F is a nonempty bounded closed convex separable subset of a reflexive Banach space X
which satisfies the (DL)-condition. Very recently, the (DL)-condition has been studied by Wisnicki
and Wosko [32], Dominguez Benavides and Gavira [8], and Seajung [29]. It is worth to mention
the main results of the first two of these papers. Wisnicki and Wogko [32] introduced an ultrafilter
version of the (DL)-condition. Their approach enables them to drop the separability condition in
[7]. Dominguez Benavides and Gavira [8] proved that every uniformly smooth Banach space satisfies
the (DL)-condition and hence has the weak multivalued fixed point property (see [8, Theorem 2]).

Asymptotic fixed point theorems are those theorems from which the existence of fixed points of
a mapping f : X — X are derived from the behavior of the iterates f™ for large n. A mapping
f:+ E — FE is said to be asymptotically nonexpansive if there exists a sequence {k,} of real numbers
with li7rln k,, = 1 such that

[f"z — Tyl < knllz —yl| forz,y € Eandn=1,2,3,....
In 1972, Goebel and Kirk [17] proved the following theorem.

Theorem 1.1. (Goebel and Kirk [17]). Let X be a uniformly convexr Banach space, E a nonempty
closed bounded conver subset of X, and f: E — E an asymptotically nonexpansive mapping. Then

f has a fized point. Moreover, the set of fized points of f is closed conver.

Some generalizations of this result were proved by Yu and Dai [38] when X is 2-uniformly rotund,
by Martinez Yafiez [26] and Xu [33] when X is k—uniformly rotund for some k& > 1, by Xu [35] when
X is nearly uniformly convex, by Lim, Tan and Xu [25] when X satisfies the uniform Opial condition
and by Kim, and Xu [22] when X has uniform normal structure.
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2 Preliminaries

In this section we are going to recall some concepts and results which will be used in the following
sections. For more details the reader may consult, for instance,[2] and [18].

Let X be a Banach space and F a nonempty subset of X. We shall denote by F'B(E) the family of
nonempty bounded closed subsets of E, by KC(F) the family of nonempty compact convex subsets
of E. Let H(-,-) be the Hausdorff distance on FB(X), i.e.,

H(A, B) := max {sup inf ||z — y||, sup inf ||z — y||} ) A,B € FB(X).
rcAYEB yEBIEA

A multivalued mapping T : E — FB(X) is said to be a contraction if there exists a constant
k < 1 such that
H(Tszy)Ska_yHa 'rayeEa

and T is said to be nonexpansive if
H(TxaTy)S ||l‘—y||7 .’L‘,yEE

Let
X(A) =inf{d > 0: A can be covered by finitely many balls of radii < d}

denote the Hausdorff measure of noncompactness of a bounded set A.
A multivalued mapping F : E — 2% is said to be 1 — y—contraction if, for each bounded subset
A of E with x(A) > 0, F(A) is bounded and

X(F(A)) < x(4).

Here F(A) = U, F.
The inward set of F at x € F is defined by

Ip(x)={z+Ay—2): A< 1,y € E}.

Throughout the paper we let Bx and Sx denote, respectively, the closed unit ball and the unit
sphere of X. Let A be a nonempty bounded set in X. The number 7(A) = inf{sup,c 4 [z —y|| : = €
A} is called the Chebyshev radius of A. The number diam(A) = sup{||lx — y|| : =,y € A} is called
the diameter of A. A Banach space X has normal structure (resp. weak normal structure) if

r(A) < diam(A)

for every bounded closed (resp. weakly compact) convex subset A of X with diam(A) > 0.
The property WORTH was introduced by B. Sims in [30] as follows : X is said to satisfy property
WORTH if for any € X and any weakly null sequence {x,} in X,
lim sup ||, — z|| = limsup ||z, + ||

In [19], A. Jiménez-Melado and E. Llorens-Fuster defined the coefficient of weak orthogonality p(X),
which is defined as the infimum of the set of the real numbers r > 0 such that

limsup ||z + z,| < rlimsup ||z — z,||
n—oo

n—oo
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for all z € X and for all weakly null sequences {z,} in X. It is known that X satisfies property
WORTH if and only if u(X) = 1.
For a Banach space X, the James constant, or the nonsquare constant was defined by Gao and
Lau [15] as
J(X) =sup{llz +yl| Allz —yll: 2,y € Bx}.

The Jordan-von Neumann constant Cnj(X) of X, introduced by Clarkson [4], is defined by

Iz +yl* + |z —yl?
2([J 1% + [ly[1*)

The following method and results deal with the concept of asymptotic centers. Let FE be a

Cny(X) = sup{ :z,y € X not both zero} .

nonempty bounded subset of X and {z,} be a bounded sequence in X. We use r(FE,{z,}) and
A(E,{z,}) to denote the asymptotic radius and the asymptotic center of {x,} in E, respectively,

ie.,

r(E,{z,}) = inf {1imsup|xn —z|:ze E} ,
n—oo

n—oo

A(E,{zn}) =z € E : limsup||x, —z| =r(E, {xn})} .
It is known that A(E,{z,}) is a nonempty weakly compact convex set whenever E is [18]. Let
{z,} and E be as above. Then {x,,} is called regular relative to E if r(E, {z,}) = r(E, {zy,}) for all
subsequences {x,,} of {x,} and {x,} is called asymptotically uniform relative to E if A(E,{z,}) =
A(E,{zy,}) for all subsequences {z,,} of {z,}. Furthermore, {z,} is called regular asymptotically
uniform relative to E if {x,} is regular and asymptotically uniform relative to E. There always

exists a subsequence of {z,} which is regular relative to E (see [16] and [24]).
If C is a bounded subset of X, the Chebyshev radius of C relative to E is defined by

rg(C) = inf {sup lz—yl:ze€ E} .
yel

The Dominguez-Lorenzo condition introduced in [7] is defined as follows :

Definition 2.1. [7, Definition 3.1] A Banach space X is said to satisfy the Dominguez-Lorenzo
condition ((DL)-condition, in short) if there exists A € [0,1) such that for every weakly compact
convex subset E of X and for every bounded sequence {x,} in E which is reqular relative to E,

re(A(E, {zn})) < Ar(E,{zn}).

