บทคัดย่อ

รหัสโครงการ: MRG 4980193

ชื่อโครงการ : อิทธิพลของสัดส่วนดินเหนียวต่อคุณลักษณะเชิงวิศวกรรมของดิน

ชื่อนักวิจัย : 1.ดร. ชัยรัตน์ ธีระวัฒนสุข มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

2.รศ.ดร.พานิช วุฒิพฤกษ์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

E-mail Address : chairatsuk@yahoo.com

ระยะเวลาโครงการ : 2 ปี

ดินในธรรมชาติสามารถแบ่งออกเป็น 2 ประเภท คือ ดินเม็ดหยาบ และดินเม็ดละเอียด โดยดินเม็ดหยาบ จะมีคุณสมบัติทางด้านวิศวกรรมที่ดีอยู่แล้ว ได้แก่ กรวด และทราย จึงเหมาะสมที่จะนำไปใช้เป็นวัสดุก่อสร้างใด้ เป็นอย่างดี ในขณะที่ดินเม็ดละเอียด เช่น ดินเหนียว ถือเป็นวัสดุก่อสร้างที่มีคุณสมบัติทางด้านวิศวกรรมที่ไม่ดี อย่างไรก็ตามดินเม็ดละเอียดที่จำแนกตามหลักวิศวกรรมปฐพียังมีส่วนของทรายแป้งปะปนอยู่ในดินเหนียว วิธีการ ปรับปรุงคุณภาพของดินโดยวิธีดินซีเมนต์ทำให้ชั้นดินอ่อนนั้นสามารถรับน้ำหนักได้มากดีขึ้นและลดการทรุดตัวลง วิศวกรรมปฐพีซึ่งสามารถแบ่งวิธีดินซีเมนต์เป็นการปรับปรุงคุณภาพดินระดับตื้นและระดับลึก การปรับปรุงคุณภาพดินระดับตื้นจะปรับปรุงคุณภาพของดินเดิมสำหรับงานถนน และงานสนามบิน ซึ่งโดยปกติใช้การผสมที่ ปริมาณความชื้นต่ำ ขณะที่การปรับคุณภาพดินระดับลึกที่เรียกว่าวิธีการผสมลึกนั้นใช้ซีเมนต์ขันเหลวที่มีค่า ปริมาณความชื้นสูงเนื่องจากค่าปริมาณชื้นในดินเหนียวอ่อนส่วนใหญ่จะมีค่าสูงอยู่แล้ว

โครงการวิจัยครั้งนี้มุ่งเน้นศึกษาปัจจัยการกระจายตัวของขนาดเม็ดดิน โดยเฉพาะอย่างยิ่งสัดส่วนดิน เหนียวว่ามีต่อคุณสมบัติพื้นฐานของดินเม็ดละเอียด เช่น ขีดจำกัดแอตเทอร์เบิร์ก ซึ่งประกอบไปด้วย ขีดจำกัด เหลวและขีดจำกัดพลาสติก นอกจากนี้ศึกษาอิทธิพลปริมาณสัดส่วนดินเหนียวต่อคุณสมบัติทางด้านวิศวกรรมโดย ทำการทดสอบกำลังรับแรงอัดแบบไม่ถูกจำกัดของดินเม็ดละเอียดที่ปรับปรุงคุณภาพด้วยซึเมนด์ที่ค่าปริมาณ ความชื้นสูงเท่ากับขีดจำกัดเหลว โดยใช้ทรายแป้งเป็นตัวแปรในการควบคุมสัดส่วนดินเหนียวที่ทำการศึกษา ซึ่ง ตัวอย่างทรายแป้งที่ใช้ได้จากการคัดขนาดของทรายแป้งที่มีขนาดของเม็ดผ่านตะแกรงเบอร์ 200 (75µm) และค้าง อยู่บนตะแกรงเบอร์ 400 (38µm) จากผลจากการศึกษาวิจัยพบว่า 1) การเพิ่มขึ้นของปริมาณทรายแป้งมีผล โดยตรงทำให้ ปริมาณสัดส่วนดินเหนียวลดลงก่อให้เกิดการลดลงของขีดจำกัดแอตเทอร์เบิร์ก นอกจากนี้ยังพบว่า การจำแนกดินระหว่างดินเหนียวและทรายแป้งโดย A-line ในแผนภูมิพลาสติกนั้น เป็นการจำแนกโดยคุณสมบัติ ความเป็นพลาสติกไม่ได้แบ่งในเชิงปริมาณของเม็ดดิน 2) การเพิ่มขึ้นของสัดส่วนทรายแป้งในดินผสมซีเมนต์จะทำ ให้กำลังรับแรงอัดแบบไม่ถูกจำกัดมีค่าเพิ่มขึ้น อย่างไรก็ตาม กำลังรับแรงอัดแบบไม่ถูกจำกัดจะมีค่าเพิ่มขึ้นอย่าง เห็นได้ชัดเมื่อปริมาณของทรายแป้งมีค่ามากกว่าร้อยละ 30 และพบว่า ที่ร้อยละ 7.5ของซีเมนต์ กำลังของดินผสม ซึเมนต์มีการเปลี่ยนแปลงไม่มากเมื่อเปรียบเทียบกับดินผสมที่ใช้ปริมาณซีเมนต์ที่ 15% และ 20% นอกจากนี้ สมการที่นำเสนอโดยปรับปรุงจาก Abram's law สามารถทำนายกำลังรับแรงอัดแบบไม่ถูกจำกัดของดินผสม ซึเมนต์ได้เป็นอย่างดี

คำหลัก : สัดส่วนดินเหนียว การปรับปรุงคุณภาพดิน กำลังรับแรงเฉือน ขีดจำกัดเหลว ดินซีเมนต์

Abstract

Project Code: MRG 4980193

Project Title: Influence of Clay Fraction on Engineering Characteristic of Soil

Investigator:

1. Dr. Chairat Teerawattanasuk King Mongkut's University of Technology North Bangkok

2. Asso. Prof. Dr. Panich Voottipruex King Mongkut's University of Technology North Bangkok

E-mail Address: chairatsuk@yahoo.com

Project Period: 2 Years

Natural soil in geotechnical engineering can be mainly classified into coarse and fine grain soil. The engineering properties of coarse grain soil such as gravel and sand are suitable for being construction materials while fine grain soil such as clay is not. However, the fine grain soil contains not only clay but silt as well. The ground improvement method by soil cement can then be conducted for the construction on soft soil to increase the bearing capacity and to reduce the settlement. In geotechnical engineering, soil cement is well recognized in improving shallow soil by mixing cement and soil of low water content and deep soil by deep mixing method at high water content due to the high existing moisture content of soil.

This study is to investigate the influence of clay fraction on basic properties of fine grain soil such as Atterberg's limits comprising of the liquid and plastic limits. The influence of clay fraction on engineering properties such as shear strength was also determined by unconfined compressive test of cement treated fine grain soil at high water content equal to the liquid limit. Adding of silt passing through No. 200 U.S. sieve and retaining on No. 400 U.S. sieve directly resulted in the decreasing of clay fraction and Atterberg's limits. In addition, the soil classification between clay and silt content by A-line in plasticity chart was only identified in term of the plasticity but not the quantitative soil grain. The addition of silt content in cement treated soil increased significantly the unconfined compressive strength when the silt content was over 30% while the soil strength was found to be minor with the cement content of 7.5% comparing to the cement content of 15% and 20%. Finally, the unconfined compressive strength of cement treated soil was well predicted by the Abram's law adapted equation.

Keywords: clay fraction, ground improvement, shear strength, liquid limit, soil cement