Theorem 2.2. [7, Theorem 3.3] Let X be a reflexive Banach space satisfying the (DL )-condition
and let E be a nonempty bounded closed convex separable subset of X. If T : E — KC(X) is a
nonexpansive and 1 — x— contractive mapping such that T(E) is a bounded set which satisfies the
tnwardness condition :

Tz C Ig(x) for allx € E,

then T has a fixed point.
In 2001, Dominguez and Lorenzo proved a very interesting theorem which is a generalization of
the famous theorem of Buck [3]. Before stating the theorem, we need the following concepts.

We say that a nonempty closed convex subset D of F satisfies property (w) with respect to a
mapping f: E — E if wy(x) C D for every & € D where

wi(z)={yeE:y=w— li}gnf"’“x for some nj — oo}.
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Definition 2.3. [9] A mapping f : E — E is said to satisfy the (w)—fized point property ((w)—fpp)

if [ has a fized point in every nonempty closed convexr subset D of E which satisfies (w).

In their theorem they concerned with the class of mappings that is larger than the class of

asymptotically nonexpansive mappings.

Definition 2.4. A mapping f : E — E is said to be weakly asymptotically nonexpansive if it satisfies

the condition

limsup || f"z — f"y|| < ||z — y|| for each z,y € E.
n

Theorem 2.5. [9] Let X be a Banach space, E a nonempty weakly compact convex subset of X,
and f : E — E a weakly asymptotically nonexpansive mapping satisfying (w)—fpp. Then there erists

a nonexpansive retraction R from E onto Fix(f) which satisfies :
(i) Ro f =R,
(i) every closed conver f—invariant subset of E is also R—invariant.
In connection with Definition 2.3 we can restate Theorem 1.1 as follows :

Theorem 2.6. (Goebel and Kirk [17]). Let X be a uniformly convexr Banach space, E a nonempty
closed bounded conver subset of X, and f: E — E an asymptotically nonexpansive mapping. Then

f satisfies the (w)—fpp. Moreover, the set of fixed points of f is closed convez.

We now present a formulation of an ultrapower of Banach spaces. Let U be a free ultrafilter on

the set of natural numbers. Consider the closed linear subspace of [, (X) :
N = {{xn} € loo(X)  Tim 2| = o}.

The ultrapower X of the space X is defined as the quotient space loo(X)/N . Given an element
x = {x,} € lo(X), 7 stands for the equivalence class of x. The quotient norm in X satisfies
|Z]| = limyy ||z]||. For more details about the construction of an ultrapower of a Banach space X,
see [1, Aksoy and Khamsi] and [29, Sims]. Since the ultrapower X is finitely representable in X,
X inherits all finite dimensional geometrical properties of X. In particular we obtain the following

result.
Theorem 2.7. A Banach space X is uniformly convex if and only if)? is uniformly convex.
Another property of a uniformly convex Banach space we will use is the following :

Proposition 2.8. [3/] A Banach space X is uniformly convez if and only if, for each fized number
r > 0, there exists a continuous function ¢ : [0,00) — [0,00), ¢(t) =0 < t =0, such that

Az + (1= Nyl* < Mlal® + (1 = Nyl = A1 = Ne(llz - yl)

for all X € [0,1] and all z,y € X such that ||z|| <7 and ||y| < 7.
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3 The James constant

We are going to give a sufficient condition for the (DL)-condition in terms of the James constant
and the coefficient of weak orthogonality. It is an easy consequence of the following important

inequality.

Theorem 3.1. Let X be a Banach space and let E be a weakly compact convex subset of X. Assume

that {x,} is a bounded sequence in E which is reqular relative to E. Then

J(X)

r(A(E. {za}) < (1 .

) r(E,{z,}).

Proof. See [21]. O
From the above theorem we immediately have the following

1
Corollary 3.2. If X is a Banach space with J(X) < 1+ WX’ then X satisfies the (DL )-condition.

By applying Theorem 2.2, we obtain

1
Corollary 3.3. Let X be a Banach space with J(X) <1+ m and let E be a nonempty bounded
I
closed convex separable subset of X. If T : E — KC(X) is a nonexpansive and 1 — x— contractive

mapping such that T(E) is a bounded set which satisfies the inwardness condition :
Tx C Ig(x) for all x € E,

then T has a fized point.

Proof. See [21]. O

Remark 3.4. Corollary 3.2 and Corollary 3.3 cover Corollary 3.5 and Corollary 3.6 of Dhompongsa,

Kaewcharoen, and Kaewkhao [7], respectively. To see this, we point that the condition of being

1
uniformly nonsquare and having property WORTH of X imply the condition J(X) < 1+ m
I

Remark 3.5. In [20, Theorem 2], Jiménez-Melado, Llorens-Fuster, and Saejung proved that if X
1
is a Banach space with J(X) < 1+ m, then X has normal structure, and it is proved in [7,
I
Theorem 8.2/ that the (DL )-condition implies the weak normal structure. Thus our Corollary 8.2 is
stronger than Theorem 2 of [20].

4 The Jordan-von Neumann constant

In this section, we are going to give a sufficient condition for the (DL)-condition in terms of the
Jordan-von Neumann constant and the coefficient of weak orthogonality. Again, as in section 3, we

need a corresponding inequality.

Theorem 4.1. Let X be a Banach space and let E be a weakly compact convex subset of X. Assume

that {x,,} is a bounded sequence in E which is reqular relative to E. Then

2p(X)*Cra(X)
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Proof. See [21]. O

As a consequence of Theorem 4.1 we obtain the following corollary.

1
Corollary 4.2. Let X be a Banach space. If Cny(X) < 1+ X2 then X satisfies the (DL)-
U

condition.

Apply Theorem 2.2 and Corollary 4.2 to obtain the following corollary.

1
Corollary 4.3. Let X be a Banach space with Cnx3(X) < 1+W and let E be a nonempty bounded
L

closed convex separable subset of X. If T : E — KC(X) is a nonexpansive and 1 — x— contractive

mapping such that T(E) is a bounded set which satisfies the inwardness condition :
Tx C Ig(x) for all x € E,
then T has a fixed point.

Remark 4.4. It is shown in [29, Theorem 5] that if Cny(X) <

(DL)-condition. Clearly,
[29].

4
———— then X satisfies the
5 (X2 /i

W <1+ r;()z Thus our Corollary 4.2 is better than Theorem 5 of

Remark 4.5. Dhompongsa et al. proved in [6] that a Banach space X satisfies property (D), which
is implied by the (DL)-condition, whenever Cny(X) < co = 1.273.... If we compare this result with
Corollary 4.2, we observe that for those spaces X with u(X) close to 1, the result in [6] does not
apply but our Corollary 4.2 still gives information on the (DL)-condition of X.

Remark 4.6. As in Remark 3.5, Corollary 4.2 covers Theorem 1 of [20].

5 A common fixed point
Before stating our theorem we introduce the following concept.

Definition 5.1. Let E be a nonempty bounded closed convex subset of a Banach space X, f : E — X,
and T : E — FB(X). Then f and T are said to be commuting if for every x,y € E such that x € Ty
and fy € E, there holds

fx eTfy.

Theorem 5.2. Let E be a nonempty bounded closed convex subset of a uniformly convex Banach
space X, f: E — E, T : E — KC(E) an asymptotically nonexpansive mapping and a multivalued
nonexpansive mapping respectively. Assume that f and T are commuting. Then f and T have a

common fized point, i.e., there exists a point x in E such that v = fx € Tx.

Proof. See [31]. O

Remark 5.3. Theorem 5.2 is a generalization of Theorem 4.2 of [7].
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Abstract

We give some sufficient conditions for the Dominguez—Lorenzo condition in terms of the James constant,
the Jordan—von Neumann constant, and the coefficient of weak orthogonality. As a consequence, we obtain
fixed point theorems for multivalued nonexpansive mappings.
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1. Introduction

In 1969, Nadler [14] extended the Banach Contraction Principle to multivalued contractive
mappings in complete metric spaces. Since then some classical fixed point theorems for single
valued nonexpansive mappings have been extended to multivalued nonexpansive mappings. Let
X be a Banach space and let £ be a nonempty bounded closed and convex subset of X. In
1974, Lim [13], using Edelstein’s method of asymptotic centers, proved the existence of a fixed
point for a nonempty compact-valued nonexpansive self-mapping 7 : E — K(E) where X is
uniformly convex. Kirk and Massa [12] in 1990 extended Lim’s theorem by proving that every

* This work was completed with the support of the Commission on Higher Education and The Thailand Research Fund
under grant MRG4980192.
E-mail address: akaewkhao@yahoo.com.

0022-247X/$ — see front matter © 2007 Elsevier Inc. All rights reserved.
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multivalued nonexpansive self-mapping 7 : E — K (E) has a fixed point for a space X on which
every asymptotic center in E of each bounded sequence of X is nonempty and compact. In 2001,
Xu [19] extended Kirk—Massa’s theorem to a nonself-mapping T : E — KC(X) which satisfies
the inwardness condition.

In 2004, Dominguez Benavides and Lorenzo [6] obtained a certain relationship between the
Chebyshev radius of the asymptotic center of a bounded sequence and the modulus of noncom-
pactness. With this result and a modification of the proof in [19], they were able to solve an
open problem in [18] by proving that every nonempty compact and convex valued nonexpansive
self-mapping 7 : E — KC(E) has a fixed point where X is a nearly uniformly convex Banach
space. Their method was generalized by Dhompongsa, Kaewcharoen, and Kaewkhao [4], and
by Dhompongsa et al. [3]. In [4] the authors defined the Dominguez—Lorenzo condition ((DL)-
condition, in short) and proved the existence of a fixed point for a multivalued nonexpansive and
(1 — x)-contractive mapping T : E — KC(X) such that T (E) is a bounded set and T satisfies
the inwardness condition, where E is a nonempty bounded closed convex separable subset of a
reflexive Banach space X which satisfies the (DL)-condition. Very recently, the (DL)-condition
has been studied by Wisnicki and Wosko [17], Dominguez Benavides and Gavira [5], and Sea-
jung [15]. It is worth to mention the main results of the first two of these papers. Wisnicki and
Wosko [17] introduced an ultrafilter version of the (DL)-condition. Their approach enables them
to drop the separability condition in [4]. Dominguez Benavides and Gavira [5] proved that every
uniformly smooth Banach space satisfies the (DL)-condition and hence has the weak multivalued
fixed point property (see [5, Theorem 2]).

In this paper we give two sufficient conditions for the (DL)-condition in terms of the James
constant, the Jordan—von Neumann constant, and the weak orthogonality coefficient. Conse-
quently, we obtain two fixed point theorems for multivalued nonexpansive mappings.

2. Preliminaries

In this section we are going to recall some concepts and results which will be used in the
following sections. For more details the reader may consult, for instance, [1,9].

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(FE) the family
of nonempty bounded closed subsets of E, by KC(E) the family of nonempty compact convex
subsets of E. Let H(-,-) be the Hausdorff distance on FB(X), i.e.,

H(A, B) := max[sup inf |lx — y], sup inf [lx — y||], A, B € FB(X).
XcAYEB yeB xXeA

A multivalued mapping 7 : E — FB(X) is said to be a contraction if there exists a constant
k < 1 such that

H(Tx,Ty) <klx—yl, x,y€E,
and T is said to be nonexpansive if
H(Tx, Ty)<lx—=yl, x,yekE.
Let
x(A) =inf{d > 0: A can be covered by finitely many balls of radii < d}

denote the Hausdorff measure of noncompactness of a bounded set A.
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A multivalued mapping F: E — 2% is said to be (1 — x)-contraction if, for each bounded
subset A of E with x(A) > 0, F(A) is bounded and

K (F(A) < x(A),

Here F(A) =J,c4 Fx.
The inward set of E at x € E is defined by

Iﬂx):{x—}—)»(y—x): A<, yeE}.

Throughout the paper we let By and Sy denote, respectively, the closed unit ball and the unit
sphere of X. Let A be a nonempty bounded set in X. The number r(A) = inf{sup,c4 [lx — y|I:
x € A} is called the Chebyshev radius of A. The number diam(A) = sup{||lx — y||: x,y € A}
is called the diameter of A. A Banach space X has normal structure (respectively weak normal
structure) if

r(A) < diam(A)

for every bounded closed (respectively weakly compact) convex subset A of X with diam(A) > 0.
The property WORTH was introduced by B. Sims in [16] as follows: X is said to satisfy
property WORTH if for any x € X and any weakly null sequence {x,} in X,
limsup ||x, — x|| = limsup ||x, + x||.
n—oo n—o00
In [10], A. Jiménez-Melado and E. Llorens-Fuster defined the coefficient of weak orthogonality
w(X), which is defined as the infimum of the set of the real numbers » > 0 such that

limsup ||x + x, || < rlimsup || x — x, ||
n—od n— oo

for all x € X and for all weakly null sequences {x,} in X. It is known that X satisfies property
WORTH if and only if u(X) = 1.

For a Banach space X, the James constant, or the nonsquare constant was defined by Gao and
Lau [7] as

J(X) =sup{llx + yl Allx — yl: x,y € Bx}.
The Jordan—von Neumann constant Cnj(X) of X, introduced by Clarkson [2], is defined by

2 2
+ + [[x —
e + vl 3 lx 2y|| : X,y € X not both zero}.
2(0x 1=+ 1yl

The following method and results deal with the concept of asymptotic centers. Let E be a
nonempty bounded subset of X and {x,} be a bounded sequence in X. We use r(E, {x,}) and
A(E, {x,}) to denote the asymptotic radius and the asymptotic center of {x,} in E, respectively,
ie.,

Cni(X) = Sup{

r(E. {xn}) = inf{ limsup [x, — x| x € E}

A(E, {xn}) = {x € E: limsup ||x, — x| =r(E, {xn})].

It is known that A(E, {x,}) is a nonempty weakly compact convex set whenever E is [9].

Let {x,} and E be as above. Then {x,} is called regular relative to E if r(E, {x,}) =
r(E, {xp,}) for all subsequences {x,,} of {x,} and {x,} is called asymptotically uniform rela-
tive to £ if A(E, {x,}) = A(E, {x,,}) for all subsequences {x,,} of {x,}. Furthermore, {x,} is
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called regular asymptotically uniform relative to E if {x,} is regular and asymptotically uni-
form relative to E. There always exists a subsequence of {x,} which is regular relative to E
(see [8,13]).
If C is a bounded subset of X, the Chebyshev radius of C relative to E is defined by
r5(C) :inf{sup Ix—yll: x € E}
yeC

The Dominguez—Lorenzo condition introduced in [4] is defined as follows:

Definition 2.1. (See [4, Definition 3.1].) A Banach space X is said to satisfy the Dominguez—
Lorenzo condition ((DL)-condition, in short) if there exists A € [0, 1) such that for every weakly
compact convex subset £ of X and for every bounded sequence {x,} in E which is regular
relative to E,

rE(A(E, {xn})) < Ar(E, {xn}).

Theorem 2.2. (See [4, Theorem 3.3].) Let X be a reflexive Banach space satisfying the (DL)-
condition and let E be a nonempty bounded closed convex separable subset of X. If T: E —
KC(X) is a nonexpansive and (1 — x)-contractive mapping such that T (E) is a bounded set
which satisfies the inwardness condition:

Tx Clg(x) forallx € E,
then T has a fixed point.

3. The James constant

We are going to give a sufficient condition for the (DL)-condition in terms of the James
constant and the coefficient of weak orthogonality. It is an easy consequence of the following
important inequality.

Theorem 3.1. Let X be a Banach space and let E be a weakly compact convex subset of X.
Assume that {x,} is a bounded sequence in E which is regular relative to E. Then

J(X
re(A(E. (v,))) < <(—f)r(E, ().
1+ el

Proof. Denote r = r(E, {x,}) and A = A(E, {x,}). Since {x,} C E is bounded and E is a
weakly compact set, we can assume, by passing through a subsequence if necessary, that x,
converges weakly to some element in E, say x. We note that since {x,} is regular, r(E, {x,}) =
r(E, {yn}) for any subsequence {y,} of {x,}. Let z € A. Then we have

limsup ||x, — z|| =7. 3.1
n

Since (x; — x) 5 0and by the definition of w(X) (for short £ = (X)), we have the following
limsup || x, — 2x + z|| =lim sup|| (xp —x)+ (z—x) ||
n n
< /Llimsup” xn—x)—(z— x)“
n

— . (32)
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Convexity of E implies that m +1x + & o el Lz € E and thus we obtain

2
(e iie) | =
w+1  p+1

On the other hand, by the weak lower semicontinuity of the || - ||,

1 1
(1 - —)(xn —Xx)— (1+—>(z—x)
Iz %

limsup|x, —
n

liminf
n

1
> (1 + —)IIz—XII.
"
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Fix ¢ > 0 sufficiently small. Then, using (3.1)—(3.4), we obtain an integer N such that

v —zll < te.
Clxv —2x 4+ 7] < /L(r+s)
||XN—(M+1X+M+]Z)||>V

1= Do -0 — A+ ;)<z — 01> A+ Dz —xl(52).

LW =

(3.3)

34)

1 1 :
Now, put u = m(xN —z)and v = m(xN — 2x + z) and use the above estimates to

conclude that u, v € By, and so that

XN —X Zz—X XN — X Z—X
r+e r+¢ ur+e) wulr+e)

lu+v] =

(e o (L
I\r4+e  ur+e A r+e  ulr+e)

1 1-1
l—i——) (XN—X)—< lf)(z—x)
1 1+ 1

( "
1 2 n—1

T+ = )lay - ( —x+5—2

( u) N (u+1 M+1>H

XN—X Z—X XN—X 7—X ‘
+ & r+¢e¢ ulr+e) /L(}’+8)

e H(l__>(x’v‘x)—< %)(Z—x)
),

JX)Z [ utvlAllu—vl

() (=) () (5 ()

()

Thus

Jeos

By the weak lower semicontinuity of the || - || again we conclude that ||z — x|| < r and hence

() (o) () () () = (5

)(=

)



Page 23
A. Kaewkhao / J. Math. Anal. Appl. 333 (2007) 950-958 955

Therefore J(X) > (1 + i)(”z':—x”)(%). Since ¢ is arbitrary small, we obtain
1 _
J(X) > (1 + —)L iy
m r
This holds for arbitrary z € A. Hence we have
J(X
sup v — 2]l < ( ( )>r,

z€A 1+ﬁ

and therefore,

re(A) < ( JX) )r.

From the above theorem we immediately have the following
Corollary 3.2. If X is a Banach space with J(X) < 1+ ﬁ then X satisfies the (DL)-condition.
By applying Theorem 2.2, we obtain

Corollary 3.3. Let X be a Banach space with J(X) <1 + ﬁ and let E be a nonempty
bounded closed convex separable subset of X. If T:E — KC(X) is a nonexpansive and
(1 — x)-contractive mapping such that T (E) is a bounded set which satisfies the inwardness
condition:

Tx Clg(x) forallx €E,
then T has a fixed point.

Proof. Observe that J(X) < 2 since i > 1. Thus, X is reflexive, and then every bounded closed
convex set is weakly compact. Now Theorem 2.2 and Corollary 3.2 can be applied to obtain a
fixed point. O

Remark 3.4. Corollaries 3.2 and 3.3 cover Corollaries 3.5 and 3.6 of Dhompongsa, Kaew-
charoen, and Kaewkhao [4], respectively. To see this, we point that the condition of being
uniformly nonsquare and having property WORTH of X implies the condition J(X) < 1+ ﬁ
Remark 3.5. In [11, Theorem 2], Jiménez-Melado, Llorens-Fuster, and Saejung proved that if
X is a Banach space with J(X) < 1+ ﬁ, then X has normal structure, and it is proved in [4,
Theorem 3.2] that the (DL)-condition implies the weak normal structure. Thus our Corollary 3.2
is stronger than Theorem 2 of [11].

4. The Jordan—von Neumann constant
In this section, we are going to give a sufficient condition for the (DL)-condition in terms

of the Jordan—von Neumann constant and the coefficient of weak orthogonality. Again, as in
Section 3, we need a corresponding inequality.
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Theorem 4.1. Let X be a Banach space and let E be a weakly compact convex subset of X.
Assume that {x,} is a bounded sequence in E which is regular relative to E. Then

e (A(E, () < (/ 28X CaX) _ 1)r(E, ().

w(X)* +1

Proof. Letr, A, {x,}, x, z and u be as in the proof of the previous theorem. Thus,

limsup ||x, —z|| =7 4.1)
n
and
limsup ||x, — 2x + z|| < ur. “4.2)
n
. 2
Sinc e
li 2 oS 4.3)
imsup|x, — X >r. .
P PRI TR
The semicontinuity of the | - || yields the following:
linl111an (1 = 1) —x) — (K2 + 1)z —0)| = (u* + 1)llz — x]I. (4.4)

Now, fix ¢ > 0 sufficiently small. Then, using (4.1)—(4.4), we obtain an integer N such that

ey =zl s te

ey = 2x +zll < M(r +¢).
lxn — (Mz+1x+ “2+lz)ll

I(1? = Dy —x) — (w2 + D — 0 = (w? + Dz — x[[(52).

e

Next, put u=pu(xy —z) and v = (xy — 2x + z) and use the previous estimates to obtain
lull < @ (r + &), ||lv]| < u( + ¢), and so that

lu+ vl = |1 (Gn —x) = (2 = x)) + ey —x) + (2 —x)|

uo—1
(XN—X)—W(Z—X)

= 0o (e )|
> (1 +1)0r —e),

lu —vll = (G —x) = (2 = x)) = ((ey —x) + (2 — 1)) |
= |(* = 1)y —0) = (¥ + 1)z =)

> (12 + 1)||Z—x||(r:8)~

By the definition of Cnj(X) we see that

= (1 +1)
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llu + vl + [lu — v|?
2(flull2 + IvlI?)

(5 (52

Letting £ — 0" we obtain that Cnj(X) > (“2+21 )1+ (”Z:—x”)z). Then we have

2u
2u2CN1(X
|u—xn<<Jl%;}%l—1>n

This holds for arbitrary z € A, hence we have

212 Cny(X) ;
——1]r
nr+1

Cnyi(X) 2

re(A) < <
and therefore,

22 Cny(X) B l)r -

A) <
re(A) ( 2

As a consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Let X be a Banach space. If Cnj(X) < 1 + ﬁ, then X satisfies the (DL)-

condition.
Apply Theorem 2.2 and Corollary 4.2 to obtain the following corollary.

Corollary 4.3. Let X be a Banach space with Cnj(X) < 1 + m and let E be a nonempty

bounded closed convex separable subset of X. If T : E — KC(X) is a nonexpansive and (1 — x)-
contractive mapping such that T (E) is a bounded set which satisfies the inwardness condition:

Tx Clg(x) forallx €E,
then T has a fixed point.

Remark 4.4. It is shown in [15, Theorem 5] that if Cnj(X) < then X satisfies the
(DL)-condition. Clearly, 14 —1

w(X)?
of [15].

4
T (X)?”
Thus our Corollary 4.2 is better than Theorem 5

4
1+p(X)? <

Remark 4.5. Dhompongsa et al. proved in [3] that a Banach space X satisfies property (D),
which is implied by the (DL)-condition, whenever Cnj(X) < co = 1.273.... If we compare this
result with Corollary 4.2, we observe that for those spaces X with p(X) close to 1, the result
in [3] does not apply but our Corollary 4.2 still gives information on the (DL)-condition of X.

Remark 4.6. As in Remark 3.5, Corollary 4.2 covers Theorem 1 of [11].
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A common fixed point for an asymptotically nonexpansive

mapping and a multivalued nonexpansive mapping *
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Abstract

Let X be a uniformly convex Banach space, E a nonempty closed bounded convex
subset of X, and f: F — F and T : E — KC(FE) is an asymptotically nonexpansive
mapping and a multivalued nonexpansive mapping respectively. Assume in addition f
and T are commuting. Then f and T have a common fixed point, i.e., there exists a
point z in F such that x = fz € Tx.

Keywords: Asymptotically nonexpansive mappings, Fixed point theory, Multivalued non-

expansive mappings.

1 Introduction

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(E) the
family of nonempty bounded closed subsets of E, by K(FE) the family of nonempty compact
subsets of E, by FC(F) the family of nonempty closed convex subsets of F, and by KC(FE)
the family of nonempty compact convex subsets of E. Let H(:,-) be the Hausdorff distance
on FB(X), i.e.,

H(A, B) = max{ supdist(a, B), supdist(b, 4) }, A, B € FB(X),
acA beB

where dist(a, B) = inf{|ja — b|| : b € B} is the distance from the point a to the subset B.
A multivalued mapping T : F — F(X) is said to be a contraction if there exists a constant
k €10,1) such that

H(Tz,Ty) <kllz —yll, =yeckFE. (1.1)

*This work was completed with the support of the Commission on Higher Education and The Thailand
Research Fund under grant MRG4980192. The first author also supported by the Commission on Higher
Education.

tCorresponding author.
¥ E-mail addresses: k_sokhuma@yahoo.com (Krisana Sokhuma), akaewkhao@yahoo.com (Attapol Kaewkhao)
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In this case, we also say that T is k—contractive.

If (1.1) is valid when k& = 1, then T is called nonexpansive. A point z is a fixed point
for a multivalued mapping 7" if x € Tx. Banach’s contraction Principle was extended to a
multivalued contraction in 1969 by Nadler [23].

One of the most celebrated results about multivalued mappings was given by T. C. Lim in

1974. By using Edelstein’s method of asymptotic centers [11].

Theorem 1.1. (Lim [21]). Let E be a nonempty closed bounded convex subset of a uniformly
convexr Banach space X and T : E — K(FE) a nonexpansive mapping. Then T has a fized.

point.

Some results for multivalued nonexpansive mappings were obtained by many authors, for
instance [4], [5], [6], [7], [8], [9], [12], [13], [16], [18], [25], [26], and [29].

Asymptotic fixed point theorems are those theorems from which the existence of fixed
points of a mapping f : X — X are derived from the behavior of the iterates f™ for large n.
A mapping f : E — F is said to be asymptotically nonexpansive if there exists a sequence

{k,} of real numbers with lim k,, = 1 such that

|/ — Tyl < Eknllz — v forz,y € Eand n=1,2,3,....

In 1972, Goebel and Kirk [14] proved the following theorem.

Theorem 1.2. (Goebel and Kirk [14]). Let X be a uniformly convexr Banach space, E a
nonempty closed bounded convex subset of X, and f : E — E an asymptotically nonexpansive

mapping. Then [ has a fized point. Moreover, the set of fixed points of [ is closed convex.

Some generalizations of this result were proved by Yu and Dai [31] when X is 2-uniformly
rotund, by Martinez Yafiez [22] and Xu [27] when X is k—uniformly rotund for some k > 1,
by Xu [28] when X is nearly uniformly convex, by Lim, Tan and Xu [20] when X satisfies the

uniform Opial condition and by Kim, and Xu [19] when X has uniform normal structure.

Motivated by Theorem 1.1 and Theorem 1.2, it is the objective of this paper to prove that if
FE is a nonempty closed bounded convex subset of a uniformly convex Banach space and if f :
E— Fand T: E — KC(F) is an asymptotically nonexpansive mapping and a multivalued
nonexpansive mapping respectively. Assume in addition f and T are commuting. Then f

and T have a common fixed point, i.e., there exists a point x in F such that x = fx € Tz.

2 Preliminaries

Let X be a Banach space with the norm || - || and E be a nonempty subset of X. We shall

write x = w — lima, when the sequence {x,} converges weakly to x. The Kuratowski,
n

separation, and Hausdorff measures of noncompactness of a nonempty bounded subset B of

X are respectively defined as the numbers:

a(B) =inf{d > 0 : B can be covered by finitely many sets of diameters < d},
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B(B) = sup{e > 0: there exists a sequence {z,} in B such that sep({z,}) > €},
where sep({x,}) = inf{||z, — zm|| : n # m},
X(B) = inf{d > 0 : B can be covered by finitely many balls of radii < d}.
A multivalued mapping 7 : E — 2% is called ¢—condensing (resp. 1 — ¢—contractive)

where ¢ is a measure of noncompactness if, for each bounded subset B of F with ¢(B) > 0,
there holds the inequality

¢(T(B)) < ¢(B) (resp. ¢(T(B)) < ¢(B)).
Here T(B) = UyepTz.
Definition 2.1. Let E be a nonempty closed subset of X. The inward set of E at x € E is

given by
Ig(z)={z+AXy—2z): A>1,y € E}.

In case E is a nonempty closed convexr subset of X, we have
Ig(z)={z+AXy—=z): A>0,y € E}.

A multivalued mapping T : E — 2% is said to be inward (resp. weakly inward) on E if

Tx C Ig(x) (resp. Tx C Ig(zx)) for all z € E.

In our main theorem, we rely heavily on the following result.

Theorem 2.2. [3, Deimling] Let E be a nonempty bounded closed conver subset of X and

T:E — FC(X) be an upper semicontinuous x— condensing mapping. Assume TxNIg(x) # &
for all x € E. Then T has a fized point.

In 2001, Dominguez and Lorenzo proved a very interesting theorem which is a generalization

of the famous theorem of Buck [2]. Before stating the theorem, we need the following concepts.

We say that a nonempty closed convex subset D of F satisfies property (w) with respect
to a mapping f : E — E if wy(x) C D for every x € D where

wi(z)={yeE:y=w— liirlfnk.%' for some nj — oo}.

Definition 2.3. [10] A mapping f : E — E is said to satisfy the (w)—fized point property
((w)—fpp) if  has a fized point in every nonempty closed convex subset D of E which satisfies
(w).

In their theorem they concerned with the class of mappings that is larger than the class of
asymptotically nonexpansive mappings.

Definition 2.4. A mapping f : E — E is said to be weakly asymptotically nonexpansive if it

satisfies the condition

limsup || f"z — f"y|| < [|x —yl| for each x,y € E.
n
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Theorem 2.5. [10] Let X be a Banach space, E a nonempty weakly compact convex subset of
X, and f : E — E a weakly asymptotically nonexpansive mapping satisfying (w)—fpp. Then
there exists a nonexpansive retraction R from E onto Fiz(f), the fized point set of f, which

satisfies :
(i) Rof=R,
(i) every closed conver f—invariant subset of E is also R—invariant.

In connection with Definition 2.3 we can restate Theorem 1.2 as follows :

Theorem 2.6. (Goebel and Kirk [14]). Let X be a uniformly convexr Banach space, E a
nonempty closed bounded conver subset of X, and f : E — E an asymptotically nonexpansive
mapping. Then [ satisfies the (w)—fpp. Moreover, the set of fixed points of f is closed convez.

We now present a formulation of an ultrapower of Banach spaces.
Let U be a free ultrafilter on the set of natural numbers. Consider the closed linear subspace
of loo(X) :
N = {{xn} € loo(X) s Timn | | = o}.

The ultrapower X of the space X is defined as the quotient space loo(X)/N. Given an
element © = {x,} € l(X), ¥ stands for the equivalence class of x. The quotient norm in
X satisfies ||Z| = limy ||zn||. For more details about the construction of an ultrapower of a
Banach space X, see [1, Aksoy and Khamsi|,[15, Geobel and Kirk], and [24, Sims|. Since
the ultrapower X is finitely representable in X, X inherits all finite dimensional geometrical

properties of X. In particular we obtain the following result.

Theorem 2.7. A Banach space X is uniformly convez if and only zf)? is uniformly conver.

Another property of a uniformly convex Banach space we will use is the following :

Proposition 2.8. [30] A Banach space X is uniformly convex if and only if, for each fixed
number r > 0, there exists a continuous function ¢ : [0,00) — [0,00), ¢(t) =0 <t =0, such
that

1Az + (1= Nyl < Ml* + (1= Nyl =21 = Ne(llz — yl)
for all X € [0,1] and all z,y € X such that ||z]| <7 and ||y| < 7.

3 Main result

Before stating our main theorem we introduce the following concept.

Definition 3.1. Let E be a nonempty bounded closed convex subset of a Banach space X,
f:E—- X, and T : E — FB(X). Then f and T are said to be commuting if for every
x,y € B such that © € Ty and fy € E, there holds

freTfy.
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Theorem 3.2. Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X, f : E — E, T : E — KC(FE) an asymptotically nonexpansive mapping and
a multivalued nonexpansive mapping respectively. Assume that f and T are commuting. Then

f and T have a common fixed point, i.e., there exists a point x in E such that x = fx € Tx.

Proof. Theorem 1.2 guarantees that the fixed point set of f, denoted by Fix(f), is nonempty,
closed, and convex. Let z € Fix(f). Since f and T are commuting, we have fy € Tz for each
y € Tx. We see that, for « € Fix(f), Tz N Fix(f) # 0. For a fixed element x¢ € Fix(f), define
a contraction T, : Fix(f) —KC(E) by

1 1
Thr=—x9+ (1 —=)Tz, x € Fix(f).
n n

It is easy to see that for each z € Fix(f), T,z N Fix(f) # 0 as T does.

Theorem 2.6 together with Theorem 2.5 guarantee that Fix(f) is a nonexpansive retract
of E. Then we can show that T, : Fix(f) -KC(F) is x—condensing. Indeed, let B be a
bounded subset of Fix(f) and x(B) > 0. Given d > 0 be such that

B C U, B(x;,d), z; € E.
Let R be a nonexpansive retraction of E onto Fix(f). For each a € B(z;,d) N B, we have
[Bzi — al| = | Re; — Ral| < |z —al| < d.

Therefore B(x;,d) N B C B(Rx;,d) for each ¢ € {1, ...,n}, and hence

B C U™, B(Ra;, d).

Since T,, is (1 — L )—contractive,

To(B) € U (ToRasi + (1 — %)dB(O, ).

Thus )
X(Ta(B)) < (1= 2)x(B) < X(B),
and T}, is xy—condensing.
Now we can apply Theorem 2.2 to conclude that T, has a fixed point, say x,. Moreover,

we can show that
dist(zy,, Tzy) — 0.

Let X be a Banach space ultrapower of X and

Fix(f) = {& = (z) : 2n = 2 € Fix(f)}.
Then le( f) is a nonempty closed convex subset of X. Now, for each n € N, let y, be the
unique nearest point of x,, in Tx,, i.e., |2, —yn| = dist(z,, Tzy). Consequently, (z,,) = (yn)-
We show now that y,, € Fix(f) for each n € N. Indeed, by Proposition 2.8, we have, for all
integers [, m > 1,
2
flyn + " Yn
2

1 1 . 1 -
Tp — < §||xn - flyn||2 + §||'Tn - f yn||2 - 1@ (”flyn - f yn“) .
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Since z,, € Fix(f) and Fix(f) C Fix(f?) C Fix(f3) C---, we have

2

R R s
—iw (L Y = F™yll) - (3.1)
However, 2
1 — gnll? < [lm - w

for all I, m. So we get from (3.1)
o (I yn = f"yull) <4 K; (K + k) — 1) |z — anIQ] =0
as [,m — oo. Hence, {f'y,} is norm-Cauchy. Let
z = lim fly,.
i—00
Since f is asymptotically nonexpansive, we have, for all 1,
1f2 = F* ynll < kallz = fyall-

Letting ¢ — oo yields ||fz — z|| < 0; that is z € Fix(f). Now letting I,m — oo in (3.1) yields

= 2[* < [l2n — ynl*.

It follows from the uniqueness of y, that y, = z € Fix(f).

Since Fix(f) is a closed convex subset of a uniformly convex Banach space X, (z,,) has a

unique nearest point o € Fix(f), i.c., ||(zn) — o] = dist((z,), Fix(f)).

As Tw is closed and convex, we can find v,, € T satisfying
lyn — val| = dist(yn, Tv) < H(Tzp, Tv).

By the similar idea of above argument, we note here that v,, €Fix(f) for each n.

It follows from the nonexpansiveness of T" that
[yn = vall < [lzn — 2.

This means

(wn) = ()| < | (@n) — 8]]-

Since (zy) = (yn), we have

() — (va)]| < [[(2n) — o] (3.2)

Because of the compactness of T'v, there exists w € Tw such that w = limy, v,,. It follows that
(vp) = w. This fact and (3.2) imply

[(zn) =@l < [[(zn) =2l (3-3)

Moreover, w €Fix(f) and then w € le(f) Hence w = v and so v = fv = fw =w € Tv
which then completes the proof. O
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Remark 3.3. 1. Theorem 3.2 is a generalization of Theorem 4.2 of [5].

2. The idea that we use to verify that y, € Fiz(f) in the above argument comes from the
proof of Theorem 3.5 of Kirk and Xu [19].
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